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a b s t r a c t 

In this work we present some new results on energy shaping control for underactuated mechanical sys- 

tems with high-order actuator dynamics. To this end, we propose an extension of the Interconnection and 

damping assignment Passivity based control methodology to account for actuator dynamics. This brings the 

following new results: i) a potential and kinetic energy shaping and damping assignment procedure that 

yields two alternative controllers; ii) a potential energy shaping and damping assignment procedure for 

a narrower class of underactuated mechanical systems. The proposed approach is illustrated with numer- 

ical simulations on three examples: an Acrobot system with a series elastic actuator; a soft continuum 

manipulator actuated by electroactive polymers; a two-mass-spring system actuated by a DC motor. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of European Control Association. 
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. Introduction 

Energy shaping control offers a range of desirable features, in- 

luding the physical interpretation of the control action in terms of 

ystem energy, which have made this approach a popular choice 

or a variety of applications. In particular, the Interconnection and 

amping assignment Passivity based control (IDA-PBC) methodology 

18] involves designing the control action such that the closed-loop 

ynamics preserves the port-Hamiltonian structure and is char- 

cterized by a prescribed total energy. IDA-PBC controllers have 

een designed for a variety of systems, including fully actuated 

obots [23] , underactuated satellites [2] , unmanned surface ves- 

els [14,20] , piezoelectric beams [12] , and soft robotic manipula- 

ors [7,15] . In case of underactuated systems, the controller de- 

ign requires solving analytically a set of partial differential equa- 

ions (PDEs), which can be a challenging task. This aspect has mo- 

ivated a number of works, including a method to simplify the 

DEs for mechanical systems [21] , the study of kinetic energy 

haping for mechanical systems [11] , the algebraic solutions of the 

DEs in Nunna et al. [17] , and the numerical solution of the PDEs 

ith reinforcement learning in Gheibi et al. [10] . A further line 

f research has investigated the effect of disturbances within IDA- 
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BC, resulting in more sophisticated controllers that achieve robus- 

ification through integral actions [3] or adaptive observers [8] . 

Thanks to its physical interpretation in terms of system energy, 

he IDA-PBC methodology has proved well suited to control multi- 

omain systems which involve energy exchanges between different 

omponents. Notable examples include magnetic levitation systems 

17] , weakly-coupled electro-mechanical systems [22] , and more 

ecently mechanical systems with fluidic actuation [5,6] . In prin- 

iple, the IDA-PBC methodology can be employed to account for 

igh-order actuator dynamics within the controller design. Never- 

heless, this has typically been avoided for simplicity, considering 

hat many actuators have higher bandwidth compared to the cor- 

esponding mechanical sub-systems [19] . In general, accounting for 

he actuator dynamics results in a system which is not input affine 

ence potentially complicating the controller design. Notable re- 

ults in this direction include IDA-PBC designs for mechanical sys- 

ems that account for the first-order dynamics of electric motors 

n Gandarilla et al. [9] and Wang et al. [26] . In addition, an en-

rgy shaping controller has been designed for a soft continuum 

anipulator actuated by electroactive polymers in Mattioni et al. 

15] . Finally, in our recent work [5] , we have proposed an IDA-PBC 

mplementation for underactuated mechanical systems with fluidic 

ctuation, which accounts for the pressure dynamics of the fluid, 

ither pneumatic or hydraulic. In summary, the former controllers 

re either specific to a system or to a type of actuator, thus they 

re not directly applicable to different actuation strategies charac- 

erized by high-order dynamics. 
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https://doi.org/10.1016/j.ejcon.2023.100828
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejcon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2023.100828&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:e.franco11@imperial.ac.uk
https://doi.org/10.1016/j.ejcon.2023.100828
http://creativecommons.org/licenses/by/4.0/


E. Franco and A. Astolfi European Journal of Control 72 (2023) 100828 

t

p

o

n  

c

i

t

p

S

2

d

t  

R[
w

e

H

c  

t  

t  

i  

a

a  

i

u

w[
w  

p  

t  

r

g

0  

(

G

G

w  

t

s

H

T(
G

3

(  

p⎡
⎢⎢⎢⎢⎣

w  

−  

c  

s

H

e
 

w  

(  

t  

t

c

i

A

r

i  

 

m

m

A

d  

 

t

A  

i  

R

w

t

s

e

e

w

[  
This work investigates the energy shaping control for underac- 

uated mechanical system with high-order actuator dynamics and 

resents the following new results. 

• An energy shaping and damping assignment procedure that 

builds upon the IDA-PBC methodology preserving the port- 

Hamiltonian structure, and which yields two alternative con- 

trollers. This approach is feasible for a class of systems de- 

fined by a clear set of conditions. In addition, a potential 

shaping procedure is detailed for a narrower class of under- 

actuated mechanical systems. 
• Numerical simulations for three illustrative case studies: an 

Acrobot system with a series elastic actuator; a soft contin- 

uum manipulator actuated by electroactive polymers; a two- 

mass-spring system actuated by a DC motor. 

The rest of this paper is organized as follows: a brief overview 

f the IDA-PBC methodology is provided in Section 2 for complete- 

ess; the definition of the system class is given in Section 3 ; two

ontroller design procedures for kinetic and potential energy shap- 

ng are detailed in Section 4 ; a controller design procedure for po- 

ential energy shaping is discussed in Section 5 ; illustrative exam- 

les are presented in Section 6 ; concluding remarks are given in 

ection 7 . 

. Overview of IDA-PBC 

The dynamics of an underactuated mechanical system with n 

egrees-of-freedom (DOFs) and direct actuation u ∈ R 

m through 

he input matrix G ( q ) ∈ R 

n ×m , where rank ( G ) = m < n for all q ∈
 

n , is described in port-Hamiltonian form as 

˙ q 
˙ p 

]
= 

[
0 I 
−I −D 

][∇ q H 

∇ p H 

]
+ 

[
0 

G 

]
u, y = G 

T ∇ p H, (1) 

here D = D 

T ≥ 0 is the damping matrix, and the total mechanical 

nergy is 

(q, p) = � + 

1 

2 

p T M 

−1 p, (2) 

haracterized by the inertia matrix M(q ) = M(q ) T > 0 , and the po-

ential energy �(q ) . The system states are the position q ∈ R 

n and

he momenta p = M ̇ q ∈ R 

n . The remaining terms in (1) are the

dentity matrix I, the vector of partial derivatives of H in q , ∇ q H,

nd the vector of partial derivatives of H in p, ∇ p H. The control 

im corresponds to stabilizing the equilibrium (q, p) = (q ∗, 0) , and

t is achieved with the IDA-PBC control law [18] 

 = G 

† 
(∇ q H − M d M 

−1 ∇ q H d + J 2 ∇ p H d 

)
− k v G 

T ∇ p H d , (3) 

here G 

† = 

(
G 

T G 

)−1 
G 

T . The resulting closed-loop dynamics is 

˙ q 
˙ p 

]
= 

[
0 M 

−1 M d 

−M d M 

−1 J 2 − (Gk v G 

T + DM 

−1 M d ) 

][∇ q H d ∇ p H d 

]
(4) 

here H d = �d + 

1 
2 p 

T M 

−1 
d 

p. The design parameters in (4) are the

otential energy �d , the inertia matrix M d = M 

T 
d 

> 0 , the free ma-

rix J 2 = −J T 
2 

, and the constant matrix k v = k T v > 0 . To achieve the

egulation goal, the potential energy �d should admit a strict 

lobal minimizer in q ∗ hence verifying the conditions ∇ q �d ( q 
∗) = 

 and ∇ 

2 
q �d ( q 

∗) > 0 . In addition, M d and �d should verify for all

 

q, p ) ∈ R 

2 n the PDEs 

 

⊥ (∇ q (p T M 

−1 p) − M d M 

−1 ∇ q (p T M 

−1 
d 

p) + 2 J 2 M 

−1 
d 

p 
)

= 0 , (5) 

 

⊥ (∇ q � − M d M 

−1 ∇ q �d 

)
= 0 , (6) 

here G 

⊥ is such that G 

⊥ G = 0 and rank 
(
G 

⊥ ) = n − m . Computing

he time derivative of H along the trajectories of the closed-loop 
d 

2 
ystem (4) yields 

˙ 
 d = −∇ p H 

T 
d 

(
Gk v G 

T + 

1 

2 

(DM 

−1 M d ) + 

1 

2 

(DM 

−1 M d ) 
T 
)
∇ p H d ≤ 0 . 

(7) 

hus the equilibrium (q, p) = (q ∗, 0) is asymptotically stable if 

Gk v G 

T + 

1 
2 (DM 

−1 M d ) + 

1 
2 (DM 

−1 M d ) 
T 
)

≥ 0 and the output y = 

 

T ∇ p H d is detectable [18] . 

. System class definition 

Consider the underactuated mechanical system defined by 

1) and (2) where the actuator dynamics has order s ≥ 1 . The com-

lete system dynamics in port-Hamiltonian form is thus 

 

 

 

 

 

 

˙ q 
˙ p 

˙ x 1 
˙ x 2 

. . . 

˙ x s 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 I 0 0 . . . 0 

−I −D F 23 0 . . . 0 

0 −F 

T 
23 −R 33 F 34 . . . 0 

0 0 −R 

T 
34 −R 44 . . . 0 

. . . . . . . . . . . . . . . . . . 

0 0 0 0 . . . −R s +2 ,s +2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
F ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∇ q W 

∇ p W 

∇ x 1 W 

∇ x 2 W 

. . . 

∇ x s W 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

0 

0 

. . . 

G 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

u, (8) 

here W = � + 

1 
2 p 

T M 

−1 p + 

∑ s 
j=1 E j and F = F 0 − R 0 with F 0 =

F 

T 
0 , R 0 = R 

T 
0 = diag (R ii ) . The generic element of F on row i and

olumn j is indicated with F i j , thus F ji = −F i j for all i � = j. In

ummary, the total energy W comprises the mechanical energy 

 = � + 

1 
2 p 

T M 

−1 p, while the remaining terms E j represent the en- 

rgy of the actuators. The system states are x = ( q, p, x 1 , . . . , x s )
ith q ∈ R 

n , p ∈ R 

n referring to the mechanical system (1) , and

x 1 , . . . , x s ) ∈ R 

m ×s referring to the actuator, and the new input ma-

rix is G 0 ∈ R 

m ×m . In summary, system (8) is an extension of sys-

em (1) obtained by including the dynamics of the actuators. The 

lass of systems considered in this work is defined by the follow- 

ng assumptions. 

ssumption 1. The PDEs (5) and (6) for system (1) with di- 

ect actuation are solvable analytically, �d is positive def- 

nite, q ∗ = argmin ( �d ) , and either D d = Gk v G 

T + 

1 
2 (DM 

−1 M d ) +
1 
2 (DM 

−1 M d ) 
T > 0 , or y = G 

T M 

−1 
d 

p is detectable if D = 0 . Finally, all

odel parameters are exactly known and all system states are 

easurable. 

ssumption 2. The interconnection matrix F in (8) has off- 

iagonal elements F i j = 0 if j > i + 1 and either rank (F i j ) = m if

j = i + 1 or ∇ x j 

(
F 

T 
j+1 , 1 

∇ q W + F j+1 , 2 ∇ p W 

)
� = 0 , while the diagonal

erms are R ii ≥ 0 . 

ssumption 3. The energy of the actuators is such that ∇ x j E i = 0

f j > i and ∇ x j E j � = 0 . Finally, G 0 is full rank for all (q, p, x 1 , . . . , x s ) .

emark 1. The first assumption defines the class of systems for 

hich the IDA-PBC methodology is applicable, according to Or- 

ega et al. [18] . The analytical solvability of the PDEs is a re- 

earch topic in itself [17] , thus it is not investigated further. Nev- 

rtheless, the PDEs (5) and (6) are solvable analytically for sev- 

ral canonical examples including, the disk-on-disk [3] , the inertia- 

heel-pendulum [21] , the ball-on-beam [18] , and the Acrobot 

16] , which is illustrated in Section 6 . If s = 0 the conditions of
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∇
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ssumptions 2 and 3 are verified, that is F 12 = I � = 0 , R 22 = D ≥
 and ∇ p � = 0 , ∇ 

2 
q � � = 0 , ∇ 

2 
p 

(
1 
2 p 

T M 

−1 p 
)

= M 

−1 � = 0 . In general,

ssumptions 2 and 3 imply that the actuator dynamics in (8) is in 

trict-feedback form, with the key difference that the mechanical 

ub-system (1) is underactuated. As a result, the controller design 

annot be performed with the same backstepping approach used 

or fully actuated systems [13] . In addition, employing a backstep- 

ing design that builds upon the IDA-PBC controller (3) would not 

reserve the port-Hamiltonian structure in closed loop [5,6] . Note 

nally that, while systems (8) is not directly actuated, the input 

atrix G is still relevant since it defines the states affected by the 

ctuator dynamics. 

. Potential and kinetic energy shaping 

The aim of this work is to account for high-order actuator dy- 

amics by building upon the IDA-PBC methodology [18] in a mod- 

lar fashion and by preserving the port-Hamiltonian structure of 

he system in closed loop. To this end we propose a controller 

esign procedure that preserves the PDEs (5) and (6) characteriz- 

ng system (1) . The main idea behind the controller design is to: 

) express the actuator dynamics in port-Hamiltonian form (8) ; ii) 

efine a corresponding closed-loop dynamics compatibly with the 

egulation goal; iii) construct a control law that ensures matching 

etween open-loop and closed-loop dynamics thus extending our 

ork [5] to generic high-order actuator dynamics. 

.1. First controller design 

The control law for system (8) is designed such that the closed- 

oop dynamics is port-Hamiltonian, that is 

˙ x 
]

= 

[
F 

′ ][∇ x W d 

]
, (9) 

here F 

′ = F 

∗ − R 

∗ with F 

∗ = −F 

∗T 
and R 

∗ = R 

∗T ≥ 0 , the total

nergy is W d = H d + 

1 
2 

∑ s 
k =1 ζ

T 
k 
ζk , with H d = �d + 

1 
2 p 

T M 

−1 
d 

p char-

cterizing the mechanical sub-system, and ζk ∈ R 

m are defined as 

k = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

G 

† 
(
−∇ q W + F 23 ∇ x 1 W + M d M 

−1 ∇ q H d + 

(
Gk v G 

T − J 2 
)∇ p H d 

)
−F 

T 
2 ,k +1 

∇ p W − ∑ k 
j=1 F 

T 
j+2 ,k +1 

∇ x j W + F 

′ T 
1 ,k +1 

(∇ q H d + 

∑ k −1 
i =1 (

+ F 

′ T 
2 ,k +1 

(∇ p H d + 

∑ k −1 
i =1 (∇ p ζi ) 

T ζi 

)
+ 

∑ k −1 
j=1 F 

′ T 
j+2 ,k +1 

(∑ k −1 
i =1 (∇

o ensure matching between (8) and (9) for the states (x 1 , . . . , x s ) .

he elements of F 

′ 
on or above the diagonal (i.e., F 

′ 
k j 

on row k and

olumn j ≥ k ), are defined as 

F 

′ 
11 = 0 , F 

′ 
12 = M 

−1 M d , F 

′ 
22 = −DM 

−1 M d − Gk v G 

T + J 2 , 

F 

′ 
23 = G 

(
1 + G 

† F 

′ T 
12 ∇ q ζ1 − G 

† F 

′ 
22 ∇ p ζ1 

)
( ∇ x 1 ζ1 ) 

−1 + G 

⊥ T (G 

�F 

′ T 
12 ∇ q

F 

′ 
k j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(
1 + F 

′ T 
1 k 

∇ q ζ j−2 + F 

′ T 
2 k 

∇ p ζ j−2 + 

∑ j−1 
i =3 

(
F 

′ T 
ik 
∇ x i −2 

ζ j−2 

))(∇ x j(
F 

′ T 
1 k 

∇ q ζ j−2 + F 

′ T 
2 k 

∇ p ζ j−2 + 

∑ j−1 
i =3 

(
F 

′ T 
ik 
∇ x i −2 

ζ j−2 

))(∇ x j−2 
ζ j−

−K j−2 < 0 

here G 

� = (G 

⊥ G 

⊥ T ) −1 G 

⊥ , K j−2 are tuning parameters, while 

d , M d and J 2 are computed by solving the PDEs (5) and 

6) that characterize system (1) . It follows from (10) that ∇ x 1 ζ1 = 

 

† F 23 ∇ x 1 E 1 , where rank (F 23 ) = m (see Assumption 2 ) and ∇ x 1 E 1 � =
 (see Assumption 3 ) hence rank (∇ x 1 ζ1 ) = m . The same applies to

 x j ζ j . The control input that yields the closed-loop dynamics (9) is 

 = G 

−1 
0 

( 

F 

T 
1 ,s +2 ∇ q W + F 

T 
2 ,s +2 ∇ p W + 

s ∑ 

j=1 

F 

T 
j+2 ,s +2 ∇ x j W − F 

′ T 
1 ,s +2 ∇ q W
3 
k = 1 

 

) T ζi 

)
 ζi 

)
, k > 1 , 

(10) 

G 

�F 

′ 
22 ∇ p ζ1 

)
( ∇ x 1 ζ1 ) 

−1 
, 

2 

)−1 
j = k + 1 > 3 

 

j > k + 1 , 

j = k > 2 , 

(11) 

F 

′ T 
2 ,s +2 ∇ p W d −

s ∑ 

j=1 

F 

′ T 
j+2 ,s +2 ∇ x j W d 

) 

. (12) 

t follows from (10), (11) that ζk and F 

′ 
k j 

are interdependent, thus 

hey cannot be computed simultaneously and independently of 

ach other. Therefore, the control law is constructed by employing 

he following design procedure. 

1. Compute the expressions of �d , M d and J 2 by solving the 

PDEs (5) and (6) for the mechanical sub-system (1) . 

2. Compute F 

′ 
12 

, F 

′ 
22 

and the diagonal terms F 

′ 
j j 

from (11) . 

3. Compute ζ1 from (10) and subsequently compute F 

′ 
13 , F 

′ 
23 

from (11) . 

4. Compute ζ2 from (10) and subsequently compute 

F 

′ 
14 , F 

′ 
24 , F 

′ 
34 from (11) . 

5. Compute ζk from (10) and subsequently compute 

F 

′ 
1 ,k +2 

, F 

′ 
2 ,k +2 

, . . . , F 

′ 
k +1 ,k +2 

from (11) for all subsequent 

k ≤ s . 

6. Compute the control input from (12) . 

roposition 1. Consider system (8) with Assumptions 1 –3 and with 

he control law (12) . Then the closed-loop system is given by (9) , the

atrix F 

′ 
is given by (11) , and ζk is given by (10) . 

Proof. Equating the first rows in (8) and (9) yields 

 

−1 p = M 

−1 M d 

( 

M 

−1 
d 

p + 

s ∑ 

k =1 

(∇ p ζk ) 
T ζk 

) 

+ 

s ∑ 

j=1 

( 

F 

′ 
1 , j+2 

s ∑ 

k = j 
(∇ x j ζk ) 

T ζk 

) 

. (13) 

efining F 

′ 
1 ,s +2 according to (11) , that is 

 

′ 
1 ,s +2 = −

( 

F 

′ 
12 ∇ p ζs + 

s −1 ∑ 

j=1 

(
F 

′ 
1 , j+2 ∇ x j ζs 

)) 

( ∇ x s ζs ) 
−1 

, 

nd substituting in (13) cancels ζs . Similarly, substituting F 

′ 
1 , j+2 

ith j > 2 cancels ζ j until (13) yields the identity. 
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Equating the second rows in (8) and (9) yields 

−∇ q W − DM 

−1 p + F 23 ∇ x 1 W = 

−F 

′ T 
12 

( 

∇ q H d + 

s ∑ 

k =1 

(∇ q ζk ) 
T ζk 

) 

+ F 

′ 
22 

( 

M 

−1 
d 

p + 

s ∑ 

k =1 

(∇ p ζk ) 
T ζk 

) 

+ 

s ∑ 

j=1 

( 

F 

′ 
2 , j+2 

s ∑ 

k = j 
(∇ x j ζk ) 

T ζk 

) 

. (14) 

efining F 

′ 
2 , j+2 

with j > 1 according to (11) and substituting it 

n (14) cancels ζ j for all j > 1 . Substituting F 

′ 
22 

while simplifying 

ommon terms, and pre-multiplying both sides of (14) by G 

� gives 

he matching conditions [5] 

G 

�
(
−∇ q H + F 

′ T 
12 ∇ q H d − J 2 M 

−1 
d 

p 
)

= 

G 

�
(
−F 

′ T 
12 (∇ q ζ1 ) 

T ζ1 + F 

′ 
22 (∇ p ζ1 ) 

T ζ1 + F 

′ 
23 (∇ x 1 ζ1 ) 

T ζ1 

)
, (15) 

here the left side of the equal corresponds to the sum of the 

DEs (5) and (6) (solvable analytically by hypothesis according to 

ssumption 1 ). Thus PDEs (5) and (6) are preserved as well as their

nalytical solutions �d , M d and J 2 . Note that F 23 ∇ x 1 W is not part

f (15) , since it only affects the actuated states of the mechanical 

ystem (i.e., the actuator dynamics enters the system through the 

atrix G ). Pre-multiplying both sides of (14) by G 

† yields instead 

G 

† 
(
−∇ q W + F 23 ∇ x 1 W + F 

′ T 
12 ∇ q H d + 

(
Gk v G 

T − J 2 
)
M 

−1 
d 

p 
)

= 

G 

† 
(
−F 

′ T 
12 (∇ q ζ1 ) 

T ζ1 + F 

′ 
22 (∇ p ζ1 ) 

T ζ1 + F 

′ 
23 (∇ x 1 ζ1 ) 

T ζ1 

)
, (16) 

here the terms to the left of the equal correspond to ζ1 in (10) .

ote that ∇ x j ζ1 = 0 for all j > 1 . Thus, defining F 

′ 
23 

according to

11) solves both (15) and (16) . 

Equating the third rows in (8) and (9) yields 

−F 

T 
23 ∇ p W − F 33 ∇ x 1 W + F 34 ∇ x 2 W = 

−F 

′ T 
13 

( 

∇ q H d + 

s ∑ 

k =1 

(∇ q ζk ) 
T ζk 

) 

− F 

′ T 
23 

( 

M 

−1 
d 

p + 

s ∑ 

k =1 

(∇ p ζk ) 
T ζk 

) 

+ 

s ∑ 

j=1 

( 

F 

′ 
3 , j+2 

s ∑ 

k = j 
(∇ x j ζk ) 

T ζk 

) 

. (17) 

efining F 

′ 
3 , j+2 

with j > 2 according to (11) and substituting it in 

17) cancels ζ j for all j > 2 yielding 

−F 

T 
23 ∇ p W − F 33 ∇ x 1 W + F 34 ∇ x 2 W 

+ F 

′ T 
13 

(∇ q H d + (∇ q ζ1 ) 
T ζ1 

)
+ F 

′ T 
23 

(
M 

−1 
d 

p + (∇ p ζ1 ) 
T ζ1 

)
−F 

′ 
33 

(
(∇ x 1 ζ1 ) 

T ζ1 

)
= 

−F 

′ T 
13 

(
(∇ q ζ2 ) 

T ζ2 

)
− F 

′ T 
23 

(
(∇ p ζ2 ) 

T ζ2 

)
+ F 

′ 
33 (∇ x 1 ζ2 ) 

T ζ2 + F 

′ 
34 (∇ x 2 ζ2 ) 

T ζ2 . (18) 

he terms to the left of the equal correspond to ζ2 , where ∇ x j ζ2 =
 for all j > 2 . Thus (18) is verified by defining F 

′ 
34 

as in (11) , that

s 

 

′ 
34 = 

(
1 + F 

′ T 
13 ∇ q ζ2 + F 

′ T 
23 ∇ p ζ2 − F 

′ 
33 ∇ x 1 ζ2 

)
( ∇ x 2 ζ2 ) 

−1 

atching for the remaining states x j with j < s is achieved in the

ame fashion and is omitted for conciseness. 

Equating the last rows in (8) and (9) yields finally 

−F 

T 
1 ,s +2 ∇ q W − F 

T 
2 ,s +2 ∇ p W −

s ∑ 

j=1 

F 

T 
j+2 ,s +2 ∇ x j W + G 0 u = 

−F 

′ T 
1 ,s +2 

( 

∇ q H d + 

s ∑ 

k =1 

(∇ q ζk ) 
T ζk 

) 
4 
−F 

′ T 
2 ,s +2 

( 

M 

−1 
d 

p + 

s ∑ 

k =1 

(∇ p ζk ) 
T ζk 

) 

−
s ∑ 

j=1 

( 

F 

′ T 
j+2 ,s +2 

s ∑ 

k = j 
(∇ x j ζk ) 

T ζk 

) 

. (19) 

omputing u from (19) yields (12) concluding the proof. �

emark 2. In summary, the proposed design procedure results in 

he same PDEs as the traditional IDA-PBC [18] . It follows from 

ssumptions 2 and 3 that ∇ x j ζi = 0 , ∀ j > i and that ∇ x j ζ j � = 0 ,

hus F 

′ 
k, j 

∈ L 

∞ . If the terms F j, j+1 are constant, Assumption 2 is

erified provided that ∇ 

2 
x j 

E j � = 0 , ∀ j. If instead Assumptions 2 and

 are not verified, that is for instance F 14 ∇ x 2 W � = 0 , then it follows

rom (16) that ζ1 would depend also on x 2 . Consequently, choosing 

 

′ 
13 to verify (13) would yield 

F 

′ 
13 = −

(
F 

′ 
12 ∇ p ζ1 + F 

′ 
14 ∇ x 2 ζ1 

)
( ∇ x 1 ζ1 ) 

−1 
, 

hich also contains F 

′ 
14 . However, it follows from (11) that 

 

′ 
14 

depends on F 

′ 
13 

thus the design procedure outlined in 

roposition 1 would not be feasible in such case. 

roposition 2. Consider system (8) with Assumptions 1 to 3 , in 

losed-loop with the control law (12) . Then the equilibrium x = x ∗,

ith q = q ∗ and p = p ∗ = 0 , is asymptotically stable for all K j > 0

rovided that either (Gk v G 

T + 

1 
2 (DM 

−1 M d ) + 

1 
2 (DM 

−1 M d ) 
T ) > 0 , or

hat D = 0 and the output y = G 

T M 

−1 
d 

p is detectable. 

Proof. Note first that W d = �d + 

1 
2 p 

T M 

−1 
d 

p + 

1 
2 

∑ s 
k =1 ζ

T 
k 
ζk 

s positive definite. Expressing (DM 

−1 M d ) as the sum of a 

ymmetric part �0 and an antisymmetric part �0 , that is 

DM 

−1 M d ) = �0 + �0 , where �0 = 

1 
2 (DM 

−1 M d ) + 

1 
2 (DM 

−1 M d ) 
T 

nd �0 = 

1 
2 (DM 

−1 M d ) − 1 
2 (DM 

−1 M d ) 
T , and computing the time 

erivative of W d along the trajectories of the closed-loop system 

9) while recalling that J 2 = −J T 
2 

yields 

˙ 
 d = −∇ p W 

T 
d 

(
Gk v G 

T + �0 

)∇ p W d −
s ∑ 

j=1 

(∇ x j W 

T 
d K j ∇ x j W d 

)
≤ 0 , 

(20) 

here ∇ p W d = M 

−1 
d 

p + 

∑ s 
j= i ((∇ p ζ j ) 

T ζ j ) , ∇ x i W d = 

∑ s 
j= i ((∇ x i ζ j ) 

T 

j ) , and ∇ x s W d = (∇ x s ζs ) 
T ζs . If K j > 0 , D � = 0 and (Gk v G 

T +
0 ) > 0 it follows from (20) that q, p, ζ j ∈ L 

∞ , ∀ j, while

p, 
∑ s 

j= i ((∇ x i ζ j ) 
T ζ j ) , ζs ∈ L 

2 . It follows from (10) that ∇ x j ζ j � = 0 ,

hus p, ζ j ∈ L 

2 ∩ L 

∞ , ∀ j. Finally, it follows from (9) that

˙  , ˙ p , ˙ ζ j ∈ L 

∞ . Thus ζ j , p converge to zero asymptotically ac- 

ording to Barbalat’s Lemma, and the equilibrium is asymptotically 

table [24] . In case D = 0 , it follows from (20) that y ∈ L 

2 ∩ L 

∞ 

nd from (9) that ˙ q , ˙ p ∈ L 

∞ hence also ˙ y ∈ L 

∞ , and y converges

o zero asymptotically rather than p. Asymptotic stability of the 

quilibrium is then established in a similar fashion, provided that 

he output y = G 

T M 

−1 
d 

p is detectable [18] . 

Substituting ˙ p = p = 0 and ζ j = 0 in (9) yields ∇ q �d = 0 , thus

he equilibrium is an extremum of �d , while ∇ 

2 
q �d (q ∗) > 0 by

esign, that is q ∗ = argmin (�d ) . Substituting p = 0 and ζ j = 0 in

10) yields 

G 

† 
(
−∇ q � + F 23 ∇ x 1 W + M d M 

−1 ∇ q �d 

)
= 0 , 

−
k ∑ 

j=1 

F 

T 
j+2 ,k +1 ∇ x j W + F 

′ T 
1 ,k +1 ∇ q �d = 0 , (21) 

hich, computed at (q, p) = (q ∗, 0) , define the values x ∗
j 

for all j ≥
 at the equilibrium, concluding the proof. �
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.2. Second controller design 

The analytical expression of the control law (12) grows in size 

nd complexity with s , thus potentially resulting in increasing 

omputational load. In an attempt to mitigate this shortcoming, 

he elements of F 

′ 
on the diagonal that refer to the actuator states 

 j , with 1 ≤ j ≤ s , are defined instead as 

F 

′ 
j +2 , j +2 = − K j + 

( 

F 

′ T 
1 , j+2 ∇ q ζ j + F 

′ T 
2 , j+2 ∇ p ζ j + 

j−1 ∑ 

i =1 

F 

′ T 
i +2 , j+2 ∇ x i ζ j 

) 

(∇ x j ζ j 

)−1 
. (22) 

he expression of ζk for k > 1 that ensures matching between 

8) and (9) for the states (x 2 , . . . , x s ) becomes then 

k = −F 

T 
1 ,k +1 ∇ q W − F 

T 
2 ,k +1 ∇ p W −

k ∑ 

j=1 

F 

T 
j+2 ,k +1 ∇ x j W 

+ F 

′ T 
1 ,k +1 

( 

∇ q H d + 

( 

k −2 ∑ 

i =1 

(∇ q ζi ) 
T ζi 

) ) 

+ F 

′ T 
2 ,k +1 

( 

M 

−1 
d 

p + 

( 

k −2 ∑ 

i =1 

(∇ p ζi ) 
T ζi 

) ) 

+ 

k −2 ∑ 

j=1 

F 

′ T 
j+2 ,k +1 

( 

k −2 ∑ 

i =1 

(∇ x j ζi ) 
T ζi 

) 

+ K k −1 (∇ x k −1 
ζk −1 ) 

T ζk −1 . (23) 

ote that, differently from (10) , ζk in (23) only contains ζk −1 in 

he last term, thus resulting in a shorter expression. Similarly, the 

ontrol law (12) becomes 

 = G 

−1 
0 

( 

F 

T 
1 ,s +2 ∇ q W + F 

T 
2 ,s +2 ∇ p W + 

s ∑ 

j=1 

F 

T 
j+2 ,s +2 ∇ x j W 

) 

+ G 

−1 
0 

( 

−F 

′ T 
1 ,s +2 

( 

∇ q H d + 

s −1 ∑ 

i =1 

(∇ q ζi ) 
T ζi 

) ) 

− G 

−1 
0 

( 

F 

′ T 
2 ,s +2 

( 

∇ p H d + 

s −1 ∑ 

i =1 

(∇ p ζi ) 
T ζi 

) ) 

+ G 

−1 
0 

( 

+ 

s −1 ∑ 

j=1 

F 

′ T 
j+2 ,s +2 

( 

s −1 ∑ 

i =1 

(∇ x j ζi ) 
T ζi 

) 

− K s (∇ x s ζs ) 
T ζs 

) 

. (24) 

roposition 3. Consider the system (8) with Assumptions 1 to 3 , with 

he control law (24) and the parameters (23) . Then the closed-loop 

ystem is given by (9) with the matrix F 

′ 
defined in (11) where the 

iagonal terms are given by (22) . 

Proof. Equating the first rows in (8) and (9) yields again 

13) , while equating the second rows yields (14) . Equating the 

hird rows in (8) and (9) and substituting F 

′ 
3 , j+2 

with j > 2 from

11) yields (18) . Computing F 

′ 
33 from (22) as 

 

′ 
33 = −K 1 + 

(
F 

′ T 
13 ∇ q ζ1 + F 

′ T 
23 ∇ p ζ1 

)
( ∇ x 1 ζ1 ) 

−1 
, 

nd substituting it in (18) yields 

−F 

T 
23 ∇ p W + F 33 ∇ x 1 W + F 34 ∇ x 2 W + F 

′ T 
13 ( ∇ q H d ) + F 

′ T 
23 

(
M 

−1 
d 

p 
)

+ K 1 

(
(∇ x 1 ζ1 ) 

T ζ1 

)
= 

−F 

′ T 
13 

(
(∇ q ζ2 ) 

T ζ2 

)
− F 

′ T 
23 

(
(∇ p ζ2 ) 

T ζ2 

)
+ F 

′ 
33 (∇ x 1 ζ2 ) 

T ζ2 

+ F 

′ 
34 (∇ x 2 ζ2 ) 

T ζ2 . (25) 

he terms to the left of the equal correspond to ζ2 in (23) , 

nd substituting F 

′ 
34 from (11) verifies (25) . This same proce- 

ure is then repeated for the remaining states. Equating the last 
5 
ows in (8) and (9) yields again (19) . Substituting F 

′ 
s +2 ,s +2 

from 

22) and computing the control input yields then (24) concluding 

he proof. �

roposition 4. Consider system (8) with Assumptions 1 to 3 , in 

losed-loop with the control law (24) and the parameters (23) . Then 

he equilibrium x = x ∗, with q = q ∗ and p = p ∗ = 0 , is asymptotically

table for some K j > 0 , provided that either (Gk v G 

T + 

1 
2 (DM 

−1 M d ) +
1 
2 (DM 

−1 M d ) 
T ) > 0 or that D = 0 and the output y = G 

T M 

−1 
d 

p is de-

ectable. 

Proof. Expressing F 

′ 
j +2 , j +2 

as the sum of a symmetric part 

j and an antisymmetric part � j , that is −F 

′ 
j +2 , j +2 

= K j + � j + 

j , where � j = 

1 
2 (−F 

′ 
j +2 , j +2 

− K j ) + 

1 
2 (−F 

′ 
j +2 , j +2 

− K j ) 
T and � j = 

1 
2 (F 

′ 
j +2 , j +2 

) + 

1 
2 ( F 

′ 
j +2 , j +2 

) T , and computing the time derivative of 

 d along the trajectories of the closed-loop system (9) yields 

˙ 
 d = −∇ p W 

T 
d 

(
Gk v G 

T + �0 

)∇ p W d 

−
s ∑ 

j=1 

(∇ x j W 

T 
d 

(
K j + � j 

)∇ x j W d 

)
. (26) 

hus ˙ W d ≤ 0 and all states are bounded provided that (Gk v G 

T + 

0 ) > 0 and that K j + � j > 0 , where �0 has been defined in

roposition 2 and it follows from (22) that 

j = 

1 

2 

( 

F 

′ T 
1 , j+2 ∇ q ζ j + F 

′ T 
2 , j+2 ∇ p ζ j + 

j−1 ∑ 

i =1 

F 

′ T 
i +2 , j+2 ∇ x i ζ j 

) (∇ x j ζ j 

)−1 

+ 

1 

2 

( 

F 

′ T 
1 , j+2 ∇ q ζ j + F 

′ T 
2 , j+2 ∇ p ζ j + 

j−1 ∑ 

i =1 

F 

′ T 
i +2 , j+2 ∇ x i ζ j 

) T (∇ x j ζ j 

)−T 
. 

t follows from (23) and Assumption 2 that ∇ x j ζ j � = 0 , while

F 

′ T 
1 , j+2 

∇ q ζ j + F 

′ T 
2 , j+2 

∇ p ζ j + 

∑ j−1 
i =1 

F 

′ T 
i +2 , j+2 

∇ x i ζ j ) is a sum of 

ounded terms. Thus there exists a sufficiently large K j that 

erifies the inequality K j + � j > 0 . The proof is completed by 

mploying the same arguments used in Proposition 2 , thus 

onfirming that the equilibrium is asymptotically stable. �

emark 3. In principle, it is possible to combine the controller de- 

igns (12) and (24) thus resulting in an hybrid implementation. For 

nstance, defining ζk as in (10) , F 

′ 
s +2 ,s +2 

as in (22) , and the remain-

ng elements of F 

′ 
as in (11) , yields again (24) . This is however a

ifferent control law, since ζk are given in (10) rather than in (23) . 

he corresponding stability conditions are then a combination of 

hose given in Propositions 2 and 4 , that is K j > 0 for j < s , and

 s + �s > 0 . The potential benefit of such approach is to combine 

he stronger stability properties of controller (12) (i.e., the weaker 

equirements on the parameters K j ) with the simpler expression of 

he control law resulting from (24) . 

. Potential energy shaping 

In this section, a variation of the controller (12) is proposed for 

 narrower class of systems in order to investigate whether it is 

ossible to set F 

′ 
11 � = 0 and what this would imply in terms of sta-

ility of the equilibrium. To this end, a further assumption is in- 

roduced which restricts the following result to a narrower class of 

nderactuated mechanical systems. 

ssumption 4. The inertia matrix M is constant and diagonal, 

hile G ∈ R 

n ×1 and ∇ 

2 
q �d > 0 are both constant, GG 

T is diagonal

i.e., G is a standard basis vector), and GG 

T ∇ 

2 
q �

−1 
d 

≥ 0 . In addition

 x j E k = 0 , ∀ j � = k and D = 0 . 
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The control law is designed such that the closed-loop dynamics 

s given by (9) where W d = �d + 

1 
2 

∑ s 
k =0 ζ

T 
k 
ζk is a positive definite 

torage function, with ζk defined as 

k = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

M 

−1 p + �∇ q �d , 

G 

† 
(
−∇ q W + F 23 ∇ x 1 W + F 

′ 
12 

(∇ q �d + (∇ q ζ0 ) 
T ζ0 

)
+ Gk v G 

T (

−F 

T 
2 ,k +1 

∇ p W − ∑ k 
j=1 F 

T 
j+2 ,k +1 

∇ x j W + F 

′ T 
1 ,k +1 

(∇ q �d + 

∑ k −1
i =0 

+ F 

′ T 
2 ,k +1 

(∑ k −1 
i =0 (∇ p ζi ) 

T ζi 

)
+ 

∑ k −1 
j=1 F 

′ T 
j+2 ,k +1 

(∑ k −1 
i =1 (∇ x j ζi ) 

T ζi 

)
hus ∇ q ζ0 = �∇ 

2 
q �d and ∇ p ζ0 = M 

−1 are constant, while ∇ x 1 ζ0 = 

 . The elements of F 

′ 
on or above the diagonal (i.e. F 

′ 
k j 

on row k

nd column j ≥ k ), are defined as in (11) apart from the terms 

F 

′ 
11 = −�, �2 = 

(
k m 

GG 

T ∇ 

2 
q �

−1 
d 

)
, F 

′ 
12 = 

(
I + �2 ∇ 

2 
q �d 

)
M, 

F 

′ 
22 = −Gk v G 

T , 

F 

′ 
1 , j+2 = 

( 

�∇ q ζ j − F 

′ 
12 ∇ p ζ j −

j−1 ∑ 

i =1 

(
F 

′ 
1 ,i +2 ∇ x i ζ j 

)) (∇ x j ζ j 

)−1 
, (28) 

here �2 = ��, the parameter k m 

> 0 is constant, and the control 

nput is given by (12) . 

roposition 5. Consider system (8) with Assumptions 1 to 4 , with 

he control law (12) , and with the parameters (27) and (28) . Then

he closed-loop system is given by (9) with the matrix F 

′ 
is defined 

ccording to (11) and (28) . 

Proof. Equating the first rows in (8) and (9) yields 

 

−1 p = −�

( 

∇ q �d + 

s ∑ 

k =0 

(∇ q ζk ) 
T ζk 

) 

+ F 

′ 
12 

s ∑ 

k =0 

(∇ p ζk ) 
T ζk 

+ 

s ∑ 

j=1 

( 

F 

′ 
1 , j+2 

s ∑ 

k = j 
(∇ x j ζk ) 

T ζk 

) 

. (29) 

efining ζ0 as in (27) and F 

′ 
1 j 

as in (28) verifies (29) . 

Equating the second rows in (8) and (9) yields 

−∇ q � + F 23 ∇ x 1 W = 

−F 

′ T 
12 

( 

∇ q �d + 

s ∑ 

k =0 

(∇ q ζk ) 
T ζk 

) 

+ F 

′ 
22 

s ∑ 

k =0 

(∇ p ζk ) 
T ζk 

+ 

s ∑ 

j=1 

( 

F 

′ 
2 , j+2 

s ∑ 

k = j 
(∇ x j ζk ) 

T ζk 

) 

. (30) 

efining F 

′ 
2 , j+2 

with j > 1 according to (11) and substituting it in 

30) cancels ζ j for all j > 1 . Pre-multiplying both sides of (30) by

 

� = (G 

⊥ G 

⊥ T ) −1 G 

⊥ gives the matching condition 

G 

�
(
−∇ q � + F 

′ T 
12 ∇ q �d 

)
= 

G 

�
(
−F 

′ T 
12 (∇ q ζ1 ) 

T ζ1 + F 

′ 
22 (∇ p ζ1 ) 

T ζ1 + F 

′ 
23 (∇ x 1 ζ1 ) 

T ζ1 

)
, (31) 

here the terms to the left of the equal correspond to the PDE 

6) . Note that (31) does not contain ζ0 since rank (�2 ) = rank (GG 

T ) 

ence G 

⊥ �∇ 

2 
q �d ζ0 = 0 . Pre-multiplying both sides of (30) by G 

† 

ields 

G 

† 
(
−∇ q � + F 23 ∇ x 1 W + F 

′ T 
12 ∇ q �d + F 

′ T 
12 (∇ q ζ0 ) 

T ζ0 

−F 

′ 
22 (∇ p ζ0 ) 

T ζ0 

)
= 

G 

† 
(
−F 

′ T 
12 (∇ q ζ1 ) 

T ζ1 + F 

′ 
22 (∇ p ζ1 ) 

T ζ1 + F 

′ 
23 (∇ x 1 ζ1 ) 

T ζ1 

)
, (32) 
6 
k = 0 

0 ) 
T ζ0 

)
, k = 1 

i ) 
T ζi 

)
k > 1 . 

(27) 

here the first line corresponds to ζ1 . Thus, defining F 

′ 
23 

accord- 

ng to (11) solves both (31) and (32) . The rest of the proof follows

losely that of Proposition 1 , thus it is omitted for brevity. �

roposition 6. Consider system (8) with Assumptions 1 to 4 , in 

losed-loop with the control law (12) and the parameters (27) and 

28) . Assume in addition that �d is quadratic in q . Then the equi- 

ibrium x = x ∗, with q = q ∗ and p = p ∗ = 0 is stable and G 

T q con-

erges to G 

T q ∗ asymptotically for all K j > 0 , k v > 0 , k m 

> 0 , provided

hat � + �T ≥ 0 . 

Proof. Recall that W d = �d + 

1 
2 

∑ s 
k =0 ζ

T 
k 
ζk is positive definite. 

omputing its time derivative along the trajectories of the closed- 

oop system (9) yields 

˙ 
 d = −1 

2 

∇ q W 

T 
d 

(
� + �T 

)∇ q W d − ∇ p W 

T 
d 

(
Gk v G 

T 
)∇ p W d 

−
s ∑ 

j=1 

(∇ x j W 

T 
d K j ∇ x j W d 

)
, (33) 

here ∇ q W d = ∇ q �d + (�∇ 

2 
q �d ) 

T ζ0 + 

∑ s 
j=1 ((∇ q ζ j ) 

T ζ j ) , ∇ p W d =
 

−1 ζ0 + 

∑ s 
j=1 ((∇ p ζ j ) 

T ζ j ) , and ∇ x i W d = 

∑ s 
j= i ((∇ x i ζ j ) 

T ζ j ) . Em-

loying the same argument used in Proposition 2 , it follows 

rom (33) that ˙ W d ≤ 0 for all k v > 0 , K j > 0 and k m 

> 0 , where

� + �T ) ≥ 0 by hypothesis, thus q, ζ j ∈ L 

∞ for all j ≥ 0 . It fol-

ows from (28) that �2 is the product of the rank-deficient pos- 

tive semidefinite diagonal matrix GG 

T and of the full-rank pos- 

tive definite symmetric matrix ∇ 

2 
q �

−1 
d 

, thus it has the same 

ank as GG 

T . Consequently, G 

T ∇ q W d , G 

T ∇ p W d , ∇ x j W d ∈ L 

2 and thus

 

T ∇ q �d , G 

T ζ0 , ζ j> 0 ∈ L 

2 . Finally, it follows from (9) that ˙ q , ˙ p , ˙ ζ j ∈
 

∞ . Thus ζ j> 0 , G 

T ζ0 , and G 

T ∇ q �d are bounded and converge to 

ero asymptotically. Since �d has a unique minimizer in q = q ∗

y design and is quadratic in q while G is constant, the fact that 

 

T ∇ q �d converges to zero implies that G 

T q converges to G 

T q ∗. Fi-

ally, substituting p = 0 and ζ j = 0 in (27) yields again (21) which

efines the values x ∗
j 

at the equilibrium. �

emark 4. Although the parameters (27) and (28) do not explic- 

tly enforce kinetic energy shaping, F 

′ 
12 

can be interpreted as the 

roduct of inertia matrices, that is (
I + �2 ∇ 

2 
q �d 

)
M = M 

−1 M d . 

Pre-multiplying both sides of the above equation by M and sub- 

tituting �2 from (28) yields 

M d = M 

(
I + k m 

GG 

T 
)
M, 

hich is constant and symmetric since it is the product of diagonal 

atrices, thus the PDE (5) is solved by J 2 = 0 . The ability to shape

he kinetic energy is however limited compared to the standard 

DA-PBC control (3) , since the parameter k m 

only affects the actu- 

ted states. Note that the proposed potential shaping design is not 

easible in the presence of physical damping, since then the match- 

ng Eq. (30) would not be verified. Note also that the detectability 

ondition typically required for the output y = G 

T M 

−1 
d 

p [18] is not 

resent in Proposition 6 . However, since � is chosen to be rank 

eficient in order to preserve the PDE (6) (see Proposition 5 ), its 

ffect on the Lyapunov derivative (33) is limited to the actuated 

tates. As a result, only asymptotic convergence to the equilibrium 

 

T q = G 

T q ∗ is concluded in Proposition 6 . If k m 

= 0 then M = M
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Fig. 1. Simplified schematic of the Acrobot system with a rotary SEA. 
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nd � = 0 , thus stability of the equilibrium is only concluded if 

he output y = G 

T ζ0 is detectable. Substituting ζ0 from (27) k m 

= 0 

ields y = G 

T M 

−1 p + G 

T �∇ q �d = G 

T M 

−1 p, thus recovering the de-

ectablity condition in Ortega et al. [18] . In alternative to (28) , it

ould be possible to define �2 = k 2 m 

GG 

T which is symmetric pos- 

tive semidefinite and yields � = k m 

GG 

T ≥ 0 . As a result, the con-

ition � + �T ≥ 0 in Proposition 6 is automatically verified. How- 

ver computing M d as above yields M d = M 

(
I + k m 

GG 

T ∇ 

2 
q �d 

)
M

hich is in general not symmetric and thus it does not represent 

he inertia matrix of any mechanical system. 

. Illustrative examples 

The energy shaping controllers outlined in Sections 4 and 5 are 

emonstrated with three examples, namely an Acrobot system 

ith a rotary series elastic actuator (SEA), a soft continuum manip- 

lator actuated by electroactive polymers (EAP), and a two-mass- 

pring system actuated by a DC motor. 

.1. Acrobot system with SEA 

The Acrobot system [16] is modified by including a rotary series 

lastic actuator (SEA) consisting of a spring, a damper, and a DC 

otor, where the effect of the inductance is omitted for simplicity 

4] . The Acrobot system consists of an articulated pendulum with 

 single actuator at the elbow joint q 2 and an unactuated shoul- 

er joint q 1 (see Fig. 1 ). The open-loop dynamics of the mechani- 

al sub-system is given by (1) with total energy H = � + 

1 
2 p 

T M 

−1 p

here � = g ( c 4 cos ( q 1 ) + c 5 cos (q 1 + q 2 ) ) , the input matrix is 

 

T = 

[
0 1 

]
, while M = 

[
c 1 + c 2 + 2 c 3 cos (q 2 ) c 2 + c 3 cos (q 2 ) 

c 2 + c 3 cos (q 2 ) c 2 

]
s the inertia matrix with determinant � = det (M) > 0 . The terms 

 1 , c 2 , c 3 , c 4 , c 5 are constant parameters depending on the size of

he links, while g is the gravity constant. The control goal is to 

tabilize the upright position ( q 1 , q 2 ) = (0 , 0) , which is open-loop

nstable. The IDA-PBC controller (3) for the Acrobot with direct ac- 

uation yields the control law [16] 

 = 

1 

2 

∇ q 2 

(
p T M 

−1 p 
)

+ ∇ q 2 �

−
[
k 2 k 3 

]
M 

−1 ∇ q �d + 

k v 

�d 

( k 2 p 1 − k 1 p 2 ) , 

here k 1 , k 2 , k 3 , k v are tuning parameters, p = M ̇ q , while �d and

d are given in Appendix A. The complete system dynamics de- 

cribed with (8) yields 

F 11 = F 13 = F 14 = F 24 = 0 , F 12 = I, F 34 = 

1 

J e 
, 

 22 = 0 , F 23 = 0 , R 33 = 0 , R 44 = 

D a 

J 2 
, G 0 = 

K e 

R a J e 
e 

7 
here K e and R a are the torque constant of the motor and the ar- 

ature resistance respectively, while D a is the viscous friction of 

he SEA. The total energy of the system is W = H + 

1 
2 K a (q 2 − θ ) 2 +

1 
2 J e ω 

2 , where K a is the stiffness of the SEA and J e is the moment of

nertia of the motor. The system states are the position q = (q 1 , q 2 ) ,

he momenta p = M ̇ q , the angular position x 1 = θ of the SEA, and

he angular velocity x 2 = ω = 

˙ θ of the SEA. Note that F 23 = 0 but

 θF 

T 
12 

∇ q W � = 0 , thus Assumption 2 is verified. The energy of the

echanical sub-system in closed-loop is H d = �d + 

1 
2 p 

T M 

−1 
d 

p as 

n D. Mahindrakar et al. [16] , and the total energy of the com- 

lete system is W d = H d + 

1 
2 ζ

T 
1 
ζ1 + 

1 
2 ζ

T 
2 
ζ2 , where it follows from 

10) and (22) that 

1 = G 

† 
(
−∇ q W + F 

′ 
12 ∇ q H d − F 

′ 
22 ∇ p H d 

)
, 

2 = 

1 

J e 
∇ ω W + K 1 (∇ θ ζ1 ) 

T ζ1 + F 

′ T 
23 ∇ p H d + F 

′ T 
13 ∇ q H d . 

he elements of F 

′ 
computed as in (11) and (22) are given in Ap- 

endix A. The control input computed as in (24) is 

 = 

(
K e + 

R a D a 

K e 

)
ω + 

K a R a 

K e 
(θ − q 2 ) − J e R a 

K e 
F 

′ T 
14 

(∇ q H d + (∇ q ζ1 ) 
T ζ1 

)
− J e R a 

K e 
F 

′ T 
24 

(∇ p H d + (∇ p ζ1 ) 
T ζ1 

)
− J e R a 

K e 
F 

′ T 
34 

(
(∇ θ ζ1 ) 

T ζ1 

)
− K 2 

J e R a 

K e 

(
(∇ ω ζ2 ) 

T ζ2 

)
, 

nd it employs the parameters �d , M d and J 2 , which are the solu- 

ions of the PDEs (5) and (6) for the Acrobot system with direct 

ctuation [16] . 

Numerical simulations have been performed in Matlab using 

n ODE23 solver with the model parameters c 1 = 0 . 23333 ; c 2 =
 . 53333 ; c 3 = 0 . 2 ; c 4 = 0 . 3 ; c 5 = 0 . 2 ; g = 9 . 81 ; R a = 0 . 5 ; K e =
 ; J e = 10 −3 ; D a = 1 ; K a = 10 . The tuning parameters have been

hosen empirically as k 0 = −35 ; k 1 = 0 . 03386 ; k 2 = 0 . 1 ; k 3 =
 . 59073 ; μ = −0 . 6019 ; k u = 1 ; k v = 2 ; K 1 = 10 3 ; K 2 = 10 4 . The sys-

em response with the controller (24) is shown in Fig. 2 : the posi-

ion reaches the prescribed equilibrium (q 1 , q 2 ) = (0 , 0) in a sim-

lar fashion to the mechanical system with direct actuation and 

he IDA-PBC controller (3) (see Fig. 2 (a) and (g)). The angular po- 

ition θ and the angular velocity ω = 

˙ θ of the motor are shown in 

ig. 2 (d) and (e) (no gearbox has been included in the model for 

implicity). The control input computed as in (24) corresponds to a 

oltage (see Fig. 2 (c)) thus it is not directly comparable with con- 

roller (3) . Instead, the motor torque has the same order of magni- 

ude with both controllers (see Fig. 2 (f) and (i)). 

.2. Soft continuum manipulator with EAP actuation 

The dynamics of a soft continuum manipulator of mass m and 

ength l moving on the horizontal plane and actuated by electroac- 

ive polymers (EAP) [15] described with (8) yields the parameters 

F 11 = F 13 = F 14 = F 24 = 0 , F 12 = F 34 = I, R 22 = D, 

 23 = K c G, R 33 = R 2 , R 44 = R 1 , G 0 = I, 

here R 1 , R 2 are resistances, and K c represents the coupling be- 

ween EAP and soft continuum manipulator. The latter is mod- 

led as a rigid-link system with n = 2 virtual elastic joints of 

tiffness k and damping D [27] , where only the first is actu- 

ted thus G 

T = 

[
1 0 

]
(see Fig. 3 ). The total energy of the 

echanical sub-system is H = � + 

1 
2 p 

T M 

−1 p, where � = 

1 
2 k (q 2 

1 
+

 

2 
2 
) with q 1 and q 2 the angles of the virtual joints, and M =

ml 2 

4 

[
4 cos (q 2 ) + 6 2 cos (q 2 ) + 1 

2 cos (q 2 ) + 1 1 

]
. The total energy of the com- 

lete system is W = H + 

1 Q 

2 + 

1 φ2 , where C is the capacitance
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Fig. 2. Simulation results for the Acrobot with either a SEA or with direct actuation: (a) position with SEA and controller (24) ; (b) velocity; (c) control input with (24) ; (d) 

motor position θ ; (e) motor velocity ω; (f) motor torque with (24) ; (g) position with direct actuation and with controller (3) ; (h) velocity; (i) control input with (3) . 

Fig. 3. Simplified schematic of the soft continuum manipulator with EAP actuation. 
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nd L is the inductance of the EAP. The system states are the po- 

ition q = (q , q ) , the momenta p = M ̇ q , the electric charge x =
1 2 1 

8 
, and the flux x 2 = φ. The control goal is to stabilize the posi-

ion ( q 1 , q 2 ) = (q ∗
1 
, 0) where, differently from the Acrobot, q 2 = 0

s open-loop stable. 

The energy of the mechanical sub-system in closed- 

oop is H d = �d + 

1 
2 p 

T M 

−1 
d 

p, where M d = k m 

M and �d =
1 
2 

(
k p (q 1 − q ∗1 ) 

2 + 

k 
k m 

q 2 2 

)
with k p and k m 

tuning parameters, 

nd the control law computed as in (3) is 

 = kq 1 + k p k m 

(q ∗1 − q 1 ) − 4 k v ( p 2 − p 1 + 2 p 2 cos (q 2 ) ) 

ml 2 
(
4 cos (q 2 ) 

2 − 5 

) . 

ote that setting M d = k m 

M solves the PDE (5) with J 2 = 0 . The

otal energy of the complete system in closed loop is W d = H d +
1 
2 ζ

T 
1 
ζ1 + 

1 
2 ζ

T 
2 
ζ2 , where it follows from (10) that 

1 = G 

† 
(
−∇ q H + K c G ∇ Q W + F 

′ 
12 ∇ q H d + Gk v G 

T ∇ p H d 

)
, 

2 = −K c G 

T ∇ p H − R 2 ∇ Q W + ∇ φW − F 

′ 
33 (∇ Q ζ1 ) 

T ζ1 

+ F 

′ T 
23 

(∇ p H d + (∇ p ζ1 ) 
T ζ1 

)
+ F 

′ T 
13 

(∇ q H d + (∇ q ζ1 ) 
T ζ1 

)
. 
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Fig. 4. Simulation results for soft continuum manipulator with either EAP actuation or with direct actuation: (a) position with EAP and controller (24) ; (b) velocity; (c) 

control input with (24) ; (d) flux φ; (e) charge Q; (f) torque with (24) ; (g) position with direct actuation and with controller (3) ; (h) velocity; (i) control input with (3) . 
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he elements of F 

′ 
computed as in (11) are given in Appendix B. 

or comparison purposes, ζ1 and ζ2 computed as in (23) are given 

y 

1 = G 

† 
(
−∇ q H + K c G ∇ Q W + F 

′ T 
12 ∇ q H d + Gk v G 

T ∇ p H d 

)
, 

2 = −K c G 

T ∇ p H − R 2 ∇ Q W + ∇ φW + K 1 (∇ Q ζ1 ) 
T ζ1 

+ F 

′ T 
23 ( ∇ p H d ) + F 

′ T 
13 ( ∇ q H d ) . 

inally, the controller (24) yields 

 = 

Q 

C 
+ R 1 

φ

L 
− F 

′ T 
14 

(∇ q H d + (∇ q ζ1 ) 
T ζ1 

)
−F 

′ T 
24 

(∇ p H d + (∇ p ζ1 ) 
T ζ1 

)
− F 

′ T 
34 

(
(∇ Q ζ1 ) 

T ζ1 

)
− K 2 

(
(∇ φζ2 ) 

T ζ2 

)
. 
9 
umerical simulations have been performed in Matlab using an 

DE23 solver with the model parameters m = 1 . 5 ; l = 0 . 15 ; k =
 ; D = 0 . 15 ; R 1 = 30 ; R 2 = 1 . 4 × 10 −3 ; K c = 10 −3 ; C = 0 . 05 ; L =
 . 1 . The tuning parameters for the IDA-PBC controller (3) have 

een chosen empirically as k p = 0 . 75 , k m 

= 2 , and k v = 0 . 5 . The

uning parameters for the controller (24) have been chosen as 

 p = 0 . 75 , k m 

= 2 , k v = 0 . 5 , K 1 = 1 and K 2 = 120 for consistency.

he system response with the controller (3) for the mechanical 

ub-system and with the controller (24) for the complete system 

s shown in Fig. 4 : the position reaches the prescribed equilibrium 

q 1 , q 2 ) = (π/ 6 , 0) with a similar transient for both controllers ap-

lied to the corresponding systems (see Fig. 4 (a) and (g)). The 

ux φ and the charge Q corresponding to the EAP are shown in 

ig. 4 (d) and (e). The control input computed as in (24) corre- 

ponds to a voltage (see Fig. 4 (c)) and its magnitude (i.e., kV range)
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Fig. 5. Simplified schematic of the two-mass-spring system actuated by a DC motor. 
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Fig. 6. Simulation results for the two-mass-spring system with either DC motor actuation

velocity; (c) control input and corresponding torque with (12) ; (d) position with DC moto

direct actuation and with controller (3) ; (h) velocity; (i) control input with (3) . 

10 
s representative of EAP actuators [25] . The resulting torque has 

he same order of magnitude as the control input computed with 

3) for the mechanical sub-system (see Fig. 4 (f) and (i)). Note that 

mploying the controller (3) , which does not account for EAP actu- 

tion, on the complete system (8) yields q 1 ≈ q 2 ≈ 0 , thus the reg- 

lation goal (q 1 , q 2 ) = (π/ 6 , 0) is not achieved (see Appendix B).

he hybrid implementation discussed in Remark 3 with the same 

uning parameters yields similar results, which have been included 

n Appendix B for completeness. 

.3. Two-mass-spring system with DC motor 

The two-mass-spring system presented in Bastos and Franco 

1] is modified here by introducing a DC motor for the actu- 

tion, and by removing the damper in order to comply with 

ssumption 4 . The positions of the masses are q 1 and q 2 , and

he springs have stiffness k , k , and k (see Fig. 5 ). The energy
1 2 3 

 or with direct actuation: (a) position with DC motor and with controller (12) ; (b) 

r and with controller (3) ; (e) velocity; (f) control input with (3) ; (g) position with 
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f the mechanical sub-system is H = � + 

1 
2 m 1 ̇ q 

2 
1 + 

1 
2 m 2 ̇ q 

2 
2 , where 

= 

k 1 q 
2 
1 

2 + 

k 2 ( q 2 −q 1 ) 
2 

2 + 

k 3 q 
2 
2 

2 , the inertia matrix is M = 

[
m 1 0 

0 m 2 

]
, 

nd the input matrix is G 

T = 

[
1 0 

]
. The control goal corresponds 

o moving the second mass to a prescribed position such that 

 

q 1 , q 2 ) = (q ∗
1 
, q ∗

2 
) , where q ∗

1 
depends on q ∗

2 
, that is q ∗

1 
= q ∗

2 
k 2 + k 3 

k 2 
,

ince the system is underactuated. 

Employing the IDA-PBC design (3) yields the control law 

 = k 1 q 1 + k 2 ( q 1 − q 2 ) + 

a 1 m 2 

(
k 2 q 2 − k 2 q 1 + k 3 q 

∗
2 

)
a 3 m 1 

− k v m 1 ˙ q 1 
a 1 

, 

here k v , a 1 , a 3 are tuning parameters, the closed-loop system has 

onstant inertia matrix M d = 

[
a 1 0 

0 a 3 

]
, and the potential energy 

s 

d = 

( 

k 2 
2 

(
q 1 + q ∗2 − q ∗2 

(k 2 + k 3 ) 

k 2 

)2 

+ 

1 

2 
q 2 2 (k 2 + k 3 ) − k 2 q 1 q 2 

) 

m 2 

a 3 

+ 

k 3 m 2 q 
∗2 

2 

2 a 3 
. 

Accounting for the dynamics of a DC motor with negligible iner- 

ia that actuates the first mass through a pinion-rack arrangement, 

he total energy of the system becomes W = H + 

1 
2 L a I 

2 
a , where L a 

s the inductance of the motor and I a is the armature current. The 

omplete system dynamics described with (8) yields 

 11 = F 13 = 0 , F 12 = I, R 22 = 0 , F 23 = G 

K e 

L a 
, R 33 = 

R a 

L 2 a 

, G 0 = 

1 

L a 
, 

here K e and R a are the torque constant of the motor and the 

rmature resistance respectively. The system states are the po- 

ition q = (q 1 , q 2 ) , the momenta p = M ̇ q , and the armature cur-

ent x 1 = I a . The total energy of the closed-loop system is W d =
d + 

1 
2 ζ

T 
0 
ζ0 + 

1 
2 ζ

T 
1 
ζ1 , where it follows from (27) that 

0 = M 

−1 p + �∇ q �d , 

1 = G 

† 
(
−∇ q � + F 

′ 
12 

(∇ q �d + (∇ q ζ0 ) 
T ζ0 

))
+ G 

† 
(
+ 

K e 

L a 
G ∇ I W + Gk v G 

T 
(
(∇ p ζ0 ) 

T ζ0 

))
. 

he elements of F 

′ 
computed as in (11) and (28) are given in Ap-

endix C. The controller (12) that achieves potential energy shap- 

ng according to Proposition 5 (see Section 5 ) is 

 = K e ˙ q 1 + R a I a − L a F 

′ T 
13 

(∇ q H d + (∇ q ζ0 ) 
T ζ0 + (∇ q ζ1 ) 

T ζ1 

)
− L a F 

′ T 
23 

(∇ p H d + (∇ p ζ0 ) 
T ζ0 + (∇ p ζ1 ) 

T ζ1 

)
− K 1 L a 

(
(∇ I a ζ1 ) 

T ζ1 

)
, 

here the potential energy �d is given above with a 3 = m 

2 
2 

and 

 1 = (1 + k m 

) m 

2 
1 
, and k m 

is a tuning parameter. 

Numerical simulations have been performed in Matlab using an 

DE23 solver with the model parameters m 1 = 1 ; m 2 = 3 ; k 1 =
 ; k 2 = 3 ; k 3 = 1 ; R a = 10 ; K e = 5 ; L a = 10 −2 . The tuning parame-

ers for the controller (12) corresponding to the complete system 

ave been chosen empirically as k m 

= 0 . 01 and k v = 2 , while the

arameters for the controller (3) corresponding to the mechanical 

ub-system have been set to a 1 = (1 + k m 

) m 

2 
1 

= 1 . 01 , a 3 = m 

2 
2 

= 9 ,

nd k v = 2 for consistency. The system response with both con- 

rollers for the corresponding models is shown in Fig. 6 : employing 

he controller (12) for the complete system the position reaches 

he prescribed equilibrium (q 1 , q 2 ) = (0 . 5 , 0 . 67) in a smooth fash-

on (see Fig. 6 (a)), and the transient response is similar to that of 

he mechanical sub-system with the IDA-PBC controller (3) (see 

ig. 6 (g)). Conversely, employing the controller (3) for the complete 

ystem (8) results in a large steady-state error (see Fig. 6 (d)), since 
11 
n this case the actuator dynamics is not accounted for in the con- 

roller design. Comparing Fig. 6 (c) and (i) shows that the force pro- 

uced by the motor is comparable to the control input computed 

s in (3) for the system with direct actuation. 

. Conclusion 

This paper has presented some new results on the energy shap- 

ng control for a class of underactuated mechanical systems with 

igh-order actuator dynamics. A controller design procedure which 

reserves the port-Hamiltonian structure of the closed-loop sys- 

em and builds upon the IDA-PBC methodology in a modular fash- 

on has been outlined. Two alternative controllers that achieve po- 

ential and kinetic energy shaping as well as damping assignment 

ave been detailed. In addition, a variation of the controller de- 

ign has been discussed for a narrower class of systems, which is 

haracterized by constant and diagonal inertia matrix, resulting in 

ifferent stability conditions. 

The simulation results demonstrate that the proposed con- 

rollers effectively achieve the prescribed regulation goal for three 

ifferent underactuated mechanical systems with corresponding 

ctuator dynamics. In addition, the controllers employ the same 

otential and kinetic energy shaping and damping assignment as 

he traditional IDA-PBC for mechanical systems with direct actu- 

tion, thus resulting in a similar transient. Conversely, employing 

he traditional IDA-PBC controller alone, which neglects the actu- 

tor dynamics, can result in degraded performance. Future work 

ill aim to relax the initial assumptions and to extend the results 

o multiple interconnected underactuated mechanical systems. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Enrico Franco: Conceptualization, Formal analysis, Investiga- 

ion, Software, Visualization, Writing – original draft. Alessandro 

stolfi: Conceptualization, Formal analysis, Investigation, Writing –

eview & editing. 

cknowledgement 

This research was supported by the Engineering and Physical 

ciences Research Council (grant agreement nos. EP/W004224/1, 

P/R511547/1, and EP/W005557/1), the European Union’s Horizon 

020 Research and Innovation Programme under grant agreement 

o. 739551 (KIOS CoE), and the Italian Ministry for Research (2017 

rogram for Research Projects of National Interest under Grant 

017YKXYXJ, and 2020 Program for Research Projects of National 

nterest under Grant 2020RTWES4). 

ppendix A 

Design parameters of the Acrobot system with direct actuation. 

∇ q 1 �d = −k 0 sin ( q 1 − μq 2 ) − b 1 sin ( q 1 ) −b 2 sin ( q 1 + q 2 ) 

− b 3 sin ( q 1 + 2 q 2 ) − b 4 sin ( q 1 − q 2 ) + k u (q 1 − μq 2 ) , 

∇ q 2 �d = k 0 μ sin ( q 1 − μq 2 ) − b 2 sin ( q 1 + q 2 ) 

−2 b 3 sin ( q 1 + 2 q 2 ) + b 4 sin ( q 1 − q 2 ) −k u (q 1 − μq 2 ) , 

M d = 

[
k 1 k 2 
k 2 k 3 

]
, b 1 = 

g 

2 k 2 

(
c 3 c 4 ± 2 c 4 

√ 

c 1 c 2 
)
, 
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Fig. B1. Simulation results for soft continuum manipulator with EAP actuation using the IDA-PBC controller defined as in (3) : (a) position; (b) velocity; (c) control input in 

[V]. 

Fig. B2. Simulation results for soft continuum manipulator with EAP actuation using the hybrid implementation discussed in Remark 3 : (a) position; (b) velocity; (c) control 

input; (d) flux φ; (e) charge Q; (f) torque. 

s
A

n

b 2 = 

gμ

2 k 2 (μ + 1) 

(
c 3 c 4 ± 2 c 5 

√ 

c 1 c 2 
)
, 

b 3 = 

gμc 3 c 5 
2 k 2 (μ + 2) 

, b 4 = 

gμc 3 c 4 
2 k 2 (μ − 1) 

, �d = k 1 k 3 − k 2 2 . 

Elements of F 

′ 
computed as in (11) and (22) for the Acrobot 

ystem with rotary SEA. 

F 

′ 
12 = M 

−1 M d , F 

′ 
13 = −

(
F 

′ 
12 ∇ p ζ1 

)
( ∇ θ ζ1 ) 

−1 
, 

F 

′ 
14 = −

(
F 

′ 
12 ∇ p ζ2 + F 

′ 
13 ∇ θ ζ2 

)
( ∇ ω ζ2 ) 

−1 
, F 

′ 
22 = −Gk v G 

T , 

F 

′ 
23 = G 

(
1 + G 

† F 

′ T 
12 ∇ q ζ1 − G 

† F 

′ 
22 ∇ p ζ1 

)
( ∇ θ ζ1 ) 

−1 

+ G 

⊥ T (G 

�F 

′ T 
12 ∇ q ζ1 − G 

�F 

′ 
22 ∇ p ζ1 

)
( ∇ θ ζ1 ) 

−1 
, 
12 
F 

′ 
24 = 

(
F 

′ T 
12 ∇ q ζ2 − F 

′ 
22 ∇ p ζ2 − F 

′ 
23 ∇ θ ζ2 

)
( ∇ ω ζ2 ) 

−1 
, 

F 

′ 
34 = 

(
1 + F 

′ T 
13 ∇ q ζ2 + F 

′ T 
23 ∇ p ζ2 − F 

′ 
33 ∇ θ ζ2 

)
( ∇ ω ζ2 ) 

−1 
, 

F 

′ 
33 = −K 1 + 

(
F 

′ T 
13 ∇ q ζ1 + F 

′ T 
23 ∇ p ζ1 

)
( ∇ θ ζ1 ) 

−1 
, 

F 

′ 
44 = −K 2 + 

(
F 

′ T 
14 ∇ q ζ2 + F 

′ T 
24 ∇ p ζ2 + F 

′ T 
34 ∇ θ ζ2 

)
( ∇ ω ζ2 ) 

−1 
. 

ppendix B 

Elements of F 

′ 
computed as in (11) for the soft continuum ma- 

ipulator with EAP actuation. 

F 

′ 
22 = −k m 

D − Gk v G 

T , F 

′ 
13 = −

(
F 

′ 
12 ∇ p ζ1 

)
( ∇ Q ζ1 ) 

−1 
, 

F 

′ 
14 = −

(
F 

′ 
12 ∇ p ζ2 + F 

′ 
13 ∇ Q ζ2 

)(∇ φζ2 

)−1 
, F 

′ 
33 = −K 1 , 
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E

F

(  

c

a

a  

a

t

A

s

R

 

[

 

[

[

[

[

[

[

[  

[

F 

′ 
44 = −K 2 , F 

′ 
23 = G 

(
1 + G 

† F 

′ T 
12 ∇ q ζ1 − G 

† F 

′ 
22 ∇ p ζ1 

)
( ∇ Q ζ1 ) 

−1 

+ G 

⊥ T (G 

�F 

′ T 
12 ∇ q ζ1 − G 

�F 

′ 
22 ∇ p ζ1 

)
( ∇ Q ζ1 ) 

−1 
, 

F 

′ 
24 = 

(
F 

′ T 
12 ∇ q ζ2 − F 

′ 
22 ∇ p ζ2 − F 

′ 
23 ∇ Q ζ2 

)(∇ φζ2 

)−1 
, 

F 

′ 
34 = 

(
1 + F 

′ T 
13 ∇ q ζ2 + F 

′ T 
23 ∇ p ζ2 − F 

′ 
33 ∇ Q ζ2 

)(∇ φζ2 

)−1 
. 

Elements on the diagonal of F 

′ 
defined as in (22) . 

F 

′ 
33 = −K 1 + 

(
F 

′ T 
13 ∇ q ζ1 + F 

′ T 
23 ∇ p ζ1 

)
( ∇ Q ζ1 ) 

−1 
, 

F 

′ 
44 = −K 2 + 

(
F 

′ T 
14 ∇ q ζ2 + F 

′ T 
24 ∇ p ζ2 + F 

′ T 
34 ∇ Q ζ2 

)(∇ φζ2 

)−1 
. 

Simulation results for the soft continuum manipulator with 

AP actuation using the IDA-PBC controller (3) are shown in 

ig. B1 . Note that the position does not reach the prescribed value 

q 1 , q 2 ) = (π/ 6 , 0) since the control input (i.e., in Volt) is insuffi-

ient to activate the EAP. 

Simulation results for the soft continuum manipulator with EAP 

ctuation using the hybrid implementation discussed in Remark 3 

re shown in Fig. B2 : ζ1 , ζ2 are defined as in (10) , F 

′ 
44 as in (22) ,

nd the remaining elements of F 

′ 
as in (11) . For consistency, the 

uning parameters are the same as those employed in Section 6.2 . 

ppendix C 

Elements of F 

′ 
computed as in (11) and (28) for the two-mass- 

pring system with DC motor actuation. 

�2 = k m 

GG 

T (∇ 

2 
q �d ) , F 

′ 
12 = 

(
I + k m 

GG 

T 
)
M, F 

′ 
22 = −Gk v G 

T , 

F 

′ 
13 = 

(
−F 

′ 
12 ∇ p ζ1 + F 

′ 
11 ∇ q ζ1 

)
( ∇ I a ζ1 ) 

−1 
, 

F 

′ 
23 = G 

(
1 + G 

† F 

′ T 
12 ∇ q ζ1 − G 

† F 

′ 
22 ∇ p ζ1 

)
( ∇ I a ζ1 ) 

−1 

+ G 

⊥ T (G 

�F 

′ T 
12 ∇ q ζ1 − G 

�F 

′ 
22 ∇ p ζ1 

)
( ∇ I a ζ1 ) 

−1 
, F 

′ 
33 = −K 1 . 
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