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In this work we present some new results on energy shaping control for underactuated mechanical sys-
tems with high-order actuator dynamics. To this end, we propose an extension of the Interconnection and
damping assignment Passivity based control methodology to account for actuator dynamics. This brings the
following new results: i) a potential and kinetic energy shaping and damping assignment procedure that
yields two alternative controllers; ii) a potential energy shaping and damping assignment procedure for
a narrower class of underactuated mechanical systems. The proposed approach is illustrated with numer-
ical simulations on three examples: an Acrobot system with a series elastic actuator; a soft continuum
manipulator actuated by electroactive polymers; a two-mass-spring system actuated by a DC motor.
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1. Introduction

Energy shaping control offers a range of desirable features, in-
cluding the physical interpretation of the control action in terms of
system energy, which have made this approach a popular choice
for a variety of applications. In particular, the Interconnection and
damping assignment Passivity based control (IDA-PBC) methodology
[18] involves designing the control action such that the closed-loop
dynamics preserves the port-Hamiltonian structure and is char-
acterized by a prescribed total energy. IDA-PBC controllers have
been designed for a variety of systems, including fully actuated
robots [23], underactuated satellites [2], unmanned surface ves-
sels [14,20], piezoelectric beams [12], and soft robotic manipula-
tors [7,15]. In case of underactuated systems, the controller de-
sign requires solving analytically a set of partial differential equa-
tions (PDEs), which can be a challenging task. This aspect has mo-
tivated a number of works, including a method to simplify the
PDEs for mechanical systems [21], the study of kinetic energy
shaping for mechanical systems [11], the algebraic solutions of the
PDEs in Nunna et al. [17], and the numerical solution of the PDEs
with reinforcement learning in Gheibi et al. [10]. A further line
of research has investigated the effect of disturbances within IDA-
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PBC, resulting in more sophisticated controllers that achieve robus-
tification through integral actions [3] or adaptive observers [8].

Thanks to its physical interpretation in terms of system energy,
the IDA-PBC methodology has proved well suited to control multi-
domain systems which involve energy exchanges between different
components. Notable examples include magnetic levitation systems
[17], weakly-coupled electro-mechanical systems [22], and more
recently mechanical systems with fluidic actuation [5,6]. In prin-
ciple, the IDA-PBC methodology can be employed to account for
high-order actuator dynamics within the controller design. Never-
theless, this has typically been avoided for simplicity, considering
that many actuators have higher bandwidth compared to the cor-
responding mechanical sub-systems [19]. In general, accounting for
the actuator dynamics results in a system which is not input affine
hence potentially complicating the controller design. Notable re-
sults in this direction include IDA-PBC designs for mechanical sys-
tems that account for the first-order dynamics of electric motors
in Gandarilla et al. [9] and Wang et al. [26]. In addition, an en-
ergy shaping controller has been designed for a soft continuum
manipulator actuated by electroactive polymers in Mattioni et al.
[15]. Finally, in our recent work [5], we have proposed an IDA-PBC
implementation for underactuated mechanical systems with fluidic
actuation, which accounts for the pressure dynamics of the fluid,
either pneumatic or hydraulic. In summary, the former controllers
are either specific to a system or to a type of actuator, thus they
are not directly applicable to different actuation strategies charac-
terized by high-order dynamics.
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This work investigates the energy shaping control for underac-
tuated mechanical system with high-order actuator dynamics and
presents the following new results.

e An energy shaping and damping assignment procedure that
builds upon the IDA-PBC methodology preserving the port-
Hamiltonian structure, and which yields two alternative con-
trollers. This approach is feasible for a class of systems de-
fined by a clear set of conditions. In addition, a potential
shaping procedure is detailed for a narrower class of under-
actuated mechanical systems.

Numerical simulations for three illustrative case studies: an
Acrobot system with a series elastic actuator; a soft contin-
uum manipulator actuated by electroactive polymers; a two-
mass-spring system actuated by a DC motor.

The rest of this paper is organized as follows: a brief overview
of the IDA-PBC methodology is provided in Section 2 for complete-
ness; the definition of the system class is given in Section 3; two
controller design procedures for kinetic and potential energy shap-
ing are detailed in Section 4; a controller design procedure for po-
tential energy shaping is discussed in Section 5; illustrative exam-
ples are presented in Section 6; concluding remarks are given in
Section 7.

2. Overview of IDA-PBC

The dynamics of an underactuated mechanical system with n
degrees-of-freedom (DOFs) and direct actuation u e R™ through
the input matrix G(q) € R™™, where rank(G) =m <n for all g ¢
R", is described in port-Hamiltonian form as

[0 e e

where D = DT > 0 is the damping matrix, and the total mechanical
energy is

1
H(q.p)=Q+ jpTM*‘p, (2)

characterized by the inertia matrix M(q) = M(q)T > 0, and the po-
tential energy €2(q). The system states are the position q € R" and
the momenta p = Mq € R". The remaining terms in (1) are the
identity matrix I, the vector of partial derivatives of H in q, V¢H,
and the vector of partial derivatives of H in p, VpH. The control
aim corresponds to stabilizing the equilibrium (g, p) = (¢*, 0), and
it is achieved with the IDA-PBC control law [18]

u =G (VgH — MgM~"VgHy + J2VpHy) — kyG" VHg, (3)

where G' = (GTG)flGT. The resulting closed-loop dynamics is

q _ 0 MﬁlMd Vqu (4)
P ~MgM~1 ], — (Gk,G" + DM~1My) || V,Hqy

where H; = Q4 + %pTM(fp. The design parameters in (4) are the
potential energy €2, the inertia matrix My = Mg > 0, the free ma-

trix J, = —JI, and the constant matrix ky = kl, > 0. To achieve the
regulation goal, the potential energy €2; should admit a strict
global minimizer in g* hence verifying the conditions V4€2,4(q*) =
0 and V%Qd (g*) > 0. In addition, M; and 2,4 should verify for all
(g, p) € R?" the PDEs

G (Vo(p"M™p) = MgM~'Vo(p"M;'p) +2,M;'p) =0,  (5)
G (Vg2 = MgM™'V,,) =0, (6)

where G* is such that G-G = 0 and rank(G*) = n — m. Computing
the time derivative of H; along the trajectories of the closed-loop

European Journal of Control 72 (2023) 100828
system (4) yields

Hy = —V,H! (ck,,GT + %(DM‘lMd) + %(Dm-wdﬂ)vad <0

(7)
Thus the equilibrium (g, p) = (g*,0) is asymptotically stable if
(GkyG™ + Z(DM~'My) + 3(DM~'My)T) >0 and the output y=
GTVpHy is detectable [18].

3. System class definition

Consider the underactuated mechanical system defined by
(1) and (2) where the actuator dynamics has order s > 1. The com-
plete system dynamics in port-Hamiltonian form is thus

0 I 0 0o .. 0
a I 5 0o .. 0
fl 0 -7 Ry P 0
ol = R,  —Raa 0
X 0 0 0 0 —Rs+2,s+2
S
F
v, 0
v ,W 0
X 0
X2 +| 0 |u, (8)
Xs GO

where W =Q+ 5p'M~1p+Y5_ E; and F = Fy - Ro with 75 =
7]_-5’ Ro = Rg = diag(R;;). The generic element of 7 on row i and
column j is indicated with F;;, thus F;; = —F; for all i#j. In
summary, the total energy W comprises the mechanical energy
H=Q+ %pTM*1p, while the remaining terms E; represent the en-
ergy of the actuators. The system states are x = (q, p,Xq,...,Xs)
with g e R", p e R" referring to the mechanical system (1), and
(X1, ...,Xs) € R™S referring to the actuator, and the new input ma-
trix is Go € R™™, In summary, system (8) is an extension of sys-
tem (1) obtained by including the dynamics of the actuators. The
class of systems considered in this work is defined by the follow-
ing assumptions.

Assumption 1. The PDEs (5) and (6) for system (1) with di-
rect actuation are solvable analytically, €, is positive def-
inite, gq* = argmin(82;), and either Dy = Gk,GT + %(DM*lMd) +
3 (DM~1My)T > 0, or y = GTM; " p is detectable if D = 0. Finally, all
model parameters are exactly known and all system states are
measurable.

Assumption 2. The interconnection matrix F in (8) has off-
diagonal elements F;; =0 if j>i+41 and either rank(F;) =m if

j=i+1or Vy <]—'].T+1 (VW + }—j+1,2VpW) # 0, while the diagonal
terms are R;; > 0.

Assumption 3. The energy of the actuators is such that VX).E[ =0
if j >iand ijEj # 0. Finally, Gg is full rank for all (q, p, X1, ..., Xs).

Remark 1. The first assumption defines the class of systems for
which the IDA-PBC methodology is applicable, according to Or-
tega et al. [18]. The analytical solvability of the PDEs is a re-
search topic in itself [17], thus it is not investigated further. Nev-
ertheless, the PDEs (5) and (6) are solvable analytically for sev-
eral canonical examples including, the disk-on-disk [3], the inertia-
wheel-pendulum [21], the ball-on-beam [18], and the Acrobot
[16], which is illustrated in Section 6. If s=0 the conditions of
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Assumptions 2 and 3 are verified, that is 713 =1#0, Ry; =D >
0 and V,Q=0, VZQ30,VZ(5p"M~1p)=M-1:0. In general,
Assumptions 2 and 3 imply that the actuator dynamics in (8) is in
strict-feedback form, with the key difference that the mechanical
sub-system (1) is underactuated. As a result, the controller design
cannot be performed with the same backstepping approach used
for fully actuated systems [13]. In addition, employing a backstep-
ping design that builds upon the IDA-PBC controller (3) would not
preserve the port-Hamiltonian structure in closed loop [5,6]. Note
finally that, while systems (8) is not directly actuated, the input
matrix G is still relevant since it defines the states affected by the
actuator dynamics.

4. Potential and kinetic energy shaping

The aim of this work is to account for high-order actuator dy-
namics by building upon the IDA-PBC methodology [18] in a mod-
ular fashion and by preserving the port-Hamiltonian structure of
the system in closed loop. To this end we propose a controller
design procedure that preserves the PDEs (5) and (6) characteriz-
ing system (1). The main idea behind the controller design is to:
i) express the actuator dynamics in port-Hamiltonian form (8); ii)
define a corresponding closed-loop dynamics compatibly with the
regulation goal; iii) construct a control law that ensures matching
between open-loop and closed-loop dynamics thus extending our
work [5] to generic high-order actuator dynamics.

4.1. First controller design

The control law for system (8) is designed such that the closed-
loop dynamics is port-Hamiltonian, that is

[%] = [ ][VWa]. (9)
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It follows from (10), (11) that ¢, and }‘,’{j are interdependent, thus
they cannot be computed simultaneously and independently of
each other. Therefore, the control law is constructed by employing
the following design procedure.

1. Compute the expressions of 24, My and J, by solving the
PDEs (5) and (6) for the mechanical sub-system (1).

2. Compute ]-';2, féz and the diagonal terms }'j/.j from (11).

3. Compute ¢; from (10) and subsequently compute }‘13,}‘
from (11).

4. Compute ¢, from (10) and subsequently compute
Fras Foge Fgq from (11).

5. Compute ¢, from (10) and subsequently compute

1raz Fokez o Thatks2 from (11) for all subsequent

k<s.

6. Compute the control input from (12).

Proposition 1. Consider system (8) with Assumptions 1-3 and with
the control law (12). Then the closed-loop system is given by (9), the
matrix ¥ is given by (11), and ¢y is given by (10).

Proof. Equating the first rows in (8) and (9) yields

P+ Z(Vp§k)T§k>

M 'p=M"1M, (M
k=1

+> (fi_m Z(Vx,.;k)Tck). (13)

j=1 k=j

Defining 7, ,,, according to (11), that is

s—1
Frs =~ <fisz§s + 3 (FrjnVy cs)) (V&)™
j=1

where F = 7* — R* with 7* = —7' and R* = R*' > 0, the total and substituting in (13) cancels . Similarly, substituting . 1 42
energy is Wy =Hy + 5 Y51 § & With Hy = Q4+ 5p'M;'p char-  with j > 2 cancels ; until (13) yields the identity.
acterizing the mechanical sub-system, and ¢, € R™ are defined as
T(—V W 4 Fp3 Vo, W +Md M~V Hy + (GkUGT —2)VpHq). k=1
G = 5, I<+1v W — Z j+2 k+lv"JW + ]: k+1 (V Hq + Z (ngi)Tgf) (10)
+ 7 11 (VoHg + S0 (Vpl)T8) + 5ot Flig e (T (Y 8DTG), k> 1,
to ensure matching between (8) and (9) for the states (xq, ..., Xs).
The elements of F on or above the diagonal (i.e., ]-',/(j on row k and
column j > k), are defined as
Fiu =0, Fiy = MMy, Fp, =-DM'My — Gk,G" + 5,
P =61+ G Vot - ch;sz)(Vx] &)+ G (CBFR Vgl — G2 Fp Vitt) (Vi 61)
/ -1,
(1+ 7 Veli2 + Fu Vplia + Y3 (Fa Vaabioa)) (Viali2) j=k+1>3
! -1 .
Fii = ( 1I<Vq§1 2 +]'J21<Vp§j—2 + 300 (o Vaabic2) ) (Ve i2) j>k+1, (11)
—K;j_5<0 j=k>2,

where G® = (GLGLT)”GL, K;_, are tuning parameters, while
Q4,My; and J, are computed by solving the PDEs (5) and
(6) that characterize system (1). It follows from (10) that Vi, ¢; =
G Fy3 Vy, E1, where rank(F,3) = m (see Assumption 2) and Vi, E; #
0 (see Assumption 3) hence rank(Vy, {;) = m. The same applies to
ij ¢;. The control input that yields the closed-loop dynamics (9) is

N
— /T
u=Gy' (}-{szqw + 552 VW + Z]:]T+2,S+2VXjW = Fr5r2VqWa —

j=1

/T
]:2.s+2vad Z +25+2

). (12)
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Equating the second rows in (8) and (9) yields
~VqW =DM 'p 4 Fp3 Vi, W =

—}-;Tz (Vqu + Z(quk)Tfk) + ]‘32 (Mdlp + Z(vka)Tfk)

k=1 k=1

+y (fé. a2 > (Vy, zk)%k). (14)
k=j

j=1
Defining ]-‘; 2 with j > 1 according to (11) and substituting it

in (14) cancels ¢; for all j > 1. Substituting }‘;2 while simplifying
common terms, and pre-multiplying both sides of (14) by G® gives
the matching conditions [5]

G®(-V4H + Fp VHy —JM;'p) =
GO (= Fa(Val) &1 + Fop (Vb)) &+ Fps (Vi &)¢h), (15)

where the left side of the equal corresponds to the sum of the
PDEs (5) and (6) (solvable analytically by hypothesis according to
Assumption 1). Thus PDEs (5) and (6) are preserved as well as their
analytical solutions €24, My and J,. Note that F,3Vy, W is not part
of (15), since it only affects the actuated states of the mechanical
system (i.e., the actuator dynamics enters the system through the
matrix G). Pre-multiplying both sides of (14) by G' yields instead

G (VW + Fa3 Vi, W + F, VoHy + (Gk,GT — J)M7 ' p) =
G (=Fi(Vel) &1 + Foa (Vb)) 01+ Fps (Vi 0)'¢1). (16)

where the terms to the left of the equal correspond to ¢; in (10).
Note that Vy.£; =0 for all j > 1. Thus, defining f£3 according to
(11) solves both (15) and (16).

Equating the third rows in (8) and (9) yields

—]'-%-3 VpW — ]'-33VX1W + ]:34Vx2W =

~Fi3 (Vqu +Y (Vg k)Tfk) - F3 (MJIP + Z(fok)T§k>

k=1 k=1
N N
+ 2\ P 2o (Vg ). (17)
j=1 k=j
Defining }—;,Hz with j > 2 according to (11) and substituting it in
(17) cancels ¢; for all j > 2 yielding
—}—;3 VPW — }—33V;<IW + .7:34VX2W
+F13(VgHa + (Ve)T81) + Fos (M; ' p + (V2T 41)
—]:;3 ((Vx1 {1 )Tgl) =
~Fi3((Va)"82) = Fos ((Vpl2)T82)
+F33(Vi, )" 6 + F3u (Vi £2)" . (18)

The terms to the left of the equal correspond to ¢,, where ij & =

0 for all j > 2. Thus (18) is verified by defining }‘;4 as in (11), that
is

Fyy = (1 + Fi3Vala + Fy3 Vipls — F33 Yy, {2)(VX2§2)71

Matching for the remaining states x; with j < s is achieved in the
same fashion and is omitted for conciseness.
Equating the last rows in (8) and (9) yields finally

s
_]:{,HZVQW - F£5+2VPW - Z}—]T

+2,5+2

ijw + GOU =
Jj=1

_‘F;T.HZ (Vqu + Z(ngk)Tfk)

k=1
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k=1

~Frsi2 <M;1p + Z(Wzé@%k)

- <]:}T+2,s+2 > (Vy é.k)T§l<)~ (19)
=

k=j
Computing u from (19) yields (12) concluding the proof. O

Remark 2. In summary, the proposed design procedure results in
the same PDEs as the traditional IDA-PBC [18]. It follows from
Assumptions 2 and 3 that Vx;{;=0, Vj>i and that Vy{; #0,
thus }',;J € L. If the terms F;; q are constant, Assumption 2 is
verified provided that V,%jEj #0, Vj. If instead Assumptions 2 and
3 are not verified, that is for instance Fi4 Vy,W # 0, then it follows

from (16) that ¢; would depend also on x,. Consequently, choosing
}‘{3 to verify (13) would yield

Fiz = _(}—izvpgl +]'J14VX2§1)(V"1 SO

which also contains }‘;4. However, it follows from (11) that

}‘{4 depends on }‘;3 thus the design procedure outlined in
Proposition 1 would not be feasible in such case.

Proposition 2. Consider system (8) with Assumptions 1 to 3, in
closed-loop with the control law (12). Then the equilibrium x = x*,
with q=q* and p=p* =0, is asymptotically stable for all K; >0
provided that either (Gk,G" + 1(DM~My) + 3 (DM~'My)T) > 0, or
that D = 0 and the output y = GTMglp is detectable.

Proof. Note first that W=+ 3p'M;'p+ 155 ¢l
is positive definite. Expressing (DM~'M,) as the sum of a
symmetric part ®; and an antisymmetric part Wy, that is
(DM~'My) = ®g + Wy, where &g = 1(DM~'My) + I (DM-My)T
and Vo = §(DM~'My) — 1(DM~'My)T, and computing the time
derivative of W; along the trajectories of the closed-loop system
(9) while recalling that J, = —J7 yields

s
Wd = —VdeT (kaGT + dDO)Vde - Z (VX;'WJKJ'VXJW“) <0,
=1
(20)

where V,W; = M(;lp + 255 ((VpgTEp), VgWy = Y5((Veg)T
gp), and ViWy= (Vxs)Tes. If K;>0D#0 and (Gk,GT +
®g) >0 it follows from (20) that gq,p,&je£> V), while
D, z;zi((vxl.gj)T;j),gs e £2. It follows from (10) that Vx, 8 #0,
thus p,gje £2NL*, V). Finally, it follows from (9) that
q, p, {'j € £*. Thus ¢;, p converge to zero asymptotically ac-
cording to Barbalat’s Lemma, and the equilibrium is asymptotically
stable [24]. In case D =0, it follows from (20) that y € £2 N L>®
and from (9) that ¢, p € £~ hence also y € £, and y converges
to zero asymptotically rather than p. Asymptotic stability of the
equilibrium is then established in a similar fashion, provided that
the output y = GTMglp is detectable [18].

Substituting p=p =0 and ¢; =0 in (9) yields V424 =0, thus
the equilibrium is an extremum of €24 while VéQd(q*) >0 by
design, that is g* = argmin(£24). Substituting p=0 and ;=0 in
(10) yields

G'(=VgQ + Fo3 Vi, W + MgM~1V24) = 0,

k
- Z]:J'T+2.k+lvxjw + ]:r.kﬂ V4 =0, (21)
=

which, computed at (g, p) = (q*, 0), define the values xjf for all j >
1 at the equilibrium, concluding the proof.0]
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4.2. Second controller design

The analytical expression of the control law (12) grows in size
and complexity with s, thus potentially resulting in increasing
computational load. In an attempt to mitigate this shortcoming,
the elements of 7 on the diagonal that refer to the actuator states
xj, with 1 < j <, are defined instead as

’ /T /T
Fipaj=—Kj+ (‘Fl,j+2vq§j+}—2,j+zvl’§1 + Z 22V, )

-1

(V&) - (22)
The expression of ¢, for k> 1 that ensures matching between
(8) and (9) for the states (x;,...,Xs) becomes then

k

e =— 11<+1VW Ty VoW — Z
j=1

k-2
+ T ket (Vqu + (Z(ngi)Té‘i))
i1
/T k72
+F ket (Mdlp + (Z(VpCz‘)TCi))
iz1

k-2

Z j+2.k+1 (Z(ij Ci)T§i> + Kk—l (VXH ;k—l )T§l<—1~ (23)

i=1

J+2.k+1 ij w

Note that, differently from (10), ¢, in (23) only contains ¢;_; in
the last term, thus resulting in a shorter expression. Similarly, the
control law (12) becomes

s
u= G(?] <F1T,5+2 VLIW + ‘7:2T,s+2VPW + Z‘FJ'TJrZ,erZVXjW)
j=1

s—1
+ Gﬁl <_ ]:;T,s+2 (Vqu + Z(qui)Té'i))
i=1
s—1
-Gy <}'£S+2 (V,,Hd + Z(foi)TQ))
i=1

s—1 s—1
Gy' <+ Y Fiizsia (Z(%G)T{,-) —Ks(vxxs)%). (24)
j=1 i=1

Proposition 3. Consider the system (8) with Assumptions 1 to 3, with
the control law (24) and the parameters (23). Then the closed-loop
system is given by (9) with the matrix F defined in (11) where the
diagonal terms are given by (22).

Proof. Equating the first rows in (8) and (9) yields again
(13), while equating the second rows yields (14). Equating the
third rows in (8) and (9) and substituting f;.j+2 with j > 2 from

(11) yields (18). Computing f;3 from (22) as
Fyz = —Ki + (F3Val1 + F3Vpl1) (Ve 81 7
and substituting it in (18) yields
~FI VW + Fi3Viy W + F34Vig W + Fpy (VoHg) + Fy3 (M;' p)
+K (Vo )T8r) =
— Fi3((Vab2) 82) = Fas((Vp82) 2) + F33 (Vi 82) G2
+ Py (Vi 02T 0. (25)

The terms to the left of the equal correspond to ¢, in (23),
and substituting }‘é4 from (11) verifies (25). This same proce-
dure is then repeated for the remaining states. Equating the last
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rows in (8) and (9) yields again (19). Substituting }‘+2 s+ frOM
(22) and computing the control input yields then (24) concluding
the proof.0

Proposition 4. Consider system (8) with Assumptions 1 to 3, in
closed-loop with the control law (24) and the parameters (23). Then
the equilibrium x = x*, with q = q* and p = p* = 0, is asymptotically
stable for some K; > 0, provided that either (Gk,GT + %(DM*M‘,) +
3 (DM~TMy)T) > 0 or that D =0 and the output y = GTM;"p is de-
tectable.

Proof. Expressing , as the sum of a symmetric part

JH2.+

®; and an antisymmetric part W;, that is —}‘]/.+2J.Jr2 =Kj+®&;+
1 / 1 / T
\IJ]', where CDJ = 7(7}-j+2,j+2 - K]) + 7(7’7:j+2,j+2 - K]) and \IJ] =

f%(}'}ﬂﬁz) + %(’F}+2,j+2)r' and computing the time derivative of
W, along the trajectories of the closed-loop system (9) yields

Wy = —V,W] (Gk,G" + @0 ) V,W,

S
=Y (VoW (Kj + @) Vi Wy). (26)
j=1

Thus W; <0 and all states are bounded provided that (Gk,GT +
®g) >0 and that K;+ ®; >0, where ®y has been defined in
Proposition 2 and it follows from (22) that

1 /T /T -1
Q= 3 (]'—1.j+zvqu + 7242 Vel + Z 2, J+2Vxxfj) (Vx&))

T
1 /T /T -T
) (fl.j+zvq§j+f2.j+zvp§f Z 2, ]+ZVXI§J> (Vxi))

It follows from (23) and Assumption 2 that ij{j;éo, while

( 1]+2Vq§]+ﬁj+zvp§1+z :+2]+2v’<x§J) is a sum of
bounded terms. Thus there ex1sts a sufficiently large K; that
verifies the inequality K;+ ®; > 0. The proof is completed by
employing the same arguments used in Proposition 2, thus
confirming that the equilibrium is asymptotically stable. O

Remark 3. In principle, it is possible to combine the controller de-
signs (12) and (24) thus resulting in an hybrid implementation. For
instance, defining ¢ as in (10), F, 542,542 S in (22), and the remain-

ing elements of F as in (11), yields again (24). This is however a
different control law, since ¢, are given in (10) rather than in (23).
The corresponding stability conditions are then a combination of
those given in Propositions 2 and 4, that is K; > 0 for j <s, and
Ks + @5 > 0. The potential benefit of such approach is to combine
the stronger stability properties of controller (12) (i.e., the weaker
requirements on the parameters K;) with the simpler expression of
the control law resulting from (24).

5. Potential energy shaping

In this section, a variation of the controller (12) is proposed for
a narrower class of systems in order to investigate whether it is
possible to set }‘;1 # 0 and what this would imply in terms of sta-
bility of the equilibrium. To this end, a further assumption is in-
troduced which restricts the following result to a narrower class of
underactuated mechanical systems.

Assumption 4. The inertia matrix M is constant and diagonal,
while G e R™! and V2, > 0 are both constant, GG is diagonal
(i, G is a standard basis vector), and GG VZQ,! > 0. In addition
Vx;Ex =0, Vj#kand D=0.
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The control law is designed such that the closed-loop dynamics
is given by (9) where W; = Q; + % o ;kT ¢y is a positive definite
storage function, with ¢, defined as

M_]p + @Vqu,
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where the first line corresponds to ¢;. Thus, defining }‘£3 accord-
ing to (11) solves both (31) and (32). The rest of the proof follows
closely that of Proposition 1, thus it is omitted for brevity. O

k=0

G (=VqW + Fa3 Vi, W + F1y (V4R + (Vg0) o) + GkuGT (Vpo)¢0), k=1

Lk

]
k-1 k=1 7 k-1
+]:2‘,k+1 (Zi:o (Vpgi)TCi) + Zj:] }—};2_“1 (Zizl (ijé‘i)-r{i),
Thus Vg = @V;Qd and Vpgo = M~! are constant, while Vi, §o =
0. The elements of 7 on or above the diagonal (i.e. }‘,;j on row k
and column j > k), are defined as in (11) apart from the terms
}'1'1 =-0, 9= (I<mGGTV5£251), }';2 = (I+ ®2V§Qd)M,
Fyy = —GkyGT,

j-1

]:;,j+2:(®vqg‘j - ]:;ZVP;]’ - Z (]:;.szxigj)) (v"j;f)il’ (28)

i=1

where ®2 = ©0, the parameter ky, > 0 is constant, and the control
input is given by (12).

Proposition 5. Consider system (8) with Assumptions 1 to 4, with
the control law (12), and with the parameters (27) and (28). Then
the closed-loop system is given by (9) with the matrix F is defined
according to (11) and (28).

Proof. Equating the first rows in (8) and (9) yields

M'p=-0 (Vqu + Z(Vqu)Té'k) + P2 Y (Vpli) G

k=0 k=0
+> (f;. 2 Z(ijckfck). (29)
j=1 k=j

Defining ¢y as in (27) and ]-‘;j as in (28) verifies (29).
Equating the second rows in (8) and (9) yields

—VqQ =+ ]:23Vx1W =

~Fi (Vqszd + Z(qukfck> + Fp D (Vpl) &k

k=0 k=0
+ Z (]:é,j+2 Z(Vx] {k)Tgk)- (30)
j=1 k=j

Defining }—;,j+2 with j > 1 according to (11) and substituting it in
(30) cancels ¢; for all j > 1. Pre-multiplying both sides of (30) by
G® = (GLGLT)~1G* gives the matching condition

GO (~VeQ+ Fp Vo) =

G (~Fry (Vg ¢t + Fapy(Vol) &1 + Fos (Vi 0T¢1). (31

where the terms to the left of the equal correspond to the PDE
(6). Note that (31) does not contain & since rank(®2) = rank(GGT)
hence GLG)Vgﬂd;O = 0. Pre-multiplying both sides of (30) by G'
yields

GT(—VqQ + ]:23Vx1W + ]'-;Tzqud + ]'—;TZ(Vq{())Tgo
— Fp (Vo) 40) =
G (=F(Vel) &1+ Foa(Vpl ) 61 + Fis (Vi 0)'¢1). (32)

k / k—
i1 VoW = X i Flg i YW+ Fri (VS + Yo (Val)%:)

(27)

k>1.

Proposition 6. Consider system (8) with Assumptions 1 to 4, in
closed-loop with the control law (12) and the parameters (27) and
(28). Assume in addition that Q24 is quadratic in q. Then the equi-
librium x = x*, with q=q* and p = p* =0 is stable and G"q con-
verges to GIq* asymptotically for all K; > 0,ky > 0, k; > 0, provided
that © + ©T > 0.

Proof. Recall that W; = Q, + % >0 CkTCk is positive definite.
Computing its time derivative along the trajectories of the closed-
loop system (9) yields

Wy = —2 VoW (© + O ) VaWy — VW] (GkiGT) VW

S
= (VWK Vi Wy), (33)
j=1
where VoW = VqQq + (OVZQ2) 8o + Y521 (Vg8)TE)), VpWy =
M1+ 35 ((VpgTE), and ViWg = 375 ((V£)TE)). Em-
ploying the same argument used in Proposition 2, it follows
from (33) that Wd <0 for all ky>0,K; >0 and km > 0, where
(® +®T) > 0 by hypothesis, thus g, gje L™ for all j=0. It fol-
lows from (28) that ®2 is the product of the rank-deficient pos-
itive semidefinite diagonal matrix GGT and of the full-rank pos-
itive definite symmetric matrix Vgﬂgl, thus it has the same
rank as GGT. Consequently, GT VqWy, G V,Wy, VW, € £ and thus
G"V¢Qq. G 4o, £y € £2. Finally, it follows from (9) that ¢, p, ; €
£, Thus .o, G'¢o, and GTV4Q, are bounded and converge to
zero asymptotically. Since 2; has a unique minimizer in q = g*
by design and is quadratic in q while G is constant, the fact that
GTV,48, converges to zero implies that GTq converges to GTg*. Fi-
nally, substituting p =0 and ¢; = 0 in (27) yields again (21) which
defines the values xjf at the equilibrium. O

Remark 4. Although the parameters (27) and (28) do not explic-
itly enforce kinetic energy shaping, }';2 can be interpreted as the
product of inertia matrices, that is

(I+ ©2V2Q4)M = M~'M,.

Pre-multiplying both sides of the above equation by M and sub-
stituting ®2 from (28) yields

My = M(I+ knGG" )M,

which is constant and symmetric since it is the product of diagonal
matrices, thus the PDE (5) is solved by J, = 0. The ability to shape
the kinetic energy is however limited compared to the standard
IDA-PBC control (3), since the parameter k; only affects the actu-
ated states. Note that the proposed potential shaping design is not
feasible in the presence of physical damping, since then the match-
ing Eq. (30) would not be verified. Note also that the detectability
condition typically required for the output y = GTMtfp [18] is not
present in Proposition 6. However, since ® is chosen to be rank
deficient in order to preserve the PDE (6) (see Proposition 5), its
effect on the Lyapunov derivative (33) is limited to the actuated
states. As a result, only asymptotic convergence to the equilibrium
G"q = GTq* is concluded in Proposition 6. If ky =0 then My =M
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Acrobot DC motor

Rotary SEA

Fig. 1. Simplified schematic of the Acrobot system with a rotary SEA.

and © = 0, thus stability of the equilibrium is only concluded if
the output y = G ¢ is detectable. Substituting &g from (27) ky = 0
yields y = GTM~1p + GT®V,Q4 = GTM~1p, thus recovering the de-
tectablity condition in Ortega et al. [18]. In alternative to (28), it
would be possible to define ®% = k2, GGT which is symmetric pos-
itive semidefinite and yields ® = k;,;GGT > 0. As a result, the con-
dition ® + ®T > 0 in Proposition 6 is automatically verified. How-
ever computing My as above yields My = M(I + knGG' V224)M
which is in general not symmetric and thus it does not represent
the inertia matrix of any mechanical system.

6. Illustrative examples

The energy shaping controllers outlined in Sections 4 and 5 are
demonstrated with three examples, namely an Acrobot system
with a rotary series elastic actuator (SEA), a soft continuum manip-
ulator actuated by electroactive polymers (EAP), and a two-mass-
spring system actuated by a DC motor.

6.1. Acrobot system with SEA

The Acrobot system [16] is modified by including a rotary series
elastic actuator (SEA) consisting of a spring, a damper, and a DC
motor, where the effect of the inductance is omitted for simplicity
[4]. The Acrobot system consists of an articulated pendulum with
a single actuator at the elbow joint g, and an unactuated shoul-
der joint q; (see Fig. 1). The open-loop dynamics of the mechani-
cal sub-system is given by (1) with total energy H = Q2 + %pTM”p
where Q =g(cqcos(qy) +c5c0s(q; +¢qz)), the input matrix is
qr — [0 1], while M = [q +cy+2c3c08(q2) Cp+cC3 cos(qz)]

€2 + €3 €05(q2) %)
is the inertia matrix with determinant A = det(M) > 0. The terms
C1.Cy, C3,C4, C5 are constant parameters depending on the size of
the links, while g is the gravity constant. The control goal is to
stabilize the upright position (q1, q;) = (0, 0), which is open-loop
unstable. The IDA-PBC controller (3) for the Acrobot with direct ac-
tuation yields the control law [16]
1

u=5Ve (P"M~'p) + Vg, 2

k
—[k2  ks]MT'VeQq + A*U(kzpl —kip2).
d

where ki, ko, k3, ky are tuning parameters, p = Mq, while €2; and
Ay are given in Appendix A. The complete system dynamics de-
scribed with (8) yields

1
Fu=F3=Fu=Fu=0 Fp=1I Fu =5
e

Dy o _ K

Rp =0, Fo3=0, R33=0, Rga = —-, ==
22 23 33 44 72 R

European Journal of Control 72 (2023) 100828

where K, and R, are the torque constant of the motor and the ar-
mature resistance respectively, while D, is the viscous friction of
the SEA. The total energy of the system is W = H + ;Ka(q2 — 0)% +
% Jew?, where Kj is the stiffness of the SEA and Je is the moment of
inertia of the motor. The system states are the position g = (q;1, q3),
the momenta p = Mq, the angular position x; = 6 of the SEA, and
the angular velocity x, = w = 6 of the SEA. Note that F,3 =0 but
V(,}‘lTZVqW # 0, thus Assumption 2 is verified. The energy of the
mechanical sub-system in closed-loop is Hy = Qq+ 3p"M;'p as
in D. Mahindrakar et al. [16], and the total energy of the com-
plete system is Wy = Hy + 37 ¢y + 147 &5, where it follows from
(10) and (22) that

& = G (= VoW + F1,VoHy — Fip VoHa),
1 ! !
&2 = 1 VoW +K (V)€1 4+ F5 VoHa + i3 VoHy

The elements of 7 computed as in (11) and (22) are given in Ap-
pendix A. The control input computed as in (24) is

RaDq KaRa eRq
u= (1<e+ e ) (9— q@) - J fM(V Hy + (Vqt1)" 1)

];fa]-'m(v Hy + (Vpt1)'¢1) - JeRa}—34((V9§1) &)
I (V) T),

and it employs the parameters 2,4, My and J,, which are the solu-
tions of the PDEs (5) and (6) for the Acrobot system with direct
actuation [16].

Numerical simulations have been performed in Matlab using
an ODE23 solver with the model parameters c; = 0.23333; ¢, =
0.53333; 3=02; c4=03;c5=02; g=981; Ry=05; Ko=
1; Je=1073; Dy =1;K; = 10. The tuning parameters have been
chosen empirically as kg = —35; k; =0.03386; k, =0.1; k3 =
0.59073; = —0.6019; ky = 1; ky, = 2; Ky = 103; K, = 10%. The sys-
tem response with the controller (24) is shown in Fig. 2: the posi-
tion reaches the prescribed equilibrium (g1, q;) = (0,0) in a sim-
ilar fashion to the mechanical system with direct actuation and
the IDA-PBC controller (3) (see Fig. 2(a) and (g)). The angular po-
sition 6 and the angular velocity @ = 6 of the motor are shown in
Fig. 2(d) and (e) (no gearbox has been included in the model for
simplicity). The control input computed as in (24) corresponds to a
voltage (see Fig. 2(c)) thus it is not directly comparable with con-
troller (3). Instead, the motor torque has the same order of magni-
tude with both controllers (see Fig. 2(f) and (i)).

6.2. Soft continuum manipulator with EAP actuation

The dynamics of a soft continuum manipulator of mass m and
length | moving on the horizontal plane and actuated by electroac-
tive polymers (EAP) [15] described with (8) yields the parameters

Fu=F3=Fu=Fu=0 Fp=Fu=I Rp=D,
F3 = KG, R33 =Ry, Raa =Ry, Go =1,

where R;, R, are resistances, and K. represents the coupling be-
tween EAP and soft continuum manipulator. The latter is mod-
eled as a rigid-link system with n =2 virtual elastic joints of
stiffness k and damping D [27], where only the first is actu-
ated thus G'=[1 0] (see Fig. 3). The total energy of the
mechanical sub-system is H = Q+ 2p"M~1p, where Q = Tk(q? +
q%) with q; and g, the angles of the virtual joints, and M =
,le|:4cos (G2)+6 2cos(gy) +1

7|2 cos (qy) + 1 1 . The total energy of the com-

plete system is W = H + ;—CQz + ﬁd)z, where C is the capacitance
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Fig. 2. Simulation results for the Acrobot with either a SEA or with direct actuation: (a) position with SEA and controller (24); (b) velocity; (c) control input with (24); (d)

motor position #; (e) motor velocity w; (f) motor torque with (24); (g) position with direct actuation and with controller (3); (h) velocity; (i) control input with (3).

EAP schematic

— /A
Ry

Pseudo rigid-link model

EAP actuator
Ko k

Fig. 3. Simplified schematic of the soft continuum manipulator with EAP actuation.

and L is the inductance of the EAP. The system states are the po-
sition g = (q1, q»), the momenta p = Mq, the electric charge x; =

Q, and the flux x, = ¢. The control goal is to stabilize the posi-
tion (q1,q2) = (q;, 0) where, differently from the Acrobot, q; =0
is open-loop stable.

The energy of the mechanical sub-system in closed-
loop is Hy=Qq+3p"M;'p, where My=knM and Q4=
3 (kp(qr —a))? + k’—‘mqg) with kp, and km tuning parameters,
and the control law computed as in (3) is
4ky(p2 — P1+ 2p2 cos (q2))

ml2 (4 cos (q2)* — 5)

Note that setting M; = knM solves the PDE (5) with J, = 0. The

total energy of the complete system in closed loop is Wy = H; +
38181 + 3¢7&,, where it follows from (10) that

&1 = G'(~VgH + KGVW + F1, VgHy + GkyG' VHy),
{ = —KG'V,H — Ry VoW + VW — Fos (Vo) 4y
+ Fos(VpHa + (Vpg1)"81) + Fis(VaHa + (Vol1) ' ¢1).

u = kqi + kpkn (g} — q1) —



E. Franco and A. Astolfi

European Journal of Control 72 (2023) 100828

2 2000
Q qi
0.8 - - -a — - - - = 1500
el @ 1 =
@ 0.6 ko) -
= g - 3 1000
S 04 > 0f 7 — £
= S © 500
8 0.2 s ¥ £
e 2 S
0 P i 0
-0.2 . - . -2 . - . -500 : : :
0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2
time [s] time [s] time [s]
(a) (b) (©)
50 T 1
00 .l Ny
— o) =
; 200 ‘5'30 r Z 0.6 1
= < - 2
2 . S20p - ’ 504 ]
o} —— (&] R _9
10 0.2
-200 0 . - . 0
0 0.01 0.02 0.03 0.04 0 0.5 1 15 2 0 0.5 1 1.5 2
time [s] time [s] time [s]
) (e) ®
2 1
@ qi
0.8 - - - — - - =g 08
5 o 17 1 Z
© 0.6 i =
— g P 30.6
S 04 >0}, ~~-== c
= k3] 5 04
8 02 S W =
[} Q 4F S
0 e e e 'S 0.2
-0.2 -2 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 15 2
time [s] time [s] time [s]
(g (h) ()

Fig. 4. Simulation results for soft continuum manipulator with either EAP actuation or with direct actuation: (a) position with EAP and controller (24); (b) velocity; (c)
control input with (24); (d) flux ¢; (e) charge Q; (f) torque with (24); (g) position with direct actuation and with controller (3); (h) velocity; (i) control input with (3).

The elements of 7 computed as in (11) are given in Appendix B.
For comparison purposes, {; and {, computed as in (23) are given
by
¢1 = G (= VgH + K.GVoW + Fy,VeHg + Gk,G" V,Hy).
& = —K.GTVoH — RyVoW + VW + K (Vo i) ¢

+ Fy3(VpHa) + Fi3 (VgHo).
Finally, the controller (24) yields

u= % +R1% — Fia(VaHa + (Va&)¢1)

— Fou(VoHy + (Vi) 1) = Fag (Vo) ¢1)
K ((V$52) &)

Numerical simulations have been performed in Matlab using an
ODE23 solver with the model parameters m=1.5; [ =0.15; k=
1; D=0.15; R{=30; Ry =14x1073; K.=10"3; C=0.05; L=
0.1. The tuning parameters for the IDA-PBC controller (3) have
been chosen empirically as kp =0.75, kn =2, and k, = 0.5. The
tuning parameters for the controller (24) have been chosen as
ky, =0.75, km =2, ky =0.5, K; =1 and K, =120 for consistency.
The system response with the controller (3) for the mechanical
sub-system and with the controller (24) for the complete system
is shown in Fig. 4: the position reaches the prescribed equilibrium
(91, 92) = (7r/6, 0) with a similar transient for both controllers ap-
plied to the corresponding systems (see Fig. 4(a) and (g)). The
flux ¢ and the charge Q corresponding to the EAP are shown in
Fig. 4(d) and (e). The control input computed as in (24) corre-
sponds to a voltage (see Fig. 4(c)) and its magnitude (i.e., KV range)
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Fig. 5. Simplified schematic of the two-mass-spring system actuated by a DC motor.
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is representative of EAP actuators [25]. The resulting torque has
the same order of magnitude as the control input computed with
(3) for the mechanical sub-system (see Fig. 4(f) and (i)). Note that
employing the controller (3), which does not account for EAP actu-
ation, on the complete system (8) yields q; ~ g, ~ 0, thus the reg-
ulation goal (qq,q>) = (5t /6, 0) is not achieved (see Appendix B).
The hybrid implementation discussed in Remark 3 with the same
tuning parameters yields similar results, which have been included
in Appendix B for completeness.

6.3. Two-mass-spring system with DC motor

The two-mass-spring system presented in Bastos and Franco
[1] is modified here by introducing a DC motor for the actu-
ation, and by removing the damper in order to comply with
Assumption 4. The positions of the masses are q; and ¢, and
the springs have stiffness ki, ky, and k3 (see Fig. 5). The energy
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Fig. 6. Simulation results for the two-mass-spring system with either DC motor actuation or with direct actuation: (a) position with DC motor and with controller (12); (b)
velocity; (c) control input and corresponding torque with (12); (d) position with DC motor and with controller (3); (e) velocity; (f) control input with (3); (g) position with

direct actuation and with controller (3); (h) velocity; (i) control input with (3).

10



E. Franco and A. Astolfi

of the mechanical sub-system is H = Q + 1m¢3 + 1myg3, where
2 2 2
Q= kl% + kz(q%qﬂ + h#, the inertia matrix is M = |:m1 0 :|
0 my

and the input matrix is GT =[1  0]. The control goal corresponds
to moving the second mass to a prescribed position such that
(41.92) = (q5. q5), where g; depends on g3, that is ¢} = g3 k2,;"3,
since the system is underactuated.

Employing the IDA-PBC design (3) yields the control law

a,mp (szI2 — kg1 + k3‘1§)  kvmig

u=kiqy +k(q1 —q2)+ A a

where ky, a;, a3 are tuning parameters, the closed-loop system has
aq

constant inertia matrix My = |: 0

£i|, and the potential energy
3

is
K (y+k)\ 1 m
Q= Z(a+a-a 2 ) + 5Bk +k) -k | 72
2 kz 2 as

N ksmaqs
2a3 ’

Accounting for the dynamics of a DC motor with negligible iner-
tia that actuates the first mass through a pinion-rack arrangement,
the total energy of the system becomes W =H + %Lalg, where Lg
is the inductance of the motor and I, is the armature current. The
complete system dynamics described with (8) yields

Ke

Fu=Fi3 =0, Fiz =1 Rp=0, Fo3=G—, Ry3= 3,
Lo 12

Rq 1
G0 = E,

where K, and R; are the torque constant of the motor and the
armature resistance respectively. The system states are the po-
sition g = (q1,qy), the momenta p = Mq, and the armature cur-
rent x; = I;. The total energy of the closed-loop system is W; =
Qg+ 3¢l ¢+ 1¢T ¢y, where it follows from (27) that

CO = M71p+ ®qud’
01 = G (V@ + Fio (Ve + (Val0) o))

Ke

e (+ GV + cicycf((vpgo)fgo)).

a
The elements of 7 computed as in (11) and (28) are given in Ap-
pendix C. The controller (12) that achieves potential energy shap-

ing according to Proposition 5 (see Section 5) is
u = KeGt + Rala — LaFy3(VaHy + (Vq20) S0 + (Vq01) " 81)
— LaF53(VoHa + (Vp20) G0 + (Vpi1) ¢1) — KiLa((V1,81)7¢1).

where the potential energy €2, is given above with a3 = m% and
a; = (1+ kp)m?, and ky, is a tuning parameter.

Numerical simulations have been performed in Matlab using an
ODE23 solver with the model parameters m; =1; my =3; k=
5; ky=3;k3=1; Ry =10; K, = 5; Ly = 102, The tuning parame-
ters for the controller (12) corresponding to the complete system
have been chosen empirically as k;, = 0.01 and k, = 2, while the
parameters for the controller (3) corresponding to the mechanical
sub-system have been set to a; = (1 + ky)m? =1.01,a3 =m3 =9,
and k, =2 for consistency. The system response with both con-
trollers for the corresponding models is shown in Fig. 6: employing
the controller (12) for the complete system the position reaches
the prescribed equilibrium (qq, g>) = (0.5, 0.67) in a smooth fash-
ion (see Fig. 6(a)), and the transient response is similar to that of
the mechanical sub-system with the IDA-PBC controller (3) (see
Fig. 6(g)). Conversely, employing the controller (3) for the complete
system (8) results in a large steady-state error (see Fig. 6(d)), since

1
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in this case the actuator dynamics is not accounted for in the con-
troller design. Comparing Fig. 6(c) and (i) shows that the force pro-
duced by the motor is comparable to the control input computed
as in (3) for the system with direct actuation.

7. Conclusion

This paper has presented some new results on the energy shap-
ing control for a class of underactuated mechanical systems with
high-order actuator dynamics. A controller design procedure which
preserves the port-Hamiltonian structure of the closed-loop sys-
tem and builds upon the IDA-PBC methodology in a modular fash-
ion has been outlined. Two alternative controllers that achieve po-
tential and kinetic energy shaping as well as damping assignment
have been detailed. In addition, a variation of the controller de-
sign has been discussed for a narrower class of systems, which is
characterized by constant and diagonal inertia matrix, resulting in
different stability conditions.

The simulation results demonstrate that the proposed con-
trollers effectively achieve the prescribed regulation goal for three
different underactuated mechanical systems with corresponding
actuator dynamics. In addition, the controllers employ the same
potential and kinetic energy shaping and damping assignment as
the traditional IDA-PBC for mechanical systems with direct actu-
ation, thus resulting in a similar transient. Conversely, employing
the traditional IDA-PBC controller alone, which neglects the actu-
ator dynamics, can result in degraded performance. Future work
will aim to relax the initial assumptions and to extend the results
to multiple interconnected underactuated mechanical systems.
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Appendix A

Design parameters of the Acrobot system with direct actuation.

V4,84 = —kosin (q1 — 1q2) — by sin (q1)—by sin (q1 + q2)
—bssin (g1 + 2q2) — by sin (q1 — q2) + ku(q1 — 11q2),
V4,24 = kope sin (g1 — uqz) — by sin (q1 + q2)
—2bs sin (g1 + 2q2) + bgsin (g1 — q2)—ku(q1 — 11q2),

_ k] kz _ g
Md = |:k2 k3i|’ b] = m(C3C4 :|:2C4«/C1C2),



E. Franco and A. Astolfi

x10™*
q1
_ 8 - - =
86
S 4
22
o
O e T
2 . . .
0 0.5 1 1.5 2
time [s]
(a)

Fig. B1. Simulation results for soft continuum manipulator

V.

08 il
S 047
2 02}
Qo
]
-0.2
0 0.5 1 1.5 2
time [s]
(@)
15000
—1 3
£ 0000.:
S :
x :
> :
= 5000¢:
0 1,
0 0.005 0.01
time [s]
(d)

European Journal of Control 72 (2023) 100828

-3

5 x10 1

qi
T 1] - — =G| 20.8
3 206
— C
= =
S 04
= c
S 3 0.2
-2 ' ' ' 0 : ' :
0 0.5 1 1.5 0 0.01 0.02 0.03 0.04
time [s] time [s]
(b) ©

with EAP actuation using the IDA-PBC controller defined as in (3): (a) position; (b) velocity; (c) control input in

2 2000
i
@ 1 —— T2l Z 1000
g (- 3
=of,/ £ o0
S o
3 =
S g -1000
2 . -2000
0 2 0 0.5 1 1.5 2
time [s] time [s]
(b) (©
50 T 1
40 1 0.8
5) E
=) 30 Z.0.6
o \
o | o
J20F e o 0.4
G L
10 0.2
0 0
0 2 3 0 1 2 3
time [s] time [s]
(e ®
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input; (d) flux ¢; (e) charge Q; (f) torque.

. U
by, = TP (c3€a £ 2¢5/C163),
8glC3Cs 8gIC3Cy

bs = by = ,
3T 2k (n+2) T 2k —1)

Elements of & computed as in (11) and (22) for the Acrobot

system with rotary SEA.

Ag = kiks — k2.

Fp=M"My, Fi3= —(]:izvpgl)(veﬁ)_ls
Fia=—(FaVola + F13Vo &) (Vob2) ' Fpy = —GhuGT,
F=G(1+ Gl i, Va1 - GT';':észG)(veQYl

+GH (GBFVqtt — GO F5, Vi1 ) (Vo)

Fog = (FuVaba = Foy Voo = Fi3 Ve 52) (Vola)

Fog = (1+ F3Vla + Fp3Vpla — FisVol2) (Vb))

Fyz = —Ki + (FsVal1 + F53Vpl1) (Voi)

Fag =Ko+ (F13Volo + FogVipla + F34 Vo l2) (Vula)
Appendix B

Elements of 7 computed as in (11) for the soft continuum ma-
nipulator with EAP actuation.

Fpy = —knD — kG, Fi3 = —(F13Vpl1) (Vi) .
’ ’ ’ -1 7
Fra=—(FuaVolo + F3Vo02) (Vpla) o Fiz =K,

12
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Fia=—Ks. Foz = G(1+GTFVal1 — G FpVol1) (Vi) ™!
+GLT(G®]:1,T2VQ§1 - G®]‘32Vp§1)(VQ§1)71,

Foa = (FiVals = Fa Vol = FaValo) (Vola)

Fia=(1 + Fi3Vela + Fa3Vpla — féngQ)(V¢Cz)f].

Elements on the diagonal of 7' defined as in (22).

Fiz = —Ki + (Fi3Val1 + FysVpl1) (Vo)
/ /T /T /T -1
Fag =K + (}-14Vq§2 + 724 Vps2 +}—34VQ§2)(V¢§2) .

Simulation results for the soft continuum manipulator with
EAP actuation using the IDA-PBC controller (3) are shown in
Fig. B1. Note that the position does not reach the prescribed value
(91, q2) = (7 /6, 0) since the control input (i.e., in Volt) is insuffi-
cient to activate the EAP.

Simulation results for the soft continuum manipulator with EAP
actuation using the hybrid implementation discussed in Remark 3
are shown in Fig. B2: {1, ¢, are defined as in (10), .F‘/M as in (22),

and the remaining elements of F as in (11). For consistency, the
tuning parameters are the same as those employed in Section 6.2.

Appendix C

Elements of 7 computed as in (11) and (28) for the two-mass-
spring system with DC motor actuation.

0% = knGG" (VZRq), Fyy = (I+knGG )M, Fy, = —Gk,G',
Fiz = (=F12 Vil +}—;1vq§1)(vla§1)711
Foz = G(1+ GIFLVot1 — G R, Vo) (Vi 61) ™

+ G (GO FRVqtt — GBFViptt ) (Vitt) ' Fay = —Ki.
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