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Abstract— Electricity system models are widely used to study future designs for power markets. They are commonly used to represent 
electricity dispatch decisions but struggle to reproduce realistic variation in prices. We show that current assumptions of generators bidding 
short-run marginal cost underestimates the spread and volatility of hourly wholesale prices. Imperfect competition makes market prices differ 
from the theoretical optimum. Therefore, a simple modification to the short-run marginal cost approach is considered in a way that allows 
generators to make a spread of bids. Additionally, we add volatility into the model by making a post-optimizer transformation in the cost 
function. The objective is to propose a model to simulate prices on day-ahead markets that accounts for generators’ ability to bid below 
marginal costs for their first megawatts of capacity and above for their last, as well as to consider other variables that have an impact on 
power prices and that cannot be captured by the typical approaches. Using this method, we show the impacts of price volatility and price 
spreads in the power market. 

Index Terms-- Day-ahead markets, Electricity Prices, Electricity Market Model, Power System Model, Price Volatility 

INTRODUCTION  
Modelling electricity markets has been a fundamental tool used by policymakers and participants to guide their decisions in terms of 

shaping future power markets or investing in emerging technologies. However, all too often models lack transparency and validation 
([1], [2]).  
 

Current electricity system models easily optimize expected supply and demand in order to minimize the total power system cost. 
These models are able to represent dispatch decisions by incumbent generators, but they struggle to reproduce realistic daily variation 
and spreads of prices [3]. Literature on the validation of time-dependent variations of price outputs produced by these models is still 
scarce. 
 

The relevance of replicating realistic power prices in terms of their volatility and spread creates good investment signals for new 
investors. In the coming years, electricity markets will undergo extensive reforms to decarbonize demand and supply, in ways that will 
increase price volatility. Demand profiles will become more volatile as the use of electric vehicles and electricity for both space-heating 
and cooling increase. The generation mix is also changing rapidly, with weather-driven renewable technologies increasing their 
participation in the electricity market, and consequently, increasing the impacts of price variation on generation.  

 
Many of the solutions to help accommodate these changes rely on arbitrage for their business case (e.g., over space for transmission, 

or over time for storage). Therefore, an inadequate representation of price volatility in current models can lead to an underestimation of 
the revenue available to storage technologies and transmission grids, and thus the optimal amount of investment in them. The 
homogenous price signals that result from these modelling tools will also misrepresent the size of price cannibalization on renewables, 
the value of flexible peak capacity, and so on.  
 

In this work we extend a classic linear dispatch electricity model to create a tool where historic price time-series can be better 
replicated. By changing the total system cost function to a quadratic form and by applying a post-optimizer transformation, we were 
able to develop more realistic supply and price curves that significantly improve the model’s skill at representing daily price variation. 
External effects on prices derived by European interconnectors were also considered. These new model features make it a suitable tool 
for exploring the impacts of price volatility within the market as well as to investigate the importance of price spreads on arbitrage 
earnings and price cannibalization of different technologies. 
 

MODEL APPROACHES FOR ELECTRICITY PRICES ASSESSMENT 
Several methods have been explored in the literature to determine which factors influence energy prices. Time series models, artificial 

neural networks and regression trees are often used to simulate power prices, where prices are defined as a function of exogenous 
regressors. However, these statistical models imply that correlation between variables can be observed and that forecast methods are 
accurate [4]. Additionally, they are not able to reflect structural changes in the power market [5].  
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To overcome this drawback, equilibrium models are often used. These models are usually modelled as an economic dispatch or unit 
commitment approach. They determine the most cost-efficient dispatch decision of generation assets to meet electricity demand. The 
optimal solution provides the optimal dispatch of power plants and market prices for a given period. However, as these models seek the 
global optimum, they implicitly take the view of the central operator and do not take into account the strategic behaviour of generators.  

 
To include agents’ strategic behaviour, equilibrium models can also be studied using a multi-agent perspective. Bayesian approaches 

or inverse optimization methods are commonly used to explore variables that have influence on generators’ bids ([6]–[8]). By 
considering only simulated test cases this analysis is only suitable to study qualitative problems rather than long-time series of market 
prices ([5], [9]). 

 
Following a more market-oriented perspective, supply curves aggregate market bids that depend both on the merit order and bidding 

strategies by market participants. In [3] the model creates supply curves for each technology using the definition of short-run marginal 
costs. To reflect must-run constraints, prices are reduced in case of low output, while scarcity rents are considered by increasing prices 
in periods of high demand. Supply curve modelling can also result from statistical models, where the curve is derived as a function of 
normalized load and market prices, and it is adjusted to account for the evolution of fuel and emission costs [10]. However, these models 
do not include the effects of technology availability and production costs.  

 
A combination of optimization and statistical methods to simulate long-term power prices is still scarce in the literature. Previous 

work developed by [5] states that this approach captures the main characteristics of price dynamics but underestimates the price spikes 
observed in historical data. Electricity prices are dependent of a wide range of factors such as: volatility in demand and supply, 
transmission network physical limits, ramping constraints, strategic bidding practices and volatility in fuel prices [3]. In order to simulate 
electricity prices as closely as possible to historic data, we develop a zonal European model with one node per country that mimics the 
market clearing mechanism, taking into account power system and network constraints. The model connects 27 European countries 
using net transfer capacities (Figure 1).  
 
The link between technical constraints and electricity prices is modelled using an economic dispatch model. Additionally, a quadratic 
function is used to introduce non-linear price increases in case of limited supply margins. Finally, a post-optimizer transformation was 
applied in order to bring volatility into the modelled prices. A more detailed explanation of the model is described in the following 
section. 
 

 
Figure 1.  Spatial dimension used in EuroMod with grid connections 

LINEAR MODEL 
For our analysis, we employ the electricity market model Euromod. The model includes generation of thermal power plants p ∈ P, 

natural inflow and pumped storage plants h ∈ H, and renewable sources w ∈ W. Generation of the different technologies are aggregated 
as power blocks to each zone.  

 
The objective of this model is to minimize the total system operating costs for a specific time horizon T (eq. 1), considering power 

plant and network restrictions. Generation of thermal power plants in period t ∈ T is denoted by 𝑄𝑄𝑝𝑝,𝑡𝑡. Their generation is limited upwards 
by their installed capacity corrected by power plants’ availability, 𝑞𝑞𝑡𝑡,𝑝𝑝

𝑚𝑚𝑚𝑚𝑚𝑚 ×  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝑝𝑝, and downwards by their minimum chp 
requirements, 𝑐𝑐ℎ𝑝𝑝𝑡𝑡,𝑝𝑝 (eq. 3). The generation from hydro plants is denoted by 𝑄𝑄𝑡𝑡,𝑛𝑛,ℎ

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , and pumping or withdrawal from the market is 
given by 𝑄𝑄𝑡𝑡,𝑛𝑛,ℎ

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  . Generation and pumping from hydro units are upper bounded by the turbine and pump capacity, 𝑞𝑞𝑛𝑛,ℎ
𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇  and 𝑞𝑞𝑛𝑛,ℎ

𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃, 
respectively (eq. 5-6). The efficiency of the pumping process is given by 𝜇𝜇 ∈ [0,1]. Each hydro generator is connected to a reservoir 
that is limited upwards by their maximum capacity, 𝑞𝑞𝑛𝑛,ℎ

𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , (eq. 7). Additionally, a law of motion for hydro units is introduced to 
track the amount of water that is available in the reservoir, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡,𝑛𝑛,ℎ, in period  t ∈ T. Equation 8 shows us that the level of water a 
reservoir has at the end of period t is equal to the level of water in the reservoir at the end of period t-1, plus the water that is introduced 
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by the water inflows and pumping in period t, minus the generation from hydro power plants in period t. A spillage variable is introduced 
to solve possible model infeasibilities, due to excess of water in the reservoir, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡,𝑛𝑛,ℎ  . 

Renewable generation is introduced in the model as an infeed. Therefore, for each renewable generator, a time-series of maximum 
infeed is specified as this is exogenous based on weather conditions, although it may be reduced by the amount of renewable supply 
that is curtailed, 𝐶𝐶𝑤𝑤,𝑡𝑡 . In this case, it is assumed that the marginal generation costs are zero, but the curtailment of RES is penalized by 
a payment of 𝑐𝑐𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . The use of this penalty reflects the prioritization of renewable generation in the merit order.  

Load and generation are connected to a set of zones n ∈ N that represent 27 European countries (Figure 1). Power plants are associated 
to zones by the set Θ ⊂ (P ∪ H ∪ W) × N. Load at zone n in period t is denoted by 𝑑𝑑𝑛𝑛,𝑡𝑡. Electricity demand is assumed to be fixed and 
price inelastic, which needs to be satisfied by generation technologies and net-imports from other countries (eq. 2). Additionally, load 
can be also curtailed in case of lost load, 𝑉𝑉𝑉𝑉𝑉𝑉𝐿𝐿𝑛𝑛,𝑡𝑡, which incurs the cost of curtailing load, 𝑐𝑐𝐿𝐿𝐿𝐿𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . Furthermore, the model includes 
limits on the transmission flows between countries that are given by the Net Transmission Capacities (NTC), 𝑞𝑞𝑡𝑡,𝑛𝑛,𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁𝑁𝑁 , (eq. 4). 

Euromod is calibrated for the period of 2017 to 2020. Data on historic load, prices, capacities and NTC are provided by ENTSO-E 
([11], [12]). The hydrological inflow data we employ is derived from the ENTSO-E hydrological model PECD ([13], [14]). 

 
Euromod runs on an hourly basis and generates country-specific hourly generation mix, zonal electricity prices and trade flows. The 

mathematical formation of the linear model is the following:  
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≥�𝑎𝑎𝑡𝑡,𝑝𝑝𝑄𝑄𝑡𝑡,𝑝𝑝
𝑡𝑡,𝑝𝑝

 

+�𝑐𝑐𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑤𝑤,𝑡𝑡

𝐶𝐶𝑤𝑤,𝑡𝑡  

            +�𝑐𝑐𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝑛𝑛,𝑡𝑡

𝑉𝑉𝑉𝑉𝑉𝑉𝐿𝐿𝑛𝑛,𝑡𝑡                                                                 ∀𝑝𝑝,𝑤𝑤, 𝑡𝑡 
(1) 

 
Subject to: 

𝑑𝑑𝑛𝑛,𝑡𝑡 = �𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛,𝑝𝑝
𝑝𝑝𝑝𝑝

𝑝𝑝

𝑄𝑄𝑡𝑡,𝑛𝑛,𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡,𝑛𝑛 

+�𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛,ℎ
ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (𝑄𝑄𝑡𝑡,𝑛𝑛,ℎ

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑄𝑄𝑡𝑡,𝑛𝑛,ℎ
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

ℎ

 

+ ��1 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡,𝑛𝑛𝑛𝑛,𝑛𝑛

𝑛𝑛𝑛𝑛

− 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡,𝑛𝑛,𝑛𝑛𝑛𝑛  

+ 𝑉𝑉𝑉𝑉𝑉𝑉𝐿𝐿𝑛𝑛,𝑡𝑡 −  𝐶𝐶𝑤𝑤,𝑡𝑡                                                              ∀𝑛𝑛, 𝑡𝑡 

(2) 

 
𝑐𝑐ℎ𝑝𝑝𝑡𝑡,𝑝𝑝 ≤ 𝑄𝑄𝑡𝑡,𝑛𝑛,𝑝𝑝 ≤  𝑞𝑞𝑡𝑡,𝑝𝑝

𝑚𝑚𝑚𝑚𝑚𝑚 ×  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡,𝑝𝑝                                                      ∀𝑝𝑝, 𝑡𝑡    (3) 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡,𝑛𝑛,𝑛𝑛𝑛𝑛 ≤  𝑞𝑞𝑡𝑡,𝑛𝑛,𝑛𝑛𝑛𝑛
𝑁𝑁𝑁𝑁𝑁𝑁                                                                      ∀𝑛𝑛, 𝑛𝑛𝑛𝑛, 𝑡𝑡 (4) 

 
𝑄𝑄𝑡𝑡,𝑛𝑛,ℎ
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≤  𝑞𝑞𝑛𝑛,ℎ

𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇                                                                                         ∀𝑡𝑡, ℎ, 𝑛𝑛 (5) 
 
𝑄𝑄𝑡𝑡,𝑛𝑛,ℎ
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≤  𝑞𝑞𝑛𝑛,ℎ

𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃                                                                                        ∀𝑡𝑡, ℎ, 𝑛𝑛 (6) 
 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡,𝑛𝑛,ℎ ≤  𝑞𝑞𝑛𝑛,ℎ

𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆                                                                              ∀𝑡𝑡, ℎ, 𝑛𝑛 (7) 
 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡,𝑛𝑛,ℎ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−−1,𝑛𝑛,ℎ +  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡,𝑛𝑛,ℎ +  𝜇𝜇𝜇𝜇𝑡𝑡,𝑛𝑛,ℎ

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −  𝑄𝑄𝑡𝑡,𝑛𝑛,ℎ
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 −

                         𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡,𝑛𝑛,ℎ                                                                                         ∀𝑡𝑡,ℎ, 𝑛𝑛  (8) 

 
QUADRATIC MODEL 

To better represent electricity prices, we changed the total system cost function from the standard linear formulation (eq. 1) to a 
quadratic form (eq. 9).  
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �(𝑎𝑎𝑡𝑡,𝑝𝑝 +  𝑏𝑏𝑡𝑡,𝑝𝑝𝑄𝑄𝑡𝑡,𝑝𝑝)𝑄𝑄𝑡𝑡,𝑝𝑝
𝑡𝑡,𝑝𝑝

  + �𝑐𝑐𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑤𝑤,𝑡𝑡

𝐶𝐶𝑤𝑤,𝑡𝑡

+ �𝑐𝑐𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑎𝑎𝑎𝑎
𝑛𝑛,𝑡𝑡

𝑉𝑉𝑉𝑉𝑉𝑉𝐿𝐿𝑛𝑛,𝑡𝑡  

                         =  �  �𝑚𝑚𝑚𝑚𝑡𝑡,𝑝𝑝 − 𝛿𝛿𝑚𝑚𝑚𝑚𝑡𝑡,𝑝𝑝 +
𝛿𝛿𝑚𝑚𝑚𝑚𝑡𝑡,𝑝𝑝

𝑞𝑞𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄𝑡𝑡,𝑝𝑝�  𝑄𝑄𝑡𝑡,𝑝𝑝
𝑡𝑡,𝑝𝑝

+ �𝑐𝑐𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑤𝑤,𝑡𝑡

𝐶𝐶𝑤𝑤,𝑡𝑡

+ �𝑐𝑐𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑛𝑛,𝑡𝑡

𝑉𝑉𝑉𝑉𝑉𝑉𝐿𝐿𝑛𝑛,𝑡𝑡 

 

(9) 

 
The linear model formulation takes the view of a central operator where perfect competition is on its basis. However, generators 

have typically an imperfect behaviour. Following the approach developed by [3], we allow power plants to place bids that deviate from 
the short-run marginal cost (SRMC). The SRMC of a generator is given by the first derivative of the cost function (eq. 9) and given by: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡,𝑝𝑝  =  𝑚𝑚𝑚𝑚𝑡𝑡,𝑝𝑝 − 𝛿𝛿𝑚𝑚𝑚𝑚𝑡𝑡,𝑝𝑝 +
2𝛿𝛿𝑚𝑚𝑚𝑚𝑡𝑡,𝑝𝑝

𝑞𝑞𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄𝑡𝑡,𝑝𝑝 (10) 

 
The price that each generator bids includes the marginal cost 𝑚𝑚𝑚𝑚𝑝𝑝,𝑡𝑡 minus a parameter 𝛿𝛿 that specifies the size of deviation from the 

SRMC, 𝛿𝛿𝑚𝑚𝑚𝑚𝑡𝑡,𝑝𝑝. Therefore, if a 𝛿𝛿 of 30% is used, the generator will bid 30% below its SRMC for the 1st MW that is introduced into the 
market, and 30% above its SRMC when the full capacity is bided into the market. Additionally, we add a slope to the cost function,  
2𝛿𝛿𝑚𝑚𝑚𝑚𝑡𝑡,𝑝𝑝
𝑞𝑞𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚  , that increases the cost of generation from a technology as a function of what proportion of that technology’s fleet is being 

deployed within a given country. The parameter 𝛿𝛿 is uniform across all technologies and countries, and relative to total capacity. The 
Euromod price in each country in each period, 𝑟𝑟𝑛𝑛,𝑡𝑡, is the shadow price on constraint (2). 

 
In order to choose the parameter 𝛿𝛿, we perform a series of different model runs from 𝛿𝛿 = 0 (linear case) to 𝛿𝛿 = 100% and for the 

different modelled years (2017-2020). The mean absolute (MAE) of errors in prices and generation were then compared (Figure 2).  As 
modelling prices is the main objective of this paper a 𝛿𝛿 of 30% was chosen as being the one that minimizes the MAE of price errors. 
Regarding generation, Figure 2 shows that for a 𝛿𝛿 of 30% the MAE is lower than in the linear case, except for the years 2017 and 2018.  

 
Figure 2.  Mean absolute errors in Prices and Generation 

MODIFIED  QUADRATIC MODEL 
Finally, a post-optimizer transformation is introduced to account for other factors that might have an impact on prices. After 

performing an evaluation on the impacts of net-demand on prices for the different countries, we verified that there is a correlation 
between these two variables. Therefore, errors on modelled prices for the different countries were plotted against the net-demand 
normalized around its mean, and a linear regression model was applied (Figure 3). 

 
Figure 3.  Linear Regression Curve of Errors on Modeled Prices 

The best fit equation of this linear regression model is given by Equation 10.  
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6.30 ×  
netdemandt,n −  μn

σn
+ 6.04 (11) 

 
By applying Equation 10 to the cost function of the model (eq. 9), we adjust the Euromod price, 𝑟𝑟𝑛𝑛,𝑡𝑡 , depending on the relation 

between net demand and its mean. Therefore, if net-demand is below its mean, there is more electricity coming from renewable sources, 
which decreases the electricity price. If net-demand equals the mean, then the wholesale price is given by Euromod. Finally, if net-
demand is higher than the mean, an increase in the electricity price will occur, justifying the need for more conventional generation in 
the market. 

RESULTS 
To evaluate the performance of the model, we compare the  

the Euromod results with the historic data provided by ENTSO-E. Table 1 shows the mean absolute error on prices between the different 
model approaches, where the linear model presents the worst results in terms of MAE. With the introduction of a quadratic function in 
the model, the MAE is improved by 13% when compared to the linear model, while the QCP modified model improves the model 
performance in terms of MAE in 22%. 
 

Prices LP QCP QCP Modified 
2017 13.54 12.25 11.41 
2018 14.93 13.24 11.94 
2019 14.69 12.53 10.78 
2020 12.25 10.37 8.85 

Table 1: Mean Absolute Error on Prices between Models 

In terms of generation, the different models were compared to the ENTSO-E data. Figure 4 and Figure 5 present the mean, 10th 
percentile and 90th percentile of the deviations between historic data and Euromod results for the different technologies in the UK 
between 2019 and 2020. Larger deviations are presented by the linear model, especially for coal and gas. In contrast, the QCP modified 
model allows the Euromod to have a better performance but a further calibration process is still needed.  

 
Figure 4.  Mean, 10th and 90th Percentile in Generation for GB in 2019 

 
Figure 5.  Mean, 10th and 90th Percentile in Generation for GB in 2020 

Regarding electricity prices, Figures 3, 4 and 5 show the electricity price comparison between ENTSO-E prices and the modelled 
prices for the hourly, monthly and 24 hours average, as well as the price range for the different model approaches.  

 
The linear model follows the general shape of the average prices over the four years. However, the model still cannot fully match 

the amplitude and variability of power prices and underestimates them (Figure 6).  
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Figure 6.  Prices Comparison for GB in the Linear Model 

By using a non-linear form for system costs, we were able to develop more realistic supply and price curves that significantly 
improve the model’s skill at representing daily price variation, as well as at representing the generation dispatch (e.g., the balance 
between coal and gas) without the need for detailed country-by-country calibration. On average, hourly and monthly electricity prices 
are still underestimated but 24 hours average and the price range present a better (Figure 7).  

 
Figure 7.  Prices Comparison for GB in the Quadratic Model 

The modified quadratic model improves even further the price results in terms of volatility. This feature allows Euromod to increase 
the volatility of prices by two times when compared to the other models. The monthly average prices closely match the historic ENTSO-
E real prices, the 24 hours average follow the same pattern of the historic data, and the range of prices shows a strong increase, which 
improves the model performance in modelling volatility of power prices (Figure 8).  

 
Figure 8.  Prices Comparison for GB in the Quadratic Modified Model 

We conclude that prices not only vary more when generators’ bids deviate from their initial marginal costs, but there are other 
relations that can have a bigger impact on prices, such as net-demand.  This is of particular relevance as it plays a central role in guiding 
the decisions of both market participants and policy makers. It also provides better market signals regarding future revenues to support 
investment decision on key technologies to support the current energy transition. 

 
CONCLUSION 

The decarbonisation of electricity markets is disturbing demand and supply in ways that increase price volatility. Structural models 
of day-ahead markets account for price formation mechanisms and techno-economic constraints, allowing us to find the optimal price 
to minimize total system costs. They usually predict quite well yearly average prices but, typically, misrepresent the volatility and 
amplitude of price spikes. Solutions that help to accommodate the current energy transition rely on arbitrage opportunities. Therefore, 
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an inadequate representation of electricity prices volatility can lead to an underestimation of the revenues available for storage and 
transmission grids. Having a bottom-up model with a representation of supply technical characteristics, the value of interconnectors and 
storage units, as well as a non-linear cost function, allows us to develop fairly good supply and price curves. The introduction of 
imperfect competition behaviour from generators and the influence of net-demand on prices improved the model performance in 
modelling more realistic supply and price curves that improve the daily and yearly price volatility.  
 

These new model features make it a suitable tool for exploring the impacts of price volatility and price spreads within the market as 
well as to investigate the importance of price variation on arbitrage earnings and price cannibalisation of different technologies. 
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