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Abstract

Large systems of interacting objects can give rise to a rich array of emergent behaviours. Make
those objects quantum and the possibilities only expand. Interacting quantum many-body
systems, as such systems are called, include essentially all physical systems. Luckily, we don’t
usually need to consider this full quantum many-body description. The world at the human
scale is essentially classical (not quantum), while at the microscopic scale of condensed matter
physics we can often get by without interactions. Strongly correlated materials, however, do
require the full description. Some of the most exciting topics in modern condensed matter fall
under this umbrella: the spin liquids, the fractional quantum Hall e↵ect, high temperature
superconductivity and much more. Unfortunately, strongly correlated materials are notoriously
di�cult to study, defying many of the established theoretical techniques within the field. Enter
exactly solvable models, these are interacting quantum many-body systems with extensively
many local symmetries. The symmetries give rise to conserved charges. These charges break
the model up into many non-interacting quantum systems which are more amenable to standard
theoretical techniques. This thesis will focus on two such exactly solvable models.

The first, the Falicov-Kimball (FK) model is an exactly solvable limit of the famous Hubbard
model which describes itinerant fermions interacting with a classical Ising background field.
Originally introduced to explain metal-insulator transitions, it has a rich set of ground state
and thermodynamic phases. Disorder or interactions can turn metals into insulators and the FK
model features both transitions. We will define a generalised FK model in 1D with long-range
interactions. This model shows a similarly rich phase diagram to its higher dimensional cousins.
We use an exact Markov Chain Monte Carlo method to map the phase diagram and compute
the energy resolved localisation properties of the fermions. This allows us to look at how the
move to 1D a↵ects the physics of the model. We show that the model can be understood by
comparison to a simpler model of fermions coupled to binary disorder.

The second, the Kitaev Honeycomb (KH) model, was the first solvable 2D model with a Quan-
tum Spin Liquid (QSL) ground state. QSLs are generally expected to arise from Mott insulators,
when frustration prevents magnetic ordering all the way to zero temperature. The QSL state
defies the traditional Landau-Ginzburg-Wilson paradigm of phases being defined by local order
parameters. It is instead a topologically ordered phase. Recent work generalising non-interacting
topological insulator phases to amorphous lattices raises the question of whether interacting
phases like the QSLs can be similarly generalised. We extend the KH model to random lattices
with fixed coordination number three generated by Voronoi partitions of the plane. We show
that this model remains solvable and hosts a chiral amorphous QSL ground state. The presence
of plaquettes with an odd number of sides leads to a spontaneous breaking of time reversal
symmetry. We unearth a rich phase diagram displaying Abelian as well as a non-Abelian QSL
phases with a remarkably simple ground state flux pattern. Furthermore, we show that the
system undergoes a phase transition to a conducting thermal metal state and discuss possible
experimental realisations.
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CHAPTER 1. INTRODUCTION

Figure 1.1: A murmuration of starlings. Dorset, UK. Credit Tanya Hart, “Studland Starlings”, 2017,
CC BY-SA 3.0

1.1 Interacting Quantum Many-Body Systems

When you take many objects and let them interact together, complex behaviours can emerge.
It is often easier to describe these behaviours in terms of properties of the group rather than
properties of the individual objects. A flock of starlings like that of fig. 1.1 is a good example.
If you were to sit and watch a flock like this, you’d see that it has a distinct outline, that waves
of density will sometimes propagate through the closely packed birds and that the flock seems
to respond to predators as a distinct object. The natural description of this phenomenon is in
terms of the flock, not the individual birds.

A flock is an emergent phenomenon. The starlings are only interacting with their immediate
six or seven neighbours [1, 2], what a physicist would call a local interaction. There is much
philosophical debate about how exactly to define emergence [3, 4] but, for our purposes, it is
enough to say that emergence is the fact that the aggregate behaviour of many interacting
objects may necessitate a radically di↵erent description from that of the individual objects.

To give an example closer to the topic at hand, our understanding of thermodynamics began
with bulk properties like heat, pressure, energy and temperature [5]. It was only later that we
gained an understanding of how these properties emerge from microscopic interactions between
very large numbers of particles [6].

At its heart, condensed matter is the study of the behaviours that can emerge from large
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1.2. MOTT INSULATORS

numbers of interacting quantum objects at low energy. From these three ingredients,: a large
number of objects, those objects being quantum and the presence of interactions between the
objects, nature builds all manner of weird and wonderful things, see fig. 1.2 for examples.
When these three properties are all present and important, we call it an interacting quantum
many-body system. Such systems will be the focus of this thesis.

Historically, we first made headway by ignoring interactions and quantum properties and looking
at purely many-body systems. The ideal gas law and the Drude classical electron gas [7] are
good examples. Including interactions leads to the Ising model [8], Landau theory [9] and the
classical theory of phase transitions [10]. In contrast, condensed matter theory got its start
in quantum many-body theory where the only electron-electron interaction considered is the
Pauli exclusion principle 1. Bloch’s theorem [11], the core result of band theory, predicted the
properties of non-interacting electrons in crystal lattices. In particular, it predicted that band
insulators arise when the electrons bands are filled, leaving the fermi level in a bandgap [7].
In the same vein, advances were made in understanding the quantum origins of magnetism,
including ferromagnetism and antiferromagnetism [12].

The development of Landau-Fermi liquid theory explained why band theory works so well even
when an analysis of the relevant energies suggests that it should not [13]. Landau-Fermi liquid
theory demonstrates that, in many cases where electron-electron interactions are significant,
the system can still be described in terms of generalised non-interacting quasiparticles. This
description is applicable when the properties of the quasiparticles in the interacting system can
be smoothly connected to the free fermions of the non-interacting system.

However, there are systems where even Landau-Fermi liquid theory fails. An e↵ective theo-
retical description of these systems must include electron-electron correlations. They are thus
called strongly correlated materials [14]. The canonical examples are superconductivity [15],
the fractional quantum Hall e↵ect [16] and the Mott insulators [17, 18]. We’ll start by looking
at the latter but shall see that there are many links between the three topics.

1.2 Mott Insulators

Mott Insulators (MIs) are remarkable because their electrical insulator properties come not
from having filled bands but from electron-electron interactions other than Pauli exclusion.
Electrical conductivity, the bulk movement of electrons, requires both that there are electronic
states very close in energy to the ground state and that those states are delocalised so that
they can contribute to macroscopic transport. Band insulators are systems whose Fermi level
falls within a gap in the density of states: they fail the first criteria. Band insulators derive
their insulating character from the characteristics of the underlying lattice. Another class of
insulator, the Anderson insulators, are disordered so only have localised electronic states near
the fermi level. They therefore fail the second criteria. In a later section, I will discuss Anderson
insulators and the disorder that drives them. Both band and Anderson insulators occur without
electron-electron interactions. MIs, by contrast, require a many-body picture to understand and
thus elude band theory and single-particle methods.

1The Pauli exclusion principle is special in that it can be treated much more simply that other interactions,
this relates to the fact that it is a hard constraint.
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Interacting
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Ideal GasBand
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Many Body
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Quantum
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Hydrogen 
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Molecules

Strongly 
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Materials

Classical 
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Mechanics

Figure 1.2: Three key adjectives. Many-Body : systems considered in the limit of large numbers
of particles. Quantum: objects whose behaviour requires quantum mechanics to describe accurately.
Interacting : the constituent particles of the system a↵ect one another via forces, either directly or
indirectly. When taken together, these three properties can give rise to strongly correlated materials.

The theory of MIs developed out of the observation that band theory erroneously predicts
that many transition metal oxides are conductive [19]. It was suggested that electron-electron
interactions were the cause of this e↵ect [20]. Interest grew further with the discovery of high
temperature superconductivity in the cuprates in 1986 [21] which is believed to arise as the
result of a doped MI state [22].

The canonical toy model of the MI is the Hubbard model [23–25] of spin-1/2 fermions hopping
on the lattice with hopping parameter t and electron-electron repulsion U , it reads

HH = �t
X

hi,ji↵

c†
i↵

c
j↵

+ U
X

i

ni"ni# � µ
X

i,↵

ni↵, (1.1)

where c†
i↵

creates a spin ↵ electron at site i and the number operator ni↵ measures the number
of electrons with spin ↵ at site i. The sum runs over lattice neighbours hi, ji including both
hi, ji and hj, ii so that the model is Hermitian.

In the non-interacting limit U ⌧ t, the model reduces to free fermions and the many-body
ground state is a separable product of Bloch waves filled up to the Fermi level. On the other
hand, the ground state in the interacting limit U � t is a direct product of the local Hilbert
spaces |0i, | "i, | #i, | "#i. At half-filling, one electron per site, each site becomes a local moment
in the reduced Hilbert space | "i, | #i and thus acts like a spin-1/2 [26].

The Mott insulating phase occurs at half-filling µ = U

2
. Here the model can be rewritten in a

symmetric form

HH = �t
X

hi,ji↵

c†
i↵

c
j↵

+ U
X

i

(ni" �
1

2
)(ni# �

1

2
). (1.2)
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1.2. MOTT INSULATORS

Figure 1.3: The Falicov-Kimball model can be viewed as a model of classical spins Si coupled to
spinless fermions ĉi where the fermions are mobile with hopping t and the fermions are coupled to the
spins by an Ising type interaction with strength U .

The basic reason that the half-filled state is insulating seems trivial. Any excitation must
include states of double occupancy that cost energy U . Hence, the system has a finite bandgap
and is an interaction-driven MI. Depending on the lattice, the local moments may then order
antiferromagnetically. Originally it was proposed that this antiferromagnetic (AFM) order was
actually the reason for the insulating behaviour. This would make sense since AFM order
doubles the unit cell and can turn a system into a band insulator with an even number of
electrons per unit cell [27]. However, MIs have been found without magnetic order [28, 29].
Instead, the local moments may form a highly entangled state known as a Quantum Spin
Liquid (QSL), which will be discussed shortly.

Various theoretical treatments of the Hubbard model have been made, including those based
on Fermi liquid theory, mean field treatments, the local density approximation [30], dynamical
mean-field theory [31], density matrix renormalisation group methods [32–34] and Markov chain
Monte Carlo [35–37]. None of these approaches are perfect. Strong correlations are poorly
described by Landau-Fermi liquid theory and local density approximation approaches while
mean field approximations do poorly in low dimensional systems. This theoretical di�culty has
made the Hubbard model a target for cold atom simulations [38].

From here, the discussion will branch in two directions. First, I will discuss a limit of the
Hubbard model called the Falicov-Kimball model. Second, I will look at QSLs and the Kitaev
honeycomb model.

The Falicov-Kimball Model

The Falicov-Kimball (FK) model was originally introduced to describe the metal-insulator
transition in f-electron systems [25, 39]. Shown graphically in fig. 1.3, the FK model is the
limit of the Hubbard model as the mass of one of the spin states of the electron is taken to
infinity. This gives a model with two fermion species, one itinerant and one entirely immobile.
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The number operators for the immobile fermions are therefore conserved quantities and can
be treated like classical degrees of freedom. For our purposes, it will be useful to replace the
immobile fermions with a classical Ising background field Si = ±1. At half filing and with this
substitution, the Hamiltonian reads

HFK = � t
X

hi,ji

c†
i
c
j
+ U

X

i

Si (c†
i
c
i
�

1

2
). (1.3)

The physics of states near the metal-insulator transition is still poorly understood [40, 41]. As a
result, the FK model provides a rich test bed to explore interaction-driven metal-insulator tran-
sition physics. Despite its simplicity, the model has a rich phase diagram in D � 2 dimensions.
It shows a Mott insulator transition even at high temperature, similar to the corresponding
Hubbard model [42]. In 1D, the ground state phenomenology as a function of filling can be
rich [43], but the system is disordered for all T > 0 [44]. The model has also been a test-bed
for many-body methods. Interest took o↵ when an exact dynamical mean-field theory solution
in the infinite dimensional case was found [45–48].

In chapter 3, I will introduce a generalised Falicov-Kimball model in 1D I call the Long-Range
Falicov-Kimball model. With the addition of long-range interactions in the background field, the
model shows a rich phase diagram like its higher dimensional cousins. Our goal is to understand
the Mott transition in more detail, the phase transition into a charge density wave state and how
the localisation properties of the fermionic sector behave in 1D. I was particularly interested to
see if correlations in the disorder potential are enough to bring about localisation e↵ects, such as
mobility edges, that are normally only seen in higher dimensions. I use an exact Markov chain
Monte Carlo method to map the phase diagram and compute the energy-resolved localisation
properties of the fermions. We observe what appears to be a hint of coexisting localised and
delocalised states. However, after careful comparison to an Anderson model of uncorrelated
binary disorder about a background charge density wave field, we confirm that the fermionic
sector does fully localise at larger system sizes as expected for 1D systems.

1.3 Quantum Spin Liquids

Turning to the other key topic of this thesis, we have already discussed the AFM ordering of local
moments in the Mott insulating state. Landau-Ginzburg-Wilson theory characterises phases of
matter as inextricably linked to the emergence of long-range order via a spontaneously broken
symmetry. Within this paradigm, we would not expect any interesting phases of matter not
associated with AFM or other long-range order. However, Anderson first proposed in 1973 [49]
that, if long-range order is suppressed by some mechanism, it might lead to a liquid-like state
even at zero temperature: a QSL.

This QSL state would exist at zero or very low temperatures. Therefore, we would expect quan-
tum e↵ects to be very strong, which will have far reaching consequences. It was the discovery of
a di↵erent phase, however, that really kickstarted interest in the topic. The fractional quantum
Hall state, discovered in the 1980s [50] is an explicit example of an interacting electron system
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Figure 1.4: How Kitaev materials fit into the picture of strongly correlated systems. Interactions are
required to open a Mott gap and localise the electrons into local moments, while spin-orbit correlations
are required to produce the strongly anisotropic spin-spin couplings of the Kitaev model. Reproduced
from [56].

that falls outside of the Landau-Ginzburg-Wilson paradigm2. It shares many phenomenological
properties with the QSL state. They both exhibit fractionalised excitations, braiding statistics
and non-trivial topological properties [55]. The many-body ground state of such systems acts
as a complex and highly entangled vacuum. This vacuum can support quasiparticle excitations
with properties unbound from that of the Dirac fermions of the standard model.

How do we actually make a QSL? Frustration is one mechanism that we can use to suppress
magnetic order in spin models [56]. Frustration can be geometric. Triangular lattices, for in-
stance, cannot support AFM order. It can also come about as a result of spin-orbit coupling or
other physics. There are also other routes to QSLs besides frustrated spin systems that we will
not discuss here [57–59].

Spin-orbit coupling is a relativistic e↵ect that, very roughly, corresponds to the fact that in the
frame of reference of a moving electron the electric field of nearby nuclei looks like a magnetic
field to which the electron spin couples. This couples the spatial and spin parts of the electron
wavefunction. The lattice structure can therefore influence the form of the spin-spin interactions,
leading to spatial anisotropy in the e↵ective interactions. This spatial anisotropy can frustrate
an MI state [60, 61] leading to more exotic ground states than the AFM order we have seen
so far. As with the Hubbard model, interaction e↵ects are only strong or weak in comparison
to the bandwidth or hopping integral t. Hence, we will see strong frustration in materials with
strong spin-orbit coupling � relative to their bandwidth t.

In certain transition metal based compounds, such as those based on iridium and ruthenium,
the lattice structure, strong spin-orbit coupling and narrow bandwidths lead to e↵ective spin-1

2

Mott insulating states with strongly anisotropic spin-spin couplings. These transition metal

2In fact the FQH state can be described within a Ginzburg-Landau like paradigm but it requires a non-local
order parameter [51, 52]. Phases like this are said to possess topological order defined by the fact that they
cannot be smoothly deformed into a product state [53, 54].
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compounds, known as Kitaev materials, draw their name from the celebrated Kitaev Honey-
comb (KH) model which is expected to model their low temperature behaviour [56, 62–65].

At this point, we can sketch out a phase diagram like that of fig. 1.4. When both electron-
electron interactions U and spin-orbit couplings � are small relative to the bandwidth t, we
recover standard band theory of band insulators and metals. In the upper left, we have the
simple Mott insulating state as described by the Hubbard model. In the lower right, strong
spin-orbit coupling gives rise to topological insulators characterised by symmetry protected
edge modes and non-zero Chern number. Kitaev materials occur in the region where strong
electron-electron interaction and spin-orbit coupling interact. See ref. [66] for a more expansive
version of this diagram.

The KH model [67] was one of the early exactly solvable spin models with a QSL ground state.
It is defined on the 2D honeycomb lattice and provides an exactly solvable model that can be
reduced to a free fermion problem via a mapping to Majorana fermions. This yields an extensive
number of static Z2 fluxes tied to an emergent gauge field. The model is remarkable not only
for its QSL ground state, but also for its fractionalised excitations with non-trivial braiding
statistics. It has a rich phase diagram hosting gapless, Abelian and non-Abelian phases [68] and
a finite temperature phase transition to a thermal metal state [69]. It has been proposed that its
non-Abelian excitations could be used to support robust topological quantum computing [70–
72].

The KH and FK models have quite a bit of conceptual overlap. They can both be seen as
models of spinless fermions coupled to a classical Ising background field. This is what makes
them exactly solvable. At finite temperatures, fluctuations in their background fields provide
an e↵ective disorder potential for the fermionic sector, so both models can be studied at finite
temperature with Markov chain Monte Carlo methods [69, 73].

As Kitaev points out in his original paper, the KH model remains solvable on any trivalent z = 3
graph which can be three-edge-coloured. Indeed, many generalisations of the model exist [74–
78]. Notably, the Yao-Kivelson model [79] introduces triangular plaquettes to the honeycomb
lattice leading to spontaneous chiral symmetry breaking. These extensions all retain translation
symmetry. This is likely because edge-colouring, finding the ground state and understanding
the QSL properties are much harder without it [80, 81]. Undeterred, this gap led us to wonder
what might happen if we remove translation symmetry from the Kitaev model. This would be
a model of a trivalent, highly bond anisotropic but otherwise amorphous material.

Amorphous materials do not have long-range lattice regularities but may have short-range
regularities in the lattice structure, such as fixed coordination number z as in some covalent
compounds. The best examples are amorphous silicon and germanium with z = 4 which are
used to make thin-film solar cells [82, 83]. Recently, it has been shown that topological insulat-
ing (TI) phases can exist in amorphous systems. Amorphous TIs are characterised by similar
protected edge states to their translation invariant cousins and generalised topological bulk
invariants [84–90]. However, research on amorphous electronic systems has mostly focused on
non-interacting systems with a few exceptions, for example, to account for the observation of
superconductivity [91–95] in amorphous materials or very recently to understand the e↵ect of
strong electron repulsion in TIs [96].

Amorphous magnetic systems have been investigated since the 1960s, mostly through the adap-
tation of theoretical tools developed for disordered systems [97–100] and with numerical meth-
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ods [101, 102]. Research on classical Heisenberg and Ising models accounts for the observed
behaviour of ferromagnetism, disordered antiferromagnetism and widely observed spin glass
behaviour [103]. However, the role of spin-anisotropic interactions and quantum e↵ects in amor-
phous magnets has not been addressed.

In chapter 4, I will address the question of whether frustrated magnetic interactions on amor-
phous lattices can give rise to genuine quantum phases, i.e., to long-range entangled QSL [49,
104–106]. We will find that the answer is yes. I will introduce the amorphous Kitaev model,
a generalisation of the KH model to random lattices with fixed coordination number three. I
will show that this model is a solvable, amorphous, chiral spin liquid. As with the Yao-Kivelson
model [79], the amorphous Kitaev model retains its exact solubility but the presence of plaque-
ttes with an odd number of sides leads to a spontaneous breaking of time reversal symmetry.
I will confirm prior observations that the form of the ground state is relatively simple [77,
107] and unearth a rich phase diagram displaying Abelian as well as a non-Abelian chiral spin
liquid phases. Furthermore, I will show that the system undergoes a finite-temperature phase
transition to a thermal metal state and discuss possible experimental realisations.

The next chapter, Chapter 2, will introduce some necessary background to the FK model, the
KH model, and disorder and localisation.
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[47] J. K. Freericks and V. Zlatić, “Exact dynamical mean-field theory of the Falicov-Kimball
model”, Rev. Mod. Phys. 75, 1333–1382 (2003) 10.1103/RevModPhys.75.1333 (cit. on
p. 15).

[48] A. J. Herrmann, N. Tsuji, M. Eckstein, and P. Werner, “Nonequilibrium Dynamical
Cluster Approximation study of the Falicov-Kimball Model”, Phys. Rev. B 94, 245114
(2016) 10.1103/PhysRevB.94.245114, arXiv:1609.04708 (cit. on p. 15).

[49] P. W. Anderson, “Resonating valence bonds: A new kind of insulator?”, Materials Re-
search Bulletin 8, 153–160 (1973) 10.1016/0025-5408(73)90167-0 (cit. on pp. 15, 18).

[50] R. B. Laughlin, “Anomalous Quantum Hall E↵ect: An Incompressible Quantum Fluid
with Fractionally Charged Excitations”, Phys. Rev. Lett. 50, 1395–1398 (1983) 10.1103/
PhysRevLett.50.1395 (cit. on p. 15).

21



1.3. QUANTUM SPIN LIQUIDS

[51] S. M. Girvin and A. H. MacDonald, “O↵-diagonal long-range order, oblique confinement,
and the fractional quantum Hall e↵ect”, Phys. Rev. Lett. 58, 1252–1255 (1987) 10.1103/
PhysRevLett.58.1252 (cit. on p. 16).

[52] N. Read, “Order Parameter and Ginzburg-Landau Theory for the Fractional Quantum
Hall E↵ect”, Phys. Rev. Lett. 62, 86–89 (1989) 10.1103/PhysRevLett.62.86 (cit. on
p. 16).

[53] X. Chen, Z.-C. Gu, and X.-G. Wen, “Local unitary transformation, long-range quantum
entanglement, wave function renormalization, and topological order”, Phys. Rev. B 82,
155138 (2010) 10.1103/PhysRevB.82.155138 (cit. on p. 16).

[54] X.-G. Wen, “Quantum orders and symmetric spin liquids”, Phys. Rev. B 65, 165113
(2002) 10.1103/PhysRevB.65.165113 (cit. on p. 16).

[55] C. Broholm et al., “Quantum spin liquids”, Science 367, eaay0668 (2020) 10 . 1126/
science.aay0668 (cit. on p. 16).

[56] S. Trebst and C. Hickey, “Kitaev materials”, Physics Reports, Kitaev Materials 950,
1–37 (2022) 10.1016/j.physrep.2021.11.003 (cit. on pp. 16–17).

[57] L. Balents, M. P. A. Fisher, and C. Nayak, “Nodal Liquid Theory of the Pseudo-Gap
Phase of High-Tc Superconductors”, Int. J. Mod. Phys. B 12, 1033–1068 (1998) 10 .
1142/S0217979298000570 (cit. on p. 16).

[58] L. Balents, M. P. A. Fisher, and C. Nayak, “Dual order parameter for the nodal liquid”,
Phys. Rev. B 60, 1654–1667 (1999) 10.1103/PhysRevB.60.1654 (cit. on p. 16).

[59] H.-H. Lin, L. Balents, and M. P. A. Fisher, “Exact SO(8) symmetry in the weakly-
interacting two-leg ladder”, Phys. Rev. B 58, 1794–1825 (1998) 10.1103/PhysRevB.58.
1794 (cit. on p. 16).

[60] G. Jackeli and G. Khaliullin, “Mott Insulators in the Strong Spin-Orbit Coupling Limit:
From Heisenberg to a Quantum Compass and Kitaev Models”, Phys. Rev. Lett. 102,
017205 (2009) 10.1103/PhysRevLett.102.017205 (cit. on p. 16).

[61] G. Khaliullin, “Orbital Order and Fluctuations in Mott Insulators”, Progress of Theo-
retical Physics Supplement 160, 155–202 (2005) 10.1143/PTPS.160.155 (cit. on p. 16).

[62] G. Jackeli and G. Khaliullin, “Mott insulators in the strong spin-orbit coupling limit:
from Heisenberg to a quantum compass and Kitaev models”, Physical Review Letters
102, 017205 (2009) 10.1103/PhysRevLett.102.017205 (cit. on p. 17).

[63] M. Hermanns, I. Kimchi, and J. Knolle, “Physics of the kitaev model: Fractionalization,
dynamic correlations, and material connections”, Annual Review of Condensed Matter
Physics 9, 17–33 (2018) 10.1146/annurev-conmatphys-033117-053934 (cit. on p. 17).

[64] S. M. Winter et al., “Models and materials for generalized Kitaev magnetism”, J. Phys.:
Condens. Matter 29, 493002 (2017) 10.1088/1361-648X/aa8cf5 (cit. on p. 17).

[65] H. Takagi et al., “Concept and realization of Kitaev quantum spin liquids”, Nat Rev
Phys 1, 264–280 (2019) 10.1038/s42254-019-0038-2 (cit. on p. 17).

[66] W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, “Correlated Quantum Phe-
nomena in the Strong Spin-Orbit Regime”, Annual Review of Condensed Matter Physics
5, 57–82 (2014) 10.1146/annurev-conmatphys-020911-125138 (cit. on p. 17).

[67] A. Kitaev, “Anyons in an exactly solved model and beyond”, Annals of Physics, January
Special Issue 321, 2–111 (2006) 10.1016/j.aop.2005.10.005 (cit. on p. 17).

22



CHAPTER 1. INTRODUCTION

[68] J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner, “Dynamics of fractionaliza-
tion in quantum spin liquids”, Phys. Rev. B 92, 115127 (2015) 10.1103/PhysRevB.92.
115127 (cit. on p. 17).

[69] C. N. Self, J. Knolle, S. Iblisdir, and J. K. Pachos, “Thermally induced metallic phase
in a gapped quantum spin liquid - a Monte Carlo study of the Kitaev model with parity
projection”, Phys. Rev. B 99, 045142 (2019) 10.1103/PhysRevB.99.045142, arXiv:1807.
07926 [cond-mat, physics:quant-ph] (cit. on p. 17).

[70] A. Y. Kitaev, “Fault-tolerant quantum computation by anyons”, Annals of Physics 303,
2–30 (2003) 10.1016/S0003-4916(02)00018-0 (cit. on p. 17).

[71] M. Freedman, A. Kitaev, M. Larsen, and Z. Wang, “Topological quantum computation”,
Bull. Amer. Math. Soc. 40, 31–38 (2003) 10.1090/S0273-0979-02-00964-3 (cit. on p. 17).

[72] C. Nayak et al., “Non-Abelian anyons and topological quantum computation”, Rev.
Mod. Phys. 80, 1083–1159 (2008) 10.1103/RevModPhys.80.1083 (cit. on p. 17).

[73] A. E. Antipov, Y. Javanmard, P. Ribeiro, and S. Kirchner, “Interaction-Tuned Anderson
versus Mott Localization”, Phys. Rev. Lett. 117, 146601 (2016) 10.1103/PhysRevLett.
117.146601 (cit. on p. 17).

[74] G. Baskaran, S. Mandal, and R. Shankar, “Exact results for spin dynamics and fraction-
alization in the kitaev model”, Phys. Rev. Lett. 98, 247201 (2007) 10.1103/PhysRevLett.
98.247201 (cit. on p. 17).

[75] G. Baskaran, D. Sen, and R. Shankar, “Spin- S Kitaev model: Classical ground states,
order from disorder, and exact correlation functions”, Phys. Rev. B 78, 115116 (2008)
10.1103/PhysRevB.78.115116 (cit. on p. 17).

[76] Z. Nussinov and G. Ortiz, “Bond algebras and exact solvability of Hamiltonians: spin S=1

2

multilayer systems”, Physical Review B 79, 214440 (2009) 10.1103/PhysRevB.79.214440
(cit. on p. 17).

[77] K. O’Brien, M. Hermanns, and S. Trebst, “Classification of gapless Z2 spin liquids in
three-dimensional Kitaev models”, Phys. Rev. B 93, 085101 (2016) 10.1103/PhysRevB.
93.085101, arXiv:1511.05569 (cit. on pp. 17–18).

[78] M. Hermanns, K. O’Brien, and S. Trebst, “Weyl Spin Liquids”, Phys. Rev. Lett. 114,
157202 (2015) 10.1103/PhysRevLett.114.157202 (cit. on p. 17).

[79] H. Yao and S. A. Kivelson, “An exact chiral spin liquid with non-Abelian anyons”, Phys.
Rev. Lett. 99, 247203 (2007) 10.1103/PhysRevLett.99.247203, arXiv:0708.0040 (cit. on
pp. 17–18).

[80] T. Eschmann et al., “Thermodynamics of a gauge-frustrated Kitaev spin liquid”, Phys.
Rev. Research 1, 032011 (2019) 10.1103/PhysRevResearch.1.032011 (cit. on p. 17).

[81] V. Peri et al., “Non-Abelian chiral spin liquid on a simple non-Archimedean lattice”,
Phys. Rev. B 101, 041114 (2020) 10.1103/PhysRevB.101.041114 (cit. on p. 17).

[82] D. Weaire and M. F. Thorpe, “Electronic properties of an amorphous solid. I. A simple
tight-binding theory”, Phys. Rev. B 4, 2508–2520 (1971) 10.1103/PhysRevB.4.2508
(cit. on p. 17).

[83] G. P. Betteridge, “A possible model of amorphous silicon and germanium”, J. Phys. C:
Solid State Phys. 6, L427–L432 (1973) 10.1088/0022-3719/6/23/001 (cit. on p. 17).

23



1.3. QUANTUM SPIN LIQUIDS

[84] N. P. Mitchell et al., “Amorphous topological insulators constructed from random point
sets”, Nature Phys 14, 380–385 (2018) 10.1038/s41567-017-0024-5 (cit. on p. 17).

[85] A. Agarwala, “Topological Insulators in Amorphous Systems”, in Excursions in Ill-
Condensed Quantum Matter: From Amorphous Topological Insulators to Fractional Spins ,
edited by A. Agarwala, Springer Theses (Springer International Publishing, Cham, 2019),
pp. 61–79, 10.1007/978-3-030-21511-8 3 (cit. on p. 17).

[86] Q. Marsal, D. Varjas, and A. G. Grushin, “Topological Weaire-Thorpe models of amor-
phous matter”, Proc. Natl. Acad. Sci. U.S.A. 117, 30260–30265 (2020) 10.1073/pnas.
2007384117 (cit. on p. 17).

[87] M. Costa et al., “Toward Realistic Amorphous Topological Insulators”, Nano Lett. 19,
8941–8946 (2019) 10.1021/acs.nanolett.9b03881 (cit. on p. 17).
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Figure 2.1: The dispersion (upper row) and density of states (lower row) obtained from a cubic

lattice model H =
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in 1D. (a) With no external potential. (b) With a static

charge density wave background Vi = (�1)i (c) A static charge density wave background with 2%
binary disorder. The top row shows the analytic dispersion in orange compared with the integral of
the DOS in dotted black.

2.1 The Falicov Kimball Model

2.1.1 The Model

The Falicov-Kimball (FK) model is one of the simplest models of the correlated electron prob-
lem. It captures the essence of the interaction between itinerant and localised electrons. It was
originally introduced to explain the metal-insulator transition in f-electron systems. However, in
its long history, the FK model has been interpreted variously as a model of electrons and ions,
binary alloys or crystal formation [1–4]. In terms of immobile fermions di and light fermions ci
and with chemical potential fixed at half-filling, the model reads

HFK = U
X

i

(d†
i
di �

1

2
) (c†

i
c
i
�

1

2
) � t

X

hi,ji

c†
i
c
j
. (2.1)

Here we will only discuss the hypercubic lattices, i.e., the chain, the square lattice, the cubic
lattice and so on. The connection to the Hubbard model is that we have relabelled the up and
down spin electron states and removed the hopping term for one spin state. This is equivalent
to taking the limit of infinite mass ratio [5].

Like other exactly solvable models [6], the FK model possesses extensively many conserved
degrees of freedom [d†

i
di, H] = 0. Similarly, the Kitaev model contains an extensive number of

conserved fluxes. So in both models, the Hilbert space breaks up into a set of sectors in which

27



2.1. THE FALICOV KIMBALL MODEL

these operators take a definite value. Crucially, this reduces the interaction terms in the model
from being quartic in fermion operators to quadratic. This is what makes the two models
exactly solvable, in contrast to the Hubbard model. For the FK model the interaction term
(d†

i
di �

1

2
) (c†

i
c
i
�

1

2
) becomes quadratic when d†

i
di is replaced with one of its eigenvalues {0, 1}.

The same thing happens in the Kitaev model, though after first applying a clever transformation
which we will discuss later.

Due to Pauli exclusion, maximum filling occurs when each lattice site is fully occupied, hnc +
ndi = 2. Here we will focus on the half-filled case hnc+ndi = 1. The ground state phenomenology
as the model is doped away from the half-filled state can be rich [7, 8] but the half-filled point
has symmetries that make it particularly interesting. From this point on, we will only consider
the half-filled point.

At half-filling and on bipartite lattices, the FK model is particle-hole symmetric. That is, the
Hamiltonian anticommutes with the particle hole operator PHP

�1 = �H. As a consequence,
the energy spectrum is symmetric about E = 0, which is the Fermi energy. Figure 2.1 shows
this in action, in the presence of a periodic potential a gap in the energy spectrum opens
symmetrically about E = 0. The particle hole operator corresponds to the substitution c†

i
!

✏ici, d
†
i

! di where ✏i = +1 for the A sublattice and �1 for the B sublattice [4]. The absence
of a hopping term for the heavy electrons means they do not need the factor of ✏i but they
would need it in the corresponding Hubbard model. See appendix A.1 for a full derivation of
the particle-hole symmetry.

We will later add a long-range interaction between the localised electrons. At that point we will
replace the immobile fermions with a classical Ising field Si = 1

2
(1 � 2d†

i
di) = ±

1

2
which I will

refer to as the spins.

HFK = U
X

i

Si (c†
i
c
i
�

1

2
) � t

X

hi,ji

c†
i
c
j
. (2.2)

The FK model can be solved exactly with dynamic mean field theory in the infinite dimensional
limit [9–12]. In lower dimensional systems it has radically di↵erent behaviour, as we shall see.

2.1.2 Phase Diagrams

In dimensions greater than one, the FK model exhibits a phase transition at some U dependent
critical temperature Tc(U) to a low temperature ordered phase [14]. In terms of the heavy
electrons this corresponds to them occupying only one of the two sublattices A and B, known
as a Charge Density Wave (CDW) phase. In terms of spins, this is an antiferromagnetic phase.

In the disordered region above Tc(U), there are two insulating phases. For weak interactions
U << t, thermal fluctuations in the spins act as an e↵ective disorder potential for the fermions.
This causes them to localise, giving rise to an Anderson insulating (AI) phase [15] which we
will discuss more in section 2.3. For strong interactions U >> t, the spins are not ordered.
Nevertheless, their interaction with the electrons opens a gap, leading to a Mott insulator
analogous to that of the Hubbard model [16]. The presence of an interaction driven phase like
the Mott insulator in an exactly solvable model is part of what makes the FK model such an
interesting system.
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Figure 2.2: Schematic Phase diagram of the Falicov-Kimball model in dimensions two or more
At low temperature the classical fermions (spins) settle into an ordered charge density wave state
(antiferromagnetic state). The schematic diagram for the Hubbard model is the same. Reproduced
from [9, 13].

By contrast, in the 1D FK model there is no Finite-Temperature Phase Transition (FTPT) to an
ordered CDW phase [17]. Indeed, dimensionality is crucial for the physics of both localisation
and FTPTs. In 1D, disorder generally dominates: even the weakest disorder exponentially
localises all single particle eigenstates. In the 1D FK model, this means that the whole spectrum
is localised at all finite temperatures [18–20]. Although at low temperatures, the localisation
length may be so large that the states appear extended in finite sized systems [13]. Only longer-
range correlations of the disorder potential can potentially induce localisation-delocalisation
transitions in 1D [21–23].

The absence of finite temperature ordered phases in 1D systems is a general feature. It can be
understood as a consequence of the fact that domain walls are energetically cheap in 1D. Ther-
modynamically, short-range interactions just cannot overcome the entropy of thermal defects
in 1D. However, the addition of longer range interactions can overcome this [24, 25].

The absence of an FTPT in the short ranged FK chain is far from obvious because the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction mediated by the fermions [26–29] de-
cays as r�1 in 1D [30]. This could, in principle, induce the necessary long-range interactions for
the classical Ising background to order at low temperatures [24, 31]. However, Kennedy and
Lieb established rigorously that, at half-filling, a CDW phase only exists at T = 0 for the 1D
FK model [25].

The 1D FK model has been studied numerically, perturbatively in interaction strength U and
in the continuum limit [32]. The main results are that for attractive U > Uc the system forms
electron spin bound state ‘atoms’ which repel one another [33] and that the ground state phase
diagram has a fractal structure as a function of electron filling, a devil’s staircase [34, 35].

Based on this primacy of dimensionality, we will go digging into the 1D case. In chapter 3,
we will construct a generalised 1D FK model with long-range interactions, which induces the
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2.1. THE FALICOV KIMBALL MODEL

Figure 2.3: Domain walls in the 1D Ising model cost finite energy because they a↵ect only one
interaction. In the Long-Range Ising (LRI) model it depends on how the interactions decay with
distance.

otherwise forbidden CDW phase at non-zero temperature. To do this, we will draw on theory
of the Long-Range Ising (LRI) model which is the subject of the next section.

2.1.3 Long-Ranged Ising model

The suppression of phase transitions is a common phenomenon in 1D systems and the Ising
model serves as the canonical illustration of this. In terms of classical spins Si = ±1 the standard
Ising model reads

HI =
X

hiji

SiSj. (2.3)

Like the FK model, the Ising model shows an FTPT to an ordered state only in 2D and above.
This can be understood via Peierls’ argument [24, 25] to be a consequence of the low energy
penalty for domain walls in 1D systems.

Following Peierls’ argument, consider the di↵erence in free energy �F = �E � T�S between
an ordered state and a state with single domain wall as in fig. 2.3. If this value is negative, it
implies that the ordered state is unstable with respect to domain wall defects, and they will
thus proliferate, destroying the ordered phase. If we consider the scaling of the two terms with
system size L, we see that short range interactions produce a constant energy penalty �E for
a domain wall. In contrast, the number of such single domain wall states scales linearly with
system size so the entropy is / ln L. Thus, the entropic contribution dominates (eventually)
in the thermodynamic limit and no finite temperature order is possible. In 2D and above, the
energy penalty of a large domain wall scales like Ld�1 which is why they can support ordered
phases. This argument does not quite apply to the FK model because of the aforementioned
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1 3/2 2
Non-Extensive Short-RangedFinite Temperature Ordered Phase

Figure 2.4: The thermodynamic behaviour of the long-range Ising model HLRI = J
P

i 6=j
|i�j|

�↵
SiSj

as the exponent of the interaction ↵ is varied. In my simulations I stick to a value of ↵ = 5

4
to avoid

the complexity of non-universal critical exponents that arise above ↵ = 3

2

RKKY interaction. Instead, this argument will give us insight into how to recover an ordered
phase in the 1D FK model.

In contrast, the LRI model HLRI can have an FTPT in 1D.

HLRI =
X

ij

J(|i � j|)SiSj = J
X

i 6=j

|i � j|�↵SiSj. (2.4)

Renormalisation group analyses show that the LRI model has an ordered phase in 1D for
1 < ↵ < 2 [36]. Peierls’ argument can be extended [31] to long-range interactions to provide
intuition for why this is the case. Let’s consider again the energy di↵erence between the ordered
state | . . . """" . . .i and a domain wall state | . . . ""## . . .i. In the case of the LRI model, careful
counting shows that this energy penalty is

�E /

1X

n=1

nJ(n), (2.5)

because each interaction between spins separated across the domain by a bond length n can
be drawn between n equivalent pairs of sites. The behaviour then depends crucially on how
eq. (2.5) scales with system size. Ruelle proved rigorously for a very general class of 1D systems
that if �E or its many-body generalisation converges to a constant in the thermodynamic limit
then the free energy is analytic [37]. This rules out a finite order phase transition, though not
one of the Kosterlitz-Thouless type. Dyson also proved this, though with a slightly di↵erent
condition on J(n) [36].

With a power law form for J(n), there are a few cases to consider: For ↵ = 0 i.e., infinite range
interactions, the Ising model is exactly solvable and mean field theory is exact [38]. This limit is
the same as the infinite dimensional limit. For ↵  1 we have very slowly decaying interactions.
�E does not converge as a function of system size so the Hamiltonian is non-extensive, a topic
not without some considerable controversy [39–41] that I will not consider further here. For
1 < ↵ < 2, we get a phase transition to an ordered state at a finite temperature. This is what
we want! At the special point ↵ = 2, the energy of domain walls diverges logarithmically. This
turns out to be a Kostelitz-Thouless transition [31]. Finally, for ↵ > 2 we have very quickly
decaying interactions and domain walls again have a finite energy penalty. Hence, Peirels’
argument holds and there is no phase transition.

One final complexity is that for 3

2
< ↵ < 2 renormalisation group methods show that the

critical point has non-universal critical exponents that depend on ↵ [42]. To avoid this potential
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confounding factor we will park ourselves at ↵ = 1.25 when we apply these ideas to the FK
model.

Were we to extend this to arbitrary dimension d, we would find that, in general, both d and ↵
a↵ect the thermodynamic properties of the model. Long-range interactions essentially modify
the ‘e↵ective dimension’ of thermodynamic system [43].
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Figure 2.5: (a) The Kitaev honeycomb model is defined on a honeycomb lattice. The special feature
of the honeycomb lattice that makes the model solvable is that each vertex is joined by exactly three
bonds, i.e., the lattice is trivalent. One of three labels is assigned to each bond {x, y, z} here
represented by colour. (b) After transforming to the Majorana representation we get an emergent
gauge degree of freedom ujk = ±1 that lives on each bond, the bond variables. These are antisymmetric,
ujk = �ukj , so we represent them graphically with arrows on each bond that point in the direction
that ujk = +1. (c) The Majorana transformation, discussed later in the main text, can be visualised
as breaking each spin into four Majoranas bx

i
, b

y

i
, b

z

i
, ci. The b

x

i
, b

y

i
and b

z

i
Majoranas then pair along

the bonds forming conserved Z2 bond operators ujk = hib
↵

i
b
↵

j
i. The remaining ci operators form an

e↵ective quadratic Hamiltonian H = i

4

P
hi,ji↵ 2J↵

uij ĉiĉj .

2.2 The Kitaev Honeycomb Model

2.2.1 The Spin Hamiltonian

The Kitaev Honeycomb (KH) model is an exactly solvable model of interacting spin�1/2 spins
on the vertices of a honeycomb lattice. Each bond in the lattice is assigned a label ↵ 2 {x, y, z}
and couples two spins along the ↵ axis. See fig. 2.5 for a diagram of the setup.

This gives us the Hamiltonian
H = �

X

hj,ki↵

J↵�↵

j
�↵

k
, (2.6)

where �↵

j
is the ↵ component of a Pauli matrix acting on site j and hj, ki↵ is a pair of nearest-

neighbour indices connected by an ↵-bond with exchange coupling J↵. Kitaev introduced this
model in his seminal 2006 paper [44].

The KH can arise as the result of strong spin-orbit couplings in, for example, the transition
metal based compounds [45–49]. The model is highly frustrated: each spin would like to align
along a di↵erent direction with each of its three neighbours but this cannot be achieved even
classically [50, 51]. This frustration leads the model to have a Quantum Spin Liquid (QSL)
ground state, a complex many-body state with a high degree of entanglement but no long-
range magnetic order even at zero temperature. While the possibility of a QSL ground state
was suggested much earlier [52], the KH model was the first exactly solvable models of the QSL
state. The KH model has a rich ground state phase diagram with gapless and gapped phases, the
latter supporting fractionalised quasiparticles with both Abelian and non-Abelian quasiparticle
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The Hamiltonian

Loop Operators

Plaquette OperatorsBond Operators
The Kitaev Model, Visually

Bond Types

Figure 2.6: A visual introduction to the Kitaev Honeycomb (KH) model. In the spin representation,
bond operators kij = �

↵

i
�
↵

j
can be represented by arrows from site i to site j, from these we can form

the Hamiltonian and conserved plaquette and loop operators. Note that the bond operators are defined
di↵erently in the Majorana representation but the definitions coincide for closed loops of bonds.

excitations. Anyons have been the subject of much attention because, among other reasons, they
can be braided through spacetime to achieve noise tolerant quantum computations [53]. At finite
temperature the KH model undergoes a phase transition to a thermal metal state [54]. The
KH model can be solved exactly via a mapping to Majorana fermions. This mapping yields
an extensive number of static Z2 fluxes tied to an emergent gauge field with the remaining
fermions are governed by a free fermion hamiltonian.

This section will go over the standard model in detail, first discussing the spin model, then de-
tailing the transformation to a Majorana hamiltonian that allows a full solution while enlarging
the Hamiltonian. I will discuss the properties of the emergent gauge fields and the projector.
The next section will discuss anyons, topology and the Chern number, using the KH model as
an explicit example. I will then discuss the ground state found via Lieb’s theorem as well as
work on generalisations of the ground state to other lattices. Finally, I will present the phase
diagram.

2.2.2 The Spin Model

As discussed in the introduction, spin hamiltonians like that of the KH model arise in electronic
systems as the result the balance of multiple e↵ects [48]. For instance, in certain transition metal
systems with d5 valence electrons, crystal field and spin-orbit couplings conspire to shift and
split the d orbitals into moments with spin j = 1/2 and j = 3/2. Of these, the bandwidth t of
the j = 1/2 band is small, meaning that even relatively meagre electron correlations (such as
those induced by the U term in the Hubbard model) can lead to the opening of a Mott gap.
From there we have a j = 1/2 Mott insulator whose e↵ective spin-spin interactions are again
shaped by the lattice geometry and spin-orbit coupling leading some materials to have strong
bond-directional Ising-type interactions [55, 56]. In the KH model the bond directionality refers
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Figure 2.7: In the KH model, Wilson loop operators Ŵp =
Q

hi,ji↵ 2 p
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i
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j
can be composed via

multiplication to produce arbitrary contractible loops. As a consequence, we need only to keep track of
the value of the flux through each plaquette �i. This relationship between the uij around a region and
the fluxes inside it is evocative of Stokes’ theorem from classical electromagnetism. Indeed, it turns
out to be closely related as we shall see later.

to the fact that the coupling axis ↵ in terms like �↵

j
�↵

k
is strongly bond dependent.

In the spin hamiltonian eq. (2.6), we can already tease out a set of conserved fluxes that will
be key to the model’s solution. These fluxes are the expectations of Wilson loop operators

Ŵp =
Y

hi,ji↵ 2 p

�↵

i
�↵

j
, (2.7)

the products of bonds winding around a closed path p on the lattice. These operators commute
with the Hamiltonian and so have no time dynamics. The winding direction does not matter so
long as it is fixed. By convention, we will always use clockwise. Each closed path on the lattice is
associated with a flux. The number of conserved quantities grows linearly with system size and
is thus extensive. This is a common property for exactly solvable systems and can be compared
to the heavy electrons present in the Falicov-Kimball model. The square of two loop operators
is one so any contractible loop can be expressed as a product of loops around plaquettes of
the lattice, as in fig. 2.7. For the honeycomb lattice, the plaquettes are the hexagons. The
expectations of Ŵp through each plaquette, the fluxes, are therefore enough to describe the
whole flux sector. We will focus on these fluxes, denoting them by �i. Once we have made the
mapping to the Majorana Hamiltonian, I will explain how these fluxes can be connected to an
emergent B field which makes their interpretation as fluxes clear.

It is worth noting in passing that the e↵ective Hamiltonian for many Kitaev materials incor-
porates a contribution from an isotropic Heisenberg term

P
i,j
~�i · ~�j. This is referred to as the

Heisenberg-Kitaev model [57]. Materials for which the Kitaev term dominates are generally
known as Kitaev Materials. See [48] for a full discussion of Kitaev Materials.

As with the Falicov-Kimball model, the KH model has an extensive number of conserved quan-
tities, the fluxes. So again we will work in the simultaneous eigenbasis of the fluxes and the
Hamiltonian so that we can treat the fluxes like a classical degree of freedom. This is part of
what makes the model tractable. We will find that the ground state of the model corresponds
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to some particular choice of fluxes. We will refer to local excitations away from the flux ground
state as vortices. In order to fully solve the model however, we must first move to a Majorana
representation.

2.2.3 The Majorana Model

Majorana fermions are something like ‘half of a complex fermion’ and are their own antipar-
ticle. From a set of N fermionic creation f †

i
and anhilation fi operators, we can construct 2N

Majorana operators cm. We can do this construction in multiple ways subject to only mild con-
straints required to keep the overall commutations relations correct [44]. Majorana operators
square to one, but otherwise have standard fermionic anti-commutation relations.

N spins can be mapped to N fermions with the well-known Jordan-Wigner transformation and
indeed this approach can be used to solve the Kitaev model [58]. Here I will introduce the
method Kitaev used in the original paper as this forms the basis for the results that will be
presented in this thesis. Rather than mapping to N fermions, Kitaev maps to 4N Majoranas,
e↵ectively 2N fermions. In contrast to the Jordan-Wigner transformation which makes fermions
out of strings of spin operators in order to correctly produce fermionic commutation relations,
the Kitaev transformation maps each spin locally to four Majoranas. The downside is that this
enlarges the Hilbert space from 2N to 4N . We will have to employ a projector P̂ to come back
down to the physical Hilbert space later. As everything is local, I will drop the site indices ijk
in expressions that refer to only a single site.

The mapping is defined in terms of four Majoranas per site bx
i
, by

i
, bz

i
, ci such that

�̃x = ibxc, �̃y = ibyc, �̃z = ibzc. (2.8)

The tildes on the spin operators �̃i
↵ emphasise that they live in this new extended Hilbert

space and are only equivalent to the original spin operators after applying a projector P̂ . The
form of the projection operator can be understood in a few ways. From a group-theoretic
perspective, before projection, the operators {�̃x, �̃y, �̃z

} form a representation of the gamma
group G3,0. The gamma groups Gp,q have p generators that square to the identity and q that
square (roughly) to �1. The generators otherwise obey standard anticommutation relations.
The well-known gamma matrices {�0, �1, �2, �3

} represent G1,3 the quaternions G0,3 and the
Pauli matrices G3,0.

The Pauli matrices, however, have the additional property that the chiral element �x�y�z =
±i is not fully determined by the group properties of G3,0, but it is equal to i in the Pauli
matrices. Therefore, to fully reproduce the algebra of the Pauli matrices, we must project
into the subspace where �̃x�̃y�̃z = +i. The chiral element of the gamma matrices for instance
�5 = i�0�1�2�3 is of central importance in quantum field theory. See ref. [59] for more discussion
of this group theoretic view.

So the projector must project onto the subspace where �̃x�̃y�̃z = i. If we work this through,
we find that in general �̃x�̃y�̃z = iD where D = bxbybzc must be the identity for every site.
In other words, we can only work with physical states |�i that satisfy Di|�i = |�i for all sites
i. From this we construct an on-site projector Pi = 1+Di

2
and the overall projector is simply

P =
Q

i
Pi.
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Another way to see what this is doing physically is to explicitly construct the two intermediate
fermionic operators f and g that give rise to these four Majoranas. Denoting a fermion state
by |nf , ngi the Hilbert space is the set {|00i, |01i, |10i, |11i}. We can map these to Majoranas
with, for example, this definition

bx = (f + f †), by = �i(f � f †),

bz = (g + g†), c = �i(g � g†).
(2.9)

Working through the algebra, we see that the operator D = bxbybzc is equal to the fermion
parity D = �(2nf �1)(2ng �1) = ±1 where nf , ng are the number operators. So setting D = 1
everywhere is equivalent to restricting to the states {|01i and |10i}, though we could equally
well have used D = �1.

Expanding the product
Q

i
Pi out, we find that the projector corresponds to a symmetrisation

over {uij} states within a flux sector and overall fermion parity
Q

i
Di, see ref. [60] or appendix

A.6 for the full derivation. The significance of this is that an arbitrary many-body state can
be made to have non-zero overlap with the physical subspace via the addition or removal of
just a single fermion. This implies that, in the thermodynamic limit, the projection step is not
generally necessary to extract physical results

We can now rewrite the spin hamiltonian in Majorana form with the caveat that they are
only strictly equivalent after projection. The Ising interactions �↵

j
�↵

k
decouple into the form

�i(ib↵
i
b↵
j
)cicj. We factor out the bond operators ûij = ib↵

i
b↵
j

which are Hermitian and, remark-
ably, commute with the Hamiltonian and each other.

H̃ = �

X

hi,ji↵

J↵�̃↵

i
�̃↵

j

= i
X

hi,ji↵

J↵ûij ĉiĉj.
(2.10)

The bond operators ûij square to one so have eigenvalues ±1. As they are conserved we will
work in their eigenbasis and take o↵ the hats in the Hamiltonian.

H = i
X

hi,ji↵

J↵uij ĉiĉj. (2.11)

2.2.4 The Fermion Problem

We now have a quadratic Hamiltonian, eq. (2.11), coupled to a classical field uij. What follows
is relatively standard theory for quadratic Hamiltonians [61].

Because of the antisymmetry J↵uij, the eigenvalues of eq. (2.11) come in pairs ±✏m. We or-
ganise the eigenmodes of H into pairs, such that bm and b0

m
have energies ✏m and �✏m. The

transformation Q
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(c1, c2...c2N)Q = (b1, b
0
1
, b2, b

0
2
...bN , b0

N
), (2.12)

puts the Hamiltonian into normal mode form

H =
i

2

X

m

✏mbmb0
m

. (2.13)

The determinant of Q appears when evaluating the projector explicitly, otherwise, the bm are
merely an intermediate step. From them, we form fermionic operators

fi = 1

2
(bm + ib0

m
), (2.14)

with their associated number operators ni = f †
i
fi. These let us write the Hamiltonian neatly as

H =
X

m

✏m(nm �
1

2
). (2.15)

The energy of the ground state |nm = 0i of the many-body system at fixed {uij} is

E0 = �
1

2

X

m

✏m, (2.16)

and we can construct any state from a particular choice of nm = 0, 1. If we only care about the
ground state energy E0, it is possible to skip forming the fermionic operators. The eigenvalues
obtained directly from diagonalising J↵uij come in ±✏m pairs. We can take half the absolute
value of the set to recover

P
m
✏m directly.

2.2.5 An Emergent Gauge Field

We have transformed the spin Hamiltonian into a Majorana hamiltonian H = i
P

hi,ji↵ J↵uij ĉiĉj
describing the dynamics of a classical field uij and Majoranas ci. It is natural to ask how the
classical field uij relates to the fluxes of the original spin model. We can evaluate the fluxes �i

in terms of the bond operators

�i =
Y

hj,ki2Pi

iujk. (2.17)

In addition, the bond operators form a highly degenerate description of the system. The op-
erators Di = bx

i
by
i
bz
i
ci commute with H forming a set of local symmetries. The action of Di

on a state is to flip the values of the three uij bonds that connect to site i. This changes
the bond configuration {uij} but leaves the flux configuration {�i} unchanged. Physically, we
interpret uij as a gauge field with a high degree of degeneracy and {Di} as the set of gauge

38



CHAPTER 2. BACKGROUND

Figure 2.8: A honeycomb lattice with edges in grey, along with its dual, the triangle lattice in red.
The vertices of the dual lattice are the faces of the original lattice and, hence, are the locations of the
vortices. (Left) The action of the gauge operator Dj at a vertex is to flip the value of the three ujk

variables (black lines) surrounding site j. The corresponding edges of the dual lattice (red lines) form
a closed triangle. (Middle) Composing multiple adjacent Dj operators produces a large, closed dual
loop or multiple disconnected dual loops. Dual loops are not directed like Wilson loops. (Right) A
non-contractable loop which cannot be produced by composing Dj operators. All three operators can
be thought of as the action of a vortex-vortex pair that is created, one of them is transported around
the loop, and then the two annihilate again. Note that every plaquette has an even number of uijs
flipped on its edge. Therefore, all retain the same flux �i.

symmetries. Products of the gauge symmetries correspond to closed loops on the dual lattice,
see fig. 2.8. The Majorana bond operators uij are an emergent, classical, Z2 gauge field! The
flux configuration {�i} is what encodes physical information about the system without all the
gauge degeneracy.

The ground state of the KH model is the flux configuration where all fluxes are one {�i =
+1 8 i}. This can be proven via Lieb’s theorem [62] which gives the lowest energy magnetic
flux configuration for a system of electrons hopping in a magnetic field. Kitaev remarks in his
original paper that he was not initially aware of the relevance of Lieb’s 1994 result. This is not
surprising because at first glance the two models seem quite di↵erent. Yet the connection is
quite instructive for understanding the KH and its generalisations.

Lieb discussed a model of mobile electrons

H =
X

ij

tijc
†
i
cj, (2.18)

where the hopping terms tij = |tij| exp(i✓ij) incorporate Aharanhov-Bohm (AB) phases [63] ✓ij.
The AB phases model the e↵ect of a slowly varying magnetic field on the electrons through the
integral of the magnetic vector potential

✓ij =

Z
j

i

~A · d~l, (2.19)

a Peierls substitution [64]. If we map the Majorana form of the Kitaev model to Lieb’s model,
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±i �1 ⌥i +1 ±i

Figure 2.9: Lieb’s theorem gives the ground state flux configuration for even sided plaquettes in
systems with at least one translationally invariant direction [62]. These labels correspond to the Ki-
taev fluxes �i rather than the magnetic fluxes Qi of Lieb’s original paper (�i = exp{iQi}). Other
work has extended Lieb’s theorem numerically to arbitrary plaquettes [65–68]. The additional twofold
degeneracy of the ±i,⌥i terms is a consequence of the odd sided plaquettes breaking chiral symmetry.
Chiral symmetry is spontaneously broken in the ground state [66].

we see that our tij = iJ↵uij. The iuij = ±i correspond to AB phases ✓ij = ⇡/2 or 3⇡/2 along
each bond.

Stokes’ theorem tells us that the magnetic flux Qm through a surface S is related to the line
integral of ~A along the boundary of the surface @S, which in the discrete case reduces to the
sum of the AB phases along the path. We can thus rewrite eq. (2.17) as

�i =
Y

Pi

iujk

=
Y

Pi

exp{(i✓jk})

= exp

 
i
X

Pi

✓jk

!

= exp

✓
i

I

Pi

~A · d~l

◆

= exp (iQi) .

(2.20)

Thus, we can interpret the fluxes �i as the exponential of magnetic fluxes Qm of some fictitious
gauge field ~A and the bond operators as iuij = exp i

R
j

i

~A · d~l. In this analogy to classical
electromagnetism, the sets {uij} that correspond to the same {�i} are all gauge equivalent as
we have already seen via other means. The fact that fluxes can be written as products of bond
operators and composed is a consequence of eq. (2.20). If the lattice contains odd plaquettes, as
in the Yao-Kivelson model [69], the complex fluxes that appear are a sign that chiral symmetry
has been broken.

In full, Lieb’s theorem states that the ground state has magnetic flux Qi =
P

Pi
✓ij = ⇡ (mod 2⇡)

for plaquettes with 0 (mod 4) sides and 0 (mod 2⇡) for plaquettes with 2 (mod 4) sides. In
terms of our fluxes, this means � = �1 for squares, � = 1 for hexagons and so on.

While Lieb’s theorem is restricted to bipartite lattices with translational symmetry, other works
have shown numerically that it tends to hold for more general lattices too [65–68]. From this
we find that the generalisation to odd sided plaquettes is similar but with an additional chiral
symmetry. � = ±i for plaquettes with 1 (mod 4) sides and ⌥i for those with 3 (mod 4) sides.
Overall we can write
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Figure 2.10: Wilson loops that wind the major or minor diameters of the torus measure flux winding
through the hole of the doughnut/torus (red) or through the filling (green). If they made doughnuts
which had both had a jam filling and a hole, this analogy would be a lot easier to make [70].

� = �(±i)nsides . (2.21)

Later I will present numerical evidence that this rule continues to hold for general amorphous
lattices.

Understanding uij as a gauge field provides another way to understand the action of the projec-
tor. The local projector Pi = 1+Di

2
applied to a state constructs a superposition of the original

state and the gauge equivalent state linked to it by flipping the three uij around site i. The over-
all projector P =

Q
i
Pi can thus be understood as a symmetrisation over all gauge equivalent

states, removing the gauge degeneracy introduced by the mapping from spins to Majoranas.

A final but important point to mention is that the local fluxes �i are not quite all there is.
We’ve seen that products of �i can be used to construct the flux associated with arbitrary
contractible loops. On the plane contractible loops are all there is. However, on the torus we
can construct two global fluxes �x and �y which correspond to paths tracing the major and
minor axes. The four sectors spanned by the ±1 values of these fluxes are gapped away from one
another, but only by virtual tunnelling processes so the gap decays exponentially with system
size [44]. Physically �x and �y could be thought of as measuring the flux that threads through
the hole of the doughnut. In general, surfaces with genus g have g ‘handles’ and 2g of these
global fluxes. At first glance, it may seem that these fluxes would not have much relevance to
physical realisations of the Kitaev model which are likely to have a planar geometry. However,
these fluxes are closely linked to topology and the existence of anyonic quasiparticle excitations
in the model, which we will discuss next.

2.2.6 Anyons, Topology and the Chern number

To discuss di↵erent ground state phases of the KH model, we must first review the topic of
anyons and topology. The standard argument for the existence of fermions and bosons goes
like this: the quantum state of a system must pick up a factor of ±1 if two identical particles
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Figure 2.11: Worldlines of particles in 2D can become tangled or braided with one another.

are swapped. Only ±1 are allowed since swapping twice must correspond to the identity. This
argument works in 3D for states without topological degeneracy, which seems to be true of the
real world, but condensed matter systems are subject to no such constraints.

In gapped condensed matter systems, all equal time correlators decay exponentially with dis-
tance [71]. Put another way, gapped systems support quasiparticles with a definite location in
space and finite extent. As such it is meaningful to consider what would happen to the overall
quantum state if we were to adiabatically carry out a series of swaps as described above. This
is known as braiding. Recently, braiding in topological systems has attracted interest because
of proposals to use ground state degeneracy to implement both passively fault tolerant and
actively stabilised quantum computations [72–74].

First we realise that, in 2D, swapping identical particles twice is not topologically equivalent
to the identity, see fig. 2.11. Instead it corresponds to encircling one particle around the other.
This means we can in general pick up any complex phase ei✓ upon exchange, hence the name
any-ons. Those that pick up a complex phase are known as Abelian anyons because complex
multiplication commutes and hence the group of braiding operations on them forms an Abelian
group.

The KH model has a topologically degenerate ground state with sectors labelled by the values
of the topological fluxes (�x, �y). Consider the operation in which a quasiparticle pair is
created from the ground state, transported around one of the non-contractible loops, and then
annihilated together, call them Tx and Ty. These operations move the system around within
the ground state manifold and they need not commute. This leads to non-Abelian anyons. As
Kitaev pointed out, these operations are not specific to the torus: the operation TxTyT

�1

x
T

�1

y

corresponds to an operation in which none of the particles crosses the torus, rather one simply
winds around the other. Hence, these e↵ects are relevant even for the planar case!

In condensed matter systems, the existence of anyonic excitations automatically implies that
the system has topological ground state degeneracy on the torus [75] and indeed anyons and
topology are intimately linked [76–78]. The Chern number ⌫, was a concept originally used to
describe complex vector bundles in algebraic topology [79]. It has now found use in physics as a
powerful diagnostic tool for topological systems. Kitaev showed that there is a full classification
of anyonic statistics in terms of ⌫ (mod 16), but relevant to us is that vortices in the KH model
are Abelian when the Chern number is even and non-Abelian when the Chern number is odd.
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Figure 2.12: Setting the energy scale of the KH model with the constraint that Jx + Jy + Jz = 1
yields a triangular phase diagram where each of the corners represents J↵ = 1. For each corner ↵ the
region |J↵ > |J� |+ |J� | supports a gapped non-Abelian phase equivalent to that of the Toric code [72,
80]. The point around equal coupling Jx = Jy = Jz, the B phase, is gapless. The B phase is known
as a Majorana metal and on the honeycomb lattice it has a Dirac cone dispersion similar to that of
graphene.

Non-Abelian statistics of the vortices in the KH model arise due to unpaired Majorana modes
that are bound to them.

2.2.7 Ground State Phases

Setting the overall energy scale with the constraint Jx + Jy + Jz = 1 yields a triangular phase
diagram. In each of the corners one of the spin-coupling directions dominates, |J↵ > |J�|+ |J�|,
yielding three equivalent A↵ phases while the central triangle around Jx = Jy = Jz is called
the B phase. Both phases support two kinds of quasiparticles, fermions and Z2-vortices. In the
A phases, the vortices have bosonic statistics with respect to themselves but act like fermions
with respect to the fermions, hence they are Abelian anyons. This phase has the same anyonic
structure as the Toric code [72]. The B phase can be described as a semi-metal of the Majorana
fermions [48]. Since the B phase is gapless, the quasiparticles aren’t localised and so don’t have
braiding statistics.

An external magnetic can be used to break chiral symmetry. The lowest order term which
breaks chiral symmetry but retains the solvability of the model is the three spin term

X

(i,j,k)

�↵

i
��

j
��

k
, (2.22)

where the sum (i, j, k) runs over consecutive indices around plaquettes. The addition of this
to the spin model leads to two bond terms in the corresponding Majorana model. The e↵ect
of breaking chiral symmetry is to open a gap in the B phase. The vortices of the gapped B
phase are non-Abelian anyons. This phase has the same anyonic exchange statistics as px + ipy
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superconductor [81], the Moore-Read state for the ⌫ = 5/2 fractional quantum Hall state [82]
and many other systems [83–87]. Collectively these systems have attracted interest as possible
physical realisations for quantum computers whose operations are based on braiding operations.

At finite temperatures, recent work has shown that the KH model undergoes a transition to
a thermal metal phase. Vortex disorder causes the fermion gap to fill up and the DOS has
a characteristic logarithmic divergence at zero energy which can be understood from random
matrix theory [54].

To surmise, the KH model is remarkable because it combines three key properties. First, the
form of the Hamiltonian can plausibly be realised by a real material. Candidate materials, such
as ↵�RuCl3, are known to have su�ciently strong spin-orbit coupling and the correct lattice
structure to behave according to the KH model with small corrections [48, 88]. Second, its
ground state is the canonical example of the long sought after QSL state, its dynamical spin-
spin correlation functions are zero beyond nearest neighbour separation [89]. Its excitations are
anyons, particles that can only exist in 2D that break the normal fermion/boson dichotomy.
Third, and perhaps most importantly, this model is a rare many-body interacting quantum
system that can be treated analytically. It is exactly solvable. We can explicitly write down its
many-body ground states in terms of single particle states [44]. The solubility of the KH model,
like the FK model, comes about because the model has extensively many conserved degrees of
freedom. These conserved quantities can be factored out as classical degrees of freedom, leaving
behind a non-interacting quantum model that is easy to solve.
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2.3 Disorder and Localisation

Disorder is a fact of life for the condensed matter physicist. No sample will ever be completely
free of contamination or of structural defects. The classical Drude theory of electron conductiv-
ity envisages electrons as scattering o↵ impurities. In this model, one would expect the electrical
conductivity to be proportional to the mean free path [90], decreasing smoothly as the number
of defects increases. However, Anderson in 1958 [15] showed that in a simple model, there is
some critical level of disorder at which all single particle eigenstates localise.

What would later be known as Anderson localisation is characterised by exponentially localised
eigenfunctions  (x) ⇠ e�x/� which cannot contribute to transport processes. The localisation
length � is the typical scale of localised states and can be extracted with transmission matrix
methods [91]. Anderson localisation provided a di↵erent kind of insulator to that of the band
insulator.

The Anderson model is about the simplest model of disorder one could imagine

H = �t
X

hjki

c†
j
ck +

X

j

Vjc
†
j
cj. (2.23)

It is one of non-interacting fermions subject to a disorder potential Vj drawn uniformly from
the interval [�W, W ]. The discovery of localisation in quantum systems was surprising at the
time given the seeming ubiquity of extended Bloch states. Within the Anderson model, all the
states localise at the same disorder strength W . Later, Mott showed that in other contexts
extended Bloch states and localised states can coexist at the same disorder strength but at
di↵erent energies. The transition in energy between localised and extended states is known as
a mobility edge [92].

Localisation phenomena are strongly dimension dependent. In 3D the scaling theory of localisa-
tion [20, 93] shows that Anderson localisation is a critical phenomenon with critical exponents
both for how the conductivity vanishes with energy when approaching the mobility edge and
for how the localisation length increases below it. By contrast, in 1D disorder generally dom-
inates. Even the weakest disorder exponentially localises all single particle eigenstates in the
1D Anderson model. Only long-range spatial correlations of the disorder potential can induce
delocalisation [21–23, 94–96].

Later localisation was found in disordered interacting many-body systems:

H = �t
X

hjki

c†
j
ck +

X

j

Vjc
†
j
cj + U

X

jk

njnk. (2.24)

Here, in contrast to the Anderson model, localisation phenomena are robust to weak perturba-
tions of the Hamiltonian. This is called many-body localisation [97, 98].

Both many-body localisation and Anderson localisation depend crucially on the presence of
quenched disorder. Quenched disorder takes the form a static background field drawn from
an arbitrary probability distribution to which the model is coupled. Disorder may also be
introduced into the initial state of the system rather than the Hamiltonian. This has led to
ongoing interest in the possibility of disorder-free localisation where the disorder is instead
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annealed. In this scenario, the disorder necessary to generate localisation is generated entirely
from the thermal fluctuations of the model.

The concept of disorder-free localisation was first proposed in the context of Helium mix-
tures [99] and then extended to heavy-light mixtures in which multiple species with large mass
ratios interact. The idea is that the heavier particles act as an e↵ective disorder potential for
the lighter ones, inducing localisation. Two such models [100, 101] instead find that the models
thermalise exponentially slowly in system size, which Ref. [100] dubs Quasi-MBL.

True disorder-free localisation does occur in exactly solvable models with extensively many
conserved quantities [6]. As conserved quantities have no time dynamics, this can be thought of
as taking the separation of timescales to the infinite limit. The localisation phenomena present
in the Falicov-Kimball model are instead the result of annealed disorder. A strong separation of
timescales means that the heavy species is approximated as immobile with respect to the lighter
itinerant species. At finite temperature the heavy species acts as a disorder potential for the
lighter one. However, in contrast to quenched disorder, the probability distribution of annealed
disorder is entirely determined by the thermodynamics of the Hamiltonian. In the 2D FK model
this leads to multiple phases where localisation e↵ects are relevant. At low temperatures, the
heavy species orders to a symmetry broken CDW phase, leading to a traditional band gap
insulator. At higher temperatures, however, thermal disorder causes the light species to localise.
At weak coupling, the localisation length can be very large, so finite sized systems may still
conduct, an e↵ect known as weak localisation [13].

In Chapter 3 we will consider a generalised FK model in 1D and study how the disorder
generated near a 1D thermodynamic phase transition interacts with localisation physics.

2.3.1 Topological Disorder

So far we have considered disorder as a static or dynamic field coupled to a model defined on
a translation invariant lattice. Another kind of disordered system that is worthy of study are
amorphous systems. Amorphous systems have disordered bond connectivity, so called topological
disorder. As discussed in the introduction these include amorphous semiconductors such as
amorphous germanium and silicon [102–105]. While materials do not have long-range lattice
structure they can enforce local constraints such as the approximate coordination number z = 4
of silicon.

Topological disorder can be qualitatively di↵erent from other disordered systems. Disordered
graphs are constrained by fixed coordination number and the Euler equation. A standard
method for generating such graphs with coordination number d+1 is Voronoi tessellation [106,
107]. The Harris [108] and the Imry-Mar [109] criteria are key results on the e↵ect of disorder
on thermodynamic phase transitions. The Harris criterion signals when disorder will a↵ect the
universality of a thermodynamic critical point while the Imry-Ma criterion simply forbids the
formation of long-range ordered states in d  2 dimensions in the presence of disorder. Both
these criteria are modified for the case of topological disorder. This is because the Euler equa-
tion and vertex degree constraints lead to strong anti-correlations which mean that topological
disorder is e↵ectively weaker than standard disorder in 2D [110, 111]. This does not apply to 3D
Voronoi lattices where the Euler equation contains an extra volume term and so is e↵ectively
a weaker constraint. It is worth exploring how QSLs and disorder interact. The KH model has
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Figure 2.13: A localised state  in a potential well that has formed from random fluctuations in
the disorder potential V (x). The localisation length � governs how quickly the state decays away from
the well while the diameter R of the state is controlled by the size of the well. Reproduced from [20].

been studied subject to both flux [112] and bond [113] disorder. In some instances it seems that
disorder can even promote the formation of a QSL ground state [114]. It has also been shown
that the KH model exhibits disorder-free localisation after a quantum quench [115].

In chapter 4 we will put the Kitaev model onto 2D Voronoi lattices and show that much of the
rich character of the model is preserved despite the lack of long-range order.

2.3.2 Diagnosing Localisation in practice

Looking at practical tools for diagnosing localisation, there are a few standard methods [20].

The most direct method would be to fit a function of the form  (x) = f(x)e�|x�x0|/� to each
single particle wavefunction to extract the localisation length �. This method is little used
in practice since it requires storing and processing full wavefunctions which quickly becomes
computationally expensive for large systems.

For low dimensional systems with quenched disorder, transfer matrix methods can be used to
directly extract the localisation length. These work by turning the time independent Schrödinger
equation Ĥ| i = E| i into a matrix equation linking the amplitude of  on each d � 1
dimensional slice of the system to the next and looking at average properties of this transmission
matrix. This method is less useful for systems like the FK model where the disorder as a whole
must be sampled from the thermodynamic ensemble.

A more versatile method is based on the Inverse Participation Ratio (IPR). The IPR is defined
for a normalised wave function  i =  (xi),

P
i
| i|

2 = 1 as its fourth moment [20]:

P�1 =
X

i

| i|
4. (2.25)

The name derives from the fact that this operator acts as a measure of the volume where
the wavefunction is significantly di↵erent from zero. They can alternatively be thought of as
providing a measure of the average diameter R from R = P 1/d. See fig. 2.13 for the distinction
between R and �.
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For localised states, the inverse participation ratio P�1 is independent of system size while
for plane wave states in d dimensions P�1 = L�d. States may also be intermediate between
localised and extended, described by their fractal dimensionality d > d⇤ > 0:

P (L)�1
⇠ L�d⇤. (2.26)

Such intermediate states tend to appear as critical phenomena near mobility edges [116]. For
finite size systems, these relations only hold once the system size L is much greater than the
localisation length. When the localisation length is comparable to the system size, the states
still contribute to transport, this is the aforementioned weak localisation e↵ect [117, 118].

In the following two chapters I will use an energy resolved IPR

DOS(!) =
X

n

�(! � ✏n)

IPR(!) = DOS(!)�1
X

n,i

�(! � ✏n)| n,i|
4,

(2.27)

where  n,i is the wavefunction corresponding to the energy ✏n at the ith site. In practice I bin
the IPRs into finely spaced bins in energy space and use the mean IPR within each bin.

Chapter Summary

In this chapter we have covered the Falicov-Kimball model, the Kitaev Honeycomb model
and the theory of disorder and localisation. We saw that the FK model is one of immobile
species (spins) interacting with an itinerant quantum species (electrons). While the KH model
is specified in terms of spins on a honeycomb lattice interacting via a highly anisotropic Ising
coupling, it can be transformed into one of Majorana fermions interacting with a classical gauge
field that supports immobile flux excitations. In each case, it is the immobile species that make
the model exactly solvable. Both models have rich ground states and thermodynamic phase
diagrams. The last part of this chapter dealt with disorder and how it almost inevitably leads
to localisation. Both the FK and KH models are e↵ectively disordered at finite temperatures
by their immobile species. In the next chapter we will look at a version of the FK model in
1D augmented with long-range interactions in order to retain its ordered phase. The model is
translation invariant but we will see that it exhibits disorder-free localisation. After that we
will look at the KH model defined on an amorphous lattice with vertex degree z = 3.
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3.1. THE MODEL

Contributions

This chapter expands on work presented in

[1] One-dimensional long-range Falicov-Kimball model: Thermal phase transition and disorder-
free localization, Hodson, T. and Willsher, J. and Knolle, J., Phys. Rev. B, 104, 4, 2021,

The code is available online [2].

Johannes had the initial idea to use a long-range Ising term to stabilise order in a 1D Falicov-
Kimball model. Josef developed a proof of concept during a summer project at Imperial along
with Alexander Belcik. I wrote the simulation code and performed all the analysis presented
here.

Chapter Summary

This chapter is organised as follows. First, I will introduce the Long-Range Falicov-Kimball
(LRFK) model and motivate its definition. Second, I will present the methods used to solve
it numerically, including Markov chain Monte Carlo and finite size scaling. I will then present
and interpret the results obtained.

3.1 The Model

Dimensionality is crucial for the physics of both localisation and phase transitions. We have
already seen that the 1D standard Falicov-Kimball (FK) model cannot support an ordered phase
at finite temperatures and therefore has no Finite-Temperature Phase Transition (FTPT).

On bipartite lattices in dimensions two and above, the FK model exhibits a finite temperature
phase transition to an ordered Charge Density Wave (CDW) phase [3]. In this phase, the spins
order anti-ferromagnetically, breaking the Z2 symmetry. In 1D, however, Peierls’s argument [4,
5] states that domain walls only introduce a constant energy penalty into the free energy while
bringing an entropic contribution logarithmic in system size. Hence, the 1D model does not
have a finite temperature phase transition. However, 1D systems are much easier to study
numerically and admit simpler realisations experimentally. We therefore introduce a long-range
coupling between the ions in order to stabilise a CDW phase in 1D.

We interpret the FK model as a model of spinless fermions, c†
i
, hopping on a 1D lattice against

a classical Ising spin background, Si 2 ±
1

2
. The fermions couple to the spins via an onsite

interaction with strength U which we supplement by a long-range interaction,

Jij = 4J (�1)|i�j|
|i � j|�↵, (3.1)

between the spins, see fig. 3.1. The additional coupling is very similar to that of the long-range
Ising (LRI) model. It stabilises the antiferromagnetic (AFM) order of the Ising spins which
promotes the finite temperature CDW phase of the fermionic sector.
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Figure 3.1: The Long-Range Falicov-Kimball (LRFK) Model is a model of classical spins Si coupled
to spinless fermions ĉi where the fermions are mobile with hopping t and the fermions are coupled to
the spins by an Ising type interaction with strength U . The di↵erence from the standard FK model is
the presence of a long-range interaction between the spins JijSiSj .

The hopping strength of the electrons, t = 1, sets the overall energy scale and we concentrate
throughout on the particle-hole symmetric point at zero chemical potential and half-filling [6].

HFK = U
X

i

Si (c†
i
c
i
�

1

2
) � t

X

i

(c†
i
c
i+1

+ h.c.)

+
NX

i,j

JijSiSj.
(3.2)

Without proper normalisation, the long-range coupling would render the critical temperature
strongly system size dependent for small system sizes. Within a mean field approximation, the
critical temperature scales with the e↵ective coupling to all the neighbours of each site, which
for a system with N sites is

P
N

i=1
i�↵. Hence, the normalisation �1 =

P
N

i=1
i�↵, renders the

critical temperature independent of system size in the mean field approximation. This greatly
improves the finite size behaviour of the model.

Taking the limit U = 0 decouples the spins from the fermions, which gives a spin sector governed
by a classical long-range Ising model. Note, the transformation of the spins Si ! (�1)iSi maps
the AFM model to the FM one. As discussed in the background section, Peierls’ classic argument
can be extended to long-range couplings to show that, for the 1D LRI model, a power law decay
of ↵ < 2 is required for a FTPT. This is because the energy of defect domain scales with the
system size when the interactions are long-range and can overcome the entropic contribution.
A renormalisation group analysis supports this finding and shows that the critical exponents
are only universal for ↵  3/2 [7–9]. In the following, we choose ↵ = 5/4 to avoid the additional
complexity of non-universal critical points.
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Figure 3.2: Two Markov Chain Monte Carlo (MCMC) walks starting from the CDW state for
a system with N = 100 sites and 10,000 MCMC steps but at a temperature close to but above
the ordered state (left column) and much higher than it (right column). In this simulation, only a
single spin can be flipped per step according to the Metropolis-Hastings Algorithm. The staggered
magnetisation m = N

�1
P

i
(�1)i Si order parameter is plotted below. At both temperatures the

thermal average of m is zero, while the initial state has m = 1. The higher temperature allows the
MCMC to converge more quickly and to fluctuate about the mean with a shorter autocorrelation time.
t = 1,↵ = 1.25, T = 2.5, 5, J = U = 5

3.2 Methods

To evaluate thermodynamic averages, I perform classical Markov Chain Monte Carlo random
walks over the space of spin configurations of the LRFK model, at each step diagonalising the
e↵ective electronic Hamiltonian [3]. Using a Binder-cumulant method [10, 11], I demonstrate
that the model has a finite temperature phase transition when the interaction is su�ciently
long-ranged. In this section I will discuss the thermodynamics of the model and how they are
amenable to an exact Markov Chain Monte Carlo method.

3.2.1 Thermodynamics of the LRFK Model

A classical Markov Chain Monte Carlo (MCMC) method allows us to solve our LRFK model
e�ciently, yielding unbiased estimates of thermal expectation values, see fig. 3.2.

Since the spin configurations are classical, the LRFK Hamiltonian can be split into a classical
spin part Hs and an operator valued part Hc.

Hs = �
U

2
Si +

NX

i,j

JijSiSj

Hc =
X

i

USic
†
i
c
i
� t(c†

i
c
i+1

+ c†
i+1

c
i
).

(3.3)

The partition function can then be written as a sum over spin configurations, ~S = (S0, S1...SN�1):
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Z = Tre��H =
X

~S

e��HsTrce
��Hc . (3.4)

The contribution of Hc to the grand canonical partition function can be obtained by performing
the sum over eigenstate occupation numbers giving ��Fc[~S] =

P
k
ln (1 + e��✏k) where ✏k[~S] are

the eigenvalues of the matrix representation of Hc determined through exact diagonalisation.
This gives a partition function containing a classical energy which corresponds to the long-range
interaction of the spins, and a free energy which corresponds to the quantum subsystem

Z =
X

~S

e��HS [~S]��Fc[~S] =
X

~S

e��E[~S]. (3.5)

3.2.2 Markov Chain Monte Carlo and Emergent Disorder

Classical MCMC defines a weighted random walk over the spin states (~S0, ~S1, ~S2, ...), such that
the likelihood of visiting a particular state converges to its Boltzmann probability p(~S) =
Z

�1e��E. Hence, any observable can be estimated as a mean over the states visited by the
walk [12–14],

hOi =
X

~S

p(~S)hOi~S

=
MX

i=0

hOi~Si
± O(M�1

2 ),

(3.6)

where the former sum runs over the entire state space while the latter runs over all the states
visited by a particular MCMC run,

hOi~S =
X

⌫

nF (✏⌫)hOi⌫, (3.7)

where ⌫ runs over the eigenstates of Hc for a particular spin configuration and nF (✏) =�
e��✏ + 1

��1

is the Fermi function.

The choice of the transition function for MCMC is under-determined as one only needs to
satisfy a set of balance conditions for which there are many solutions [15]. Here, we incorporate
a modification to the standard Metropolis-Hastings algorithm [16] gleaned from Krauth [17].

The standard algorithm decomposes the transition probability into T (a ! b) = p(a ! b)A(a !

b). Here, p is the proposal distribution, that we can directly sample from, while A is the
acceptance probability. The standard Metropolis-Hastings choice is

A(a ! b) = min

✓
1,

p(b ! a)

p(a ! b)
e���E

◆
, (3.8)
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with �E = Eb � Ea. The walk then proceeds by sampling a state b from p and moving to
b with probability A(a ! b). The latter operation is typically implemented by performing a
transition if a uniform random sample from the unit interval is less than A(a ! b) and otherwise
repeating the current state as the next step in the random walk. The proposal distribution is
often symmetric, so it does not appear in A. Here, we flip a small number of sites in b at random
to generate proposals, which is a symmetric proposal.

In our computations [2], we employ a modification to this algorithm based on the observation
that the free energy of the FK system is composed of a classical part which is much quicker
to compute than the quantum part. Hence, we can obtain a computational speed up by first
considering the value of the classical energy di↵erence �Hs and rejecting the transition if the
former is too high. We only compute the quantum energy di↵erence �Fc if the transition is
accepted. We then perform a second rejection sampling step based upon it. This corresponds
to two nested comparisons with the majority of the work only occurring if the first test passes.
This modified scheme has the acceptance function

A(a ! b) = min
�
1, e���Hs

�
min

�
1, e���Fc

�
. (3.9)

For the model parameters used, we find that with our new scheme the matrix diagonalisation is
skipped around 30% of the time at T = 2.5 and up to 80% at T = 1.5. We observe that for N =
50, the matrix diagonalisation, if it occurs, occupies around 60% of the total computation time
for a single step. This rises to 90% at N = 300 and further increases for larger N. We therefore
get the greatest speedup for large system sizes at low temperature where many prospective
transitions are rejected at the classical stage and the matrix computation takes up the greatest
fraction of the total computation time. The upshot is that we find a speedup of up to a factor
of 10 at the cost of very little extra algorithmic complexity.

Our two-step method should be distinguished from the more common method for speeding up
MCMC, which is to add asymmetry to the proposal distribution to make it as similar as possible
to min

�
1, e���E

�
. This reduces the number of rejected states, which brings the algorithm closer

in e�ciency to a direct sampling method. However, it comes at the expense of requiring a way to
directly sample from this complex distribution. This is a problem which MCMC was employed
to solve in the first place. For example, recent work trains restricted Boltzmann machines
(RBMs) to generate samples for the proposal distribution of the FK model [18]. The RBMs are
chosen as a parametrisation of the proposal distribution that can be e�ciently sampled from,
while o↵ering su�cient flexibility that they can be adjusted to match the target distribution.
Our proposed method is considerably simpler and does not require training while still reaping
some of the benefits of reduced computation.

3.2.3 Scaling

To improve the scaling of finite size e↵ects, we make the replacement |i�j|�↵
! |f(i�j)|�↵, in

both Jij and , where f(x) = N

⇡
sin ⇡x

N
. f is smooth across the circular boundary and its e↵ect

diminished for larger systems [19]. We only consider even system sizes given that odd system
sizes are not commensurate with a CDW state.

To identify critical points, I use the Binder cumulant UB defined by
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Figure 3.3: (Left) The order parameters, hm
2
i (solid) and 1 � f (dashed) describing the onset of

the charge density wave phase of the LRFK model at low temperature with staggered magnetisation
m = N

�1
P

i
(�1)iSi and fermionic order parameter f = 2N�1

|
P

i
(�1)i hc

†
i
c
i
|i . (Right) The crossing

of the Binder cumulant, B = hm
4
i/hm

2
i
2, with system size provides a diagnostic that the phase

transition is not a finite size e↵ect, it is used to estimate the critical lines shown in the phase diagram
later. All plots use system sizes N = [10, 20, 30, 50, 70, 110, 160, 250] and lines are coloured from N = 10
in dark blue to N = 250 in yellow. The parameter values U = 5, J = 5, ↵ = 1.25 except where
explicitly mentioned.

UB = 1 �
hµ4i

3hµ2i
2
, (3.10)

where µn = h(m � hmi)ni are the central moments of the order parameter m =
P

i
(�1)i(2ni �

1)/N . The Binder cumulant evaluated against temperature is a diagnostic for the existence
of a phase transition. If multiple such curves are plotted for di↵erent system sizes, a crossing
indicates the location of a critical point while the lines do not cross for systems that don’t have
a phase transition in the thermodynamic limit [10, 11].
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Figure 3.4: Phase diagrams of the 1D long-range Falicov-Kimball model. (Left) The TJ plane at
U = 5: the CDW ordered phase is separated from a disordered Mott insulating phase by a critical
temperature Tc, linear in J . (Right) On the TU plane at J = 5, the disordered phase is split into two.
At large U there is a Mott insulator phase characterised by the presence of a gap at E = 0 in the single
particle energy spectrum. At small U there is an Anderson phase characterised by the absence of a
gap. Uc is independent of temperature indicating that the FTPT is primarily driven by the long-range
coupling term in J . At U = 0 the fermions are decoupled from the spins forming a simple Fermi gas.

3.3 Results

Looking at the results of our MCMC simulations, we find a rich phase diagram with a CDW
FTPT and interaction-tuned Anderson versus Mott localised phases similar to the 2D FK
model [20]. We explore the localisation properties of the fermionic sector and find that the
localisation lengths vary dramatically across the phases and for di↵erent energies. The results
at moderate system sizes indicate the coexistence of localised and delocalised states within the
CDW phase. We then introduce a model of uncorrelated binary disorder on a CDW background.
This disorder model gives quantitatively similar behaviour to the LRFK model but we are able
to simulate it on much larger systems. For these larger system sizes, we find that all states
are eventually localised with a localisation length which diverges towards zero temperature
indicating that the results at moderate system size suggestive of coexistence were due to weak
localisation e↵ects.

3.3.1 Phase Diagram

Using the MCMC methods described in the previous section, I will now discuss the results of
extensive MCMC simulations of the model, starting with the phase diagram in the fermion spin
coupling U , the strength of the long-range spin-spin coupling J , and the temperature T .

Figure 3.4 shows the phase diagram for constant U = 5 and constant J = 5, respectively.
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Figure 3.5: Energy resolved DOS(!) against system size N in all three phases. The Charge Density
Wave (CDW) phase is shown in both the high and low U regime for completeness. The top left panel
shows the Anderson phase at U = 2 and high T = 2.5, this phase is gapless, but does not conduct
due to Anderson localisation. In the lower left pane at U = 2 and low T = 1.5, CDW order sets in,
allowing the single particle eigenstates to become extended but opening a gap in their band structure.
In the upper right panel at U = 5 and high T = 2.5, the states are localised by disorder and an
interaction driven gap opens. This is a Mott insulator. Finally, the CDW phase at U = 5 and T = 1.5
is qualitatively similar to the lower left panel except that the gap scales with U . For all the plots
J = 5, ↵ = 1.25.

The transition temperatures were determined from the crossings of the Binder cumulants B4 =
hm4

i/hm2
i
2 [10].

The CDW transition temperature is largely independent from the strength of the interaction
U . This demonstrates that the phase transition is driven by the long-range term J with little
e↵ect from the coupling to the fermions U . The physics of the spin sector in the LRFK model
mimics that of the LRI model and is not significantly altered by the presence of the fermions.
In 2D the transition to the CDW phase is mediated by an RKYY-like interaction [21]. However,
this is insu�cient to stabilise long-range order in 1D. That the critical temperature Tc does not
depend on U in our model further confirms this.

The main order parameter for this model is the staggered magnetisation m = N�1
P

i
(�1)iSi

that signals the onset of a CDW phase at low temperature. However, my main interest con-
cerns the additional structure of the fermionic sector in the high temperature phase. Following
Ref. [20], we can distinguish between the Mott and Anderson insulating phases. The Mott in-
sulator is characterised by a gapped DOS in the absence of a CDW, instead the gap is driven
entirely by interaction e↵ect. Thus, the opening of a gap for large U is distinct from the gap-
opening induced by the translational symmetry breaking in the CDW state below Tc. The
Anderson phase is gapless but, as we explain below, shows localised fermionic eigenstates. It
therefore has an insulating character.
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Figure 3.6: The IPR(!) scaling with N at fixed energy for each phase and for points both in the gap
(!0) and in a band (!1). The slope of the line yields the scaling exponent ⌧ defined by IPR / N

�⌧ .
⌧ close to zero implies that the states at that energy are localised while ⌧ = �d corresponds to
extended states where d is the system dimension. All but the bands of the charge density wave
phase are approximately localised with ⌧ is very close to zero. The bands in the charge density wave
phase are localised with long localisation lengths at finite temperatures that extend to infinity as the
temperature approaches zero. For all the plots J = 5, ↵ = 1.25. The measured ⌧0, ⌧1 for each figure are:
(a) 0.06±0.01, 0.02±0.01 (b) 0.04±0.02, 0.00±0.01 (c) 0.05±0.03, 0.30±0.03 (d) 0.06±0.04, 0.15±0.05
We show later that the apparent slight scaling of the IPR with system size in the localised cases can
be explained by finite size e↵ects due to the changing defect density with system size rather than due
to delocalisation of the states.

3.3.2 Localisation Properties

The MCMC formulation suggests viewing the spin configurations as a form of annealed binary
disorder whose probability distribution is given by the Boltzmann weight e��HS [~S]��Fc[~S]. This
makes apparent the link to the study of disordered systems and Anderson localisation. These
systems are typically studied by defining the probability distribution for the quenched disorder
potential externally. Here, by contrast, we have a translation invariant system with disorder as
a natural consequence of the Ising background field conserved by the dynamics.

In the limits of zero and infinite temperature, our model becomes a simple tight-binding model
for the fermions. At zero temperature, the spin background is in one of the two translation
invariant AFM ground states with two gapped fermionic CDW bands at energies

E± = ±

r
1

4
U2 + 2t2(1 + cos ka)2 . (3.11)

At infinite temperature, all the spin configurations become equally likely and the fermionic
model reduces to one of binary uncorrelated disorder in which all eigenstates are Anderson
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Figure 3.7: The DOS (a) and scaling exponent ⌧ (b) as a function of energy for the CDW to gapped
Mott phase transition at U = 5. Regions where the DOS is close to zero are shown in white. The scaling
exponent ⌧ is obtained from fits to IPR(N) = AN

�� for a range of system sizes. J = 5, ↵ = 1.25

localised [22]. An Anderson localised state, centred around r0, has magnitude that drops expo-
nentially over some localisation length ⇠ i.e., | (r)|2 ⇠ exp{�|r � r0|/⇠}. Calculating ⇠ directly
is numerically demanding. Therefore, we determine if a given state is localised via the energy-
resolved IPR and the DOS defined as

DOS(~S,!) = N�1
X

i

�(✏i � !)

IPR(~S,!) = N�1DOS(~S,!)�1
X

i,j

�(✏i � !)  4

i,j
,

(3.12)

where ✏i and  i,j are the ith energy level and jth element of the corresponding eigenfunction,
both dependent on the background spin configuration ~S.

The scaling of the IPR with system size IPR / N�⌧ depends on the localisation properties of
states at that energy. For delocalised states, e.g. Bloch waves, ⌧ is the physical dimension. For
fully localised states ⌧ goes to zero in the thermodynamic limit. However, for special types of
disorder, such as binary disorder, the localisation lengths can be large, comparable to the system
size. This can make it di�cult to extract the correct scaling. An additional complication arises
from the fact that the scaling exponent may display intermediate behaviours for correlated
disorder and in the vicinity of a localisation-delocalisation transition [23, 24]. The thermal
defects of the CDW phase lead to a binary disorder potential with a finite correlation length.
The key question for our system is then: How is the T = 0 CDW phase with fully delocalised
fermionic states connected to the fully localised phase at high temperatures?

For a representative set of parameters covering all three phases, fig. 3.5 shows the density of
states as function of energy while fig. 3.6 shows ⌧ , the scaling exponent of the IPR with system
size. The DOS is symmetric about 0 because of the particle hole symmetry of the model. At
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Figure 3.8: The DOS (a) and scaling exponent ⌧ (b) as a function of energy for the CDW phase to
the gapless Anderson insulating phase at U = 2. Regions where the DOS is close to zero are shown in
white. The scaling exponent ⌧ is obtained from fits to IPR(N) = AN

�� for a range of system sizes.
J = 5, ↵ = 1.25

high temperatures, all of the eigenstates are localised in both the Mott and Anderson phases
(with ⌧  0.07 for our system sizes). We also checked that the states are localised by direct
inspection. Note that there are in-gap states, for instance at !0, below the upper band which
are localised and smoothly connected across the phase transition.

In the CDW phases, at U = 2 and U = 5, we find that states within the gapped CDW bands,
e.g. at !1, have scaling exponents ⌧ = 0.30 ± 0.03 and ⌧ = 0.15 ± 0.05, respectively. This
surprising finding suggests that the CDW bands are partially delocalised with multi-fractal
behaviour of the wavefunctions [24]. This phenomenon would be unexpected in a 1D model as
they generally do not support delocalisation in the presence of disorder except as the result of
correlations in the emergent disorder potential [25, 26]. However, we show later, by comparison
to an uncorrelated Anderson model, that these nonzero exponents are a finite size e↵ect and
the states are localised with a finite ⇠ similar to the system size. This is an example of weak
localisation. As a result, the IPR does not scale correctly until the system size has grown much
larger than ⇠. Figure 3.10 shows that the scaling of the IPR in the CDW phase does flatten out
eventually.

Next, we use the DOS and the scaling exponent ⌧ to explore the localisation properties over
the energy-temperature plane in fig. 3.8 and fig. 3.7. Gapped areas are shown in white, which
highlights the distinction between the gapped Mott phase and the ungapped Anderson phase.
In-gap states appear just below the critical point, smoothly filling the bandgap in the Anderson
phase and forming islands in the Mott phase. As in the finite [27] and infinite dimensional [28]
cases, the in-gap states merge and are pushed to lower energy for decreasing U as the T = 0
CDW gap closes. Intuitively, the presence of in-gap states can be understood as a result of
domain wall fluctuations away from the AFM ordered background. These domain walls act as
local potentials for impurity-like bound states [27].
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Figure 3.9: A comparison of the full FK model to a simple binary disorder model with a CDW wave
background perturbed by uncorrelated defects at density 0 < ⇢ < 1 matched to the ⇢ for the largest
corresponding FK model. As in fig. 3.5, the Energy resolved DOS(!) is shown. The DOSs match well
implying that correlations in the CDW wave fluctuations are not relevant at these system parameters.

To understand the localisation properties we can compare the behaviour of our model with that
of a simpler Anderson disorder model in which the spins are replaced by a CDW background
with uncorrelated binary defect potentials. This is defined by replacing the spin degree of
freedom in the FK model Si = ±

1

2
with a disorder potential di = ±

1

2
controlled by a defect

density ⇢ such that di = �
1

2
with probability ⇢/2 and di = 1

2
otherwise. ⇢/2 is used rather than

⇢ so that the disorder potential takes on the zero temperature CDW ground state at ⇢ = 0 and
becomes a random choice over spin states at ⇢ = 1 i.e., the infinite temperature limit.

HDM = U
X

i

(�1)i di (c†
i
c
i
�

1

2
)

� t
X

i

c†
i
c
i+1

+ c†
i+1

c
i
,

(3.13)

Figures -fig. 3.9 and -fig. 3.10 compare the FK model to the disorder model at di↵erent system
sizes, matching the defect densities of the disorder model to the FK model at N = 270 above and
below the CDW transition. We find very good, even quantitative, agreement between the FK
and disorder models. This suggests that correlations in the spin sector do not play a significant
role.

As we can sample directly from the disorder model, rather than through MCMC, the samples
are uncorrelated. Hence we can evaluate much larger system sizes with the disorder model.
This enables us to pin down the correct localisation e↵ects. In particular, what appear to be
delocalised states for small system sizes eventually turn out to be states with large localisation
length. The localisation length diverges towards the ordered zero temperature CDW state. The
interplay of interactions, which here produces a binary potential, and localisation can be very
intricate and the added advantage of a 1D model is that we can explore very large system sizes.
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Figure 3.10: A comparison of the full FK model to a simple binary disorder model with a CDW wave
background perturbed by uncorrelated defects at density 0 < ⇢ < 1 matched to the ⇢ for the largest
corresponding FK model. As in fig. 3.6 ⌧(!) the scaling of IPR(!) with system size, is shown both in
gap (!0) and in the band (!1). This data makes clear that the apparent scaling of IPR with system size
at small sizes is a finite size e↵ect due to weak localisation [20]. Hence all the states are indeed localised
as one would expect in 1D. The disorder model ⌧0, ⌧1 for each figure are: (a) 0.01 ± 0.05,�0.02 ± 0.06
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3.4 Discussion and Conclusion

The FK model is one of the simplest non-trivial models of interacting fermions. I studied its
thermodynamic and localisation properties brought down in dimensionality to 1D by adding a
novel long-ranged coupling designed to stabilise the CDW phase present in dimension two and
above.

My MCMC approach emphasises the presence of a disorder-free localisation mechanism within
the translationally invariant system. Further, it gives a significant speed up over the naive
method. We show that the LRFK model retains much of the rich phase diagram of its higher
dimensional cousins. Careful scaling analysis indicates that all the single particle eigenstates
eventually localise at non-zero temperature albeit only for very large system sizes of several
thousand.

This chapter raises a number of interesting questions for future research. A straightforward
but numerically challenging problem is to pin down the LRFK model’s behaviour closer to the
critical point where correlations in the spin sector would become significant. This would lead
to a long-range correlated e↵ective disorder potential for the fermions. Would this modify the
localisation behaviour? It has been shown that Anderson models with long-range correlated
disorder potentials can have complex localisation behaviour not normally seen in 1D [29, 30] so
this seems like a promising line of research. The main di�culty would be that MCMC methods
with local spin updates, such as ours, experience critical slowing down near classical critical
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points [31–33]. Cluster updates methods can help to alleviate this, but it is not clear if they
can be adapted to incorporate the energetic contributions from the fermion sector [19, 34, 35].

Similar to other solvable models of disorder-free localisation, we expect intriguing out-of equi-
librium physics. For example, slow entanglement dynamics akin to more generic interacting
systems [36]. One could also investigate whether the rich ground state phenomenology of the
FK model as a function of filling [37], such as the devil’s staircase [38] as well as superconductor
like states [39], could be stabilised at finite temperature.

In a broader context, we envisage that long-range interactions could also be used to gain a
deeper understanding of the temperature evolution of topological phases. One example would
be a LRFK version of the celebrated Su-Schrie↵er-Heeger (SSH) model [40, 41] where one could
explore the interplay of topological bound states and thermal domain wall defects.

Finally, the rich physics of our model should be realisable in systems with long-range interac-
tions, such as trapped ion quantum simulators, where one can also explore the fully interacting
regime with a dynamical background field.
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Contributions

The material in this chapter expands on work presented in

[1] Cassella, G., D’Ornellas, P., Hodson, T., Natori, W. M., & Knolle, J. (2022). An exact
chiral amorphous spin liquid. arXiv preprint arXiv:2208.08246.

All the code is available online as a Python package called Koala [2].

This was a joint project of Gino, Peru and me with advice and guidance from Willian and
Johannes, all authors of the above. The project grew out of an interest the three of us had
in studying amorphous systems, coupled with Johannes’ expertise on the Kitaev model. The
idea to use Voronoi partitions came from ref. [3] and Gino did the implementation of this. The
idea and implementation of the edge colouring using SAT solvers and the mapping from flux
sector to bond sector using A* search were both entirely my work. Peru produced the numerical
evidence for the ground state and implemented the local markers. Gino and I did much of the
rest of the programming for Koala collaboratively, often pair programming, this included the
phase diagram, edge mode and finite temperature analyses as well as the derivation of the
projector in the amorphous case.

Chapter Summary

In this chapter, I will first define the amorphous Kitaev (AK) model and discuss the construction
of amorphous lattices. Second, in the methods section I will discuss the details of voronisation
and graph colouring. Finally, I will present and interpret the results obtained.

From its introduction it was known that the Kitaev Honeycomb (KH) model is solvable on any
trivalent lattice. Consequently, it has been generalised to many such lattices [4–7] but so far
none that entirely lack translation symmetry. Here we will do just that.

Amorphous lattices are characterised by local constraints but no long-range order. They arise,
for instance, in amorphous semiconductors like silicon and germanium [8, 9]. Recent work has
shown that topological insulating (TI) phases, characterised by protected edge states and topo-
logical bulk invariants, can exist in amorphous systems [10–16]. TI phases, however, arise in
non-interacting systems. In this context, we might ask whether Quantum Spin Liquid (QSL)
systems and the Kitaev Honeycomb (KH) model, in particular, could be realised on amorphous
lattices. The phases of the KH model have many similarities with TIs but di↵er in that the KH
model is an interacting system. In general, research on amorphous electronic systems has been
focused mainly on non-interacting systems with the exception of amorphous superconductiv-
ity [17–21] or very recent work looking to understand the e↵ect of strong electron repulsion in
TIs [22].

The KH model is a magnetic system. Magnetism in amorphous systems has been investigated
since the 1960s, mostly through the adaptation of theoretical tools developed for disordered
systems [23–26]. This is not always ideal, we have already seen that the topological disorder of
amorphous lattices can be qualitatively di↵erent from standard bond or site disorder, especially
in 2D [27, 28]. Research focused on classical Heisenberg and Ising models has accounted for
the observed behaviour of ferromagnetism, disordered antiferromagnetism and widely observed
spin glass behaviour [29]. However, the role of the spin-anisotropic interactions and quantum

76



CHAPTER 4. THE AMORPHOUS KITAEV HONEYCOMB MODEL

Figure 4.1: (a) The standard Kitaev model is defined on a honeycomb lattice. The special feature
of the honeycomb lattice that makes the model solvable is that each vertex is joined by exactly three
bonds, i.e., the lattice is trivalent. One of three labels is assigned to each (b). We represent the
antisymmetric gauge degree of freedom ujk = ±1 with arrows that point in the direction ujk = +1
(c). The Majorana transformation can be visualised as breaking each spin into four Majoranas which
then pair along the bonds. Pairs of bx

i
, b

y

i
and b

z

i
Majoranas become part of the classical Z2 gauge

field uij . This leaves a single Majorana ci per site.

e↵ects that we see in the KH model has not been addressed in amorphous magnets. It is an
open question whether frustrated magnetic interactions on amorphous lattices can give rise
to genuine quantum phases such as QSLs [30–33]. This chapter will answer that question by
demonstrating that the Kitaev model on amorphous lattices leads to a kind of QSL called a
chiral spin liquid.

In this section, I will discuss how to generalise the KH to an amorphous lattice. The methods
section discusses how to generate amorphous lattices using Voronoi partitions of the plane [10,
12], colour them using a SAT solver and how to map back and forth between gauge field
configurations and flux configurations. In the results section, I will show extensive numerical
evidence that the AK model follows the simple generalisation to Lieb’s theorem [34] found by
other works [4–7]. I then map out the phase diagram of the AK model and show that the
chiral phase around the symmetric point (Jx = Jy = Jz) is gapped and non-Abelian. We use a
quantised local Chern number ⌫ [10, 35] as well as the presence of protected chiral Majorana
edge modes to determine this. Finally, I look at the role of finite temperature fluctuations and
show that the proliferation of flux excitations leads to an Anderson transition, similar to that
of the Falicov-Kimball model, to a thermal metal phase [36–38]. Finally, I consider possible
physical realisations of the AK model and other generalisations.

4.1 The Model

The KH model is solvable on any lattice which satisfies two properties: it must be trivalent and
it must three-edge-colourable. The first property means every vertex must have three edges
attached to it [39, 40]. 2D Voronoi lattices are a well-studied class of amorphous trivalent
lattices [10, 12, 41]. Given a set of seed points, the Voronoi partition divides the plane into
basins, based on which seed point is closest by some metric, usually the euclidean metric. The
basins of each seed point form the plaquettes of the resulting lattices, while the boundaries
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become the edges. The Voronoi partition exists in arbitrary dimension d and produces lattices
with degree d+1 except for degenerate cases with measure zero [42, 43]. Voronoi lattices in 2D
are trivalent so lend themselves naturally to the Kitaev model.

Other methods of lattice generation exist. One can connect randomly placed sites based on
proximity [11] or create simplices from random sites [44]. However, these methods do not
present a natural way to restrict the vertex degree to a constant. The most unbiased way to
select trivalent graphs would be to sample uniformly from the space of possible trivalent graphs.
There has been some work on how to do this using a Markov Chain Monte Carlo approach [45].
However, it does not guarantee that the resulting graph is planar, which is necessary to be able
to three-edge-colour the lattice, our second constraint.

The second constraint, three-edge-colourability, requires that we must be able to assign labels
to each bond {x, y, z} such that no two edges with the same label meet at a vertex. Such an
assignment is known as a three-edge-colouring. For translation invariant models we need only
find a solution for the unit cell. This problem is usually small enough that this can be done
by hand or using symmetry. For amorphous lattices, the di�culty is that, to the best of my
knowledge, the problem of edge-colouring these lattices in general is in NP. To find colourings
in practice, we will employ a standard method from the computer science literature for finding
solutions of NP problems called a SAT solver, this is discussed in more detail in the methods
secton.

We find that for large lattices there are many valid colourings. In the isotropic case J↵ = 1
the colouring has no physical significance as the definition of the four Majoranas at a site is
arbitrary. In the anisotropic case this symmetry is broken at the local level but we nevertheless
expect the lattices to exhibit a self-averaging behaviour in larger systems such that the choice
of colouring doesn’t matter.

On a lattice with the above properties, the solution for the KH model laid out in section
2.2 remains applicable to our AK model. See fig. 4.1 for an example lattice generated by our
method. The main di↵erences are twofold. Firstly, the lattices are no longer bipartite in general
and therefore contain plaquettes with an odd number of sides which enclose flux ±i. This leads
the AK model to have a ground state with spontaneously broken chiral symmetry [7, 46–52].
This is analogous to the behaviour of the original Kitaev model in response to a magnetic
field. One ground state is related to the other by globally inverting the imaginary �i fluxes [47].
Secondly, as the model is no longer translationally invariant, Lieb’s theorem for the ground state
flux sector no longer applies. However, as discussed in the background, a simple generalisation
of Lieb’s theorem has been shown numerically to be applicable to many generalised Kitaev
models [4–7]. This generalisation states that the ground state flux configuration depends on
the number of sides of each plaquette as

� = �(±i)nsides , (4.1)

with a twofold global chiral degeneracy (picking either +i or �i in eq. (4.1)).

To verify numerically that Lieb’s theorem generalises to the AK model, the obvious approach
would be via exhaustive checking of flux configurations. However, this is problematic because
the number of states to check scales exponentially with system size. We side-step this by gluing
together two methods, we first work with lattices small enough that we can fully enumerate
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Bond Sector Flux Sector Gauge Field Topological Sector

Figure 4.2: (Bond Sector) A state in the bond sector is specified by assigning ±1 to each edge of the
lattice. However, this description has a substantial gauge degeneracy. To remove it, we decompose each
state into the product of three kinds of objects: (Flux Sector) The main physically relevant quantities.
Only a small number of bonds need to be flipped (compared to some arbitrary fixed reference) to
reconstruct the flux sector. Here, the edges are chosen from a spanning tree of the dual lattice, so
there are no loops. (Gauge Field) The ‘loopiness’ of the bond sector is in this part. This is a network
of loops that can always be written as a product of the gauge operators Dj . (Topological Sector)
Finally, there are two loops that have no e↵ect on the vortex sector, nor can they be constructed from
gauge symmetries Dj . These can be thought of as two fluxes �x/y that thread through the major and
minor axes of the torus. Measuring �x/y amounts to constructing Wilson loops around the axes of the
torus. We can flip the value of �x by transporting a vortex pair around the torus in the y direction,
as shown here. In each of the three figures on the right, black bonds correspond to those that must be
flipped, while red line are those same edges on the dual lattice. Composing the three objects together
gives back the original bond sector on the left. Animated version online.

their flux sectors but tile them to reduce finite size e↵ects. We then show that the e↵ect of
tiling scales away with system size.

In order to evaluate the Chern marker later, we need a way to evaluate the model on open
boundary conditions. Simply removing bonds from the lattice leaves behind unpaired b↵ op-
erators that must be paired in some way to arrive at fermionic modes. To fix a pairing, we
always start from a lattice defined on the torus and generate a lattice with open boundary
conditions by defining the bond coupling J↵

ij
= 0 for sites joined by bonds (i, j) that we want

to remove. This creates fermionic zero modes uij associated with these cut bonds which we
set to 1 when calculating the projector. Alternatively, since all the fermionic zero modes are
degenerate anyway, an arbitrary pairing of the unpaired b↵ operators can be performed.

4.1.1 The Euler Equation

Euler’s equation provides a convenient way to understand how the states of the AK model
factorise into flux sectors, gauge sectors and topological sectors as in fig. 4.2. The Euler equation
states that if we embed a lattice with B bonds, P plaquettes and V vertices onto a closed surface
of genus g, (0 for the sphere, 1 for the torus) then

B = P + V + 2 � 2g. (4.2)

For the case of the torus where g = 1, we can rearrange this and exponentiate it to read:
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Figure 4.3: (Left) A large amorphous lattice in the ground state save for a single pair of vortices
shown in red, separated by the string of bonds that we flipped to create them. (Right) The density
of the lowest energy Majorana state in this vortex sector. These Majorana states are bound to the
vortices. They ‘dress’ the vortices to create a composite object.

2B = 2P�1
· 2V�1

· 22. (4.3)

There are 2B configurations of the bond variables {uij}. Each of these configurations can be
uniquely decomposed into a flux sector, a gauge sector and a topological sector, see fig. 4.2.
Each of the P plaquette operators �i takes two values but vortices are created in pairs so there
are 2P�1 vortex sectors in total. There are 2V�1 gauge symmetries formed from the V symmetry
operators Di because

Q
j
Dj = I is enforced by the projector. Finally, the two topological fluxes

�x and �y account for the last factor of 22.

In a trivalent lattice, there are three bonds for every 2 vertices. Substituting 3V = 2B into
Euler’s equation tells us that any trivalent lattice on the torus with N plaquettes has 2N
vertices and 3N bonds. Since each bond is part of two plaquettes this implies that the mean
number of sides of a plaquette is exactly six and that odd sided plaquettes must come in pairs.

80



CHAPTER 4. THE AMORPHOUS KITAEV HONEYCOMB MODEL

Figure 4.4: (Left) Lattice construction begins with the Voronoi partition of the plane with respect
to a set of seed points (black points) sampled uniformly from R2. (Center) However, we want the
Voronoi partition of the torus, so we tile the seed points into a three by three grid. The boundaries of
each tile are shown in light grey. (Right) Finally, we identify edges corresponding to each other across
the boundaries to produce a graph on the torus. Animated version online.

4.2 Methods

This section describes the novel methods we developed to simulate the AK model including
lattice generation, bond colouring and the inverse mapping between flux sector and gauge
sector. All results and figures herein were generated with Koala [2].

4.2.1 Voronisation

The lattices we use are Voronoi partitions of the torus [10, 12, 41]. We start by sampling seed
points uniformly on the torus. As most o↵ the shelf routines for computing Voronoi partitions
are defined on the plane rather than the torus, we tile our seed points into a 3 ⇥ 3 or 5 ⇥ 5
grid] 1 before calling a standard Voronoi routine [53] from the Python package Scipy [54].
Finally, we convert the lattice defined by the central cell into a toroidal lattice. We do this
by reassigning edges that cross the boundaries to connect to the corresponding point within
the lattice, yielding a trivalent lattice on the torus. We encode our lattices with edge lists
[(i, j), (k, l) . . .]. The information about which edges crossed the boundaries is stored in an
additional 2D vector ~v 2 {�1, 0, +1}2 for each edge that encodes the sense in which it crosses
the periodic boundary conditions. This is equivalent to how the edge would leave the unit cell
were the system to tile the plane, see appendix A.4 for more detail. The graph generated by a
Voronoi partition of a 2D surface is always planar. This means that no edges cross each other
when the graph is embedded into the plane. It is also trivalent in that every vertex is connected
to exactly three edges [42, 43].

1To see why we sometimes need to tile to 5 ⇥ 5, consider the left panel of fig. 4.4. At the boundaries some
of the edges emanate out to infinity. In the middle panel we see that tiling to 3 ⇥ 3 removes the infinite edges
emanating from the central cell. This is necessary in order to transform this to a toroidal graph since we do not
allow a vertex to be located at the point at infinity. For very small lattices, there can sometimes still be infinite
edges emanating from the central cell. This is generally fixed by going to a 5 ⇥ 5 tiling.
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Figure 4.5: Di↵erent valid three-edge-colourings of an amorphous lattice. Colors that di↵er from
the leftmost panel are highlighted in the other panels.

4.2.2 Colouring the Bonds

To be solvable, the AK model requires that each edge in the lattice be assigned a label x, y
or z, such that each vertex has exactly one edge of each type connected to it, a three-edge-
colouring. This problem must be distinguished from that considered by the famous four-colour
theorem [55]. The four-colour theorem is concerned with assigning colours to the vertices of
planar graphs, such that no vertices that share an edge have the same colour.

For a graph of maximum degree �, � + 1 colours are always enough to edge-colour it. An
O(mn) algorithm exists to do this for a graph with m edges and n vertices [56]. Graphs with
� = 3 are known as cubic graphs. Cubic graphs can be four-edge-coloured in linear time [57].
However, we need a three-edge-colouring of our cubic graphs, which turns out to be more
di�cult. Cubic, planar, bridgeless graphs can be three-edge-coloured if and only if they can be
four-face-coloured [58]. Bridges are edges that connect otherwise disconnected components. An
O(n2) algorithm exists for these [59]. However, it is not clear whether this extends to cubic,
toroidal bridgeless graphs.

A four-face-colouring is equivalent to a four-vertex-colouring of the dual graph, see appendix
A.4. So if we could find a four-vertex-colouring of the dual graph we would be done. However,
vertex-colouring a toroidal graph may require up to seven colours [60]! The complete graph of
seven vertices K7 is a good example of a toroidal graph that requires seven colours.

Luckily, some problems are easier in practice. Three-edge-colouring cubic toroidal graphs is
one of those things. To find colourings, we use a Boolean Satisfiability Solver or SAT solver.
A SAT problem is a set of statements about a set of boolean variables [x1, x2 . . .], such as “x1

or not x3 is true”. A solution to a SAT problem is an assignment xi 2 0, 1 that satisfies all
the statements [61]. General purpose, high performance programs for solving SAT problems
have been an area of active research for decades [62]. Such programs are useful because, by
the Cook-Levin theorem [63, 64], any NP problem can be encoded (in polynomial time) as an
instance of a SAT problem. This property is what makes SAT one of the subset of NP problems
called NP-Complete. It is a relatively standard technique in the computer science community to
solve NP problems by first transforming them to SAT instances and then using an o↵-the-shelf
SAT solver. The output of this can then be mapped back to the original problem domain.
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Figure 4.6: (Left) The ground state flux sector and bond sector for an amorphous lattice. Bond
arrows indicate the direction in which ujk = +1. Plaquettes are coloured blue when �̂i = �1 (�i) for

even/odd plaquettes and orange when �̂i = +1 (+i) for even/odd plaquettes. (Centre) To transform
this to the target flux sector (all +1/+i), we first flip any ujk that are between two fluxes. This leaves
a set of isolated fluxes that must be annihilated. Then, these are paired up as indicated by the black
lines. (Right) A* search is used to find paths (coloured plaquettes) on the dual lattice between each
pair of fluxes and the corresponding ujk (shown in black) are flipped. One flux will remain because
the starting and target flux sectors di↵ered by an odd number of fluxes.

Whether graph colouring problems are in NP or P seems to depend delicately on the class of
graphs considered, the maximum degree and the number of colours used. It is therefore possible
that a polynomial time algorithm may exist for our problem. However, using a SAT solver turns
out to be fast enough in practice that it is by no means the rate limiting step for generating
and solving instances of the AK model. In appendix A.4 I detail the specifics of how I mapped
edge-colouring problems to SAT instances and show a breakdown of where the computational
e↵ort is spent, the majority being on matrix diagonalisation.

4.2.3 Mapping between flux sectors and bond sectors

In the AK model, going from the bond sector to flux sector is done simply from the definition
of the fluxes

�i =
Y

(j,k) 2 @�i

iujk. (4.4)

The reverse, constructing a bond sector {ujk} that corresponds to a particular flux sector {�i}

is not so trivial. The algorithm I used, shown visually in fig. 4.6 is this:

1. Fix the gauge by choosing some arbitrary ujk configuration. In practice, we use ujk = +1.
This chooses an arbitrary one of the four topological sectors.

2. Compute the current flux configuration and how it di↵ers from the target. Consider any
plaquette that di↵ers from the target as a defect.
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3. Find any adjacent pairs of defects and flip the ujk between them. This leaves a set of
isolated defects.

4. Pair the defects up using a greedy algorithm and compute paths along the dual lattice
between each pair of plaquettes using the A* pathfinding algorithm [65]. Flipping the
corresponding set of bonds transports one flux to the other and annihilates both.
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4.3 Results

This section contains our results on the AK model, we first look at how we checked numerically
that Lieb’s theorem generalises to our model. Next we compute the ground state diagram and
look at the two phases that arise there. We then use a local Chern marker and the presence of
edge modes to characterise these phases as having Abelian or non-Abelian statistics. Finally,
we look at the finite temperature behaviour of the model.

4.3.1 The Ground State Flux Sector

We will check that Lieb’s theorem generalises to our model by enumerating all the flux sectors
of many separate amorphous lattice realisations. However, we have two seemingly irreconcilable
problems. Finite size e↵ects have a large energetic contribution for small systems [39] so we
would like to perform our analysis for very large lattices. For an amorphous system with N
plaquettes, 2N edges and 3N vertices we have 2N�1 flux sectors to check and diagonalisation
scales with O(N3). That exponential scaling makes it di�cult to work with lattices much larger
than 16 plaquettes with the resources.

To get around this, we instead look at periodic systems with amorphous unit cells. For a
similarly sized periodic system with A unit cells and B plaquettes in each unit cell where
N ⇠ AB things get much better. We can use Bloch’s theorem to diagonalise this system in
about O(AB3) operations, and more importantly there are only 2B�1 flux sectors to check. We
fully enumerated the flux sectors of ⇠ 25,000 periodic systems with disordered unit cells of
up to B = 16 plaquettes and A = 100 unit cells. However, showing that our guess is correct
for periodic systems with disordered unit cells is not quite convincing on its own as we have
e↵ectively removed longer-range disorder from our lattices.

The second part of the argument is to show that the energetic e↵ect of introducing periodicity
scales away as we go to larger system sizes and has already diminished to a small enough value
at 16 plaquettes, which is indeed what we find. From this, we argue that the results for small
periodic systems generalise to large amorphous systems. In the isotropic case (J↵ = 1), Lieb’s
theorem correctly predicts the ground state flux sector for all of the lattices we tested. For the
toric code phase (Jx = Jy = 0.25, Jz = 1) all but around ⇠ 0.5% of lattices had ground states
conforming to our conjecture. In these cases, the energy di↵erence between the true ground
state and our prediction was on the order of 10�6] J .

The spin Kitaev Hamiltonian is real and therefore has time reversal symmetry. However, in the
ground state the flux �p through any plaquette with an odd number of sides has imaginary
eigenvalues ±i. Thus, states with a fixed flux sector spontaneously break time reversal symme-
try. Kiteav noted this in his original paper but it was first explored in a concrete model by Yao
and Kivelson for a translation invariant Kitaev model with odd sided plaquettes [66].

Flux sectors come in degenerate pairs, where time reversal is equivalent to inverting the flux
through every odd plaquette, a general feature for lattices with odd plaquettes [7, 47]. This
spontaneously broken symmetry serves a role analogous to the external magnetic field in the
original honeycomb model, leading the AK model to have a non-Abelian anyonic phase without
an external magnetic field.
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Figure 4.7: The phase diagram of the model can be characterised by an equilateral triangle whose
corners indicate points where J↵ = 1, J� = J� = 0 while the centre denotes Jx = Jy = Jz. (Center)
To compute critical lines e�ciently in this space, we evaluate the order parameter of interest along
rays shooting from the corners of the phase diagram. The ray highlighted in red defines the values of
J used for the left figure. (Left) The fermion gap as a function of J for an amorphous system with 20
plaquettes, where the x axis is the position on the red line in the central figure from 0 to 1. For finite
size systems the four topological sectors are not degenerate and only one of them (in green) has a true
gap closing. (Right) The Abelian A↵ phases of the model and the non-Abelian B phase separated by
critical lines where the fermion gap closes. Later we will show that the Chern number ⌫ changes from
0 to ±1 from the A phases to the B phase. Indeed, the gap must close in order for the Chern number
to change [73].

4.3.2 Ground State Phase Diagram

The triangular Jx, Jy, Jz phase diagram of this family of models arises from setting the energy
scale with Jx + Jy + Jz = 1. The intersection of this plane and the unit cube is what yields the
equilateral triangles seen in diagrams like fig. 4.7. The KH model has an Abelian gapped phase
in the anisotropic region (the A phase) and is gapless in the isotropic region. The introduction of
a magnetic field breaks the chiral symmetry, leading to the isotropic region becoming a gapped,
non-Abelian phase, the B phase.

Similar to the KH model with a magnetic field, we find that the amorphous model is only gapless
along critical lines, see the left panel of fig. 4.7 (left panel). Interestingly, in finite size systems
the gap closing exists in only one of the four topological sectors though the sectors become
degenerate in the thermodynamic limit. Nevertheless, this could be a useful way to define the
(0, 0) topological flux sector for the amorphous model which otherwise has no natural way to
choose it.

In the honeycomb model, the phase boundaries are located on the straight lines |Jx
| = |Jy

| +
|Jz

| and permutations of x, y, z. These are shown as dotted lines in fig. 4.7 (right panel). We
find that on the amorphous lattice these boundaries exhibit an inward curvature, similar to
honeycomb Kitaev models with flux or bond disorder [67–72].
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Abelian or non-Abelian statistics of the Gapped Phase

The two phases of the amorphous model are gapped as we can see from the finite size scaling
of fig. 4.10. The next question is: do these phases support excitations with trivial, Abelian or
non-Abelian statistics? To answer that we turn to Chern numbers [74–76]. As discussed earlier
the Chern number is a quantity intimately linked to both the topological properties and the
anyonic statistics of a model. Here we will make use of the fact that the Abelian/non-Abelian
character of a model is linked to its Chern number [39]. The Chern number is only defined for
the translation invariant case so we instead use a family of real space generalisations of the
Chern number that work for amorphous systems called local topological markers [10, 77, 78].

There are many possible choices here, indeed Kitaev defines one in his original paper on the
KH model [39]. Here we use the crosshair marker of [35] because it works well on smaller
systems. We calculate the projector P =

P
i
| iih i| onto the occupied fermion eigenstates of

the system in open boundary conditions. The projector encodes local information about the
occupied eigenstates of the system and in gapped systems it is exponentially localised [79]. The
name crosshair comes from the fact that the marker is defined with respect to a particular
point (x0, y0) by step functions in x and y

⌫(x, y) = 4⇡ Im TrB

⇣
P̂ ✓̂(x � x0) P̂ ✓̂(y � y0) P̂

⌘
, (4.5)

when the trace is taken over a region B around (x0, y0) that is large enough to include local
information about the system but does not come too close to the edges. If these conditions are
met then this quantity will be very close to quantised to the Chern number, see fig. 4.8. We’ll
use the crosshair marker to assess the Abelian/non-Abelian character of the phases.

In the A phase of the amorphous model, we find that ⌫ = 0 and hence the excitations have
Abelian character, similar to the honeycomb model. This phase is thus the amorphous analogue
of the Abelian toric-code QSL [80]. The B phase has ⌫ = ±1 so is a non-Abelian Chiral Spin
Liquid (CSL) similar to that of the Yao-Kivelson model [47]. The CSL state is the magnetic
analogue of the fractional quantum Hall state [81]. Hereafter, we focus our attention on this
phase.

Edge Modes

Chiral Spin Liquids support topological protected edge modes on open boundary conditions [82].
Figure 4.9 shows the probability density of one such edge mode. It is near zero energy and
exponentially localised to the boundary of the system. While the model is gapped in periodic
boundary conditions (i.e on the torus) these edge modes appear in the gap when the boundary
is cut.

The localisation of the edge modes can be quantified by their inverse participation ratio (IPR)
and its scaling with system size ⌧ ,

IPR =

Z
d2r| (r)|4 / L�⌧ , (4.6)
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Figure 4.8: (Center) The crosshair marker [35], a local topological marker, evaluated on the Amor-
phous Kitaev model. The marker is defined around a point, denoted by the dotted crosshair. Informa-
tion about the local topological properties of the system is encoded within a region around that point.
(Left) Summing these contributions up to some finite radius (dotted line here, dotted circle in the
centre) gives a generalised version of the Chern number for the system which becomes quantised in
the thermodynamic limit. The radius must be chosen large enough to capture information about the
local properties of the lattice while not so large as to include contributions from the edge states. The
isotropic regime J↵ = 1 in red has ⌫ = ±1 implying it supports excitations with non-Abelian statistics,
while the anisotropic regime in orange has ⌫ = 0 implying Abelian statistics. (Right) Extending this
analysis to the whole J↵ phase diagram with fixed r = 0.3 nicely confirms that the isotropic phase is
non-Abelian.

where L ⇠
p

N is the linear dimension of the amorphous lattices. This is relevant because
localised in-gap states do not participate in transport and hence do not turn band insulators
into conductive metals. It is only when the gap fills with extended states that we get a conductive
state.

4.3.3 Anderson Transition to a Thermal Metal

Previous work on the honeycomb model at finite temperature has shown that the B phase
undergoes a thermal transition from a QSL phase to a thermal metal phase [38]. This happens
because at finite temperature, thermal fluctuations excite spontaneous vortex-pair formation.
As discussed previously, these fluxes are dressed by Majorana bounds states and the compos-
ite object is an Ising-type non-Abelian anyon [83]. The interactions between these anyons are
oscillatory, similar to the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange and decay expo-
nentially with separation [36, 37, 84]. At su�cient density, the anyons hybridise to a macroscop-
ically degenerate state known as thermal metal [36]. At close range the oscillatory behaviour of
the interactions can be modelled by a random sign which forms the basis for a random matrix
theory description of the thermal metal state.

The amorphous chiral spin liquid undergoes the same Anderson transition to a thermal metal
state. Markov Chain Monte Carlo would be necessary to simulate this in full detail [38] but in
order to avoid that complexity in the current work we instead opted to use vortex density ⇢ as
a proxy for temperature. We give each plaquette the probability ⇢ of being a vortex, possibly
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Figure 4.9: (a) The density of one of the topologically protected edge states in the B phase. (Below)
the log density plotted along the black path showing that the state is exponentially localised. (a)/(b)
The density of states of the corresponding lattice in (a) periodic boundary conditions, (b) open bound-
ary conditions. The colour of the bars shows the mean log IPR for each energy window. Cutting the
boundary fills the gap with localised states.

with one additional adjustment to preserve overall vortex parity. This approximation is exact
in the limits T = 0 (corresponding to ⇢ = 0) and T ! 1 (corresponding to ⇢ = 0.5) while at
intermediate temperatures there may be vortex-vortex correlations that are not captured by
our uncorrelated vortex placement.

First, we performed a finite size scaling to check that the presence of a gap in the CSL ground
state and absence of a gap in the thermal metal phase are both robust as we go to larger systems,
see fig. 4.10. Next we evaluated the fermionic density of states (DOS), Inverse Participation
Ratio and IPR scaling exponent ⌧ as functions of the vortex density ⇢, see fig. 4.11. This leads
to a nice picture of what happens as we raise the temperature of the system away from the
gapped, insulating CSL phase. At small ⇢, states begin to populate the gap but they have
⌧ ⇡ 0, indicating that they are localised states pinned to the vortices, and the system remains
insulating. At large ⇢, the in-gap states merge with the bulk band and become extensive, closing
the gap, and the system transitions to the thermal metal phase.

The thermal metal phase has a signature logarithmic divergence at zero energy and oscillations
in the DOS. These signatures can be shown to occur by a recursive argument that involves
mapping the original model onto a Majorana model with interactions that take random signs
which can itself be mapped onto a coarser lattice with lower energy excitations and so on.
This can be repeating indefinitely, showing the model must have excitations at arbitrarily low
energies in the thermodynamic limit [38, 85]. These signatures are shown in fig. 4.12 for our
model and for the KH model. They do not occur in the KH model unless the chiral symmetry
is broken by a magnetic field.

4.4 Discussion and Conclusion

In this chapter we have looked at an extension of the KH model to amorphous lattices with
coordination number three. We discussed a method to construct arbitrary trivalent lattices using
Voronoi partitions, how to embed them onto the torus and how to edge-colour them using a SAT
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Figure 4.10: Within a flux sector, the fermion gap �f measures the energy between the fermionic
ground state and the first excited state. This graph shows the fermion gap as a function of system
size for the ground state flux sector and for a configuration of random fluxes. We see that the disorder
induced by an putting the Kitaev model on an amorphous lattice does not close the gap in the ground
state. The gap closing in the flux disordered limit is good evidence that the system transitions to
a gapless thermal metal state at high temperature. Each point shows an average over 100 lattice
realisations. System size L is defined

p
N where N is the number of plaquettes in the system. Error

bars shown are 3 times the standard error of the mean. The lines shown are fits of
�f

J
= aL

b with
fit parameters: Ground State: a = 0.138 ± 0.002, b = �0.0972 ± 0.004 Random Flux Sector: a =
1.8 ± 0.2, b = �2.21 ± 0.03

solver. We showed numerically that the ground state flux sector of the model is given by a simple
extension of Lieb’s theorem. The model has two gapped QSL phases. The two phases support
excitations with di↵erent anyonic statistics, Abelian and non-Abelian, distinguished using a
real-space generalisation of the Chern number [35]. The presence of odd-sided plaquettes in the
model resulted in spontaneous breaking of time reversal symmetry, leading to the emergence of
a chiral spin liquid phase. Finally, we showed evidence that the amorphous system undergoes
an Anderson transition to a thermal metal phase, driven by the proliferation of vortices with
increasing temperature. The AK model is an exactly solvable model of the chiral QSL state,
one of the first models to exhibit a topologically non-trivial quantum many-body phase on an
amorphous lattice. As such this study provides a number of future lines of research.

Experimental Realisations and Signatures

We should consider whether a physical amorphous system that supports a QSL ground state
could exist. The search for translation invariant Kitaev systems is already motivated by the
prospect of a physically realised QSL state, Majorana fermions and direct access to a system
with emergent Z2 gauge physics [86]. In addition to all this, an amorphous Kitaev model would
provide the possibility of exploring the CSL state and potentially very di↵erent routes to a
physical realisation. One route would be to ask if any crystalline Kitaev material candidates
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Figure 4.11: (Top) Density of states and (Bottom) scaling exponent ⌧ of the amorphous Kitaev
model as a vortex density ⇢ is increased. The scaling exponent ⌧ is the exponent with which the inverse
participation ratio scales with system size. It gives a measure of the degree of localisation of the states
in each (E/J, ⇢) bin. At zero ⇢ we have the gapped ground state. At small ⇢, states begin to populate
the gap. These states have ⌧ ⇡ 0, indicating that they are localised states pinned to fluxes, and the
system remains insulating. As ⇢ increases further, the in-gap states merge with the bulk band and
become extensive, fully closing the gap, and the system transitions to a thermal metal phase.

can be heated and rapidly quenched [24, 26, 87] to produce amorphous analogues that might
preserve enough of their local structure to support a QSL state.

Considering more designer materials, metal organic frameworks (MOFs) could present a plat-
form for a synthetic Kitaev material. These materials are composed of repeating units of large
organic molecules coordinated with metal ions. Amorphous MOFs can be generated with me-
chanical processes that introduce disorder into crystalline MOFs [88] and there have been
recent proposals for realising strong Kitaev interactions [89] in them as potential signatures of
a resonating valence bond QSL state in MOFs with Kagome geometry [90]. Finally, MOFs are
composed of large synthetic molecules so may provide more opportunity for fine tuning to target
particular physics than with ionic compounds. There have also been proposals to realise Kitaev
physics in optical lattice experiments [91, 92] which can also support amorphous lattices [93].

A physical realisation in either an amorphous compound or a MOF would likely incorporate
a considerable density of defects. Amorphous silicon, for instance, tends to contain dangling
bonds which must be passivated by hydrogenation to improve its physical properties [94]. In
both cases, if we assume that Kitaev physics can be realised by crystalline systems, it is not
clear if the necessary superexchange couplings would survive the addition of disorder to the
lattice. It would therefore make sense theoretically to examine how robust the CSL ground
state of the AK model is to additional disorder in the Hamiltonian, for example mis-colourings
of the bonds, vertex degree disorder and disorder in coupling strengths. Relatedly, one could
look at perturbations to the Hamiltonian that break integrability [95–99].

Considering experimental signatures, we expect that the chiral amorphous QSL will display
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Figure 4.12: Density of states at high temperature showing the logarithmic divergence at zero
energy and oscillations characteristic of the thermal metal state [38, 85]. (a) shows the honeycomb
lattice model in the B phase with magnetic field, while (b) shows that our model transitions to a
thermal metal phase without an external magnetic field but rather due to the spontaneous chiral
symmetry breaking. In both plots the density of vortices is ⇢ = 0.5 corresponding to the T = 1 limit.

a half-quantised thermal Hall e↵ect similar to the magnetic field induced behaviour of KH
materials [100–103]. Alternatively, the CSL state could be characterised by local probes such as
spin-polarised scanning tunnelling microscopy [104–106] while the thermal metal phase displays
characteristic longitudinal heat transport signatures [83]. Local perturbations, such as those
that might come from an atomic force microscope, could potentially be used to create and
control vortices [107]. To this end, one could look at how the move to amorphous lattices
a↵ects vortex time dynamics in perturbed KH models [108].

Given the lack of unambiguous signatures of the QSL state, it can be hard to distinguish
the e↵ects of the QSL state from the e↵ect of disorder. So introducing topological disorder
may only increase the experimental challenges. That being said, the presence of topological
disorder may suppress competing interactions that would otherwise induce magnetic ordering
at zero temperature potentially widening the class of materials that could host a QSL ground
state. Alternatively, 3D realisations of the AK model could get around this issue of confusing
a QSL with disorder because 3D would be expected to have a true Finite-Temperature Phase
Transition (FTPT) to the thermal metal state that could be a useful experimental signature [4,
109]. 3D Kitaev systems can also support CSL ground states [110].

Thermodynamics

The KH model can be extended to 3D either on trivalent lattices [4, 109] or it can be generalised
to an exactly solvable spin-3

2
model on 3D four-coordinate lattices [40, 46, 51, 52, 66, 111–118].

In [111], the 2D square lattice with 4 bond types (Jw, Jx, Jy, Jz) is considered. Since Voronoi
partitions in 3D produce lattices of degree four, one interesting generalisation of this work
would be to look at the spin-3

2
Kitaev model on amorphous lattices.

We did not perform a full Markov Chain Monte Carlo (MCMC) simulation of the AK model
at finite temperature but the possible extension to a 3D model with an FTPT would motivate
this full analysis. This MCMC simulation would be a numerically challenging task but poses
no conceptual barriers [36–38]. Doing this would, first, allow one to look for possible violations
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of the Harris criterion [119] for the Ising transition of the flux sector. Recall that topological
disorder in 2D has radically di↵erent properties to that of other kinds of disorder due to the
constraints imposed by the Euler equation and maintaining coordination number which allows
it to violate otherwise quite general rules like the Harris criterion [27, 28]. Second, incorporating
the projector in addition to MCMC would allow for a full investigation of whether the e↵ect of
topological degeneracy is apparent at finite temperatures, this is done for the KH model in [38].

Next, one could investigate whether a QSL phase may exist for other models defined on amor-
phous lattices with a view to more realistic prospects of observation. Do the properties of
the Kitaev-Heisenberg model generalise from the honeycomb to the amorphous case? [96, 98,
120–122] Alternatively we might look at other lattice construction techniques. For instance we
could construct lattices by linking close points [11] or create simplices from random sites [44].
Lattices constructed using these methods would likely have a large number of lattice defects
where z 6= 3 in the bulk, leading to many localised Majorana zero modes.

We found a small number of lattices for which Lieb’s theorem did not correctly predict the true
ground state flux sector. I see two possibilities for what could cause this. Firstly, it could be a
finite size e↵ect that is amplified by certain rare lattice configurations. It would be interesting
to try to elucidate what lattice features are present when Lieb’s theorem fails. Alternatively,
it might be telling that the ground state conjecture failed in the toric code A phase where
the couplings are anisotropic. We showed that the colouring does not matter in the B phase.
However, an avenue that I did not explore was whether the particular choice of colouring for a
lattice a↵ects the physical properties in the toric code A phase. It is possible that some property
of the particular colouring chosen is what leads to these rare failures of Lieb’s theorem.

Overall, there has been surprisingly little research on amorphous quantum many-body phases
despite there being plenty of material candidates. I expect the exact chiral amorphous spin
liquid to find many generalisations to realistic amorphous quantum magnets.
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We are new born and drop onto this sphere
a simple act that causes a cascade
our lived effects deepening year on year.
Each scene flickers past in heady parade
it’s rare a restful moment one might find
to ponder on the patterns we have made.
Tumbling down the slopes of the daily grind
we fragile fragments of humanity
our sand-dune paths sometimes feel misaligned.
Faltering footsteps find calamity
though you must admit, some clouds are silvered:
shiny chaos to contrast sanity.
For an ordered life that's safely filtered
is dull: revel in being bewildered.
       
   -   Tom Hodson & Dan Simpson

Collective Misbehaviour

Chapter 5

Conclusion
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CHAPTER 5. CONCLUSION

This thesis has focussed on two strongly correlated systems. In these systems the many-body
ground state can be complex and often cannot be reduced to or even adiabatically connected
to a product state. I looked at the Falicov-Kimball (FK) model and the Kitaev Honeycomb
(KH) model and defined extensions to them: the Long-Range Falicov-Kimball (LRFK) model
and the Amorphous Kitaev (AK) model.

These models are all exactly solvable. They contain extensively many conserved charges which
allow their Hamiltonians, and crucially, the interaction terms within them, to be written in
quadratic form. This allows them to be solved using the theoretical machinery of non-interacting
systems. In the case of the FK and LRFK models, this solvability arises from what is essentially
a separation of timescales. The heavy particles move so slowly that they can be treated as
stationary. In the KH and AK models, on the other hand, the origin of the conserved degrees
of freedom is more complex. Here, the algebra of the Pauli matrices interacts with the trivalent
lattices on which the models are defined, to give rise to an emergent Z2 gauge field whose fluxes
are conserved. This latter case is a beautiful example of emergence at play in condensed matter.
The gauge and Majorana physics of the KH and AK models seems to arise spontaneously from
nothing. Of course, this physics was hidden within the structure and local symmetries of the
spin Hamiltonian all along.

At first glance, exactly solvable models can seem a little too fine tuned to be particularly relevant
to the real world. Surely, these models don’t spontaneously arise in nature? The models studied
here provide two di↵erent ways to answer this. As we saw in chapter 2, the FK model arises
quite naturally as a limit of the Hubbard model. The Hubbard model is not exactly solvable.
In fact, the FK model has been used as a way to understand more about the behaviour of
the Hubbard model itself and of the Mott insulating state. We have also seen that it can
provide insight into other phenomena such as disorder-free localisation. The KH model was not
originally proposed as a model of any particular physical system. It was nevertheless a plausible
microscopic Hamiltonian and, given its remarkable properties, it is little wonder that material
candidates for Kitaev physics were quickly found. In neither case is the model expected to be a
perfect description of any material. Indeed, more realistic corrections to each model are likely
to break their integrability. Despite this, exactly solvable models, by virtue of being solvable,
can provide important insights into the diverse physics of strongly correlated materials.

In chapter 3, we looked at a generalised FK model in 1D: the LRFK model. Metal-insulator
transitions are a key theme of work on the FK model and our 1D extension to it was no ex-
ception. With the addition of long-range interactions, the model showed a similarly rich phase
diagram as its higher dimensional cousins, allowing us to look at transitions between metallic
states and insulators of the band, Anderson and Mott variety. We also looked at thermody-
namics in 1D and how thermal fluctuations of the conserved charges can lead to disorder-free
localisation in the FK and LRFK models. The initial surprising results that suggested the pres-
ence of a mobility edge in 1D turned out to be a weak localisation e↵ect present in finite sized
systems.

That the Mott insulating state is a key part of the work on the LRFK model is fitting because
Mott insulators are the main route to the formation of Quantum Spin Liquid (QSL) states.
QSLs are themselves a primary driver of interest in the KH model and our extension, the AK
model. In chapter 4, we addressed the question of whether frustrated magnetic interactions
on amorphous lattices can give rise to quantum phases such as the QSL state and found that
indeed they can. The AK model, a generalisation of the KH model to random lattices with fixed
coordination number three, supports a kind of symmetry broken QSL state called a chiral spin
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Figure 5.1: An example of a Metal Organic Framework (MOF). MOFs are large synthetic organic
ligands coordinated with metal ions that can cross link to form crystals. It has been demonstrated
that these materials can sustain Kitaev-like interactions [5]. They can also be made into amorphous
materials [6]. This image from [7] is in the public domain.

liquid. We showed numerically that the ground state of the model follows a simple generalisation
of Lieb’s theorem [1–3]. As with other extensions of the KH model [4], we found that removing
the chiral symmetry of the lattice allows the model to support a gapped phase with non-Abelian
anyon excitations. The broken chiral symmetry plays the role of the external magnetic field in
the original KH model. Finally, like the KH model, finite temperature causes vortex defects to
proliferate. This triggers a transition to a thermal metal state.

Unlike the 2D FK model and 1D LRFK models, the KH and AK models don’t have a finite-
temperature phase transition (FTPT). They immediately disorder at any finite temperature [3].
However, generalisations of the KH model to 3D do in general have an FTPT. Indeed, the role
of dimensionality has been a key theme in this work. Both localisation and thermodynamic phe-
nomena depend crucially on dimensionality, with thermodynamic order generally suppressed
and localisation e↵ects strengthened in low dimensions. The graph theory that underpins the
KH and AK models itself also changes strongly with dimension. Voronisation in 2D produces
trivalent lattices, on which the spin-1/2 AK model is exactly solvable. Meanwhile in 3D, voro-
nisation gives us z = 4 lattices upon which a spin-3/2 generalisation to the KH model is exactly
solvable [8–10]. Similarly, planar and toroidal graphs are a uniquely 2D construct. Satisfying
planarity imposes constraints on the connectivity of planar graphs. This leads amorphous pla-
nar graphs to have strong anti-correlations which can violate otherwise robust bounds like the
Harris criterion [11]. Contrast this with Anderson localisation in 1D where only longer range
correlations in the disorder can produce surprising e↵ects [12–17].

Looking towards future work, the LRFK model provides multiple possible routes. One inter-
esting idea is to park the model at a thermal critical point. This would generate a scale-free
disorder potential, which could potentially lead to complex localisation physics not often seen
in 1D [12, 18]. Like other solvable models of disorder-free localisation, the LRFK model should
also exhibit intriguing out-of-equilibrium physics, such as slow entanglement dynamics. This
could be used to help understand these phenomena in more generic interacting systems [19].
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CHAPTER 5. CONCLUSION

There is also the rich ground state phenomenology of the FK model as a function of filling [20],
such as the devil’s staircase [21] as well as superconductor like states [22]. Could the LRFK
model stabilise these at finite temperature? Finally, a topological variant of the LRFK model
akin to the Su-Schrie↵er-Heeger (SSH) model could be an interesting way to probe the interplay
of topological bound states and thermal domain wall defects.

Looking at the AK model, we discussed whether its physics might be realisable in amorphous
versions of known KH candidate materials [23]. Alternatively, we might be able to engineer
them in synthetic materials, such as Metal Organic Frameworks (MOFs). Work on MOFs has
already explored the possibility of both Kitaev-like interactions and amorphous lattices [5, 6].
It is an open question whether the superexchange couplings that generate Kitaev interactions
could survive the transition to an amorphous lattice. If the interactions do survive, there will
likely be many defects of di↵erent kinds present in the resulting material. These might take the
form of dangling bonds, vertex degree > 3 or violations of the colouring conditions. I therefore
hope that future work examines how robust the QSL and CSL states of the AK model are
to these kinds of disorder. This is a di�cult task, as many of these classes of defects would
break the integrability of the AK model that we relied on to make the work computationally
feasible [24–28]. While we are considering models with defects, we might consider alternate
lattice construction techniques [29, 30]. Lattices constructed using these methods would have
defects but may have other desirable properties when compared to Voronoi lattices.

In terms of experimental signatures, we discussed the quantised thermal Hall e↵ect [31–34],
local probes such as spin-polarised scanning tunnelling microscopy [35–37], and longitudinal
heat transport signatures [38]. One possible di�culty is that the introduction of topological
disorder may dilute some of these signatures. On the brighter side, topological disorder may
also suppress competing interactions that would otherwise induce magnetic ordering. This could
potentially widen the class of materials that could host a QSL or CSL ground state.

Both the LRFK and AK models could be interesting targets for quantum simulation. Cold
atom experiments can naturally generate long-range interactions which would be well suited
to simulations of the LRFK model [39]. Optical lattice experiments are capable of supporting
both Kitaev interactions [40, 41] and amorphous lattices [42] so it is natural to ask whether
they could simulate the AK model too.

Xiao-Gang Wen makes the case that one of the primary reasons to study QSLs is as a stepping
stone to understanding the high-Tc superconductors [43]. His logic is that since the high-Tc

superconductors are believed to arise from doped Mott insulators, the QSLs, which arise from
undoped Mott insulators, make a good jumping o↵ point. This is where exactly solvable models
like the FK and KH model shine. The FK model provides a tractable means to study super-
conductor like states in doped Mott insulators [22], while the KH model gives us a tangible
QSL state to play with. The extensions introduced in this work serve to explore how far we
can push these models. To what extent they are a useful theoretical tool for understanding
the behaviour of generic strongly correlated materials remains to be seen. Either way, I hope
that this works spurs more interest in amorphous quantum many-body phases and strongly
correlated materials.
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A. PARTICLE-HOLE SYMMETRY

A Particle-Hole Symmetry

The Hubbard and FK models on a bipartite lattice have particle-hole (PH) symmetry P
†HP =

�H, accordingly they have symmetric energy spectra. The associated symmetry operator P

exchanges creation and annihilation operators along with a sign change between the two sublat-
tices. In the language of the Hubbard model of electrons c↵,i with spin ↵ at site i the particle hole
operator corresponds to the substitution of new fermion operators d†

↵,i
and number operators

m↵,i where

d†
↵,i

= ✏ic↵,i (6.1)

m↵,i = d†
↵,i

d↵,i, (6.2)

the lattices must be bipartite because to make this work we set ✏i = +1 for the A sublattice
and �1 for the even sublattice [1].

The entirely filled state |⌦i =
P

↵,i
c†
↵,i

|0i becomes the new vacuum state

di� |⌦i = (�1)ic†
i�

X

j⇢

c†
j⇢

|0i = 0. (6.3)

The number operator m↵,i = 0, 1 now counts holes rather than electrons

m↵,i = c
↵,i

c†
↵,i

= 1 � c†
↵,i

c
↵,i

. (6.4)

In the case of nearest neighbour hopping on a bipartite lattice this transformation also leaves
the hopping term unchanged because ✏i✏j = �1 when i and j are on di↵erent sublattices:

d†
↵,i

d↵,j = ✏i✏jc↵,ic
†
↵,j

= c†
↵,i

c
↵,j

. (6.5)

Defining the particle density ⇢ as the number of fermions per site:

⇢ =
1

N

X

i

(ni" + ni#) . (6.6)

The PH symmetry maps the Hamiltonian to itself with the sign of the chemical potential
reversed and the density inverted about half-filling:

PH : H(t, U, µ) ! H(t, U, �µ) (6.7)

⇢ ! 2 � ⇢. (6.8)

The Hamiltonian is symmetric under PH at µ = 0 and so must all the observables, hence
half-filling ⇢ = 1 occurs here. This symmetry and known observable acts as a useful test for the
numerical calculations.

110



APPENDICES

B Evaluation of the Fermion Free Energy

There are 2N possible configurations of the spins in the LRFK model. In the language of ions
and electrons (immobile and mobile species), we define nk

i
to be the occupation of the ith site

of the kth configuration. The quantum part of the free energy can then be defined through the
quantum partition function Z

k associated with each state nk

i
:

F k = �1/� ln Z
k, (6.9)

such that the overall partition function is:

Z =
X

k

e��H
k
Zk

=
X

k

e��(H
k
+F

k
).

(6.10)

Fermions are limited to occupation numbers of 0 or 1, so Zk simplifies nicely. If mj

i
= {0, 1} is

defined as the occupation of the level with energy ✏k
i

then the partition function is a sum over
all the occupation states labelled by j:

Zk = Tre��F
k

=
X

j

e��
P

i m
j
i ✏

k
i

=
X

j

Y

i

e��m
j
i ✏

k
i =

Y

i

X

j

e��m
j
i ✏

k
i

=
Y

i

(1 + e��✏
k
i )

F k = �1/�
X

k

ln (1 + e��✏
k
i ).

(6.11)

Observables can then be calculated from the partition function, for examples the occupation
numbers:

hNi =
1

�

1

Z

@Z

@µ
= �

@F

@µ

=
1

�

1

Z

@

@µ

X

k

e��(H
k
+F

k
)

= 1/Z
X

k

(Nk

ion
+ Nk

electron
)e��(H

k
+F

k
),

(6.12)

with the definitions:
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Nk

ion
= �

@Hk

@µ
=
X

i

nk

i

Nk

electron
= �

@F k

@µ
=
X

i

⇣
1 + e�✏

k
i

⌘�1

.

(6.13)
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C Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a useful method whenever we have a probability dis-
tribution that we want to sample from but there is not direct sampling way to do so.

C.1 Direct Random Sampling

In almost any computer simulation the ultimate source of randomness is a stream of (close
to) uniform, uncorrelated bits generated from a pseudo random number generator. A direct
sampling method takes such a source and outputs uncorrelated samples from the target dis-
tribution. The fact they are uncorrelated is key as we’ll see later. Examples of direct sampling
methods range from the trivial: take n random bits to generate integers uniformly between 0
and 2n to more complex methods such as inverse transform sampling and rejection sampling [2].

In physics the distribution we usually want to sample from is the Boltzmann probability over
states of the system S:

p(S) =
1

Z
e��H(S), (6.14)

where Z =
P

S
e��H(S) is the normalisation factor and ubiquitous partition function. In princi-

ple we could directly sample from this, for a discrete system there are finitely many choices. We
could calculate the probability of each one and assign each a region of the unit interval which
we could then sample uniformly from.

However, if we actually try to do this we will run into two problems, we can’t calculate Z for
any reasonably sized systems because the state space grows exponentially with system size.
Even if we could calculate Z, sampling from an exponentially large number of options quickly
become tricky. This kind of problem happens in many other disciplines too, particularly when
fitting statistical models using Bayesian inference [3].

C.2 MCMC Sampling

So what can we do? Well it turns out that if we are willing to give up in the requirement that
the samples be uncorrelated then we can use MCMC instead.

MCMC defines a weighted random walk over the states (S0, S1, S2, ...), such that in the long
time limit, states are visited according to their probability p(S). [4–6]. [7]

lim
i!1

p(Si) = P (S). (6.15)

In a physics context this lets us evaluate any observable with a mean over the states visited by
the walk.

hOi =
X

S

p(S)hOiS =
MX

i=0

hOiSi + O( 1p
M

). (6.16)
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The samples in the random walk are correlated so the samples e↵ectively contain less infor-
mation than N independent samples would. As a consequence the variance is larger than the
hO2

i � hOi
2 form it would have if the estimates were uncorrelated. Methods of estimating the

true variance of hOi and decided how many steps are needed will be considered later.

C.3 Implementation of MCMC

In implementation MCMC can be boiled down to choosing a transition function T (St ! St+1)
where S are vectors representing classical spin configurations. We start in some initial state S0

and then repeatedly jump to new states according to the probabilities given by T . This defines
a set of random walks {S0 . . . Si . . . SN}.

In pseudo-code one could write the MCMC simulation for a single walker as:

# A skeleton implementation of MCMC
current_state = initial_state

for i in range(N_steps):
new_state = sampleT(current_state)
states[i] = current_state

Where the sampleT function samples directly from the transition function T .

If we run many such walkers in parallel we can then approximate the distribution pt(S; S)
which tells us where the walkers are likely to be after they’ve evolved for t steps from an initial
state S0. We need to carefully choose T such that the probability pt(S; S0) approaches the
distribution of interest. In this case the thermal distribution P (S; �) = Z

�1e��F (S).

C.4 Global and Detailed balance equations

We can quite easily write down the properties that T must have in order to yield the cor-
rect target distribution. Since we must transition somewhere at each step, we first have the
normalisation condition that X

S

T (S 0
! S) = 1. (6.17)

Second, let us move to an ensemble view, where rather than individual walkers and states, we
think about the probability distribution of many walkers at each step. If we start all the walkers
in the same place the initial distribution will be a delta function and as we step the walkers will
wander around, giving us a sequence of probability distributions {p0(S), p1(S), p2(S) . . .}. For
discrete spaces we can write the action of the transition function on pi as a matrix equation

pi+1(S) =
X

S02{S}

pi(S
0)T (S 0

! S). (6.18)

This equation is essentially just stating that total probability mass is conserved as our walkers
flow around the state space.
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In order that pi converges to our target distribution p in the long time limit, we need the target
distribution to be a fixed point of the transition function

P (S) =
X

S0

P (S 0)T (S 0
! S). (6.19)

Along with some more technical considerations such as ergodicity which won’t be considered
here, global balance su�ces to ensure that a MCMC method is correct [8].

A su�cient but not necessary condition for global balance to hold is called detailed balance:

P (S)T (S ! S 0) = P (S 0)T (S 0
! S). (6.20)

In practice most algorithms are constructed to satisfy detailed rather than global balance,
though there are arguments that the relaxed requirements of global balance can lead to faster
algorithms [9].

The goal of MCMC is then to choose T so that it has the desired thermal distribution P (S)
as its fixed point and converges quickly onto it. This boils down to requiring that the matrix
representation of Tij = T (Si ! Sj) has an eigenvector with entries Pi = P (Si) with eigenvalue
1 and all other eigenvalues with magnitude less than one. The convergence time depends on
the magnitude of the second largest eigenvalue.

The choice of the transition function for MCMC is under-determined as one only needs to
satisfy a set of balance conditions for which there are many solutions [8]. The standard choice
that satisfies these requirements is called the Metropolis-Hastings algorithm.

C.5 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm breaks the transition function into a proposal distribution
q(S ! S 0) and an acceptance function A(S ! S 0). q must be a function we can directly sample
from, and in many cases takes the form of flipping some number of spins in S, i.e., if we are
flipping a single random spin in the spin chain, q(S ! S 0) is the uniform distribution on states
reachable by one spin flip from S. This also gives the symmetry property that q(S ! S 0) =
q(S 0

! S).

The proposal S 0 is then accepted or rejected with an acceptance probability A(S ! S 0), if the
proposal is rejected then Si+1 = Si. Hence:

T (S ! S 0) = q(S ! S 0)A(S ! S 0). (6.21)

The Metropolis-Hasting algorithm is a slight extension of the original Metropolis algorithm
which allows for non-symmetric proposal distributions q(S ! S 0) 6= q(S 0

! S). It can be
derived starting from detailed balance [7]:

P (S)T (S ! S 0) = P (S 0)T (S 0
! S), (6.22)
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inserting the proposal and acceptance function

P (S)q(S ! S 0)A(S ! S 0) = P (S 0)q(S 0
! S)A(S 0

! S), (6.23)

rearranging gives us a condition on the acceptance function in terms of the target distribution
and the proposal distribution which can be thought of as inputs to the algorithm

A(S ! S 0)

A(S 0 ! S)
=

P (S 0)q(S 0
! S)

P (S)q(S ! S 0)
= f(S, S 0). (6.24)

The Metropolis-Hastings algorithm is the choice

A(S ! S 0) = min (1, f(S, S 0)) , (6.25)

for the acceptance function. The proposal distribution is left as a free choice.

Noting that f(S, S 0) = 1/f(S 0, S), we can see that the MH algorithm satisfies detailed balance
by considering the two cases f(S, S 0) > 1 and f(S, S 0) < 1.

By choosing the proposal distribution such that f(S, S 0) is as close as possible to one, the rate
of rejections can be reduced and the algorithm sped up. This can be challenging though, as
getting f(S, S 0) close to 1 would imply that we can directly sample from a distribution very
close to the target distribution. As MCMC is usually applied to problems for which there is
virtually no hope of sampling directly from the target distribution, it’s rare that one can do so
approximately.

When the proposal distribution is symmetric as ours is, it cancels out in the expression for the
acceptance function and the Metropolis-Hastings algorithm is simply the choice

A(S ! S 0) = min
�
1, e�� �F

�
, (6.26)

where F is the overall free energy of the system, including both the quantum and classical
sector.

To implement the acceptance function in practice we pick a random number in the unit interval
and accept if it is less than e�� �F :

# An implementation of the standard MH algorithm
current_state = initial_state

for i in range(N_steps):
new_state = proposal(current_state)
df = free_energy_change(current_state , new_state , parameters)

if uniform (0,1) < exp(-beta * df):
current_state = new_state

states[i] = current_state
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C.6 Two Step Trick

Our method already relies heavily on the split between the classical and quantum sector to
derive a sign problem free MCMC algorithm but it turns out that there is a further trick we
can play with it. The free energy term is the sum of an easy to compute classical energy and a
more expensive quantum free energy, we can split the acceptance function into two in such a
way as to avoid having to compute the full exact diagonalisation some of the time:

# Our two step MH implementation for models with classical and
quantum energy terms

current_state = initial_state

for i in range(N_steps):
new_state = proposal(current_state)

df_classical = classical_free_energy_change(current_state ,
new_state , parameters)

if exp(-beta * df_classical) < uniform (0,1):
f_quantum = quantum_free_energy(current_state , new_state ,

parameters)

if exp(- beta * df_quantum) < uniform (0,1):
current_state = new_state

states[i] = current_state

As discussed in the main text, for the model parameters used, we find that with our new
scheme the matrix diagonalisation is skipped around 30% of the time at T = 2.5 and up to
80% at T = 1.5. We observe that for N = 50, the matrix diagonalisation, if it occurs, occupies
around 60% of the total computation time for a single step. This rises to 90% at N = 300 and
further increases for larger N. We therefore get the greatest speedup for large system sizes at
low temperature where many prospective transitions are rejected at the classical stage and the
matrix computation takes up the greatest fraction of the total computation time. The upshot
is that we find a speedup of up to a factor of 10 at the cost of very little extra algorithmic
complexity.

This modified scheme has the acceptance function

A(a ! b) = min
�
1, e���Hs

�
min

�
1, e���Fc

�
. (6.27)

We can show that this satisfies the detailed balance equations as follows. Defining rc = e��Hc

and rq = e��Fq our target distribution is ⇡(a) = rcrq. This method has T (a ! b) = q(a !

b)A(a ! b) with symmetric p(a ! b) = ⇡(b ! a) and A = min (1, rc) min (1, rq)

Substituting this into the detailed balance equation gives:

T (a ! b)/T (b ! a) = ⇡(b)/⇡(a) = rcrq. (6.28)
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Figure 6.1: (Upper) 10 MCMC chains starting from the same initial state for a system with N = 150
sites and 3000 MCMC steps. At each MCMC step, n spins are flipped where n is drawn from Uni-
form(1,N) and this is repeated N

2
/100 times. The simulations therefore have the potential to necessi-

tate 10⇤N
2 matrix diagonalisations for each 100 MCMC steps. (Lower) The normalised autocorrelation

(hmimi�ji � hmiihmii)/V ar(mi)) averaged over i. It can be seen that even with each MCMC step
already being composed of many individual flip attempts, the autocorrelation is still non negligible
and must be taken into account in the statistics. t = 1,↵ = 1.25, T = 2.2, J = U = 5

Taking the LHS and substituting in our transition function:

T (a ! b)/T (b ! a) =
min (1, rc) min (1, rq)

min (1, 1/rc) min (1, 1/rq)
, (6.29)

which simplifies to rcrq as min(1, r)/ min(1, 1/r) = r for r > 0.

Autocorrelation Time

At this stage one might think we are done. We can indeed draw independent samples from our
target Boltzmann distribution by starting from some arbitrary initial state and doing k steps
to arrive at a sample. These are not, however, independent samples. In fig. 6.1 it is already
clear that the samples of the order parameter m have some autocorrelation because only a few
spins are flipped each step. Even when the number of spins flipped per step is increased that
it can be an important e↵ect near the phase transition. Let’s define the autocorrelation time
⌧(O) informally as the number of MCMC samples of some observable O that are statistically
equal to one independent sample or equivalently as the number of MCMC steps after which the
samples are correlated below some cut-o↵, see ref. [10]. The autocorrelation time is generally
shorter than the convergence time so it therefore makes sense from an e�ciency standpoint to
run a single walker for many MCMC steps rather than to run a huge ensemble for k steps each.
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Figure 6.2: Simulations showing how the autocorrelation of the order parameter depends on the
proposal distribution used at di↵erent temperatures, we see that at T = 1.5 < Tc a single spin flip is
likely the best choice, while at the high temperature T = 2.5 > Tc flipping two sites or a mixture of
flipping two and 1 sites is likely a better choice. $t = 1, ↵ = 1.25, J = U = 5$

Once the random walk has been carried out for many steps, the expectation values of O can
be estimated from the MCMC samples Si:

hOi =
NX

i=0

O(Si) + O(
1

p
N

). (6.30)

The samples are correlated so the N of them e↵ectively contains less information than N inde-
pendent samples would, in fact roughly N/⌧ e↵ective samples. As a consequence the variance
is larger than the hO2

i � hOi
2 form it would have if the estimates were uncorrelated. There

are many methods in the literature for estimating the true variance of hOi and deciding how
many steps are needed but my approach has been to run a small number of parallel chains,
which are independent, in order to estimate the statistical error produced. This is a slightly
less computationally e�cient because it requires throwing away those k steps generated before
convergence multiple times but it is conceptually simple.

Tuning the proposal distribution

Now we can discuss how to minimise the autocorrelations. The general principle is that one
must balance the proposal distribution between two extremes. Choose overly small steps, like
flipping only a single spin and the acceptance rate will be high because �F will usually be
small, but each state will be very similar to the previous and the autocorrelations will be high
too, making sampling ine�cient. On the other hand, overlay large steps, like randomising a
large portion of the spins each step, will result in very frequent rejections, especially at low
temperatures.
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I evaluated a few di↵erent proposal distributions for use with the FK model.

1. Flipping a single random site
2. Flipping N random sites for some N
3. Choosing n from Uniform(1, N) and then flipping n sites for some fixed N.
4. Attempting to tune the proposal distribution for each parameter regime.

Fro fig. 6.2 we see that even at moderately high temperatures T > Tc flipping one or two sites
is the best choice. However, for some simulations at very high temperature flipping more spins
is warranted.
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Figure 6.3: Bloch’s theorem can be thought of as transforming from a periodic Hamiltonian on the

plane to the unit cell defined on a torus. In addition we get some phase factors e
i~k·~r associated with

bonds that cross unit cells that depend on the sense in which they do so ~r = (±1,±1). Representing
graphs on the torus turns out to require a similar idea, we unwrap the torus to one unit cell and keep
track of which bonds cross the cell boundaries.

D Lattice Generation

D.1 Graph Representation

Three key pieces of information allow us to represent amorphous lattices. The majority of the
graph connectivity is encoded by an ordered list of edges (i, j). These are ordered to represent
both directed and undirected graphs. This is useful for defining the sign of bond operators
uij = �uji.

Information about the embedding of the lattice onto the torus is encoded into a point on the
unit square associated with each vertex. The torus is unwrapped onto the square by defining
an arbitrary pair of cuts along the major and minor axes. For simplicity, we take these axes to
be the lines x = 0 and y = 0. We can wrap the unit square back up into a torus by identifying
the lines x = 0 with x = 1 and y = 0 with y = 1.

Finally, we need to encode the topology of the graph. This is necessary because, if we are simply
given an edge (i, j) we do not know how the edge gets from vertex i to vertex j. One method
would be taking the shortest path, but it could also ‘go the long way around’ by crossing one
of the cuts. To encode this information, we store an additional vector ~r associated with each
edge. rx

i
= 0 means that edge i does not cross the x. rx

i
= +1 (�1) means it crossed the cut in

a positive (negative) sense.

This description of the lattice has a very nice relationship to Bloch’s theorem. Applying Bloch’s
theorem to a periodic lattice essentially means wrapping the unit cell onto a torus. Variations
that happen at longer length scales than the size of the unit cell are captured by the crystal
momentum. The crystal momentum inserts a phase factor ei~q·~r onto bonds that cross to adjacent
unit cells. The vector ~r is exactly what we use to encode the topology of our lattices.
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Figure 6.4: The proportion of computation time taken up by the four longest running steps when
generating a lattice. For larger systems, the time taken to perform the diagonalisation dominates.

D.2 Encoding edge-colouring problems as SAT instances

In the main text we discuss the problem of three-edge-colouring, assigning one of three labels
to each edge of a graph such that no edges of the same label meet at a vertex. To solve this
in practice I use a solver called MiniSAT [11]. Like most modern SAT solvers, MiniSAT requires
the input problem to be specified in Conjunctive Normal Form (CNF). CNF requires that the
constraints be encoded as a set of clauses of the form

x1 or � x3 or x5, (6.31)

that contain logical ORs of some subset of the variables where any of the variables may also be
logically NOT’d, which we represent by negation here. A solution of the problem is one that
makes all the clauses simultaneously true.

I encode the edge colouring problem by assigning 3B boolean variables to each of the B edges
of the graph, xi↵ where xi↵ = 1 indicates that edge i has colour ↵. For edge colouring graphs
we need two types of constraints: 1. Each edge is exactly one colour. 2. No neighbouring edges
are the same colour.

The first constraint is a product of doing this mapping to boolean variables. The solver does
not know anything about the structure of the problem unless it is encoded into the variables.
Let’s say we have three variables that correspond to particular edge being red r, green g or blue
b. To require that exactly one of the variables be true, we can enforce that no pair of variables
be true: -(r and b)-(r and g)-(b and g)

However, these clauses are not in CNF form. Therefore, we also have to use the fact that -(
a and b)= (-a OR -b). To enforce that at least one of these is true we simply OR them all
together (r or b or g)
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To encode the fact that no adjacent edges can have the same colour, we emit a clause that, for
each pair of adjacent edges, they cannot be both red, both green or both blue.

We get a solution or set of solutions from the solver, which we can map back to a labelling of
the edges.

The solution presented here works well enough for our purposes. It does not take up a substantial
fraction of the overall computation time, see +fig:times but other approaches could likely work.

When translating problems to CNF form, there is often some flexibility. For instance, we used
three boolean variables to encode the colour of each edge and then additional constraints to
require that only one of these variables be true. An alternative method which we did not try
would be to encode the label of each edge using two variables, yielding four states per edge,
and then add a constraint that one of the states, say (true, true) is disallowed. This would,
however, have added some complexity to the encoding of the constraint that no adjacent edges
can have the same colour.

The popular Networkx Python library uses a greedy graph colouring algorithm. It simply it-
erates over the vertices/edges/faces of a graph and assigns them a colour that is not already
disallowed. This does not work for our purposes because it is not designed to look for a particu-
lar n-colouring. However, it does include the option of using a heuristic function that determine
the order in which vertices will be coloured [12, 13]. Perhaps
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E Lattice Colouring

Four-face-colourings and three-edge-colourings

A four-face-colouring can be converted into a three-edge-colouring quite easily: 1. Assume the
faces of G can be four-coloured with labels (0,1,2,3) 2. Label each edge of G according to
i + j mod 3 where i and j are the labels of the face adjacent to that edge. For each edge label
there are two face label pairs that do not share any face labels. i,e the edge label 0 can come
about either from faces 0 + 3 or 1 + 2.

Explicitly, the mapping from face labels to edge labels is:

0 + 3 or 1 + 2 = 0 mod 3,

0 + 1 or 2 + 3 = 1 mod 3,

0 + 2 or 1 + 3 = 2 mod 3.

(6.32)

3. In a cubic planar G, a vertex v in G is always part of three faces and the colours of those
faces determine the colours of the edges that connect to v. The three faces must take
three distinct colours from the set {0, 1, 2, 3}.

4. From there, one can easily be convinced that those three distinct face colours can never
produce repeated edge colours according to the i + j mod 3 rule.

This implies that all cubic planar graphs are three-edge-colourable. This does not apply to
toroidal graphs. We have not yet generated a Voronoi lattices on the torus that is not three-
edge-colourable. This suggests that Voronoi lattices may have additional structures that make
them three-edge-colourable. Intuitively, it seems that the kinds of toroidal graphs that cannot
be three-edge-coloured could never be generated by a Voronoi partition with more than a few
seed points.
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F The Projector

The projection from the extended space to the physical space will not be particularly important
for the results presented here. However, the theory remains useful to explain why this is.

The physical states are defined as those for which Di|�i = |�i for all Di. Since Di has eigenvalues
±1, the quantity (1+Di)

2
has eigenvalue 1 for physical states and 0 for extended states so is the

local projector onto the physical subspace.

Therefore, the global projector is

P =
2NY

i=1

✓
1 + Di

2

◆
, (6.33)

for a toroidal trivalent lattice with N plaquettes 2N vertices and 3N edges. As discussed earlier,
the product over (1 + Dj) can also be thought of as the sum of all possible subsets {i} of the
Dj operators, which is the set of all possible gauge symmetry operations

P =
1

22N

X

{i}

Y

i2{i}

Di. (6.34)

Since the gauge operators Dj commute and square to one, we can define the complement
operator C =

Q
2N

i=1
Di and see that it takes each set of

Q
i2{i} Dj operators and gives us the

complement of that set. We will shortly see why C is the identity in the physical subspace, as
noted earlier.

We use the complement operator to rewrite the projector as a sum over half the subsets of {i}
- referred to as ⇤. The complement operator deals with the other half

P =

0

@ 1

22N�1

X

⇤

Y

i2{i}

Di

1

A
 

1 +
Q

2N

i
Di

2

!
= S · P0. (6.35)

To compute P0, the main quantity needed is the product of the local projectors Di

2NY

i

Di =
2NY

i

bx
i
by
i
bz
i
ci (6.36)

for a toroidal trivalent lattice with N plaquettes 2N vertices and 3N edges.

First, we reorder the operators by bond type. This does not require any information about the
underlying lattice,

2NY

i

Di =
2NY

i

bx
i

2NY

i

by
i

2NY

i

bz
i

2NY

i

ci. (6.37)
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The product over ci operators reduces to a determinant of the Q matrix and the fermion parity,
see ref. [14]. The only di↵erence from the honeycomb case is that we cannot explicitly compute
the factors px, py, pz = ± 1 that arise from reordering the b operators such that pairs of vertices
linked by the corresponding bonds are adjacent,

2NY

i

b↵
i

= p↵
Y

(i,j)

b↵
i
b↵
j
. (6.38)

However, they are simply the parity of the permutation from one ordering to the other and can
be computed in linear time with a cycle decomposition [15].

We find that
P0 = 1 + px py pz ⇡̂ det(Qu)

Y

{i,j}

�iuij, (6.39)

where px py pz = ±1 are lattice structure factors and det(Qu) is the determinant of the matrix
mentioned earlier that maps ci operators to normal mode operators b0

i
, b00

i
. These depend only

on the lattice structure.

⇡̂ =
Q

iN(1 � 2n̂i) is the parity of the particular many-body state determined by fermionic
occupation numbers ni. As discussed in [14], ⇡̂ is gauge invariant in the sense that [⇡̂, Di] = 0.

This implies that det(Qu)
Q

�iuij is also a gauge invariant quantity. In translation invariant
models this quantity which can be related to the parity of the number of vortex pairs in the
system [16].

All these factors take values ±1 so P0 is 0 or 1 for a particular state. Since S corresponds to
symmetrising over all the gauge configurations and cannot be 0, once we have determined the
single particle eigenstates of a bond sector, the true many-body ground state has the same
energy as either the empty state with ni = 0 or a state with a single fermion in the lowest level.
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