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Abstract

Abstract. The article reviews significant advances in networked signal and information process-

ing, which have enabled in the last 25 years extending decision making and inference, optimiza-

tion, control, and learning to the increasingly ubiquitous environments of distributed agents. As

these interacting agents cooperate, new collective behaviors emerge from local decisions and ac-

tions. Moreover, and significantly, theory and applications show that networked agents, through

cooperation and sharing, are able to match the performance of cloud or federated solutions, while

offering the potential for improved privacy, increasing resilience, and saving resources.1

1 Introduction

Since its beginnings, throughout the past century and still dominant at the turn of the 21st

century, the signal and information processing (SIP) prevailing paradigm has been to process

signals and information by stand-alone systems or central computing units, with no cooperation

or interaction among them, see left of Fig. 1. This focus has led to tremendous progress in a wide

range of problems in speech and image processing, control and guidance, estimation and filtering

theories, communications theory, and array processing, with enormous impact in telecommu-

nication and wireless, audio, medical imaging, multimedia, radar, and other application areas.

In the nearly 25 years since the turn of the century, each of these areas has progressed rapidly,

in large part due to increases in computational resources along with the availability of data,

giving rise to a variety of advanced data-driven processing tools. At the end of the century,

we also witnessed significant technological progress from massive layouts of fiber at the back-

bone, to successes in high speed wireless and wifi deployments, to chip advances combining in a

single miniature inexpensive platform functionalities like sensing, storage, communication, and

computing, and to breakthroughs in network protocols and software. This progress has led for

example to the launching of hundreds, soon thousands and millions, of inexpensive sensing de-

vices (we will call here agents) that sense, compute, communicate and are networked, ushering a

paradigm shift in SIP. Initially, the agents observed data independently of one another and sim-

ply forwarded their raw data to the cloud, with no local processing in a centralized architecture,

see Fig. 1. Parallel architectures soon emerged where agents started processing their local data,

transferring only their (local) inferences to a fusion center. The fusion center aggregated the

1A longer version of this manuscript, with examples and illustrative applications, is available on arXiv:2210.13767.
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Non-cooperative Centralized or parallel Federated Networked or decentralized

Figure 1: Taxonomy of networked multi-agent systems.

locally processed data and orchestrated the computations that occurred in parallel at the indi-

vidual agents. While traditionally computation and communication occurred in a synchronous

fashion, synchrony requirements were relaxed, like with federated learning architectures, third

from left in Fig. 1. But as a result of scenarios with abundant data available at dispersed net-

worked locations, such as sensor networks that monitor large geographical regions, or robotic

swarms that collaborate over a common task, or social networks of many interacting agents,

a new critical trend started to materialize. This led to decentralization and democratization

of technology and, towards the middle and end of the first decade of this century, signal and

information processing moved definitely from parallel, federated, or edge architectures,2 to a

distributed, decentralized, or networked paradigm. The agents sense and process their own data

and then cooperate with other agents. They transmit to and exchange information with agents

in their vicinity. It marked the appearance of networked elementary processing units, with each

unit collecting and processing data and sharing their information with immediate neighbors.

Individual agents are now capable of local inference decisions and limited actions. The coupling

among the agents gives rise to powerful network structures that open up vast opportunities for

the solution of more complex problems by tapping into the power of the group. Examples of

such networked systems are plentiful, including instrumented critical infrastructures like water,

gas, financial networks, smart grids, as well as networked mobile devices, swarms of drones, au-

tonomous vehicles, or populations of individuals. The interconnectedness of the agents within

the network allows for their cooperation to rise from local to global coherent decision and ac-

tion. To study, understand, and steer the occurrence of these global behaviors adds new layers

of complexity. More advanced analytical tools became necessary to combine local processing

with cooperation among the agents. This ushered the design of new processing algorithms,

new methods to derive performance guarantees and assess their quality, to examine the effect

of agents coupling on network stability, to endow agents with adaptation and learning abilities

2We interpret an edge architecture as a layered or hierarchical federated architecture.
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and with the capacity to handle privacy, and to enable such networks to contribute to multiple

tasks at once. Distributed , decentralized, or networked architectures achieve aggregation and

coordination through device-to-device or peer-to-peer interactions. Computation is no longer

at the cloud or like in federated or edge computing at a fusion center, but fully distributed at

the device level. Synchrony requirements need not be assumed. Networked architectures may

be viewed as a generalization of centralized and federated configurations, allowing us to recover

federated algorithms from distributed or decentralized ones by employing a star-topology.

Networked distributed processing architectures are more robust—if an edge or an agent

fails, the entire network can continue to process data and deliver inference decisions. There is

no need for costly communications with the cloud or a remote edge server. Furthermore, while

the exchange of processed iterates might still leak some private information, recent works have

demonstrated that networked architectures can be designed to offer improved privacy due to

their decentralized nature. Even more importantly, distributed networked architectures can be

shown to match the performance of centralized solutions.

This tutorial article surveys the recent history of networked signal and information processing

including consensus and diffusion strategies for regression problems [1–5] developed in the 2000s,

detection and parameter estimation over networks [6–9] and their performance guarantees [8–11],

distributed optimization [12–21], learning, and adaptation [20–22]. It provides a comprehensive

coverage of topics and references. We will bridge the gap by unifying under a common umbrella

more recent applications to distributed machine learning including multitask learning [23] and

nonconvex optimization [24, 25], design variants under different operating scenarios such as

asynchronous algorithms [26] and connections to alternative architectures such as federated

learning.

2 Historical remarks

There has been extensive work on distributed techniques for information and signal processing

over networks. Many optimal inference problems adopt a quadratic optimization cost whose

solution, under linear models and Gaussian noise, is a linear statistic of the data. With peer-to-

peer communication among sensors, the question becomes how to compute the global average

of the local statistics only through cooperation among the agents. Departing from centralized

architectures, the solution built on the consensus strategy for distributed averaging, with no need

for a fusion center to collect the dispersed data for processing. Consensus was initially proposed

by DeGroot [27] to enable a group of agents to reach agreement by pooling their information

and to converge [27, 28] to an average estimate solely by interaction among neighbors. Many
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subsequent works were devoted to characterizing consensus’ convergence behavior, the role of

the graph topology, random selection of neighbors, and several other aspects. Some sample

works include [5,29,30], while useful overviews appear in [7,22] with many additional references.

Several works in the literature proposed extensions of the original consensus construction in

order to more generally minimize aggregate cost functions, such as mean-square-error costs, or

to solve distributed estimation problems of the least-squares or Kalman filtering type. These

extensions involve constructions with gradient-descent type updates. Among these works we

may mention [29, 31]. While an early version of the consensus gradient-based algorithm for

distributed estimation and optimization already appears in [29], convergence results were limited

to the asymptotic regime and there was no understanding of the performance of the algorithm, its

actual convergence rate, and the influence of data, topology, quantization, noise, and asynchrony

on behavior. These considerations are of great significance when designing practical, data-driven

systems and they attracted the attention of the signal processing community after the turn of

the century. Moreover, some of the earlier investigations on consensus implementations involved

separate time scales (fast communication and consensus iterations among agents, slow data

collection), which can be a challenge for streaming or online data.

Online consensus implementations where data is collected at every consensus step, appeared

in the works by [5, 8, 12, 32, 33] and others. Using decaying step-sizes, these works established

the ability of the algorithms to converge. In particular, the work [8] introduced the so-called

consensus+innovations variant, which responds to streaming data and established several per-

formance measures in terms of convergence rate, and the effect of topology, quantization, and

noisy conditions and other factors—see also [33]. In parallel with these developments, online

distributed algorithms of the diffusion type were introduced by [3, 34, 35] to enable continuous

adaptation and learning by networked agents under constant step-size conditions. The diffusion

strategies modified the consensus update in order to incorporate symmetry, which was shown

to enlarge the stability range of the network and to enhance its performance, even under decay-

ing step-sizes—see [36] and the overviews [20, 22]. The diffusion structure was used in several

subsequent works for distributed optimization such as [14,37,38] and other works.

In all these and related works on online distributed inference, the goal is for every agent in

the network to converge to an estimate of the unknown by relying exclusively on local interac-

tions with its neighbors. Important questions that arise in this context include: 1) convergence:

do the distributed inference algorithms converge and if so in what sense; 2) agreement : do the

agents reach a consensus on their inferences; 3) distributed versus centralized : how good is the
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distributed inference solution at each agent when compared with the centralized inference ob-

tained by a fusion center, in other words are the distributed inference sequences consistent, and

asymptotically unbiased, efficient, and normal; and 4) rate of convergence: what is the rate at

which the distributed inference at each agent converges. These questions require very different

approaches than the methods used in the “consensus or averaging only” solution from earlier

works. Solutions that emerged of the consensus and diffusion type combine at each iteration

1) an aggregation step that fuses the current inference statistic at each agent with the states of

their neighbors, with 2) a local update driven by the new observation at the agent. This generic

framework, of which there are several variations, is very different from the standard consensus

where in each time step only local averaging of the neighbors’ states occurs, and no observations

are processed, and from other distributed inference algorithms with multiple time-scales, where

between-measurement updates involve a large number of consensus steps (theoretically, an infi-

nite number of steps). The classes of successful distributed inference algorithms that emerged

add only to the identifiability condition of the centralized model that the network be connected

on average. The results for these algorithms are also shown to hold under broad conditions like

agents’ communication channel intermittent failures, asynchronous and random communication

protocols, and quantized communication (limited bandwidth), making their application realistic

when 1) a large number of agents are involved (bound to fail at random times), 2) packet losses

in wireless digital communications cause links to fail intermittently, 3) agents communicate

asynchronously and 4) the agents may be resource constrained and have a limited bit budget

for communication. Furthermore, these distributed inference algorithms make no distributional

assumptions on the agents and link failures that can be spatially correlated. Readers may refer

to the overviews [7, 20,22] and the many references therein.

There have of course been many other useful contributions to the theory and practice of net-

worked information and signal processing, with many other variations and extensions. However,

space limitations prevent us from elaborating further. Readers can refer to the overviews [7,22].

Among such extensions, we may mention extensive works on distributed Kalman filtering

by [39–41] and others. Other parts of this manuscript refer to other classes of distributed

algorithms, such as constructions of the primal and primal-dual type, and the corresponding

references. The presentation actually presents a unified view of a large family of distributed

implementations, including consensus and diffusion, for online inference by networked agents.

Notation. All vectors are column vectors. We employ bold font to emphasize random

variables, and regular font for their realizations as well as deterministic quantities. Upper case
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letters denote matrices, while Greek letters denote scalar variables. We will employ k to index

nodes or agents in the network, and i to index time. In this way, xk,i will denote the data

available to agent k at time i, modeled as a random variable. When discussing supervised learn-

ing problems, xk,i ≜ col{hk,i,γk,i} will contain both the feature vector hk,i and the associated

label γk,i.

3 Unified view

In the networked signal and information processing context, K agents are nodes of a connected

network, whose graph is described by a weighted adjacency matrix C ∈ RK×K , where cℓk ≜ [C]ℓk

denotes the strength of the link from node ℓ to node k. We denote by Nk the neighbors of node k,

i.e., those other agents with which k communicates directly and cooperates. With undirected

graphs, the graph is also described by its (weighted) Laplacian matrix, L = diag {C1} − C.

Here, 1 denotes the vector consisting of all ones of appropriate size. We illustrate an example

of a graph and its adjacency matrix in Fig. 2. We further associate with each node a local

model wk ∈ RM , which can correspond to unknown parameters describing a random field,

or parameterizing a channel or filter, or representing a hyperplane or a neural network. For

convenience, we define network-level quantities, which we denote through calligraphic letters;

they aggregate quantities from across the network. In this manner, we can write compactly

W ≜ col {wk}. This notation allows us to highlight a useful relation between the adjacency

matrix C, and the Laplacian matrix L, namely that for undirected graphs:

K∑
k=1

K∑
ℓ=1

cℓk∥wk − wℓ∥2 = WT LW (1)

where we defined L ≜ L ⊗ IM . Relation (1) captures through the variational operator L the

weighted variation of the local models wk across the network, and is fundamental when deriving

algorithms for distributed processing over networks, as we illustrate further below.

Figure 2: Schematic of a general network and its adjacency matrix.
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3.1 Unification through Stochastic Optimization

Suppose we would like each agent in the network to estimate the unknown parameter wo
k used

to generate local observations through the linear model

γk,i = h
T
k,iw

o
k + vk,i (2)

In a parameter estimation framework, hk,i denotes the local known observation model, vk,i

denotes noise, and γk,i are the observations. In a machine learning interpretation, during

training, we learn the weights or model wo
k in (2) from known pairs of input data hk,i and target

values γk,i. Common other terminology refers to hk,i as regressor, feature vector, independent

variables, or inputs. We may then formulate local estimation or learning problems based on the

mean squared error (MSE) risk, Jk(wk) ≜ E∥γk,i − h
T
k,iwk∥2, and pursue:

wo
k ≜ arg min

wk∈RM
Jk(wk) or equivalently min

W

K∑
k=1

Jk(wk) (3)

If, however, we are provided with prior information that the parameters wo
k vary smoothly as

defined by the variational relation (1) over a graph with Laplacian L, we may instead pursue:

min
W

{
K∑

k=1

Jk(wk) +
η

2
WT LW

}
(4)

The regularization term η
2 WT LW couples the independent objectives Jk(wk) and encourages

parameterizations wk that vary smoothly over the graph. It can be verified that the coupled

optimization problem (4) corresponds to a maximum aposteriori estimate of the models wo
k in

the linear model (2) under a Gaussian Markov random field prior. Motivated by applications

in wireless sensor networks, least-squares problems of this form were the focus of many of the

early works on distributed processing [3–5,9, 42].

More generally, with each agent, we associate a local objective function Jk(wk) = EQ(wk;xk,i),

where xk,i refers to the data that is available to agent k and Q(wk;xk,i) is a loss function. Set-

ting Q(wk;xk,i) ≜ ∥γk,i − hT
k,iwk∥2 recovers the MSE loss leading to (4). We consider the

general class of coupled optimization problems:

min
W∈RKM

{
K∑

k=1

Jk(wk) + ηR (W)

}
, subject to W ∈ Ω (5)

The coupling regularizer R (W) and constraint W ∈ Ω encode relationships between local ob-

jectives and encourages local cooperation. Letting R (W) = 1
2 WT LW and Ω = RKM recovers
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the smoothed aggregate learning problem (4). While decentralized algorithms for learning and

optimization can be developed for general asymmetric adjacency matrices C ̸= CT [22, 43], for

the sake of simplicity, we will focus on symmetric adjacency matrices in this section. We will

comment on the implications of employing asymmetric combination policies in Sec. 4.6.

3.1.1 Stochastic Gradient Approximations

A common theme in many networked data processing applications is the limited access to the

cost function Jk(·) and its gradient ∇Jk(·), due to the fact that the cost Jk(·) is defined as

the expected value of the loss Qk(·;xk,i) and xk,i follows some unknown distribution. As a

result, gradient descent algorithms that rely on the use of the true gradient ∇Jk(·), are replaced

by stochastic gradient algorithms, which employ an approximated gradient denoted by ∇̂Jk(·).

The most common construction for a stochastic gradient approximation is to employ ∇̂Jk(·) ≜

∇Q(·;xk,i), where xk,i denotes a single sample of the variable xk obtained at time i. However,

other constructions are possible depending on the setting. For example, we may envision a

scenario where agent k is provided with several independent samples {xk,i,b}Bk

b=1 at time i,

allowing for the mini-batch construction ∇̂Jk(·) ≜ 1
Bk

∑Bk

b=1 ∇Q(·;xk,i,b). Alternatively, one

may be faced with a situation where agents may be able to provide a gradient approximation only

with some probability πk, either due to lack of data, slow or delayed updates, or computational

failure. Such asynchronous behavior can be modeled via [26]:

∇̂Jk(·) =


1
πk

∇Q(·;xk,i), with prob. πk,

0, with prob. 1− πk.

(6)

As a final example of commonly used constructions for stochastic gradient approximations,

we note perturbed stochastic gradients of the form ∇̂Jk(·) = ∇Q(·;xk,i) + rk,i, where rk,i

denotes some additional zero-mean noise. Examples of settings where additional noise is added

to gradient approximations are plentiful, and include noise added due to quantization, noise

used to ensure differential privacy, or noise used to escape from saddle-points in nonconvex

environments [24]. As we will see in the learning guarantees that we survey further ahead, the

performance of the algorithms based on stochastic gradient approximations will in some way

depend on the quality of ∇̂Jk(·). Most commonly this is quantified through bounds on its

variance.

Condition 1. (Variance of the Gradient Approximation). The gradient approximation

∇̂Jk(wk,i−1) is required to be unbiased with bounded variance as follows:
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E
{
∇̂Jk(wk,i−1)|wk,i−1

}
=∇Jk(wk,i−1) (7)

E

{∥∥∥∇̂Jk(wk,i−1)−∇Jk(wk,i−1)
∥∥∥2|wk,i−1

}
≤ β2

k∥wo
k −wk,i−1 ∥2 + σ2

k (8)

Here, β2
k, σ

2
k denote non-negative constants, and wo

k denotes an arbitrary reference point, most

commonly the minimizing argument from (3).

As already shown in [38], the zero-mean condition (7) can be verified to hold for many popular

constructions, including the constructions listed above. In (7) and (8), we condition on the cur-

rent iterate wk,i−1 and take expectation with respect to the remaining variability in generating

the gradient approximation ∇̂Jk(wk,i−1), which is the data available to agent k at time i. For

example, in the case of ordinary stochastic gradient descent ∇̂Jk(·) ≜ ∇Q(·;xk,i), this corre-

sponds to xk,i, which is generally assumed to be independent of wk,i−1. Variance bounds of the

form (8), on the other hand, need to be verified for specific choices of loss functions Q(·;xk),

distributions of the data xk,i, and gradient approximations ∇̂Jk(·). Nevertheless, the key take-

away is that conditions of this form hold for most processing and learning problems of interest.

The resulting constants β2
k, σ

2
k quantify the quality of the utilized gradient approximation. We

list in Table 1 the relevant quantities for the mean-square error and logistic loss as examples. It

is also useful to note that, given the constants β2
k, σ

2
k for an ordinary gradient approximation,

such as those listed in Table 1, one can immediately recover those of the variants listed above.

This is illustrated in Table 2.

Loss Gradient Approximation β2
k (relative) σ2

k (absolute)

1
2∥γk,i − hT

k,iw∥2 hk,i

(
γk,i − hT

k,iw
)

E ∥Rh − hkh
T
k ∥2 σ2

vTr(Rh)

ln
(
1 + e−γk,ih

T
k,iw
)
+ ρ

2∥w∥
2 γk,ihk,i

(
1

1+e
γk,ih

T
k,i

w

)
+ ρw 0 Tr(Rh)

Table 1: Constants in gradient variance bounds for popular loss functions for supervised learning problems
with xk ≜ col{hk,γk} [22]. The quantities σ2

v and Rh denote the data statistics Ev2k,i and Ehk,ih
T
k,i

respectively.
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∇̂Jk(wk,i−1) unbiased? β2
k (relative) σ2

k (absolute)

∇Q(wk,i−1,xk,i) yes β2
k,ord σ2

k,ord

1
B

∑B
b=1∇Q(wk,i−1,xk,i,b) yes

β2
k,ord

B

σ2
k,ord

B

Asynchronous as in (6) yes
β2
k,ord

πk
+ 1−πk

πk
δ2k

σ2
k,ord

πk

∇̂Jk(·) = ∇Q(·;xk,i) + rk,i yes β2
k,ord σ2

k,ord + σ2
r,k

Table 2: The quantities β2
k,ord, σ

2
k,ord correspond to the gradient noise constants of the “ordinary” gradient

approximation ∇̂Jk(wk,i−1) = ∇Q(wk,i−1,xk,i), and can be read from Table 1. Constants of the variants
are provided in terms of the baseline quantities β2

k,ord, σ
2
k,ord. The parameter δk corresponds to the Lipschitz

constant of the gradient ∇Jk(·).

We finally note that the current exposition mainly focuses on methods that assume first-order

(i.e., gradient type) information is available or accessible in the construction of the distributed

algorithms. Due to intractability of gradient computation in certain applications (for instance,

in scenarios where the cost model is not directly available but perhaps may be computed at

desired query points via noisy simulations), one can resort to zeroth-order approaches. In this

case, noisy and biased gradient estimates obtained from measuring function values using various

difference approximations are used in the algorithm design in lieu of exact or unbiased gradients

as assumed in the first-order setting — see [38,44] and the references therein for more details.

3.1.2 Task Relationships

As a separate consideration from the choice of the risk functions Jk(wk), one may consider var-

ious frameworks for the relation between individual models wk, also referred to as tasks. In the

absence of coupling regularization or constraints, i.e., in the case the regularizer R
(
{wk}Kk=1

)
= 0

and Ω = RKM , optimization over the aggregate cost
∑K

k=1 Jk(wk) decouples into independent

problems Jk(wk) over local models wk. These can be pursued in a non-cooperative manner.

Perhaps the most commonly studied framework for distributed optimization is that of con-

sensus optimization, where individual models are required to be common, i.e., wk = w, giving

rise to:

min
w

K∑
k=1

Jk(w) (9)

Networked algorithms for (9) can be developed from (5) in several ways, giving rise to different

families of algorithms for distributed optimization [38], as we proceed to show.

Penalty-based approaches: We may encourage consensus by penalizing pairwise differences

between connected agents, i.e., R (W) = 1
2

∑K
k=1

∑
ℓ∈Nk

cℓk∥wk − wℓ∥2, resulting in:
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min
{wk}K

k=1

{
K∑

k=1

Jk(wk) +
η

2

K∑
k=1

∑
ℓ∈Nk

cℓk∥wk − wℓ∥2
}

⇐⇒ min
W

{
J (W) +

η

2
WT LW

}
(10)

where in addition to making use of (5), we defined J (W) ≜
∑K

k=1 Jk(wk). It can be verified

that, as long as the graph described by C is connected, 1
2

∑K
k=1

∑
ℓ∈Nk

cℓk∥wk − wℓ∥2 = 0, if

and only if, wk = w for all k, and hence (10) is equivalent to (9) in the limit as η → ∞. At

the same time, this fact implies that for finite η, problems (10) and (9) will in general have

distinct solutions. It is for this reason that penalty-based methods generally operate with large

choices of the penalty parameter η, exhibiting some small bias relative to the exact consensus

problem (9), unless η → ∞. Applying stochastic gradient descent to (10) results in:

Wi = (I − µηL)Wi−1 −µ∇̂J (Wi−1) (11)

If we set A ≜ I − µηL and return to node-level quantities, we recover the recursion:

wk,i =
∑
ℓ∈Nk

aℓkwℓ,i−1 −µ∇̂Jk(wk,i−1) (12)

which corresponds to the decentralized (stochastic) gradient descent algorithm [12, 29] of the

“consensus + innovation” type [8]. If we instead, following [45], appeal to an incremental gra-

dient descent argument, where we first take a step relative to the cost J (W), and subsequently

descend along the penalty η
2 WT LW, we obtain the adapt-then-combine (ATC) diffusion algo-

rithm [3,21]:

ψk,i = wk,i−1 −µ∇̂Jk(wk,i−1) (13)

wk,i =
∑
ℓ∈Nk

aℓkψℓ,i (14)

Reversing the order in the argument yields instead the combine-then-adapt (CTA) variation of

diffusion [3, 21].

Imperfect and Noisy Communication: In the exposition so far, we have assumed for sim-

plicity that the inter-agent communication is perfect. In practice, we may have random packet

dropouts or link failures and distortions in the data exchanged by agents due to channel noise,

quantization or other forms of compression. There has been extensive research on consensus

and diffusion procedures that deal with time-varying or stochastic Laplacian matrices to model

issues such as link failures, whereas, in other instances, controlled randomization in the commu-

nication has been used via random Laplacians as a tool to improve communication efficiency,
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see [5,26,29,30] for a sample of the relevant literature. On the other hand, noise in the observa-

tions or communication, either injected as additive communication noise or through quantization

and other forms of compression are handled by carefully designing the mixing parameters, the

aℓk’s in (12)-(14), and building on tools from stochastic approximation as in Section 3.1.1 [8,26]

or through the use of probabilistic ideas such as dithering [33]. Most of the development in

the current article will continue to hold for such imperfect inter-agent communication through

appropriate modifications as discussed above.

Primal-dual approaches: As an alternative to penalty-based approaches, one may wish to

enforce exact consensus by introducing constraints, such as [38]:

min
{wk}K

k=1

K∑
k=1

Jk(wk) s.t.

K∑
k=1

∑
ℓ∈Nk

cℓk∥wk − wℓ∥2 = 0 (15)

In contrast to penalty-based formulations, constrained formulations of the consensus problem

can no longer be pursued using pure gradient-based algorithms. Instead, constraints are most

commonly enforced through dual arguments such as ADMM, dual averaging or the augmented

Lagrangian. Early algorithms involving primal-dual arguments for exact consensus optimization,

such as [13,16,46,47], involve the propagation and communication of dual variables in addition

to weight vectors wk. ADMM-based algorithms [13, 47] generally involve two timescales, where

an auxiliary optimization problem is solved in between every outer iteration. While these

methods exhibit appealing convergence properties, their implementation is only practical in

situations where the inner optimization problem has a specific structure that allows it to be

solved efficiently or in closed-form.

Single time-scale primal-dual algorithms [16, 46] instead employ first-order approxiations at

every step thus avoiding the need to solve a costly inner optimization problem. As a represen-

tative example, we list here the stochastic first-order augmented Lagrangian strategy from [46]:

Wi = (I − µηL)Wi−1 −µ∇̂J (Wi−1)− µηBTλi−1 (16)

λi = λi−1 + µηBWi−1 (17)

where L = BTB. Examination of (16) reveals that the augmented Lagrangian based strategy

corrects the “consensus + innovation” algorithm (12) by adding the additional term −µηBTλi−1,

which compensates the bias induced by the penalty-based formulation (10). While effective

at ensuring exact consensus, the propagation of dual variables is associated with additional
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overhead in terms of both computation and communication. Conveniently, dual variables can

frequently be eliminated and replaced by a momentum-like term. To illustrate this point, let

us consider a variant of (16)–(17), where the primal and dual updates are performed in an

incremental manner, allowing the dual update to make use of the most recent primal variable

Wi, rather than Wi−1. This results in:

Wi = (I − µηL)Wi−1 −µ∇̂J (Wi−1)− µηBTλi−1 (18)

λi = λi−1 + µηBWi (19)

After setting η = 1
µ and following [48], we can verify that (18)–(19) is equivalent to:

Wi = 2 (I − L)Wi−1 − (I − L)Wi−2 −µ
(
∇̂J (Wi−1)− ∇̂J (Wi−2)

)
(20)

which is equivalent to the EXTRA algorithm of [15] for appropriately chosen weight matrices.

Letting A ≜ I − L and returning to node-level quantities, we obtain:

ϕk,i =
∑
ℓ∈Nk

aℓkwℓ,i−1 −µ∇̂Jk(wk,i−1) (21)

wk,i = ϕk,i +
∑
ℓ∈Nk

aℓkwℓ,i−1 −ϕk,i−1 (22)

These recursions can again be identified as a bias-corrected version of the “consensus + innova-

tion” recursion (12), but now rely on the momentum term
∑

ℓ∈Nk
aℓkwℓ,i−1 −ϕk,i−1 rather than

the propagation of dual variables as in (17). Making the same incremental gradient adjustment

that led to the penalty-based ATC-diffusion algorithm (13)–(14), we obtain the Exact diffusion

algorithm from [45]:

ψk,i = wk,i−1 −µ∇̂Jk(wk,i−1) (23)

ϕk,i =ψk,i +wk,i−1 −ψk,i−1 (24)

wk,i =
∑
ℓ∈Nk

aℓkϕℓ,i−1 (25)

Exact diffusion is also referred to as D2 [49] or NIDS.

Gradient-tracking based approaches: An alternative to the approaches described above is

based on gradient tracking. While the initial motivation [19,50] for the construction was based

on the dynamic average consensus algorithm, it has been noted in [51] that gradient-tracking-

based algorithms for decentralized optimization can be viewed as a variation of the primal-dual
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arguments leading to the EXTRA and Exact diffusion algorithms described above. We refer

the interested reader to [38,51] for details, and simply list the resulting NEXT [19]/DIGing [51]

algorithm:

wk,i =
∑
ℓ∈Nk

aℓkwℓ,i−1 −µgk,i−1 (26)

gk,i =
∑
ℓ∈Nk

aℓkgℓ,i−1 + ∇̂Jk(wk,i)− ∇̂Jk(wk,i−1) (27)

Following an incremental construction on the other hand, analogously to the step from EXTRA

to Exact diffusion before, results in an ATC-variant of the NEXT/DIGing algorithm, proposed

in [50] under the name Aug-DGM:

ψk,i = wk,i−1 −µgk,i−1 (28)

wk,i =
∑
ℓ∈Nk

aℓkψℓ,i (29)

gk,i =
∑
ℓ∈Nk

aℓk

(
gℓ,i−1 + ∇̂Jℓ(wℓ,i)− ∇̂Jℓ(wℓ,i−1)

)
(30)

Decentralized algorithms for consensus optimization based on gradient-tracking generally have

similar convergence properties to their primal-dual counterparts EXTRA and Exact diffusion.

One key difference is the fact that exchanges of the gradient estimate gk,i in addition to the

local models results in an increase in communication cost roughly at a factor of two.

Constrained Learning: In our discussion so far, the constraint Ω of (5) has been used to

encode equality constraints of the form Ω = {W |
∑K

k=1

∑
ℓ∈Nk

cℓk∥wk − wℓ∥2 = 0} = {W |wk =

w ∀ k}. This ensures consensus on a common model w. In many application, we may wish

to further constrain the common model w to some set Θ. Variations of most algorithms de-

scribed in Sec. 3 for constrained optimization and learning have been developed and studied

by employing Euclidean and proximal projections or penalty functions [14, 52–54]. These solve

the constrained consensus optimization problem minw∈Θ

∑K
k=1 Jk(w). For example, applying

the same incremental argument that led to (13)–(14), followed by projection onto Θ, leads to a

projected variant of the ATC-diffusion or consensus + innovation algorithm (12)–(14), studied

in [14,54]:

ψk,i = wk,i−1 −µ∇̂Jk(wk,i−1) (31)

wk,i = ProjΘ

(∑
ℓ∈Nk

aℓkψℓ,i

)
(32)

14



Similarly, we may introduce projections into primal-dual algorithms to derive projected vari-

ants of primal-dual algorithms, such as the PG-EXTRA generalization [52] of the EXTRA

algorithm (20).

Multitask Learning: While the pursuit of an optimal average model as defined in (9) is

appropriate in many situations, it is important to recognize that a good average model may

perform poorly on any local cost Jk(·). This observation motivates the pursuit of networked

multitask learning algorithms [23], where agents aim to learn from one another without forcing

exact consensus. More recently, this area has received attention under the name of personalized

federated learning. Multitask learning is generally achieved using variations of the regularized

aggregate problem (5), where the regularization is chosen to match some underlying prior on

task relationships (rather than to enforce exact consensus). Solutions can again be pursued using

primal or primal-dual approaches. Given space limitations, a detailed treatment of multitask

learning is beyond the scope of this manuscript, and we refer the reader to [23] and the references

therein.

3.2 Applications

3.2.1 Weather Prediction

The task of predicting weather patterns naturally lends itself to networked solutions because (a)

measurements tend to be available in dispersed locations and (b) it is reasonable to believe that

weather models ought to be related in adjacent regions, encouraging the diffusion of information

as a means of improving performance. To illustrate this fact, we reproduce here a simulation

study from [55]. The simulation is based on meteorological data from across the United States,

shown in the top panel of Fig. 3. The implementation is based on the regularized learning

problem (4) with logistic risks Jk(wk) = E ln
(
1 + e−γk,ih

T
k,iwk

)
+ ρ∥wk∥2. Performance is

shown in the bottom panel of Fig. 3, where the choice η = 0 corresponds to a non-cooperative

implementation, η = µ−1 corresponds to the ATC-diffusion algorithm (13)–(14), and other

choices of η correspond to softer coupling of local models. Due to space limitations, we refer

the reader to [55] for a more detailed discussion of the setup and results.

3.2.2 Wide-Area Monitoring in Power Systems

Wide-area monitoring in power transmission systems consists of tracking the overall system state

based on measurements obtained at control areas or balancing authorities (nodes or agents in

our current exposition). The geographical distribution and practical data sharing limitations
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Figure 3: Weather prediction using diffusion algorithms (taken form [55], CC-BY License). (Top left)
Actual occurrence of rain. (Top right) Predicted occurrence of rain. (Bottom) Prediction accuracy as a
function of the regularization parameter η of (4).

among the control areas naturally calls for distributed state estimation algorithms (see [56])

with the goal of monitoring the global system state while minimizing data exchange among

the control areas. In [56] fully distributed approaches for wide-area state estimation based on

consensus + innovation type algorithms (see (12)) are proposed, both for DC and AC state

estimation. The typical quantities of interest in wide-area monitoring are voltage magnitudes

and relative angles (phases) at the system buses based on power flow measurements at subsets

of transmission lines and power injection measurements at the system buses. In DC state

estimation the bus voltage magnitudes are typically assumed to be at a nominal 1.0 p. u.

reference value (see [56] for details) and the unknown phase estimation at the buses reduces

to a linear least squares type formulation as in (2). In particular, Fig. 4 shows an application

of a consensus + innovation approach with decaying step sizes (taken from [56]) for DC state

estimation on an IEEE 118-bus benchmark test system: Fig. 4 (on the left) depicts the 118-

bus system partitioned into 8 control areas that communicate over a connected communication

graph (typically this graph conforms to the physical coupling between the control areas or is

chosen based on geographical proximity); the application essentially consists of reformulating

the wide-area phase estimation objective as a least-squares cost minimization with Jk(wk) of

the form in (2)-(3) and applying the consensus + innovation approach. In Fig. 4 (on the right)

we compare the gap (referred to as the phase angle gap) between the relative phases obtained

by the iterative distributed approach and those from a hypothetical fusion center based optimal

one-shot least-squares estimator across multiple bus pairs, i.e., for instance, the quantity g1,2

denotes the gap between the phase difference between buses 1 and 2 obtained by the distributed
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approach and that obtained by the centralized estimator. As expected, by the convergence

guarantees discussed in Section 3.1.2, these gaps converge to zero as the iterations progress.

Similar distributed approaches may be used for distributed (nonlinear) AC state estimation

where the objective is to estimate both the bus voltages and relative angles. This is performed

by resorting to a nonlinear least squares type minimization in [54,56] and applying a projected

variant of the consensus + innovation approach (see the discussion pertaining to (31)–(32)) to

deal with certain trigonometric nonlinearities associated with the AC power flow model.

Figure 4: Wide-area state estimation using consensus + innovation algorithms (taken form [56], CC-BY
License). (Left) IEEE 118-bus system partioned into 8 control areas or nodes with possible inter-node
communication patterns. (Right) Relative phase angle estimation error at different bus pairs.

4 Performance Guarantees in Distributed Learning

We now proceed to survey some performance guarantees of algorithms for decentralized learning,

with a particular emphasis on stochastic settings. Given space limitations, it is not possible for

us to provide a comprehensive survey. Instead, we aim to highlight some key insights that have

emerged from an extensive body of work over the past two decades, in an attempt to provide the

reader with a starting point and guidelines when matching the choice of a learning algorithm to

a problem at hand.

4.1 Constant and Diminishing Step-Sizes

Optimization algorithms based on stochastic gradient approximations are subject to persistent

noise, and hence generally do not converge to exact solutions. This can be remedied by employing

a time-varying and diminishing step-size, resulting in slower but exact convergence. We highlight

this by comparing the performance guarantees of the primal consensus and diffusion algorithms

from [3,8,21], though similar conclusions apply to other decentralized algorithms. For strongly-

convex costs and using a constant step-size construction, the asymptotic performance of the

penalty-based algorithms described in Sec. 3.1.2 is given by [22, Example 11.8]:
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lim sup
i→∞

ERi =
µ

4

K∑
k=1

p2kσ
2
k + o(µ) (33)

The excess-risk (ER) measures the average sub-optimality ERi ≜ 1
K

∑K
k=1EJ(wk,i) − J(wo).

The notation o(µ) denotes terms which are higher-order in the step-size and hence negligible

for sufficiently small step-sizes µ. The constants σ2
k correspond to the absolute gradient noise

variance of (8). The analysis in [22] is performed for general left-stochastic adjacency matrices

A ̸= AT with Perron eigenvector Ap = p. For symmetric adjacency matrices, the weights

reduce to pk = 1
K . Convergence to the steady-state value occurs at a linear rate given by

α = 1 − 2νµ + o(µ) [22, Eq. (11.139)], where ν denotes the strong-convexity constant of the

aggregate cost J(w). If we instead employ a diminishing step-size of the form µi =
1
i , it holds

asymptotically for large i that [36]:

ERi =
µ

4i

K∑
k=1

p2kσ
2
k + o(µ) (34)

and hence limi→∞ ERi = 0. At the same time, we note that convergence using a diminishing

step-size occurs at a sublinear rate O
(
1
i

)
rather than the linear rate O

(
(1− 2µν + o(µ))i

)
.

These remarks reflect a well-known trade-off between convergence rate, asymptotic error,

and tracking ability of a learning algorithm [8, 36, 57]. Algorithms with vanishing step-sizes

can converge asymptotically to the exact minimizer with zero error albeit at a slower rate than

when constant step-sizes are used. In this latter case, the algorithms approach the minimizer

at a faster exponential rate, albeit within an MSE range that is proportional to the step-size

parameter. When this parameter is small, as is normally the case, this construction enables

the algorithm with a constant step-size to track drifts in the underlying parameter when the

statistical properties of the data change with time. Often times, implementations in practice

may use a combination of vanishing and constant step-sizes. On the other hand, when one

is interested in asymptotic convergence of the error to zero, then it is known from statistical

learning theory and large-sample asymptotics in parameter estimation that the O
(
1
i

)
rate is

optimal for statistically consistent online estimators (i.e., estimators that achieve asymptotically

zero error almost surely), where i, the iteration count, coincides with or is proportional to the

number of data points or online stochastic gradients sampled during the estimation process.

Further, in this online scenario, within the class of statistically consistent estimators, the ones

with optimal asymptotic variance, i.e., asymptotically efficient estimators, may be obtained by

appropriately tuning the diminishing step-size sequences (see, for example, [8, 36, 57]); in such
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scenarios the distributed estimators end up achieving the optimal online centralized error rates.

Both, nonvanishing and vanishing weights algorithms, can overcome lack of knowledge of

model parameters or noise statistics, for example, by replacing noise mean and covariance by

empirical sample estimates, like distributed RLS [9], still guaranteeing the distributed algo-

rithms stability and error mean and covariance asymptotic optimality. With vanishing weights,

to guarantee optimal asymptotic mean square error in the sense of Fisher information rate, algo-

rithm (12) should be augmented by a recursion for the gain of the innovations or data term [57],

so that the agents engage on distributed learning to recover asymptotically the optimal gains,

while simultaneously carrying out their distributed task with negligible asymptotic information

rate loss.

4.2 Linear Gains in Performance

If we consider symmetric adjacency matrices A = AT, resulting in pk = 1
K , and homogeneous

data profiles σ2
k = σ2, we note that for both constant (33) and diminishing step-sizes (34), the

asymptotic excess risk scales with O
(

µσ2

K

)
. The scaling by the network size K is referred to

as linear gain. It is consistent with the performance gains that can be expected when fusing

raw data in a centralized architecture (see, e.g., [22, Theorem 5.1]), and provides motivation for

agents to participate in the cooperative learning protocol. Analogous results have been obtained

for primal-dual algorithms [58], as well as in the pursuit of second-order stationary-points [24]

points in nonconvex environments.

4.3 Penalty-Based and Primal-Dual Algorithms

A motivation for considering primal-dual algorithms for decentralized optimization over penalty-

based construction is the removal of the bias induced by employing a finite regularization

term (10) in place of (15). When exact gradients are employed and no noise is added due

to the use of stochastic gradient approximations, this results in a pronounced difference in per-

formance, as primal-dual algorithms are able to converge linearly and exactly, using a constant

step-size, in strongly-convex environments [15,16,45,47,51], while penalty-algorithms require a

diminishing step-size to ensure exact convergence, resulting in a sublinear rate [12].

In the stochastic setting, however, iterates are subjected to additional perturbations induced

by the utilization of data-dependent, stochastic gradient approximations. This causes the dif-

ference in performance between penalty-based and primal-dual algorithms to be more nuanced.

For example, it was shown in [46] that the primal-dual algorithm (16)–(17) exhibits strictly

worse performance than penalty-based approaches such as consensus and diffusion algorithms,

when constant step-sizes and stochastic gradient approximations are employed. This is due to

19



the fact that the penalty-based algorithms exhibit lower variance in steady-state, which com-

pensates for the additional bias. On the other hand, stochastic variants of Exact diffusion [45]

and gradient-tracking [19] have been shown analytically and empirically to improve upon the

performance of their penalty-based counterparts. We illustrate this by reviewing the results

of [58] as a case study. For the diffusion algorithms as an example of a penalty-based algorithm,

the authors derived a refined version of the bound (33) of the form:

lim sup
i→∞

MSDi = O

(
µσ2

K
+

µ2λ2σ2

1− λ
+

µ2λ2b2

(1− λ)2

)
(35)

The mean-squared deviation (MSD) of the network is defined as MSDi ≜ 1
K

∑K
k=1E ∥wo −

wk,i ∥2. For δ-smooth and ν-strongly-convex J(·) it holds that ν
2MSDi ≤ ERi ≤ δ

2MSDi. The

first term in the performance expression µσ2

K corresponds to the performance deterioration from

employing stochastic gradient approximations with variance σ2, and is proportional to the step-

size µ. This term is consistent with (33). The other two terms scale with µ2 and quantify the

interplay between the mixing rate of the adjacency matrix λ = ρ
(
A− 1

K11
T
)
and the bias term

b2 = 1
K

∑K
k=1 ∥∇Jk(w

o)∥2. The mixing rate λ measures the level of connectivity of the network,

and is close to one whenever the adjacency matrix is sparse. The bias term b2 on the other hand

measures the level of heterogeneity in the network. Both O(µ2)-terms become negligible as

µ → ∞, but can be significant for very sparse, heterogeneous networks and moderate step-sizes.

For Exact diffusion, as an example of a stochastic primal-dual algorithm, on the other hand,

we have [45,58]:

lim sup
i→∞

MSDi = O

(
µσ2

K
+

µ2λ2σ2

1− λ

)
(36)

We note the removal of the term µ2λ2b2

(1−λ)2 . As a result, the performance no longer depends on

the heterogeneity b2, and has an improved dependence on the mixing rate λ. Similar improved

dependence on network heterogeneity and connectivity has been observed in pursuing first-order

stationary points of nonconvex problems as well [49].

4.4 Stability Gains via Incremental Constructions

As we saw throughout the algorithm derivations in Sec 3.1, the derivations of some decentralized

algorithms rely on the use of incremental steps, such as the ATC-diffusion algorithm [3], the

Exact diffusion algorithm [45], and the Aug-DGM algorithm [50]. These variants incorporate

incremental steps in comparison to the “consensus+innovation” algorithm [8, 12], the EXTRA

algorithm [15], and the DIGing algorithm [51]. It turns out that in many cases the incremental
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Figure 5: Illustration of the benefit of primal-dual algorithms (taken form [58], ©IEEE 2020). Primal-
dual algorithms (EXTRA, gradient-tracking, exact diffusion) outperform a primal algorithm (diffusion) for

a large network size (large K, i.e., λ closer to 1) and large step-size. This is the range where µ2λ2b2

(1−λ)2 in (35)

is non-negligible.

steps endow the resulting algorithms with improved robustness and stability properties, particu-

larly when employing constant and uncoordinated step-sizes and noisy gradient approximations.

Early evidence to this phenomenon appears in [20,22], where it was shown that diffusion strate-

gies based on the adapt-then-combine (ATC) construction, which is incremental, enjoy a wider

stability range than consensus based constructions. In particular, the stability range for the

ATC-diffusion algorithm can be independent of the network connectivity (so long as agents are

locally stable), while that for the consensus algorithm in general depends on the mixing rate of

the adjacency matrix [20, 22]. Analogous observations were made in [45] when comparing the

stability range of the Exact diffusion algorithm to EXTRA.

4.5 Asynchronous Behavior

The stochastic gradient approximations framework described in Sec. 3.1.1 is general enough to

cover a large number of phenomena that may arise in the presence of asynchrony and imperfec-

tions, such as intermittent updates (6) or noisy links. The implications of these imperfections on

performance follow from relations (33)–(36) after adjusting the gradient variance σ2
k according

to Table 2. Another form of asynchrony, not directly covered within the gradient approxima-

tions framework, refers to time-varying, intermittent communication graphs. Such asynchrony

can be more challenging, since exchanges that now occur so infrequently can in principle result

in divergent behavior, particularly for heterogeneous networks. Nevertheless, when properly

designed, decentralized algorithms have been shown to be remarkably robust to asynchronous

communication policies, including random [26] and deterministically time-varying policies [51].

The take-away from these studies is that, as long as adjacency matrices are connected in expec-

tation [26], or their union over time is connected [51], information can sufficiently diffuse, and

agents can efficiently learn from each other.
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4.6 Asymmetric Combination Policies

Most of our discussion so far has focused on symmetric adjacency matrices A = AT. Neverthe-

less, decentralized algorithm for optimization and learning can also be deployed with asymmetric

matrices [3, 21, 22, 24,45]. The effect of such constructions is that certain agents will be able to

exert more or less influence over the behavior of the network. To be precise, we associate with

the adjacency matrix its Perron eigenvector Ap = p, where pk denotes the entry corresponding

to agent k. It can then be shown that most decentralized algorithms will converge to the min-

imizer of the weighted sum, i.e., wo ≜
∑K

k=1 pkJk(w), where the weights pk now modulate the

relative influence of the cost Jk(w) associated with agent k. For symmetric matrices A = AT,

we have pk = 1
K and we recover (9). The ability for certain agents to be more or less influential

within the network adds a degree of freedom to the design of multi-agent system. In hetero-

geneous environments, where some agents may have access to data or gradient approximations

of higher quality, this can be exploited to improve performance or convergence rate [22]. On

the other hand, there may be situations where such behavior is undesirable, and we may wish

to minimize the unweighted cost (9) while employing asymmetric network topologies. This can

be achieved by effectively rescaling the agent-specific step-sizes to compensate for the Perron

weights pk [45, 59,60].

4.7 Federated Learning

Federated learning has emerged in recent years as an umbrella term for architectures that

involve a fusion center, as well as high levels of asynchrony and heterogeneity. The federated

setting can be viewed as a special case of the decentralized algorithms for appropriately chosen

network topologies and asynchrony models. As a result, many algorithms and performance

guarantees for federated learning can be recovered from their decentralized counterparts by

appropriately specializing the network topology. To illustrate this fact, let us consider the

diffusion algorithm (13)–(14) with random adjacency matrix A. The resulting behavior at any

given agent corresponds precisely to a stochastic variant of the federated averaging algorithm,

and the analysis of [26] applies. We may instead consider a deterministic variant with time-

varying Ai, where Ai = 11T if i is a multiple of io ≥ 1 and Ai = I otherwise. In this case, the

arguments of [51] apply. This corresponds to a deterministic variant of Federated Averaging,

where agents interlace multiple local updates with any round of communications. Of course,

variants of these constructions are possible, and we refer the reader to [26,51] for details.
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5 Conclusion

The ever increasing need for processing signals and information available at dispersed locations

has led to broad research efforts across a number of communities in the past two decades.

We have presented a unified view on algorithms for distributed inference and learning through

the lens of stochastic primal and primal-dual optimization, and have surveyed some common

themes in performance, such as the impact of learning rate, network topology, and the benefit of

cooperation. The key take-away of these studies is that in most cases, distributed solutions with

appropriately designed cooperation protocols are able to match the performance of centralized,

fusion-center based approaches, while offering scalability, robustness to node and link failure,

communication efficiency, and no need for the exchange of raw data.
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[59] A. Nedić and A. Olshevsky, “Distributed optimization over time-varying directed graphs,” IEEE
Trans. Automatic Control, vol. 60, no. 3, pp. 601–615, 2015.

[60] F. Saadatniaki, R. Xin, and U. A. Khan, “Decentralized optimization over time-varying directed
graphs with row and column-stochastic matrices,” IEEE Trans. Automatic Control, vol. 65, no.
11, pp. 4769–4780, 2020.

25


	Introduction
	Historical remarks
	Unified view
	Unification through Stochastic Optimization
	Stochastic Gradient Approximations
	Task Relationships

	Applications
	Weather Prediction
	Wide-Area Monitoring in Power Systems


	Performance Guarantees in Distributed Learning
	Constant and Diminishing Step-Sizes
	Linear Gains in Performance
	Penalty-Based and Primal-Dual Algorithms
	Stability Gains via Incremental Constructions
	Asynchronous Behavior
	Asymmetric Combination Policies
	Federated Learning

	Conclusion

