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Luca Cocconi

Abstract

Living systems are by definition far from thermodynamic equilibrium, a condition that
can be maintained only at the cost of a continuous injection of energy at the microscale,
e.g. via cellular metabolic processes, and dissipation into the surrounding environment.
The absence of thermodynamic equilibrium, formalised in the breaking of the global
detailed balance condition, allows for a wealth of exotic and often counterintuitive phe-
nomena. Our understanding of the capabilities and limitations of living matter has been
greatly informed by thermodynamic approaches, which have to be generalised with re-
spect to their traditional counterparts in order to deal with systems subject to strong
random fluctuations. The resulting toolkit of stochastic thermodynamics, in particu-
lar the concept of entropy production, gives us a quantitative handle on the degree of
“non-equilibriumness” of such stochastic processes. Recently, stochastic thermodynam-
ics has benefitted from cross-contamination with the field-theoretic literature and the
techniques developed in the latter for the study of collective behaviour have opened the
doors to the thermodynamic characterisation of increasingly complex systems. Start-
ing from minimal mathematical models of single active particles and moving up across
scales to the level of morphogenetic processes in real organisms (in particular, the for-
mation of morphogen gradients), this thesis contributes to laying the foundations for a
bridge between physical understanding and biological insight. While the focus is here
on generic mechanisms and on the development of theoretical tools, the applicability
to specific experimental scenarios will be pointed out where relevant.
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Dα/α

2
0. Here, we set D = µ = 1 and vary Dα and α0. . . . . . . . . . . 114

2.9 Steady-state entropy production as a function of the separation of timescale,
ε — We fix D = Dα = µ = 1 and α0 = 10, then vary ε which represents
the difference in the timescales of the two processes, introduced in Sec
2.6.2. We show good agreement between numerical simulations (sym-
bols) and analytic result (2.78) (solid lines). We also show the analytic
results for the entropy production rate as ε → 0 (dotted lines) as given
by (2.79). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

18



3.1 Coarse-graining procedure for a diffusion process on a periodic square
lattice perturbed by a spatially quenched, non-conservative disorder. In
one dimension (top), the transition rates locally define a random walk
with increments νn = ζn,n+1 − ζn+1,n and the affinity A({w}; {1, .., N})
of the closed cycle across all sites is to leading order proportional to the
displacement of the random walk after N steps, Appendix 3.A. In higher
dimensions (bottom), the random potential picture breaks down locally
and the coarse-graining becomes non-trivial due to the current no longer
being uniform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.2 The dependence of the scaling exponent for the entropy production per
mesostate, ṡ(meso)
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3.5 The scaling behaviour of the mesoscopic entropy production Ṡi(L), Eq. (3.5),
as a function of block size L is not modified by imposing the antisym-
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main valid in the strong disorder regime (independent of whether (3.27)
is imposed), which is explored by considering a noise on the transition
rates that is homogeneously distributed in the range |ζ| ∈ (1 − ε, 1] for
various choices of the variance ε (right panel for d = 2 and η = 0). The-
oretical predictions for the asymptotic scaling behaviour are plotted for
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5.3 Rescaled cover time density, φ1(x), for α = 2 in d = 3 with N = 303

(empty circles), and d = 4 with N = 154 (filled circles), over an ensemble
of 106 independent realizations. The conjectured density (solid line) is
given by Eq. (5.24). Inset: Scaling of moments 〈CN(2)〉 in d = 3 (empty
circles). The conjectured behavior (solid line) is given by Eq. (5.23).
Standard errors are smaller than the symbols. . . . . . . . . . . . . . . 228

5.4 Same as Fig 5.3 but with a logarithmic y-axis. Error bars denote standard
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circles). The conjectured behavior (solid line) is given by Eq. (5.26).
Standard errors are smaller than the symbols. . . . . . . . . . . . . . . 229
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5.11 Rescaled cover time density, φ2(z), for α = 0 in d = 3 with N = 1003

(empty circles) and N = 503 (filled circles), over an ensemble of 106

independent realizations. A Tracy-Widom density from the Gaussian
orthogonal ensemble is plotted for comparison (solid line). . . . . . . . 233

5.12 Same as Fig 5.11 but with a logarithmic y-axis. Error bars denote stan-
dard errors of histogram bins. For comparison, a Gaussian density is also
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5.13 Skewness κ3 (empty circles) and kurtosis κ4 (filled circles) for α = 0 in
d = 3. Error bars denote jackknife standard errors. The Tracy-Widom
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7.1 (A) Schematic representation of a wing imaginal disc of Drosophila.
In the set of experiments reported in [273], a secreted form of GFP
(SecGFP) is expressed under the control of the patched (ptc) promoter
(brown), and a membrane-tethered anti-GFP nanobody is expressed un-
der the control of the hedgehog (hh) promoter (gray). (B) Schematic
representation of the paths a diffusing protein can take following se-
cretion (diffusion through the basolateral space and exchange with the
hemolymph). The fat body is a large adipose tissue with extensive con-
tact with the hemolymph. (C) Schematic of one-dimensional model ge-
ometry. The mean intercellular distance is denoted h (upper schematic).
The width of the source is denoted LS, the width of the anterior and
posterior compartments L (lower schematic). . . . . . . . . . . . . . . . 265
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7.2 (A) A threshold level of surface density of bound receptors n∗B determines
the boundary of the activation domain (x∗) of a hypothetical downstream
target (orange). (B) On/off target boundary (x∗) as a function of the
total receptor surface density, in the absence of receptor saturation and
ligands in the hemolymph. The activation threshold (n∗B = 10nM. µm)
was used to determine x∗ for different receptor surface density (dots). A
maximal target domain size can be found for intermediate values of the
total receptor surface density. (C) Phase diagram of target activation
domain size, as a function of total receptor surface density and effec-
tive ligand degradation rate in the hemolymph. Receptor saturation is
not taken into account. At low receptor density level, no activation oc-
curs; at intermediate receptor density and for low enough degradation in
the hemolymph, a region of full activation appears; the third domain of
parameter space is that of biologically relevant spatially restricted acti-
vation. (D) Phase diagram as described for panel F, but with receptor
saturation included. Color code corresponds to the size of the activated
domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

7.3 (A) Normalized fluorescent GFP intensity in the Nbhigh condition (hh-
Nb1highCD8, green bar) and Nbhigh overexpression condition (hh-Gal4,
UAS-Nb1highCD8, orange bar) after ex vivo incubation in a GFP bath.
The difference in GFP intensity suggests that (Gal4-mediated) overex-
pression leads to a ∼ 20 fold increase in surface receptor levels. (B)
Nbhigh-expressing discs (Nb1highCD8 condition) were saturated with GFP
on ice, washed, incubated for different durations and imaged. Normal-
ized GFP intensity in hh- Nb1highCD8 wing discs decreased by ∼25%
over the time course of 6 h. Since GFP is quenched in late endosomes
due to a low pH (58), this observation suggests that Nbhigh is degraded
only slowly (on the scale of several hours as predicted by modelling).
(C) To estimate the concentration of Nb1highCD8 at the cell surface, a
GFP invasion assay was used. hh-Nb1highCD8 discs were incubated in
2 nM, 20 nM and 200 nM GFP baths for 5 min at 25◦C. The resulting
basal-to-apical GFP gradient in the posterior compartment was imaged
and quantified. (D) A simple model of apico-basal gradient formation. . 274
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7.4 (A) Fluorescence intensity profiles of bound GFP obtained for the four
experiments of interest, all of which involve GFP production at the AP
boundary: no binders expressed in the disc (no binders condition), Nbhigh

expressed in the posterior compartment (hh-Nb1highCD8 condition), con-
comitant expression of Nbhigh expressed in the posterior compartment
and the fat body (hh-Nb1highCD8+fat body trap condition), Nblow ex-
pressed in the posterior compartment (hh-NblowCD8 condition). The
vertical dotted line marks the estimated posterior edge of the source.
The numbers of discs analyzed are as follows: no binders, n = 10;
hh-Nb1highCD8, n = 11; hh-Nb1highCD8 + fat body trap, n = 7; hh-
NblowCD8, n = 10. Scale bars, 20 µm. (B) Bound GFP profiles normal-
ized to the total concentration of receptors as predicted by our diffusion-
degradation model after parameter fitting. The blue and green curves
were obtained with the known on- and off-rates for the low- and high-
affinity receptors, respectively. The purple curve was obtained by in-
creasing degradation in the hemolymph. . . . . . . . . . . . . . . . . . 275

7.5 Free ligand concentration (A,C) and effective 3D bound receptor con-
centration (as opposed to membrane density) in the intercellular space
(B, D) profiles for different kon (A, B) and, koff values (C, D). The rel-
ative levels of free ligand concentration and effective 3D bound receptor
concentration indicate that the GFP fluorescence profile is largely dom-
inated by bound receptors. nT = 80nM.µm, and other parameters as in
Table 7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

7.6 Diffusion-leakage-degradation models with one or two receptor types,
as discussed in the text: (a) simple model of ligand binding to im-
mobile, membrane-bound receptors. (b) As in (a), but with receptor
release from the membrane and subsequent reinsertion. (c) As in (a)
but considering effective diffusion of receptors at the surface of the tis-
sue, through membrane diffusion and hopping. (d) As in (c), but with
two receptor types: one type of receptor is allowed to hop and diffuse,
while the second type remains membrane-bound and immobile. The
two receptor types are color-coded according to the same convention for
signalling/non-signalling receptors followed in Fig. 7.7B. . . . . . . . . 283
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7.7 Role of hopping and handover of the non-signaling receptor: simulations.
(A) Signaling activity profile predicted by the simplified GFP monomer
model of Fig. 7.6(d) in the three experimental conditions of interest,
namely SR (blue), SR+SR (green), SR+NR (red). These gradients are
qualitatively similar to those of the dimer model, shown in Fig. 7.8A.
(B) Schematic of the reactions involved in the two-receptor model with
GFP dimers. The arrows indicate reversible transitions and have been
labelled according to the notation introduced in the text. The colored
boxes contain subgraphs corresponding to the different mechanisms at
play in the model, namely single and double binding to receptors (red),
handover (orange), hopping (blue). (C) Concentration gradient of sig-
naling complex obtained from the two-receptor model with GFP dimer
shown in (B), for different choices of effective NR diffusion coefficient
K0. Introducing a non-diffusing NR (orange curve) shortens the gra-
dient compared to the case with SR only (blue curve). In line with
our analytical calculations, the gradient length scale is however observed
to increase with increasing NR diffusion constant Dr. The dotted line
indicates 1/e of the maximal value of the SR only profile, used to de-
termine gradient extension factors in panel (D). Other parameters are
as described in the text. (D) Blue line: Gradient extension factor as a
function of the effective NR diffusion coefficient Dr (other parameters
are as described in the text), in the simplified model with two receptors
(Fig. 7.6(d)), in the regime far from receptor saturation. The gradient
extension factor is defined as the ratio of the longer gradient length scale
for a given value of Dr and for Dr = 0, with other parameters kept the
same. The dashed line indicates no extension of the gradients, and its
intersection with the blue line sets the threshold diffusion coefficient D∗r
for gradient extension. Square marks: gradient extension factor obtained
with characteristic length scales extracted from the curves in Panel (C),
plotted for comparison with the result of the simplified model. . . . . 291
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7.8 Modeling the effect of GPI-anchored nonsignaling receptors on a gradient
length scale. (A) Predicted profiles of signaling complexes in three condi-
tions: a reference case with signaling receptors only (SR; red), doubling
SR levels (SR + SR; green), and adding nonsignaling receptors (SR +
NR; blue). As observed experimentally, doubling SR leads to a steeper
gradient, whereas adding NR reduces backflow-induced (GFPhemo) sig-
naling and extends the gradient, due to nonsignaling receptor effective
diffusion. For illustration, arbitrary thresholds were chosen to indicate
the position where high- and low-level target genes would be activated
(tables 7.1 and 7.2 report the parameter values). (B) Width of the high
(top) and low (bottom) target activation domains [arbitrary threshold
shown in (A)], as a function of normalized levels of SR and NR. Warmer
colors indicate a wider target activation domain. Colored dots show pa-
rameter combinations used in (B). (Top) For the normalized SR value
of 1, increasing NR initially lengthens the high target domain, while a
further increase shortens it by preventing access of GFP to SR. (Bottom)
For the normalized SR value of 1 and in the absence of NR, GFPhemo
signaling dominates and low target gene is activated throughout (bright
yellow region). Increasing SR or NR production both lead to a reduction
in the low target domain size. . . . . . . . . . . . . . . . . . . . . . . . 293

8.1 Steady-state probability density functions for the ARnT model with D =
0.01, ν = 0.1, ε = 0 and τ = 1 as given in Eqs. (8.11) and (8.12). . . . 302

8.2 Parameter dependence of the variance (σ2
x) and entropy production (Ṡi)

of the non-equilibrium steady state of the ARnT model, as given in
Eq. (8.15) and (8.16). It is interesting to observe that σ2

x is a non-
monotonic function of the self-propulsion velocity ν, suggesting a non-
trivial connection between precision and the degree of activity. Similarly,
increasing the measurement rate τ eventually leads to the asymptotic
convergence of σ2

x to a finite value, while Ṡi diverges linearly, pointing
to the fact that an increase in measurement frequency is not sufficient
to achieve arbitrary precision. When not otherwise specified, D = 0.01,
ν = 0.1, ε = 0, τ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
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8.3 Numerically determined Pareto frontiers, thick lines, for the ARnT model
at fixed diffusivity D = 1 and error rate ε ∈ {0.01, 0.1, 0.4}. The shaded
regions correspond to the accessible parameter space covered by physical
choices of the self-propulsion speed ν > 0 and measurement rate τ > 0.
Interestingly, it appears that the accessible values of Ṡi and σ2

x for the
smallest error rate considered, ε = 0.01, are not a superset of those of
the intermediate error rate ε = 0.1, suggesting that a higher error rate
might be preferable when minimising dissipation is more important than
minimising the spread of the distribution. . . . . . . . . . . . . . . . . 304
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Introduction

Unlike the inert matter that surrounds us, which is to a good approximation either
at thermodynamic equilibrium or relaxing thereto when not systematically perturbed
by an external force, the type of matter than constitutes the building blocks of bio-
logical organisms is intrinsically active in nature, meaning that it is maintained out of
equilibrium at all times by a continuous injection of energy at the cellular and sub-
cellular scale [251]. While this energy might be invested into generating biomass and
into translating a genetic blueprint into structure during the course of developmental
processes, energy conservation requires that, on average, fully formed individuals dissi-
pate a corresponding amount of energy into their environment, albeit in a “degraded”
form, typically as heat. In this sense, the popular view that living organisms sustain
themselves by “consuming” the energy (or matter) contained in their food is somewhat
misleading. Rather, the dynamical steady-state that we call Life evades thermodynamic
equilibrium by feeding on the negative entropy [251] of the energy and matter that con-
tinuously flows through (rather than into) it. In fact, the same argument applies to the
planet Earth as a whole [158], with the energy coming from the Sun and contributing to
sustaining our global ecosystem eventually being released back into space in the form of
higher-entropy infrared radiation. It is thus not much of a stretch to picture our planet
as a gigantic, composite biological system, as posited e.g. in Lovelock’s Gaia hypothesis
[183].

These so called non-equilibrium steady-states [295] are one subject of study of thermo-
dynamics, which is the branch of physics that investigates the conversion of energy from
one form to another, historically with the aim of channelling it into a useful form (e.g.
the work output of a steam engine) in some optimal way and to identify any related
constraints [74]. Over the last few decades, technological advances in experimental bi-
ology have stirred a growing interest in understanding the capabilities and limitations
of microscopic living matter from an energetic perspective [306, 17]. In fact, it is only
through energetically-costly, genuinely out-of-equilibrium mechanism that fundamen-
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tal biological processes can be performed with the required level of precision (think of
biochemical clocks [19] or kinetic proofreading in DNA transcription [245]). On the
other hand, non-specific subcellular machinery such as molecular motors can operate
remarkably close to the maximum efficiency allowed by the laws of physics [14, 222].

The theoretical interest in how such microscopic biological process are evolved in, con-
trolled and “budgeted" by living organisms must soon be faced with the difficulty that
the tool-kit of traditional thermodynamics is unsuitable to be applied in situations
where environmental fluctuations play a prominent role. This becomes increasingly the
case as the characteristic energy scale of the process approaches the thermal scale kBT
(corresponding approximately to 4.11 × 10−21 J or 25.7 meV at room temperature),
the typical example being the Brownian motion induced by the coupling of microscopic
particles with a fluid [89]. For comparison, dephosphorylation of ATP, one of the key
currencies of intracellular energy transfer, into ADP releases about 500 meV. The sub-
field of stochastic thermodynamics addresses precisely this difficulty by generalising the
notions of traditional thermodynamics to stochastic processes [256, 220]. The resulting
physical laws are often probabilistic in nature, e.g. the second law of thermodynamics
turns into a statement about the non-negativity of the average entropy production,
while transients of negative entropy production are in principle allowed. Furthermore,
the inclusion of stochastic fluctuations “around” the deterministic average system tra-
jectory led to the discovery of fascinating principles, such as the thermodynamic uncer-
tainty relation [18] (TUR), relating the precision and energetic cost of non-equilibrium
processes.

Entropy production, generalised to a single stochastic trajectory [254], plays a key role
in stochastic thermodynamics by connecting thermal dissipation, and thus the energetic
cost of maintaining a system out of equilibrium, with time-reversal symmetry breaking
and the arrow of time . In particular, it was shown for Markov (memory-less) processes
that the “distinguishability” of forward- and reverse-time trajectories increases in time
proportionally to the rate of entropy production [113]. A direct computation of the
entropy production for a given process relies on our ability to resolve its dynamics in
full microscopic detail. While this is achievable for simple toy models (see Chapter 1
for various examples), more complex models, e.g. those involving multiple interacting
active units (active matter [23]), quickly become intractable with increasing system
size. For this reason, continuum models, in particular field theories, have been invoked
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in the past to describe the effective dynamics of these systems at a mesoscopic scale
and path-integral methods have been designed to estimate the entropy production of
the resulting theory [202, 53]. This has been a somewhat controversial approach, in
part because the effect of coarse-graining on the connection between dissipation and
time-reversal symmetry is an open problem [91, 59, 280], and more specifically because
the loss of ‘single particle entity’ is suspected to have important consequences on the
final result [111]. Both of these problems are addressed in this thesis, the first by
developing a theory for the scaling of the mesoscopic entropy production under phase-
space coarse graining (Chapter 3), and the second by presenting the first, to the best
of our knowledge, formalisation and systematic study of the concept of point-particle
entity in the context of statistical field theory (Chapter 4).

While technically challenging, the application of thermodynamic approaches to increas-
ingly complex models paves the way to a deeper understanding of many fascinating
biological processes that emerge at the mesoscopic scale from many-agent interactions.
One such generic mechanism of Life is morphogenesis , namely the specification of an or-
ganism’s body plan through conformational changes and local differentiation, typically
driven by a combination of spontaneous self-organisation and external cues. Many mor-
phogenetic processes are orchestrated through inter-cellular signalling, often mediated
by specialised secreted molecules known as morphogens [288] . After being released
by a localised patch of ‘source’ cells, morphogens typically spread over tissue-scale
distances to form non-homogeneous concentration profiles (gradients), which are even-
tually decoded by individual cells to extract positional information [274, 85]. Both the
generation of such gradients and their interpretation are out of equilibrium processes
and can in principle be studied through the lens of active matter physics. A prerequi-
site to do so, however, is to develop a reliable microscopic theory of how these process
occur in vivo, e.g. how morphogens actually spread and are internalised by receiving
cells (which turns out to be a fairly controversial topic, see Chapter 7). We will also
see in Chapter 8 that information processing at the single agent level has non-trivial
thermodynamic implications and argue how expanding the toolkit of stochastic ther-
modynamics in this direction might offer a point of contact between minimal models
and biologically relevant mechanisms.
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Outline of the thesis

The chapters making up this thesis all deal with the statistical mechanics and dynamics
of non-equilibrium matter, albeit from different perspectives (stochastic thermodynam-
ics, path-integral techniques in stochastic processes, continuum models of developmental
processes). Chapter 1 opens with a pedagogical review of entropy production in analyt-
ically tractable models and introduces many of the techniques and concepts invoked in
subsequent Chapters. Chapter 2 then focuses on the thermodynamics of passive Brow-
nian dynamics driven away from equilibrium by a fluctuating external potential, with
non-trivial implications e.g. for realistic stochastic resetting and optical manipulation
of colloids. As anticipated in the introduction, Chapter 3 and 4 address two difficul-
ties arising when applying the toolkit of stochastic thermodynamics to coarse-grained
models, namely the determination of the scaling of the mesoscopic entropy production
as a function of the coarse-graining block size, and the importance for continuum ap-
proaches to preserve point-particle entity. Interestingly, we find in Chapter 3 that the
exponent controlling the algebraic scaling of the mesoscopic entropy production per
mesostate can take either sign depending on the microscopic features of the under-
lying process, thus suggesting a criterion to distinguish between equilibrium-like and
genuinely non-equilibrium processes. In Chapter 5 and 6, after having introduced the
Coupon Collector Problem and its generalisation to the case of dynamically accelerated
protocols, we demonstrate that the Doi-Peliti formalism (one of the two field-theoretic
formalisms possessing particle entity introduced in Chapter 4) can be utilised to address
probabilistic problems involving aging and extreme value statistics. In doing so, we con-
tribute to a growing body of literature aiming at applying this formalism to increasingly
complex setups, often in the context of active matter. Finally, in Chapter 7, we take the
long step into the realm of mesoscopic models of morphogenetic signalling in developing
tissues and present a theory of morphogen gradient formation with leakage and mul-
tiple co-receptor interactions. This theory constitutes the mathematical backbone for
the analysis of the experimental results appearing in [273], most of which are however
excluded from the Chapter for the sake of brevity as well as thematic coherence with
the rest of the thesis. In Chapter 8, we discussion of how the gap between analytically
tractable and biologically relevant models could be bridged, at least in some regards,
through the systematic study of information processing in “adaptive” active matter.
A brief summary of the work presented in this thesis and outlook for future research
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concludes the thesis.

Each chapter starts with its title, the list of authors who contributed to the work (as
well as their contributions) and the full citation reference of the corresponding article,
where applicable. A brief overview to contextualise the chapter within the whole of
this thesis and to provide further background when required (e.g. a brief introduction
to Drosophila wing disc development in Chapter 7) follows. This overview also works a
summary of the key ideas discussed in the chapter aimed at the non-technical reader.

The meaning of I and we should be clear by the context throughout.
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Overview All genuinely non-equilibrium processes, i.e. processes that exhibit motion
and flows at steady-state even in the presence of dissipative forces such as friction, need
to be sustained by a continuous input of energy [74]. Assuming that energy cannot
accumulate indefinitely in the internal degrees of freedom of the system, the former
will eventually be released back into the surrounding environment, typically in a “less
useful” form, such as heat or waste material. This degradation of energy (and, as it
turns out, information) is captured quantitatively by the entropy production of the
system, which constitutes a key concept in non-equilibrium thermodynamics. It is a
fundamental principle in thermodynamics that the entropy of an isolated system should
on average not decrease over time; this is known as the second law of thermodynamics.
However, the connection between entropy production and the arrow of time runs even
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deeper, as it can be proven under fairly general assumptions that the former measures
the typical ‘distinguishability’ between recordings of a given process played in forward
vs reverse time [113]. In this Chapter, we review the mathematical tool-kit of entropy
production in the context of stochastic thermodynamics and calculate it in closed form
for a number of paradigmatic, minimal models. While these models are often an extreme
simplification compared to their real-life counterparts, they nevertheless allow us to
isolate important aspects of this theory for closer inspection without having to resort
to approximations or numerical techniques.

Author contributions: LC wrote the first original draft of the review section. All
authors contributed to the formal analysis: BB calculated the entropy production (EP)
for the two- and three- state Markov process; LC calculate the EP for N independent
processes (distinguishable, indistinguishable two-state, indistinguishable d-state) and
the switching diffusion process on a ring; RGM calculated the EP for a random walk on
a (ring) lattice and for run-and-tumble motion with diffusion on a ring; ZZ calculated
the EP for driven Brownian particles. GP supervised the project and edited the original
draft of the manuscript.

Abstract

The rate of entropy production by a stochastic process quantifies how far it is from
thermodynamic equilibrium. Equivalently, entropy production captures the degree to
which detailed balance and time-reversal symmetry are broken. Despite abundant ref-
erences to entropy production in the literature and its many applications in the study
of non-equilibrium stochastic particle systems, a comprehensive list of typical examples
illustrating the fundamentals of entropy production is lacking. Here, we present a brief,
self-contained review of entropy production and calculate it from first principles in a
catalogue of exactly solvable setups, encompassing both discrete- and continuous-state
Markov processes, as well as single- and multiple-particle systems. The examples cov-
ered in this work provide a stepping stone for further studies on entropy production of
more complex systems, such as many-particle active matter, as well as a benchmark for
the development of alternative mathematical formalisms.
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1.1 Introduction

Stochastic thermodynamics has progressively evolved into an essential tool in the study
of non-equilibrium systems as it connects the quantities of interest in traditional thermo-
dynamics, such as work, heat and entropy, to the properties of microscopically-resolved
fluctuating trajectories [256, 149, 257]. The possibility of equipping stochastic processes
with a consistent thermodynamic and information-theoretic interpretation has resulted
in a number of fascinating works, with the interface between mathematical physics and
the biological sciences proving to be a particularly fertile ground for new insights (e.g.
[17, 167, 54, 246, 223]). The fact that most of the applications live on the small scale
is not surprising, since it is precisely at the microscopic scale that fluctuations start to
play a non-negligible rôle.

The concept of entropy and, more specifically, entropy production has attracted partic-
ular interest, as a consequence of the quantitative handle it provides on the distinction
between equilibrium systems, passive systems relaxing to equilibrium and genuinely
non-equilibrium, ‘active’ systems. While there exist multiple routes to the mathemat-
ical formulation of entropy production [248, 185, 113, 254, 202, 169], the underlying
physical picture is consistent: the entropy production associated with an ensemble of
stochastic trajectories quantifies the degree of certainty with which we can assert that
a particular event originates from a given stochastic process or from its suitably defined
conjugate (usually, its time-reverse). When averaged over long times (or over an en-
semble), a non-vanishing entropy production signals time-reversal symmetry breaking
at the microscopic scale. This implies, at least for Markovian systems, the existence
of steady-state probability currents in the state space, which change sign under time-
reversal. When a thermodynamically consistent description is available, the average
rate of entropy production can be related to the rate of energy or information exchange
between the system, the heat bath(s) it is connected to, and any other thermodynamic
entity involved in the dynamics, such as a measuring device [201, 182, 213]. Whilst
the rate of energy dissipation is of immediate interest since it captures how ‘costly’
it is to sustain specific dynamics (e.g. the metabolism sustaining the development of
an organism [237, 270]), entropy production has also been found to relate non-trivially
to the efficiency and precision of the corresponding process via uncertainty relations
[141, 258]. Entropy production along fluctuating trajectories also plays a fundamental
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rôle in the formulation of various fluctuation theorems [254].

Given the recent interest in stochastic thermodynamics and entropy production in par-
ticular, as well as the increasing number of mathematical techniques implemented for
the quantification of the latter, it is essential to have available a few, well-understood
reference systems, for which exact results are known. These can play the rôle of bench-
marks for new techniques, while helping neophytes to develop intuition. In this work,
we will present results exclusively in the framework proposed by Gaspard [113], specifi-
cally in the form of Eqs. (1.4), (1.14) and (1.15), which we review and contextualise by
deriving them via different routes in Section 1.2. In Section 1.3 we begin the analysis
with processes in discrete state space (Sections 1.3.1-1.3.8), and subsequently extend it
to the continuous case (Sections 1.3.9-1.3.11). Finally, in sections 1.3.12 and 1.3.13 we
consider processes that involve both discrete and continuous degrees of freedom. Time
is taken as a continuous variable throughout.

1.2 Brief review of entropy production

Entropy production of jump processes. The concept of time-dependent informational
entropy associated with a given ensemble of stochastic processes was first introduced
by Shannon [261]. For an arbitrary probability mass function Pn(t) of time t over a
discrete set of states n ∈ Ω, the Shannon entropy is defined as

S(t) = −
∑
n

Pn(t) lnPn(t) (1.1)

with the convention henceforth of x lnx = 0 for x = 0. It quantifies the inherent
degree of uncertainty about the state of a process. In the microcanonical ensemble Pn
is constant in t and n and upon providing an entropy scale in the form of the Boltzmann
constant kB, Shannon’s entropy reduces to that of traditional thermodynamics given
by Boltzmann’s S = kB ln |Ω|, where |Ω| = 1/Pn is the cardinality of Ω. In Markovian
systems, the probability Pn(t) depends on n and evolves in time t according to the
master equation

Ṗn(t) =
∑
m

Pm(t)wmn − Pn(t)wnm (1.2)
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with non-negative transition rates wmn from state m to state n 6= m. Eq. (1.2) reduces
to Ṗn(t) =

∑
m Pm(t)wmn by imposing the Markov condition

∑
mwnm = 0, which we

will use in the following. For simplicity we will restrict ourselves to time-independent
rates wnm but as far as the following discussion is concerned, generalising to time-
dependent rates is a matter of replacing wnm by wnm(t). The rate of change of entropy
for a continuous time jump process can be derived by differentiating S(t) in Eq. (1.1)
with respect to time and substituting (1.2) into the resulting expression [113, 92], thus
obtaining

Ṡ(t) = −
∑
m,n

Pm(t)wmn ln (Pn(t)) =
∑
m,n

Pn(t)wnm ln

(
Pn(t)

Pm(t)

)
= Ṡe(t) + Ṡi(t) (1.3)

where we define

Ṡe(t) = −1

2

∑
m,n

(Pn(t)wnm − Pm(t)wmn) ln

(
wnm
wmn

)
(1.4a)

= −
∑
m,n

Pn(t)wnm ln

(
wnm
wmn

)
= −

∑
m,n

(Pn(t)wnm − Pm(t)wmn) ln

(
wnm
w0

)
Ṡi(t) =

1

2

∑
m,n

(Pn(t)wnm − Pm(t)wmn) ln

(
Pn(t)wnm
Pm(t)wmn

)
(1.4b)

=
∑
m,n

Pn(t)wnm ln

(
Pn(t)wnm
Pm(t)wmn

)
=
∑
m,n

(Pn(t)wnm − Pm(t)wmn) ln

(
Pn(t)wnm

w0

)

with arbitrary positive rate w0 to restore dimensional consistency, that cancel trivially.
Here we follow the convention [256] to split the rate of entropy change into two contri-
butions: the first, Eq. (1.4a), commonly referred to as “external" entropy production or
entropy flow, is denoted by Ṡe. It contains a factor ln(wnm/wmn) corresponding, for sys-
tems satisfying local detailed balance , to the net change in entropy of the reservoir(s)
associated with the system’s transition from state n to state m. For such thermal sys-
tems, Ṡe can thus be identified as the rate of entropy production in the environment
[173, 248]. The second contribution, Eq. (1.4b), termed “internal" entropy production
and denoted by Ṡi is non-negative because (x−y) ln(x/y) ≥ 0 for any two real, positive
x, y and using the convention z ln z = 0 for z = 0. The internal entropy production
vanishes when the detailed balance condition Pn(t)wnm = Pm(t)wmn is satisfied for all
pairs of states. In this sense, a non-vanishing Ṡi is the fingerprint of non-equilibrium
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phenomena. At steady-state, namely when Ṗn(t) = 0 for all n, Ṡ(t) in Eq. (1.3) vanishes
by construction, so that the internal and external contributions to the entropy produc-
tion cancel each other exactly, Ṡ(t) = Ṡe(t) + Ṡi(t) = 0, while they vanish individually
only for systems at equilibrium. Equations (1.4) will be used throughout the present
work to compute the entropy productions of discrete-state processes.

Entropy production as a measure of time-reversal-symmetry breaking. As it turns out,
a deeper connection between internal entropy production and time-reversal symmetry
breaking can be established [113]. The result, which we re-derive below, identifies Ṡi as
the relative dynamical entropy (i.e. the Kullback-Leibler divergence [163]) per unit time
of the ensemble of forward paths and their time-reversed counterparts. To see this, we
first need to define a path n = (n0, n1, . . . , nM) as a set of trajectories starting at time
t0 and visiting states nj at successive discrete times tj = t0 + jτ with j = 0, 1, . . . ,M ,
equally spaced by a time interval τ . For a time-homogeneous Markovian jump process
in continuous time, the joint probability of observing a particular path is

P(n; t0,Mτ) = Pn0(t0)W (n0 → n1; τ)W (n1 → n2; τ) . . .W (nM−1 → nM ; τ) (1.5)

where Pn0(t0) is the probability of observing the system in state n0 at time t0, while
W (nj → nj+1; τ) is the probability that the system is in state nj+1 time τ after being
in state nj. This probability can be expressed in terms of the transition rate matrix
w with elements wmn. It is W (n → m; τ) = [exp(wτ)]nm, the matrix elements of the
exponential of the matrix wτ with the Markov condition imposed. It can be expanded
in small τ as

W (n→ m; τ) = δn,m + wnmτ +O(τ 2) , (1.6)

where δn,m is the Kronecker-δ function. We can now define a dynamical entropy per
unit time [261] as

h(t0,∆t) = lim
M→∞

− 1

∆t

∑
n0,...,nM

P(n; t0,∆t) lnP(n; t0,∆t) . (1.7)

where the limit is to be considered a continuous time limit taken at fixed ∆t = tM−t0 =

Mτ [78], thus determining the sampling interval τ , and the sum runs over all possible
paths n. Other than τ , the paths are the only quantity on the right-hand side of
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Eq. (1.7) that depend on M . The dynamical entropy h(t0,∆t) may be considered the
expectation of ln(P(n; t0,∆t)) across all paths. Similarly to the static Shannon entropy,
the dynamical entropy h(t0,∆t) quantifies the inherent degree of uncertainty about the
evolution over a time ∆t of a process starting at a given time t0. To compare with
the dynamics as observed under time-reversal, one introduces the time-reversed path
nR = (nM , nM−1, . . . , n0) and thus the time-reversed dynamical entropy per unit time
as

hR(t0,∆t) = lim
M→∞

− 1

∆t

∑
n0,...,nM

P(n; t0,∆t) lnP(nR; t0,∆t) . (1.8)

While similar in spirit to h(t0,∆t), the physical interpretation of hR(t0,∆t) as the
expectation of ln

(
P(nR; ∆t)

)
under the forward probability P(n; t0,∆t) is more con-

voluted since it involves the forward and the backward paths simultaneously, which
have potentially different statistics. However, time-reversal symmetry implies precisely
identical statistics of the two ensembles, whence h(t0,∆t) = hR(t0,∆t). The motivation
for introducing hR(t0,∆t) is that the difference of the two dynamical entropies defined
above is a non-negative Kullback-Leibler divergence given by

hR(t0,∆t)− h(t0,∆t) = lim
M→∞

1

∆t

∑
n

P(n; t0,∆t) ln

( P(n; t0,∆t)

P(nR; t0,∆t)

)
. (1.9)

Using Eq. (1.5) in (1.9) with Eq. (1.6) provides the expansion

hR(t0,∆t)− h(t0,∆t) =
∑
nm

Pn(t0)wnm ln

(
Pn(t0)wnm
Pm(t0)wmn

)
+O(∆t) , (1.10)

which is an instantaneous measure of the Kullback-Leibler divergence. The limit of
hR(t0,∆t) − h(t0,∆t) in small ∆t is finite and identical to the internal entropy pro-
duction (1.4b) derived above. This result establishes the profound connection between
broken detailed balance, Eq. (1.4), and Kullback-Leibler divergence, Eq. (1.10), both
of which can thus be recognised as fingerprints of non-equilibrium systems. In light of
this connection, it might not come as a surprise that the steady-state rate of entropy
production is inversely proportional to the minimal time needed to decide on the direc-
tion of the arrow of time [238].

Entropy production for continuous degrees of freedom. The results above were obtained
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for Markov jump processes within a discrete state space. However, the decomposition
of the rate of change of entropy in Eq. (1.3) into internal and external contributions can
be readily generalised to Markovian processes with continuous degrees of freedom, for
example a spatial coordinate. For simplicity we will restrict ourselves to processes in
one dimension but as far as the following discussion is concerned, generalising to higher
dimensions is a matter of replacing spatial derivatives and integrals over the spatial
coordinate with their higher dimensional counterparts. The dynamics of such a process
with probability density P (x, t) to find it at x at time t are captured by a Fokker-Planck
equation of the form Ṗ (x, t) = −∂xj(x, t), with j the probability current, augmented by
an initial condition P (x, 0). Starting from the Gibbs-Shannon’s entropy for a continuous
random variable S(t) = −

∫
dxP (x, t) ln(P (x, t)/P0) with some arbitrary density scale

P0 for dimensional consistency, we differentiate with respect to time and substitute
−∂xj(x, t) for Ṗ (x, t) to obtain

Ṡ(t) = −
∫

dx Ṗ (x, t) ln

(
P (x, t)

P0

)
= −

∫
dx

(∂xP (x, t))j(x, t)

P (x, t)
, (1.11)

where the second equality follows upon integration by parts using
∫

dx Ṗ (x, t) = 0 by
normalisation. For the paradigmatic case of an overdamped colloidal particle, which will
be discussed in more detail below (Secs. 1.3.9 – 1.3.11), the probability current is given
by j(x, t) = −D∂xP (x, t) + µF (x, t)P (x, t) with local, time-dependent force F (x, t).
We can then decompose the entropy production Ṡ(t) = Ṡi(t) + Ṡe(t) into internal and
external contributions as

Ṡi(t) =

∫
dx

j(x, t)2

DP (x, t)
≥ 0 (1.12)

and
Ṡe(t) = −

∫
dx

µ

D
F (x, t)j(x, t) , (1.13)

respectively. The Kullback-Leibler divergence between the densities of forward and
time-reversed paths can be calculated as outlined above for discrete state systems, thus
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producing an alternative expression for the internal entropy production in the form

Ṡi(t)

= lim
∆t→0

hR(t,∆t)− h(t,∆t)

= lim
τ→0

1

2τ

∫
dxdx′ (P (x, t)W (x→ x′, τ)− P (x′, t)W (x′ → x, τ)) ln

P (x, t)W (x→ x′, τ)

P (x′, t)W (x′ → x, τ)
.

(1.14)

Here we have introduced the propagator W (x′ → x, τ), the probability density that a
system observed in state x′ will be found at x time τ later. In general, here and above,
the density W (x→ x′, τ) depends on the absolute time t, which we have omitted here
for better readability. The corresponding expression for the entropy flow is obtained by
substituting (1.14) into the balance equation Ṡe(t) = Ṡ(t)− Ṡi(t), whence

Ṡe(t) = − lim
τ→0

1

2τ

∫
dxdx′ (P (x, t)W (x→ x′, τ)−P (x′, t)W (x′ → x, τ)) ln

W (x′ → x, τ)

W (x→ x′, τ)
.

(1.15)
Since limτ→0 W (x → x′, τ) = δ(x − x′) [300] and P (x, t)δ(x − x′) = P (x′, t)δ(x′ − x)

the factor in front of the logarithm in (1.14) and (1.15) vanishes in the limit of small
τ , limτ→0 P (x, t)W (x→ x′; τ)−P (x′, t)W (x′ → x; τ) = 0. Together with the prefactor
1/τ this necessitates the use of L’Hôpital’s rule

lim
τ→0

1

τ
(P (x, t)W (x→ x′; τ)− P (x′, t)W (x′ → x; τ))

= P (x, t)Ẇ (x→ x′)− P (x′, t)Ẇ (x′ → x) (1.16)

where we used the shorthand

Ẇ (x→ x′) := lim
τ→0

d

dτ
W (x→ x′; τ) , (1.17)

which is generally given by the Fokker-Planck equation of the process, so that

Ṗ (x, t) =

∫
dx′ P (x′, t)Ẇ (x′ → x) . (1.18)

In the continuum processes considered below, in particular Sec. 1.3.11, 1.3.12 and 1.3.13,
Ẇ (x → x′) is a kernel in the form of Dirac δ-functions and derivatives thereof, acting
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under the integral as the adjoint Fokker-Planck operator on P (x, t). With Eq. (1.16)
the internal entropy production of a continuous process (1.14) may conveniently be
written as

Ṡi(t)

=
1

2

∫
dxdx′

(
P (x, t)Ẇ (x→ x′)− P (x′, t)Ẇ (x′ → x)

)
× lim

τ→0
ln

(
P (x, t)W (x→ x′; τ)

P (x′, t)W (x′ → x; τ)

)
(1.19a)

=

∫
dxdx′ P (x, t)Ẇ (x→ x′)× lim

τ→0
ln

(
P (x, t)W (x→ x′; τ)

P (x′, t)W (x′ → x; τ)

)
(1.19b)

=

∫
dxdx′

(
P (x, t)Ẇ (x→ x′)− P (x′, t)Ẇ (x′ → x)

)
× lim

τ→0
ln

(
P (x, t)W (x→ x′; τ)

W0P0

)
(1.19c)

with suitable constants W0 and P0. Correspondingly, the (external) entropy flow (1.15)
is

Ṡe(t)

= −1

2

∫
dxdx′

(
P (x, t)Ẇ (x→ x′)− P (x′, t)Ẇ (x′ → x)

)
× lim

τ→0
ln

(
W (x→ x′; τ)

W (x′ → x; τ)

)
(1.20a)

= −
∫

dxdx′ P (x, t)Ẇ (x→ x′)× lim
τ→0

ln

(
W (x→ x′; τ)

W (x′ → x; τ)

)
(1.20b)

= −
∫

dxdx′
(
P (x, t)Ẇ (x→ x′)− P (x′, t)Ẇ (x′ → x)

)
× lim

τ→0
ln

(
W (x→ x′; τ)

W0

)
.

(1.20c)

All of these expressions assume that the limits of the logarithms exist. Naively replac-
ing them by ln(δ(x− x′)/δ(x′ − x)) produces a meaningless expression with a Dirac
δ-function in the denominator. Eqs. (1.19) and (1.20) are identically obtained in the
same manner as Eqs. (1.4) with the master Eq. (1.2) replaced by the Fokker-Planck
Eq. (1.18). All of these expressions, Eq. (1.4), (1.19) and (1.20), may thus be seen as
Gaspard’s [113] framework.

Langevin description and stochastic entropy. We have seen in Eqs. (1.12) and (1.13)
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how the notion of entropy production can be extended to continuous degrees of freedom
by means of a Fokker-Planck description of the stochastic dynamics. The Fokker-Planck
equation is a deterministic equation for the probability density and thus provides a
description at the level of ensembles, rather than single fluctuating trajectories. A
complementary description can be provided by means of a Langevin equation of motion,
which is instead a stochastic differential equation for the continuous degree of freedom
[218]. The presence of an explicit noise term, which usually represents faster degrees of
freedom or fluctuations induced by the contact with a heat reservoir, allows for a clearer
thermodynamic interpretation. A paradigmatic example is that of the overdamped
colloidal particle mentioned above, whose dynamics are described by

ẋ(t) = µF (x, t) + ζ(t) (1.21)

with µ a mobility, F (x, t) a generic force and ζ(t) a white noise term with covari-
ance 〈ζ(t)ζ(t′)〉 = 2Dδ(t − t′). For one-dimensional motion on the real line, the
force F (x, t) can always be written as the gradient of a potential V (x, t), namely
F (x, t) = −∂xV (x, t), so that it is conservative. For time-independent, stable po-
tentials, V (x, t) = V (x), this leads at long times to an equilibrium steady-state. This
property does not hold in higher dimensions and for different boundary conditions (e.g.
periodic), in which case the force F(x, t) need not have a corresponding potential V (x, t)

for which F(x, t) = −∇V (x, t) [295].

The concept of entropy is traditionally introduced at the level of ensembles. However,
due to its rôle in fluctuation theorems [256, 173], a consistent definition at the level
of single trajectories is required. This can be constructed along the lines of [254] by
positing the trajectory-dependent entropy S(x∗(t), t) where x∗(t) is a random trajectory
as given by Eq. (1.21) and

S(x, t) = − ln(P (x, t)/P0) . (1.22)

Here P (x, t) denotes the probability density of finding a particle at position x at time t
as introduced above and P0 is a scale as used above to maintain dimensional consistency.
Given that x∗(t) is a random variable, so is S(x∗(t), t), which may be regarded as an
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instantaneous entropy. Taking the total derivative with respect to t produces

d

dt
S(x∗(t), t) = − ∂tP (x, t)

P (x, t)

∣∣∣∣
x=x∗(t)

− ∂xP (x, t)

P (x, t)

∣∣∣∣
x=x∗(t)

◦ ẋ∗(t)

= − ∂tP (x, t)

P (x, t)

∣∣∣∣
x=x∗(t)

+
j(x∗(t), t)

DP (x∗(t), t)
◦ ẋ∗(t)− µ

D
F (x∗(t), t) ◦ ẋ∗(t)

(1.23)

where we have used the processes’ Fokker-Planck equation ∂tP (x, t) = −∂xj(x, t) with
j(x, t) = µF (x, t)P (x, t) − D∂xP (x, t). The total time derivative has been taken as a
conventional derivative implying the Stratonovich convention indicated by ◦, which will
become relevant below. The term in (1.23) containing ∂tP (x, t) accounts for changes
in the probability density due to its temporal evolution, such as relaxation to a steady
state, and any time-dependent driving protocol. The product F (x∗(t), t) ◦ ẋ∗(t) can
be interpreted as a power expended by the force and in the absence of an internal
energy of the particle, dissipated in the medium. With Einstein’s relation defining the
temperature of T = D/µ of the medium, the last term may be written as

Ṡm(t) =
F (x∗(t), t) ◦ ẋ∗(t)

T
(1.24)

and thus interpreted as the entropy change in the medium. Together with the entropy
change of the particle, this gives the total entropy change of particle and medium,

Ṡtot(t) =
d

dt
S(x∗(t), t) + Ṡm(t) = − ∂tP (x, t)

P (x, t)

∣∣∣∣
x=x∗(t)

+
j(x∗(t), t)

DP (x∗(t), t)
◦ ẋ∗(t) , (1.25)

which is a random variable, as it depends on the position x∗(t). It also draws on
P (x, t) and j(x, t) which are properties of the ensemble. To make the connection to the
entropies constructed above we need to take an ensemble average of the instantaneous
Ṡtot(t). To do so, we need an interpretation of the last term of (1.25), where the noise
ζ(t) of ẋ∗(t), Eq. (1.21), multiplies j(x∗(t), t)/P (x∗(t), t). Equivalently, we need the
joint density P (x, ẋ; t) of position x and velocity ẋ at time t. In the spirit of Ito this
density trivially factorises into a normally distributed ẋ − µF (x, t) and P (x, t) as the
increment ẋdt on the basis of (1.21) depends only on the particle’s current position
x(t). However, this is not so in the Stratonovich interpretation of P (x, ẋ; t), as here the
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increment depends equally on x(t) and x(t + dt) [256, 255, 224]. Taking the ensemble
average of Ṡtot thus produces

〈Ṡtot(t)〉 =

∫
dx∗dẋ∗ Ṡtot(t)P (x∗, ẋ∗; t)

= −
∫

dx∗
∂tP (x∗, t)

P (x∗, t)

∫
dẋ∗ P (x∗, ẋ∗; t) +

∫
dx∗dẋ∗

j(x∗, t)

DP (x∗, t)
ẋ∗P (x∗, ẋ∗; t) ,

(1.26)

where x∗ and ẋ∗ are now dummy variables. The first term on the right hand side van-
ishes, because P (x∗, t) =

∫
dẋ∗ P (x∗, ẋ∗; t) is the marginal of P (x∗, ẋ∗; t) and

∫
dx∗ ∂tP (x∗, t) =

0 by normalisation. The integral over ẋ∗ in the second term produces the expected par-
ticle velocity conditional to its position,

〈ẋ∗|x∗, t〉 =

∫
dẋ∗ ẋ∗

P (x∗, ẋ∗; t)

P (x∗, t)
(1.27)

in the Stratonovich sense, where it gives rise to the current [254], 〈ẋ∗|x∗, t〉 = j(x∗, t)/P (x∗, t),
so that

〈Ṡtot(t)〉 =

∫
dx∗

j2(x∗, t)

DP (x∗, t)
≥ 0 , (1.28)

which vanishes only in the absence of any probability current, i.e. in thermodynamic
equilibrium. In the Ito sense, the conditional expectation (1.27) would have instead
given rise to the ensemble-independent drift, 〈ẋ∗|x∗, t〉 = µF (x∗, t). Comparing to
Eq. (1.12), the expectation 〈Ṡtot(t)〉 turns out to be the internal entropy production
Ṡi(t), so that Ṡtot(t) of Eq. (1.25) may be regarded as its instantaneous counterpart.

Path integral methods. An interesting aspect of working with the Langevin description
is the possibility of casting probability densities p([x]; t) for paths x(t′) with t′ ∈ [0, t]

into path integrals, for example in the Onsager-Machlup formalism [211, 289]. For the
colloidal particle introduced in (1.21), it gives p([x]; t) = N exp{−A([x]; t)} with the
action functional

A([x]; t) =

∫ t

0

dt′
(ẋ(t′)− µF (x(t′), t′))◦2

4D
− µ

2

∫ t

0

dt′ ∂xF (x(t′), t′) (1.29)

in the Stratonovich discretisation, which differs from the Ito form only by the second
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term [289, Sec. 4.5], which is the Jacobian of the transform of the noise ζ(t) to x(t),
Eq. (1.21). The Stratonovich form is needed so that the action does not give preference
to a particular time direction [72]. This choice plays a rôle in every product of white
noise, as is implicit to ẋ, and a random variable. We therefore indicate the choice by
a ◦ also in powers, reminding us that F (x(t′), t′) should be read as F ((x(t′) + x(t′ +

∆t))/2, t′ + ∆t) and ẋ(t′) as (x(t′ + ∆t) − x(t′))/2 with discretisation time step ∆t.
Evaluating the action for the reversed path xR(t′) = x(t− t′) then gives

A([xR]; t) =

∫ t

0

dt′
(ẋR(t′)− µF (xR(t′), t′))◦2

4D
− µ

2

∫ t

0

dt′ ∂xF (xR(t′), t′) (1.30)

=

∫ t

0

dt′
(ẋ(t′) + µF (x(t′), t− t′))◦2

4D
− µ

2

∫ t

0

dt′ ∂xF (x(t′), t− t′) . (1.31)

If the force is even under time reversal, F (x, t′) = F (x, t − t′), in particular when it is
independent of time, the path probability density obeys

ln
p([x]; t)

p([xR]; t)
=

∫ t

0

dt′
F (x(t′), t′) ◦ ẋ(t′)

T
= Sm(t) , (1.32)

with random variables multiplied with Stratonovich convention. With Eq. (1.24), the
integral in Eq. (1.32) can be identified as the entropy of the medium. When the driving
is time-independent and the system’s probability distribution eventually becomes sta-
tionary, such that limt→∞〈Ṡ(x∗, t)〉 = 0, Eq. (1.22), the only contribution to the total
entropy change is due to change of entropy in the medium, Eq. (1.25). Assuming that
the system is ergodic, we have the equivalence limt→∞ Sm(t)/t = limt→∞〈Ṡtot(t)〉, where
〈•〉 denotes an ensemble average. Using Eqs. (1.12) and (1.28) gives limt→∞ Sm(t)/t =

limt→∞ Ṡi(t). Equation (1.32) can therefore be used directly to compute the steady-state
internal entropy production rate. The equivalence between the long-time limit t → ∞
and the ensemble average holds only for ergodic systems, whose unique steady-state
does not depend on the specific initialisation x(0). This connection between stochastic
thermodynamics and field theory has stimulated a number of works aimed at charac-
terising the non-equilibrium features of continuum models of active matter [202, 99].
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1.3 Systems

In this section we calculate the entropy production rate on the basis of Gaspard’s
framework [113], Eqs. (1.4), (1.14) and (1.15), for different particle systems. We cover
the systems listed in Tab. 1.1, with both discrete and continuous states and with one
or multiple particles.

Table 1.1: List of particle systems for which we have calculated their entropy production Ṡi(t).

System Ṡi(t)
1.3.1 Two-state Markov process (1.36)
1.3.2 Three-state Markov process (1.40)
1.3.3 Random walk on a complete graph (1.43), (1.44)
1.3.4 N independent, distinguishable Markov processes (1.51)
1.3.5 N independent, indistinguishable two-state Markov processes (1.54b)
1.3.6 N independent, indistinguishable d-state processes (1.67)
1.3.7 Random Walk on a lattice (1.81)
1.3.8 Random Walk on a ring lattice (1.87), (1.89)
1.3.9 Driven Brownian particle (1.95)
1.3.10 Driven Brownian particle in a harmonic potential (1.101)
1.3.11 Driven Brownian particle on a ring with potential (1.115d)
1.3.12 Run-and-tumble motion with diffusion on a ring (1.124)
1.3.13 Switching diffusion process on a ring (1.130)

1.3.1 Two-state Markov process

1 2
α

β

Figure 1.1: Two-state Markov chain in continuous time. The black blob indicates the current state of
the system. Independently of the choice of α and β, this processes settles into an equilibrium steady-
state at long times (in the absence of an external time-dependent diving).

Consider a particle that hops between two states, 1 and 2, with transition rates Ẇ (1→
2) = α and Ẇ (2→ 1) = β, see Fig. 1.1 [92, 177], and using the notation in Eq. (1.17)
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for discrete states. The rate-matrix (see Eq. (1.6)) may thus be

w =

(
−α α

β −β

)
, (1.33)

with P(t) = (P1(t), P2(t)) the probability of the particle to be in state 1 or 2 respectively
as a function of time. By normalisation, P1(t) + P2(t) = 1, with probabilistic initial
condition P(0) = (p, 1− p). Solving the master equation in Eq. (1.2) yields

P(t) = (P1(t), P2(t)) =
1

α + β

(
β + r e−(α+β)t, α− r e−(α+β)t

)
, (1.34)

with r = αp−β(1− p), corresponding to an exponentially decaying probability current

P1(t)α− P2(t)β = r e−(α+β)t . (1.35)

The internal entropy production (1.4b) is then

Ṡi(t) = [P1(t)α− P2(t)β] ln

[
P1(t)α

P2(t)β

]
= r exp{−(α + β)t} ln

[
1 + r

β
e−(α+β)t

1− r
α
e−(α+β)t

]
, (1.36)

and the entropy flow (1.4a),

Ṡe(t) = −r exp{−(α + β)t} ln

(
α

β

)
. (1.37)

At stationarity, Ṡi = Ṡe = 0 and therefore the two-state Markov process reaches equilib-
rium. In this example, the topology of the transition network does not allow a sustained
current between states, which inevitably leads to equilibrium in the steady state and,
therefore, there is production of entropy only due to the relaxation of the system from
the initial state.

1.3.2 Three-state Markov process

We extend the system in Sec. 1.3.1 to three states, 1, 2 and 3, with transition rates
Ẇ (1 → 2) = α, Ẇ (2 → 3) = α, Ẇ (3 → 1) = α, Ẇ (2 → 1) = β, Ẇ (3 → 2) = β, and
Ẇ (1→ 3) = β, see Fig. 1.2, and using the notation Eq. (1.17) for discrete states. The
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β

α

α

β

α

β

1

32

Figure 1.2: Three-state Markov chain in continuous time. The black blob indicates the current state
of the system. Symmetry under cyclic permutation is introduced by imposing identical transition rates α
and β for counter-clockwise and clockwise transition, respectively.

rate matrix (see Eq. (1.6)) is then

w =

−(α + β) α β

β −(α + β) α

α β −(α + β)

 . (1.38)

Assuming the initial condition P(0) = (1, 0, 0), the probabilities of states 1, 2 and 3
respectively, evolve according to Eq. (1.2), which has solution

P1(t) =
1

3

(
1 + 2 exp{−3φt} cos (

√
3ψt)

)
, (1.39a)

P2(t) =
1

3

(
1− 2 exp{−3φt} cos (

√
3ψt− π/3)

)
, (1.39b)

P3(t) =
1

3

(
1− 2 exp{−3φt} cos (

√
3ψt+ π/3)

)
, (1.39c)

with φ = (α + β)/2 and ψ = (α− β)/2.

The entropy production (1.4b) is then, using (1.39),

Ṡi(t) =
(
P1(t)α− P2(t)β

)
ln

(
P1(t)α

P2(t)β

)
+
(
P2(t)α− P3(t)β

)
ln

(
P2(t)α

P3(t)β

)
+
(
P3(t)α− P1(t)β

)
ln

(
P3(t)α

P1(t)β

)
, (1.40)
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and the entropy flow (1.4a),

Ṡe(t) = −(α− β) ln

(
α

β

)
, (1.41)

which is constant throughout. At stationarity, the system is uniformly distributed and,
if α 6= β, the entropy production and flow satisfy Ṡi = −Ṡe 6= 0. If α 6= β, the
particle has a net drift that sustains a probability current (α − β)/3 in the system,
which prevents the system from reaching equilibrium.

1.3.3 Random walk on a complete graph

Figure 1.3: Random walk on a complete graph of d nodes (here shown for d = 6). The black blob in-
dicates the current state of the system. For uniform transition rates, the symmetry under node relabelling
leads to an equilibrium, homogeneous steady-state with Pj = 1/d for all j.

Consider a random walker on a complete graph with d nodes, where each node is
connected to all other nodes, and the walker jumps from node j ∈ {1, 2, . . . , d} to node
k ∈ {1, 2, . . . , d}, k 6= j, with rate wjk, see Fig. 1.3. These are the off-diagonal elements
of the corresponding Markov matrix whose diagonal elements are wjj = −∑d

i=1,i 6=j wji.
The probability vector P(t) = (P1(t), P2(t), . . . , Pd(t)) has components Pj(t) that are
the probability that the system is in state j at time t. The general case of arbitrary
transition rates is impossible to discuss exhaustively. In the uniform case, wjk = α, the
Markov matrix has only two distinct eigenvalues, namely eigenvalue αd with degeneracy
d−1 and eigenvalue 0 with degeneracy 1. Assuming an arbitrary initial condition P(0),
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the probability distribution at a later time t is

Pj(t) =
1

d
+ e−dαt

(
Pj(0)− 1

d

)
. (1.42)

The steady state, which is associated with the vanishing eigenvalue, is the uniform
distribution limt→∞ Pj(t) = 1/d for all j ∈ {1, 2, . . . , d}. The entropy production (1.4b)
of the initial state relaxing to the uniform state is

Ṡi(t) =
1

2
αe−dαt

∑
j,k

(Pj(0)− Pk(0)) ln

(
1 + e−dαt (Pj(0)d− 1)

1 + e−dαt (Pk(0)d− 1)

)
, (1.43)

and the entropy flow (1.4a) is Ṡe = 0 throughout. If the walker is initially located on
node k, so that Pj(0) = δj,k, the entropy production simplifies to

Ṡi(t) = (d− 1)αe−dαt ln

(
1 +

de−dαt

1− e−dαt
)
. (1.44)

We can see that the system reaches equilibrium at stationarity, since limt→∞ Ṡi(t) =

Ṡe(t) = 0. At long times (de−dαt � 1), the asymptotic behaviour of Ṡi is

Ṡi(t) = d(d− 1)αe−2dαt +O(e−3dαt) , (1.45)

by expanding the logarithm in the small exponential.

1.3.4 N independent, distinguishable Markov processes

Figure 1.4: Example of N = 5 non-interacting, distinguishable processes with d1 = 4, d2 = 2, d3 = 3,
d4 = 5 and d5 = 5. The black blobs indicate the current state of each sub-system.

In the following we consider N non-interacting, distinguishable particles undergoing
Markovian dynamics on a discrete state space. Each of the N particles carries an index
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` ∈ {1, 2, . . . , N} and is in state n` ∈ {1, 2, . . . , d`}, so that the state of the entire
system is given by an N -particle state n = (n1, n2, . . . , nN). Particle distinguishability
implies the factorisation of state and transition probabilities into their single-particle
contributions, whence the joint probability Pn(t) of an N -particle state n factorises into
a product of single particle probabilities P (`)

n` (t) of particle ` to be in state n`,

Pn(t) =
N∏
`=1

P (`)
n`

(t) . (1.46)

Further, the Poissonian rate wnm from N -particle state n to N -particle state m 6= n

vanishes for all transitions n → m that differ in more than one component `, i.e.
wnm = 0 unless there exists a single ` ∈ {1, 2, . . . , N} such that mk = nk for all k 6= `,
in which case wnm = w

(`)
n`m` , the transition rates of the single particle transition of

particle `.

The entropy production of this N -particle system according to Eq. (1.4b),

Ṡi(t) =
1

2

∑
nm

(Pn(t)wnm − Pm(t)wmn) ln

(
Pn(t)wnm

Pm(t)wmn

)
(1.47)

simplifies considerably due to wnm, as the sum may be re-written as∑
nm

. . . wnm . . . =
∑
n

∑
`

∑
m`

. . . wnm`
. . . (1.48)

with m` = (n1, n2, . . . , n`−1,m`, n`+1, . . . , nN) so that wnm`
= w

(`)
n`m` and

Ṡi(t)

=
1

2

∑
n

N∑
`=1

∑
m`

{(
N∏
k=1

P (k)
nk

(t)

)
w(`)
n`m`
−
(

N∏
k=1

P (k)
mk

(t)

)
w(`)
m`n`

}
ln

(∏N
k=1 P

(k)
nk (t)w

(`)
n`m`∏N

k=1 P
(k)
mk (t)w

(`)
m`n`

)
.

(1.49)

Since mk = nk for any k 6= ` inside the curly bracket, we may write

N∏
k=1

P (k)
nk

(t) = P (`)
n`

(t)
N∏
k=1
k 6=`

P (k)
nk

(t) and
N∏
k=1

P (k)
mk

(t) = P (`)
m`

(t)
N∏
k=1
k 6=`

P (k)
nk

(t) . (1.50)
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The product
∏N

k 6=` P
(k)
nk (t) can thus be taken outside the curly bracket in Eq. (1.49)

and be summed over, as well as cancelled in the logarithm. After changing the dummy
variables in the remaining summation from n` and m` to n and m respectively, the
entropy production is

Ṡi(t) =
1

2

N∑
`=1

∑
nm

(
P (`)
n (t)w(`)

nm − P (`)
m (t)w(`)

mn

)
ln

(
P

(`)
n (t)w

(`)
nm

P
(`)
m (t)w

(`)
mn

)
, (1.51)

which is the sum of the entropy productions of the single particle ` ∈ {1, 2, . . . , N},
Eq. (1.4b), irrespective of how each particle is initialised. The same argument applies
to Ṡe, the entropy flow Eq. (1.4a). The entropy production and flow obviously simplify
to an N -fold product of the single particle expressions if w(`)

nm do not depend on ` and
all particles are initialised by the same P `

n(0) independent of `. This result may equally
be found from the dynamical entropy per unit time, Eq. (1.7).

1.3.5 N independent, indistinguishable two-state Markov processes

1 2
α

β

Figure 1.5: N independent, indistinguishable two-state Markov processes in continuous time. The black
blobs indicate the current state of the single-particle sub-system. Since processes are indistinguishable,
states are fully characterised by the occupation number of either state, if the total number of particles is
known.

Suppose that N identical, indistinguishable, non-interacting particles follow the two-
state Markov process described in Sec. 1.3.1, Fig. 1.5 [92]. There are Ω = N+1 distinct
states given by the occupation number n ∈ {0, 1, . . . , N} of one of the two states, say
state 1, as the occupation number of the other state follows as N −n given the particle
number N is fixed under the dynamics. In the following, P (n, t) denotes the probability
of finding n particles in state 1 at time t. The master equation is then

Ṗ (n, t) = −αnP (n, t)+α(n+1)P (n+1, t)−β(N−n)P (n, t)+β(N−n+1)P (n−1, t) .

(1.52)
The state space and the evolution in it can be thought of as a hopping process on a one-
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dimensional chain of states with non-uniform rates. Provided P (n, 0) initially follows
a binomial distribution, P (n, 0) =

(
N
n

)
pn(1− p)N−n with probability p for a particle to

be placed in state 1 initially, the solution of Eq. (1.52) is easily constructed from the
solution P1(t) in Eq. (1.34) of Sec. 1.3.1 via

P (n, t) =

(
N

n

)
P n

1 (t)(1− P1(t))N−n for 0 ≤ n ≤ N (1.53)

with P1(0) = p, as Ṗ1(t) = −αP1(t)+β(1−P1(t)), which can be verified by substituting
Eq. (1.53) into Eq. (1.52). Using Eqs. (1.33) and (1.53) in (1.4b) the entropy production
reads

Ṡi(t) =
N∑
n=1

[P (n, t)αn− P (n− 1, t)β(N − n+ 1)] ln

[
P (n, t)αn

P (n− 1, t)β(N − n+ 1)

]
(1.54a)

= N [P1(t)α− (1− P1(t))β] ln

[
P1(t)α

(1− P1(t))β

]
, (1.54b)

which is the N -fold multiple of the result of the corresponding single particle system,
Eq. (1.36). This result, Eq. (1.54b), depends on the initialisation being commensurable
with Eq. (1.53) which otherwise is recovered only asymptotically and only if the sta-
tionary distribution is unique. Further, the entropy production of N indistinguishable
particles being the N -fold entropy production of a single particle does not extend to
the external entropy flow, which lacks the simplification of the logarithm and gives

Ṡe(t) =−N [αP1(t)− β(1− P1(t))]

×
{

ln

(
α

β

)
+

N−1∑
n=0

P n
1 (t)(1− P1(t))N−1−n

(
N − 1

n

)
ln

(
n+ 1

N − n

)}
(1.55)

thus picking up a correction in the form of the additional sum in the curly bracket that
vanishes only at N = 1 or P1(t) = 1/2, but does not contribute at stationarity because
of the overall prefactor αP1 − β(1 − P1) that converges to 0. To make sense of this
correction in relation to particle indistinguishability, with the help of Eq. (1.53) we can
rewrite the difference between the right hand side of Eq. (1.55) and the N -fold entropy
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flow of a single two-state system (1.37) as

−N [αP1(t)− β(1− P1(t))]
N−1∑
n=0

P n
1 (t)(1− P1(t))N−1−n

(
N − 1

n

)
ln

(
n+ 1

N − n

)

= −
N−1∑
n=0

[α(n+ 1)P (n+ 1, t)− β(N − n)P (n, t)] ln

(
n+ 1

N − n

)
(1.56)

which now explicitly involves the net probability current from the occupation number
state with n+ 1 particles in state A to that with n particles in state A, as well as a the
logarithm

ln

(
n+ 1

N − n

)
= ln

[(
N

n

)]
− ln

[(
N

n+ 1

)]
. (1.57)

Written in terms of the same combinatorial factors appearing in Eq. (1.53), the loga-
rithm (1.57) can be interpreted as a difference of microcanonical (Boltzmann) entropies,
defined as the logarithm of the degeneracy of the occupation number state if we were to
assume that the N particles are distinguishable. With the help of the master Eq. (1.52)
as well as Eqs. (1.53) and (1.57), the term Eq. (1.56) may be rewritten to give

Ṡe(t) = −N [αP1(t)− β(1− P1(t))] ln

(
α

β

)
−

N−1∑
n=0

Ṗ (n, t) ln

[(
N

n

)]
(1.58)

This result is further generalised in Eq. (1.69).

1.3.6 N independent, indistinguishable d-state processes

We generalise now the results in Sec. 1.3.3 and Sec. 1.3.5 to N independent d-state
Markov processes, see Fig. 1.6. These results represent a special case of those ob-
tained in [132] when the N processes are non-interacting. In this section we consider
non-interacting, indistinguishable particles hopping on a graph of d nodes with edge-
dependent hopping rates wjk. As in the two-state system in Sec. 1.3.5, we find that
the internal (but not the external) entropy production of the d-state system Ṡi is N
times the entropy production of the individual processes assuming the initial condition
is probabilistically identical for all single-particle sub-systems. The entropy productions
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Figure 1.6: N independent, indistinguishable d-state Markov processes (here shown for d = 6 and
N = 8) in continuous time. Black blobs indicate the current state of the single-particle sub-systems. Due
to indistinguishably, multi-particle states are fully characterised by the occupation number of an arbitrary
subset of d− 1 states, if the total number of particles is known.

of a single such process according to Eq. (1.4) read

Ṡ
(1)
i (t) =

1

2

∑
jk

[Pj(t)wjk − Pk(t)wkj] ln

(
Pj(t)wjk
Pk(t)wkj

)
, (1.59a)

Ṡ(1)
e (t) = −1

2

∑
jk

[Pj(t)wjk − Pk(t)wkj] ln

(
wjk
wkj

)
, (1.59b)

where Pj(t) is the time-dependent probability of a single-particle process to be in state
j, Sec. 1.3.3. To calculate the entropy production of the N concurrent indistinguishable
processes using the occupation number representation, we first derive the probability
of an occupation number configuration n = (n1, n2, . . . , nd), with

∑d
j=1 nj = N , which

similar to Eq. (1.53) is given by the multinomial distribution

Pn(t) = N !
d∏
j=1

P
nj
j (t)

nj!
(1.60)

for the probability Pn(t) of the system to be in state n at time t assuming that each
particle is subject to the same single-particle distribution Pj(t), j ∈ {1, 2, . . . , d} for
all t, i.e. in particular assuming that all particles are initialised identically, by placing
them all at the same site or, more generally, by placing them initially according to the
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same distribution Pj(0). Given this initialisation, Eq. (1.60) solves Eq. (1.2)

Ṗn(t) =
∑
m

Pm(t)wmn − Pn(t)wnm (1.61)

with the transition rates wmn discussed below.

For non-interacting processes with a unique stationary distribution, Eq. (1.60) is al-
ways obeyed in the limit of long times after initialisation, since the single-particle
distributions Pj(t) are identical at steady state. The entropy production Eq. (1.4b)
of the entire system has the same form as Eq. (1.47) of Sec. 1.3.4 (N independent,
distinguishable particles) with wnm however now the transition rate between the occu-
pation number state n = (n1, n2, . . . , nd) with 0 ≤ nk ≤ N to occupation number state
m = (m1,m2, . . . ,md). The rate wnm vanishes except when m differs from n in exactly
two distinct components, say mj = nj − 1 ≥ 0 and mk = nk + 1 ≥ 1 in which case
wnm = njwjk with wjk the transition rates of a single particle from j to k as introduced
above. For such m, the rate obeys wmn = mkwkj and the probability Pm(t) fulfills

Pm(t) = Pn(t)
Pk(t)nj
Pj(t)mk

= Pn(t)
Pk(t)wnmwkj
Pj(t)wmnwjk

, (1.62)

which simplifies the entropy production Eq. (1.47) to

Ṡi(t) =
1

2

∑
nm

(Pn(t)wnm − Pm(t)wmn) ln

(
Pn(t)wnm

Pm(t)wmn

)
=

1

2

∑
n

∑
jk

(Pn(t)njwjk − Pm(t)mkwkj) ln

(
Pj(t)wjk
Pk(t)wkj

)
(1.63)

where the sum
∑

n runs over all allowed configurations, namely 0 ≤ nj ≤ N for
j = 1, 2, . . . , d with

∑
j nj = N and m = (n1, n2, . . . , nj − 1, . . . , nk + 1, . . . , nd) is

derived from n as outlined above. Strictly, Pn(t) has to be defined to vanish for invalid
states n, so that the first bracket in the summand of Eq. (1.63) vanishes in particular
when nj = 0, in which case mj = −1. To proceed, we introduce the probability

P̄n̄j(t) = (N − 1)!
P
nj−1
j

(nj − 1)!

d∏
i=1,i 6=j

P ni
i

ni!
, (1.64)
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defined to vanish for nj = 0, so that Pn(t)nj = NPj(t)P̄n̄j(t). The probability P̄n̄j(t)

is that of finding ni particles at states i 6= j and nj − 1 particles at state j. It is
Eq. (1.60) evaluated in a system with only N − 1 particles and configuration n̄j =

(n1, n2, . . . , nj−1, nj − 1, nj+1, . . . , nd) = m̄k a function of n. Eq. (1.63) may now be
rewritten as

Ṡi(t) =
N

2

∑
jk

{(∑
n

P̄n̄j(t)

)
Pj(t)wjk −

(∑
n

P̄m̄k
(t)

)
Pk(t)wkj

}
ln

(
Pj(t)wjk
Pk(t)wkj

)
(1.65)

where we have used that the arguments of the logarithm are independent of n and m.
The summation over n gives ∑

n

P̄n̄j(t) =
∑
n

P̄m̄k
(t) = 1 (1.66)

so that
Ṡi(t) =

N

2

∑
jk

(Pj(t)wjk − Pk(t)wkj) ln

(
Pj(t)wjk
Pk(t)wkj

)
= NṠ

(1)
i (t) (1.67)

which is theN -fold entropy production of the single particle system Ṡi(t), Eq. (1.59a), or
equivalently that of N distinguishable particles, Eq. (1.51), Sec. 1.3.4. As in Sec. 1.3.5,
this dramatic simplification does not carry over to the external entropy flow Eq. (1.4a)

Ṡe(t) = −N
2

∑
jk

∑
n

P̄n̄j(t)(Pj(t)wjk − Pk(t)wkj) ln

(
njwjk

(nk + 1)wkj

)
= −N

2

∑
jk

(Pj(t)wjk − Pk(t)wkj) ln

(
wjk
wkj

)
− N

2

∑
jk

∑
n

P̄n̄j(t)(Pj(t)wjk − Pk(t)wkj) ln

(
nj

nk + 1

)
, (1.68)

where of the last two terms only the first is the N -fold entropy flow of the single particle
system Ṡe(t), Eq. (1.59b). The reason for the second term is the lack of a cancellation
mechanism to absorb the nj and nk + 1 from the logarithm. Rewriting the second term
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as

− N

2

∑
jk

∑
n

P̄n̄j(t)(Pj(t)wjk − Pk(t)wkj) ln

(
nj

nk + 1

)
=− 1

2

∑
n

∑
jk

(
Pn(t)njwjk − Pn

(
Pk(t)nj

Pj(t)(nk + 1)

)
(nk + 1)wkj

)
ln

(
nj

nk + 1

)
(1.69)

=−
∑
n

Ṗn(t) ln

[(
N

n1, ..., nd

)]
, (1.70)

using Eq. (1.61) where we re-expressed the logarithm as

ln

(
nj

nk + 1

)
= ln

[(
N

n1, . . . , nj − 1, . . . , nk + 1, . . . , nd

)]
−ln

[(
N

n1, . . . , nd

)]
, (1.71)

shows that the correction term has the same form as the corresponding term in the two-
state system, Eq. (1.56), namely that of a difference of microcanonical (Boltzmann)
entropies of the multi-particle states. It vanishes when all nj are either 0 or 1, as
expected for d � N and also at stationarity when Ṗn(t) = 0. In that limit Ṡe = −Ṡi
when indeed Eq. (1.59a) gives

lim
t→∞

Ṡ
(1)
i (t) =

1

2

∑
k

(Pjwjk − Pkwkj) ln

(
wjk
wkj

)
, (1.72)

with Pj = limt→∞ Pj(t). As far as the entropy production Ṡi(t) is concerned, we thus
recover and generalise the result in Sec. 1.3.5 on indistinguishable particles in a two-
state system, which produce N times the entropy of a single particle. In Sec. 1.3.4 it
was shown that N distinguishable particles have the same entropy production and flow
as the sum of the entropy productions of individual particles. In Sec. 1.3.5 and 1.3.6 it
was shown that the entropy production of indistinguishable particles, which require the
states to be represented by occupation numbers, show the N -fold entropy production
of the single particle system, provided suitable initialisation, but asymptotically inde-
pendent of initialisation, provided the stationary state has a unique distribution. The
same does not apply to the entropy flow, which generally acquires additional logarith-
mic terms accounting for the degeneracy of the occupation number states. The extra
terms, however, are bound to vanish at stationarity, when Ṡe(t) = −Ṡi(t).
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1.3.7 Random Walk on a lattice

r`

Figure 1.7: Simple random walk on an infinite, one-dimensional lattice in continuous time. The black
blob indicates the current position of the random walker. The left and right hopping rates, labelled ` and
r respectively, are assumed to be homogeneous but not equal in general, this leading to a net drift of the
average position.

In this section we study a particle on a one-dimensional lattice that hops to the right
nearest neighbouring site with rate r and to the left with rate `, see Fig. 1.7. The
position x of the particle at time t, after N(t) jumps, is

x = x0 +

N(t)∑
i=1

∆xi, (1.73)

where the random hops ∆xi are independent and identically distributed, and x0 is the
initial position at time t = 0. If a is the lattice spacing, the distance increments are
∆xi = +a with probability r/(` + r) and ∆xi = −a with probability `/(` + r). The
probability distribution of the particle position is

P (x, t;x0) =
∞∑
n=0

H(n, t)Pn(x; x0) , (1.74)

where H(n, t) is the probability that by time t, the particle has hopped N(t) = n times,
and Pn(x; x0) is the probability that the particle is at position x after n hops starting
from x0. Since jumping is a Poisson process with rate r + `, the random variable N(t)

has a Poisson distribution,

H(n, t) =
((`+ r)t)n

n!
exp{−(`+ r)t} . (1.75)

On the other hand, the distribution of the position x after n jumps is the binomial
distribution

Pn(x; x0) =

(
n

kx

)
rkx`n−kx

(`+ r)n
, (1.76)

where kx = (n + (x − x0)/a)/2 is the number of jumps to the right, 0 ≤ kx ≤ n with
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(1.76) implied to vanish if kx is not integer. From Eq. (1.73) the parity of (x − x0)/a

and N(t) are identical. Using (1.75) and (1.76), the probability distribution in (1.74)
reads

P (x, t;x0) = exp{−(`+ r)t}
(r
`

)x−x0
2a I

( |x− x0|
a

, 2t
√
r`

)
, (1.77)

where I(n, z) is the modified Bessel function of the first kind. ∗ The transition proba-
bility is then,

W (x→ y; τ) = exp{−(`+ r)τ}
(r
`

) y−x
2a I

( |y − x|
a

, 2τ
√
r`

)
. (1.79)

Using (1.77) and (1.79) to calculate the entropy production (1.4b), we need the following
identity for |y − x|/a = |m| ≥ 1,

lim
τ→0

1

τ
I
(
|m|, 2τ

√
r`
)

=
√
r`δ|m|,1 , (1.80)

which follows immediately from Eq. (1.78). It indicates that the only transitions that
contribute to the entropy production are those where the particle travels a distance
equal to the lattice spacing a. Then, the entropy production reads,

Ṡi(t) =
1

2
(r − `) ln

(r
`

)
+ exp{−(`+ r)t}

∞∑
m=−∞

(r
`

)m
2 I
(
|m|, 2t

√
r`
)

×

r ln

 I
(
|m|, 2t

√
r`
)

I
(
|m+ 1|, 2t

√
r`
)
+ ` ln

 I
(
|m|, 2t

√
r`
)

I
(
|m− 1|, 2t

√
r`
)
 . (1.81)

and the entropy flow Ṡe(t) = −(r−`) ln(r/`) independent of t, which owes its simplicity
to the transition rates being independent of the particle’s position. We are not aware
of a method to perform the sum in (1.81) in closed form and, given that this expression
involves terms competing at large times t, we cannot calculate the stationary entropy

∗The modified Bessel function of the first kind of m, z ∈ C is defined as [187]

I(m, z) =
∞∑
j=0

1

j!Γ(j +m+ 1)

(z
2

)2j+m

. (1.78)

67



production limt→∞ Ṡi(t). If we assume that the sum in Eq. (1.81) converges such that
the exponential exp{−(r + `)t} eventually suppresses it, then the entropy production
Ṡi appears to converge to 1

2
(r − `) ln(r/`). If that were the case, Ṡ = Ṡi + Ṡe would

converge to a negative constant, while S(t), Eq. (1.1), which vanishes at t = 0 given
the initialisation of P (x, t;x0) = δ(x−x0)/a,0, is bound to be strictly positive at all finite
t. Given that P (x, t;x0) does not converge, not much else can be said about S(t) or Ṡ.
Using the master equation

Ṗ (x, t;x0) = −(r + `)P (x, t;x0) + `P (x+ a, t; x0)− rP (x− a, t; x0) (1.82)

in

Ṡ(t)

= −
∑
m

Ṗ (ma, t;x0) ln(P (ma, t;x0)) (1.83a)

=
∑
m

{(r + `)P (ma, t;x0)− `P ((m+ 1)a, t; x0)− rP ((m− 1)a, t; x0)} ln(P (ma, t;x0))

(1.83b)

=
∑
m

rP (ma, t;x0) ln

(
P (ma, t;x0)

P ((m+ 1)a, t; x0)

)
+ `P (ma, t;x0) ln

(
P (ma, t;x0)

P ((m− 1)a), t; x0

)
(1.83c)

still requires an approximation such as the continuum limit in Eq. (1.85) either in the
logarithm of the ratios in Eq. (1.83c) or in the logarithm of P (ma, t;x0) in Eq. (1.83b).
The resulting sum can be performed elegantly using, for example,

∑
m P (ma, t;x0)m−

P ((m+ 1)a, t; x0)(m+ 1) = 0. Remarkably, either approach produces −1
2
(r− `) ln(r/`)

for Ṡ. Using a/
√
t as the integration mesh, the sum can be re-interpreted as a Riemann

sum and the difference in the summand Taylor expanded to give Ṡ = 0 in large t. Even
when this result is more reasonable than negative limt→∞ Ṡ(t), we are not aware of
a rigorous proof that limt→∞ Ṡ(t) = 0, and thus not of a proof of the corresponding
limit limt→∞ Ṡ(t) = (r − `) ln(r/`). The closely related Brownian particle, discussed in
Sec. 1.3.9 does not suffer from this difficulty.

To take the continuum limit a → 0 of the probability distribution (1.77), we define v
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and D such that r + ` = 2D/a2 and r − ` = v/a. Using the asymptotic expansion† of
I(m, z) in m, we obtain in fact the Gaussian distribution,

lim
a→0

1

a
P
(x
a
, t;

x0

a
; r(v,D, a), `(v,D, a)

)
=

1√
4πDt

exp

{
−(x− x0 − vt)2

4Dt

}
, (1.85)

which corresponds to the distribution of a drift-diffusive particle, which is studied in
Sec. 1.3.9. Therefore, all results derived in Sec. 1.3.9, apply to the present system in
the continuum limit.

1.3.8 Random Walk on a ring lattice

r

`

Figure 1.8: Simple random walk on an periodic, one-dimensional ‘ring’ lattice in continuous time. This
model generalises the three-state Markov chain discussed in Section 1.3.2 to L states. The black blob
indicates the current position of the random walker. Due to the finiteness of the state space, this process
is characterised by a well defined steady-state, which is an equilibrium one for symmetric rates ` = r.

In this section we extend the system in Sec. 1.3.7 to a random walk on a ring lattice
of length L > 2, so that 1 ≤ x ≤ L, see Fig. 1.8. The probability distribution PL(x, t)

of the particle on the ring follows from the distribution on the one-dimensional lattice
P (x, t) in (1.77), by mapping all positions x + jL on the one-dimensional lattice to
position x ∈ {1, 2, . . . , L} on the ring with j being the winding number irrelevant to

†We use the asymptotic expansion in m of the modified Bessel function [187]

I(m, z) ∼ exp{z}√
2πz

(
1− 4m2 − 1

8z
+

(
4m2 − 1

) (
4m2 − 9

)
2!(8z)2

−
(
4m2 − 1

) (
4m2 − 9

) (
4m2 − 25

)
3!(8z)3

+ . . .

)
,

(1.84)
which is valid for | arg z| < π/2.
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the evolution of the walker. Then, the distribution on the ring lattice reads,

PL(x, t;x0) =
∞∑

j=−∞
P (x+ jL, t;x0) (1.86)

and similarly for the transition probability W (x→ y, τ) = PL(y, τ ;x). To calculate the
entropy production (1.4b), each pair of points x, y on the lattice is mapped to a pair of
points on the ring. For L > 2, as τ → 0 only transitions to distinct, nearest neighbours
contribute and the expression for the entropy production simplifies dramatically,

Ṡi(t) =(r − `) ln
(r
`

)
+

L/a∑
m=1

PL(ma, t;x0)

{
r ln

(
PL(ma, t;x0)

PL((m+ 1)a, t; x0)

)
+ ` ln

(
PL(ma, t;x0)

PL((m− 1)a, t; x0)

)}
(1.87)

and similar for
Ṡe(t) = −(r − `) ln

(r
`

)
. (1.88)

While the entropy flow Ṡe on a ring is thus identical to that of a particle on a one-
dimensional lattice, the entropy production Ṡi on a ring is in principle more complicated,
but with a lack of cancellations of

√
r/` in the logarithm as found in Sec. 1.3.7 and PL

reaching stationarity comes the asymptote

lim
t→∞

Ṡi(t) = (r − `) ln
(r
`

)
. (1.89)

This is easily derived from limt→∞ PL(x, t;x0) = 1/L taken into the finite sum of
Eq. (1.87). It follows that Ṡ(t) = Ṡi(t) + Ṡe(t) converges to 0 at large t, as expected for
a convergent stationary distribution.

The case L = 2 and the less interesting case L = 1 are not covered above, because of the
different topology of the phase space of L > 2 compared to L = 2. The difference can
be observed in the different structure of the transition matrices (1.33) and (1.38). The
framework above is based on each site having two outgoing and two incoming rates, 2L

in total. However, for L = 2 there are only two transitions, which cannot be separated
into four to fit the framework above, because even when rates of concurrent transitions
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between two given states are additive, their entropy production generally is not. The
case of L = 2 is recovered in the two-state system of Sec. 1.3.1 with α = β = r + `,
which is at equilibrium in the stationary state.

1.3.9 Driven Brownian particle

v
D

Figure 1.9: Driven Brownian particle on the real line. The black blob indicates the particle’s current
position.

In continuum space, the motion of a freely diffusive particle with diffusion constant
D and drift v is governed by the Langevin equation ẋ = v +

√
2Dξ(t), where ξ(t)

is a Gaussian white noise with zero mean, 〈ξ(t)〉 = 0, and covariance 〈ξ(t)ξ(t′)〉 =

δ(t−t′), see Fig. 1.9 [290]. The corresponding Fokker-Planck equation for the probability
distribution P (x, t) is [234]

∂tP (x, t) = −v∂xP (x, t) +D∂2
xP (x, t) . (1.90)

Assuming the initial condition P (x, 0) = δ(x − x0), the solution to the Fokker-Planck
equation is the Gaussian distribution

P (x, t) =
1√

4Dπt
exp

{
−(x− x0 − vt)2

4Dt

}
, (1.91)

which is also the Green function of the Fokker-Planck equation (1.90). We therefore
also have the transition probability density from state x to state y over an interval τ ,

W (x→ y, τ) =
1√

4Dπτ
exp

{
−(y − x− vτ)2

4Dτ

}
. (1.92)

Substituting (1.91) and (1.92) into Eq. (1.14) for the internal entropy production of a
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continuous system gives,

Ṡi = lim
τ→0

1

τ

∫
dxdy

1√
4Dπt

exp

{
−(x− x0 − vt)2

4Dt

}
× 1√

4Dπτ
exp

{
−(y − x− vτ)2

4Dτ

}(
(y − x0)2 − (x− x0)2

4Dt
+

(y − x)v

2D

)
,

(1.93)

where the Gaussian integrals can be evaluated in closed form,

Ṡi(t) = lim
τ→0

[
1/(2t) + v2/D + v2τ/(2Dt)

]
. (1.94)

Taking the limit τ → 0 then gives the entropy production rate [290, 186, 272],

Ṡi(t) =
1

2t
+
v2

D
. (1.95)

Similarly, following (1.15), the entropy flow reads Ṡe(t) = −v2/D independent of time
t. As Ṡi(t) 6= 0, we see that for finite t or v 6= 0, the system is out of equilibrium with a
sustained probability current, so that there is in fact no steady-state distribution. We
can verify Eq. (1.95) for the time-dependent internal entropy production by computing
the probability current

j(x, t) = (v −D∂x)P (x, t) =

(
v

2
+

(x− x0 − vt)
4t

)
e−

(x−x0−vt)
2

4Dt√
πDt

(1.96)

and substituting it together with (1.91), into (1.28). As expected, the two procedures
return identical results. The independence of the transient contribution 1/(2t) to the
internal entropy production on the diffusion constant is remarkable although necessary
on dimensional grounds, as a consequence of Ṡi having dimensions of inverse time. The
diffusion constant characterising the spatial behaviour of diffusion suggests that it is the
temporal, rather than spatial features of the process that determine its initial entropy
production.
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v
D

Figure 1.10: Driven Brownian particle in a harmonic potential. This process reduces to the standard
Ornstein-Uhlenbeck process upon rescaling x → x′ + v/k. The black blob indicates the particle’s current
position. The presence of a binding potential implies that the system relaxes to an equilibrium steady-
state at long times.

1.3.10 Driven Brownian particle in a harmonic potential

Consider a drift-diffusive particle such as in Section 1.3.9 that is confined in a harmonic
potential V (x) = 1

2
kx2, where k is the potential stiffness, see Fig. 1.10 [9]. The Langevin

equation is ẋ = v − kx+
√

2Dξ(t), where 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t− t′) and the
Fokker-Planck equation for P (x, t) is [234]

∂tP (x, t) = −∂x((v − kx)P (x, t)) +D∂2
xP (x, t) . (1.97)

Assuming the initial condition P (x, 0) = δ(x − x0), the solution to the Fokker-Plank
equation is the Gaussian distribution

P (x, t) =

√
k

2πD(1− exp{−2kt}) exp

{
−(kx− v − (kx0 − v) exp{−kt})2

2Dk(1− exp{−2kt})

}
, (1.98)

corresponding to a probability current j(x, t) = (v − kx−D∂x)P (x, t) of the form

j(x) =

√
k

2πD(1−e−2kt)
e−kt

(
v
(
1− e−kt

)
− k

(
x0 − xe−kt

))
1− e−2kt

× exp

{
−(v(1− e−kt)− k(x− x0e

−kt)2

2Dk(1− e−2kt)

}
. (1.99)

The transition probability density within τ is then also of Gaussian form, namely

W (x→ y, τ) =

√
k

2πD(1− exp{−2kτ}) exp

{
−(ky − v − (kx− v) exp{−kτ})2

2Dk(1− exp{−2kτ})

}
.

(1.100)
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Using (1.98) and (1.100) in (1.14) gives the entropy production rate

Ṡi =

(
(v − kx0)2

D
− k
)

exp{−2kt}+
k exp{−2kt}

1− exp{−2kt} (1.101)

and in (1.15) the external entropy flow

Ṡe = −
(

(v − kx0)2

D
− k
)

exp{−2kt} . (1.102)

In the limit t→∞, the system will reach equilibrium as P (x, t) in Eq. (1.98) converges
to the Boltzmann distribution

√
k

2πD
exp
{
− (kx−v)2

2Dk

}
of the effective potential 1

2
kx2−vx

at temperature D. This is consistent with (1.101) and (1.102) since limt→∞ Ṡi(t) =

limt→∞ Ṡe(t) = 0. Similarly to drift diffusion on the real line, Eq. (1.95), there is a
transient contribution to the entropy production that is independent of the diffusion
constant D but does now depend on the stiffness k, which has dimensions of inverse
time, through the rescaled time kt.

1.3.11 Driven Brownian particle on a ring with potential

v
D

Figure 1.11: Driven Brownian particle on a ring x ∈ [0, L) with a periodic potential satisfying V (x) =
V (x + L). Any finite diffusion constant D > 0 results in a stationary state at long times that is non-
equilibrium for v 6= 0. The black blob indicates the particle’s current position.

Consider a drift-diffusive particle on a ring x ∈ [0, L) in a smooth potential V (x),
Fig. 1.11, initialised at position x0. The Langevin equation of the particle is [230, 225,
205] ẋ = v−∂xV (x)+

√
2Dξ(t), where ξ(t) is Gaussian white noise. The Fokker-Planck
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equation is then

∂tP (x, t;x0) = −∂x((v − V ′(x))P (x, t;x0)) +D∂2
xP (x, t;x0) (1.103)

with V ′(x) = d
dx
V (x) and boundary condition P (n)(0, t; x0) = P (n)(L, t; x0) for all n ≥ 0

derivatives and t ≥ 0. At stationarity, in the limit t→∞, where ∂tP (x, t;x0) = 0, the
solution to the Fokker-Planck equation (1.103) is [142, 218, 205]

Ps(x) = lim
t→∞

P (x, t) = Z exp

{
−V (x)− vx

D

}∫ x+L

x

dy exp

{
V (y)− vy

D

}
, (1.104)

where Z is the normalisation constant. The corresponding steady-state probability
current j = (v − ∂xV )Ps −D∂xPs is independent of x by continuity, 0 = ∂tP = −∂xj,
and reads [234]

j = Z
(

exp

{
−vL
D

}
− 1

)
. (1.105)

In order to calculate the entropy production according to (1.14) and (1.15) using (1.16),
we need W (x → y; τ) for small τ . As discussed after Eq. (1.16), W (x → y; τ) obeys
the Fokker-Planck Eq. (1.103) in the form

∂τW (x→ y; τ) = −∂y [(v − V ′(y))W (x→ y; τ)] +D∂2
yW (x→ y; τ) (1.106)

with limτ→0 W (x→ y; τ) = δ(y − x), so that

Ẇ (x→ y) = lim
τ→0

∂τW (x→ y; τ) = V ′′(y)δ(y − x)− (v − V ′(y))δ′(y − x) +Dδ′′(y − x)

(1.107)
to be evaluated under an integral, where δ′(y−x) = d

dy
δ(y−x) will require an integration

by parts. As for the logarithmic term, we use [300, 234]

W (x→ y; τ) =
1√

4πDτ
e−

(y−x−τ(v−V ′(x)))2

4Dτ (1 +O(τ)) (1.108)

so that
ln

(
W (x→ y; τ)

W (y → x; τ)

)
=
y − x
2D

(2v − V ′(x)− V ′(y)) +O(τ). (1.109)
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The entropy flow Eq. (1.15) in the more convenient version Eq. (1.20a) can be obtained
easily using Eqs. (1.107) and (1.109),

Ṡe(t) = −
∫ L

0

dxdy P (x, t)
(
V ′′(y)δ(y − x)− (v − V ′(y))δ′(y − x) +Dδ′′(y − x)

)
(1.110)

× y − x
2D

(2v − V ′(x)− V ′(y)) (1.111)

= −
∫ L

0

dxP (x, t)

(
1

D
(v − V ′(x))

2 − V ′′(x)

)
(1.112)

after suitable integration by parts, whereby derivatives of the δ-function are conve-
niently interpreted as derivatives with respect to y to avoid subsequent differentiation
of P (x, t). Since δ(y− x)(y− x) = 0, the factor (y− x)/(2D) needs to be differentiated
for a term to contribute. In the absence of a potential, P (x, t) = 1/L at stationarity,
so that Eq. (1.112) simplifies to Ṡe(t) = −v2/D and limt→∞ Ṡi(t) = v2/D, Eq. (1.95).
Using the probability current j(x, t) = −D∂xP (x, t) + (v − V ′(x))P (x, t), the entropy
flow simplifies further to

Ṡe(t) = −
∫ L

0

dx j(x, t)
v − V ′(x)

D
(1.113)

so that at stationarity, when the current is spatially uniform,

lim
t→∞

Ṡe(t) = − lim
t→∞

j(x, t)vL/D (1.114)

as the potential is periodic, entering only via the current.
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An equivalent calculation of Ṡi on the basis of (1.19a) gives

Ṡi(t) + Ṡe

=

∫ L

0

dxdy P (x, t)
(
V ′′(y)δ(y − x)− (v − V ′(y))δ′(y − x) +Dδ′′(y − x)

)
ln

(
P (x, t)

P (y, t)

)
(1.115a)

=

∫ L

0

dx

{
D

(P ′(x, t))2

P (x, t)
− P (x, t)V ′′(x)

}
(1.115b)

= −
∫ L

0

dx j(x, t)∂x lnP (x, t) , (1.115c)

whence

Ṡi(t) =

∫ L

0

dx
j2(x, t)

DP (x, t)
, (1.115d)

with the last equation identical to Eq. (1.12).

By considering the functional derivative δZ/δV (z) in
∫ L

0
dxP (x) = 1 of Eq. (1.104), one

can show that the stationary current j(x, t) Eq. (1.105) is extremal for constant V (x),
indicating that the magnitude of the stationary entropy flow Eq. (1.115d) is maximised
in a constant potential.

1.3.12 Run-and-tumble motion with diffusion on a ring

v1
D

v2
D

Figure 1.12: Run-and-tumble motion with diffusion on a ring x ∈ [0, L). A run-and-tumble particle
switches stochastically, in a Poisson process with rate α, between two modes 1 and 2 characterised by an
identical diffusion constant D but distinct drift velocities v1 and v2. The two modes are here represented
in black and grey, respectively. For arbitrary positive diffusion constant D or tumbling rate α with v1 6=
v2 the steady state is uniform but generally non-equilibrium.

Consider the dynamics of a run-and-tumble particle on a ring x ∈ [0, L) [250] with
Langevin equation ẋ = v(t) +

√
2Dξ(t), where the drift v(t) is a Poisson process with
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rate α that alternates the speed of the particle between the constants v1 and v2, and
ξ(t) is Gaussian white noise, Fig. 1.12. The drift being v(t) = v1 or v(t) = v2 will be
referred to as the mode of the particle being 1 or 2 respectively. Defining P1(x, t) and
P2(x, t) as the joint probabilities that the particle is at position x at time t and in mode
1 or 2 respectively, the coupled Fokker-Planck equations for P1 and P2 are

∂tP1(x, t) =− v1∂xP1(x, t) +D∂2
xP1(x, t)− α(P1(x, t)− P2(x, t)) (1.116a)

∂tP2(x, t) =− v2∂xP2(x, t) +D∂2
xP2(x, t)− α(P2(x, t)− P1(x, t)) (1.116b)

whose stationary solution is the uniform distribution limt→∞ P1(x, t) = limt→∞ P2(x) =

1/(2L) as is easily verified by direct substitution. The corresponding steady-state prob-
ability currents thus read j1 = v1/(2L) and j2 = v2/(2L).

In the following, we denote by the propagator W (x → y,Q → R; τ) the probability
density that a particle at position x in mode Q is found time τ later at position y

in mode R. For Q = R, this propagation is a sum over all even numbers m of Pois-
sonian switches, that occur with probability (ατ)m exp{−ατ}/m!, which includes the
probability exp{−ατ} of not switching at all over a total of time τ . For Q 6= R, the
propagation is due to an odd number of switches.

For m = 0, the contribution to W (x → y,Q → R; τ) is thus exp{−ατ}W (x → y; τ),
with W (x → y; τ) of a drift diffusion particle on a ring, Section 1.3.11, but without
potential, approximated at short times τ by the process on the real line, Eq. (1.92) with
drift v = v1 or v = v2 according to the particle’s mode. For m = 1 the contribution
is a single convolution over the time t′ ∈ [0, τ) at which the particle changes mode,
most easily done after Fourier transforming. Before presenting this calculation in real
space, we argue that any such convolution will result in some approximate Gaussian
with an amplitude proportional to 1/

√
τ multiplied by a term of order (ατ)m. In small

τ , therefore only the lowest orders need to be kept, m = 0 for Q = R and m = 1 for
Q 6= R.
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More concretely,

W (x→ y, 1→ 2; τ)

=

∫ ∞
−∞

dz

∫ τ

0

dτ ′
1√

4πDτ ′
exp

{
−(z − x− v1τ

′)2

4Dτ ′

}
× exp{−ατ ′} 1√

4πD(τ − τ ′)
exp

{
−(y − z − v2(τ − τ ′))2

4D(τ − τ ′)

}
exp{−α(τ − τ ′)}+ . . .

(1.117)

=
α exp{−ατ}
2(v1 − v2)

[
erf
(
x− y + v1τ√

4Dτ

)
− erf

(
x− y + v2τ√

4Dτ

)]
+ . . . (1.118)

which in small τ , when v1,2τ/
√

4Dτ � 1, so that erf(r+ ε) = erf(r) + 2ε e−r
2
/
√
π+ . . .,

expands to

W (x→ y, 1→ 2; τ) =
ατ√
4πDτ

e−
(y−x)2

4Dτ

(
1 +O(τ 2)

)
= W (x→ y, 2→ 1; τ) , (1.119)

whereas W (x→ y,Q→ Q; τ), the propagator with an even number of mode switches,
is given by Eq. (1.92) to leading order in τ ,

W (x→ y,Q→ Q; τ) =
1√

4πDτ
e−

(y−x−vQτ)2

4Dτ
−ατ (1 +O(τ 2)

)
. (1.120)

Much of the calculation of the entropy production follows the procedure in Secs. 1.3.9
and 1.3.11 to be detailed further below. To this end, we also need

lim
τ→0

d

dτ
W (x→ y, 1→ 2; τ) = Ẇ (x→ y, 1→ 2) = αδ(x− y)

= Ẇ (x→ y, 2→ 1) . (1.121)

As far as processes are concerned that involve a change of particle mode, therefore only
the transition rates enter, not diffusion or drift. Given a uniform stationary spatial
distribution of particles of any mode, mode changes between two modes cannot result

79



in a sustained probability current, even when the switching rates differ,

(
P1Ẇ (1→ 2)− P2Ẇ (2→ 1)

)
ln

(
P1Ẇ (1→ 2)

P2Ẇ (2→ 1)

)
= 0 (1.122)

for P1Ẇ (1 → 2) = P2Ẇ (2 → 1) at stationarity as in the process discussed in Sec-
tion 1.3.1. A probability current and thus entropy production can occur when different
particle modes result in a different distribution, Section 1.3.10, or when mode switch-
ing between more than two modes results in a current in its own rights, Secs. 1.3.2 and
1.3.13.

Since the full time-dependent density is beyond the scope of the present work, we
calculate entropy flow and production at stationary on the basis of a natural extension
of Eqs. (1.4), (1.15) and (1.20a) to a mixture of discrete and continuous states

− lim
t→∞

Ṡe(t) = lim
t→∞

Ṡi(t) (1.123)

=
∑

Q,R∈{1,2}

∫ L

0

dxdyPQ(x, t)Ẇ (x→ y,Q→ R) lim
τ→0

ln

(
W (x→ y,Q→ R; τ)

W (y → x,R→ Q; τ)

)

=
v2

1 + v2
2

2D
(1.124)

which immediately follows from Secs. 1.3.9 and 1.3.11, as the stationary density is
constant, PQ = PR = 1/(2L), and only Q = R contribute, with

lim
τ→0

ln

(
W (x→ y, 1→ 2; τ)

W (y → x, 2→ 1; τ)

)
= 0 . (1.125)

If the drifts are equal in absolute value |v1| = |v2| = v, then we recover the entropy
production of a simple drift-diffusive particle, Ṡi = v2/D. This is because we can think
of run-and-tumble as a drift-diffusion particle that changes direction instantly. Since
changing the direction produces no entropy, the total entropy production rate should
be the same as a drift-diffusion particle. The entropy production can alternatively be
derived via (1.28) by computing Ṡi =

∫
dx (j2

1/(DP1) + j2
2/(DP2)) with the steady-state

currents stated above.
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1.3.13 Switching diffusion process on a ring

v3
D

v2
D

v1
Dv4

D

Figure 1.13: Switching diffusion process on a ring x ∈ [0, L] in continuous time. A switching diffusion
process involves a stochastic switching between M modes characterised by an identical diffusion constant
D but distinct drifts vi (i = 1, 2, . . . ,M). The marginal switching dynamics are characterised as an M -
state Markov process with transition rates αij from mode i to mode j.

The dynamics of a one-dimensional run-and-tumble particle discussed above can be
readily generalised to the so called switching diffusion process [305] by allowing for an
extended set {vi} of drift modes i = 1, . . . ,M , Fig. 1.13. The corresponding Langevin
equation for the particle position on a ring x ∈ [0, L] is almost identical to that of
run-and-tumble, namely ẋ = v(t) +

√
2Dξ(t), with the exception that the process v(t)

is now an M -state Markov process. In the general case, a single switching rate α is
thus not sufficient and the full transition rate matrix αij needs to be provided. In this
formulation, the run-and-tumble dynamics Sec. 1.3.12 correspond to the choice M = 2

with symmetric rates α12 = α21 = α. Defining Pi(x, t) as the joint probability that at
time t the particle is at position x and in mode i, thereby moving with velocity vi, the
system (1.116) of Fokker-Planck equations generalises to

∂tPi(x, t) = −∂x[(vi −D∂x)Pi(x, t)] +
∑
j

Pj(x, t)αji (1.126)

where the transmutation rates αij from mode i to mode j are assumed to be inde-
pendent of position. To ease notation we use the convention αjj = −∑i 6=j αji. For
non-vanishing diffusion constant, the stationary solution is uniform for all modes and
given by limt→∞ Pi(x, t) = zi/L, where zi is the ith element of the eigenvector z satisfy-
ing

∑
j zj = 1 and the eigenvalue relation

∑
j zjαji = 0, which we assume to be unique

for simplicity.

The calculation of the steady-state entropy production follows very closely that of run-
and-tumble presented above. The conditional transition probabilities including up to
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one transmutation event read to leading order

W (x→ y, i→ j; τ) =


eαiiτ√
4πDτ

exp
{
− (y−x−viτ)2

4Dτ

}
(1 +O(τ 2)) for i = j

αij
2(vi−vj)

[
erf
(
x−y+viτ√

4Dτ

)
− erf

(
x−y+vjτ√

4Dτ

)]
(1 +O(τ 2)) for i 6= j ,

(1.127)
so that

lim
τ→0

d

dτ
W (x→ y, i→ j; τ) =

D∂2
yδ(y − x)− vi∂yδ(y − x) + αiiδ(y − x) for i = j

αijδ(y − x) for i 6= j .

(1.128)
We could perform the calculation of the entropy production using the procedure of
Sec. 1.3.9 rather than drawing on the operator for i = j, which, however, is used in the
following for convenience, see Sec. 1.3.11. Substituting (1.127) and (1.128) into (1.19a)
and assuming steady-state densities, we arrive at

lim
t→∞

Ṡi(t) =− lim
t→∞

Ṡe(t)

=

∫ L

0

dxdy
∑
i

zi
L

(
D∂2

yδ(y − x)− vi∂yδ(y − x) + αiiδ(y − x)
)

(y − x)
vi
D

+

∫ L

0

dxdy
∑
i,j 6=i

zi
L
αijδ(y − x) ln

(
αij
αji

)
, (1.129)

where we have used Eq. (1.128) in the operators containing the δ-functions and Eq. (1.127)
in the logarithms. The term ln(αij/αji) is obtained by the same expansion as used in
Eq. (1.119), Sec. 1.3.12. Both terms contributing to the entropy production above
are familiar from previous sections: the first is a sum over the entropy production of
M drift-diffusion processes with characteristic drift vi, Sec. 1.3.11 without potential,
weighted by the steady-state marginal probability zi for the particle to be in state i;
the second is the steady-state entropy production of an M-state Markov process with
transition rate matrix αij, which reduces to Eq. (1.4) after integration. Carrying out
all integrals, we finally have

lim
t→∞

Ṡi(t) = lim
t→∞
−Ṡe(t) =

∑
i

zi
v2
i

D
+

1

2

∑
i,j

(ziαij − zjαji) ln

(
αij
αji

)
. (1.130)
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Unlike run-and-tumble, Sec. 1.3.12, the transmutation process in switching diffusion
does in general contribute to the entropy production for M > 2, since the stationary
state generally does not satisfy detailed balance. However, contributions to the total
entropy production originating from the switching and those from the diffusion parts of
the process are effectively independent at steady state, as only the stationary marginal
probabilities zi of the switching process feature as weights in the entropy production
of the drift-diffusion. Otherwise the parameters characterising the two processes stay
separate in Eq. (1.130). Further, the drift-diffusion contributions of the form v2

i /D

are invariant under the time-rescaling αij → Tαij. This property originates from the
steady-state distributions Pi(x) being uniform and would generally disappear in a po-
tential, Sec. 1.3.10.

1.4 Discussion and concluding remarks

In this work we calculate the rate of entropy production within Gaspard’s framework
[113] from first principles in a collection of paradigmatic processes, encompassing both
discrete and continuous degrees of freedom. Based on the Markovian dynamics of each
system, where we can, we derive the probability distribution of the particle (or particles)
as a function of time P (x, t) from Dirac or Kronecker-δ initial conditions P (x, 0) =

δ(x−x0), from which the transition probability W (x→ y; τ) follows straightforwardly.
In some cases, we determine only the stationary density and the (short-time) propagator
W (x → y; τ) to leading order in τ . We then use Eq. (1.4) for discrete systems or
Eqs. (1.19) and (1.20) for continuous systems to calculate the time-dependent entropy
production. We set out to give concrete, exact results in closed form, rather than
general expressions that are difficult to evaluate, even when we allowed for general
potentials in Sec. 1.3.11. In summary, the ingredients that are needed to calculate the
entropy production in closed form in the present framework are: a) the probability
(density) P (x, t) to find the system in state x ideally as a function of time t and b)
the propagator W (x → y; τ), the probability (density) that the system is found at a
certain state y after some short time τ given an initial state x. If the propagator is
known for any time τ , it can be used to calculate the probability P (x, t;x0) = W (x0 →
x; t) for some initial state x0. However, this full time dependence is often difficult to
obtain. The propagator is further needed in two forms, firstly limτ→0 ∂τW (x → y; τ)
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when it is most elegantly written as an operator in continuous space, and secondly
limτ→0 ln(W (x→ y; τ)/W (y → x; τ)).

For completeness, where feasible, we have calculated the probability current j(x, t) in
continuous systems at position x. The mere presence of such a flow indicates broken
time-reversal symmetry and thus non-equilibrium. Our results on the discrete systems
(Sec. 1.3.1 to 1.3.8) illustrate two important aspects of entropy production. First, the
need of a probability flow PAẆ (A → B) − PBẆ (B → A) between states: in the
two-state system Sec. 1.3.1 there are no transition rates α and β such that there is a
sustained probability flow and therefore, the system inevitably relaxes to equilibrium.
However, in the three-state system Sec. 1.3.2 the transition rates can be chosen so
that there is a perpetual flow (α − β)/3 between any two states and therefore there is
entropy production not only during relaxation but also at stationarity. Hence, we can
ascertain these as non-equilibrium steady states in the long time limit due to the non-
vanishing rate of internal entropy production. Uniformly distributed steady states can
be far from equilibrium as a rigorous analysis on the basis of the microscopic dynamics
reveals, although an effective dynamics may suggest otherwise.

Second, we see how the extensivity of entropy production arises in the N -particle sys-
tems (Secs. 1.3.4, 1.3.5 and 1.3.6), independently of whether the particles are distin-
guishable or not. We therefore conclude that the number of particles in the system must
be accounted for when calculating the entropy production, and doing otherwise will not
lead to a correct result. This is sometimes overlooked, especially when using effective
theories. In the continuous systems (Sec. 1.3.9 to 1.3.11), which involve a drift v and a
diffusion constant D, we always find the contribution v2/D to the entropy production
emerging one way or another. Moreover, in the case of drift-diffusion on the real line
(Sec. 1.3.9) we find that the contribution due to the relaxation of the system 1/(2t) is
independent of any of the system parameters.

Finally, we have studied two systems (Sec. 1.3.12 and 1.3.13) where the state space has
a discrete and a continuous component. The discrete component corresponds to the
transmutation between particle species, i.e. their mode of drifting, whereas the continu-
ous component corresponds to the particle motion. We find that both processes, motion
and transmutation, contribute to the entropy production rate essentially independently
since any term that combines both processes is a higher-order term contribution in τ ,
and therefore vanishes in the limit τ → 0.
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This work has applications to the field of active particle systems, where particles are
subject to local non-thermal forces. In fact, the systems studied in sections 1.3.2 and
1.3.8 – 1.3.13 are prominent examples of active systems. We have shown that their
entropy production crucially relies on the microscopic dynamics of the system, which are
captured by the Fokker-Planck equation (or the master equation for discrete systems)
and its solution. However, in interacting many-particle systems, such a description
is not available in general. Instead, we may choose to use the Doi-Peliti formalism
[80, 219, 279, 267, 39, 170, 216, 107, 109] to describe the system, since it provides a
systematic approach based on the microscopic dynamics and which retains the particle
entity.
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Overview After having reviewed the mathematical machinery of entropy production
in Chapter 1, we focus here on a particular family of non-equilibrium processes, namely
those involving a single passive particle suspended in a viscous fluid and subject to
an external potential force that evolves stochastically over time. We assume that the
passive particle is ‘small enough’ such that its coupling to the surrounding environment
leads to non-negligible thermal fluctuations, resulting in so-called Brownian or diffusive
motion [89]. While fluctuations in the external force directly affect the dynamics of
the particle position, the reverse does not apply and the resulting asymmetry drives
the system away from thermodynamic equilibrium. An exact calculation of the entropy
production for various simple setups demonstrates that a constant expenditure of energy
is required to sustain this type of dynamics even when force fluctuations are fast and

87

https://doi.org/10.1088/1751-8121/ac726b


thus supposedly ‘negligible’ in some sense to be made precise in the following. We will
refer to this as an entropic anomaly [59]. Interestingly, stochastic forces originating
from fluctuating potentials are bound to occur in many real-world problems involving
microscopic particles. For example, the manipulation of microbeads and other colloids
by means of optical tweezers relies on realistic lasers, whose power output exhibits small
fluctuations during the course of a single experiment [125].

Author contributions: HA performed preliminary calculations on the entropy pro-
duction with intermittent harmonic potentials. LC explained the methodology and
suggested various generalisations, in particular to continuous Markov processes. HA
and LC collaborated on all of the analytical calculations. HA performed the numerical
simulations. TB supervised the project and edited the final manuscript.

Abstract

A positive rate of entropy production at steady state is a distinctive feature of truly non-
equilibrium processes. Exact results, while being often limited to simple models, offer
a unique opportunity to explore the thermodynamic features of these processes in full
detail. Here we derive analytical results for the steady-state rate of entropy production
in single particle systems driven away from equilibrium by the fluctuations of an external
potential of arbitrary shapes. Subsequently, we provide exact results for a diffusive
particle in a harmonic trap whose potential stiffness varies in time according to both
discrete and continuous Markov processes. In particular, studying the case of a fully
intermittent potential allows us to introduce an effective model of stochastic resetting
for which it is possible to obtain finite non-negative entropy production. Altogether, this
work lays the foundation for a non-equilibrium thermodynamic theory of fluctuating
potentials, with immediate applications to stochastic resetting processes, fluctuations
in optical traps and fluctuating interactions in living systems.

2.1 Introduction

Stochastic thermodynamics represents one of the most powerful tools at our disposal
in the effort to characterize generic properties of non-equilibrium processes. It provides
a framework to extend the ideas of traditional thermodynamics to regimes and scales
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where some of the assumptions underlying the latter theory break down [220, 256, 64].
In particular, the possibility of developing a thermodynamically-consistent description
of mesoscopic systems subject to non-negligible noise (a paradigmatic example being
overdamped colloidal particles) has unveiled a wealth of fascinating relations among the
fluctuating counterparts of traditional thermodynamic observables, such as work, heat
and entropy [254, 147, 260]. For instance, in the presence of fluctuations, the second
law of thermodynamics is only satisfied upon taking suitable averages over an ensemble
of stochastic trajectories or over long observation times.

Over the last decades, the average rate of entropy production, denoted Ṡi, has at-
tracted considerable attention as a way of quantifying the degree of departure from
equilibrium. For instance, genuinely non-equilibrium processes (as opposed to those
relaxing to equilibrium), such as overdamped active particles driven by injection and
dissipation of energy at the single-agent level [23, 192], are characterized by a posi-
tive average entropy production at steady-state which equals the rate at which heat is
dissipated into the environment.

Interestingly, entropy production has also been formalized as a measure of the breaking
of the global detailed balance condition [64, 248, 173]. In particular, it has long been
established for Markovian processes [113] that the thermodynamic entropy production
has an equivalent information-theoretic interpretation as the relative dynamical entropy
(i.e., the Kullback–Leibler divergence [163]) per unit time of the ensemble of forward
paths and their time-reversed counterparts, thus signaling the breaking of time-reversal
symmetry whenever Ṡi > 0. Based on this perspective, it was further shown that
the rate of entropy production is inversely proportional to the minimal time needed
to decide on the direction of the arrow of time [238, 253]. Entropy production has
additionally been found to relate non-trivially to the precision and efficiency of the
underlying stochastic process via uncertainty relations [257, 141].

In this work, we consider the average entropy production associated with a Brownian
particle subject to diffusion in a fluctuating trapping potential V (x;α(t)) whose shape
is governed by a parameter α(t). In most of what follows, we will assume the potential
to be harmonic and centered at the origin, with fluctuations acting solely on the po-
tential stiffness. In the absence of fluctuations, this model reduces to the well-known
Ornstein-Uhlenbeck (OU) process [112], a prototypical equilibrium stochastic process
characterized by a Gaussian steady-state probability density function for the particle

89



position x, and zero entropy production. As we will demonstrate, letting α(t) evolve
stochastically results generically in a departure from thermodynamic equilibrium, sig-
naled by non-vanishing probability currents at steady-state and thus a positive rate of
entropy production.

Introducing fluctuations into what would otherwise be time-independent model pa-
rameters is a recurrent theme in non-equilibrium physics. Indeed, think for example
of Run-and-Tumble (RnT) and Active Ornstein-Uhlenbeck (AOUPs) particles , whose
self-propulsion velocity is described by a telegraph process and an OU process, respec-
tively [43, 109]. Fluctuating interactions are a generic feature of living systems and can
have striking consequences including clustering in populations of bacteria interacting
via type IV pili [7, 37, 315], arrested coalescence in cellular aggregates [212] and flu-
idization of embryonic tissues [156]. Moreover, a clear thermodynamic understanding
of trapping by fluctuating harmonic potentials could have important implications in a
number of mesoscopic systems. For instance, experimental manipulation of colloidal
beads [13] and molecular motor cargoes [14, 129, 206, 52] by optical tweezers are likely
to be subject to non-negligible fluctuations (e.g. from the laser intensity).

Furthermore, Brownian motion in an intermittent harmonic confining potential repre-
sents a realistic implementation of stochastic resetting [244, 148, 128, 127, 97]. Orig-
inally introduced to allow Brownian dynamics to reach a non-equilibrium stationary
state (NESS) at long times [94, 97], stochastic resetting has been under intense scrutiny
over the last decade partly due to its non-trivial impact on first-passage statistics [94, 93]
and has imposed itself as a pillar of non-equilibrium statistical mechanics. As a conse-
quence, the effects of resetting have been studied in a swath of physical systems: from
classical diffusive processes such as Brownian motion, random walks, Lévy walks and
Lévy flights [189, 126, 264, 199, 317, 165], to the random acceleration process [265]
and the asymmetric exclusion processes [21, 153]. More recently, resetting has also
found applications in stochastic living systems including in models of active particles
[96, 243, 164], active transport in living cells [46], enzymatic reactions [233, 232], pop-
ulation genetics [73] and in models of cell division [115].

Of interest here is the fact that the vast majority of these studies generically consider
fully irreversible and instantaneous resetting. While various works have addressed the
non-equilibrium thermodynamics of resetting, the typically assumed irreversibility of
resetting events requires a special treatment [105, 50, 214]. In particular, these studies
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made use of alternative definitions for the entropy production whose connection with
time-reversal symmetry breaking remains unclear. Here, we argue that a realistic im-
plementation of an effective resetting protocol can offer a relevant perspective on these
controversies.

The paper is structured as follows: in Section 2.2, we derive equations for the steady-
state entropy production for a general single-particle drift-diffusion system with fluctu-
ating potentials, considering both discrete and continuous state spaces for the potential
states. The rest of the paper is dedicated to specific examples of these single-particle
systems. In Section 2.3, we consider the simple example of an intermittent harmonic
potential to illustrate a practical application of the theory, calculating the steady-state
entropy production exactly in Eq. (2.29). We then consider a generalized two-state OU
model in Section 2.4 and derive its entropy production in Eq. (2.40), before extending
this result to an arbitrary number of states in Section 2.5, deriving Eq. (2.47). In
Section 2.6, we study an OU process with a stiffness that varies continuously in time,
writing the entropy production in terms of the variance of the particle position in Eq.
(2.63). Finally, our results are summarized in Section 2.7.

2.2 Steady-state entropy production in drift-diffusion processes with
fluctuating potentials

In this first section, we derive the general expression for the steady-state entropy pro-
duction of a Brownian particle diffusing on the real line, x ∈ R, in a confining potential
V (x;α(t)), whose shape is set by α(t), a random variable that evolves in continuous
time according to Markovian dynamics (see Fig. 2.1). While in the rest of this study
we focus on the case of a harmonic confining potential V (x;α(t)) = α(t)x2/2, the
functional form of the potential will remain generic in this section. First, we derive
the steady-state entropy production in the case where the potential follows a discrete
Markov process; in this case, we assume that the potential jumps in between different
‘states’ corresponding to particular values of α(t). We then derive the corresponding
results in the case where α(t) follows a generic continuous Markov process. Note that
for the sake of simplicity, we will only consider in what follows one-dimensional systems;
however, our results can be straightforwardly generalized to higher dimensions, assum-
ing independent Brownian fluctuations in each dimension, by treating each coordinate
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Figure 2.1: Diffusion in fluctuating potentials — In many realistic settings, trapping potentials can be
subject to stochastic fluctuations. This phenomenon generically breaks global detailed balance and can
thus drive a passive Brownian particle trapped in the potential away from thermodynamic equilibrium,
such that the corresponding entropy production is non-zero even at steady-state. In the simplest case,
a stochastic potential switches between a pre-defined set of functional forms Vi(x) = V (x;αi), with
i ∈ {1, 2, 3}, according to a Markov jump process with given, time-independent transition rates.

as a separate degree of freedom.

2.2.1 Fluctuating potentials as a discrete Markov process

First, we model the fluctuations in the confining potential as arising from jumps among
a finite set of N distinct states. Namely, we let α(t) ∈ {α1, α2, ..., αN} evolve according
to a continuous-time, N -state Markov jump process with transition rate matrix K,
where the matrix element Kij with i 6= j denotes the rate at which the parameter
switches from value αj to αi. The diagonal elements are generically fixed by enforcing
conservation of total probability,

∑
iKij = 0, so that Kjj = −∑i 6=jKij.
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The resulting stochastic dynamics for the parameter α(t) is thus given by

P
(
α(t+ ∆t) = αi|α(t) = αj

)
= δij + ∆tKij +O

(
∆t2
)

(2.1)

while the particle position is governed by the overdamped Langevin equation

ẋ(t) = −1

γ
∂xV (x;α(t)) +

√
2Dη(t) , (2.2)

where γ is a friction coefficient and η(t) denotes a Gaussian white noise with zero
mean, 〈η(t)〉 = 0, and unit variance, 〈η(t)η(t′)〉 = δ(t − t′). We set γ = 1 without loss
of generality. The corresponding Fokker-Planck equation takes the form [112, 234]

∂tPi(x, t) = −∂xJi(x, t) +
∑
j

KijPj(x, t) (2.3)

for i = 1, 2, ..., N , with Pi(x, t) the joint probability density that the particle is found
at position x with the potential in state i and Ji(x, t) the state-dependent probability
current density, given by

Ji(x, t) = −
(
∂xV (x;αi)

)
Pi(x, t)−D∂xPi(x, t) . (2.4)

The total probability is defined as P (x, t) =
∑N

i=1 Pi(x, t).

The Gibbs-Shannon entropy [261] of the joint probability density Pi(x, t) is defined as

S(t) = −
∑
i

∫
dx Pi(x, t) log

(
Pi(x, t)

P̄

)
(2.5)

where P̄ is an arbitrary density introduced for dimensional consistency and we work in
units such that kB = 1. While an entropy S̃(t) could in principle be defined for any
marginal of the full probability density, as in e.g.

S̃(t) = −
∫
dx

[∑
i

Pi(x, t)

]
log

[∑
i Pi(x, t)

P̄

]
(2.6)

it is only for the couple (x, α) that the dynamics are Markovian and the standard toolkit
of stochastic thermodynamics can be applied straightforwardly. Further, our choice to
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consider the full dynamics for the variables (x, α) allows us to define as we will see
drift and switching contributions to the entropy production which we relate to the heat
dissipated in the various heat baths coupled to the process. Differentiating S(t) with
respect to time, we see

Ṡ(t) = −
∑
i

∫
dx ∂tPi(x, t) log

(
Pi(x, t)

P̄

)
(2.7)

and using Eq. (2.3), we obtain after integration by parts

Ṡ(t) = −
∑
i

∫
dx

[
Ji(x, t)∂xPi(x, t)

Pi(x, t)
+
∑
j

KijPj(x, t) log

(
Pi(x, t)

P̄

)]
(2.8)

which using Eq. (2.4), we rewrite as

Ṡ(t) =
∑
i

∫
dx

[
J2
i (x, t)

DPi(x, t)
+
Ji(x, t)∂xV (x;αi)

D
−
∑
j

KijPj(x, t) log

(
Pi(x, t)

P̄

)]
.

(2.9)

By conservation of probability, we have

KiiPi(x, t) = −
∑
j 6=i

KjiPi(x, t) , (2.10)

which allows us to rewrite the third term on the right-hand side of Eq. (2.9) as∫
dx
∑
i,j

KijPj(x, t) log

(
Pi(x, t)

P̄

)
=

− 1

2

∫
dx
∑
i,j 6=i

(KijPj(x, t)−KjiPi(x, t)) log

(
KijPj(x, t)

KjiPi(x, t)

)
+

1

2

∫
dx
∑
i,j 6=i

(KijPj(x, t)−KjiPi(x, t)) log

(
Kij

Kji

)
, (2.11)

where we first re-write the sum on the LHS using Eq. (2.10), then consider the corre-
sponding sum with the indices i and j swapped. Since i and j are dummy indices, we
write the original sum as half times itself plus half times its counterpart with indices
being swapped. We finally multiply the fraction in the log(·) term by a factor KijKji

KijKji
= 1
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which changes only the appearance of the terms on the RHS, then expanding to obtain
the desired form in Eq. (2.11).

Following the standard procedure [256, 64], the contributions to the rate of change of
the Gibbs-Shannon entropy are split into two terms

Ṡ(t) = Ṡi(t) + Ṡe(t) , (2.12)

with the internal (or total) entropy production defined as

Ṡi(t) =
∑
i

[∫
dx

J2
i (x, t)

DPi(x, t)

]
+

1

2

∫
dx
∑
i,j 6=i

(
KijPj(x, t)−KjiPi(x, t)

)
log

(
KijPj(x, t)

KjiPi(x, t)

)
(2.13)

and the external entropy production (or entropy flow) as

Ṡe(t) =
∑
i

[∫
dx

Ji(x, t)∂xV (x;αi)

D

]
− 1

2

∑
i,j 6=i

(
KijP

tot
j (t)−KjiP

tot
i (t)

)
log

(
Kij

Kji

)
,

(2.14)
where P tot

i (t) =
∫
dx Pi(x, t) denotes the marginal probability for the potential to be in

state αi at time t, irrespective of the particle position. We note that the entropy flow
is written as the sum of two terms: the first term, which we call the drift contribution,
accounts for steady-state currents in position space and is proportional to the heat
dissipated into the bath driving the fluctuations of the particle position; the second
term, which we call the switching contribution, originates purely from the switching
dynamics. Physically, this contribution captures the rate of heat dissipation into the
bath driving the fluctuations of the potential.

This marginal probability satisfies the master equation

∂tP
tot
i (t) =

∑
j

KijP
tot
j (t) (2.15)

and its steady-state value P tot
i,∞ = limt→∞ P tot

i (t) can thus be obtained straightforwardly
by identifying the unique eigenvector with eigenvalue zero of the matrix K. Note that
while the entropy flow is commonly associated with the rate of heat dissipation into the
environment [248, 173], the internal entropy production is usually the quantity of inter-
est in the thermodynamic characterization of non-equilibrium stochastic processes due
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to its connection with time-reversal symmetry breaking [113], its link to the Kullback-
Leibler divergence [163] and its role in fluctuation theorems [254, 260]. For the sake
of brevity, the denomination of entropy production will henceforth be reserved for the
internal contribution, Ṡi(t), only.

Assuming that the joint probability density Pi(x, t) relaxes to a steady-state at long
times, we have the equality

lim
t→∞

Ṡ(t) = lim
t→∞

[Ṡi(t) + Ṡe(t)] = 0 . (2.16)

While both Ṡi and Ṡe vanish individually only for systems at equilibrium, the internal
and external contributions to the entropy production cancel each other exactly even in
systems out of thermal equilibrium. As a consequence, the steady-state internal entropy
production can equivalently be computed via the entropy flow and it is thus directly
related to heat dissipation. This is often a convenient route, since the logarithmic term
in Eq. (2.14) does not contain information about the steady-state distribution itself.

Note that for Eqs. (2.13) and (2.14) to be well-defined, transitions between potential
states αi must be individually reversible, i.e. Kij > 0 if Kji > 0, while in general
Kij 6= Kji. If the marginal dynamics for the potential state α satisfy the detailed
balance condition [248, 173], i.e. if a global potential function Fi = F (αi) can be
defined such that Kij/Kji ∝ exp(−(Fi − Fj)) for all pairs {i, j}, the second term in
Eq. (2.14) vanishes at steady-state, although the first term remains generally positive.
This global potential construction is always possible for N = 2 and, more generally,
when the state-space is tree-like, i.e. when it features no closed circuits [249].

2.2.2 Fluctuating potentials as a continuous Markov process

The formulation above can be straightforwardly extended to continuous α dynamics by
taking N →∞ together with a suitable continuum limit in α-space, whereby Pi(x, t)→
P (x, α, t)dα and P tot

i (t)→ P tot(α, t)dα. In this case, Eq. (2.1) thus generalizes to

P(α(t+ ∆t) = α′|α(t) = α) = G(α→ α′; ∆t) (2.17)
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where G denotes the propagator (Green’s function) for the chosen dynamics. The
associated marginal Fokker-Planck equation, which corresponds to the continuum limit
of Eq. (2.15), reads

∂tP
tot(α, t) = LP tot(α, t) (2.18)

with L the linear Fokker-Planck operator [234]. For the case of a fluctuating potential
with control parameter α(t) described by Brownian motion with diffusion coefficient
Dα (which is independent of α) in a potential V(α), we have for instance

LP tot(α, t) = Dα∂
2
αP

tot(α, t) + ∂α(P tot(α, t)∂αV(α)) . (2.19)

Further, in line with Eq. (2.4), the probability current for the particle position satisfies

J(x, α, t) = −(∂xV (x;α))P (x, α, t)−D∂xP (x, α, t) , (2.20)

while the probability current in α-space, denoted J (x, α, t), reads

J (x, α, t) = −(∂αV(α))P (x, α, t)−Dα∂αP (x, α, t) . (2.21)

The full Fokker-Planck equation can thus be written as

∂tP (x, α, t) = −∂xJ(x, α, t)− ∂αJ (x, α, t) . (2.22)

The calculation of the entropy flow starts once again from the expression for the Gibbs-
Shannon entropy,

S(t) = −
∫∫

dx dα P (x, α, t) log

(
P (x, α, t)

P̄

)
, (2.23)

which combines with the now two-dimensional Fokker-Planck equation to give, for the
particular case of Eq. (2.19),

Ṡi(t) =

∫
dα dx

1

P (x, α, t)

[
J2(x, α, t)

D
+
J 2(x, α, t)

Dα

]
(2.24a)

Ṡe(t) =

∫
dα

[∫
dx

J(x, α, t)∂xV (x;α)

D

]
+

1

Dα

∫
dα J tot(α, t)∂αV(α) , (2.24b)

where we have introduced the marginal current J tot(α, t) =
∫
dx J (x, α, t).
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2.3 Brownian motion in an intermittent harmonic potential

Armed with the general expressions for the entropy production in drift-diffusion pro-
cesses with fluctuating potentials, we now study a number of specific examples. For the
rest of this study, we focus on the case of a harmonic potential V (x;α(t)) = α(t)x2/2,
where the fluctuating parameter α(t) controls the potential stiffness. The simplest
discrete process that the stiffness of the harmonic potential can follow is a two-state
Markov process, also known as dichotomous noise or telegraph process [291].

As a preliminary example, we study the case of a fully intermittent harmonic potential
[244]. We suppose that α(t) ∈ {0, α0} switches between its two states with symmetric
rate k. The two states are characterized as follows: (i) when α(t) = 0, the particle
diffuses on the real line and we say that the system is in an off state, (ii) when α(t) =

α0 > 0, the harmonic confining potential is present and the system is said to be in its on
state. Clearly, in its off state the particle will be freely diffusing, while in the on state the
confining potential leads to a forcing of the motion of the particle towards the center of
the potential. Effectively, this system corresponds to the simplest single-particle system
with a non-instantaneous resetting mechanism.

We denote by Poff(x, t) and Pon(x, t) the joint probability density of finding a particle
at position x in the off and on state, respectively, at time t. The kinetic equations for
this process read

∂tPoff(x, t) = −∂x
[
Joff(x, t)

]
+ kPon(x, t)− kPoff(x, t) (2.25a)

∂tPon(x, t) = −∂x
[
Jon(x, t)

]
+ kPoff(x, t)− kPon(x, t) (2.25b)

with

Joff(x, t) = −D∂xPoff(x, t), (2.26a)

Jon(x, t) = −D∂xPon(x, t)− α0xPon(x, t) (2.26b)

The stationary probabilities exist provided that α0 > 0 [310]. While it is relatively easy
to obtain these stationary probabilities in Fourier space, deriving a closed-form analytic
expression for the probability distribution in real space is highly non-trivial [84, 313, 244]
(see also 2.A). In what follows, we interestingly show that such an analytic form is not
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required for the calculation of the steady-state entropy production.

Indeed, to calculate the entropy production for this system, we will evaluate the entropy
flow. Starting from Eq. (2.14), it is clear that the second term is zero as by construction
Kon,off = Koff,on = k. For our choice of potentials, the first term reduces to

Ṡe(t) =
α0

D

∫
dx
[
xJon(x, t)

]
. (2.27)

At steady-state, the probability currents satisfy the flux balance equation ∂xJon(x) =

−∂xJoff(x). Integrating the right-hand side of Eq. (2.27) by parts and substituting one
current for the other, we obtain

lim
t→∞

Ṡi(t) = lim
t→∞

α0

∫
dx

[
x2

2
∂2
xPoff(x, t)

]
. (2.28)

Finally, integrating by parts twice and solving Eq. (2.15) at steady-state to obtain
P tot

on,∞ = P tot
off,∞ = 1/2, leaves us with the simple expression

lim
t→∞

Ṡi(t) =
α0

2
, (2.29)

indicating that the steady-state entropy production in this setup is independent of
both the switching rate k and the diffusion coefficient D. Here and in the following,
we drop boundary terms whenever integration by parts is performed. This procedure
relies on a sufficiently fast decay of the relevant probability densities as x→ ±∞ and,
more precisely, on the finiteness of the second moment of Pi(x), which is a reasonable
assumption for all processes considered herein.

As shown in Fig. 2.2, we confirm numerically this result through: (1) the numerical
integration of Eq. (2.27) using the stationary current derived from Eq. (2.25) (see 2.A
and [244, 313]) and (2) the analysis of single particle trajectories from the simulated
underlying microscopic process governed by Eq. (2.2) (see 2.B for further numerical
details). Strikingly, while the process is dynamically equivalent in the limit k →∞ to
an equilibrium OU process with reduced potential stiffness α0/2 [217], we observe here
a finite and strictly positive steady-state rate of entropy production. Similarly, entropy
production remains finite and positive for free run-and-tumble particles, whose motion
is effectively diffusive in the limit of infinite tumbling rate or large times [64, 109]. This
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Figure 2.2: Steady-state entropy production of a Brownian particle in an intermittent quadratic po-
tential — (a) Stationary distribution P (x) at different values of α0 ∈ [10−2, 102] with k = D = 1
fixed. We show agreement between the distributions measured numerically from single particle trajecto-
ries (marked by symbols) and the result (2.86) which we have integrated numerically (dashed lines). We
plot in black the analytic solutions for the limit α0 � k as in Eq.(2.88) and α0 � k as in Eq.(2.89). (b)
We confirm our analytic result (2.29) by evaluating (2.27) numerically from our stationary distributions
for three sets of values for k,D.

is sometimes referred to as an entropic anomaly [59, 32].

Note that the independence of the steady-state entropy production vis-à-vis the switch-
ing rate k and the diffusion coefficient D is specific to our choice of potential and
can be derived from physical arguments. Namely, the first law of thermodynamics at
steady-state,

0 =

∫
dx [V (x;α0)∂tPon(x) + V (x; 0)∂tPoff(x)] = Ẇ − Q̇ , (2.30)

imposes the rate of heat dissipation, Q̇, to be equal to the work done per unit time by
the potential on the particle, Ẇ . Clearly, work is only being done in the on state as the
potential disappears in the off state. In turn, the average work done equals the change
in average potential energy U = 〈α0x

2/2〉 before the next transition to the off state.
In the off state, the particle motion is purely diffusive and the variance of the position
probability density grows linearly, i.e. ∂t〈x2〉 = 2D. Thus, the average work done by
the potential during a on phase of typical duration k−1 is given by

〈W 〉 =
Dα0

k
. (2.31)

Given that the average duration of an on-off cycle is by construction 2/k, the average
rate of heat dissipation is 〈Q̇〉 = k〈W 〉/2 = Dα0/2. Finally, the particle self-diffusion
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Figure 2.3: Fluctuating potentials as a general two-state Ornstein-Uhlenbeck Markov process — The
inequality (2.32) is the condition for the existence of a stationary solution to the Fokker-Planck equation,
and thus for the steady-state entropy production to be well-defined.

coefficient being proportional to the temperature by Einstein’s relation, we write in
our units that Ṡi = 〈Q̇〉/D and finally recover Ṡi = α0/2, which we confirm to be
independent of k and D.

Importantly, this argument relies on the variance 〈x2〉 growing linearly with time (with-
out bounds) in the off state, an assumption that breaks down as soon as the off state of
the potential has a finite stiffness α1, in which case the variance of the particle position
in the off state instead satisfies ∂t〈x2〉 = 2D(1−α1〈x2〉/D). We show how this leads to
an explicit k dependence of the entropy production in Section 2.4.2. Finally, to highlight
the importance of the functional form of the potential, we repeat this procedure for an
intermittent quartic potential and argue that the steady-state entropy production can
not be independent of k or D in Appendix 2.C.

2.4 General two-state Ornstein-Uhlenbeck Markov process

We now broaden our focus and study the case of a generalized two-state Ornstein-
Uhlenbeck Markov process, of which the preliminary model introduced in the previous
section is a limiting case. Here, we consider a system with two states denoted A and
B. In state A, the particle diffuses in a harmonic potential, VA(x) = αAx

2/2, with
diffusion coefficient DA. In state B, the restoring force comes from a second potential,
VB(x) = αBx

2/2, and the particle self-diffusion is set by DB. As shown in Fig. 2.3, the
particle switches from state A to B with rate kBA and returns with rate kAB.
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2.4.1 Analytic expression for the entropy production

In this general case, one needs to carefully chose the potential strengths and switching
rates. Indeed, the steady-state probabilities only exist for this system when the following
inequality is satisfied [310]:

αAkAB + αBkBA
kAB + kBA

= 〈α〉 > 0 (2.32)

where we have defined 〈α〉 =
∑

i αiP
tot
i,∞, where P tot

i,∞ are the solutions to Eq. (2.15) in
steady-state. It is easily interpreted as the sum of the two values for the stiffness α
weighted by the fraction of time spent in each state. Namely, while the independent
confining potential strengths do not need to be strictly positive, we require the effective
potential strength (as time-averaged over a full A→ B → A cycle) to be positive.

Granted that condition (2.32) is met, we start from Eq. (2.14) and follow the same
procedure as above. We thus argue that the steady-state entropy flow reads

lim
t→∞

Ṡe(t) =
αA
DA

∫
dx
[
xJA(x)

]
+
αB
DB

∫
dx
[
xJB(x)

]
. (2.33)

Importantly, we note that the switching contribution to the entropy production vanishes
in the case of a two-state process as detailed balance holds. Indeed, the switching
contribution is non-zero when detailed balance is broken which requires at least three
states.

We then substitute in the form of the currents from the Fokker-Planck equations for
the process, given in Eq. (2.4), and write the internal entropy production as

lim
t→∞

Ṡi(t) = −〈α〉+
α2
A

DA

∫
dx
[
x2PA(x)

]
+
α2
B

DB

∫
dx
[
x2PB(x)

]
, (2.34)

where we recognize that the two integrals are proportional to the variances of the steady-
state probability distributions conditioned on the potential being in either of the two
states A and B.

We introduce the conditional variance

σ2
i (t) =

∫
dx x2Pi(x, t)∫
dx Pi(x, t)

(2.35)
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and define
Ξi(t) =

∫
dx x2Pi(x, t) = σ2

i (t)P
tot
i (t) (2.36)

for i ∈ {A,B}, where P tot
i (t) =

∫
dx Pi(x, t) is the marginal probability of the potential

having stiffness αi independent of the position x of the trapped particle.

First, note that

∂tΞi(t) =

∫
dx
[
x2∂tPi(x, t)

]
(2.37)

and so after taking the second moment of the Fokker-Planck equation (2.3), we obtain

∂tΞA(t) = 2DAPA(t)− (2αA + kBA)ΞA(t) + kABΞB(t) (2.38a)

∂tΞB(t) = 2DBPB(t)− (2αB + kAB)ΞB(t) + kBAΞA(t). (2.38b)

We can now solve Eqs. (2.38a) and (2.38b) at steady-state to derive explicit expressions
for ΞA(t) and ΞB(t) as t→∞:

lim
t→∞

ΞA(t) =
kAB

kAB + kBA

[
(2αB + kAB)DA + kBADB

2αAαB + αAkAB + αBkBA

]
, (2.39a)

lim
t→∞

ΞB(t) =
kBA

kAB + kBA

[
kABDA + (2αA + kBA)DB

2αAαB + αAkAB + αBkBA

]
. (2.39b)

Substituting (2.39a) and (2.39b) into (2.34), we obtain a closed-form exact expression
for the entropy production in a general two-state Ornstein-Uhlenbeck Markov process,
which reads

lim
t→∞

Ṡi(t) =− αAkAB + αBkBA
kAB + kBA

+
α2
A

DA

[
kAB

kAB + kBA

] [
(2αB + kAB)DA + kBADB

2αAαB + αAkAB + αBkBA

]
+
α2
B

DB

[
kBA

kAB + kBA

] [
kABDA + (2αA + kBA)DB

2αAαB + αAkAB + αBkBA

]
(2.40)

where the first term is equal to the opposite of the mean stiffness 〈α〉, as defined in
Eq. 2.32.
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Figure 2.4: Steady-state entropy production rate for a Brownian particle in an intermittent quadratic
potential with asymmetric switching rates — (a) Stationary distribution P (x) for the particle position
measured numerically from single particle trajectories for varying switching rates koff ∈ {10−2, 102} with
kon = D = α0 = 1 fixed. (b) Entropy production rate measured by integrating (2.34) numerically
(symbols) showing good agreement with our analytic result, (2.41), for fixed kon = D = 1.

2.4.2 Some models of interest

We now apply this result to a number of important limiting cases of the generalized
two-state Ornstein-Uhlenbeck model.

Intermittent Harmonic Potential with Asymmetric Switching Rates —

First we return to the preliminary example, in which we stipulated that the diffusion
was independent of the state, DA = DB = D, and we let αA = 0 and αB = α0. Here,
we consider more generally the case of distinct switching rates: kon to switch from state
A to state B and koff from state B to A. For these parameters, Eq. (2.40) reduces to

lim
t→∞

Ṡi(t) = α0
koff

kon + koff

= α0 − 〈α〉. (2.41)

We conclude that in this case, the entropy production explicitly depends on the switch-
ing rates kon and koff . Note that we naturally recover the result from Eq. (2.29) when
symmetrizing the switching rates and setting kon = koff . We study the system nu-
merically and plot the stationary probabilities and entropy production rate in Fig. 2.4.
We note in particular that the entropy production rate can be written in terms of
the potential strength α0 and ratio of switching rates koff/kon, justifying our choice of
parameters.
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Non-disappearing harmonic potential —

Figure 2.5: Steady-state entropy production rate for a Brownian particle in a harmonic potential
switching between two non-zero stiffnesses with rate k — (a) Stationary distributions for the process
with αB = 0.1 and αA = D = 1 for switching rates k ∈ {0.1, 10}. (b) Entropy production rate evaluated
from the numerical integration of (2.34) using the stationary distributions obtained from single particle
trajectories (symbols). We show a perfect quantitative agreement with our exact analytical result (2.42)
(solid line) for a wide range of switching rates. We also show the entropy production rate in the limit
k →∞ in each case from (2.44) (dashed line).

Next, we consider the case of a non-disappearing harmonic potential. Namely, we
consider that kAB = kBA = k and DA = DB = D, while letting αA > αB > 0. Here, we
obtain

lim
t→∞

Ṡi(t) = −αA + αB
2

+
(αB + k)α2

A + (αA + k)α2
B

2αAαB + k(αA + αB)
=

k(αA − αB)2

4αAαB + 2k(αA + αB)
,

(2.42)
which displays an explicit dependence on the switching rate k.

We also conclude on the scaling of the entropy production when the switching rate is
either much smaller or much larger than the two values for the stiffness. In particular,
we observe a crossover from a small k regime characterized by a linear k dependence

lim
t→∞

Ṡi(t) '
(αA − αB)2

4αAαB
k for k � αA,B (2.43)

that extends from k = 0 up to a cross-over rate k∗ = 2αAαB/(αA + αB), to a large k
regime that is asymptotically independent of k,

lim
k→∞

lim
t→∞

Ṡi(t) =
(αA − αB)2

2(αA + αB)
. (2.44)
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We conclude that the k-dependent regime vanishes to a single point in the limit where
αB → 0 for fixed αA as shown in Fig. 2.5. This limit is consistent with a vanishing
intermittent harmonic potential and we confirm here that we recover the result of
Eq. (2.29).

Switching diffusion in harmonic potential —

Suppose now that the switching is symmetric with rate kAB = kBA = k and the har-
monic potential stiffness αA = αB = α is the same in each state, but the diffusion
coefficient switches between two values, DA and DB. We then vary DA and DB to see
how the entropy production depends on the ratio of the diffusion coefficients. Starting
from (2.40), we eventually obtain

lim
t→∞

Ṡi(t) =
αk

4(α + k)

[(
DB

DA

+
DA

DB

)
− 2

]
=
αk(DA −DB)2

4DADB(α + k)
. (2.45)

The entropy production is clearly non-negative and vanishes at DA = DB, which cor-
responds to the recovery of a standard (equilibrium) Ornstein-Uhlenbeck process with
stiffness α and diffusion coefficient D (see Fig. 2.6 for a comparison with numerical
results).

Figure 2.6: Steady-state entropy production for a Brownian particle switching between two diffusion
coefficients in a constant harmonic potential — (a) Stationary distributions for the process with DA =
k = 1, α = 10 and varying DB ∈ [1, 100]. We show in black the Gaussian distribution expected in the
case where DA = DB . (b) Entropy production rate as a function of the diffusion coefficient DB obtained
by integrating numerically (2.34) using the single particle trajectories (symbols), in perfect agreement
with our analytic result (2.45) (solid line).
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Effective resetting with harmonic potential —

Evaluating the entropy production for systems with (instantaneous) resetting is a prob-
lem that has seen much attention [105, 50]. The irreversible nature of the stochastic
resetting process is a good indication that the entropy production is infinite: it com-
pletely breaks time-reversal symmetry. For this reason, previous work addressing the
thermodynamics of resetting has made use of alternative definitions for the entropy
production [105, 50], whose connection with time-reversal symmetry breaking in the
spirit of [113] is unclear.

The framework we introduce here allows us to study models of effective resetting, where
a particle diffuses in a fluctuating harmonic potential. Namely, near-instantaneous
resetting with a refractory period [95] of typical duration 1/koff can be modeled with
an intermittent potential of infinite stiffness α0 → ∞. Note that in the limit where
koff →∞ while keeping koff � α0, this refractory period vanishes. From the results of
Section 2.4.2, it is clear that an infinitely stiff confining potential implies infinite steady-
state entropy production, but more generally, we are here able to quantify entropy
production in systems approaching instantaneous resetting but with finite confining
potentials and show that the entropy production diverges linearly with the potential
stiffness.

2.5 General N-state Ornstein-Uhlenbeck Markov process

2.5.1 General framework

We generalize the results above to the case where the stiffness α of the confining har-
monic potential and the diffusion coefficient D can switch stochastically between N

distinct pairs of values (αi, Di) with i = 1, 2, ..., N following a general Markov jump
process with transition rate matrix K. As noted earlier, the matrix elements Kij repre-
sent the probability per unit time that a harmonic potential with stiffness αj switches
to stiffness αi; note that in general, while Kij > 0 whenever Kji > 0 to enforce local
reversibility, these transition rates need not satisfy global detailed balance. The diag-
onal elements of K are fixed by imposing

∑
iKij = 0 for all j, corresponding to the

requirement that the total probability be conserved.
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Similarly to Eq. (2.36), we define

Ξi(t) =

∫
dx x2Pi(x, t) = σ2

i (t)P
tot
i (t) (2.46)

for i = 1, 2, ..., N , with P tot
i (t) =

∫
dx Pi(x, t) the marginal probability of the potential

having stiffness αi independently of the particle position. For our choice of potential,
the entropy flow is given by Eq. (2.14):

Ṡe(t) =
∑
i

αiP
tot
i (t)−

∑
i

α2
i

Di

Ξi(t)−
1

2

∑
i 6=j

(
KijP

tot
j (t)−KjiP

tot
i (t)

)
log

(
Kij

Kji

)
. (2.47)

Note that in the present case, the contribution from the pure switching component of
the process does not generally vanish for N ≥ 3, since the switching rates Kij do not
generically need to satisfy the detailed balance condition. Based on the Fokker-Planck
equation (2.3), we obtain the following system of kinetic equations

∂tΞi(t) = 2DiP
tot
i (t)− 2αiΞi(t) +

∑
j

KijΞj(t) . (2.48)

At steady-state, computing the entropy production limt→∞ Ṡi(t) = − limt→∞ Ṡe(t) for
this system only depends on our ability to compute the quantities Ξi at steady-state.
From Eq. (2.48), these steady-state quantities can be obtained by solving the linear
system

2DiP
tot
i,∞ +

∑
j

(Kij − 2αiδij)Ξj = 0 (2.49)

which involves the steady-state marginal probabilities P tot
i,∞ of the Markov switch pro-

cess; these correspond to the unique eigenvector with eigenvalue 0 of the transition rate
matrix K (assuming that the corresponding graph has a single connected component),
rather than the full space-dependent probabilities Pi(x, t), which are typically hard to
compute [313, 244].
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Figure 2.7: Steady-state entropy production for a Brownian particle in N = 3 harmonic potentials of
varying stiffness — Schematic for (a) the different potentials in a typical three state system and (b) the
discrete Markov jump process that controls the stiffness of the harmonic potential. (c) Entropy produc-
tion rates for the process, consisting of two contributions: the switching contribution, stemming purely
from the switching dynamics, vanishes when the jump process satisfies detailed balance (here, kr = kl);
the drift contribution, accounting for steady-state currents in position space, is generically positive in the
presence of stiffness fluctuations. For the simulations, we set α0 = 0.5, α1 = 2, α2 = 5 and D = kl = 1.

2.5.2 Simple example: N-state ring with homogeneous right- and left-
hopping rates

The case of a ring with N states (see Fig. 2.7 for N = 3) is the simplest setup for
which the switching contribution to the entropy flow is non-trivial. Let Ki,i+1 = kl and
Ki,i−1 = kr with periodic boundary conditions and assume that in state i, the particle
has a diffusion constant, Di. By rotational symmetry of this cyclic configuration, we
have that the steady-state marginal probabilities satisfy P tot

i,∞ = 1/N for all i. We thus
also have that the mean stiffness is defined as 〈α〉 = (α1 + α2 + · · · + αN)/N . The
contribution to the entropy flow from the switching part of the process can easily be
calculated and reads

1

2

∑
i,j 6=i

(
KijP

tot
j,∞ −KjiP

tot
i,∞
)

log

(
Kij

Kji

)
= (kl − kr) log

(
kl
kr

)
(2.50)

which vanishes for kl = kr, as expected. We can now plug this result into Eq. (2.47) to
obtain an expression for the entropy production as a function of the stiffnesses αi and
the switching rates,

lim
t→∞

Ṡi(t) = lim
t→∞
−Ṡe(t) = (kr − kl) log

kr
kl

+
N∑
i=1

αi

(
αiΞi

Di

− 1

N

)
. (2.51)
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where the steady-state quantities Ξi are solutions to the following linear equation

Ξ = − 2

N
Σ−1 ·D (2.52)

with D the vector of diffusivities and where the matrix Σ is a tri-diagonal matrix defined
in the case N = 3 as

Σ =

−kr − kl − 2α1 kl kr

kr −kr − kl − 2α2 kl

kl kr −kr − kl − 2α3

 (2.53)

From Eq. (2.51), we note again that the entropy production in this general N -state
Markov jump process is formed of two contributions: (i) the first term, which we call the
switching contribution, which vanishes when the jump process satisfies detailed balance
(here, kr = kl). Physically, this contribution captures the rate of heat dissipation into
the bath driving the fluctuations of the potential; (ii) the second term, which we call
the drift contribution, is proportional to the heat dissipated into the bath driving the
fluctuations of the particle position. Since the potential fluctuations are independent of
the particle position, both the total entropy production and the switching contribution
are individually non-negative, while the drift contribution can a priori take on positive
or negative values.

We explore the case N = 3 in Fig. 2.7 finding the dependence on the switching rates kr
and kl of the two contributions to the entropy production. In the special case of equal
stiffnesses and diffusivities (αi, Di) = (α,D) for i = {1, 2, 3}, we obtain Ξi = D/(3α)

and the drift contribution in Eq. (2.51) vanishes. Despite this, we may still observe a
non-zero rate of entropy production accounting for the heat being dissipated into the
bath driving the fluctuations in the potential, i.e. due to the control of the switching
process. Indeed, a non-zero rate of entropy production is expected when detailed bal-
ance is not satisfied in the switching mechanism which we recover in Eq. (2.51) when
kr 6= kl as required. In contrast, Fig. 2.7 shows the evolution of the entropy production
as a function of kr/kl for a more general case where the stiffnesses αi are not equal.
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2.6 Continuous state Markov process for the potential stiffness

The final generalization consists in allowing the potential stiffness α to vary continuously
according to a continuous stochastic process. While we derived general results about the
internal entropy production and the entropy flow for continuous processes in Section
2.2.2, here we focus on the particular example of a particle diffusing in a confining
harmonic potential whose stiffness obeys an Ornstein-Uhlenbeck process.

2.6.1 Ornstein-Uhlenbeck process governing the potential stiffness

In this model, the position of the particle x obeys the following overdamped Langevin
equation

ẋ(t) = −∂xV (x;α(t)) +
√

2Dη(t) (2.54)

with a confining potential V (x;α) = αx2/2 whose stiffness α(t) is governed by the
following mean-reverting process

α̇(t) = −∂αV(α) +
√

2Dα ξ(t) (2.55)

where Dα is the diffusion constant for the stiffness which is independent of α and η(t)

and ξ(t) are two zero mean, unit variance Gaussian white noises. Here, we thus consider
the special case where the stiffness confining potential is defined as

V(α) =
1

2
µ(α− α0)2 (2.56)

where α0 > 0 is required for the steady-state to be well-defined.

As before, P tot(α, t) =
∫
dxP (x, α, t) denotes the marginal probability density for the

potential having a particular stiffness α independently of the position x of the trapped
particle. Starting from Eq. (2.24), the entropy flow for this model can be written as

Ṡe(t) =

∫
dα

[
αP tot(α, t)− α2

D
Ξ(α, t)

]
+

1

Dα

∫
dα J tot(α, t)V ′(α) (2.57)

where J tot is the probability current in stiffness space and the marginal variances are
defined as Ξ(α, t) =

∫
dx x2P (x, α, t).
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In this continuum limit, the marginal probability density is determined by the Fokker-
Planck operator (2.19). Therefore, the steady-state marginal probability density P tot(α)

is Gaussian and is given by

P tot(α) =

√
µ

2πDα

exp

(
−µ(α− α0)2

2Dα

)
(2.58)

with J tot(α) = 0 since this is an equilibrium process and the average stiffness reduces
to 〈α〉 = α0. We are left to calculate the second term in Eq. (2.57) to finally obtain the
entropy production.

The Fokker-Planck equation for P (x, α, t) is written as

∂tP = D∂2
xP + α∂x

[
xP
]

+Dα∂
2
αP + µ∂α

[
(α− α0)P

]
(2.59)

where we have dropped the functional dependencies for the sake of simplicity. From
here, we can follow a similar procedure to that used to obtain Eq. (2.38) and find that
the marginal variance Ξ(α, t) is governed by the following kinetic equation

∂tΞ(α, t) = 2DP tot(α, t)− 2αΞ(α, t) + ∂α
[
Dα∂αΞ(α, t) + µ(α− α0)Ξ(α, t)

]
. (2.60)

The marginal variances satisfy at steady-state the following linear equation

(L − 2α)Ξ(α) + 2DP tot(α) = 0 . (2.61)

Integrating this last equation with respect to α leads to 〈αx2〉 = D where 〈·〉 represents
the average with respect to the steady-state probability distribution, limt→∞ P (x, α, t).
This itself is a remarkable result, indicating that the effect on positional fluctuations,
as captured by the variance 〈x2〉, associated with changes in α0, Dα or µ is exactly
canceled when the displacement is rescaled by the fluctuating stiffness α(t), such that
the scaled variance 〈αx2〉 is independent of the stiffness dynamics.

We then multiply (2.60) by α before again integrating over α to obtain∫
dα

[
α2

D
Ξ(α)

]
= 〈α〉 − 1

2D

∫
dα

[
Dα∂αΞ(α) + µ(α− α0)Ξ(α)

]
(2.62)

with 〈α〉 = α0. Combining Eq. (2.62) with (2.57), integrating by parts once assuming
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a sufficiently fast decay of P (x, α) as x, α → ±∞ and using 〈αx2〉 = D, we conclude
that the entropy production rate at steady-state can be expressed as

lim
t→∞

Ṡi = − µ

2D
〈(α− α0)x2〉 =

µα0

2D

(
〈x2〉 − D

α0

)
, (2.63)

which is the simplest exact form for the entropy production that we can obtain here and
the main result of this section. Note that the limit Dα → 0 represents an equilibrium
limit for the system. We argue that in this case the variance of the particle position is
given by 〈x2〉 = D/α0 and thus one would observe no entropy production, as expected
for an equilibrium process. We have thus expressed the entropy production in this
system through the difference between the particle positional variances in the fully non-
equilibrium process and its equilibrium limit. A closed-form solution for the entropy
production in this system relies on our ability to calculate the variance of the particle
position; while this can easily be achieved numerically (see Fig. 2.8), to the best of
our knowledge, it is not possible to write an analytical expression for it in general and
writing down a solution to Eq. (2.59) remains an interesting open problem.

As shown in Fig. 2.8, we observe that the steady-state entropy production rate decays
with increasing diffusion coefficient D. For low values of D, while Brownian motion
becomes progressively weaker, fluctuations in the particle position (as captured by
〈x2〉) remain significant due to the existence of periods of transiently negative potential
stiffnesses. As a consequence, we expect the bracketed terms in Eq. (2.63) to remain
finite as D approaches 0, leading to the observed increase of the entropy production
in this limit. On the other hand, the steady-state entropy production rate converges
to a finite value and becomes independent of D at large enough diffusivities. When
α0, D � µ,Dα, we effectively obtain a separation of timescales between the dynamics
in x-space and α-space. Assuming α2

0 � Dα/µ, the variance of the particle position
is then well-approximated by the average over positive α of the variance of particle
in a fixed potential with stiffness α, 〈x2〉α = D/α, weighted by the probability to
observe such a potential stiffness P (α, t). Altogether, we thus expect the term in the
brackets in Eq. (2.63) to scale like D and the D dependence to finally scale out of the
steady-state entropy production rate. Finally, we confirm our intuition that the entropy
production rate should increase with increasing values of diffusivity in α-space and show
that Ṡi ∼ Dβ

α, with β ≈ 1.
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Figure 2.8: Steady-state entropy production for a Brownian particle in a harmonic potential with
continuously varying stiffness — (a) Steady-state entropy production rate as a function of the particle
self-diffusivity D, for µ = Dα = 1 and different values of α0. The entropy production rate becomes
independent of the positional diffusion coefficient for large enough values of D and remains finite and
non-negative at low values of D. (b) Steady-state entropy production rate increases with Dα. We find
that Ṡi ∼ Dα/α

2
0. Here, we set D = µ = 1 and vary Dα and α0.

Furthermore, we can verify that entropy production (2.63) is non-negative by consider-
ing

〈(α− α0)2x2〉 = 〈α2x2〉 − 2α0〈αx2〉+ α2
0〈x2〉 ≥ 0 , (2.64)

where the equality is only saturated in the deterministic limit, i.e. for D = Dα = 0.
Substituting once again 〈αx2〉 = D in the above equation, and using

〈α2x2〉 = Dα0 −
Dµ

2
+
µα0

2
〈x2〉, (2.65)

which is obtained by multiplying the Fokker-Planck equation (2.59) by αx2 and inte-
grating over both x and α, we eventually find

〈(α− α0)2x2〉 =

(
α0 +

µ

2

)(
α0〈x2〉 −D

)
(2.66)

and hence α0〈x2〉 ≥ D, as required.

2.6.2 Fast stiffness dynamics

Finding an analytical expression for the entropy production rate of a diffusive particle
in a harmonic potential whose stiffness is governed by an Ornstein-Uhlenbeck process
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relies on our capacity to write down the variance of the particle position. To make
some headway along this line, we consider the regime where the stiffness dynamics are
much faster than the positional dynamics of the particle. Here, we work perturbatively
and introduce a small parameter, ε� 1, characterizing the separation in timescales be-
tween the two processes, as is common practice in the literature for fast-slow dynamical
systems [217].

At the level of the coupled Langevin equations, this re-scaling is written as

ẋ(t) = −αx(t) +
√

2D ηx(t) (2.67a)

εα̇(t) = −µ̃(α(t)− α0) +

√
2D̃αε ηα(t) (2.67b)

where we have taken care to re-scale the noise appropriately under the separation of
timescales. The Fokker-Planck equation for the joint probability density now reads

∂tP (x, α, t) = D∂2
xP (x, α, t) + α∂x

[
xP (x, α, t)

]
+
D̃α

ε
∂2
αP (x, α, t) +

µ̃

ε
∂α
[
(α− α0)P (x, α, t)

]
, (2.68)

corresponding to the rescaling Dα → D̃α/ε, µ → µ̃/ε, which preserves the variance of
the stiffness.

In the limit ε → 0, it is known that P (x, α) → P (x;α0)P tot(α) where P (x;α0) is the
stationary distribution in the case where α ≡ α0 and P tot(α) is the stationary marginal
distribution for α as given in Eq. (2.58) [217]. For small but finite ε, it is useful to write
the stationary probability distribution perturbatively around this limit, namely

P (x, α) = P0(x;α0)P tot(α) + εP1(x, α), (2.69)

where P1(x, α) is some function of leading order O(ε0) into which all higher order
corrections have also been absorbed [217]. Note that P1(x, α) should not be thought of
as a probability distribution as it does not satisfy the normalization condition, rather∫

dx

∫
dα P1(x, α) = 0. (2.70)
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We introduce the notation

〈 · 〉1 =

∫
dx

∫
dα (·) P1(x, α) (2.71)

whence
〈x2〉 − D

α0

= ε〈x2〉1 (2.72)

which allows us to express the variance of the position in terms of the variance in the
uncoupled problem where α ≡ α0 and a contribution from the first-order term in ε.
From Eq. (2.63), it is clear that to compute the steady-state entropy production rate,
we need to find an analytic expression for the quantity 〈x2〉1. Multiplying the Fokker-
Planck equation (2.68) by x2(α− α0)2 and integrating with respect to both x and α at
steady-state leads after some straightforward algebra to the following moments relation

D〈(α− α0)2〉 − 〈α(α− α0)2x2〉+
D̃α

ε
〈x2〉 − µ̃

ε
〈x2(α− α0)2〉 = 0 (2.73)

While we have already expressed the variance of the particle position in terms of our
perturbative expansion (2.69), similarly, we write the other moments as

〈(α− α0)2〉 = ε〈(α− α0)2〉1 +
D̃α

µ̃
(2.74a)

〈(α− α0)2x2〉 = ε〈(α− α0)2x2〉1 +
DD̃α

α0µ̃
(2.74b)

〈α(α− α0)2x2〉 = ε〈α(α− α0)2x2〉1 +
DD̃α

µ̃
(2.74c)

Substituting (2.72) and (2.74) in (2.73), we obtain

〈(α− α0)2x2〉1 =
D̃α

µ̃
〈x2〉1 −

ε

µ̃
〈α(α− α0)2x2〉1. (2.75)

Furthermore, taking care to rescale µ→ µ̃/ε, Eq. (2.66) can be rewritten as follows

〈(α− α0)2x2〉 =

(
α0 +

µ̃

2ε

)
α0ε〈x2〉1 (2.76)

Finally, we combine (2.74b), (2.75) and (2.76) to obtain a closed-form expression for
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Figure 2.9: Steady-state entropy production as a function of the separation of timescale, ε — We fix
D = Dα = µ = 1 and α0 = 10, then vary ε which represents the difference in the timescales of the two
processes, introduced in Sec 2.6.2. We show good agreement between numerical simulations (symbols)
and analytic result (2.78) (solid lines). We also show the analytic results for the entropy production rate
as ε→ 0 (dotted lines) as given by (2.79).

〈x2〉1 valid up to order O(ε2),

〈x2〉1 =
DD̃α

α0µ̃

[
µ̃α0

2
+ ε

(
α2

0 −
D̃α

µ̃

)
+O(ε2)

]−1

. (2.77)

We conclude that the entropy production as given in Eq. (2.63) is therefore

lim
t→∞

Ṡi =
D̃α

α0µ̃

[
1 +

2ε

α0µ̃

(
α2

0 −
D̃α

µ̃

)
+O(ε2)

]−1

(2.78)

which we compare to the results of numerical simulations in Fig. 2.9. It follows that as
we saw for the cases of discrete stiffness, the entropy production remains finite in the
limit of fast stiffness dynamics, here ε→ 0. Namely, we obtain

lim
ε→0

lim
t→∞

Ṡi(t) =
D̃α

α0µ̃
, (2.79)

and conclude that it scales linearly with the variance of P tot(α).
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2.7 Conclusion and discussion

In this work, we have established a general framework for calculating the steady-state
entropy production rate of diffusive single-particle systems in time-dependent, confin-
ing potentials subject to Markovian stochastic fluctuations, including both discrete and
continuous “state spaces” for the fluctuating potential. Our exploration has been con-
ducted within the formalism of [113], reviewed in [64]. After introducing our results
for general Markovian processes, we obtain analytical results for a variety of important
cases. In particular, we focus on harmonic confining potentials subject to fluctuations
in the stiffness α.

As a first example, we study the diffusion of a particle in an intermittent harmonic
potential switching on and off with a symmetric rate k. In this case, we conclude that
the entropy production is independent of both the diffusivity D of the trapped passive
particle and the switching rate k. This remarkably simple result emerges naturally from
the quadratic form of the confining potential. Indeed, one expects the steady-state
positional probability density, which determines the steady-state probability current,
to generically depend on both of these parameters, as we show in the simple example
of a quartic potential.

We then expanded this preliminary result to a general two-state Ornstein-Uhlenbeck
process with Markovian switching. Using this model, we discussed the entropy pro-
duction in a realistic model of stochastic resetting, a problem which has previously
attracted the attention of several groups [105, 97, 50]. Within our framework, tradi-
tional stochastic resetting is associated with infinite entropy production on the basis of
a complete breakdown of time reversal symmetry [97]. We reconcile this observation
with the finite entropy production calculated in [105, 50] by recognizing that the mea-
sures of dissipation used in these latter works are not directly linked to time-reversal
symmetry. Thereupon, we further generalized our results on entropy production to
harmonic potentials with stiffnesses controlled by an N -state discrete Markov process.
As a direct application, we studied a simple example of a 3-state process highlighting
the emergence of a non-trivial contribution to the entropy production due to currents
in the stiffness space.

Finally, we explored a model where the potential stiffness itself evolves in time accord-
ing to an Ornstein-Uhlenbeck process with diffusivity Dα and coupling µ, modeling,
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for instance, the diffusion of a particle confined in an optical trap whose strength is
fluctuating continuously in time due to e.g. fluctuations in laser intensity. Strikingly,
we give explicit analytical results for the entropy production in the regime where the
stiffness fluctuations are fast compared to the positional dynamics of the particle.

Interestingly, we observed in some cases that the entropy production remains finite
upon taking limits for which the dynamics of the trapped Brownian particle are indis-
tinguishable from those of an equilibrium model, reminiscent of the diffusive limit for
Run-and-Tumble particles with diverging tumbling rate [64, 109]. This phenomenon,
which is sometimes referred to as an entropic anomaly [59, 32], is a common occur-
rence for systems with interacting fast and slow degrees of freedom, which points to
the non-trivial correspondence between dynamic and thermodynamic features of non-
equilibrium stochastic processes.

Altogether, this work forms a comprehensive study of the entropy production for single-
particle systems with fluctuating potentials, which provides the foundations of a non-
equilibrium thermodynamic theory of fluctuating potentials. While we have derived
exact results for the case where the potential is of quadratic form, the framework devel-
oped here can be extended to more complex confining potentials and will generally result
in a hierarchy of equations for the moments of the probability distribution. One is left
to find an approximate closure to this hierarchy to conclude on the entropy production
rate. Nevertheless, many trapping potentials are well-approximated by parabolic poten-
tials, thus we believe that our results will prove very useful for calculating the entropy
production due to potential fluctuations in practice. Further, we focus here on diffusive
motion in confining fluctuating potentials but our framework itself can be generalized to
a more general class of models like random acceleration processes [118, 49, 190, 265] or
active particles including run-and-tumble particles [29, 28, 110, 269], active Brownian
particles [269, 239, 23] and active Ornstein-Uhlenbeck particles [38, 55, 194, 259], which
will be the subject of future work. Finally, we believe that our results provide a natural
framework to study the stochastic thermodynamics of colloidal systems in optical traps
[125, 86, 52].
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2.A Steady-state densities for Brownian motion in an intermittent
harmonic potential

In Section 2.3, we calculate the entropy production for a particle diffusing in an inter-
mittent harmonic potential. Exact results are known for the stationary distributions
for the specific process. Therefore, our analytical result for the entropy production can
be directly compared to that obtained by directly integrating Eqs. (2.13) and (2.14).
For completeness, we rederive here shortly the steady-state distributions following the
derivations found in [313, 244].

To do so, we start from the Fokker-Planck equations (2.25) at steady-state which read

0 = D∂2
xPoff(x) + kPon(x)− kPoff(x) (2.80a)

0 = D∂2
xPon(x) + α0∂x

[
xPon(x)

]
+ kPoff(x)− kPon(x) (2.80b)

where we have dropped the time dependence in Pon(x) and Poff(x) to denote their
stationary nature. To solve these coupled equations, it is easier to work in Fourier
space. Using the following convention for Fourier transforms,

P̂i(ν, t) =

∫ +∞

−∞
Pi(x, t)e

−iνxdx , (2.81)

these equations read in Fourier-transformed space

0 = −Dν2P̂off(ν) + kP̂on(ν)− kP̂off(ν) (2.82a)

0 = −Dν2P̂on(ν)− α0ν∂νP̂on(ν) + kP̂off(ν)− kP̂on(ν) (2.82b)

Using Eq. (2.82a), we can express P̂off(ν) in terms of P̂on(ν) which allows us to write
the following single differential equation for P̂on(ν)

α0∂νP̂on(ν) +Dν

[
1 +

k

Dν2 + k

]
P̂on(ν) = 0 . (2.83)

The solution to Eq. (2.83) can easily be shown to read

P̂on(ν) =

[
k

2(k +Dν2)

] k
2α0

exp

[
−Dν

2

2α0

]
(2.84)
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where we have used the fact that P̂ (0) = P̂on(0)+ P̂off(0) by conservation of probability.
Finally, using Eq. 2.82a, we obtain the full steady-state distribution in ν-space as

P̂ (ν) =
1

2

[
e−Dν

2/2α0

(1 +Dν2/k)k/2α0
+

e−Dν
2/2α0

(1 +Dν2/k)1+k/2α0

]
(2.85)

While it is not possible to obtain a closed-form expression for the total steady-state
distribution in real space for general values of α0, D and k, one can invert this relation
and write P (x) as the following sum of convolution integrals

P (x) =
1

2

{∫ +∞

−∞
dy f2

(
y,

k

2α0

)
f1(x− y) +

∫ +∞

−∞
dy f2

(
y, 1 +

k

2α0

)
f1(x− y)

}
(2.86)

where

f1(x) = F−1
[
e−Dν

2/2µ0

]
=

1√
2πD/α0

e−α0x2/2D (2.87a)

f2(x, β) = F−1
[
(1 +Dν2/k)β

]
=

√
π

Γ(β)

(
k

D

|x|
2

)β−1/2

K 1
2
−β

(√
k

D
|x|
)

(2.87b)

with Kn(x) the modified Bessel function of the second kind.

The form of the steady-state distribution for the particle position emerges from a com-
petition between two timescales: (i) k−1 the timescale set by the switching rate of the
intermittent confining potential and (ii) α−1

0 which sets the particle position correlation
time, or equivalently, the timescale at which the particle position converges back to the
center of the confining potential. As shown in Ref. [244], it is possible to obtain exact
expressions for the steady-state distribution in some asymptotic regimes. In particular,
in the limit where the switching rate is very small compared to the confining potential
strength, k � α0, the steady-state distribution is given by

P (x) =
k�α0

1

2

[
e−α0x2/2D

√
2πDα0

+

√
k/Dek/2α0

4
e−
√
k/D|x| Erfc

(√
k/D

2α0

−
√
α0

2D
|x|
)]

(2.88)

leading to a central Gaussian region followed by exponential tails. Conversely, in the
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limit of a very fast switching rate k � α0, the steady-state distribution is given by

P (x) =
k�α0

e−α0x2/4D√
4πD/α0

(2.89)

which is the same as that of an equilibrium Ornstein-Uhlenbeck process with a reduced
potential strength α0/2.

2.B Numerical analysis

As shown in Eq. (2.14), the entropy flow can easily be calculated if given the knowledge
of the stationary distribution for the process. However, analytic forms for these station-
ary distributions are generically difficult to obtain. In order to confirm our analytical
results, we can nonetheless resort to computing the entropy production numerically. To
do so, we measure the stationary distribution (or histogram of the particle positions) for
each of our models directly from simulated single particle trajectories over long times.

In all systems, the single particle trajectories are obtained by solving the associated
Langevin equation using a second-order stochastic Runge-Kutta method with a fixed
time step, dt = 10−5, for t ∈ [0, 104] [131, 145, 138, 45]. For any given data set for
which we have used a fixed timestep, we made sure to take a timestep small enough
to resolve the smallest timescale in the process (usually the switching dynamics), i.e.
dt � 1/kmax where kmax is the largest switching rate considered in the process. When
considering a discrete Markov process for the fluctuating potential, α(t) is updated by
evaluating the transition probabilities based on the switching rates and timestep. For
the continuous Markov process, the stiffness itself follows a Langevin equation, which
we solve using a stochastic Runge-Kutta method as above [131, 145, 138, 45].

2.C Entropy production for intermittent quartic potential

We consider a simple modification of the preliminary example introduced in Section
2.3 in which we replace the intermittent quadratic potential by an intermittent quartic
potential, V (x;α(t)) = α(t)x4/4. The equation for the steady-state entropy production
can be derived using the same procedure. The corresponding equation to (2.29) is in
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this case

lim
t→∞

Ṡi(t) = lim
t→∞

α0

∫
dx

x4

4
∂2
xPoff(x, t) = lim

t→∞
3α0

∫
dx x2Poff(x, t) = 3α0Ξoff . (2.90)

where Poff(x) is the steady-state joint probability density of finding an agent at position
x in the off state. It thus follows that the steady-state entropy production is independent
of k and D if and only if Ξoff is.

To show that this is not the case, suppose that Ξoff is independent of k. At steady-state,
we know that

0 = D∂2
xPoff(x) + kPon(x)− kPoff(x). (2.91)

Multiplying (2.91) by x2 and integrating over the spatial variable x, we find

Ξon = Ξoff −
2D

k
. (2.92)

If we fix D and α0, then, by our earlier assumption, Ξoff is a constant. However, this
equation tells us that there exists a range for the switching rate k, namely k < 2D/Ξoff ,
for which the variance of the steady-state probability of the on state is negative. This is
a contradiction. We can use the same argument to show that Ξoff can not be independent
of D.

Finally, we conclude that, in the case of an intermittent quartic potential, the entropy
production must depend on both k and D and the independence of Eq. (2.29) vis-à-vis
these two parameters is solely due to the quadratic nature of the confining potential.
We argue that there is thus no reason for the entropy production to be independent of
k and D with a more general confining potential.
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Overview Up to this point, the toolkit of entropy production has been applied mostly
to models that, while being illustrative, were also sufficiently simple to be solved exactly.
Unfortunately, models involving an increasing number of degrees of freedom quickly be-
come analytically intractable, a difficulty that has stimulated the development of both
numerical [82] and approximate approaches [202, 53]. Furthermore, a ‘fully resolved’
thermodynamic characterisation taking into account the microscopic features of dissi-
pation might be of little interest when the relevant features of the model at hand emerge
from the collective behaviour of many interacting components at a different, mesoscopic
spatio-temporal scale (such as in non-equilibrium phase transitions). A natural way of
addressing these difficulties is to resort to effective theories, which can be obtained
from the original model of interest by one of the available coarse-graining procedures
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[33] and are designed to capture the key properties of the former at a particular scale,
while ignoring ‘irrelevant’ microscopic details. What remains ill-understood, however,
is how such coarse-graining procedures affect our ability to infer energy dissipation
and to quantify the degree of time-reversal symmetry breaking. In this Chapter, we
investigate the scaling of the entropy production as a function of the coarse-graining
scale for a Brownian particle placed in a disordered non-equilibrium environment. We
thus demonstrate that the corresponding scaling exponent can differ depending on the
specific properties of the environment, allowing for a natural distinction between mod-
els that look increasingly ‘equilibrium-like’ and others that remain genuinely out of
equilibrium at all scales.

Author contributions: LC designed the project, developed the methods, performed the
analysis and wrote original version of the manuscript. LC and GP wrote the code and
performed the numerical experiments. GP and GS supervised the project throughout
and suggested improvements to the original manuscript.

Abstract

Entropy production plays a fundamental role in the study of non-equilibrium systems
by offering a quantitative handle on the degree of time-reversal symmetry breaking.
It depends crucially on the degree of freedom considered as well as on the scale of
description. How the entropy production at one resolution of the degrees of freedom is
related to the entropy production at another resolution is a fundamental question which
has recently attracted interest. This relationship is of particular relevance to coarse
grained and continuum descriptions of a given phenomenon. In this work, we derive
the scaling of the entropy production under iterative coarse graining on the basis of the
correlations of the underlying microscopic transition rates for non-interacting particles
in active disordered media. Our approach unveils a natural criterion to distinguish
equilibrium-like and genuinely non-equilibrium macroscopic phenomena based on the
sign of the scaling exponent of the entropy production per mesostate.
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3.1 Introduction.

Under the umbrella term of “active matter", the study of systems driven by injection
and dissipation of energy at the single-agent level has played a prominent role in the
development of non-equilibrium physics and expanded its interface with biology. One of
the key challenges that arise when developing models of biological matter is to quantify
their degree of “non-equilibriumness", i.e. the extent to which their phenomenology dif-
fers from that of a collection of passive particles driven by a bath. The rate of entropy
production [256, 64] allows for such differentiation by capturing time-reversal symmetry
breaking at the microscopic scale [113]. While the injection of energy ensures a strong
departure from equilibrium at the single-agent level, these systems do not necessarily ex-
hibit nonequilibrium features at larger spatio-temporal scales [202, 263, 88, 58, 82]. The
question of whether equilibrium is effectively restored at this mesoscopic level requires
new methods to quantify how entropy production varies under spatial coarse-graining
[91, 8, 120, 178, 53, 59, 308]. We offer a novel perspective on this issue by studying a
single-particle driven-diffusion process obtained by perturbing homogeneous diffusion
with a non-conservative quenched random forcing. A similar model was recently studied
as an effective description for the collective motion of active matter in a random poten-
tial [235] and can be seen as a minimal description of a molecular motor self-propelling
on a disordered network of cytoskeletal filaments [152]. These models are particular
examples of active disordered media [210, 221, 62, 226], which we discuss for the first
time from a thermodynamic perspective. On a more abstract level, our model may
be seen as a many-particle system randomly exploring a complex phase space. From
this perspective, our work determines the scaling behaviour of entropy production in a
wider class of systems, including biochemical reaction networks [308].

We first analyse our model on a one-dimensional ring, where it is exactly solvable
[76], and we identify a trivial scaling behaviour of the mesoscopic entropy production
under block coarse-graining. We then move to higher dimensional lattices, where we
show how the mesoscopic entropy production decays algebraically with block size under
block coarse-graining. In order to characterise the non-trivial scaling exponents, we
draw on a novel field theoretic formalism based on the Martin-Siggia-Rose construction
[318, 133] and demonstrate that the scaling of the entropy production can be related
to the small wavenumber behaviour of the probability current’s spectral density by
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arguments reminiscent of those employed in the treatment of hyperuniform fluctuations
[285]. Our main result, Eq. (3.18), provides a natural criterion to distinguish between
equilibrium-like and genuinely non-equilibrium macroscopic phenomena based on the
sign of the scaling exponent for the entropy production per mesostate.

3.2 Entropy production and coarse graining.

The starting point of our analysis is a Markovian jump process satisfying the master
equation

Ṗn(t) =
∑
m

(Pm(t)wm,n − Pn(t)wn,m) (3.1)

for the probability Pn(t), with wn,m the non-negative transition rate from state n to
state m 6= n. The average rate of internal entropy production at steady-state is defined
as [64]

Ṡi =
1

2

∑
n,m

Jn,m ln
πnwn,m
πmwm,n

(3.2)

where πn = limt→∞ Pn(t) is the steady-state probability mass function and Jn,m =

πnwn,m − πmwm,n is the net probability current from state n to state m. The entropy
production Ṡi is non-negative and vanishes for systems that satisfy detailed balance.
Computing Ṡi from Eq. (3.2) requires complete knowledge of the set of microscopic prob-
ability currents jnm = πnwn,m, which renders this observable sensitive to time-reversal
symmetry breaking induced by energy injection at the microscopic scale. However, this
‘fully resolved’ entropy production might be of little interest in the discussion of effec-
tive descriptions at the mesoscopic scale. In recent years, various works have addressed
the issue of coarse-graining, which amounts to a partial loss of information about the
microscopic currents jnm [91, 8, 82, 228, 119, 208, 53]. The perennial difficulty is that
the resulting mesoscopic description is in general non-Markovian [275, 33, 280]. Espos-
ito [91] has identified a decomposition of the full entropy production under phase-space
partitioning into three non-negative contributions. Assuming a separation of timescales
between intra-mesostate and inter-mesostate transitions, it was also shown that the
mathematical form of the entropy production, Eq. (3.2), is recovered at the mesoscopic
level.

Previous work has focused on a single coarse-graining step, partly due to constraints
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of Markovianity. However, if the state space is sufficiently large, it is natural to ask
whether such coarse-graining procedure could be performed iteratively, in a spirit similar
to Kadanoff’s “block spin” renormalisation [151]. Characterising the scale dependence
of suitable observables such as the entropy production per mesostate

ṡ
(meso)
i = Ṡ

(meso)
i /N (meso) , (3.3)

with N (meso) the number of mesostates at a given coarse-graining level, will then convey
important information regarding the degree of activity at different scales. To carry out
this programme we first denote the steady-state probability current from mesostate α
to mesostate β by

jαβ(L) =
∑
n∈α

∑
m∈β

πnwn,m (3.4)

with L the characteristic coarse-graining length scale, such that jαβ(1) = πnwnm for
α = {n} and β = {m}. We then sidestep the issue of Markovianity by postulating an
effective mesoscopic entropy production of the form

Ṡ
(meso)
i (L) =

1

2

∑
α,β

(jαβ(L)− jβα(L)) ln
jαβ(L)

jβα(L)
, (3.5)

as would be measured by any observer faithfully applying Eq. (3.2) to a process observed
at a given resolution L. The observable Ṡ(meso)

i (L) should be thought of as the entropy
production of a different (Markovian) process constrained to displaying the coarse-
grained currents of the original process. A similar approach has been recently discussed
to characterise the scaling of energy dissipation in non-equilibrium reaction networks
[308].

3.3 The model.

We will now introduce a minimal driven-diffusion model [247] on a regular lattice,
such that the corresponding non-equilibrium steady-state is amenable to iterative block
coarse-graining. Diffusion in a stable potential is the prototypical equilibrium phe-
nomenon but there are many ways to modify the familiar diffusive dynamics into a
non-equilibrium process, for example by allowing for an unstable potential [295]. An
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alternative modification, which guarantees a steady-state, is to impose periodic bound-
ary conditions in such a way that a global potential function cannot be defined. To see
how this is done, we recall [248] that for a Markov jump process, Eq. (3.1), to have an
equilibrium steady state, the affinity

A({w};n1, . . . , nM) = ln
wn1,n2wn2,n3 ... wnM ,n1

wn1,nM ... wn3,n2wn2,n1

. (3.6)

of every cycle {n1, n2, ..., nM , n1} has to be exactly zero. Henceforth, we will use the
convention that ln(0/0) = 0 as some of the wn,m may vanish. Whenever A 6= 0 for
any cycle, the system is intrinsically out of equilibrium and we should expect steady-
state probability currents [295]. A straightforward way of inducing non-equilibrium
behaviour is therefore to allow for quenched disorder in the transition rates, which can
be interpreted as a non-conservative random forcing [35, 44]. The resulting disordered
steady-state is then non-equilibrium with exceedingly high probability. In the following
we therefore consider a homogeneous diffusion process on a periodic lattice in d dimen-
sions and allow for a quenched perturbation to the nearest-neighbour hopping rates
such that

wn,m = h+ ζn,m , (3.7)

with ζn,m > −h a set of zero-mean random variables, Fig. 3.1. Henceforth, 〈·〉 will
denote averages over this random variable.

3.4 Ring topology (d = 1).

The one-dimensional version of this model has previously been considered in the context
of random walks in random environments [44, 35]. Starting from an exact result by
Derrida [76] for the net current, J = Jn,n+1, the entropy production, Eq. (3.2), can be
calculated as Ṡi = JA({w}; {1, 2, . . . , N}), on the basis of constant J = πnwn,n+1 −
πn+1wn+1,n and the affinity A, Eq. (3.6), taken for the cycle passing through all sites
of the ring once [249], Appendix 3.A. After substituting Eq. (3.7) into Eqs. (3.6) we
eventually obtain

Ṡi =
1

hN2

(
N∑
n=1

(ζn,n+1 − ζn+1,n)

)2

+O(ζ3) , (3.8)
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Figure 3.1: Coarse-graining procedure for a diffusion process on a periodic square lattice perturbed by a
spatially quenched, non-conservative disorder. In one dimension (top), the transition rates locally define a
random walk with increments νn = ζn,n+1 − ζn+1,n and the affinity A({w}; {1, .., N}) of the closed cycle
across all sites is to leading order proportional to the displacement of the random walk after N steps,
Appendix 3.A. In higher dimensions (bottom), the random potential picture breaks down locally and the
coarse-graining becomes non-trivial due to the current no longer being uniform.
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where O(ζk) stands for any term proportional to ζi1±1,i1 ...ζik±1,ik with any indices
i1, ..., ik. As can be seen by setting ζi,j = 0 for all i, j, the entropy production van-
ishes at zeroth order in the perturbation, as expected. Appendix 3.A explores the weak
disorder limit of Eq. (3.8) in more detail.

We now apply the coarse-graining procedure based on Eqs. (3.4) and (3.5). In one
dimension, the interface between distinct mesostates consists of a single edge (Fig. 3.1)
and the net current jαβ(L) − jβα(L) = J is independent of the block size L. The
mesoscopic entropy production Ṡ(meso)

i , Eq. (3.5), is thus given by a sum over a subset
of the contributions to the microscopic entropy production Ṡi, Eq. (3.2). By invoking
translational invariance and linearity of expectation, the total entropy production rate
in a system with originally N states coarse-grained into mesostate blocks of size L is

〈
Ṡ
(meso)
i

〉
(L) =

〈
J

N/L∑
k=1

ln
πkLwkL,kL+1

πkL+1wkL+1,kL

〉
(3.9)

=
N

L

〈
J ln

πnwn,n+1

πn+1wn+1,n

〉
, (3.10)

with arbitrary state index n. For uncorrelated noise in the weak disorder limit and
using πn/πm = rn/rm [76],

〈
Ṡ
(meso)
i

〉
= 2λ/(NhL) + O(λ2), where λ denotes the vari-

ance of ζn,m. Irrespective of the noise strength, the dependence of the total entropy
production on the block size L is solely due to the absence of terms from currents
within a microstate block. In one dimension, the entropy production per mesostate〈
ṡ
(meso)
i

〉
= (L/N)

〈
Ṡ
(meso)
i

〉
, Eq. (3.3), is thus independent of L. No current averag-

ing at interfaces between blocks takes place. The situation is qualitatively different in
d > 1, as we will demonstrate now.

3.5 Periodic lattices with d > 1.

In higher dimensions, the equilibrium condition A({w}; {n1, ..., nM}) = 0 is generally
broken at the local rather than global scale. No analytical expression for the steady-
state currents is available and we resort to a perturbation theory in weak disorder,
based on a Martin-Siggia-Rose field theory [318, 133], which allows us to extract various
static correlation functions in arbitrary dimensions and for a wide class of disorders,
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see Appendix 3.B. There, we introduce the net microscopic probability current J(x) =

(J (1)(x), ..., J (d)(x)) as the continuum limit of Jn,m on a hypercubic lattice, together
with its Fourier transform J (k) = (J (1)(k), ...,J (d)(k)). We follow the convention

J (a)(x) =
1

V

∑
k

J (a)(k)eik·x (3.11)

with k = 2πn/(N`) (n ∈ Zd), assuming a hypercubic system, and V = (N`)d the
phase space volume, with ` the dimensionful lattice spacing. We assume a disorder
characterised by the covariance in Fourier space

〈ζ(a)(k)ζ(b)(k′)〉 = λ̃|k|−ηδabV δk+k′,0 (3.12)

for |k| → 0, corresponding, for η 6= 0, to 〈ζ(a)(r)ζ(b)(r′)〉 ∼ δab|r−r′|−d+η at |r−r′| →
∞, where ζ(a) indicates the disorder affecting edges parallel to the a-th dimension of
the lattice (see Appendix 3.B for details of the specification of backward rates). The
spectral density tensor of the probability current evaluated at tree level then reads
(Appendix 3.B), for k 6= 0,

〈J (a)(k)J (b)(k′)〉 =
4λ̃

V

(
δab −

kakb
|k|2

)
|k|−ηδk+k′,0 . (3.13)

Eq. (3.13) matches the general form of the spectral density of a divergence-free, isotropic
vector field, which is well known from the theory of turbulence of incompressible fluids
[102, 198]. For η < 0, the vanishing of the spectral density as k → 0 indicates that
the probability current is hyperuniform [285], i.e. exhibits an anomalous suppression of
fluctuations at large wavelengths. The case η = 0 corresponds to uncorrelated (white)
noise, 〈ζ(a)(r)ζ(b)(r′)〉 = λ̃δabδ(r − r′).
We can now carry out the coarse-graining procedure for the entropy production.

First, we note that the mesoscopic entropy production, Eq. (3.5), is given by a sum over
contributions from neighbouring mesostates, α 6= β in (3.5). By linearity of expectation,
the disorder average

〈
Ṡ
(meso)
i

〉
is therefore the expected contribution from a single

interface multiplied by the number of interfaces. It follows that, for a hypercubic lattice
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Figure 3.2: The dependence of the scaling exponent for the entropy production per mesostate, ṡ(meso)
i ,

on η in the range −1 ≤ η ≤ d, shown here for d = 2 and N = 20482, is well captured by Eq. (3.18),
shown in black dashed. For uncorrelated disorder, η = 0, the algebraic scaling of ṡ(meso)

i with block size L
displays a logarithmic correction, shown in the inset for d = 2, 3, also in agreement with Eq. (3.18). Ex-
act logarithmic scaling is shown in solid black for reference. The ordinate is here normalised to its value
for the smallest block size considered.

with coordination number 2d,〈
ṡ
(meso)
i

〉
= d

〈
(jαβ(L)− jβα(L)) ln

jαβ(L)

jβα(L)

〉
(3.14)

where {α, β} is any pair of neighbouring mesostates. Asymptotically in large L, Eq. (3.14)
can be approximated by 〈

ṡ
(meso)
i

〉
' dNd

hLd−1
σ2
J(L) (3.15)

where
σ2
J(L) = 〈(jαβ(L)− jβα(L))2〉 (3.16)

denotes the variance of the probability current integrated across an interface of linear
dimension L. This relation is derived in Appendix 3.C. In the continuum limit, the
asymptotic scaling of the entropy production per mesostate is therefore controlled by
the asymptotic variance of the current integrated across the interface between states,
which is in turn determined by the small wavenumber behaviour of the current spectral
density tensor introduced in Eq. (3.13). In fact, the relationship between Eqs. (3.13) and
(3.16) is exactly the type of problem addressed in the study of hyperuniform systems
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[285]. Using results from these studies, one obtains

σ2
J(L) ∼


Ld−2, for η < 0

Ld−2 ln(L), for η = 0

Ld−2+η, for 0 < η < d

. (3.17)

A more thorough derivation of these scaling laws is provided in Appendix 3.D. We can
think of σ2

J(L) ∼ Ld−2 as scaling with the perimeter of the interface. In this sense, it is
instructive to draw a comparison with the case of a non-solenoidal random vector field
with spectral density 〈J (a)(k)J (b)(k′)〉 = (λ̃/V )δabδk+k′,0, in which case the variance
of the integrated current instead scales with the area of the interface, σ2

J(L) ∼ Ld−1.
The requirement that the steady-state is divergence-free thus plays an important role
by imposing long-range correlations in the currents, even when these are not present in
the substrate, i.e. for η = 0. Combining Eqs. (3.15) and (3.17) we eventually arrive at
(Appendix 3.D)

〈
ṡ

(meso)
i

〉
(L) ∝ σ2

J(L)

Ld−1
∼


L−1, for η < 0

L−1 ln(L), for η = 0

L−1+η, for 0 < η < d

, (3.18)

which constitutes our key result. The scaling exponent changes sign at η = 1, corre-
sponding to 〈ζ(a)(r)ζ(b)(r′)〉 ∼ δab|r − r′|−(d−1), suggesting a quantitative distinction
between steady-states that are increasingly “equilibrium-like” at larger scales and gen-
uinely non-equilibrium states where dissipation occurs at all scales. Numerical simula-
tions for η = 0 in d = 2, 3, as well as the full range −1 < η < d in d = 2 show excellent
agreement with our analytical prediction (see Figure 3.2). Investigating entropy pro-
duction numerically indicates that this scaling behaviour of the entropy production is
unchanged in the strong disorder regime (Figure 3.3).

3.6 Concluding remarks and outlook.

Based on the effective entropy production introduced in Eq. (3.5), we have studied the
mesoscopic scaling of the entropy production per mesostate under iterative block coarse
graining for a family of non-equilibrium disordered steady-states with generic substrate
correlations. We demonstrate that coarse-graining of degrees of freedom results in non-
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Figure 3.3: Mesoscopic entropy production as a function of block size and predicted scaling according
to Eq. (3.18) (case d = 2, η = 0) for various noise strengths. The predicted scaling appears to hold
numerically beyond the weak disorder approximation. The noise ζn,m is taken from a uniform distribution
with support ζ ∈ {[−1,−(1− ε)) ∪ (1− ε, 1]} and h = 1 to ensure positivity of the transition rates.

trivial scaling of the entropy production, Eqs. (3.18), so that its value on one scale
is related to its value on another scale in a non-trivial fashion that ultimately draws
on the correlations of the transition rates, Eq. (3.12). To characterise our model we
have developed a static field-theoretic framework, which complements recent work [12]
by considering problems involving multiplicative noise. Our main result, Eq. (3.18),
offers conditions for which active disordered media appear equilibrium-like, η ≤ 1, or
genuinely non-equilibrium, η > 1, at the large scale and in a statistical sense, i.e. when
the behaviour is averaged over many realisations.

3.7 Experiments.

A natural application of the theory above of active disordered media are active particles
[23] on irregular surfaces, which phenomenologically behave as randomly driven passive
particles [235]. This is due to ratchet effects, i.e. local asymmetries in the potential
driving a net current [229]. In this case, correlations in the medium can be induced by
controlling the ruggedness of the substrate [309]. Further, in vitro experiments involving
active transport by molecular motors in a network of cytoskeletal filaments [242, 20]
often involve cell extracts where these filaments are uniformly disordered (η = 0). Non-
trivial, long-range correlations in this type of systems could be induced e.g. by coupling

136



tagged filaments to an external magnetic field, as done in [60] with actin.

3.A Weak disorder expansion of Derrida’s exact result for d = 1

Using an exact result by Derrida [76] the net current J = Jn,n+1 is homogeneous,

J =
1∑N
n=1 rn

[
1−

N∏
m=1

(
wm+1,m

wm,m+1

)]
(3.19)

for a lattice with N sites, where

rn =
1

wn,n+1

[
1 +

N−1∑
`=1

∏̀
j=1

wn+j,n+j−1

wn+j,n+j+1

]
. (3.20)

The entropy production, Eq. (3.2), can be calculated as Ṡi = JA({w}; {1, 2, . . . , N}),
on the basis of constant J = πnwn,n+1− πn+1wn+1,n and the affinity A, Eq. (3.6), taken
for the cycle passing through all sites of the ring once [248]. Eq. (3.7) can be substituted
into Eqs. (3.6) and (3.19) to obtain

J =
hA

N2
+O(ζ2) =

1

N2

N∑
n=1

(ζn,n+1 − ζn+1,n) +O(ζ2) . (3.21)

Correspondingly, using Ṡi = JA,

Ṡi =
1

hN2

(
N∑
n=1

(ζn,n+1 − ζn+1,n)

)2

+O(ζ3) , (3.22)

where O(ζk) stands for any term proportional to ζi1±1,i1 ...ζik±1,ik with any indices
i1, ..., ik. This is the expression we refer to in the main text, Eq. (3.8). In this
regime, the current is dominated by the average of the approximate potential gradi-
ents, (ζn,n+1 − ζn+1,n)/h. The physical picture provided by Eq. (3.21) shows that the
weak disorder expansion, |ζn,m| � h, is equivalent to a linear response theory, J ∝ A,
with the cycle affinity playing the role of the thermodynamic force [74]. The behaviour
away from the weak disorder limit is more subtle. In particular, the current J and
therefore Ṡi are no longer a function only of the affinity but depend on the whole ran-
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dom potential profile. This is due to the presence of traps, i.e. local minima of the
random potential, at which probability tends to concentrate [67].

So far, we have not made any assumption about the autocorrelation of the noise ζ.
However, by relating Eq. (3.22) to the square of the distance travelled by a random
walker with zero-mean increments νn = ζn,n+1 − ζn+1,n, Fig. 3.1, we conclude that the
system-size scaling of the disorder expectation 〈Ṡi〉 in the large N limit is controlled by
the Hurst exponent H ∈ (0, 1) [191] of the random walk. In particular,

〈Ṡi〉 ∼ N δ = N2H−2 , (3.23)

where H = 1/2 corresponds to uncorrelated (or short-range correlated) disorder. By
the central limit theorem for sufficiently uncorrelated νn, and more generally when∑N

n=1 νn is a Gaussian random variable, the affinity is also Gaussian. As Ṡi, Eq. (3.22),
is essentially the square of the affinity, its distribution is of the chi-squared type. These
results are indeed confirmed by simulations, Fig. 3.4.

3.B A Static Path Integral Approach to Diffusion with Quenched Noise

In the following we develop the field theoretic formalism used to study the correlation
function of the steady-state probability currents for the model of diffusion on a lattice
with spatially quenched, non-conservative noise in the hopping rates. This formalism
is based on the well-known response-field construction by Martin-Siggia-Rose (MSR)
and Janssen-De Dominicis [318, 133] but extends it in two ways: first, our approach
deals with multiplicative noise in a static framework, complementing recent work by
Antonov and co-workers [12], which focused on the case of additive noise . Second, we
show how the MSR ‘trick’ of imposing physically relevant relations between the noise
field and physical observables by means of suitable resolutions of identity can be ex-
ploited to directly probe observables that depend explicitly on the noise (in this case,
the probability current). The formalism is first developed in one dimension, d = 1, for
the case of white noise and it is subsequently generalised to higher integer dimensions
and correlated noise. It turns out that we ultimately do not need the full field theory
nor the renormalisation group, because the upper critical dimension dc = 2 coincides

138



Figure 3.4: In one dimension and for weak disorder, the scaling of the entropy production with system
size is controlled by the Hurst exponent according to Eq. (3.23). Top: the exponent δ obtained by fitting
numerical estimates of 〈Ṡi〉 against N δ for different Hurst exponents H ∈ (0, 1), shown with error bar
in blue, is in perfect agreement with the analytical prediction, δ = 2H − 2, Eq. (3.23), shown as a black
dashed line. Bottom: the distribution of the entropy production Ṡi as a random variable is well described
by the chi-squared distribution, shown as a black dashed line, as predicted by the theory.
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with the lowest dimension we draw on the field theory. Nevertheless, the framework
provides us with a firm basis to reliably determine the upper critical dimension and will
form the well-tested foundation for the analysis of more advanced problems.

The analytical expressions derived in the following are in agreement with numerical
results, as shown in Fig. 3.4 for the one-dimensional problem and in Figs. 3.2 and 3.5
for its generalisation to higher dimensional lattices. In one dimension, the steady state
probability mass function πn for a given noise realisation {ζm,m±1} is solved exactly by
means of Kirchhoff’s theorem [248] and the homogeneous current is obtained straight-
forwardly as J = πnwn,n+1 − πn+1wn+1,n for an arbitrary n. The entropy production
is then calculated as Ṡi = JA on the basis of Eq. (3.6). In higher dimensions, a nu-
merical approximation to the steady state probability is instead obtained by evolving
a homogeneous initial condition, Pn(t = 0) = N−d, according to the master equation,
Eq. (3.1).

3.B.1 One dimensional case, uncorrelated noise.

We consider a one-dimensional diffusion process on a ring of size N characterised by
a homogeneous hopping rate h and a quenched perturbation ζi,i±1 to the hopping rate
from site i to site i ± 1 satisfying ζi,i±1 + h > 0. We denote by φi the steady-state
probability mass function at site i, with i = 1, 2, · · · , N . By normalisation,

∑
i φi = 1.

In the following we apply periodic boundary conditions to all indices i, so that i = 0 is
equivalent to i = N and i = N + 1 is equivalent to i = 1. The steady-state probability
mass function is determined implicitly by the master equation

0 = ∂tφi = h(φi−1 + φi+1 − 2φi) + ζi−1,iφi−1 − ζi,i−1φi − ζi,i+1φi + ζi+1,iφi+1

= h(φi−1 + φi+1 − 2φi) + (δi−1φi−1 + δi+1φi+1 − 2δiφi) + (ζi−1φi−1 − ζi+1φi+1)

(3.24)

where for the second equality we have redefined the perturbation to the hopping rates
according to

ζi,i+1 = δi + ζi and ζi,i−1 = δi − ζi . (3.25)
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The right hand side of Eq. (3.24) can be written more suggestively in continuum notation
as a drift-diffusion equation,

0 = ∂tφ = ∂x[(h+ δ)∂xφ] + ∂x[(∂xδ − ζ)φ] , (3.26)

where the symmetric part of the quenched noise, denoted by δi, appears both as an
inhomogeneous perturbation of the diffusion constant h and, in the drift term, as a
random forcing. The antisymmetric part of the noise, ζi, on the other hand, only
affects the drift term. For simplicity, we will henceforth assume that the perturbation
to the transition rate matrix satisfies

ζi,i+1 = −ζi,i−1 = ζi i.e. δi = 0 . (3.27)

The lattice master equation (3.24) thus reduces to

0 = ∂tφi = h(φi−1 + φi+1 − 2φi) + ζi−1φi−1 − ζi+1φi+1 (3.28)

Numerical investigation indicates that this assumption does not modify the scaling
behaviour of the mesoscopic entropy production, Figure 3.5. For weak disorder, this
observation can be rationalised by arguing that the diffusive behaviour is dominated by
its homogeneous component, while the drift term is dominated at large spatial scales
by the term of lowest order in the spatial derivatives. Importantly, for i.i.d. rates, the
steady-state remains generically non-equilibrium, which can be verified by computing
the cycle affinity, Eq. (3.6), and exhibits non-zero steady-state currents. We further
define the probability current field

Ji,i+1 = (h+ ζi,i+1)φi − (h+ ζi+1,i)φi+1 = h(φi − φi+1) + ζiφi + ζi+1φi+1 . (3.29)

as the net current from site i to site i+ 1, such that

∂tφi = −(Ji,i+1 − Ji−1,i) , (3.30)

and introduce a symmetrised, local, average current

Ji =
1

2
(Ji,i+1 + Ji−1,i) =

1

2
[h(φi−1 − φi+1) + ζi−1φi−1 + ζi+1φi+1 + 2ζiφi] . (3.31)
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In one dimension at stationarity, Ji,i+1 = Ji−1,i = Ji and there is therefore no difference
between the local averaged currents and the more microscopic ones.

The non-negativity of the transition rates means that ζi + h ≥ 0. However, in order to
be able to cast Eqs. (3.28) and (3.29) into a path integral form, we will assume that ζi
is a weak Gaussian noise with variance λ and probability

P [ζi] ∝ exp

(
N∑
i=1

− ζ
2
i

2λ

)
. (3.32)

This assumption is justified a posteriori by comparing the analytical predictions in
the weak disorder limit with numerical simulations where the positivity of the transi-
tion rates is confirmed at initialisation. Introducing the short-hand notation for the
functional integral measure

Dζ =
∏
i

dζi , (3.33)

the expectation of a general noise-dependent observable O[ζ] can be written as the path
integral

〈O〉 =

∫
Dζ O[ζ]P [ζ] . (3.34)

To impose the steady-state Eq. (3.28) at every site, we define

fi(φi−1, φi, φi+1) = h(φi−1 + φi+1 − 2φi) + ζi−1φi−1 − ζi+1φi+1 (3.35)

and introduce the following resolution of identity written in terms of Dirac delta func-
tions fixing the functional relation between the probability mass function φi and the
noise ζi

1 =

∫
Df

n∏
i=1

δ(fi) (3.36)

=M[ζ]

∫
Dφ

N∏
i=1

δ
(
h(φi−1 + φi+1 − 2φi) + ζi−1φi−1 − ζi+1φi+1

)
(3.37)

=M[ζ]

∫
Dφ
∫
Dφ̃ exp

[
−

N∑
i=1

φ̃i

(
− h(φi−1 + φi+1 − 2φi)− ζi−1φi−1 + ζi+1φi+1

)]
(3.38)
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assuming (3.27)

assuming (3.27)

Fully random
Assuming (3.27)

fully random

fully random

Figure 3.5: The scaling behaviour of the mesoscopic entropy production Ṡi(L), Eq. (3.5), as a function
of block size L is not modified by imposing the antisymmetric condition (3.27) on the transition rates,
as shown for d = 2, 3 in the case of uncorrelated disorder, η = 0 (left panel). Moreover, while out an-
alytical approach relies on a weak disorder limit to allow for rate perturbation to be Gaussian without
running into unphysical negative rates, numerical experiments suggest that the scaling laws we obtain re-
main valid in the strong disorder regime (independent of whether (3.27) is imposed), which is explored by
considering a noise on the transition rates that is homogeneously distributed in the range |ζ| ∈ (1 − ε, 1]
for various choices of the variance ε (right panel for d = 2 and η = 0). Theoretical predictions for the
asymptotic scaling behaviour are plotted for reference (black curves in both panels).

with Df = df1...dfN , Df̃ = df̃1...df̃N/(2π)N andM[ζ] = |dfi/dφj| the Jacobian of the
transformation f → φ. To go from Eq. (3.37) to Eq. (3.38) we have used the Fourier
representation of the Dirac delta function,

δ(fi) =

∫
dφ̃i
2π

exp
[
−φ̃ifi

]
(3.39)

where φ̃i is a purely imaginary auxiliary field, sometimes referred to as the response
field. WhileM is independent of φ for a general master equation and can thus be taken
outside of the φ integral, the Jacobian retains a dependence on the random variables
ζ1, ..., ζN due to the multiplicative nature of the latter. While the sign of the auxiliary
field determining that of the exponent in Eq. (3.38) is arbitrary, our choice gives the
conventional sign for the response propagator [133]. The determinant M[ζ] can be
computed by means of Faddeev-Popov ghosts [318, 133], a standard procedure which
requires the introducing two new Grassmann fields , denoted ξi and ξ̄i, satisfying the
anti-commutation relations {ξi, ξj} = {ξ̄i, ξ̄j} = {ξ̄i, ξj} = 0. Using the Grassmann
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path integral representation of the determinant [133],

M[ζ] =

∫
D[ξ, ξ̄] exp

[∑
ij

ξ̄i

(
dfi
dφj

)
ξj

]
(3.40)

=

∫
D[ξ, ξ̄] exp

[∑
i

ξ̄i

(
h(ξi−1 + ξi+1 − 2ξi) + ζi−1ξi−1 − ζi+1ξi+1

)]
. (3.41)

This path integral has the same structure as that in Eq. (3.38) because differentiating
fi with respect to φj effectively returns the Markov matrix of the process, now acting
to the right on the Grassmann field ξj. The Jacobian (3.41) couples the Faddeev-Popov
ghosts ξi and ξ̄i to the noise field ζi, which is in turn coupled to the probability mass
function φi and its response φ̃i via Eq. (3.38). Integrating out the noise will thus result
in a coupling between the ghosts and the MSR fields, as we will demonstrate after
introducing the current field Ji and its response J̃i.
In principle, the current Ji is fully defined in Eq. (3.31). However, this definition ceases
to be useful once the noise field ζi has been integrated out, rendering Ji intractable. To
avoid this, we introduce a resolution of the identity similar to Eq. (3.38) to enforce the
definition Eq. (3.31) of the probability current Ji. It reads

1 =

∫
DJ

N∏
i=1

δ
(
Ji −

1

2
[h(φi−1 − φi+1) + ζi−1φi−1 + ζi+1φi+1 + 2ζiφi]

)
(3.42)

=

∫
DJ

∫
DJ̃ exp

[
−

N∑
i=1

J̃i

(
Ji −

1

2
[h(φi−1 − φi+1) + ζi−1φi−1 + ζi+1φi+1 + 2ζiφi]

)]
.

(3.43)

where the trivial JacobianM≡ 1 has been omitted.
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Inserting Eqs. (3.38), (3.41) and (3.43) into the Gaussian path integral (3.34) we obtain

〈O[φ, J ]〉 ∝
∫
Dφ
∫
Dφ̃
∫
DJ

∫
DJ̃

∫
Dξ
∫
Dξ̄
∫
Dζ

exp

[
−

N∑
i=1

φ̃i

(
− h(φi−1 + φi+1 − 2φi)− ζi−1φi−1 + ζi+1φi+1

)]

× exp

[
−

N∑
i=1

J̃i

(
Ji +

h

2
(φi+1 − φi−1)− 1

2
(ζi−1φi−1 + ζi+1φi+1 + 2ζiφi)

)]

× exp

[∑
i

ξ̄i

(
h(ξi−1 + ξi+1 − 2ξi) + ζi−1ξi−1 − ζi+1ξi+1

)]
exp

(
N∑
i=1

− ζ
2
i

2λ

)
O[φ, J ] .

(3.44)

Since the noise ζ enters the exponent only linearly or quadratically, the functional
integral over ζ is Gaussian and can be performed in closed form. In particular, isolating
all terms on the right-hand side of Eq. (3.44) that depend on ζ,

∫
Dζ exp

(
N∑
i=1

− ζ
2
i

2λ
+ φ̃i(ζi−1φi−1 − ζi+1φi+1) +

J̃i
2

(2ζiφi + ζi+1φi+1 + ζi−1φi−1)

+ ξ̄i(ζi−1ξi−1 − ζi+1ξi+1)
)

(3.45)

=

∫
Dζ exp

(
N∑
i=1

− ζ
2
i

2λ
+ ζi

[
(φ̃i+1 − φ̃i−1)φi +

1

2
(2J̃i + J̃i+1 + J̃i−1)φi + (ξ̄i+1 − ξ̄i−1)ξi

])
(3.46)

∝ exp

(
λ

2

N∑
i=1

[
(φ̃i+1 − φ̃i−1)φi +

1

2
(2J̃i + J̃i+1 + J̃i−1)φi + (ξ̄i+1 − ξ̄i−1)ξi

]2
)

.

(3.47)

In the first equality we have re-indexed the summand, applying periodic boundary con-
ditions, so that the noise field always appears with the same index and the completion
of squares producing the last line can be carried out straightforwardly. We can now
rewrite Eq. (3.44) as

〈O[φ, J ]〉 =

∫
D[φ, φ̃, J, J̃ , ξ, ξ̄] exp [−(A0 +Aint)]O[φ, J ] (3.48)
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where we have split the action into its bilinear part, denoted A0, and an interacting
part, denoted Aint, which includes all higher order terms in products of fields. Denoting
by

∂dφi =
1

2
(φi+1 − φi−1) (3.49)

and
∂2
dφi = φi+1 − 2φi + φi−1 (3.50)

the discrete first and second spatial derivatives, respectively, these contributions are
given explicitly by

A0 =
N∑
i=1

−hφ̃i∂2
dφi − hξ̄i∂2

dξi + J̃iJi + hJ̃i∂dφi (3.51)

and

Aint

= −2λ
N∑
i=1

[
(∂dφ̃i)

2φ2
i + J̃2

i φ
2
i + 2J̃i(∂dφ̃i)φ

2
i + 2J̃i(∂dξ̄i)φiξi + 2(∂dφ̃i)(∂dξ̄i)φiξi

]
+ h.o.t.

(3.52)

where h.o.t. denotes higher order terms in the spatial derivatives. In the following we
are interested in the large scale (small wavenumber) features of the density and cur-
rent correlation function, and we will thus ignore contributions from h.o.t. on relevance
grounds. To arrive at Eq. (3.52) we have used the anticommutation relation {ξi, ξj} = 0,
implying ξ2

i = 0, to eliminate the quartic term in the ghost fields.

Perturbative calculations by means of Feynman diagrams are more easily carried out in
Fourier representation. For this reason we introduce the discrete Fourier transform of
the fields {φ, φ̃, J, J̃ , ξ, ξ̄}, which we denote {Φ, Φ̃,J , J̃ ,Ξ, Ξ̄}, respectively, according
to the convention

φj =
1

N

N−1∑
n=0

e2πijn/NΦn and Nδn,m =
N−1∑
j=0

e2πij(n−m)/N , (3.53)
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whence

Φn =
N−1∑
j=0

e−2πijn/Nφj . (3.54)

We proceed by introducing Fourier-summed fields in the non-linear action. A typical
interaction term in the Fourier representation of the action reads

λ

N∑
i=1

(∂dφ̃i)
2φ2

i = − λ

N4

∑
k1,k2,k3,k4

sin(k1) sin(k2)Φ̃k1Φ̃k2Φk3Φk4Nδk1+k2+k3+k4,0 . . (3.55)

The field φi represents a probability mass function and it is therefore natural to study
fluctuations around the normalised homogeneous steady-state 〈φi〉 = N−1, so that
Φk=0 = 1. Instead of implementing Φk=0 = 1 through the action along the lines of
Eqs. (3.28) and (3.31), we perform a change of variable φi → N−1 + φi at the level of
Eqs. (3.51) and (3.52), which leaves the bilinear action A0 unchanged but generates a
number of new terms in Aint. For example,

γ(∂dφ̃i)
2φ2

i → γ(∂dφ̃i)
2φ2

i + γ′(∂dφ̃i)
2φi + γ′′(∂dφ̃i)

2 , (3.56)

with γ = λ, γ′ = 2N−1λ and γ′′ = N−2λ at bare level. The full shifted action reads,
again at bare level,

Aint = −2λ
N∑
i=1

[
(∂dφ̃i)

2(φi +N−1)2 + J̃2
i (φi +N−1)2 + 2J̃i(∂dφ̃i)(φi +N−1)2

i

+ 2J̃i(∂dξ̄i)(φi +N−1)ξi + 2(∂dφ̃i)(∂dξ̄i)(φi +N−1)ξi

]
+ h.o.t. (3.57)

The various coupling are more easily identifiable in the diagrammatic notation that we
shall introduce shortly.
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3.B.2 Propagators and diagrammatics

The bare propagators of the theory can then be extracted directly from the bilinear
action, Eq. (3.51). They read

〈ΦkΦ̃k′〉 =
1

4h sin2(k/2) + r
Nδk+k′,0 =̂ (3.58)

〈ΞkΞ̄k′〉 = −〈Ξ̄kΞk′〉 =
1

4h sin2(k/2) + r
Nδk+k′,0 =̂ (3.59)

〈JkJ̃k′〉 = Nδk+k′,0 =̂ (3.60)

〈JkΦ̃k′〉 =
h(−i sin(k))

4h sin2(k/2) + r
Nδk+k′,0 =̂ , (3.61)

where we have allowed for a mass r for the purpose of infrared regularisation, which
would enter the bilinear action A0 of Eq. (3.51) via terms of the form rφ̃iφi and rξ̄iξi.
All physical observables are evaluated in the limit of vanishing mass r since the theory
is massless as a matter of conservation of probability. The diagrammatic notation for
the amputated interaction vertices is

γ(∂φ̃)2φ2 =̂ , κJ̃2φ2 =̂ , σJ̃(∂φ̃)φ2 =̂ ,

γ′(∂φ̃)2φ =̂ , κ′J̃2φ =̂ , σ′J̃(∂φ̃)φ =̂ ,

γ′′(∂φ̃)2 =̂ , κ′′J̃2 =̂ , σ′′J̃(∂φ̃) =̂ , (3.62)

and

πJ̃(∂ξ̄)φξ =̂ , χ(∂φ̃)(∂ξ̄)φξ =̂ ,

π′J̃(∂ξ̄)ξ =̂ , χ′(∂φ̃)(∂ξ̄)ξ =̂ . (3.63)

with dashed propagators denoting spatial derivatives. At bare level, γ = κ = 2λ

and σ = π = χ = 4λ. Vertices appearing in the same column of the list (3.62)
are generated from the same interaction term of Eq. (3.52) upon performing the shift
φi → φi + N−1. Their coupling are thus related via γ′′/γ = κ′′/κ = σ′′/σ = N−2,
γ′/γ = κ′/κ = σ′/σ = 2N−1 and π′/π = χ′/χ = N−1.
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3.B.3 Correlation functions in one dimension

We are now ready to calculate the density and current correlation functions for the
one-dimensional model. These are expressed as a power series in the small disorder
strength λ, which we truncate to first order (tree level) to allow for direct comparison
with the result obtained by expanding the analytical results by Derrida [76], Eq. (3.21).
This approximation is controlled in d = 1 because we are interested in system of finite
size N and will be justified on relevance grounds in higher dimensions, where we will
work in the continuum limit. The correlation function for the probability mass function
at tree level is given by

〈ΦkΦk′〉 = +O(λ2) =
4λ

(2Nh sin(k/2))2
Nδk+k′,0 +O(λ2) (3.64)

for k 6= 0. For the current we have

〈JkJk′〉 = + + +O(λ2) =
4λ

N2
Nδk+k′,0δk′,0 +O(λ2) , (3.65)

with Kronecker delta δk′,0 reflecting the constraint that Ji = Jj = J is homogeneous. For
k 6= 0, the three diagrams contributing to the right-hand side of Eq. (3.65) only differ in
their symmetry factors and overall sign, which produces the desired cancellation. When
k = 0, only the first diagram, which does not involve spatial derivatives, contributes
and the cancellation does not occur. Since Jk=0 = NJ , we thus have that 〈J2〉 =

N−2〈J0J0〉 = 4λN−3, recovering the leading order contribution obtained by expanding
Derrida’s [76] exact result, Eq. (3.21), with the antisymmetric condition ζi,i+1− ζi,i−1 =

2ζi ,

〈J2〉 =
1

N4

〈(
N∑
n=1

ζn,n+1 − ζn+1,n

)(
N∑
m=1

ζm,m+1 − ζm+1,m

)〉

=
4

N4

N∑
n=1

N∑
m=1

〈ζnζm〉 =
4λ

N3
. (3.66)
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3.B.4 Higher dimensions

The derivation presented above can be straighforwardly generalised to periodic lattices
of arbitrary dimension with sites i = (i1, ..., id) ∈ {1, ..., N}d. We further need to
modify the steady-state condition, Eq. (3.28), using higher dimensional extensions of
Eqs. (3.49) and (3.50), ∇d = (∂i1 , ..., ∂id) and ∆d = ∂2

i1
+ ...+ ∂2

id
, so that

0 = ∂tφi = h∆dφi − 2∇d.(ζiφi) (3.67)

where ζi = (ζ
(1)
i , ..., ζ

(d)
i ) ∈ Rd is a d-dimensional noise with correlator

〈ζ(a)
k ζ

(b)
k′ 〉 = λδabN

dδk+k′,0 . (3.68)

Here, ζ(a)
i denotes the noise affecting the edges of node i along the ath dimension of the

lattice and ζ(a)
k its Fourier transform, according to the convention

ζ
(a)
j =

1

Nd

∑
k

eik·jζ(a)
k and ζ

(a)
k =

∑
j

e−ik·jζ(a)
j , (3.69)

with k = 2πn/N and n ∈ {1, ..., N}d. Correspondingly Eq. (3.31) is modified to define
a vector lattice field Ji ∈ Rd. Writing Ji = (J

(1)
i , ..., J

(d)
i ),

J
(a)
i = −h∂iaφi +

1

2
∂2
ia(ζ

(a)
i φi) + 2ζ

(a)
i φi , (3.70)

where J (a)
i is once again the symmetric local average at site i of the probability current

along the ath dimension of the lattice. The functional relationship between each com-
ponent of the current vector field and the other fields, Eq. (3.70), is then imposed by
means of d resolutions of the identity of the form (3.43). In the case of uncorrelated
noise, the derivation of the action follows precisely the same lines as above and gener-
ates d copies of the type of terms we have already seen, each with spatial derivatives
taken with respect to a different dimension. Explicitly,

A0 =
∑
i

−hφ̃i∆dφi − hξ̄i∆dξi + J̃i · Ji + hJ̃i ·∇dφi (3.71)
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cf. Eq. (3.51) and

Aint = −2λ
∑
i

[(∇dφ̃i)
2φ2

i + J̃2
i φ

2
i

+ 2J̃i · (∇dφ̃i)φ
2
i + 2J̃i · (∇dξ̄i)φiξi + 2(∇dφ̃i) · (∇dξ̄i)φiξi] + h.o.t. ,

(3.72)

cf. Eq. (3.52). Since vertices arising from Eq. (3.72) involve vector fields, the intepre-
tation of diagrams needs to be modified slightly. For example, the mixed propagators
in Fourier representation becomes

〈J (a)
k Φ̃k′〉 =

Ndh(−i sin(ka))

4h
∑

b sin2(kb/2) + r
δk+k′,0 =̂ . (3.73)

Similarly,

(J̃i)
2φ2

i =̂ , J̃i · (∇dφ̃i)φ
2
i =̂ , (∇dφ̃i)

2φ2
i =̂ ,

J̃i · (∇dξ̄i)φiξi =̂ , (∇dφ̃i) · (∇dξ̄i)φiξi =̂ . (3.74)

Using the field theory in d > 1 to characterise correlations is most covenient in the
continuum limit. We thus take the limit N →∞ at fixed volume V = (N`)d, with ` the
dimensionful lattice spacing. Based on Eqs. (3.49) and (3.50) we define the differential
operators in the continuum ∇d = `∇ and ∆d = `2∆, together with the fields φ and φ̃
now being defined for all x ∈ (0, N`]d, such that

φ(i`) = `−dφi, φ̃(i`) = `βφ̃i , (3.75)

where the dimension of φ(x) is pre-determined by the shift performed above, which in
the continuum reads φ(x)→ V −1 +φ(x), while the exponent β is undetermined for the
time being. Converting sums over lattice sites into integrals over space according to

`d
∑
i

≡
∫
V

ddx (3.76)
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and demanding that the action of Eqs. (3.71) and (3.72) is dimensionless term by term,
defines the remaining fields

J(i`) = `−d+1−βJi, J̃(i`) = `−1+βJ̃i, ξ̄(i`)ξ(i`) = `β−dξ̄iξi (3.77)

and the dimensionful couplings of the continuum theory D = h`2−β and λ̃ = `d+2−2βλ.
The exponent β is fixed by imposing that the diffusion constant D remains finite in
the limit ` → 0, whence β = 2. Since now λ̃ = λ`d−2, we identify dc = 2 as the upper
critical dimension of the theory. For d > 2 all interactions become irrelevant and we
expect the large scale behaviour of the theory to be well described by the tree-level
diagrammatics, thus justifying the truncation of higher order terms. Precisely at d = 2,
renormalisation group theory [318] predicts logarithmic corrections to tree-level scaling
but these were not observed conclusively in our numerical investigation.

In the continuum we thus have the action A0 +Aint with

A0 = −
∫
V

ddx Dφ̃(x)∆φ(x) +Dξ̄(x)∆ξ(x)− J̃(x) · J(x)−DJ̃(x) ·∇φ(x)

(3.78)

Aint = −2λ̃

∫
V

ddx [(∇φ̃(x))2(φ(x) + V −1)2 + J̃2(x)(φ(x) + V −1)2

+ 2J̃(x) · (∇φ̃(x))(φ(x) + V −1)2 + 2J̃(x) · (∇ξ̄(x))(φ(x) + V −1)ξ(x)

+ 2(∇φ̃(x)) · (∇ξ̄(x))(φ(x) + V −1)ξ(x)] + h.o.t. . (3.79)

Absorbing the shift V −1 of φ into new couplings as done using dashed variables in
Eq. (3.62) means that these differ now from each other in their engineering dimension,
for example [γ] = [V γ′] = [V 2γ′′]. Maintaining a finite volume V is important for the
validity of the present theory, but it also means that Fourier transforming it by mean
of Eq. (3.11) results in sums over suitable modes and δ-functions of the form

V δk,0 =

∫
V

ddx e−ik·x, whence e.g. Φ(k) =

∫
V

ddx e−ik·xφ(x) . (3.80)

We may occasionally approximate sums over momenta by integrals. To make the no-
tation more suggestive of continuous k ∈ Rd we write the Fourier transformed fields as
Φ(k), J (k), ξ(k) etc.
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The continuum propagators are structurally identical to their discrete counterpart and
read

〈Φ(k)Φ̃(k′)〉 =
V δk+k′,0

D|k|2 + r
=̂ (3.81)

〈Ξ(k)Ξ̄(k′)〉 = −〈Ξ̄(k)Ξ(k′)〉 =
V δk+k′,0

D|k|2 + r
=̂ (3.82)

〈J (n)(k)J̃ (m)(k′)〉 = δnmV δk+k′,0 =̂ (3.83)

〈J (k)Φ̃(k′)〉 =
D(−ik)

D|k|2 + r
V δk+k′,0 =̂ . (3.84)

3.B.5 Correlated noise

Generalising the formalism to allow for correlations in the transition rates is relatively
straightforward. What changes is the form of the probability functional for the noise,
originally Eq. (3.32), which should now include a non-trivial dependence on the power
spectrum. The power spectrum Q(k) characterises the noise correlation function for
the different components of the disorder in Fourier space as

〈ζ(n)(k)ζ(m)(p)〉 = Q(k)V δk+p,0δn,m . (3.85)

The case of uncorrelated noise covered above corresponds to Q(k) = λ̃, i.e. to the case
where Q(k) is independent of k. The noise probability functional corresponding to
Eq. (3.85) reads

P [ζ] ∝ exp

[
− 1

2V

∑
k

ζ(k) · ζ(−k)

Q(k)

]
(3.86)

where the sample space of ζ(k) is constrained to ζ(k) = ζ∗(−k) as to maintain ζ(x),
the inverse Fourier transform of ζ(k), being real. The role of Q(k) is to penalise spatial
fluctuations of ζ(k) depending on its wavenumber. Since our setup is rotationally
symmetric we assume the general algebraic form of the correlator to be Q(k) ∼ λ̃k−η

for small k, where k = |k|. For η > 0, the right hand side of Eq. (3.86) is regularised by
excluding the homogeneous mode, k = 0, from the summation. The derivation of the
field theory with non-trivial correlator proceeds as outline above up until Eq. (3.45),
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which has now a slightly different form,

∫
Dζ exp

(
1

V

∑
k

−k
η

2λ̃
ζ(k) · ζ(−k) + ζ(k) · F (−k)

)
(3.87)

∝ exp

(
λ̃

2V

∑
k

k−ηF (k) · F (−k)

)
, (3.88)

where we have introduced the short-hand F (k) for the Fourier transform of the real
expression

F (x) = 2(∇φ̃(x))φ(x) + 2J̃(x)φ(x) + 2(∇ξ̄(x))ξ(x) + h.o.t . (3.89)

We thus find that the generalisation to correlated noise characterised by a power spec-
trum Q(k) = λ̃k−η amounts to augmenting the interaction terms (in Fourier space) of
the original theory by a factor k−η. The Fourier representation, originally Eq. (3.55),
of the interaction vertices to be used in our subsequent calculation is upgraded to the
its continuum form for general η according to

=̂ (γ′′/V )k−η(−ik) · (ik)Φ̃(k)Φ̃(−k) (3.90)

=̂ (κ′′/V )k−ηJ̃ (k) · J̃ (−k) (3.91)

=̂ (σ′′/V )k−η(−ik) · J̃ (k)Φ̃(−k) , (3.92)

with γ′′ = κ′′ = 2λ̃/V 2 and σ′′ = 4λ̃/V 2. The effect of this modification on the spectral
density of the currents becomes apparent already at tree level, where we now obtain,
for k 6= 0,

〈J (n)(k)J (m)(k′)〉 = + + +O(λ̃2/V 2) (3.93)

=

(
4λ̃

V
δn,m −

8λ̃

V

knkm
|k|2 +

4λ̃

V

d∑
`=1

knkmk
2
`

|k|4

)
|k|−ηδk+k′,0 +O(λ̃2/V 2)

(3.94)

=
4λ̃

V

(
δn,m −

knkm
|k|2

)
|k|−ηδk+k′,0 +O(λ̃2/V 2) . (3.95)
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This is the result we invoke in the main text, Eq. (3.13). The special case of uncorrelated
rates is recovered at η = 0. The momentum-dependent factor appearing in brackets in
Eq. (3.95) is the fingerprint of a solenoidal vector field [102, 198]. For k = 0 and η ≤ 0,
the second and third diagrams vanish and we instead find

〈J (n)(0)J (m)(k′)〉 =
4λ̃

V 2
|k′|−ηδn,mV δk′,0 , (3.96)

consistently with Eq. (3.65).

3.B.6 Beyond tree level I: Ghosts and closed response circuits

Up to this point, calculating observables at tree level has allowed us to avoid discussing
the role of the Faddeev-Popov ghosts. However, there are important differences be-
tween the way ghosts should be handled in this theory compared to both dynamic
response field theories [133] and static response field theories with additive noise [12].
By construction, Eq. (3.41), the Grassman fields ξ and ξ̄ only ever appear in the ac-
tion as powers of the product ξ̄ξ. Since physical observables do not involve ξ or ξ̄
directly, ghost fields can only contribute diagrammatically via closed response circuits.
In dynamical response field theories, causality ensures that closed response circuits of
two or more propagators vanish, while the value of closed response loops of a single
propagator is determined by the chosen convention for the time discretisation [139]. In
static theories this causal mechanism is absent and ghost circuits play a non-trivial role,
both by removing vacuum diagrams (thus ensuring that the normalisation condition,
〈1〉 = 1, is satisfied) and potentially by appearing as internal fields in connected dia-
grams. Recently in [12], it has been argued that, for problems involving additive noise,
ghost contributions can simply be ignored by introducing additional restrictions on
the diagrams contributing to physical observables, amounting to ignoring all diagrams
containing closed response circuits. In other words, when noise is additive, the only rel-
evant diagrams are directed acyclic graphs. This argument breaks down for problems
involving multiplicative noise, where cyclic graphs produce non-vanishing contributions
to physical observables. As an example of the non-trivial role played by the ghost fields,
consider the one-loop contribution to the density correlation function, Eq. (3.64),

〈Φ(k)Φ(−k)〉 = + + + · · · (3.97)
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which involves both directed acyclic as well as cycling diagrams. Closed response loops
of a single propagator, on the other hand, vanish by antisymmetry of the integrand

= ∝
∫
ddk′

k · k′
h|k′|2 + r

= 0 , (3.98)

with k the external momentum. Dashes indicating spatial derivatives have been left
implicit in Eqs. (3.97) and (3.98). A more thorough analysis of the role of Faddeev-
Popov ghosts in static response-field theories is beyond the scope of the current work but
will be essential in order to be able to explore theories characterised by multiplicative
noise beyond tree level.

3.B.7 Beyond tree level II: Ward identities

While the appearance of new interactions upon carrying out the field shift φi → φi+N
−1

at the level of Eq. (3.57) might suggest a proliferation of independent couplings, γ′

and γ′′ are in fact related to γ by two Ward identities [39] in such a way that their
renormalisation flows are strongly constrained. These Ward identities are derived by
considering the behaviour of the action A = A0 + Aint under an infinitesimal shift of
φi,

A′ = A([φi + Σ, φ̃, J, J̃ , ξ, ξ̄];γ, γ′, γ′′, κ, κ′, κ′′, σ, σ′, σ′′, π, π′, χ, χ′)

= A([φi, φ̃, J, J̃ , ξ, ξ̄]; γ, γ′ + 2Σγ, γ′′ + Σ2γ + σγ′, (3.99)

κ, κ′ + 2Σκ, κ′′ + Σ2κ+ Σκ′, (3.100)

σ, σ′ + 2Σσ, σ′′ + Σ2σ + Σσ, (3.101)

π, π′ + Σπ, χ, χ′ + Σχ) +
N∑
i=1

rΣφ̃i . (3.102)

Denoting 〈· · · 〉A and 〈· · · 〉A′ expectations with respect to the original and shifted action,
respectively, and letting A′′ = A′ −∑i rΣφ̃i, it must be the case that, for k 6= 0,

〈ΦkΦ−k〉A = 〈(Φk + Σδk0)(Φ−k + Σδk0)〉A′
= 〈ΦkΦ−ke

−rΣΦ̃0〉A′′ + 2Σδk0〈Φke
−rΣΦ̃0〉A′′ + Σ2δk0

= 〈ΦkΦ−ke
−rΣΦ̃0〉A′′ (3.103)
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and

〈ΦkΦ−k(rN
−1Φ̃0)〉A

= 〈(Φk + Σδk0)(Φ−k + Σδk0)(rN−1Φ̃0)〉A′
= 〈ΦkΦ−k(rN

−1Φ̃0)e−rΣΦ̃0〉A′′ + 2Σδk0〈Φk(rN
−1Φ̃0)e−rΣΦ̃0〉A′′ + Σ2δk0〈rN−1Φ̃0〉

= 〈ΦkΦ−k(rN
−1Φ̃0)e−rΣΦ̃0〉A′′ . (3.104)

Since the left-hand sides of Eqs. (3.103) and (3.104) are independent of Σ, it follows
that

d

dΣ

∣∣∣∣
Σ=0

〈ΦkΦ−k〉A =
d

dΣ

∣∣∣∣
Σ=0

〈ΦkΦ−k(rN
−1Φ̃0)〉A = 0 . (3.105)

Differentiating the right-hand side of the two equations then produces the corresponding
Ward identities for the renormalised couplings γR, γ′R, γ′′R(

2γ
∂

∂γ′
+ γ′

∂

∂γ′′
+ χ

∂

∂χ′

)
γ′′R = γ′R and

(
2γ

∂

∂γ′
+ γ′

∂

∂γ′′
+ χ

∂

∂χ′

)
γ′R = γR .

(3.106)
Diagrammatically, these identities follow from the renormalisation of γ, γ′ and γ′′ all
being driven by the same set of four-point vertices, as shown below up to two-loop
order:

γR = + + + + + + + + + · · · (3.107)

γ′R = + + + + + + + + +· · · (3.108)

γ′′R = + + + + + + + + · · · , (3.109)

where dashes indicating spatial derivatives have again been left implicit. While in this
work we don’t perform any formal renormalisation group calculation, and in fact we
limit ourselves to tree-level diagrammatics, the observation that the RG flow of the new
couplings generated by a trivial shift of the annihilation field are strongly constrained
by a set of Ward identities is consistent with these couplings accounting for the same
‘physics’ as the original coupling in the unshifted theory.
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3.C Large L asymptotic form of Eq. (3.18)

We start from Eq. (3.14) for the expectation of the entropy production per mesostate
with linear block dimensions L, where {α, β} is any pair of neighbouring mesostates.
Without loss of generality we assume that the interface is a (d − 1)-dimensional hy-
percube of constant x coordinate and denote {iα} the set of “boundary” states of α
connected to β by a single edge. Denoting e = (1, 0, · · · , 0) the d-dimensional unit
displacement vector along the x axis, let {iα + e} correspond to the set of “boundary”
states of β connected to α by a single edge. Inspecting the logarithmic factor on the
right-hand side of Eq. (3.14)

ln
jαβ(L)

jβα(L)
= ln

∑
{iα} hπ̄ + hδπi + πiζi,i+e∑

{iα} hπ̄ + hδπi+e + πi+eζi+e,i

(3.110)

= ln

(
1 +

∑
{iα} hδπi + πiζi,i+e

hπ̄Ld−1

)
− ln

(
1 +

∑
{iα} hδπi+e + πi+eζi+e,i

hπ̄Ld−1

)
(3.111)

where we have expanded the steady-state probability about its mean, πi = π̄ + δπi,
with π̄ = N−d. Each logarithm in the expression above contains a sum over Ld−1

zero-mean random variables hδπi +πiζi,i+e and hδπi+e +πi+eζi+e,i, respectively. While
the expected value of each sum vanishes by linearity, the typical magnitude can be
estimated by computing its standard deviation. We thus write down the variance of
the sum

1

(hπ̄Ld−1)2

〈∑
{iα}

hδπi+e + πi+eζi+e,i

2〉

=
1

(hπ̄Ld−1)2

∑
iα

〈
(hδπi+e + πi+eζi+e,i)

2〉
+

1

(hπ̄Ld−1)2

∑
{iα 6=i′α}

〈(hδπi+e + πi+eζi+e,i) (hδπi′+e + πi′+eζi′+e,i′)〉 . (3.112)

The first contribution on the right hand side of Eq. (3.112), associated with the sum
of variances, scales like L−(d−1) due to statistical homogeneity and can thus be taken
to be small compared to the factor 1 appearing in the logarithm Eq. (3.111) in the
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large L regime. The second contribution is associated with cross correlations among
the summands. It involves Ld−1(Ld−1 − 1) terms so it is at most of order L0. However,
this scaling only applies to infinite-range correlations and the more relevant decay of
density as well as noise correlations over large distances will in general produce a scaling
Lν with ν < 0. The second contributions is thus also asymptotically small compared
to the factor 1 appearing in the logarithm. For sufficiently large L we can therefore
expand Eq. (3.111) to leading order and obtain

ln
jαβ(L)

jβα(L)
' 1

hπ̄Ld−1

∑
{iα}

hδπi + πiζi,i+e − hδπi+e − πi+eζi+e,i

=
1

hπ̄Ld−1
(jαβ(L)− jβα(L)) , (3.113)

whence 〈
(jαβ(L)− jβα(L)) ln

jαβ(L)

jβα(L)

〉
' Nd

hLd−1
〈(jαβ(L)− jβα(L))2〉 . (3.114)

3.D Asymptotic scaling of integrated currents from correlation func-
tion

Here we outline the calculation required to compute the asymptotic variance of the
integrated current across a mesostate interface, Eq. (3.16), starting from the spectral
density tensor of the probability current vector field, Eq. (3.13). These arguments
closely follow the standard treatment of hyperuniform fluctuations , reviewed in [285].
Without loss of generality we assume that the interface, denoted Ω henceforth, is a d−1

dimensional hypersurface of constant x = 0 coordinate embedded in d dimensional space
(see Figure 3.6). We introduce r̃ as the d− 1 dimensional vector satisfying r = (rx, r̃).
The variance of the integrated current across the interface Ω is thus given by

Var(J ; Ω) =

∫
Ω

dd−1r̃′
∫

Ω

dd−1r̃′′ 〈Jx(0, r̃′)Jx(0, r̃′′)〉 (3.115)

=

∫
Ω

dd−1r̃′
∫

Ω

dd−1r̃′′ Cxx(0, r̃
′ − r̃′′) (3.116)

= vΩ

∫
dd−1r̃′ Cxx(0, r̃

′)γ(r̃′; Ω) (3.117)
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Figure 3.6: Schematic illustration of the setup used for the calculation of the statistics of the integrated
current across a mesostate interface Ω, which we assume to be a d − 1 dimensional hypersurface of con-
stant x = 0 coordinate embedded in d dimensional space (here d = 3 for the purpose of visualisation).
By construction, Jx(r) thus corresponds to the projection of the current vector field J(r) on the unit
vector normal to Ω. The net current is obtained by integrating Jx(r) over r ∈ Ω.

where
γ(r̃′; Ω) =

1

vΩ

∫
dd−1r̃′′ IΩ(r̃′′)IΩ(r̃′ + r̃′′) (3.118)

is the overlap surface fraction, with IΩ the indicator function over the interface, and vΩ

is the interface surface. What we require to proceed further is therefore an expression
for the component Cxx of the current correlation function for displacements on the
interface. To obtain this, we start from the corresponding component of the spectral
density, Eq. (3.95), and introduce k̃ as the d−1 dimensional vector satisfying k = (kx, k̃)

to write

〈Jx(k)Jx(k′)〉 = 〈Jx(kx, k̃)Jx(k′x, k̃′)〉 =
4λ̃

V

|k̃|2
(|k̃|2 + k2

x)
1+ η

2

δk̃+k̃′,0δkx+k′x,0 . (3.119)
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The correlation function Cxx is thus obtained from Eq. (3.119) by Fourier back-transforming
according to the convention Eq. (3.11),

Cxx(0, r̃) = 〈Jx(0, 0)Jx(0, r̃)〉 (3.120)

=
1

V 2

∑
kx,k̃

eik̃·r̃〈Jx(kx, k̃)Jx(−kx,−k̃)〉 (3.121)

=

∫
d̄d−1k̃ eik̃·r̃

∫
d̄kx

4λ̃

V 2

|k̃|2
(|k̃|2 + k2

x)
1+ η

2

(3.122)

=

∫
d̄d−1k̃ eik̃·r̃

[
2λ̃Γ

(
1+η

2

)
V 2
√
πΓ
(
1 + η

2

) |k̃|1−η] , (3.123)

where we have approximated sums over momenta, which involve an infrared cutoff
at a typical inverse length-scale V −1/d, as integrals in the limit of large V on the
basis of the infrared convergence of the integral Eq. (3.123) for η < d. Following the
usual convention [318], dashed differentials are a short-hand for d̄dk = ddk/(2π)d. It is
interesting to note that, while the full spectral density Eq. (3.13) is not hyperuniform for
η = 0, the relevant component of the corresponding correlation function is hyperuniform
for η < 1 with hyperuniformity exponent 1 − η when we concentrate on the lower-
dimensional object that is the mesostate interface. For the correlation function Cxx(0, r̃)

origination from Eq. (3.123) to be well-defined in the range η < d, the Fourier back-
transform needs to be regularised in the ultraviolet. Here, we do so by introducing
a soft cutoff, suggestive of the introduction of a microscopic lattice spacing of typical
length scale β = `. Denoting CR

xx(0, r̃; β) the regularised correlation function, we write

CR
xx(0, r̃; β) =

∫
d̄d−1k̃ eik̃.r̃

[
2λ̃Γ

(
1+η

2

)
V 2
√
πΓ
(
1 + η

2

) |k̃|1−η] e−β|k̃| (3.124)

= N (η, d; λ̃, V )

∫ π

0

dθ (sin(θ))d−3

∫ ∞
0

dk̃ eik̃ cos(θ)|r̃|−βk̃ k̃d−1−η (3.125)

∝
∞∑
n=0

(−1)n

(2n)!
|r̃|2nΓ

(
d
2
− 1
)

Γ
(
n+ 1

2

)
Γ
(
n+ d

2
− 1
) ∫ ∞

0

dk̃ e−βk̃k̃d−1−η+2n (3.126)

∝ √πΓ (d− η) Γ
(
d−2

2

)
Γ
(
d−1

2

) β−d+η
2F 1

(
d− η

2
,
d− η + 1

2
,
d− 1

2
;−|r̃|

2

β2

)
.

(3.127)
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for η < d and d > 2, where 2F 1(a, b, c; z) denotes the hypergeometric function [22]. We
note for later use that 2F 1(a, b, c; z) has the asymptotic expansion

2F 1(a, b, c; z) = λ1z
−a + λ2z

−b +O(z−a−1, z−b−1) (3.128)

with

λ1 =

√
πΓ
(
d−1

2

)
Γ
(
η−1

2

)
Γ
(
d+1−η

2

) (3.129)

at large |z| unless a − b is an integer [22]. To go from Eq. (3.124) to (3.125) we first
perform a change of variable to spherical coordinates using∫

dnk̃ =

∫ ∞
0

dk̃

∫ π

0

dθdφ1...dφn−3

∫ 2π

0

dφn−2 k̃
n−1 sinn−2(θ) sinn−3(φ1)... sin(φn−3)

(3.130)
for n = d− 1 and n > 1, with k̃ = |k̃| the wavenumber and θ = arccos[(k̃/|k̃|) · (r̃/|r̃|)]
the angle between the wavevector k̃ and the displacement r̃. Since the integrand of
Eq. (3.124) is a function only of k̃ and θ, the remaining angular coordinates can be
integrated out. To go from Eq. (3.125) to (3.126) we perform a second change of
variable u(θ) = cos(θ) and expand the ensuing trigonometric functions as power series
in k̃u|r̃| before carrying out the integral over u. In the following, we shall ignore the
numerical prefactor

N (η, d; λ̃, V ) =
1

(2π)d−1

2λ̃Γ
(

1+η
2

)
V 2
√
πΓ
(
1 + η

2

) 2π
d−2

2

Γ
(
d−2

2

) (3.131)

in Eq. (3.125), since is independent of both θ and k and thus irrelevant for the window
size scaling. The case d = 2 needs to be treated separately and produces for η < d:

CR
xx(0, r̃; β) ∝ Γ(2− η)β−2+η

(
1 +
|r̃|2
β2

) η−2
2

cos

[
(2− η) arctan

( |r̃|
β

)]
, (3.132)

which is characterised by the same leading order asymptotic scaling with |r̃| at |r̃|/β �
1 as Eq. (3.127) for d→ 2.

Taking the interface as a hypersphere of radius L = L`, whence vΩ ∼ Ld−1, it was
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shown [285] that, for |r̃| < 2L,

γ(r̃; Ω) = 1− c(d)

( |r̃|
L

)
+ c(d)

∞∑
n=2

(−1)n
(d− 1)(d− 3)...(d− 2n+ 3)

(2n− 1)![2 · 4 · 6...(2n− 2)]

( |r̃|
L

)2n−1

(3.133)
with c(d) = 2Γ(1 + d/2)/(

√
πΓ((d + 1)/2)). Ref. [155] explores the effect of changing

the interface shape. Overall

Var(J ; Ω) = vΩ

∫
Ω

dd−1r̃ Cxx(0, r̃)

[
1− c(d)

( |r̃|
L

)
+ c(d)

∞∑
n=2

(−1)n
(d− 1)(d− 3)...(d− 2n+ 3)

(2n− 1)![2 · 4 · 6...(2n− 2)]

( |r̃|
L

)2n−1 ]
.

(3.134)

The term in Eq. (3.134) originating from the zeroth order in the series expansion of
γ approaches, in the asymptotic limit of L → ∞, the value of the spectral density,
Eq. (3.123), at k̃ = 0,

lim
L→∞

∫
Ω

dd−1r̃ Cxx(0, r̃) = lim
k̃→0

[
2λ̃Γ

(
1+η

2

)
V 2
√
πΓ
(
1 + η

2

) |k̃|1−η] (3.135)

and thus vanishes when the latter is hyperuniform, namely for η < 1.

Based on the expansion Eq. (3.128), the behaviour of the correlation function, Eq. (3.127),
for |r̃|/β � 1 is CR

xx(0, r̃; β) ∼ |r̃|η−d therefore each term in the integrand in the right-
hand side of Eq. (3.134) behaves like |r̃|η−2+m with m ∈ {0, 1, 3, ...}. The scaling of the
variance with window size L is thus controlled by the infrared divergence as L → ∞.
For η < 1 −m, the integrals are infrared convergent, which allows us to let Ω → Rd−1

without modifying the leading order asymptotic scaling with L. Proceeding case by
case:

• 0 < η < d: For η > 1, the relevant integrals are infrared divergent. For 0 < η < 1

the term originating from the zeroth order in the expansion of γ is removed by the
cancellation Eq. (3.135). For η = 1, based on Eq. (3.123), the correlation function
Cxx takes the form of a Dirac delta in real space so that the term originating
from the zeroth order in the expansion of γ is finite but L independent and
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does not contribute to the scaling. Overall, the scaling is dominated by the
infrared divergent behaviour at large |r̃|. Substituting Eq. (3.127) together with
the asymptotic expansion (3.128) into Eq. (3.134) and performing a change of
variable r̃ → r̃/L to isolate the L dependence, we arrive at Var(J ; Ω) ∼ Ld−2+η

for 0 < η < d.

• η = 0: The case of η = 0 needs to be treated separately because the integral
of the first order term in the expansion of γ(r̃; Ω) is logarithmically divergent.
Substituting Eq. (3.127) for the regularised correlation function into Eq. (3.134)
and setting η = 0 we are left with integrals of the form

Im(L) = vΩ

∫
Ω

dd−1r̃ 2F 1

(
d

2
,
d+ 1

2
,
d− 1

2
;−|r̃|

2

β2

)( |r̃|
L

)m
. (3.136)

for m ≥ 1. For m > 1 and based on the expansion Eq. (3.128), the r̃ integral
is dominated by the behaviour of the integrand in the large |r̃| regime and we
recover the Ld−2 scaling obtained upon setting η = 0 in the scaling law for the
case 0 < η < d. For m = 1 we exploit the spherical symmetry of the integral to
write ∫

Ω

dd−1r̃ f(|r̃|) =

∫ L
0

d|r̃| 2π
d−1

2

Γ(d−1
2

)
|r̃|d−2f(|r̃|) (3.137)

and invoke the asymptotic expansion Eq. (3.128) to obtain the leading order
behaviour

Im=1(L) =
vΩ

L

∫ L
0

d|r̃|
β

λ1
2π

d−1
2 Γ(d)

Γ(d−1
2

)

( |r̃|
β

)−1

∼ Ld−2 log(L/β) , (3.138)

which dominates the asymptotic scaling with L. The variance of the integrated
current thus scales like Var(J ; Ω) ∼ Ld−2 log(L/β) for η = 0.

• η < 0: Finally, we consider the case of η < 0. Substituting once again Eq. (3.127)
into Eq. (3.134), we obtain

Im(L) = vΩ

∫
Ω

dd−1r̃ 2F 1

(
d− η

2
,
d− η + 1

2
,
d− 1

2
;−|r̃|

2

β2

)( |r̃|
L

)m
. (3.139)

for m ∈ {1, 3, 5, ...}. When m < 1 − η this integral is infrared convergent and
we can take Ω → Rd−1 without affecting the leading order scaling with L. Upon
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taking this limit, the L dependence is limited to the prefactors and we straightfor-
wardly obtain Im(L) ∼ Ld−1−m. When m = 1− η the integral is logarithmically
divergent and we obtain Im(L) ∼ log(L/β)Ld−2+η along the lines of Eq. (3.138).
Finally, when m > 1 − η, the integral is infrared divergent, whereby we invoke
the asymptotic expansion, Eq. (3.128), to obtain Im(L) ∼ Ld−2+η. Overall, the
scaling is dominated by the m = 1 term and follows Var(J ; Ω) ∼ Ld−2 for η < 0.

Combining the results that we just derived into a single expression and making the
dependence on the model parameters λ̃ and V appearing in the prefactor Eq. (3.131)
explicit, we thus have

Var(J ; Ω) ∼


λ̃V −2Ld−2, for η < 0

λ̃V −2Ld−2 ln(L/β), for η = 0

λ̃V −2β−ηLd−2+η, for 0 < η < d

. (3.140)

Substituting into Eq. (3.15) with β = `,

〈
ṡ

(meso)
i

〉
(L) ∼


λ̃`3V −1h−1L−1, for η < 0

λ̃`3V −1h−1L−1 ln(L/`), for η = 0

λ̃`3−ηV −1h−1L−1+η, for 0 < η < d

, (3.141)

which constitutes our main result.
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Overview We have seen in the previous Chapter that coarse graining can have a non-
trivial effect on our ability to estimate dissipation and thus to infer the degree to which
a particular non-equilibrium process breaks time-reversal symmetry. In the context of
active matter, which is often concerned with the collective behaviour of a large number
of interacting single-particle units, one feature of microscopically resolved models that
is generally lost under coarse graining is what we refer to in the following as “particle
entity”. We say that a mathematical formalism describing interacting units possesses
particle entity if, at any given time, the distribution of “stuff” in space is consistent with
a set of localised, point-like particles. The standard diffusion equation, for example,
does not possess particle entity, since a localised peak of density will eventually spread
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into an ever broadening cloud. While for many purposes the loss of particle entity is
not a source of concern, for the purpose of entropy production calculations this is still
a matter of debate [193, 111]. As a necessary first step in addressing this problem, we
have developed a procedure to probe a field-theoretic formalism for particle entity and
applied it to the Doi-Peliti path integral, as well as the Martin-Siggia-Rose field theory
derived from Dean’s equation. While both formalisms indeed possess particle entity,
and are in fact promising candidates for further development of field-theoretic tools for
the calculation of entropy production, they do so through very different mechanisms.
In the case of Dean’s equation, particle entity is enforced through a fine-tuned multi-
plicative noise, suggesting that perturbative treatments of the latter might have direct
consequences on particle entity.

Author contributions: GP introduced the chosen signature of particle entity and
demonstrated the connection between particle entity and the commutation relations in
the Doi-Peliti formalism. LC suggested the reformulation of the signature in terms of
full and connected moments. MB performed the induction over connected diagrams
presented in Appendix 4.A. MB, LC and ZZ performed the rest of the analysis and
wrote the original draft of the manuscript. GP supervised the project throughout and
edited the draft at various stages.

Abstract

We introduce a procedure to test a theory for point particle entity, that is, whether
said theory takes into account the discrete nature of the constituents of the system.
We then identify the mechanism whereby particle entity is enforced in the context
of two field-theoretic frameworks designed to incorporate the particle nature of the
degrees of freedom, namely the Doi-Peliti field theory and the response field theory
that derives from Dean’s equation. While the Doi-Peliti field theory encodes the particle
nature at a very fundamental level that is easily revealed, demonstrating the same for
Dean’s equation is more involved and results in a number of surprising diagrammatic
identities. We derive those and discuss their implications. These results are particularly
pertinent in the context of active matter, whose surprising and often counterintuitive
phenomenology rests wholly on the particle nature of the agents and their degrees of
freedom as particles.
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4.1 Introduction

The mathematical description of non-equilibrium many-particle systems typically re-
quires a choice of scale at which their behaviour is resolved. When the focus is on
the collective dynamics of a large ensemble of particles, it can be convenient to disre-
gard some of the microscopic information and to rely on a coarse-grained description in
terms of densities ρ(x, t), which are continuous in space. What is generally lost upon
such coarse-graining is “particle entity”, namely the familiar attribute of classical point
particles whose initial property of being localised at one point only is preserved under
the dynamics, in other words that individual particles can only exist at one position in
space at any given time. The distinction between effective and microscopically resolved
theories has recently been debated in the context of active matter and, more specifi-
cally, entropy production [202, 64, 109, 51], where different levels of description grant
access to different types of information about the degree of irreversibility of a stochas-
tic process [98]. More generally, the study of sparse collections of interacting particles
[121, 271, 266] can make it necessary to equip theories with a notion of “granularity” of
their constituents. Field theories have traditionally been the most successful approach
to capture the physics and mathematics of phenomena emerging from the interaction
of many degrees of freedom [171, 135, 289]. The Doi-Peliti formalism , which has a
discrete number-state master equation as its starting point, is perhaps the best known
example of a path-integral approach that preserves particle entity [56, 227]. Another,
less familiar example is the response field or Martin-Siggia-Rose-Janssen-De Dominicis
[195, 146, 81] field theory [133] that derives from Dean’s equation [75, 114, 292]. While
it is generally accepted that these theories correctly describe the behaviour of physical
point particles by construction and that they are, in fact, equivalent [175], the precise
mechanism whereby this property is enforced, as well as a general procedure to deter-
mine whether a given field theory possesses particle entity, have not been identified. We
fill this gap in the following by introducing a signature of particle entity, Eq. (4.69), that
draws solely on the moments of the integrated number density in a patch Ω of space.
These moments can be computed by standard Feynman diagrammatic techniques.

This work is organised as follows. In Section 4.2, we set the scene by introducing the
Doi-Peliti field theory and the response field formalism. As an illustrative example, we
compute the two-point correlation function of the number density of n0 non-interacting
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diffusive particles, thus highlighting some of the key similarities and differences between
the two approaches. In Section 4.3 we formalise the concept of single-particle entity
and derive different observables to probe it. This signature of particle entity is then
applied to the Doi-Peliti field theory (Section 4.4) and the response field formalism of
Dean’s equation without interaction (Section 4.5), confirming that both are indeed valid
descriptions of physical point particles. In this last section we also discuss the role of
integer particle numbers and relate some of the results to a more intuitive probabilistic
picture. Finally, in Section 4.6, we summarise our findings and highlight some open
questions. Some of the technical details are relegated to the appendices.

4.2 Setting up the formalisms

4.2.1 Doi-Peliti field theory

A Doi-Peliti field theory, sometimes referred to as a coherent-state path integral, is
a standard procedure to cast the discrete-state, continuous-time master equation of
reaction-diffusion processes in a second quantised form that is amenable to a pertur-
bative treatment [56, 227, 279]. Its derivation starts from the master equation for the
probability P ({ni}, t) to find the system in state {ni} = {n0, n1, ...}, that is to find
precisely ni particles at each site i, which is then written in a second quantised form by
introducing a Fock space vector |{ni}〉, together with the ladder operators a†i and ai for
creation and annihilation on each lattice site i. The operators satisfy the commutation
relations

[ai, a
†
j] = δij, [ai, aj] = [a†i , a

†
j] = 0 (4.1)

and act on |{ni}〉 according to

aj|{ni}〉 = nj|{nj − 1}〉, a†j|{ni}〉 = |{nj + 1}〉 , (4.2)

so that a†iai is the number operator counting the number of particles at site i. The
notation {nj +1} and similar is a suggestive shorthand to indicate that this is the same
particle number state as {ni} except that the count at site j is increased by one. The
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state of the system is thus described by the mixed state

|Ψ(t)〉 =
∑
{ni}

P ({ni}, t)|{nj}〉 , (4.3)

which evolves in time according to an imaginary-time Schrödinger equation of the form
[56, 227]

∂t|Ψ(t)〉 = Â(a, a†)|Ψ(t)〉 . (4.4)

For a simple diffusive process on a one-dimensional lattice with homogeneous hopping
rate h and extinction rate r, the operator Â reads

Â(a, a†) =
∑
i

h(a†i+1 + a†i−1 − 2a†i )ai − r(a†i − 1)ai . (4.5)

The formal solution of Eq. (4.4), |Ψ(t)〉 = eÂt|Ψ(0)〉, can then be cast into path-integral
form, whereby the creation and annihilation operators are converted to time-dependent
fields, denoted ψ†i (t) and ψi(t), respectively. For technical reasons discussed extensively
elsewhere [56, 227], it is convenient at this stage to introduce the so-called Doi-shifted
creation field, ψ̃i(t), according to the convention ψ†i (t) = 1 + ψ̃i(t). For the case of
simple diffusion, Eq. (4.5), generalised to d dimensions, the action functional of the
resulting field theory reads, upon taking the continuum limit,

A[ψ̃(x, t), ψ(x, t)] =

∫
ddxdt ψ̃(x, t)(∂t −D∆ + r)ψ(x, t) (4.6)

and is fully bilinear. In momentum and frequency space it reads

A[ψ̃(k, ω), ψ(k, ω)] =

∫
d̄dk d̄ω ψ̃(k, ω)(−̊ıω +Dk2 + r)ψ(−k,−ω) (4.7)

where we have used the convention

ψ(x, t) =

∫
d̄dk d̄ω eı̊k·xe−̊ıωtψ(k, ω) and ψ(k, ω) =

∫
ddxdt e−̊ık·xeı̊ωtψ(x, t) ,

(4.8)
with d̄dk = ddk /(2π)d and d̄ω = ddω /(2π) (similarly for ψ̃). We will change freely
between different representations.
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The diffusive propagator can be obtained by Gaussian integration and reads in k, ω

〈ψ(k, ω)ψ̃(k′, ω′)〉 =
δ̄(ω + ω′)δ̄(k + k′)

−̊ıω +Dk2 + r
=̂

k, ω k′, ω′
, (4.9)

with δ̄(k) = (2π)δ(k) and δ̄(ω) = (2π)δ(ω). Henceforth we will use the symbol =̂

to indicate equivalence between diagrams and other mathematical expressions. All
diagrams are to be read from right to left. Expressing fields in x, t, the propagator
reads

〈ψ(x, t)ψ̃(x′, t′)〉 = θ(t− t′)
(

1

4πD(t− t′)

)d/2
exp

(
− (x− x′)2

4D(t− t′)

)
, (4.10)

for r → 0+, with the Heaviside theta function θ(t) enforcing causality. The mass r
has solely the role to regularise the large t behaviour and establish causality. In the
following, we may take the limit r → 0+ whenever convenient. For completeness, the
propagator in mixed momentum-time representation reads

〈ψ(k, t)ψ̃(k′, t′)〉 = θ(t− t′)δ̄(k + k′)e−Dk
2(t−t′) . (4.11)

A general observable O({ni}) in the Doi-Peliti formalism corresponds to a compos-
ite operator Ô(ai, a

†
i ), which we assume to be normal ordered, and which is defined

by acting on the pure state |{ni}〉 according to Ô(ai, a
†
i )|{ni}〉 = O({ni})|{ni}〉. Its

expectation translates into a path integral according to the following procedure [215]

〈O〉 =
∑
{ni}
O({ni})P ({ni}, t)|{nj}〉 (4.12)

= 〈☼|Ô(ai, a
†
i )e

Ãt|Ψ(0)〉 (4.13)

=

∫
DψDψ̃ Ô(ψ(t), ψ̃(t) + 1) eA[ψ̃,ψ]I(ψ̃(0) + 1) (4.14)

where we have introduced the coherent state,

〈☼| =
∑
{ni}
〈{ni}| (4.15)

with
∑
{ni}〈{ni}| summing over all n-particle occupation number states, as well as the
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initialisation operator I(a†i ), which satisfies I(a†i )|0〉 = |Ψ(0)〉, with |0〉 the vacuum state.
For an initial condition where mi particles are placed at each site i at time t = 0, the
initialisation appears within the path integral Eq. (4.14) as

I(ψ̃(0) + 1) =
∏
i

(ψ̃i(0) + 1)mi =
∏
i

mi∑
k=0

(
mi

k

)
ψ̃ki (0) . (4.16)

4.2.2 Dean’s equation in the response field formalism

Dean’s equation [75] is a stochastic differential equation of the Itô type obeyed by the
number density function ρ(x, t) for a system of Langevin processes interacting via a
pairwise potential. It is an exact mapping of, and thus contains the same information
as, the full set of Langevin equations for the individual “single particle” processes. It
reads

∂tρ(x, t) = ∇ ·
(
ρ∇ δF [ρ]

δρ

∣∣∣∣
ρ(x,t)

)
+∇ · (ρ1/2η(x, t)) +

∑
i

niδ(t− ti)δ(x− xi) (4.17)

where F [ρ] denotes the free energy functional, defined as

F [ρ(x)] =

∫
ddx ρ(x)

(
V (x) +D log(ρ(x)) +

∫
ddy U(x− y)ρ(y)

)
, (4.18)

with V (x) a general single-particle potential and U(x − y) a translationally invariant
pairwise interaction potential. The last term on the right-hand side of Eq. (4.17) de-
scribes the initialisation of ni ∈ Z particles in state xi at time ti so that limt→−∞ ρ(x, t) =

0. We will make the simplifying assumption of having only a single non-zero ni, namely
n0, and generalise our result in Appendix 4.B. The vector-valued noise η(x, t) ∈ Rd is
an uncorrelated white noise with covariance

〈ηµ(x, t)ην(x
′, t′)〉 = 2Dδµνδ(t− t′)δ(x− x′) , (4.19)

for µ, ν = 1, 2, ..., d. The unique feature of Dean’s formalism is the nature of the
noise term in Eq. (4.17), ∇ · (ρ1/2η), which is both conservative and Itô-multiplicative,
thus conserving the total particle number while preventing fluctuations from producing
regions of negative density. Following the standard procedure [133, 289], which requires
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special attention due to the multiplicative nature of the noise [139, 292], Dean’s equation
(4.17) for the time and space dependent field ρ(x, t) can be cast as a response field, or
Martin-Siggia-Rose-Janssen-De Dominicis, field theory with action

A[ρ, ρ̃] =

∫
ddxdt ρ̃

(
∂tρ−∇ · ρ∇

δF [ρ]

δρ

∣∣∣∣
ρ(x,t)

)
−ρD(∇ρ̃)2− ρ̃

∑
i

niδ(t− ti)δ(x−xi) ,

(4.20)
which simplifies to

A[ρ, ρ̃] =

∫
ddxdt ρ̃(x, t) (∂tρ(x, t)−D∆ρ(x, t))− ρ̃

∑
i

niδ(t− ti)δ(x− xi)− ρD(∇ρ̃)2

(4.21)

=

∫
d̄dk d̄ω ρ̃(−k,−ω)(−̊ıω +Dk2)ρ(k, ω)− ρ̃(k, ω)

∑
i

nie
ı̊k·xie−̊ıωti

+

∫
d̄dkd̄dk′ d̄ω d̄ω′D(k · k′)ρ̃(k, ω)ρ̃(k′, ω′)ρ(−(k + k′),−(ω + ω′)) (4.22)

in the case of non-interacting particles undergoing simple diffusion without external
potential. Unlike the Doi-Peliti path integral, Eq. (4.14), the initialisation here shows
up as a term in the action. In a diagrammatic perturbation theory, these ni particles
starting from positions xi, or, as a matter of fact, only one such position, x0 with n0

particles starting from there, will be shown as a small, filled circle acting as a source,

. (4.23)

The presence of the source spoils translational invariance and as a result, the hallmark
δ-function as it normally multiplies any correlation function, say δ̄(k0 + k1 + . . .+ kn)

will be replaced by∫
d̄dk0 exp{̊ık0 · x0}δ(k0 + k1 + . . .+ kn) = exp{̊ı(k1 + . . .+ kn) · x0} . (4.24)

Where readability is improved by it, we will retain the integral.

The expectation value of a field-dependent observable O[ρ] can then be computed via
the path integral

〈O[ρ]〉 =

∫
DρDρ̃ O[ρ] exp{−A[ρ, ρ̃]} (4.25)
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where ρ̃ is the purely imaginary response field. The normalisation is chosen such that
〈1〉 = 1. The action A is then split into a bilinear and an interacting part, denoted A0

and Aint respectively, according to

A0[ρ, ρ̃] =

∫
ddxdt ρ̃ (∂tρ−D∆ρ) (4.26)

and

Aint[ρ, ρ̃] = −
∫

ddxdt

{
ρ(x, t)D(∇ρ̃(x, t))2 (4.27)

+ ρ̃(x, t)∇x ·
(
ρ(x, t)∇x

[
V (x) +

∫
ddy U(x− y)ρ(y, t)

])
+ ρ̃(x, t)

∑
i

niδ(x− xi)δ(t− ti)
}

=

∫
d̄dk1,2,3 d̄ω1,2,3 δ̄(k1 + k2 + k3)δ̄(ω1 + ω2 + ω3){

ρ(k1, ω1)D(k2 · k3)ρ̃(k2, ω2)ρ̃(k3, ω3) (4.28)

+ ρ̃(k1, ω1)((k2 + k3) · k3)ρ(k2, ω2)

[
V (k3)δ̄(ω3) + U(k3)ρ(k3, ω3)

]}
−
∫

d̄dk d̄ω ρ̃(k, ω)
∑
i

ni exp{̊ık · xi} exp{−̊ıωti}

Finally, expectations are computed in a perturbation theory about the bilinear theory
using

〈O[ρ]〉 =
∞∑
n=0

〈
(−Aint[ρ, ρ̃])n

n!
O[ρ]

〉
0

, (4.29)

where
〈•〉0 =

∫
DρDρ̃ • exp{−A0[ρ, ρ̃]} (4.30)

denotes expectation with respect to the bilinear action, Eq. (4.26). The right hand
side of Eq. (4.29) involves products of fields and the Wick-Isserlis theorem [171] can be
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invoked to express these in terms of the bare propagator,

G(x− x′, t− t′) = 〈ρ(x, t)ρ̃(x′, t′)〉0 =̂
x, t x′, t′

, (4.31)

obtained from the bilinear action. In d dimensions, the bare propagator reads

G(x− x′, t− t′) = θ(t− t′)
(

1

4πD(t− t′)

)d/2
exp

(
− (x− x′)2

4D(t− t′)

)
, (4.32)

with the Heaviside theta function θ(t) enforcing causality. This propagator is identical
to that of the corresponding Doi-Peliti field theory, Eq. (4.10). For later use, we recall
the form of the propagator in momentum-frequency representation,

〈ρ(k, ω)ρ̃(k′, ω′)〉0 =
δ(k + k′)δ(ω + ω′)

−̊ıω +Dk2 + r
, (4.33)

which we have amended by a mass r → 0+ to enforce causality, as Eq. (4.9). Further,
we introduce the mixed momentum-time representation,

〈ρ(k, t)ρ̃(k′, t′)〉0 = θ(t− t′)δ(k + k′) exp
{
−D(t− t′)k2

}
, (4.34)

see Eq. (4.11). For non-interacting particles in a flat potential, ∇V (x) = 0, ∇U(x) = 0,
the bare propagator equals the full propagator,

〈ρ(k, t)ρ̃(k′, t′)〉 = 〈ρ(k, t)ρ̃(k′, t′)〉0 (4.35)

as the only non-linear term in the action is the amputated three-point vertex

− ρD(∇ρ̃)2 =̂ (4.36)

with the dashes on the propagators denoting spatial derivatives acting on the response
fields and the dotted line the scalar product of these derivatives. The presence of
such a vertex in the free particle case is a non-trivial feature of Dean’s equation and
clashes somewhat with the notion of ‘interaction’ associated with terms of order higher
than bilinear [289]. As we will demonstrate below, Eq. (4.36), which we will refer
to interchangeably as Dean’s vertex or a virtual branching vertex, is the term that
implements the particle nature of the degrees of freedom within the Dean framework. In

176



Figure 4.1: The time-dependent number density ρ(x, t) for a physical point particle undergoing diffusion
is expected to remain localised under the dynamics, indicating that the particle can only occupy one po-
sition in space at any given time. While this property is preserved under Dean’s dynamics (left column),
it is generally lost when resorting to effective descriptions, such as the classical diffusion equation (right
column). This difference is most obvious when measuring the instantaneous particle number density at
two points a finite distance away from each other (bottom row).

contrast to Doi-Peliti, particle entity in the response field formalism of Dean’s equation
is a perturbative feature. The effect of Dean’s vertex is illustrated in Fig. 4.1 by
comparison with the standard diffusion equation, which lacks particle entity.

The Doi-Peliti field theory and the response field field theory derived from Dean’s
equation can be mapped onto each other by means of a Cole-Hopf transformation of
the fields [175],

ψ† → eρ̃, ψ → ρe−ρ̃ . (4.37)

This equivalence implies that the two formalisms should be equally capable of capturing
particle entity. The precise mechanisms by which each does so, however, turn out to be
very different, as we will see in detail in Sections 4.4 and 4.5.
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4.2.3 Example: the two-point density correlation function

To illustrate the similarities and differences between the two formalisms introduced
above, we now calculate the two-point correlation function of the particle number
density for n0 non-interacting diffusive particles in a flat potential, ∇V (x) = 0 and
∇U(x) = 0, all initialised at the same position x0 and time t0, first in the Doi-Peliti
scheme and then using Dean’s equation. While the result of this detailed calculation
is somewhat trivial and can be derived by straightforward probabilistic arguments, its
derivation elucidates certain formalism-specific cancellation mechanisms that will play
an important role in the remainder of this work. The reader interested in the generic
definition of particle entity but not in the details of the field theoretic approach can
skip directly to Section 4.3.

We first use the parameterisation of the field theories in k and ω, which is very com-
monly used in field theories. In real-space and time, the two-point correlation function
C(x1,x2, t1, t2) in the Doi-Peliti framework is the observable [289, 56]

C(x1,x2, t1, t2) =
〈(
ψ†(x2, t2)ψ(x2, t2)

)(
ψ†(x1, t1)ψ(x1, t1)

)
ψ†n0(x0, t0)

〉
(4.38)

=

(
n0

1

)〈
ψ(x2, t2)ψ̃(x1, t1)

〉〈
ψ(x1, t1)ψ̃(x0, t0)

〉
(4.39)

+

(
n0

1

)〈
ψ(x1, t1)ψ̃(x2, t2)

〉〈
ψ(x2, t2)ψ̃(x0, t0)

〉
+ 2

(
n0

2

)〈
ψ(x2, t2)ψ̃(x0, t0)

〉〈
ψ(x1, t1)ψ̃(x0, t0)

〉
=̂

(
n0

1

)
x2, t2 x0, t0

x1, t1
+

(
n0

1

)
x1, t1 x0, t0

x2, t2
+ 2

(
n0

2

) x1, t1 x0, t0

x2, t2 x0, t0

(4.40)

where we assume x1 6= x2 to avoid the special case of non-commutation of the operators.
The high number of terms in Eq. (4.38) is due to the Doi-shift, which splits each
daggered creator field in two terms, ψ† = 1 + ψ̃. This turns the contribution of the
initial particles into ψ†n0 =

∑n0

k

(
n0

k

)
ψ̃n0 . The vertices made from a crossed circle in

Eq. (4.40) are meant to indicate an annihilation field at the indicated position and time
with immediate re-creation. Eq. (4.38) has the generic form of a two-point correlation

178



function in the Doi-Peliti framework without interaction.

Eq. (4.39) is still expressed in real space and direct time and needs to be Fourier-
transformed to write it in the common k, ω parameterisation. Each of the three terms
in Eq. (4.39) requires four integrals in k and four in ω, for example

n0

x2, t2 x0, t0
x1, t1

(4.41)

=̂n0

∫
d̄dk2d̄dk′1d̄dk1d̄dk0 d̄ω2 d̄ω′1 d̄ω1 d̄ω0

δ̄(k2 + k′1)δ̄(ω2 + ω′1)

−̊ıω2 +Dk2
2 + r

δ̄(k1 + k0)δ̄(ω1 + ω0)

−̊ıω1 +Dk2
1 + r

(4.42)

× exp{̊ı(k2 · x2 + k′1 · x1 + k1 · x1 + k0 · x0)} exp{−̊ı(ω2t2 + ω′1t1 + ω1t1 + ω0t0)}

drawing on the propagator introduced in Eq. (4.9). Using the δ-functions, the integrals
in each term are immediately reduced to only two, all differing solely in the arguments
of the exponentials:

C(x1,x2, t1, t2) =

∫
d̄dk2d̄dk1 d̄ω2 d̄ω1

1

−̊ıω2 +Dk2
2 + r

1

−̊ıω1 +Dk2
1 + r

(4.43)

×
{
n0 exp{̊ı(k2 · (x2 − x1) + k1 · (x1 − x0))} exp{−̊ı(ω2(t2 − t1) + ω1(t1 − t0))}

+ n0 exp{̊ı(k2 · (x2 − x0) + k1 · (x1 − x2))} exp{−̊ı(ω2(t2 − t0) + ω1(t1 − t2))}

+ n0(n0 − 1) exp{̊ı(k2 · (x2 − x0) + k1 · (x1 − x0))} exp{−̊ı(ω2(t2 − t0) + ω1(t1 − t0))}
}

with r → 0+ still to be taken. The first of the three terms in the integrand describes
the propagation of any of n0 particles from x0 at t0 to x1 at t1 and from there to x2

at t2. This term will contribute only if t2 ≥ t1 ≥ t0. The second term describes a
similar process, from x0 at t0 to x2 at t2 and from there to x1 at t1, contributing only if
t1 ≥ t2 ≥ t0. The last term describes the propagation of two independent particles from
x0 at t0 to x1 at t1 and another one from x0 at t0 to x2 at t2. There are n0(n0− 1) such
pairs. If n0 ≤ 1, the last term vanishes, leaving only the first two terms, both of which
vanish if t1 = t2 and x1 6= x2 as we will show below, because a particle cannot possibly
be found at two different places simultaneously. Eq. (4.43) completes the derivation of
the correlation function in the Doi-Peliti framework.

To derive the correlation function in Dean’s framework, we use the action as stated in
Eq. (4.21) with both the interaction and the source treated perturbatively. The role of
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the creator fields in the field theory of Dean’s equation is very different from Doi-Peliti.
In the Dean framework, the two-point correlation function is

C(x1,x2, t1, t2) = 〈ρ(x2, t2)ρ(x1, t1)〉 =̂ x0, t0
(n0)

x2, t2

x1, t1

+
x1, t1 x0, t0

(n0)

x2, t2 x0, t0
(n0)

(4.44)
as every field ρ(x, t) can be matched with a creator field from the perturbative part of
the action, shown as a small filled circle at the right end of the incoming propagators.
Each such creator field appears with a coupling n0, which we have highlighted by writing
it in brackets behind each source in the diagram. While the second term in Eq. (4.44)
is structurally identical to the last term in Eq. (4.40) and indeed captures the same
process, the pre-factors of the two differ by n0. The first two terms in Eq. (4.40) on the
other hand seem to be absent from Eq. (4.44). In turn, the first diagram of Eq. (4.44), is
solely due to the Dean-vertex Eq. (4.36) and therefore absent in Doi-Peliti, Eq. (4.40).
Writing this term in k, ω gives

x0, t0
(n0)

x2, t2

x1, t1

=̂

∫
d̄dk2d̄dk1 d̄ω2 d̄ω1

exp{̊ı(k2 · (x2 − x0) + k1 · (x1 − x0))} exp{−̊ı(ω2(t2 − t0) + ω1(t1 − t0))}

× (−2n0Dk1 · k2)
1

−̊ıω2 +Dk2
2 + r

1

−̊ıω1 +Dk2
1 + r

1

−̊ı(ω1 + ω2) +D(k1 + k2)2 + r

(4.45)

using Eq. (4.33) for the propagator and where the factor (−2n0Dk1 · k2) is due to the
sign of the interaction term in the action Eq. (4.21), including a factor 2 from symmetry.

The second term in Eq. (4.44) can be read off from Eqs. (4.40) and (4.43). Its pre-factor
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of n2
0 has to be split into n2

0 = n0(n0 − 1) + n0 to reveal the cancellation mechanism,

x0, t0
(n0)

x2, t2

x1, t1

+

x1, t1 x0, t0
(n0)

x2, t2 x0, t0
(n0)

(4.46)

=̂

∫
d̄dk2d̄dk1 d̄ω2 d̄ω1

exp{̊ı(k2 · (x2 − x0) + k1 · (x1 − x0))} exp{−̊ı(ω2(t2 − t0) + ω1(t1 − t0))} (4.47)

× 1

−̊ıω2 +Dk2
2 + r

1

−̊ıω1 +Dk2
1 + r

( −2n0Dk1 · k2

−̊ı(ω1 + ω2) +D(k1 + k2)2 + r
+ n0 + n0(n0 − 1)

)
(4.48)

=

∫
d̄dk2d̄dk1 d̄ω2 d̄ω1

exp{̊ı(k2 · (x2 − x0) + k1 · (x1 − x0))} exp{−̊ı(ω2(t2 − t0) + ω1(t1 − t0))} (4.49)

×
{
n0

1

−̊ı(ω1 + ω2) +D(k1 + k2)2 + r
(4.50)

×
(

1

−̊ıω2 +Dk2
2 + r

+
1

−̊ıω1 +Dk2
1 + r

− r

(−̊ıω1 +Dk2
1 + r)(−̊ıω2 +Dk2

2 + r)

)
+ n0(n0 − 1)

1

−̊ıω2 +Dk2
2 + r

1

−̊ıω1 +Dk2
1 + r

}
.

The term proportional to r in the numerator eventually vanishes when r → 0. To see
now that Eq. (4.50) is in fact identical to the first two terms in Eqs. (4.40) and (4.43)
requires a simple substitution of the dummy variables, for example k1 + k2 becoming
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k1,∫
d̄dk2d̄dk1 d̄ω2 d̄ω1

exp{̊ı(k2 · (x2 − x0) + k1 · (x1 − x0))} exp{−̊ı(ω2(t2 − t0) + ω1(t1 − t0))}
(4.51)

× 1

−̊ı(ω1 + ω2) +D(k1 + k2)2 + r

1

−̊ıω2 +Dk2
2 + r

(4.52)

=

∫
d̄dk2d̄dk1 d̄ω2 d̄ω1

exp{̊ı(k2 · (x2 − x1) + k1 · (x1 − x0))} exp{−̊ı(ω2(t2 − t1) + ω1(t1 − t0))}
(4.53)

× 1

−̊ıω1 +Dk2
1 + r

1

−̊ıω2 +Dk2
2 + r

. (4.54)

In summary, after pairing in Eq. (4.50) the interaction term of Dean’s equation with
the two independent propagators, the field theory of Dean’s equation reproduces the
two-point correlation function as the Doi-Peliti framework, Eq. (4.43), except for a term
proportional to r which vanishes in the limit of r → 0:

C(x1,x2, t1, t2) = 〈ρ(x2, t2)ρ(x1, t1)〉 =̂
x0, t0

(n0)

x2, t2

x1, t1

+

x1, t1 x0, t0
(n0)

x2, t2 x0, t0
(n0)

(4.55)

=̂

∫
d̄dk2d̄dk1 d̄ω2 d̄ω1

1

−̊ıω2 +Dk2
2 + r

1

−̊ıω1 +Dk2
1 + r

(4.56)

×
{
n0 exp{̊ı(k2 · (x2 − x1) + k1 · (x1 − x0))} exp{−̊ı(ω2(t2 − t1) + ω1(t1 − t0))}

+ n0 exp{̊ı(k2 · (x2 − x0) + k1 · (x1 − x2))} exp{−̊ı(ω2(t2 − t0) + ω1(t1 − t2))}
− n0

r

−̊ı(ω1 + ω2) +D(k1 + k2)2 + r

× exp{̊ı(k2 · (x2 − x0) + k1 · (x1 − x0))} exp{−̊ı(ω2(t2 − t0) + ω2(t1 − t0))}

+ n0(n0 − 1) exp{̊ı(k2 · (x2 − x0) + k1 · (x1 − x0))} exp{−̊ı(ω2(t2 − t0) + ω1(t1 − t0))}
}
.

This concludes the demonstration that the Doi-Peliti framework and Dean’s equation
produce identical results for the two-point correlation function. Eq. (4.50) illustrates
the central cancellation mechanism, which we generalise to the relevant observables
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below, in particular Appendix 4.A. As Eq. (4.36) is a perturbative term, the resulting
branching diagrams in Eq. (4.55) discount contributions due to independent particle
movement, shown as two parallel propagators in Eq. (4.55), of which there are n2

0

rather than n0(n0 − 1).

Performing the calculation above immediately in direct time and real space is most
easily done assuming a particular time ordering, say t2 > t1 > t0. In that case, Doi-
Peliti produces

C(x1,x2, t1, t2) = n0
e
− (x2−x1)2

4D(t2−t1)

(4πD(t2 − t1))d/2
e
− (x1−x0)2

4D(t1−t0)

(4πD(t1 − t0))d/2
(4.57)

+n0(n0 − 1)
e
− (x1−x0)2

4D(t1−t0)

(4πD(t1 − t0))d/2
e
− (x2−x0)2

4D(t2−t0)

(4πD(t2 − t0))d/2

directly from Eq. (4.40) using the propagator Eq. (4.10). As t2 > t1, only the first and
the last diagrams of Eq. (4.40) contribute, the first due to a particle travelling from x0

to x1 and then to x2 and the last due to two particles travelling independently. In the
limit of t2 ↓ t1 the first term, proportional to n0, becomes n0δ(x2 − x1)(4πD(t1 −
t0))−d/2 exp{−(x1 − x0)2/(4πD(t1 − t0)}, vanishing if x1 6= x2 as the same particle
cannot be at two different places simultaneously. Fig. 4.1 provides a visual illustration
of this property.

Although this approach no longer requires regularisation by a mass r, it is somewhat
more demanding to perform the calculation of the correlation function within Dean’s
equation in direct time and real space using Eq. (4.32), because the Dean-vertex requires
a convolution over the time and the position where the virtual branching takes place,

x0, t0
(n0)

x2, t2

x1, t1

(4.58)

=̂2n0

∫
ddx′dt′

(
∇x′G(x2 − x′, t2 − t′)

)
·
(
∇x′G(x1 − x′, t1 − t′)

)
G(x′ − x0, t

′ − t0) .

After some algebra, Dean’s equation produces of course the same correlation function
Eq. (4.57) as Doi-Peliti.
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In explicit calculations below, notably Appendix 4.A, we will make use of a mixed
momentum-time, k, t, parameterisation, for which we briefly outline the cancellation
mechanism in the following. In Doi-Peliti, the diagrams Eq. (4.40) can immediately be
written as

C(x1,x2, t1, t2) =

∫
d̄dk2d̄dk1 (4.59)

×
{
n0 exp{̊ı(k2 · (x2 − x1) + k1 · (x1 − x0))}θ(t2 − t1)θ(t1 − t0)

× exp
{
−Dk2

2(t2 − t1)−Dk2
1(t1 − t0))

}
(4.60)

+ n0 exp{̊ı(k2 · (x2 − x0) + k1 · (x1 − x2))}θ(t1 − t2)θ(t2 − t0)

× exp
{
−Dk2

1(t1 − t2)−Dk2
2(t2 − t0))

}
(4.61)

+ n0(n0 − 1) exp{̊ı(k2 · (x2 − x0) + k1 · (x1 − x0))}θ(t2 − t0)θ(t1 − t0)

× exp
{
−Dk2

2(t2 − t0)−Dk2
1(t1 − t0))

}}
(4.62)

by replacing each of the bare propagators of Eq. (4.39) by Eq. (4.11) and making use
of the δ-functions on the momenta, or by direct interpretation of the diagrams.

Dean’s equation, Eq. (4.44), on the other hand, produces

C(x1,x2, t1, t2)

=

∫
d̄dk2d̄dk1d̄dk0 exp{̊ık2 · x2} exp{̊ık1 · x1} exp{̊ık0 · x0}δ̄(k2 + k1 + k0)

×
{

(−2n0Dk1 · k2)

∫ ∞
−∞

dt′ θ(t2 − t′) exp
{
−Dk2

2(t2 − t′)
}

× θ(t1 − t′) exp
{
−Dk2

1(t1 − t′)
}
θ(t′ − t0) exp

{
−Dk2

0(t′ − t0)
}}

(4.63)

+

∫
d̄dk2d̄dk1 exp{̊ık2 · (x2 − x0)} exp{̊ık1 · (x1 − x0)} (4.64)

×
{
n2

0θ(t2 − t0) exp
{
−Dk2

2(t2 − t0)
}
θ(t1 − t0) exp

{
−Dk2

1(t1 − t0)
}}

,

with the convolution over t′, the time of the virtual branching in the first diagram.
While the lower limit of this integral is fixed to t0 by θ(t′ − t0), the upper limit is
tmin = min (t1, t2) via the product of two Heaviside θ-functions. Its two possible values
generate two terms as in Eq. (4.40), conditioned by θ-functions. Using the δ-function
in the first line of Eq. (4.63) to eliminate the integral over k0, the n0 branching terms
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each produce

∫ tmin

t0

dt′ exp
{
−Dk2

2(t2 − t′)
}

exp
{
−Dk2

1(t1 − t′)
}

exp
{
−D(k1 + k2)2(t′ − t0)

}
= exp

{
−Dk2

2(t2 − t0)
}

exp
{
−Dk2

1(t1 − t0)
}

(1− exp{−2Dk1 · k2(tmin − t0)}) 1

2Dk1 · k2

.

(4.65)

The 1-term in the bracket is independent of tmin and cancels with n0 of the n2
0 discon-

nected terms. The remaining terms can be simplified using for example

exp
{
−Dk2

1(t1 − t0)
}

exp{−2Dk1 · k2(t1 − t0)}
= exp

{
−D(k1 + k2)2(t1 − t0)

}
exp
{
Dk2

2(t1 − t0)
}

(4.66)

in the case of tmin = t1 and, after a shift in ki, such as k1 + k2 → k1 in the example
above, reproduce the result from Doi-Peliti, Eq. (4.59). This concludes the illustration.

To summarise this section, the correlation function of the particle position of n0 non-
interacting particles is not a single term, as it needs to capture multiple scenarios of
particles moving, while keeping track of the particle nature of the constituent degrees
of freedom. Both frameworks result in the same expressions, such Eqs. (4.43), (4.56),
(4.57) and (4.59). A cancellation mechanism such as Eq. (4.48) in the k, ω parameterisa-
tion and the convolution in Eq. (4.65) for k, t, connects Doi-Peliti and Dean, revealing
that the perturbative, virtual branching in Dean’s framework is in fact a sum of se-
quential propagation of a single particle and independent propagation of two distinct
ones.

The calculation in this preliminary section suggests that the interaction vertex Eq. (4.36)
in Dean’s formalism contains the same information as the commutation relation of the
Doi-Peliti ladder operators. The importance of this observation will become evident in
Sections 4.4 and 4.5, where we analyse the particle nature in greater detail.

4.3 Probing for particle entity

Within the Dean framework ρ(x, t) denotes the instantaneous particle number density
in state x at time t. We define particle entity as a property of the evolution equation
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for ρ(x, t) whereby this time-dependent random variable can be written as a finite
sum of “single particle densities” with integer coefficients. In the case of a discrete
phase space, the single-particle density for a particle in state x̄ is the Kronecker-delta
with unit prefactor, δx,x̄. For continuous degrees of freedom, the single-particle density
for a particle in state x̄ is the Dirac-delta distribution normalised to unity, δ(x − x̄).
Correspondingly,

ρ(x, t) =


∑

i ni(t)δx,x̄i , for discrete states∑
i ni(t)δ(x− x̄i), for continuous states

(4.67)

where ni(t) ∈ N. It follows from this requirement that the integral of the particle
number density ρ(x, t) over any (sub-)volume Ω of the space is an integer-valued random
variable,

∀Ω ⊂ Rd :
∑∫

Ω

ddx ρ(x, t) ∈ N . (4.68)

For discrete states, Eq. (4.68) also implies Eq. (4.67), i.e. there can be no densities
satisfying Eq. (4.68) that are not a sum of Kronecker deltas with integer coefficient. We
leave the proof that this equivalence also holds in the continuum for future work. Such a
proof will surely draw on the arbitrariness of Ω, which can be used to include or exclude
from the integral in Eq. (4.68) any part of ρ(x, t). In the case of stochastic dynamics,
it is convenient to re-express the condition Eq. (4.68) in terms of an expectation value
as 〈

exp

(
2π̊ı

∫
Ω

ddx ρ(x, t)

)〉
= 1 , (4.69)

which needs to be satisfied for any volume Ω and all times t. Eq. (4.69) will play the
role of a signature of particle entity in the following.

Obviously, Eq. (4.68) implies Eq. (4.69). Yet, expressing the particle entity condition as
an expectation might appear less stringent than demanding it at the level of individual
trajectories. However, rewriting Eq. (4.69) as 〈cos

(
2π
∫

ddx ρ(x, t)
)
〉 = 1 on the basis of

ρ(x, t) being real, shows that the integral must be integer valued almost surely, because
R 3 cos(x) ≤ 1 for x ∈ R.

In order to ease the calculation of the left-hand side of Eq. (4.69) for a particular field
theory of interest, we can expand the complex exponential as a Taylor series and invoke
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linearity of the expectation to obtain the particle entity signature,

∞∑
n=0

(2π̊ı)n

n!
n

=̂
∞∑
n=0

(2π̊ı)n

n!

〈(∫
Ω

ddx ρ(x, t)

)n〉
=

〈
exp

(
2π̊ı

∫
Ω

ddx ρ(x, t)

)〉
= 1 , (4.70)

where the left-hand side is now a function of the nth full moment of the integrated
particle number density,

〈(∫
Ω

ddx ρ(x, t)
)n〉. In Eq. (4.70) we have also introduced the

diagrammatic notation for the nth full moment of the integrated particle number den-
sity. The hatched vertex henceforth indicates generally a sum of possibly disconnected
diagrams involving an arbitrary amount of sources. More specifically, here it is the
n-fold spatial integral of a sum of products of connected diagrams. An example for
such a sum is Eq. (4.44). These moments are perfectly suited for being calculated in
both Doi-Peliti and response field field theories, as done in the following.

An alternative form of our particle entity signature can be obtained by recognising that
the left hand side of Eq. (4.69) is also the moment-generating function 〈exp{zX}〉 of
the random variable X =

∫
Ω

dx ρ(x, t) evaluated at z = 2π̊ı. It is a well-known result
from the field-theoretic literature on equilibrium critical phenomena [171, 31] that the
generating function of the full moments 〈Xn〉 can be expressed as the exponential of the
generating function of the so-called connected moments, denoted 〈Xn〉c. Outside the
field-theoretic literature, connected moments are usually referred to as cumulants [291].
While one would normally expect source fields j(x, t) to be introduced corresponding
to a conjugate variable z at each point in space and time, in the present context a single
variable suffices, as in Eq. (4.70) every field ρ(x, t) is integrated over the same volume
Ω. Diagrammatically,

∞∑
n=0

zn

n!
n =̂

∞∑
n=0

zn

n!

〈(∫
Ω

ddx ρ(x, t)

)n〉
=

〈
exp

(
z

∫
Ω

ddx ρ(x, t)

)〉

= exp

( ∞∑
n=1

zn

n!

〈(∫
Ω

ddx ρ(x, t)

)n〉
c

)
= exp

( ∞∑
n=1

zn

n!
n

)
, (4.71)

where we have introduced the notation for the nth connected moment of the integrated
particle number density, shown as a circular vertex on the right, which differs from that
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of the corresponding full moment also by the presence of an explicit, single, ingoing
propagator emerging from a single source, shown as a filled circle, the only possible
form of a connected diagram contributing to moments of the density. In equilibrium
statistical mechanics, this relationship provides the connection between the partition
function and the Helmholtz free energy [171, 31]. Generating functions of observables
such as n-point correlation functions of ρ(x, t) can be reduced to those of connected
diagrams as long as the observables can be written as (functional) derivatives of an
exponential and provided that each resulting diagram can be written as a product of
connected diagrams. Under these conditions, Eq. (4.71) does all the right accounting.

Evaluating Eq. (4.71) at z = 2π̊ı, according to Eq. (4.70) one can write

exp

( ∞∑
n=1

(2π̊ı)n

n!

〈(∫
Ω

ddx ρ(x, t)

)n〉
c

)
= 1 , (4.72)

or, equivalently,

∞∑
n=1

(2π̊ı)n

n!
n =̂

∞∑
n=1

(2π̊ı)n

n!

〈(∫
Ω

ddx ρ(x, t)

)n〉
c

= 2π̊ı` (4.73)

for some integer ` ∈ Z, on the basis of the connected moments of the particle number,
to be compared to the particle signature on the basis of the full moments, Eq. (4.70).

4.4 Particle entity in Doi-Peliti

Doi-Peliti field theories are designed to respect particle entity and they do indeed do so
on a rather fundamental level. To probe for particle entity, we want to use Eq. (4.69)
with ρ(x, t) replaced by an object suitable for a Doi-Peliti field theory. In such a field
theory, the instantaneous particle number at any position x is probed by the number
operator n̂(x) = a†(x)a(x). The expected particle number at position x and time t is
therefore

〈n(x, t)〉 = 〈☼| a†(x)a(x) |Ψ(t)〉 , (4.74)

using a continuum version of the notation introduced in Section 4.2, in particular
Eq. (4.3). While this expectation might be any non-negative real, the instantaneous
a†(x)a(x) is an integer. As already discussed in Section 4.3, Eq. (4.69), we therefore
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expect
〈☼| exp

(
2π̊ıa†(x)a(x)

)
|Ψ(t)〉 = 1 (4.75)

to hold for every x, as exp{2π̊ın} = 1 for any n ∈ Z. If this holds for every point x, it
also holds for every patch Ω, since

〈☼| exp

(
2π̊ı
∑
x∈Ω

a†(x)a(x)

)
|Ψ(t)〉 = 〈☼|

∏
x∈Ω

exp
(
2π̊ıa†(x)a(x)

)
|Ψ(t)〉 , (4.76)

where we have used that operators at different x commute. In the continuum, one
might argue that the particle number at x can only ever be 0 or 1, possibly leading to
some simplifications, but on the lattice occupation is not bound to be sparse in this
sense.

To show that Eq. (4.75) is indeed satisfied in general Doi-Peliti field theories, we follow
the standard procedure, outlined in Eq. (4.14), to express the operator exp

(
2π̊ıa†(x)a(x)

)
in terms of scalar fields ψ(x, t) and ψ†(x, t). The simple mapping of operator to field
applies as soon as the operators are normal ordered,

exp
(
za†(x)a(x)

)
=
∞∑
n=0

1

n!
zn
(
a†(x)a(x)

)n (4.77)

=
∞∑
n=0

1

n!
zn

n∑
k=0

{
n

k

}(
a†(x)

)k
a(x)k (4.78)

where we have replaced 2π̊ı by z to improve readability and used [215] to normal order(
a†(x)a(x)

)n. In terms of fields, the observable Eq. (4.76) is thus

O = 〈☼| exp

(
z
∑
x∈Ω

(
a†(x)

)k
a(x)k

)
|Ψ(x, t)〉 (4.79)

= 〈☼|
∏
x∈Ω

∞∑
n=0

1

n!
zn

n∑
k=0

{
n

k

}(
a†(x)

)k
a(x)k |Ψ(x, t)〉 (4.80)

=

〈∏
x∈Ω

∞∑
n=0

1

n!
zn

n∑
k=0

{
n

k

}
ψk(x, t)

〉
(4.81)

=

〈
exp

(∑
x∈Ω

ψ(x, t)(ez − 1)

)〉
(4.82)
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as 〈☼| (a†(x))k = 〈☼| [227]. From Eq. (4.81) to (4.82), we draw on the the mixed
bivariate generating function for the Stirling numbers of the second kind [68],

∞∑
n=0

n∑
k=0

{
n

k

}
1

n!
znyk = exp(y(exp{z} − 1)) . (4.83)

For z = 2π̊ı, and any integer multiple thereof, Eq. (4.82) indeed produces O = 1 as
required by Eq. (4.69). Because this calculation never draws on any particular action,
but rather on the fundamentals of normal ordering, Doi-Peliti field theories respect
particle entity universally in the presence of any interactions and potentials.

4.5 Particle entity in response field theories: Dean’s equation

Demonstrating that the response field theory derived from Dean’s equation possesses
particle entity turns out to be a much more challenging task, which requires us to
compute explicitly the connected moments of the integrated particle number density to
arbitrary order. This calculation draws on the specific action Eq. (4.21) and (4.22) as
we perform it here for the case of non-interacting diffusive particles without external
potential. This is done most conveniently by first computing the connected moments
of the density in the mixed momentum-time representation, where Dean’s action reads

A[ρ, ρ̃] =

∫
d̄dkdt ρ̃(k, t)(∂t +Dk2)ρ(−k, t)− ρ̃(k, t)

∑
i

nie
ı̊k·xiδ(t− ti)

+

∫
d̄dkd̄dk′dtD(k · k′)ρ̃(k, t)ρ̃(k′, t)ρ(−(k + k′), t). (4.84)

In this parametrisation, we find (Appendix 4.A, Eq. (4.146))

〈ρ(k1, t)...ρ(kn, t)〉c = n0θ(t− t0) exp{̊ı(k1 + ...kn) · x0}
n∑

m=1

(−1)m−1(m− 1)! (4.85)

×
∑

{P1,...,Pm}∈P({1,...,n},m)

exp

{
−T (t− t0)

m∑
i=1

K (Pi)
2

}
.

with P ({1, . . . , n},m) the set of all partitions of the set {1, . . . , n} into m non-empty,
distinct subsets Pi with i = 1, ...,m, i.e. ∪mi=1Pi = {1, 2, . . . , n} and Pi ∩ Pj = ∅ for
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i 6= j. The sum thus runs over all possible partitions of {1,2,. . . ,n} into m non-empty
sets. There is one partition for m = n and n for m = 1. The vector featuring in the
right-most exponential of Eq. (4.85)

K (Pi) =
∑
p∈Pi

kp (4.86)

is the total momentum given by the indices in the subset Pi, i.e. it is the total momentum
of the subset Pi, and by linearity, K (A) + K (B) = K (A ∪ B). For example, one
partition into two of {1, 2, 3, 4} is {P1 = {1, 2, 4},P2 = {3}}, which is one of 7 elements
of P ({1, 2, 3, 4}, 2). In this example, the momenta of the subsets are K (P1) = k1 +

k2 + k4 and K (P2) = k3. Diagrammatically, the right-hand side of Eq. (4.85) is
obtained by summing over all connected, topologically distinct diagrams with a single
incoming propagator and n outgoing propagators labelled by the external momenta
ki (i = 1, ..., n), where we need to account for all non-equivalent permutations of the
latter.

The connected moments of the integrated particle number density in a patch Ω are then
obtained by Fourier back-transforming Eq. (4.85) into position-time representation and
integrating over the probing locations xi ∈ Ω,〈∫

Ω

ddx1 ...d
dxn ρ(x1, t)...ρ(xn, t)

〉
c

(4.87)

=

∫
Ω

n∏
i=1

ddxi

∫ n∏
j=0

d̄dkj exp

(
−̊ı

n∑
`=1

k` · x`
)
〈ρ(k1, t)...ρ(kn, t)〉c (4.88)

=

∫
Ω

n∏
i=1

ddxi

∫ n∏
j=1

d̄dkj exp

(
−̊ı

n∑
`=1

k` · (x` − x0)

)
(4.89)

× n0θ(t− t0)
n∑

m=1

(−1)m−1(m− 1)!
∑

{P1,...,Pm}∈P({1,...,n},m)

exp

{
−D(t− t0)

m∑
p=1

K (Pp)
2

}
.

The integrals in Eq. (4.89) can be carried out partition by partition, by taking the
integration inside the summation over m = 1, . . . , n and the partitions {P1, . . . } ∈
P ({1, . . . , n},m). As xi and kj are both dummy variables, we may think of subset Pp
containing indices 1, . . . , a with a = |Pp|, so that the integrals to be carried out for each
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p = 1, . . . ,m are

Jp =

∫
Ω

a∏
i=1

ddxi

∫ a∏
j=1

d̄dkj exp

(
−̊ı

a∑
`=1

k` · (x` − x0)

)
exp
{
−D(t− t0)K (Pp)

2} .
(4.90)

In this indexing we have K (Pp) = k1 + · · · + ka which simplifies to k̃1 after suitable
shifting of the origin in the integration over k1 = k̃1 − (k2 + · · ·+ ka), so that

Jp =

∫
Ω

a∏
i=1

ddxi

∫
d̄dk̃1 exp

{
−̊ık̃1 · (x1 − x0)

}
exp
{
−D(t− t0)k̃2

1

}
(4.91a)

×
∫ a∏

j=2

d̄dkj exp

(
−̊ı

a∑
`=2

k` · (x` − x1)

)

=

∫
Ω

a∏
i=1

ddxiG(x1 − x0, t− t0)δ(x2 − x1)...δ(xa − x1) (4.91b)

= IΩ(t− t0) (4.91c)

where we have used Eqs. (4.32) and (4.34) in Eq. (4.91b) and introduced

IΩ(t− t0) =

∫
Ω

ddxG(x− x0, t− t0) , (4.92)

in Eq. (4.91c), which is the probability to find a particle at time t within the volume Ω

that had at time t0 been placed at x0. We may drop the time-dependence of IΩ where
that improves readability.

As Jp is independent of the specific partition, the sum over partitions {P1, . . . ,Pm} ∈
P ({1, . . . , n},m) in Eq. (4.89) amounts to multiplying a product of m such integrals
by the number of partitions, given by the Stirling numbers of the second kind. Overall,

n =̂

〈(∫
Ω

ddx ρ(x, t)

)n〉
c

= −n0θ(t−t0)
n∑

m=1

(
−IΩ

)m{n
m

}
(m−1)! , (4.93)

which provides us with the information we need to probe the theory for particle entity.
It is a key result of the present work. Its derivation is generalised to distinct initial
positions in Appendix 4.B.
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Using the particle entity signature based on connected diagrams, Eq. (4.73), confronts
us with some undesirable hurdles due to convergence. We therefore turn our attention to
the full moments, which can be constructed from the connected moments via Eq. (4.71),
so that for t > t0,

n =̂

〈(∫
Ω

ddx ρ(x, t)

)n〉
(4.94)

=
dn

dzn

∣∣∣∣
z=0

exp

( ∞∑
m=1

zm

m!

〈(∫
Ω

ddx ρ(x, t)

)m〉
c

)
(4.95)

=
dn

dzn

∣∣∣∣
z=0

exp

( ∞∑
m=1

zm

m!
(−n0)

m∑
`=1

(−IΩ)`
{
m

`

}
(`− 1)!

)
(4.96)

=
dn

dzn

∣∣∣∣
z=0

exp

(
−n0

∞∑
`=1

(−IΩ)`(`− 1)!
∞∑
m=`

zm

m!

{
m

`

})
, (4.97)

where we have changed the order of summation in the exponential to arrive at the final
equality. This step deserves further scrutiny below. Using in Eq. (4.97) the generating
function of the Stirling numbers [68] in the form

∞∑
m=`

zm

m!

{
m

`

}
=

(ez − 1)`

`!
, (4.98)

as used previously in the Doi-Peliti field theory, Eq. (4.83), leads to

n =̂
dn

dzn

∣∣∣∣
z=0

exp

(
−n0

∞∑
`=1

(−IΩ)`
(ez − 1)`

`

)
. (4.99)

We briefly return to the change of the order of summation from Eq. (4.96) to (4.97).
To justify this, we require absolute convergence

∞∑
`=1

∞∑
m=`

|z|m
m!

I`Ω

{
m

`

}
(`− 1)! <∞ (4.100)

for IΩ ∈ [0, 1] and z within a finite vicinity around the origin, given the repeated differ-
entiation in Eq. (4.99). As Eq. (4.98) holds for all z ∈ C, we require

∑∞
`=1 I

`
Ω(exp(|z|)−

1)`/` <∞ and thus |z| < ln(2) by the ratio test.
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Rewriting the exponent in Eq. (4.99) for any |z| < ln(2) as a logarithm,

∞∑
l=1

(−x)l

l
= − log(1 + x) , (4.101)

we have

n =̂
dn

dzn

∣∣∣∣
z=0

(1 + (ez − 1)IΩ)n0 (4.102)

=
dn

dzn

∣∣∣∣
z=0

n0∑
k=0

(
n0

k

)
(ez − 1)kIkΩ (4.103)

=

n0∑
k=0

(
n0

k

)
IkΩ

dn

dzn

∣∣∣∣
z=0

k∑
j=0

(
k

j

)
(−1)jez(k−j) (4.104)

=

n0∑
k=0

(
n0

k

)
IkΩ

k∑
j=0

(
k

j

)
(−1)j(k − j)n , (4.105)

and using the definition of the Stirling numbers of the second kind [68]

k∑
g=0

(
k

g

)
(−1)g(k − g)n = k!

{
n

k

}
, (4.106)

we finally arrive at

n =̂

n0∑
k=0

(
n0

k

)
IkΩk!

{
n

k

}
. (4.107)

This is the central result of the present section.

The nth full moment, in the form of the right hand side Eq. (4.107), has an instructive
physical interpretation drawing on n0 being integer. To see this, we write the nth
moment of the particle number as〈(∫

Ω

ddx ρ(x, t)

)n〉
=

∫
Ω

ddx′1ddx′2 . . .d
dx′n 〈ρ(x′1, t)ρ(x′2, t) . . . ρ(x′n, t)〉 (4.108)

with each density ρ(x′i, t) considered a random variable as a function of the positions
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xj(t) of n0 particles indexed by j = 1, 2, . . . , n0

ρ(x′i, t) =

n0∑
j=1

δ(x′i − xj(t)) , (4.109)

generating nn0 terms of products of δ-functions in Eq. (4.108). To calculate the right-
hand side of Eq. (4.108) on the basis of Eq. (4.109) using Eq. (4.92) in the form∫

Ω

ddx′ 〈δ(x′ − xj(t)〉 = IΩ(t− t0) (4.110)

requires careful bookkeeping of how often each particle coorrdinate xj(t) is repeated.
For example ∫

Ω

ddx′1ddx′2 〈δ(x′1 − x1(t))δ(x′2 − x2(t))〉 = I2
Ω (4.111a)∫

Ω

ddx′1ddx′2 〈δ(x′1 − x1(t))δ(x′2 − x1(t))〉 = IΩ (4.111b)

as particle coordinates are independent in Eq. (4.111a), but not in Eq. (4.111b), where in
fact δ(x′1−x1(t))δ(x′2−x1(t)) = δ(x′1−x1(t))δ(x′2−x′1). To calculate the right-hand side
of Eq. (4.108) thus is a matter of allowing for k = 1, 2, . . . , n distinct particle coordinates
xj(t) from each of the n sums Eq. (4.109). There are n0(n0−1) · . . . ·(n0−k+1) =

(
n0

k

)
k!

such choices. As each of the ρ(x′i, t) is a function of a different dummy variable, they
have to be distributed among the k distinct particle coordinates. There are

{
n
k

}
choices

for that. The integration produces IkΩ depending on the number k of distinct particle
coordinates following the reasoning for Eq. (4.111). In summary, we arrive at〈(∫

Ω

ddx ρ(x, t)

)n〉
=

n∑
k=0

(
n0

k

)
IkΩk!

{
n

k

}
, (4.112)

including k = 0 in the summation to cover the special case of n = 0. Eq. (4.112) is
subtly different from Eq. (4.107), as the upper limit of the sum in Eq. (4.107) is n0,
while it is n in Eq. (4.112). However,

{
n
k

}
in Eq. (4.107) vanishes if k exceeds n and(

n0

k

)
in Eq. (4.107) vanishes if integer k exceeds integer n0, i.e. in both sums the upper

limit may be replaced by min (n, n0), provided only n0 is integer. We conclude that the
full moment Eq. (4.107) has a sensible interpretation in terms of particle numbers only
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if n0 is integer.

A second form of Eq. (4.107) can be derived, which offers a more immediate physical
interpretation. To this end, we draw on the identity

n0∑
k=0

(
n0

k

)
(1− x)n0−kxkkn =

n0∑
`=0

(
n0

`

)
x``!

{
n

`

}
(4.113)

which can be obtained by resolving the binomial (1−x)n0−k on the left into a sum, col-
lecting terms of order x` and then using

(
n0

k

)(
n0−k
`−k
)

=
(
n0

`

)(
`
k

)
to arrive at an expression

that simplifies to the final sum by means of Eq. (4.106).

Using Eq. (4.113) in Eq. (4.107) gives〈(∫
Ω

ddx ρ(x, t)

)n〉
=

n0∑
k=0

(
n0

k

)(
1− IΩ(t− t0)

)n0−k(
IΩ(t− t0)

)k
kn , (4.114)

which has a rather simple physical interpretation: of the (integer) n0 particles, k can be
found in the volume Ω, each independently with probability IΩ, so that the probability
of such a configuration is that of a repeated Bernoulli trial,

(
n0

k

)
(1 − IΩ)n0−kIkΩ. As

k particles are in the relevant volume, the contribution to the nth particle number
moment is kn.

In the form Eq. (4.114), the particle number moments can be used in our particle entity
signature Eq. (4.70),

∞∑
n=0

(2π̊ı)n

n!
n =

∞∑
n=0

(2π̊ı)n

n!

n0∑
k=0

(
n0

k

)
(1− IΩ)n0−kIkΩk

n (4.115)

=

n0∑
k=0

(
n0

k

)
(1− IΩ)n0−kIkΩ

( ∞∑
n=0

(2π̊ı)n

n!
kn

)
= 1 , (4.116)

where we have used e2π̊ık = 1 for k ∈ Z in the last bracket and the normalisation of
a binomial distribution. To change the order of summation going from Eq. (4.115) to
(4.116) we draw on the absolute convergence of the last line Eq. (4.116). This concludes
the proof of particle entity on the basis of Eq. (4.70) in the Dean formalism.

We have seen how the falling factorials n0(n0− 1) · . . . · (n0− k+ 1) =
(
n0

k

)
k! emerge in
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Dean’s theory by computing the connected moments, Eq. (4.107) and also Eq. (4.112),
explicitly. This structure is another signature of particle entity, in the sense that it
highlights the special role played by the integer nature of the initial particle number
n0. Unsurprisingly, it similarly emerges in Doi-Peliti. In particular, the full moments
of the particle number at position x are given by

n =̂ 〈☼|
(
a†(x)a(x)

)n
exp
{
Â(t− t0)

}(
a†(x0)

)n0 |0〉 , (4.117)

where Â denotes the time evolution operator of Eq. (4.4). We then use

(
a†(x0)

)n0 =
(
ã(x0) + 1

)n0 =

n0∑
k=0

(
n0

k

)(
ã(x0)

)k (4.118)

together with [108]

〈☼| (a†(x)a(x))n =
n∑
`=0

{
n

`

}
〈☼|

(
a(x)

)` (4.119)

to rewrite the right-hand side of Eq. (4.117) as

〈☼| (a†(x)a(x))n exp
{
Â(t− t0)

}
(a†(x0))n0 |0〉

=
n∑
`=0

{
n

`

} n0∑
k=0

(
n0

k

)
〈☼|

(
a(x)

)`
exp
{
Â(t− t0)

}(
ã(x0)

)k |0〉 (4.120)

=

n0∑
`=0

{
n

`

}(
n0

`

)
`! 〈☼| a(x) exp

{
Â(t− t0)

}
ã(x0) |0〉` (4.121)

where we have used 〈☼| (a(x))` exp Â(t − t0))(ã(x0))k |0〉 = δk``! 〈☼| a(x) exp Â(t −
t0))ã(x0) |0〉` in the absence of interactions. The final expression corresponds to the
one we found via the Dean route, Eq. (4.107), with IΩ(t− t0) replaced by the Doi-Peliti
propagator 〈☼| a(x) expA(t− t0))ã(x0) |0〉.

197



4.6 Conclusion

To the best of our knowledge, this paper presents the first formalisation and systematic
study of the concept of particle entity in the context of statistical field theory. Focusing
on two well-known field theoretic formalisms applied to the study of stochastic processes,
namely the Doi-Peliti [289] and the Martin-Siggia-Rose-Janssen-De Dominicis [195, 146,
81] response field theories, we have demonstrated that particle entity is enforced in
a formalism-specific way. In Doi-Peliti field theories, particle entity is built into its
foundation, namely in the commutation relation of the ladder operators, Eq. (4.1).
In the response field field theory derived from Dean’s equation, particle entity is a
perturbative feature that relies on the precise form of the interaction vertex, Eq. (4.36).
This "Dean vertex" originates from the Itô-multiplicative noise term in the original
Langevin equation Eq. (4.17). It compensates for some overcounting that occurs in the
bilinear part of the field theory Eq. (4.26), a mechanism that was already identified in
an earlier work on the statistics of the non-interacting Brownian gas [292]. As a result,
one is faced with more complicated branching diagrams in the response field formalism
equipped with particle entity via Dean’s equation compared to the Doi-Peliti formalism,
cf. Eqs. (4.38) and (4.44) or Eqs. (4.57) and (4.58).

To test for particle entity, we introduced the condition Eq. (4.69), that we rewrote
in terms of particle number moments, Eq. (4.70), and, on the basis of the identity
Eq. (4.71), in terms of connected moments, Eq. (4.73).

In Section 4.4, we were able to show in a few lines that particle entity according to
Eq. (4.70) generally holds in Doi-Peliti field theories, Eq. (4.82). This finding is inde-
pendent of the specifics of the action. To demonstrate particle entity for non-interacting,
diffusive field theories on the basis of Dean’s equation, we used in Section 4.5 our key
result on the connected particle number moments, Eq. (4.93), before constructing the
main result Eq. (4.116) on the basis of the full moments, with some of the more cum-
bersome calculations relegated to Appendix 4.A.

It is interesting to speculate whether our derivation simplifies further by exploiting the
well-known identity [171] relating the Legendre transform of the generating function
of the connected moments and the effective action, which only depends on the one-
particle irreducible (1PI) diagrams. Since 1PIs represent a relatively small subset of
all connected diagrams, a particle entity signature of this type might be more easily
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applicable to theories involving pair interactions, which are beyond the scope of the
present analysis.

4.A Induction over connected diagrams

We want to prove that the connected moments of the particle number density in the
response field field theory derived from Dean’s equation obey Eq. (4.85) to all orders of
n, restated here for convenience:

〈ρ(k1, t)...ρ(kn, t)〉c = n0θ(t− t0) exp{̊ı(k1 + ...kn) · x0}
n∑

m=1

(−1)m−1(m− 1)! (4.122)

×
∑

{P1,...,Pm}∈P({1,...,n},m)

exp

{
−D(t− t0)

m∑
i=1

K (Pi)
2

}
.

For this we have to consider all diagrams with a single incoming leg and an arbitrary
number n of outgoing legs, the first four orders of which are depicted in Eqs. (4.123),
(4.124), (4.125) and (4.126).

〈ρ(k1, t)〉c =̂ 1 = k1 (4.123)

〈ρ(k1, t)ρ(k2, t)〉c =̂ 2 =
k1

k2

(4.124)

〈ρ(k1, t)ρ(k2, t)ρ(k3, t)〉c =̂ 3 =

k1

k2

k3

+

k1

k3

k2

+

k3

k2

k1

(4.125)
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〈ρ(k1, t)ρ(k2, t)ρ(k3, t)ρ(k4, t)〉c =̂ 4

=

k1

k2
k3

k4

+

k1

k4
k3

k2

+

k1

k3
k2

k4

+

k1

k2

k3
k4

+

k1

k3

k2
k4

+

k3

k2

k1
k4

+

k1

k2

k4
k3

+

k1

k4

k2
k3

+

k4

k2

k1
k3

+

k1

k4

k3
k2

+

k1

k3

k4
k2

+

k3

k4

k1
k2

+

k4

k2

k3
k1

+

k4

k3

k2
k1

+

k3

k2

k4
k1

. (4.126)

The shading of the circular vertices above is meant as a visual reminder that we are
now dealing with connected moments of the local number density, which depend on an
unordered set of n external momenta k1, ...,kn, as opposed to connected moments of
the integrated number density in a patch Ω (cf. Eq. (4.85) and Eq. (4.89) ). The shaded
diagrams are by construction invariant under permutations of the momenta k1, ...,kn.

We proceed by determining some of the shaded diagrams. The trivial case, n = 1 shown
in Eq. (4.123), is given by the propagator Eq. (4.34) and the perturbative contribution
from the source Eq. (4.22) with coupling n0. Through direct computation in the mixed
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momentum-time representation, see Eq. (4.84), we find for the n = 2 case Eq. (4.124):

2

=̂n0Θ(t− t0) exp{̊ı(k1 + k2) · x0}

×
∫ t

t0

dt′ (−2Dk1 · k2) exp
{
−D(t− t′)k2

1

}
exp
{
−D(t− t′)k2

2

}
exp
{
−D(t′ − t0)k2

0

}
= n0 exp{̊ı(k1 + k2) · x0}

[
exp
{
−D(t− t0)(k1 + k2)2

}
− exp

{
−D(t− t0)(k2

1 + k2
2)
}]

,

(4.127)

where the integral over t arises from representing the Dean vertex Eq. (4.36) in k-t-
space. Each Dean vertex comes with a symmetry factor of 2. A factor of (−2k1 · k2)−1

that arises in the t integration precisely cancels with the vertex prefactor −2Dk1 · k2,
which simplifies the result Eq. (4.127) considerably. A similar calculation for the n = 3

case Eq. (4.125) yields

3

=̂n0Θ(t− t0) exp{̊ı(k3 + k2 + k1) · x0}
[
exp
{
−D(t− t0)(k1 + k2 + k3)2

}
− exp

{
−D(t− t0)((k1 + k2)2 + k2

3)
}
− exp

{
−D(t− t0)((k1 + k3)2 + k2

2)
}

− exp
{
−D(t− t0)((k3 + k2)2 + k2

1)
}

+ 2 exp
{
−D(t− t0)(k2

1 + k2
2 + k2

3)
}]

. (4.128)

The left-hand side of Eq. (4.128) contains the sum over all distinct ways to assign the
external momenta to the outgoing legs, as shown in (4.125). The whole sum of the terms
is necessary for the coefficients of the Dean vertices to cancel with the k-dependent factor
coming down from the t-integrations. We will see that this mechanism is instrumental
in performing the induction later on.

Based on Eq. (4.127) and (4.128) we conjecture and indeed show below that a general
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connected moment has the form Eq. (4.85),

n =̂ 〈ρ(k1, t)ρ(k1, t) . . . ρ(kn, t)〉

= n0θ(t− t0) exp{̊ı(k1 + . . .) · x0}
n∑

m=1

(−1)m−1(m− 1)! (4.129)

×
∑

{P1,...,Pm}∈P({1,...,n},m)

exp

{
−D(t− t0)

m∑
i=1

K (Pi)
2

}
,

with P ({1, . . . , n},m) the set of all partitions of the set {1, . . . , n} into m non-empty,
distinct subsets Pi with i = 1, 2, . . . ,m so that ∪mi=1Pi = {1, 2, . . . , n}, as introduced
after Eq. (4.85). The second sum

∑
{P1,...,Pm}∈P({1,...,n},m) in Eq. (4.129) thus runs over

all distinct partitions of {1, 2, . . . , n} into m subsets P1, . . . ,Pm. There is no order to
the subsets, so that the partition {{1}, {2}} of {1, 2} is identical to {{2}, {1}} and thus
considered the same in P ({1, 2}, 2). We use K (P) to denote sums over momenta given
by the indices in set P, Eq. (4.86), K (P) =

∑
p∈P kp. Eq. (4.129) is a function of the set

of momenta {k1, . . . ,kn}, or simply the indices {1, . . . , n} alone, and invariant under
their permutation.

Eq. (4.129) will be our induction hypothesis, with the induction to be taken in n, the
number of outgoing legs. The base cases n = 1, n = 2 and n = 3 are immediately veri-
fied, as P ({1}, 1) = { {{1}} } reduces Eq. (4.129) trivially to Eq. (4.34), P ({1, 2}, 1) =

{ {{1, 2}} } and P ({1, 2}, 2) = { {{1}, {2}} } to Eq. (4.127) and P ({1, 2, 3}, 1) =

{ {{1, 2, 3}} }, P ({1, 2, 3}, 2) = { {{1}, {2, 3}}, {{2}, {3, 1}}, {{3}, {1, 2}} } and P ({1, 2, 3}, 3) =

{ {{{1}, {2}, {3}}} } to Eq. (4.128).

We want to show that if Eq. (4.129) holds for all strictly positive n ≤ m − 1 then it
also holds for n = m. To this end we consider two distinct subsets of indices A and B

with cardinality |A| > 0 and |B| > 0 respectively, so that A∩ B = ∅, A∪ B = {1, . . . , n}
and thus |A|+ |B| = n. Each of these sets enters as the argument of diagrams

|A| and |B|

that have |A| and |B| external legs respectively, each parameterised by the momenta
given by the subsets, {kq|q ∈ A} and {kq|q ∈ B} respectively. These diagrams can be
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“stitched together” via the Dean vertex, Eq. (4.36), so that

|A|

|B|

=̂n0θ(t− t0) exp{̊ı(k1 + . . .+ kn) · x0}
∫ t

t0

dt′ (−2DK (A) ·K (B))e−D(t′−t0)(k1+...+kn)2

×

 |A|∑
a=1

(−1)a−1(a− 1)!
∑

{P1,...,Pa}∈P(A,a)

exp

{
−D(t− t′)

a∑
i=1

K (Pi)
2

} (4.130)

×

 |B|∑
b=1

(−1)b−1(b− 1)!
∑

{Q1,...,Qb}∈P(B,b)

exp

{
−D(t− t′)

b∑
j=1

K (Qj)
2

}
=n0θ(t− t0) exp{̊ı(k1 + . . .+ kn) · x0}

|A|∑
a=1

|B|∑
b=1

(−1)a+b(a− 1)!(b− 1)!(−2DK (A) ·K (B))

×
∑

{P1,...}∈P(A,a)

∑
{Q1,...}∈P(B,b)

× exp
{
D(k1 + ...+ kn)2t0

}
exp

{
−Dt

a∑
i=1

K (Pi)
2

}
exp

{
−Dt

b∑
j=1

K (Qj)
2

}

×
∫ t

t0

dt′ exp

[
Dt′

(
a∑
i=1

K (Pi)
2 +

b∑
j=1

K (Qj)
2 − (k1 + · · ·+ kn)2

)]
.

On the left is a diagram with |A| + |B| legs and on the right we use Eq. (4.129) for
diagrams with fewer legs, because neither A nor B can be empty. If we can show
that the sum of all diagrams on the left obeys Eq. (4.129), then the induction step is
completed.

Since ∪ai=1Pi = A, we have from Eq. (4.86) that
∑a

i=1 K (Pi) = K (A) and similarly∑b
j=1 K (Qj) = K (B) and further K (A) + K (B) = K ({1, . . . , n}) = k1 + . . .kn, so

that the exponent in square brackets appearing within the t′ integral in the last line of
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Eq. (4.130) can be rearranged as follows:

a∑
i=1

K (Pi)
2 +

b∑
j=1

K (Qj)
2 − (k1 + · · ·+ kn)2

= −2

(
K (A) ·K (B) +

a∑
i=1

a∑
e=i+1

K (Pi) ·K (Pe) +
b∑

j=1

b∑
f=j+1

K (Qj) ·K (Qf )

)
,

(4.131)

with the nested double summations generating all cross-terms once. In fact, the bracket
on the right hand side of Eq. (4.131) is the sum of the vector products of all ab+ a(a−
1)/2+b(b−1)/2 = (a+b)(a+b−1)/2 distinct pairs of vectors generated with Eq. (4.86)
from the a+ b sets {P1, . . . ,Pa,Q1, . . . ,Qb}. With Eq. (4.131) we arrive at

|A|

|B|
=̂n0θ(t− t0) exp{̊ı(k1 + . . .+ kn) · x0}

|A|∑
a=1

|B|∑
b=1

(−1)a+b(a− 1)!(b− 1)!

×
∑

{P1,...}∈P(A,a)

∑
{Q1,...}∈P(B,b)

K (A) ·K (B)

K (A) ·K (B) +
a∑
i=1

a∑
e=i+1

K (Pi) ·K (Pe) +
b∑

j=1

b∑
f=j+1

K (Qj) ·K (Qf )

(4.132)

×
[
e−D(t−t0)(k1+...+kn)2 − e−D(t−t0)(

∑a
i=1 K(Pi)

2+
∑b
j=1 K(Qj)

2)
]
.

The main obstacle to simplify Eq. (4.132) further at this point is the fraction of scalar
products of K (·)’s. Similar to the 3-point case, Eq. (4.128), this will simplify only
once we consider the sum over all diagrams with non-equivalent permutations of the
external momenta. Since the expressions inserted for sub-diagrams already take care of
permutations within each subdiagram we need to consider only different partitionings
of the indices 1, ..., n into subsets A and B. Diagrammatically, for n ≥ 2,

n =
∑

{A,B}∈P({1,...,n},2)

|A|

|B|
, (4.133)

where A and B are again the sets of indices of the momenta associated with each part
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of the partition. The external fields of the sub-diagram labelled |A| have momenta
ka with a ∈ A and correspondingly for the other sub-diagram. The cardinality |A| of
the non-empty partition A, ranges from 1 to n − 1. The cardinality of the non-empty
partition B is then given by |B| = n− |A|. Using Eq. (4.132) for the diagrams summed
over in Eq. (4.133), we re-organise the partitioning, as explained below, and rewrite it
as

n

=̂
∑

{A,B}∈P({1,...,n},2)

|A|∑
a=1

∑
{P1,...}∈P(A,a)

|B|∑
b=1

∑
{Q1,...}∈P(B,b)

F({P1, . . . ,Pa}, {Q1, . . . ,Qb}) (4.134a)

=
n∑

m=2

∑
{W1,...,Wm}∈P({1,...,n},m)

 ∑
{TA,TB}∈P({1,...,m},2)

F
(⋃
t∈TA
{Wt},

⋃
t∈TB
{Wt}

) , (4.134b)

where F is given by

F({P1, . . . ,Pa}, {Q1, . . . ,Qb})

=

n0θ(t− t0) exp{̊ı(k1 + . . .+ kn) · x0}(−1)a+b (a− 1)! (b− 1)! K

(
a⋃
i=1

Pi

)
·K
(

b⋃
i=1

Qi

)
K

(
a⋃
i=1

Pi

)
·K
(

b⋃
i=1

Qi

)
+

a∑
i=1

a∑
e=i+1

K (Pi) ·K (Pe) +
b∑

j=1

b∑
f=j+1

K (Qj) ·K (Qf )

×
[
e−D(t−t0)(k1+...+kn)2 − e−D(t−t0)(

∑a
i=1 K(Pi)

2+
∑b
j=1 K(Qj)

2)
]
. (4.135)

The parameters a and b are the cardinalities of the first and the second partition in
the argument of F . This function depends on two partitions of two sets, A and B, and
it is invariant under exchange of its two arguments, which are sets of sets. On the
basis of the partitions and the globally known k1, . . . ,kn, all the vectors on the right of
Eq. (4.135) can be constructed, so that F is solely a function of the two partitions.

Both sides of Eq. (4.134) are performing the same summation, based on the five sums
from Eqs. (4.132) and (4.133). Both summations generate all possible ways of par-
titioning the n external legs into two or more subsets. In fact there is a one-to-one
correspondence between every term in the two sums, as we will demonstrate below.
The first sum in Eq. (4.134a) considers all partitions P ({1, . . . , n}, 2) of the full set of
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indices {1, . . . , n} into two sets, A and B. These indicate the momenta the two subdia-
grams shown in Eqs. (4.132) and (4.133) depend on. To calculate these two subdiagrams
all partitions of A and B need to be summed over, which is done in the remaining four
sums. The right-hand side Eq. (4.134b) of Eq. (4.134) performs the same summation,
but first produces all partitions of all {1, . . . , n} into m = 2, . . . , n non-empty subsets
{W1, . . . ,Wm}. In the rightmost sum, these subsets are distributed among the upper
and the lower subdiagram by perfoming a partition into two subsets TA and TB on
the indexing {1, . . . ,m} of the subsets Wt. These selections of subsets enter into the
function F , with, for example, the upper diagram being parameterised by the collection
of sets ⋃

t∈TA
{Wt} =

{
Wt1 ,Wt2 , . . .

}
6=
⋃
t∈TA

Wt for TA = {t1, t2, . . .} . (4.136)

Both summations of Eq. (4.134) generate all partitions of the indices and their division
into an upper and a lower subdiagram. Any term appearing on the left can be found on
the right and vice versa. A set of parameters {P1, . . . ,Pa} and {Q1, . . . ,Qb} on the left is
found on the right when m = a+ b and {W1, . . . ,Wm} = {P1, . . . ,Pa}∪{Q1, . . . ,Qb} are
the same partition of {1, . . . , n}, with exactly one of the partitions TA,TB of the elements
of {W1, . . . } such that ∪t∈TA{Wt} = {P1, . . . ,Pa} and ∪t∈TB{Wt} = {Q1, . . . ,Qb} or
equivalenty ∪t∈TA{Wt} = {Q1, . . . ,Qb} and ∪t∈TB{Wt} = {P1, . . . ,Pa}. Similarly, the
term generated by the partition ∪t∈TA{Wt},∪t∈TB{Wt} on the right, can be identified
on the left, as the one where A = ∪t∈TAWt and B = ∪t∈TBWt or vice versa, which
are both sets, not partitions. They need to be partitioned subsequently, for example
A into {P1, . . . ,Pa} = ∪t∈TAWt and B into {P1, . . . ,Pb} = ∪t∈TBWt or equally A into
{P1, . . . ,Pa} = ∪t∈TBWt and B into {P1, . . . ,Pb} = ∪t∈TAWt.

Writing TA = {α1, α2, . . . , αa} and TB = {β1, β2, . . . , βb}, the parameterisation of the
right-hand side of Eq. (4.134) allows us to express the denominator of F , Eq. (4.135),
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succinctly in terms of the new partition {W1, . . . ,Wm},

K (∪t∈TA{Wt}) ·K (∪t∈TB{Wt})

+
a∑
i=1

a∑
e=i+1

K (Wαi) ·K (Wαe) +
b∑

j=1

b∑
f=j+1

K
(
Wβj

)
·K
(
Wβf

)
=

m∑
u=1

m∑
v=u+1

K (Wu) ·K (Wv) (4.137)

as this is the sum of all cross-terms in the square of
∑m

t=1 K (Wt), as alluded to af-
ter Eq. (4.131). Further, the sum of the squares in the exponent of the right-most
exponential in Eq. (4.135) can be written as

a∑
i=1

K (Wαi)
2 +

b∑
j=1

K
(
Wβj

)2
=

m∑
u=1

K (Wu)
2 (4.138)

as TA ∪ TB = {1, . . . ,m}. Because the right-hand sides of Eqs. (4.137) and (4.138)
are independent of the partitioning of {W1, . . . ,Wm} via TA and TB, they can be taken
outside the sum over these partitions together with (−1)|TA|+|TB | = (−1)m,

n =̂n0θ(t− t0) exp{̊ı(k1 + . . .+ kn) · x0} (4.139)

×
n∑

m=2

(−1)m
∑

{W1,...,Wm}∈P({1,...,n},m)

e−D(t−t0)(k1+...+kn)2 − e−D(t−t0)(
∑m
u=1 K(Wu)2)∑m

u=1

∑m
v=u+1 K (Wu) ·K (Wv)

×

 ∑
{TA,TB}∈P({1,...,m},2)

(|TA| − 1)! (|TB| − 1)! K̄A · K̄B

 ,

where we use the shorthands

K̄A = K

(⋃
t∈TA
{Wt}

)
=
∑
t∈TA

K (Wt) (4.140a)

K̄B = K

( ⋃
t∈TB
{Wt}

)
=
∑
t∈TB

K (Wt) . (4.140b)
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Next we want to simplify the sum in square brackets in Eq. (4.139). Since it is over all
ways to partition {1, . . . ,m} into the two distinct sets that define K̄A and K̄B, we know
that the sum over the products K̄A · · · K̄B will involve every cross-term K (Wu) ·K (Wv)

with u 6= v at least once and by symmetry equally often. The sum will therefore cancel
with the denominator up to a pre-factor. In order to determine it, we pick a particular
scalar product, K (Wu) ·K (Wv) for some fixed u 6= v and consider those terms in the
sum that contain K (Wu) ·K (Wv):

Cu,v = K (Wu) ·K (Wv)

×
∑

{TA,TB}∈P({1,...,m},2)

I
(

(u ∈ TA∧v ∈ TB)∨ (u ∈ TB ∧v ∈ TA)
)

(|TA|−1)! (|TB|−1)! ,

(4.141)

where I(. . .) is an indicator function that is 1 only if indices u and v are in dif-
ferent subsets and 0 otherwise, so that the square bracket in Eq. (4.139) becomes∑m

u=1

∑m
v=u+1 Cu,v. We may therefore simply sum over all partitions where u and v

indeed are in different subsets, for example u in TA and v in TB — there is no need to
separately consider the case u ∈ TB and v ∈ TA, as the resulting partitions are identical.
The make-up of the subsets enters only in as far as their cardinalities are concerned,
which feature in the factorial. If nA = |TA| > 0 is the cardinality of TA, that leaves
nB = m− nA > 0 elements for TB. With one “seat” in TA given to u, there are nA − 1

further elements to be chosen from the m− 2 elements in {1, . . . ,m} \ {u, v},

Cu,v = K (Wu) ·K (Wv)
m−1∑
nA=1

(
m− 2

nA − 1

)
(nA − 1)! (m− nA − 1)!

= K (Wu) ·K (Wv)
m−1∑
nA=1

(m− 2)! = (m− 1)! K (Wu) ·K (Wv) , (4.142)

which means that the square bracket in Eq. (4.139) cancels with the denominator in
the preceding fraction up to a factor (m − 1)!, which can be taken outside the second
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sum,

n =̂n0θ(t− t0) exp{̊ı(k1 + . . .+ kn) · x0} (4.143)

×
n∑

m=2

(−1)m (m− 1)!
∑

{W1,...,Wm}∈P({1,...,n},m)

(
e−D(t−t0)(k1+...+kn)2 − e−D(t−t0)(

∑m
u=1 K(Wu)2)

)
.

The first exponential in the final bracket is independent of the partition, so that the
sum degenerates into the count of the ways a set of n elements can be partitioned into
m non-empty sets, given by the Stirling number of the second kind,

{
n
m

}
. We find with

the help of [122, 9.745.1]

n∑
m=2

(−1)m (m− 1)!
∑

{W1,...,Wm}∈P({1,...,n},m)

1 =
n∑

m=2

(−1)m (m− 1)!

{
n

m

}
= 1 . (4.144)

With that in place, we rewrite Eq. (4.143) as

n =̂n0θ(t− t0) exp{̊ı(k1 + . . .+ kn) · x0} (4.145)

×

e−D(t−t0)(k1+...+kn)2

+
n∑

m=2

(−1)m−1 (m− 1)!
∑

{W1,...,Wm}∈P({1,...,n},m)

e−D(t−t0)(
∑m
u=1 K(Wu)2)

 .

The exponential of −D(t − t0)(k1 + ... + kn)2 in the curly brackets is the summand
of the subsequent sum running over m ≥ 2 evaluated for m = 1, because the only
partition of {1, . . . , n} into m = 1 subsets is W1 = {1, . . . , n} which produces the vector
K (W1) = k1 + ...+ kn. It follows that

n =̂n0θ(t− t0) exp{̊ı(k1 + . . .+ kn) · x0} (4.146)

×
n∑

m=1

(−1)m−1 (m− 1)!
∑

{W1,...,Wm}∈P({1,...,n},m)

(
e−D(t−t0)(

∑m
u=1 K(Wu)2)

)
,

which is Eq. (4.129). We have thus demonstrated that if Eq. (4.129) holds for all
diagrams with fewer than n ≥ 2 legs, as they enter into Eq. (4.130), then Eq. (4.129)
also holds for the diagrams with n legs. This concludes the induction step and together
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with the base case n = 1 proves Eqs. (4.129) and (4.85) for all n ≥ 1.

4.B Multiple starting points

We generalise our calculation of the connected and full moments of the integrated
particle number density in Dean’s formalism, Section 4.5, to the case where a total of
n0 particles are initialised at H ≤ n0 distinct sites. We upgrade the previous derivation
by replacing in the action Eqs. (4.22) and (4.84) and correspondingly in Eqs. (4.24) and
(4.85)

n0 exp{ik0x0} by
H∑
h=1

n0,h exp{ik0x0,h} (4.147)

where x0,h for h = 1, ..., H denote the n0,h ∈ N particles’ initial positions such that

H∑
h=1

n0,h = n0 . (4.148)

In Section 4.5 and Appendix 4.A we were entirely concerned with connected diagrams,
where n0 exp{̊ıx0 · k0} only ever enters linearly. Replacing it according to Eq. (4.147)
renders each such diagram a sum over the H distinct locations, each such sum still to
be considered a single connected diagram. This equally applies to the central result
Eq. (4.93), which now reads

H∑
h=1

n
n0,h = −

H∑
h=1

n0,hθ(t− t0)
n∑

m=1

(IΩ,h(t− t0))m (m− 1)!

{
n

m

}
(4.149)

where IΩ,h(t − t0) denotes the transition probability from the starting point x0,h into
the set Ω.

The full moments of the integrated particle number density for distinct starting points
can also be derived straighforwardly following the calculation in Eqs. (4.95)–(4.105).
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Using Eq. (4.149) for the associated connected moments, we arrive at

n =̂
dn

dzn

∣∣∣∣
z=0

H∏
h=1

[1 + (ez − 1)IΩ,h)]
n0,h (4.150)

=
∑

j1+...+jH=n

(
n

j1, ..., jH

) H∏
h=1

djh

dzjh

∣∣∣∣
z=0

[1 + (ez − 1)IΩ,h]
n0,h (4.151)

=
∑

j1+...+jH=n

(
n

j1, ..., jH

) H∏
h=1

n0,h∑
kh=0

(
n0,h

kh

)
(IΩ,h)

kh kh!

{
jh
kh

}
, (4.152)

where we have used the generalised product rule to go from Eq. (4.150) to Eq. (4.151)
by swapping the differential operator into the product, as well as the intermediate result
Eqs. (4.102)–(4.107) for the last step. One can easily verify that Eq. (4.152) reduces to
Eq. (4.107) when H = 1, i.e. when all particles are initialised at the same point.

To show particle entity we use a similar procedure as in the single source case from
Eq. (4.107) to (4.116),

∞∑
n=0

(2π̊ı)n

n!
n =̂

∞∑
n=0

∑
j1+...+jH=n

(2π̊ı)n

j1!...jH !

H∏
h=1

n0,h∑
kh=0

(
n0,h

kh

)
(IΩ,h)

kh kh!

{
jh
kh

}
,

(4.153)

where the second sum on the right runs over all non-negative integers j1, j2, . . . , jH

which sum to n. We now use that
∑∞

n=0

∑
j1+...+jH=n =

∑∞
j1=0 ...

∑∞
jH=0 as the sums
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converge individually and absolutely, and Eq. (4.113) to obtain

∞∑
n=0

(2π̊ı)n

n!
n =̂

∞∑
j1=0

...

∞∑
jH=0

(2π̊ı)j1+...+jH

j1!...jH !

H∏
h=1

n0,h∑
kh=0

(
n0,h

kh

)
(1− IΩ,h)

n0,h−kh(IΩ,h)
khkjhh

(4.154)

=
H∏
h=1

( ∞∑
jh=0

n0,h∑
kh=0

(
n0,h

kh

)
(1− IΩ,h)

n0,h−kh(IΩ,h)
kh

(2π̊ıkh)
jh

jh!

)
(4.155)

=
H∏
h=1

(
n0,h∑
kh=0

(
n0,h

kh

)
(1− IΩ,h)

n0,h−kh(IΩ,h)
khe2π̊ıkh

)
(4.156)

=
H∏
h=1

(1) (4.157)

= 1 . (4.158)

This completes the derivation of particle entity according to the criterion Eqs. (4.70)
for particles initialised as multiple origins, cf. Eq. (4.116).

4.C Entropy production from Dean’s equation

As already mentioned in the introduction to this Chapter, our interest in the concept of
particle entity originates in part from the debate surrounding the use of path integral
approaches to compute the thermodynamic dissipation in effective field theories of active
matter, following the influential work of Nardini and collaborators [202]. In short, it is
unclear whether the coarse-graining step implicit in the derivation of many continuum
theory of collective active motion renders inaccessible certain microscopic features of
the dynamics which could in principle have a non-trivial impact on the thermodynamic
characterisation of these models [111]. This is why, more recently, the denomination of
informational entropy production was introduced in this context, to distinguish between
measures of time-reversal symmetry breaking versus dissipation [98, 193]. Field theories
that retain particle entity, and are thus accurate descriptions of collective dynamics
down to the single-particle scale, such as those studied in this work, are promising
candidates to explore this issue further.
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In this spirit, we derive here the expression for the entropy production for a system
of indistinguishable Langevin processes interacting via a pairwise potential in a path
integral representation of Dean’s equation [75], as introduced in Section 4.2. We restate
for convenience Dean’s equation for the particle number density ρ(x, t)

∂tρ(x, t) = ∇
(
ρ∇ δF

δρ

∣∣∣∣
ρ(x,t)

)
+∇(ρ1/2η(x, t)) (4.159)

where F is the free energy functional, defined as

F [ρ(x)] =

∫
dx ρ(x)

(
V (x) +D log(ρ(x)) +

∫
dy U(x− y)ρ(y)

)
(4.160)

with V (x) a general single-particle potential, D the diffusion coefficient and U(x− y) a
translationally-invariant pairwise interaction potential. Neither V nor U are assumed to
be binding potentials. The noise η = (η1, ..., ηd) entering the second term of Eq. (4.159)
is a global uncorrelated vector white noise with covariance

〈ηµ(x, t)ην(x′, t′)〉 = 2Dδ(t− t′)δ(x− x′)δµν . (4.161)

By formally rearranging Eq. (4.159) we can also write the noise η as

η = ρ−1/2∇−1

(
∂tρ−∇

(
ρ∇ δF

δρ

∣∣∣∣
ρ(x,t)

))
(4.162)

where the integral operator ∇−1 is the functional inverse of the gradient operator. The
definition of ∇−1 requires a choice of gauge [202], which however is immaterial to the
present derivation. Following the Onsager-Machlup construction [211], we substitute
Eq. (4.162) directly into the expression for the probability of the forward and backwards
noise path to obtain

PF [ρ(x, t)] ∝ exp

 1

2D

∫
dx dt ρ−1

[
∇−1

(
∂tρ−∇

(
ρ∇ δF

δρ

∣∣∣∣
ρ(x,t)

))]2
 (4.163)
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and

PB[ρ(x, t)] ∝ exp

 1

2D

∫
dx dt ρ−1

[
∇−1

(
∂tρ+∇

(
ρ∇ δF

δρ

∣∣∣∣
ρ(x,t)

))]2
 , (4.164)

respectively. Note that we have omitted the Jacobian of the field transformation η[φ],
which depends on the particular choice of time discretisation and is thus directly affected
by the time-reversal operation implicit in Eq. (4.164) [72]. To sidestep this issue we
interpret here Eq. (4.159) as a Stratonovich stochastic differential equation, so that the
Jacobian is invariant under such reversal and thus cancels when ratios of probabilities
are computed. We now substitute for these probabilities into the definition of the
path-wise entropy production rate [64] in the limit of infinite path duration

Ṡi = − lim
τ→∞

1

τ
log

PF [ρ(x, t)]

PB[ρ(x, t)]
(4.165)

and obtain
Ṡi = lim

τ→∞
−1

Dτ

∫
dx dt ρ−1(∇−1∂tρ)∇−1∇(ρ∇δF

δρ
) . (4.166)

After noticing that ∇−1∇ = 1 by definition, the ρ−1 term originating from the multi-
plicative nature of the noise cancels out and we are left with

Ṡi = lim
τ→∞

−1

Dτ

∫
dx dt (∇−1∂tρ)∇δF

δρ
= lim

τ→∞
−1

Dτ

∫
dx dt ∂tρ

δF

δρ
, (4.167)

where to obtain the second equality we have integrated by parts with respect to the
position x. As already pointed out in [202], in the Stratonovich discretisation the usual
chain rule of differentiation applies, ∂tρδF/δρ = ∂tF , so that the integral above is equal
to the free energy difference ∆F = F (x(τ))− F (x(0)). For stable potentials U and V ,
the free energy function F (x) is bounded below and Ṡi vanishes upon taking the limit
τ → ∞ on the right hand side, as expected for relaxational equilibrium dynamics. It
is instructive to explicitly expand the functional derivative of the free energy into its
various contributions, namely

δF

δρ
= V (x) +D(1 + log(ρ(x))) +

∫
dy U(x− y)ρ(y) . (4.168)
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Substituting into (4.167),

Ṡi = lim
τ→∞

−1

Dτ

∫
dx dt ∂tρ(x)

(
V (x) +D(1 + log(ρ(x))) +

∫
dy U(x− y)ρ(y)

)
.

(4.169)

We see that the term coming from the single-particle potential V (x) has the same form
as the entropy production for a single Langevin process in a potential, where the po-
tential might originate from a constant self-propulsion force, e.g. V (x) = ±νx. Note,
however, that in the usual derivation [256] the density ρ(x, t) is a probability, specifically
the solution to the deterministic Fokker-Planck equation associated with the Langevin
dynamics, while here it represents a fluctuating particle number density. The second
term in Eq. (4.169) comes from the entropic part of the free energy and accounts for
ρ being an actual density of particles, rather than a probability density for a single
particle. It vanishes upon integration by part in the continuum, where the probability
to find two particles at the same position x at any given time vanishes. Finally, the
third terms accounts for the change in free energy associated with relative displacement
of the individual particles.
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Overview Starting with this Chapter, we step away from the stochastic thermody-
namics and into the wider realm of the statistical mechanics of non-equilibrium pro-
cesses. The Coupon Collector problem (CCP) and its spatial generalisation, the Cover
Time problem (CTP), both originate as problems in probability theory [136] (where
they are examples of urn problems) but have found applications in a number of other
contexts, from epidemics to polymer physics. The CCP and CTP deal with the statis-
tics of the time/number of attempts required to sample every item in a set at least
once given a particular sampling procedure, always with replacement. For example,
how many attempts are required on average to sample all cards in a standard 52-card
deck at least once, assuming cards are picked at random one at a time and mixed back
into the deck after every sampling? Naturally, the probability of sampling a previously
unseen item decreases over time as the fraction of unseen items decreases, leading to the
completion time scaling superlinearly with the cardinality N of the set, in particular as
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N logN for large N . In this sense, we can say that collection processes exhibits ageing,
a feature of many non-equilibrium systems such as glasses. The CTP, where locations in
some finite space are visited sequentially by local exploration, has attracted particular
attention in the context of ecology. Here, previously unvisited locations can be thought
of as untapped pools of resources/nutrients. While the search process is usually assumed
to be homogeneous in time, mostly for the sake of simplicity, it is natural to imagine
that realistic search strategies could be ‘tweaked’ in response to successful collection
events (e.g. through a reward/penalty mechanism). In this Chapter we explore how the
statistics of the standard CCP and CTP are modified upon introducing such dynamical
acceleration/deceleration rules. We find that the resulting probability distributions for
the completion time ranges from Gaussian for highly accelerated searches to exponential
for highly decelerated ones. In the next Chapter, we will revisit the CCP through the
lens of statistical field theory, in particular by casting it as a reaction-diffusion process
on a graph and invoking the Doi-Peliti formalism (already introduced in Chapter 3) to
extract a number useful observables.

Author contributions: NM identified the connection between CCP acceleration and
the roughness of 1/fα signals and wrote the original draft of the manuscript. GM
performed numerical experiments on the accelerated process. LC performed numerical
experiments on the trajectory block-shuffling and teleportation. GP and NM supervised
the project.

Abstract

Among observables characterising the random exploration of a graph or lattice, the
cover time, namely the time to visit every site, continues to attract widespread interest.
Much insight about cover times is gained by mapping to the (spaceless) coupon-collector
problem, which amounts to ignoring spatio-temporal correlations, and an early conjec-
ture that the limiting cover time distribution of regular random walks on large lattices
converges to the Gumbel distribution in d ≥ 3 was recently proved rigorously. Fur-
thermore, a number of mathematical and numerical studies point to the robustness of
the Gumbel universality to modifications of the spatial features of the random search
processes (e.g. introducing persistence and/or intermittence, or changing the graph
topology). Here we investigate the robustness of the Gumbel universality to dynamical
modification of the temporal features of the search, specifically by allowing the random
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walker to “accelerate" or “decelerate" upon visiting a previously unexplored site. We
generalise the mapping mentioned above by relating the statistics of cover times to the
roughness of 1/fα Gaussian signals, leading to the conjecture that the Gumbel distribu-
tion is but one of a family of cover time distributions, ranging from Gaussian for highly
accelerated cover, to exponential for highly decelerated cover. While our conjecture is
confirmed by systematic Monte Carlo simulations in dimensions d > 3, our results for
acceleration in d = 3 challenge the current understanding of the role of correlations in
the cover time problem.

5.1 Introduction

How long does it take to collect N distinct objects that are sampled uniformly with
replacement? This is the so-called coupon collector problem [136]. Depending on the
context, the objects may represent stickers in a football album, vertices on a fully-
connected graph, or people in an epidemic. Close analogies to the coupon collector can
be found in a toy model for the build-up of strain in a seismic fault [1], the random
deposition of k-mers on a substrate [287], the infection of nodes on a network [15], or
the parasitization of hosts [320]. More generally, the coupon collector belongs to the
family of urn problems [150, 137]. An early result, proved by Erdős and Rényi [90], is
that the coupon collection time follows a Gumbel distribution.

Often, the N objects to be collected are not sampled uniformly at any given time. For
example, a random walker exploring a lattice can only “collect” nearest-neighbour sites.
In this context, the total time to visit every site on a graph or lattice is known as the
cover time. Cover times have been intensely studied since the 1980s [5, 2, 299]. For
example, an early conjecture [3] that the cover time for a d ≥ 3 torus is also Gumbel
distributed was recently proved rigorously [24]. The manner in which a random walker
covers a lattice [47, 48, 103] is encoded in the trace of the walk, i.e. the walk’s history,
and this non-trivial random object has received much attention in the mathematics
literature [276, 83]. Qualitatively, an important distinction is between walks that are
transient (d > 2) versus recurrent (d ≤ 2), even if the walk is restricted to a finite torus,
in which case every site will eventually be visited.

In this paper, we are interested in modifying the cover process in time. Thus, we study
the consequences of accelerating or decelerating the random walker upon visiting a new
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site. In this way, we show that the Gumbel distribution is but one of a family of cover
time distributions, ranging from Gaussian for highly accelerated cover, to exponential
for highly decelerated cover. Coincidentally, this family of distributions describes the
roughness of 1/fα Gaussian signals [10].

Our motivation for dynamically modifying the cover process is to further investigate
some of the assumptions underlying the mapping of the cover time problem in d ≥ 3

to the coupon collector problem, specifically those relating to the irrelevance of spatio-
temporal correlations. The specific procedure we implement is also inspired by transport
behavior in e.g. cellular environments, in which a molecule may aggregate or fragment
in the course of its diffusion, thereby altering its diffusion constant in time [69, 134].
Alternatively, in the context of search problems [27], the random walker could be “re-
warded” or “penalized” upon acquiring new targets, thereby enhancing or inhibiting
future search.

The structure of the paper is as follows: In Sec. 5.2 we review basic results of the coupon
collector problem. In Sec. 5.3 we describe how we accelerate or decelerate the dynamics,
and identify the distribution of collection times. In Sec. 5.4 we turn our attention to
cover times on a torus, and present numerical results for accelerated and decelerated
random walkers in Secs. 5.5 and 5.6. We summarize our findings in Sec. 5.7.

5.2 Coupon collector problem

In this section we review the basic properties of the coupon collector problem [90]. The
probability pi of collecting a new coupon, given that i have already been collected, is

pi = 1− i/N, i = 0, 1, . . . , N − 1. (5.1)

Qualitatively, the first coupons are collected rapidly, while the last coupons are collected
very slowly. Let ni be the number of coupons drawn between collecting the ith and
(i+ 1)th distinct coupon. Then the total number of draws CN to collect N coupons is

CN =
N−1∑
i=0

ni, (5.2)
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where ni are independent but non-identical geometric random variables with mean 1/pi.
Using angular brackets to denote expectation, the mean of CN is therefore

〈CN〉 =
N−1∑
i=0

〈ni〉 (5.3)

=
N−1∑
i=0

1

1− i/N = N

N∑
k=1

1

k
, (5.4)

which behaves like N logN for large N , i.e. collecting the full set of N coupons is slower
than linear in N . Similarly, it can be shown that the variance of CN is proportional to
N2. Erdős and Rényi derived the full distribution of CN , showing it to be Gumbel [90].

Before giving a heuristic derivation of this distribution, it is convenient to embed the
coupon collector in continuous time, such that coupons arrive at unit rate in the manner
of a Poisson point process [3]. Thus, rather than the discrete unit steps representing
the number of coupon draws, consider instead the amount of continuous time elapsed
since collection began. In this perspective, the collection time Hj for any particular
coupon j is an exponential random variable with mean N ,

P(Hj ≤ t) = 1− exp(−t/N). (5.5)

The total collection time is the maximum of all the individual coupon collection times.
Since these times are identical and independent

P(CN ≤ t) = P(max{H1, H2, . . . , HN} ≤ t) (5.6)

= P(H1 ≤ t,H2 ≤ t, . . . , HN ≤ t) (5.7)

= P(H1 ≤ t)P(H2 ≤ t) · · ·P(HN ≤ t) (5.8)

= [1− exp(−t/N)]N (5.9)

→ exp[−N exp(−t/N)], as N →∞. (5.10)

After centering and rescaling,

P

(
CN −N logN

N
≤ t

)
= exp(− exp(−t)), (5.11)
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which is recognized as the Gumbel distribution from extreme value statistics [172].

5.3 Accelerated and decelerated coupon collector

The waiting time Ti between collecting the ith and (i + 1)th distinct coupon is a sum
over a random number ni of unit exponential random variables. Since ni is a geometric
random variable, Ti is, in fact, also exponentially distributed with mean 1/pi [70]. Thus,
the total collection time can be written as

CN =
N−1∑
i=0

Ti = N

N∑
k=1

εk
k
, (5.12)

where εk are independent and identically distributed exponential random variables with
unit mean.

We now manipulate the arrival rate of random coupons which, in turn, alters the rate
at which distinct coupons are collected. For example, if coupons arrive at rate ρi =

1/pi = 1/(1 − i/N) all the while i coupons have been collected, then the waiting time
between distinct coupons has unit mean. Thus, by accelerating the arrival of coupons
to compensate for the decreasing likelihood of obtaining a distinct coupon, distinct
coupons are collected at unit rate. This acceleration protocol is depicted schematically
in Fig 5.1: the piecewise constant rates ρi increase each time a distinct coupon is
collected.

In order to accommodate a variety of acceleration-deceleration protocols, we generalize
the rates ρi according to

ρi(α) = pα−1
i , α ≥ 0. (5.13)

This leads to the collection time

CN(α) = Nα

N∑
k=1

εk
kα
, (5.14)

where the unaccelerated coupon collector is recovered for α = 1, i.e. Eq. (5.12), and
the accelerated version just discussed above corresponds to α = 0. For large N , the
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ρi

t

arriving coupons

distinct coupons

Figure 5.1: Schematic illustration of an acceleration protocol. The intensity of coupon arrivals (middle)
is increased as distinct coupons are acquired (filled circles). The piecewise constant and increasing inten-
sity profile (top) gives rise to a point process of distinct coupon arrivals (bottom) whose intensity can be
adjusted.

mean of CN(α) scales as

〈CN(α)〉 ∼


N, 0 ≤ α < 1,

N logN, α = 1,

Nα, α > 1,

(5.15)

so that coupon collecting is accelerated for 0 ≤ α < 1, and decelerated for α > 1, as
compared to the original unaccelerated process with α = 1.

Apart from the Nα prefactor, the exact same sum in Eq. (5.14) describes the roughness
of periodic Gaussian 1/fα signals [10], as outlined in the Appendix. In that context,
α = 0, 1, 2, 4 correspond respectively to white noise, 1/f noise [298], a steady-state
Edwards-Wilkinson interface [87], and a steady-state curvature-driven interface [200].

When α = 0, CN(0) in Eq. (5.14) is a sum over independent and identically distributed
random exponential variables, which, after rescaling, is described by the central limit
theorem. As shown in the Appendix, the Lindeberg condition extends the central limit
theorem to non-identical random variables, such that the rescaled distribution of CN(α)

remains Gaussian for all α ≤ 1/2. For α = 2, the distribution is Kolmogorov-Smirnov,
i.e. the distribution of the test statistic in the Kolmogorov-Smirnov goodness-of-fit
test [159]. This distribution reoccurs in many Brownian problems [100, 30], branching
processes [101], aggregation [41], and statistics [297]. For α = 4, the distribution of
CN(4) has been calculated in [184]. Finally, in the limit α→∞, CN(∞) is exponentially
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distributed, since only the first term in Eq. 5.14 contributes. A full discussion of the
properties of CN(α) can be found in [10]. In summary, the Gumbel distribution is one
of a family of distributions of sums of weighted exponential random variables.

5.4 Cover times on a torus

If one identifies coupons with sites, then coupon collecting is similar in spirit to covering
a lattice or graph, that is, visiting each and every site at least once. However, if the
lattice exploration is undertaken by a random walker, it is far from obvious that coupon
collecting describes the statistics of covering: at any given time coupons are sampled
uniformly, whereas a random walker samples nearest neighbour sites. This non-uniform
sampling is illustrated in Fig. 5.2, showing a portion of the trace of a random walk as
it covers a lattice in d = 3.

Previously visited site

Current location 

Figure 5.2: (Color online) Portion of the trace of a random walk in d = 3, showing the sites visited as
the walker covers the lattice.

On a fully-connected graph all sites are nearest neighbours. Therefore covering a fully-
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connected graph via a random walk is almost identical to coupon collecting, with the
irrelevant difference that the random walker must necessarily leave the site most re-
cently visited (assuming self-loops are excluded). Meanwhile, for random graphs cover
times have been actively studied by mathematicians [2, 4] and physicists [319, 188],
among others. If the probability distribution of the random walker location converges
to the uniform distribution sufficiently fast, the same N logN scaling as Eq. (5.4) often
describes the mean cover time. A graph-dependent constant prefactor will reflect the
fact that the walker has to diffuse across the graph to cover it. This constant can be
expressed in terms of the mean time spent at the origin [5].

For random walks on a torus (i.e., a regular lattice with periodic boundary conditions),
cover times depend on dimension. In d = 1, the cover time (equivalent to the first-
passage time of the range process) is not Gumbel distributed [144], while in d ≥ 3

it is [24]. The d = 2 cover time, posed as the “white screen problem" [299], is not
completely resolved to this day. Dembo et al. have established rigorously that the mean
cover time converges to 4L2(logL)2/π as the side length L of the simple cubic lattice
tends to infinity, although there are practical difficulties in observing this behaviour in
numerics [123]. Subleading order corrections to Dembo et al.’s result have been explored
in the mathematics literature [25]. In the physics literature, numerical evidence suggests
that d = 2 cover times are approximately Gumbel-distributed [63].

For this reason, in the following we restrict our attention to d ≥ 3, where it is rigorously
known that the cover time is Gumbel distributed [24] (already anticipated heuristically
in [3]). The technical proof of this result relies on the transience of a random walker
in d ≥ 3, and the approximately Poisson distribution of unvisited sites at the late
stage of the cover process [24]. Remarkably, the coupon collector scaling carries over
to the cover time, even though the first-passage times {H1, H2, . . . , HN} to each of the
N sites are clearly not independent random variables, although they are approximately
exponential. The appropriately scaled cover time now takes the form

CN − g(0)N logN

g(0)N
, (5.16)

which is identical to the coupon collector apart from a factor g(0). This factor is the
Green function for the unrestricted random walker evaluated at the origin, which is
equivalent to the mean time spent at the origin. For example, for the simple cubic
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lattice in d = 3 [116]

g(0) =
4
√

6

π2
Γ

(
1

24

)
Γ

(
5

24

)
Γ

(
7

24

)
Γ

(
11

24

)
= 1.516... (5.17)

Thus, random walk covering is approximately 50% slower on a simple-cubic lattice
compared to a fully-connected graph.

5.5 Accelerated and decelerated cover

In the coupon collector, the waiting times between coupon arrivals is exponential, and
acceleration or deceleration is effected by changing its rate. Analogously, the cover
process is accelerated or decelerated by changing the rate of the exponential waiting
times between random walk steps. Thus, if we employ the acceleration-deceleration
protocol as described in Eq. (5.13), we might conjecture that, for d ≥ 3, the cover time
in Eq. (5.14) is generalized to

CN(α) = g(0)Nα

N∑
k=1

εk
kα
, (5.18)

where εk are again iid exponential random variables, and the effect of the underlying
lattice is incorporated by the Green function g(0). This generalization assumes that
the correlations that were carefully accounted for in the standard cover problem [24]
continue to play a minor role for α 6= 1. In the case α = 1, it is known that the
first-passage times Hx and Hy of sites x and y respectively are correlated such that

Cov(1(Hx > t),1(Hy > t)) ∼ |x− y|−(d−2), d ≥ 3, (5.19)

where 1(Hx > t) indicates that site x has been visited at a time greater than t.
Eq. (5.19) is an asymptote in large system size N with t proportional to that size [48, 83].
For α 6= 1, on the other hand, the nature of the correlations is unknown to us.

We numerically test the conjecture of Eq.(5.18) in the following by rescaling the observed
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probability density p(CN(α)) by the mean

φ1(x) = 〈CN(α)〉 p (x〈CN(α)〉) (5.20)

or by the standard deviation after centering,

φ2(x) = σCN (α) p
(
xσCN (α) + 〈CN(α)〉

)
. (5.21)

5.5.1 Deceleration, α = 2

For α = 2, we conjecture that CN(2) is described by the Kolmogorov-Smirnov distribu-
tion, with Laplace transform [100, 30]

〈e−sCN (2)〉 =

√
π2g(0)N2 s

sinh
√
π2g(0)N2 s

(5.22)

for large N , and first two moments

〈CN(2)〉 =
π2g(0)

6
N2, 〈C2

N(2)〉 =
7π4g2(0)

180
N4. (5.23)

The Laplace transform in Eq. (5.22) can be inverted to recover a series expansion for
the probability density p(CN(2)) which, after rescaling by the mean, reads [100]

φ1(x) =
π2

3

N∑
k=1

(−1)k+1k2 exp
(
−π2k2x/6

)
. (5.24)

The sum converges fast, so that the cover time density of relatively small systems is very
close to the asymptotic density as N →∞. Figs 5.3 and 5.4 show excellent agreement
between empirical cover time densities and Eq. (5.24) in d = 3, 4.
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Figure 5.3: Rescaled cover time density, φ1(x), for α = 2 in d = 3 with N = 303 (empty circles),
and d = 4 with N = 154 (filled circles), over an ensemble of 106 independent realizations. The con-
jectured density (solid line) is given by Eq. (5.24). Inset: Scaling of moments 〈CN (2)〉 in d = 3 (empty
circles). The conjectured behavior (solid line) is given by Eq. (5.23). Standard errors are smaller than the
symbols.
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Figure 5.4: Same as Fig 5.3 but with a logarithmic y-axis. Error bars denote standard errors of his-
togram bins.

5.5.2 Deceleration, α = 4

For α = 4, we conjecture that CN(4) has the same distribution as the roughness of a
curvature-driven interface, with Laplace transform [184]

〈e−sCN (4)〉 =
√

4π4g(0)N4s

× 1

sinh[(4π4g(0)N4s)1/4]− cos[(4π4g(0)N4s)1/4]
(5.25)
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and first two moments

〈CN(4)〉 =
π4g(0)

90
N4, 〈C2

N(4)〉 =
13π8g2(0)

56700
N8. (5.26)

The Laplace transform in Eq. (5.25) can be inverted to recover a series expansion for
the probability density p(CN(4)) which, after rescaling by the mean, reads [184]

φ1(x) =
2π5

45

N∑
k=1

(−1)k+1k5

sinh(πk)
exp
(
−π4k4x/90

)
. (5.27)

Figs 5.5 and 5.6 show excellent agreement between empirical cover time densities and
Eq. (5.27) in d = 3, 4.
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Figure 5.5: Rescaled cover time density, φ1(x), for α = 4 in d = 3 with N = 303 (empty circles),
and d = 4 with N = 154 (filled circles), over an ensemble of 106 independent realizations. The con-
jectured density (solid line) is given by Eq. (5.27). Inset: Scaling of moments 〈CN (4)〉 in d = 3 (empty
circles). The conjectured behavior (solid line) is given by Eq. (5.26). Standard errors are smaller than the
symbols.

5.5.3 Acceleration, 0 ≤ α ≤ 1/2, d ≥ 4

For 0 ≤ α ≤ 1/2, Eq. (5.18) falls under the scope of the central limit. Therefore, the
conjectured statistics of CN(α) normalised to zero mean and unit standard deviation
are described by a Gaussian distribution

φ2(z) =
1√
2π
e−z

2/2. (5.28)
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Figure 5.6: Same as Fig 5.5 but with a logarithmic y-axis. Error bars denote standard errors of his-
togram bins.

In the presence of correlations, the central limit theorem need no longer apply. Indeed,
we find that our conjecture breaks down for accelerated cover in d = 3, and we discuss
that case separately in Section 5.6. For d ≥ 4, however, our conjecture continues to
agree well with numerics. Fig 5.7 shows empirical cover time densities for α = 0, 1/4

and d = 4. The small asymmetric discrepancies from Gaussian behaviour in the tails in
d = 4 (Fig 5.7) disappear altogether in d = 5, as seen in Fig 5.8. This is in keeping with
the general notion that correlations weaken with increasing dimension — also suggested
by Eq. (5.19).

10−6

10−5

10−4

10−3

10−2

10−1

100

−6 −4 −2 0 2 4 6

φ
2
(z
)

z

0

0.1

0.2

0.3

0.4

−6 −4 −2 0 2 4 6

Figure 5.7: Rescaled cover time density, φ2(z), for α = 0 (empty circles) and α = 1/4 (filled circles)
in d = 4 with N = 154, over an ensemble of 106 independent realizations, compared with the Gaussian
conjecture (solid line). Error bars denote standard errors of histogram bins. Inset: φ2(z) on linear axes.
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Figure 5.8: Rescaled cover time density, φ2(z), for α = 0 (empty circles) and α = 1/4 (filled circles)
in d = 5 with N = 105, over an ensemble of 106 independent realizations, compared with the Gaussian
conjecture (solid line). Error bars denote standard errors of histogram bins. Inset: φ2(z) on linear axes.

5.5.4 Acceleration, α = 3/4

As explained in [10], for 1/2 < α < 1 the rescaled cover time densities φ2(z) can be
expanded as

φ2(z) =
√
ζ(2α)

∞∑
k=1

kαY (α, k) exp
(
−kα

√
ζ(2α) z − 1

)
, (5.29)

where ζ is the Riemann zeta function, and

Y (α, k) =
∞∏

n=1,6=k

e(−k/n)α

1− (k/n)α
. (5.30)

Eq. (5.29) defines an α-dependent family of distributions with exponential right tails.
For the representative case of α = 3/4, Fig 5.9 shows good agreement with our conjec-
ture, with small discrepancies in d = 3 disappearing altogether in d = 4.

5.6 Acceleration, α = 0, d = 3

In all cases considered so far, the conjecture that the cover time CN(α) is described
statistically by Eq. (5.18) is successfully verified empirically. However, the conjecture
fails in the case α = 0 in d = 3. According to Eq. (5.18), the cover time is predicted to
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Figure 5.9: Rescaled cover time density, φ2(z), for α = 3/4 in d = 3 with N = 303 (empty circles), and
d = 4 with N = 154 (filled circles), over an ensemble of 106 independent realizations. The conjectured
density (solid line) is given by Eq. (5.29). Error bars denote standard errors of histogram bins. Inset:
φ2(z) on linear axes.

be statistically equivalent to a sum of independent and identical exponential random
variables, therefore falling under the scope of the central limit theorem. The only feature
correctly predicted by Eq. (5.18) is that the mean cover time 〈CN(0)〉 still behaves as
g(0)N , as shown in Fig 5.10. However, the standard deviation σCN (0) does not scale as
N1/2. Instead, for system sizes N ≥ 103 it is well approximated by

σCN (0) = Ag(0)Nγ, (5.31)

where we note that the fitted values of the amplitude A = 0.44(2) and exponent γ =

0.6608(12) are close to
√

2− 1 = 0.414 . . . and 2/3, respectively.

The rescaled cover time density φ2(z) is also not Gaussian, as shown in Figs 5.11
and 5.12. We are not able to identify the empirical density, although a Tracy-Widom
density for the largest eigenvalue from the Gaussian orthogonal ensemble of random
matrices gives a reasonable approximation. Given the discrepancies in the right tail
of the density, and the behaviour of the skewness and kurtosis as shown in Fig 5.13,
we cannot claim conclusive support for the Tracy-Widom density and offer this curious
near coincidence as an open problem.

While we cannot identify the empirical density of cover times for α = 0 and d = 3, we
can nevertheless investigate the breakdown of our conjecture, Eq (5.18), which naively
expresses the cover time as a sum over exponential waiting times εk. Since we do not
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for α = 0 in d = 3. The mean follows the conjectured behavior g(0)N (solid line), but the standard de-
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Figure 5.11: Rescaled cover time density, φ2(z), for α = 0 in d = 3 with N = 1003 (empty circles) and
N = 503 (filled circles), over an ensemble of 106 independent realizations. A Tracy-Widom density from
the Gaussian orthogonal ensemble is plotted for comparison (solid line).

recover the anticipated Gaussian distribution, we are led to conclude that the random
variables εk are either sufficiently non-identical, or non-independent (or both).

To isolate these question, we perform a shuffling operation across (independent) mem-
bers of the ensemble from which we collect statistics of cover times. Specifically, we
choose one member of the ensemble at random, i.e. one realisation of the cover process,
and sum the first of its b waiting times {ε(1)

k }bk=1. Then we pick another realisation at
random, and sum the next b waiting times from that process {ε(2)

k }2b
k=b+1, and so on.

We continue this operation N/b times, so that we accumulate the shuffled cover time
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Figure 5.12: Same as Fig 5.11 but with a logarithmic y-axis. Error bars denote standard errors of his-
togram bins. For comparison, a Gaussian density is also plotted (dotted line).
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Figure 5.13: Skewness κ3 (empty circles) and kurtosis κ4 (filled circles) for α = 0 in d = 3. Error bars
denote jackknife standard errors. The Tracy-Widom skewness (solid line) and kurtosis (dashed line) are
plotted for comparison.

process

Cshuff.
N (0) =

b∑
k=1

ε
(1)
k +

2b∑
k=b+1

ε
(2)
k + · · ·+

N∑
k=N−b+1

ε
(N/b)
k . (5.32)

By this operation, we generate an ensemble of cover times from processes that have
been block-shuffled. If the block length b = N , then the original cover process is left
intact and no shuffling occurs. Meanwhile, if b = 1, then each waiting time εk is drawn
randomly from the ensemble distribution of waiting times to the kth unvisited site.
More generally, the block length plays the role of a “high-pass" filter that destroys
correlations with characteristic scale larger than b. Thus, for b = 1, the block-shuffled
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cover time Cshuff.
N (0) is a sum of waiting times from independent realizations. The

resulting Cshuff.
N (0) could only be non-Gaussian if the εk were sufficiently non-identical.

As a measure of discrepancy between the empirical density φ2(z) of shuffled cover times
and a standard Gaussian density g(z), we compute the Kullback-Leibler divergence
from φ2(z) to g(z)

DKL(g||φ2) =

∫
dz g(z) log

g(z)

φ2(z)
(5.33)

for different block lengths b. Figure 13 shows that a comparatively large block length of
b . 5×103 = N/25 is enough to recover Gaussian cover time behaviour, thus suggesting
that long-range correlations are at play.
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Figure 5.14: Kullback-Leibler divergence from a Gaussian distribution for the rescaled cover time, as a
function of block length b, with N = 503 over an ensemble of 105 realizations.

It is instructive to consider another modification of the cover process (also implemented
in [63] in the unaccelerated case). Instead of splicing together blocks of cover from
independent realizations, we intermittently allow the random walker to “teleport” to a
randomly chosen site. Thus, the walker performs a teleportation jump with probability
p, and a nearest-neighbour step with probability (1 − p). If p = 0, the original cover
process is recovered. If p = 1, the walker effectively explores a fully-connected graph.
Fig 5.15 shows that a teleportation probability of approximately p & 0.1 is enough to
recover Gaussian cover time behavior.

In conclusion, we attribute the non-Gaussianity of α = 0 accelerated cover times in
d = 3 to correlations in the sequence of sites visited as the lattice is covered. However,
we are not able to explain why such correlations can be ignored for d ≥ 4, or for
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Figure 5.15: Kullback-Leibler divergence from a Gaussian density for the rescaled cover time, as a func-
tion of teleportation probability p, with N = 503 over an ensemble of 106 independent realizations.

deceleration protocols with α > 1.

5.7 Conclusion

We have studied the cover times of accelerated and decelerated random walks on a torus
in dimensions d ≥ 3. Building on the work of Aldous [3] and Belius [24], we conjecture
a generalized cover time which agrees well with numerics for a range of acceleration-
deceleration protocols and dimensions. The α-indexed family of cover time distributions
are in fact those describing the roughness of 1/fα Gaussian signals [10], which include
Gaussian (0 ≤ α ≤ 1/2), Gumbel α = 1 and exponential (α → ∞) distributions, to
name a few.

A notable exception to our conjecture is for α = 0 in d = 3, where we find a cover
time distribution somewhat resembling a Tracy-Widom distribution from the Gaussian
orthogonal ensemble of random matrices. Although the numerics do not support this
identification conclusively, it is interesting to speculate whether a connection between
accelerated cover in d = 3 and random matrices exists, e.g. via mappings to KPZ
interfaces [278], Gaussian free fields [79, 106], or spin glasses [57].

This study leaves a number of open questions, such as the identification of the cover
time distribution for α = 0 in d = 3, and why this distribution is particular to d = 3.
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5.A Roughness of 1/fα Gaussian signals

A 1/fα signal h(x) of length L is sampled over N Fourier modes according to

h(x) ∝
N∑
k=1

1

kα/2
[ak sin(2πkx/L) + bk cos(2πkx/L)] , (5.34)

where the amplitudes ak and bk are independent standard Gaussian random vari-
ables [10]. By construction, the signal is periodic with zero mean, and its power spec-
trum decays as 1/kα. The integrated power spectrum

w2(α) ∝ 1

L

∫ L

0

dxh2(x) (5.35)

∝
N∑
k=1

1

kα
(a2
k + b2

k) (5.36)

by Parseval’s theorem. Since the sum of two Gaussian squared random variables is
exponentially distributed,

w2(α) ∝
N∑
k=1

εk
kα
. (5.37)

Hence, apart from an Nα prefactor, the integrated power spectrum of 1/fα signals has
the same distribution as the coupon collection time SN(α) discussed in the main text.

In the language of interfaces, Eq. (5.34) describes a periodic steady-state height profile,
and the integrated power spectrum is equivalent to the profile’s roughness [16]. A review
of 1/fα signals can be found in [10].

5.B Lindeberg condition

Given a collection of independent but not necessarily identical random variables {Xk}Nk=1

with (finite) variances {σ2
k}Nk=1, the Lindeberg condition [231] guarantees that their

rescaled sum is still Gaussian-distributed, provided that

max
1≤k≤N

σ2
k∑N

k=1 σ
2
k

→ 0, N →∞. (5.38)
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In our context, the collection of random variables εk/kα have variances 1/k2α. Therefore,
satisfying Eq. (5.38) requires

N∑
k=1

1

k2α
→∞, N →∞, (5.39)

i.e. that 0 ≤ α ≤ 1/2.
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6
Of Hogs and Truffles: a Doi-Peliti Field

Theory of the Coupon Collector Problem

L. Cocconi, G. Maziya, N. Moloney, G. Pruessner

Overview The Coupon Collector (CCP) and Cover Time (CTP) problems have his-
torically been studied mainly by probabilistic methods, leading to a number of impor-
tant results (see Chapter 5 and references therein). In this Chapter, we demonstrate
that path integral methods, in particular the Doi-Peliti formalism, offer a valid al-
ternative approach to exploring specific features as well as novel variations of these
problems. As already discussed at length in Chapter 4, this formalism retains particle
entity and it is thus particularly suited for setups where transitions between discrete
states need to be precisely resolved. In fact, in recent years, various works have success-
fully expanded the scope of such field theories to address, among others, first-passage
time problems and the short-time statistical features of self-propelled active particles
[109, 312, 43, 236, 294]. The spirit of these works is perhaps in contrast with the
impression one might get by a superficial look at the field-theoretic literature in non-
equilibrium statistical physics, where path integral methods are typically applied to
study asymptotic features of continuum, coarse-grained theories, often drawing on the
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toolkit of the Renormalisation Group. Notably, the modularity and flexibility of the
Doi-Peliti approach makes it possible to ‘mix and match’ interactions that were origi-
nally introduced in separate studied, thus in principle granting access to a wide variety
of composite stochastic processes. For example, we will see in the following that stochas-
tic resetting is easily implemented in the CCP by augmenting the Doi-Peliti action with
a suitable term, whence the standard renewal equation follows straightforwardly.

Author contributions: LC derived the field theory, performed the analysis and wrote
the current draft of the manuscript. All authors discussed the results at various stages
of the project.

Abstract

We cast the Cover Time problem on a generic graph as a two-species reaction diffusion
process involving a diffusible species (the hogs) interacting on-site with an immobile
species (the truffles) by permanently removing the latter from the system. Cover is
defined to occur when the last truffle is removed. We apply the Doi-Peliti formalism
to cast the corresponding master equations as a coherent-state path integral, which
we compute exactly for the case of a trivial zero-dimension graph, where the Cover
Time problem reduces to the spaceless Coupon Collector problem, to recover the full
cover time distribution (Gumbel statistics). We show that a suitable choice for the
ensemble of initial conditions, specifically one with Poisson statistics for the number
of uncollected truffles at initialisation, can streamline the derivation of the Coupon
Collector statistics compared to the standard probabilistic derivation. We characterise
for the first time the avalanche shape of the process and subsequently generalise it by
separately introducing stochastic resetting (conditioned on completion not having been
achieved yet) and collection by a stochastically evolving population of hogs.

6.1 Introduction

We study the Coupon Collector problem by means of field theoretic techniques based
on the Doi-Peliti path-integral formalism. This is a standard formalism employed
in the study of stochastic processes described at the microscopic level by discrete-
state, continuous-time master equations. Unlike other path-integral techniques, such as
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the Martin-Siggia-Rose Janssen-De Dominicis formalism [289], which has a mesoscopic
Langevin equations as its starting point, the capability of Doi-Peliti to resolve single
particle identity makes it particularly suitable for the study of probabilistic and, more
specifically, extreme-value problems [39, 204, 293]. The derivation of this formalism has
been reviewed by various authors [215, 56, 227, 175] and won’t be covered here for the
sake of brevity.

We consider here a stochastic lattice process involving a single diffusive particle (the
‘hog’) interacting on-site with immobile particles (the ‘truffles’) by permanently remov-
ing them from the system. The process is initialised by spawning a diffusive particle
and some number of immobile particles in the system, possibly at different locations.
Denoting the occupation number of hogs and truffles at site i by ni and mi, respec-
tively, we can write down the following master equation for the occupation probability
P (ni,mi)

∂tP (ni,mi) = + η ni(mi + 1)P (ni,mi + 1)

− η nimiP (ni,mi)

+ h(ni + 1)P (ni + 1, ni+1 − 1,mi)

+ h(ni + 1)P (ni + 1, ni−1 − 1,mi)

− 2hniP (ni,mi) (6.1)

where η is the interaction (collection) rate and h is the hopping rate. Following the
standard second quantisation procedure, we arrive at the corresponding Hamiltonian,
written in terms of creation and annihilation operators {a†i , ai} and {b†i , bi} for hogs and
truffles, respectively, at each lattice site

Hij = η(a†ib
†
iaibi − a†iaibi)δij + h(a†i+1 + a†i−1 − 2a†i )ai (6.2)

This is often the stage at which one takes the continuum limit of the lattice spacing going
to zero, so that {a†i , ai} → {φ†(x), φ(x)}, {b†i , bi} → {ψ†(x), ψ(x)}. While dealing with
such continuous fields is often technically convenient, it is important here that we retain
the discreteness, as well as finiteness, of the underlying lattice, since the observables we
are interested in are intimately linked to the recurrence/transience of the random walk
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performed by the searcher. With this in mind, we proceed by performing the Doi-shift
of the creation fields φ†i → (1 + φ̃i), ψ†i → (1 + ψ̃i). The harmonic part of the resulting
Liouvillian L = L0 + L1 then reads

L0 = φ̃∂tφ+ ψ̃∂tψ +D∇φ̃∇φ+ raφ̃φ+ rbψ̃ψ (6.3)

where we have introduced spontaneous decay rates ra,b for the two species for the
purpose of infrared regularisation in later calculations. These decay rates will eventually
be sent to zero. The non-linear part of the Liouvillian instead reads

L1 = κψ̃ψφ̃φ+ λψ̃ψφ (6.4)

with κ = λ = η at bare level. The two non-linear terms in L1 define the two ver-
tices available for perturbative calculations by means of Feynman diagrams. Assuming
for the shifted fields [φ̃] = [ψ̃] = 1 and imposing [D] = 1 to preserve diffusion on
all scales, dimensional analysis in the continuum limit indicates dc = 2 as the upper
critical dimension for the theory. This is a signature of the random walk performed
by the searcher becoming transient in d > 2, resulting in a finite probability that a
particular site in never visited by the searcher. While this makes the non-linear part
of the Liouvillian “dimensionally irrelevant” in the Renormalisation Group sense, in the
absence of a diverging time-scale (e.g. for finite systems), these interactions are still to
be accounted for in d > dc.

6.2 Observables

In the following we will consider observables such as the probability of a certain number
M of truffles surviving for a time t after N are initialised (with 0 ≤M ≤ N). Extracting
this observable from the field theory involves a projection at time t on the desired Fock
state. In particular, the probability of the system containing exactly M particles can
be written

PM(t) = 〈M |e−Hta†(b†)N |0〉 (6.5)
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However, by construction of Doi-Peliti formalism, path integrals of the form

〈O〉 =

∫
D
[
φ̃, φ, ψ̃, ψ

]
Oe−

∫
dtdxL (6.6)

imply a projection on the coherent state, such that

〈O(t)〉 = 〈☼|Oe−Ht|Ψ(0)〉 (6.7)

where 〈☼| = 〈0|eφ+ψ =
∑

i〈i|. The correct field theoretic observable corresponding to
the probability of a number M of truffles being alive at time t is therefore

PM(t) = 〈M |e−H(t−t0)|Ψ(t0)〉 = 〈e−ψψM ...〉/M ! . (6.8)

with the dots indicating an arbitrary initialisation at t0 ≤ t. A general initialisation
can be written operatorially as

I(t0, {ni,mi}) =
∏
i

(a†i (t0))ni(b†i (t0))mi . (6.9)

Rather than the probability PM(t) of a certain number of coupons not having been
collected (or sites not having been visited) after some time t, the literature often focuses
on the probability density for theM th distinct coupon to be picked at a particular time t.
Denoting this probability density as P̃M(t) and noting that it corresponds to the influx
of probability into the |N−M〉 particle number state (or, equivalently, the outflux from
|N −M + 1〉 ), we obtain

∂tPM(t) =


−P̃1(t), for M = N

P̃M(t)− P̃M+1(t), for 0 < M < N

P̃N(t), for M = 0

(6.10)

for 0 ≤ M ≤ N . In other words, P̃M+1(t) can be found by differentiating PM(t) with
respect to time and, starting from M = 0 or M = N , working our way into the bulk of
the process in a recursive manner by means of substitution.
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6.3 Results for the spaceless case (d = 0)

We consider the simplest case, in which truffles and hogs coexist at a single lattice site
and diffusion is switched off (i.e. the Coupon Collector Problem). We will refer to
this set-up as a zero-dimensional field theory and drop any site indices for now. The
corresponding bare propagators in direct time representation read

〈φ(t)φ̃(t0)〉0 =

= e−ra(t−t0) (6.11)

〈ψ(t)ψ̃(t0)〉0 =

= e−rb(t−t0) . (6.12)

The interaction (collection) rate η introduced in Eq. (6.1) corresponds here to the
true rate with which distinct coupons are collected, which is understood to scale like
1/N in the original setup but here is generally independent of N . The corresponding
diagrammatic notation for the interaction vertices is

κ = and λ = (6.13)

6.3.1 Poisson initialisation

We first consider a Poisson initialisation for the truffles with density ρ. We thus let
the probability for a number M of truffles being spawned at initial time t0 be given by
PM(t0) = e−ρρM/M ! and write the initial mixed state

|Ψ(t0)〉 =
∞∑

M=0

e−ρρM

M !
(ψ†(t0))M |0〉

= e−ρeρψ
†(t0)|0〉 = eρψ̃(t0)|0〉 (6.14)

While this is not standard initialisation used in the probabilistic approach to the Coupon
Collector problem, we will find that such a choice saves us from having to perform any
time rescaling and from having to take the limit N → ∞ explicitly. This in turn
suggests that the Poissonian initialisation might capture some important feature of the
asymptotic distribution of uncollected coupons, at least at late times.
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We now proceed by calculating the relevant observable as defined in the previous section,
namely

PM(t) =
1

M !
〈e−ψ(t)ψM(t)φ†(t0)eρψ̃(t0)〉

=
1

M !

∞∑
n=0

∞∑
m=0

(−1)nρm

n!m!
〈ψn+Mφ†ψ̃m〉 (6.15)

We now note from Equation (6.4) that none of the vertices available allows for a change
in the number of the truffle propagators, thus imposing m = n + M in the above. We
thus obtain

PM(t) =
1

M !

∞∑
n=0

(−1)nρn+M

n!(n+M)!
〈ψn+Mφ†ψ̃n+M〉 . (6.16)

It is convenient here to work in direct time representation, noting that in the limit
ra, rb → 0 the contribution from the exponential decay of both propagator types reduces
to a factor of unity. To demonstrate the consequences of this observation, we calculate
the expectation 〈ψ(t)φ†(t0)ψ̃(t0)〉 = 1 + 〈ψφ̃ψ̃〉 in direct time explicitly. We find

〈ψφ̃ψ̃〉 = + + + · · ·

= e−rb(t−t0)

∞∑
n=0

n∏
m=0

−η
∫ t

tm

dtm+1e
−ra(tm+1−tm)

= e−rb(t−t0)

∞∑
n=1

(−η)n
∫ t

t0

dt′
(t′ − t0)n−1

(n− 1)!
e−ra(t′−t0)

(6.17)

Taking the limit ra, rb → 0, we obtain

lim
ra,rb→0

〈ψφ†ψ̃〉 = e−η(t−t0) . (6.18)

This result shows that, in the presence of a hog, each truffle acquires an additional
effective mass equal to the interaction rate, i.e. it disappears from the system with
rate η. Calculating the expectation (6.18) is particularly simple in d = 0 because each
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truffle interacts independently and at all times with the hog.
While the limit ra, rb → 0 that we have taken above matches the absence of spontaneous
decay for either particle species in the conventional formulation of the coupon collector
problem, it is interesting to consider how the result (6.18) changes when the masses ra
and rb do not vanish. For starters, it can be directly checked from (6.17) that a positive
truffle mass rb > 0, signature of spontaneous decay, carries through to the renormalised
propagator in the presence of a hog, namely

lim
ra→0
〈ψφ†ψ̃〉 = e−(η+rb)(t−t0) . (6.19)

The case of a non-vanishing hog mass is richer. In this case, the renormalised propagator
(6.17) does not have a closed form and instead reads

〈ψφ̃ψ̃〉 = e−rb(t−t0)

∞∑
n=0

∞∑
m=0

(−η)n(−ra)m(t− t0)n+m

m!(n− 1)!(n+m)
(6.20)

=
∞∑
m=0

(
−ra
η

)m
Γ(1 +m, η(t− t0))− Γ(1 +m)

Γ(1 +m)
(6.21)

where Γ(z) is the Euler gamma function and Γ(z, k) is the upper incomplete gamma
function

Γ(z, k) =

∫ ∞
k

dt tz−1e−t , (6.22)

which admits the asymptotic expansion

lim
k→∞

Γ(z, k)

zk−1e−z
= 1 . (6.23)

Thus, the asymptotic behaviour of the renormalised truffle propagator in the presence
of a hog is

〈ψφ̃ψ̃〉 ' − η

η + ra
+O(e−η(t−t0)) , (6.24)

whence the survival probability 〈ψφ†ψ†〉 ∼ ra/(ra + η). Since truffle collection and hog
decay are effectively concurrent Poisson processes, the asymptotic survival probability
is the probability that decay occurs before collection.

The calculation of the observable 〈ψkφ†ψ̃k〉 required to make progress with Eq. (6.16)
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follows along the same lines (with some extra care taken in accounting correctly for the
symmetry factors) and we obtain

lim
ra,rb→0

〈ψ`φ†ψ̃`〉 = `!
∞∑
n=1

(−η`)n
∫ t

t0

dt′
(t′ − t0)n−1

(n− 1)!

= `! lim
ra,rb→0

〈ψφ†ψ̃〉` . (6.25)

Since both the hog and truffle bare propagators are massless, what we need to keep
track of in the diagrammatics of (6.25) is only the ‘temporal positioning’ of the inter-
action vertices. This was done along the lines of (6.17) by integrating over the times
tm ∈ [t0, t] assigned to each vertex, with the difference that every interaction now car-
ries a symmetry factor of ` accounting for the multiplicity of truffle propagators it can
be attached to. This multiplicity is thus at the origin of the exponent ` appearing in
the right-hand side of (6.25). Finally, one last symmetry factor needs to be identified,
which comes from the contraction of the two sets of equal-time external truffle fields,
ψ(t) and ψ̃(t0), leading to the combinatorial prefactor `!. We note in passing that the
calculations above can be extended straightforwardly to the case of multiple hogs be-
ing created at initialisation, thanks to the absence of interactions amongst them. In
particular, in the presence of m hogs, each truffle acquires an effective mass equal to
m times the interaction rate, i.e. the presence of multiple hogs can be captured by the
rescaling of the interaction rate η → mη. The proportionality between the effective
mass of a truffle and the number of hogs present is a signature of removals occurring in
the manner of concurring Poisson processes.

Substituting Eq. (6.25) into (6.16) we arrive at the expression

PM(t) =
1

M !
ρMe−Mη(t−t0)−ρe−η(t−t0)

(6.26)

We can immediately check that this expression is consistent by setting t = t0, for which
PM(0) = ρMe−ρ/M !, which is indeed the Poisson distribution describing the system at
initialisation. Finally, by taking the time derivative of PM(t) and using Equation (6.10)
we find

P̃M+1(t) =
1

M !
e−η(M+1)(t−t0)−e−η(t−t0)

(6.27)
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which is the known result for the full order statistics, also referred to as generalised
Gumbel distribution.

The moments of the full time-dependent truffle number probability distribution can
also be obtained straightforwardly. In this case what we need to calculate is

〈[ψ†(t)ψ(t)]N〉 = 〈[ψ†(t)ψ(t)]Nφ†(t0)eρψ̃(t0)〉 . (6.28)

Using [108]

〈☼|[ψ†(t)ψ(t)]N =
N∑
`=0

{
N

`

}
〈☼|ψ`(t) , (6.29)

where

{
N

`

}
denotes the Stirling number of the second kind for ` out of N , we obtain

〈[ψ†(t)ψ(t)]N〉 =
N∑
`=0

∞∑
k=0

{
N

`

}
ρk

k!
〈ψ`(t)φ†(t0)ψ̃k(t0)〉 (6.30)

=
N∑
`=0

{
N

`

}
ρ`

`!
〈ψ`(t)φ†(t0)ψ̃`(t0)〉 (6.31)

where we have used 〈ψ`φ†ψ̃k〉 ∝ δ`k, with δ`k the Kroneker delta. Substituting 6.18 and
6.25 into the expression above, we thus arrive at

〈[ψ†(t)ψ(t)]N〉 =
N∑
`=0

{
N

`

}
ρ`e−η`(t−t0) (6.32)

= BN(ρe−η(t−t0)) , (6.33)

with Bn(x) the nth Bell polynomial in x. At initialisation, t = t0, the nth moment
of the distributions is thus Bn(ρ), consistent with Dobiński’s formula [26] and the fact
that the distribution is Poisson.

Calculating the moments of time-dependent probability distribution of the number of
collected truffles is slightly more involved due to the number of truffles at initialisation
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not being constant. The relevant field theoretic observable reads

〈[N̂ψ(t0)− N̂ψ(t)]N〉 = 〈[N̂ψ(t0)− N̂ψ(t)]Nφ†(t0)eρψ̃(t0)〉 , (6.34)

where N̂ψ(t) = ψ†(t)ψ(t) denotes the truffle number operator. In order to proceed we
expand the Nth power of the difference in truffle number on the basis of the binomial
theorem and use the identity

N̂ψ(t0)eρψ̃(t0)|0〉 = ρψ†(t0)eρψ̃(t0)|0〉 , (6.35)

which can be proved starting from the power series Eq. 6.14. Using Eq. 6.29 to further
simplify the resulting expression, the right hand side of Eq. 6.34 reduces to

N∑
n=0

n∑
`=0

(
N

n

){
n

`

}
(−1)nρ〈ψ`(t)ψ†(t0)φ†(t0)eρψ̃(t0)〉

=
N∑
n=1

n∑
`=1

(
N

n

){
n

`

}
(−1)nρ

[
ρ`

`!
〈ψ`(t)φ†(t0)ψ̃`(t0)〉+

ρ`−1

(`− 1)!
〈ψ`(t)φ†(t0)ψ̃`(t0)

]

=
N∑
n=1

n∑
`=1

(
N

n

){
n

`

}
(−1)nρ`(ρ+ `)e−η`(t−t0) , (6.36)

which does not appear to simplify further.

6.3.2 Initialisation with N indistinguishable truffles

We have seen above that in d = 0 a Poissonian initialisation for the immobile species
gives Gumbel ‘for free’, meaning that no rescaling of time is required. However, the
probabilistic derivation usually assumes a finite number N of coupons and produces a
Gumbel distribution in the limit N → ∞ only upon suitable rescaling of time. This
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route is available in the field theory as well and proceeds as follows:

P0(t) =
〈
e−ψ(t)

(
ψ†(t0)

)N
φ†(t0)

〉
=

〈 ∞∑
n=0

(−ψ(t))n

n!

N∑
m=0

(
N

m

)
(ψ̃(t0))mφ†(t0)

〉
=
(

1− 〈ψφ†ψ̃〉
)N

(6.37)

We now rescale time as t → t′ + lnN/η,which happens to be the same rescaling used
in the probabilistic derivation. Using Equation (6.18) to replace the expectation, we
obtain

P0(t′) =

(
1− e−η(t′−t′0)

N

)N
(6.38)

The expression has now a non-trivial N →∞ limit, which corresponds to the cumulative
Gumbel distribution P0(t′) = exp(− exp(−η(t′ − t′0))).

6.3.3 Avalanche shape

An interesting observable that the field theory gives us access to is the so-called avalanche
shape [108], which can be used to characterise the dynamics of the CCP conditioned
on completion at a particular time after initialisation. The avalanche shape, denoted
V (t, τ), is here defined as the expected number of un-sampled coupons at time t af-
ter initialisation conditioned on the last un-sampled coupon being sampled at time τ .
Equivalently,

V (t, τ) :=
d
dτ
〈N(t)|N(τ) = 0〉

d
dτ
P0(τ)

, (6.39)

where the denominator is required to normalise the joint probability over the given
sub-ensemble of trajectories, so that∫ ∞

0

dτ
d
dτ
〈N(t)|N(τ) = 0〉

d
dτ
P0(τ)

= 〈N(t)〉 . (6.40)

In order to calculate the avalanche shape we first need to compute 〈N(t)|N(τ) = 0〉
and for this we are required to make a choice of initialisation. We choose to initialise
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the system with N indistinguishable truffles at time t = 0. Thus, in the field theory

〈N(t)|N(τ) = 0〉 = 〈e−ψ(τ)ψ†(t)ψ(t)(ψ†(0))Nφ†(0)〉

=
N∑
m=1

(−1)m−1

(m− 1)!

(
N

m

)
m!e−ητ (eη(τ−t) − 1)

=
N(1− e−ητ )N

eητ − 1
(eη(τ−t) − 1) . (6.41)

As expected, the expression we just found for 〈N(t)|N(τ) = 0〉 vanishes as t approaches
τ from below and equals N when t = 0 and the limit τ → ∞ is taken. Differentiating
once the conditional probability with respect to τ we obtain

d

dτ
〈N(t)|N(τ) = 0〉

=
ηN (1− e−ητ )N

(
eητ + (N − 1)eη(τ−t) −N

)
(eητ − 1)2 . (6.42)

Finally, using Eq. (6.37) for the probability of all coupons having been collected by time
τ , the denominator of Eq. (6.39) reads

dP0(τ)

dτ
= Nηe−ητ (1− e−ητ )N−1 . (6.43)

Substituting into Eq. (6.39), the avalanche shape is thus

V (t, τ) =
eητ + (N − 1)eη(τ−t) −N

eητ − 1
. (6.44)

As expected, V (0, τ) = N since the expected number of particles at initialisation is
fixed and independent of τ . Similarly, limt→τ− V (t, τ) = 1, consistent with the last
uncollected coupon being removed at time τ . It is also interesting to consider the
regime ητ � 1, i.e. one where we impose ‘premature extinction’ compared with the
typical timescale of collection. In this case we find

V (t, τ) ' N(1− t/τ) , (6.45)

which decays linearly in time.
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6.3.4 Time-inhomogeneous collection

The collection rate parametrising the interaction between the hog and the truffles need
not be homogeneous in time. In fact, we have explored the effect of acceleration on the
cover time statistics in a recent paper [196]. We briefly consider the case where the rate
with which the hog removes a truffle from the system is a function of time, η(t) ≥ 0.
Focusing on the case M = 0 with Poissonian initialisation and a single hog, i.e. the
original Coupon Collector problem, a similar calculation to the one performed above
yields

〈ψ(t)φ†(t0)ψ(t0)〉 = e−〈η〉t(t−t0) , (6.46)

whence
P0[η(t), t] = P̃1[η(t), t] = e−ρe

−〈η〉t(t−t0)

, (6.47)

where we defined the running average

〈η〉t =
1

t− t0

∫ t

t0

dt′η(t′) . (6.48)

The consistency with (6.27) for the case of a constant interaction rate η(t) = η can be
checked straighforwardly. Eq. (6.47) demonstrates that introducing a time-dependent
interaction rate effectively amounts to an inhomogeneous rescaling of time, which is
intuitively clear. Nonetheless, it is interesting to note that any non-trivial acceleration
protocol that depends only on time elapsed since initalisation ‘breaks’ Gumbel statistics
for the completion time P̃1(t) in such a way that

P0[η(t), t] = P0[ν(t), t] ⇐⇒ η(t) = ν(t) . (6.49)

This should be compared to the case of piece-wise acceleration following a successful
collection event, for which a continuous family of strategies produces Gaussian statistics
[196].
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6.3.5 Resetting

The formalism above can be extended to include stochastic resetting of the coupons to
the initial number N with a Poisson rate γ. We condition this resetting to at least one
coupon not having been collected by the time resetting is triggered. Mathematically,
this additional process is captured by augmenting the master equation (6.1) in its
spaceless version by

∂tP (n) = · · · − γ(1− δn0)P (n) + δnN

N∑
m=1

γP (m) (6.50)

with δnm the Kroneker delta of n and m. This terms represent a leakage of probability
with rate γ out of all number states |n〉 with n > 1 and into |N〉. Unlike the original
removal process, where the transition rates were proportional to the particle number of
the associated Fock state, here the conversion into operator form requires us to contruct
these operators implicitly by means of projectors |k〉〈k|. After some manipulation we
arrive at the modified second quantised form of the master equation

|Ψ̇(t)〉 = · · · − γ|Ψ〉+ γ(|0〉〈0| − |N〉〈0|+ |N〉〈☼|)|Ψ〉 (6.51)

which can be formally integrated to obtain

|Ψ(t)〉 = e−γt+γ
∫ t
0 dt
′R̂(t′)+···|Ψ(0)〉 (6.52)

where we have introduced the shorthand

R̂(t′) = |0〉〈0| − |N〉〈0|+ |N〉〈☼| (6.53)

with operators defined at time t′. To proceed further, we expand the new exponential
term in the formal solution to obtain

|Ψ(t)〉 =
∞∑
n=0

(γt)ne−γt

n!

(
1

t

∫ t

0

dt′R̂(t′)

)n
|Ψ(0)〉 , (6.54)

where we identify the first term in the sum as a Poisson probability associated with a
number n of resetting events having happened in a time interval of duration t given a rate
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γ. To calculate the coupon collector observable we introduce the conditional probability
P

(n)
0 (t) for all coupons having been collected by time t given exactly n resetting event,

such that P (0)
0 corresponds to the cumulative Gumbel distribution derived earlier for

γ = 0. This is given by

P
(n)
0 (t) = 〈e−ψ(t)

(
1

t

∫ t

0

dt′Ô(t′)

)n
ψ†(0)(ψ†(0))N〉 (6.55)

=
1

t

∫ t

0

dt′P (n−1)
0 (t′) + P

(0)
0 (t− t′)(1− P (n−1)

0 (t′)) , (6.56)

which reads like a renewal equation with the first term corresponding to the probabil-
ity of having already collected the last coupon by the time the nth reset occurs and
the second corresponding to the probability of completing the collection after the nth
resetting occurs.
While we don’t expect full observable

P0(t) =
∞∑
n=0

(γt)ne−γt

n!
P

(n)
0 (t) (6.57)

to have a simple form, we can still proceed a little further by noticing that the integral
equation Eq. (6.56) can be rewritten in terms of the generating function

H(z, t) =
∞∑
n=0

zne−z

n!
P

(n)
0 (t) , (6.58)

with H(γt, t) = P0(t), as a differential equation

(t∂t∂z + ∂z − 1)H(z, t) + P
(0)
0 (t) = 0 . (6.59)

with boundary conditions H(0, t) = P
(0)
0 (t) and H(z, 0) = 0. While more compact, this

representation also appears to have no closed form solution.
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6.3.6 Coupon Collection by Stochastic Process

As a variation on the theme of the spaceless Coupon Collector Problem, it is possible to
‘embellish’ the dynamics of the collector while leaving the interaction between collectors
and coupons unaffected. This gives us access to a whole family of problems but for the
sake of simplicity here we only consider the extension to collectors increasing in number
over time in the manner of a spontaneous creation process with Poisson rate s. Our
starting point is the expression

〈ψ(t)φ†(t0)ψ̃(t0)〉 =

〈
exp

(
−
∫ t

t0

dt′ η(t)φ†(t′)φ(t′)

)〉
. (6.60)

which we prove in Appendix 6.A. Assuming η(t) = η, the expression reduces to

〈ψφ†ψ̃〉 =
∞∑
n=0

(−η)n

n!

∫
dt(1) . . . dt(n)

〈
n∏
i=1

φ†(t(i))φ(t(i))

〉
(6.61)

and so the problem reduces to computing the n-th order correlation functions of the
collector number operator N̂φ = φ†φ for the desired process. The first expression has
inhomogeneous collection by a single collector as a limiting case (see relevant section
above). For spontaneous creation with Poisson rate s, the correlation functions of all
order of the collector number can be obtained in close form,〈

n∏
i=1

φ†(t(i))φ(t(i))φ†(t0)

〉
=

n∏
i=1

(1 + s(t(i) − t0)) . (6.62)

Plugging this expression back into (6.61) we get

〈ψφ†ψ̃〉 = exp
(
−η(t− t0)

(
1 +

s

2
(t− t0)

))
. (6.63)

For s(t− t0)� 1, the effective mass of the coupons is unaffected by the Poisson source
and corresponds to the value η found previously. At long times, collection is dominated
by the newly spawned collectors and the survival probability decays super-exponentially.
Finally, using (6.25) we get the modified probability of M coupons having survived up

255



to time t, which is given by

PM(t; s) =
ρM

M !
exp

(
Mηq(t− t0; s)− ρe−ηq(t−t0;s)

)
(6.64)

where q(τ ; s) = τ(1 + sτ) for the sake of compactness.

6.4 Discussion

In this Chapter we have developed a field-theoretic approach to the Coupon Collector
Problem based on the Doi-Peliti coherent state path integral. While here we concern
ourselves with the spaceless case only, the theory is able to account for hopping on a
generic graph and can thus in principle be applied to the study of Cover Time Prob-
lems, which are in some sense a generalisation of the CCP to dimensions d > 0. It is
understood, however, that extending the calculations presented here to the spatial case
is highly non-trivial. Among known results, such as the generalised Gumbel probability
density for the Mth distinct coupon to be picked at a particular time t, the flexibility
and modularity of the Doi-Peliti formalism allows us to obtain various new ones. In
particular, the avalanche shape, the introduction of resetting and the case of collection
by a generic stochastic particle process have to the best of our knowledge not been
considered in the literature before.

This work adds to a growing body of field-theoretic literature [109, 312, 43, 236, 294]
exploiting the microscopic exactness of the Doi-Peliti formalism to address problems in
the realm of stochastic processes, such as first passage and extreme value statistics, that
are traditionally solved via probabilistic methods. Interestingly, the power of field the-
ory comes here from the convenient handling (via Feynman diagrams) of combinatorial
factors, rather than from application of Renormalisation Group methods, which tend to
be concerned with asymptotic ‘bulk’ behaviour, rather than the finite-time, finite-size
extremes probed here.
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6.A Derivation of Eq. (6.60)

The relation between the effective propagator in the presence of collectors

〈ψ(t)φ†(t0)ψ̃(t0)〉 =

〈
exp

(
−
∫ t

t0

dt′ η(t)φ†(t′)φ(t′)

)
φ†(t0)

〉
, (6.65)

given the interaction terms Eq. (6.4) between the coupon field ψ and the collector field
φ can be proved as follows. First of all, we note that, upon performing the Doi shift
and assuming that the truffles are massless, 〈ψ(t)φ†(t0)ψ̃(t0)〉 = 1 + 〈ψ(t)φ̃(t0)ψ̃(t0)〉.
By carrying out the perturbative expansion explicitly, we have

〈ψ(t)φ̃(t0)ψ̃(t0)〉

=
∞∑
n=0

1

n!

〈
ψ(t)

[ ∫ t

t0

dtf η(tf )φ(tf )ψ̃(tf )ψ(tf )︸ ︷︷ ︸
]

×
[ n∏
i=0

∫ tf

t0

dti η(ti)φ̃(ti)φ(ti)ψ̃(ti)ψ(ti)︸ ︷︷ ︸
]
ψ̃(t0)φ̃(t0)

〉
. (6.66)

with tf > ti for all i = 1, ..., n. Since the truffle propagators are causal and massless,
there is only one way of Wick-contracting the coupons fields in pairs such that the
resulting diagram has a non-zero contribution (namely according to time ordering) and
in this case the overall contribution from the truffle fields is a factor of unity. Conse-
quently, the expression above can be simplified by removing the explicit dependence on
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the ψ̃ and ψ fields, thus arriving at

〈ψ(t)φ̃(t0)ψ̃(t0)〉

=
∞∑
n=0

1

n!

〈∫ t

t0

dtf η(tf )φ(tf )

[
n∏
i=0

∫ tf

t0

dti η(ti)φ̃(ti)φ(ti)

]
φ̃(t0)

〉
(6.67)

=
∑
n=1

1

n!

〈[∫ t

t0

dt′ η(t′)φ†(t′)φ(t′)

]n〉
(6.68)

=

〈
exp

(
−
∫ t

t0

dt′ η(t)φ†(t′)φ(t′)

)
φ†(t0)

〉
− 1 . (6.69)
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Overview Morphogenesis refers to the fundamental developmental process in multi-
cellular organisms whereby tissues and organs acquire their target shape in accordance
to the organism’s genetic program. Successful morphogenesis typically relies on a com-
bination of external cues (e.g. maternal gradients) and spontaneous self-organisation
through local signalling, and it is eventually enacted by internally generated mechan-
ical forces that are able to evolve the simple geometry of early embryos into the rich
variety of forms that we are familiar with from our everyday experience of the natural
world. A typical example is that of gastrulation, a developmental stage common to
most animals during which the embryo invaginates to form a multilayered structure,
thus breaking its original spherical symmetry [268]. Needless to say, morphogenesis is
a fundamentally non-equilibrium process, not just because of the obvious energy expen-
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diture underlying cell proliferation and mechanical force generation, but also because
of the multiple layers of signal processing and error correction that are required to map
a disordered “ball” of undifferentiated cells into the highly reproducible patterns typical
of fully developed individuals.

One of the ways in which morphogenesis is orchestrated is through medium-to-long
range signalling mediated by morphogens. These are secreted proteins that typically
spread from a localised source to form gradients of concentration, which is then read
out by target cells to trigger downstream signalling which eventually results in cell fate
specification. To form stable gradients in tissues of finite size, transport needs to occur
alongside degradation, either by actual protein degradation, active endocytosis or e.g.
by leakage out of the tissue. The concept of morphogens was first introduced theoreti-
cally by Turing [288] and Crick later [71] suggested a simple source-sink mechanism for
the formation of linear morphogen gradients. In terms of the downstream signalling,
the simplest mechanism of morphogen action is Wolpert’s “French Flag Model” [302],
where cells autonomously differentiate in stripes parallel to a hypothetical morphogen
source stripe depending on the absolute level of morphogen. An important concept in
this context is that of positional information of the gradient, i.e. the mutual information
between the fluctuating morphogen concentration (or the expression level of one of its
target genes) and the position of a given cell in the tissue. [85].

Over the past few decades, drosophila melanogaster has proved a key model system to
further our understanding of morphogenesis, and more specifically morphogen gradients.
In particular, extensive work has been dedicated to disentangling the complex network
of morphogenetic signals occurring in the wing imaginal disc, a conveniently quasi-2d
group of cells which acts as the precursor to the adult wing and most of the notum (the
dorsal portion of the thoracic segment) [286]. During the ∼ 140h of larval development,
the wing disc grows from about 30 to more than 30000 cells, at which point a pulse of
the steroid hormone Ecdysone triggers eversion (balooning of the wing disc bulk which
eventually leads to the formation of the wing blade) [304]. The bulk of the disc, known
as the pouch, is an epithelium of undifferentiated columnar cells which is exposed
on the basal side to the haemolymph, the insect’s “blood”, with which it exchanges
nutrients, oxygen as well as any other diffusible species which is allowed to “leak” in
and out of the tissue. See schematic in Fig. 7.1, panels A and B. The haemolymph
thus also acts as a channel of communication between the wing disc and other tissues
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that are in contact with it, such as the fat body, a large adipose tissue which will be
relevant in the following. On the apical side, the pouch is instead in contact with the
peripodial space, a smaller enclosed lumen that is separated from the lateral part of the
tissue by impermeable tight junctions. In addition to the apico-basal axis, the disc is
spanned by the anterior-posterior (AP) and dorsal-ventral (DV) axes, along which two
key morphogens, respectively Decapentaplegic (Dpp) and Wingless (Wg), are known to
form concentration gradients.

In this brief overview, we focus for the sake of brevity on the Dpp signalling network.
Dpp is the Drosophila homolog (a gene originating from a common ancestor) of the ver-
tebrate bone morphogenetic proteins (BMPs), a family of growth factors which control,
amongst others, the formation of bones and cartilage. In the wing disc, Dpp secretion
is triggered by Hedgehog (hh) signalling in a stripe of cells at the boundary between the
anterior and posterior compartments [61]. For later reference, it is worth mentioning
that hh is only secreted in the posterior compartment, such that artificially replacing
the endogenous hh for a protein of one’s choice leads to the latter’s expression in half
of the disc only. Once produced at the A-P boundary, Dpp then spreads away from
the source region and eventually binds to its signalling receptor Thickveins (Tkv) to
initiate signalling in the form of phosphorilated Mad (pMad), which acts as a transcrip-
tion factor on a number of target genes. Dpp can also bind with lower affinity to other
non-signalling receptors, such as Dally, which further differs from Tkv by the absence
of a transmembrane domain and thus a higher diffusivity on the cell membrane. In the
wing disc, the main downstream targets of Dpp signalling is Brinker (Brk), which in
turn represses expression of Optomotor-blind (Omb) and Spalt (Sal). As a result, while
Brk is transcriptionally downregulated by pMad and is thus expressed in an inverse
concentration gradients increasing away from the Dpp source, Omb and Sal form broad
bands of high expression around the Dpp source. These genes act in concert to pattern
the future wing blade by positioning, among others, the L2 and L5 veins. Interestingly,
Brk also appears to control growth by reducing cell proliferation towards the edges of
the wing disc, thus “flattening” the otherwise inhomogeneous growth profile [252].

Notwithstanding the apparent simplicity of the underlying mechanism, the shape and
patterning of the adult wing are surprisingly robust to artificial perturbations, such
as changes in the source production rate or modifications in the spatial expression of
receptors [209, 130]. These observations are suggestive of a number of feedback mech-
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anisms being at play. A still poorly understood such mechanism is that controlling
gradient scaling [296], namely the observed progressive increase in gradient characteris-
tic length during growth which maintains the relative position of the target boundaries
approximately constant. This feature of morphogen gradients has also been studied ex-
tensively in the Drosophila embryo, where Bicoid and other morphogens form overlap-
ping gradients which control expression of the “gap” genes responsible for body segment
determination [179].

Whether we are interested in error correction, scaling or the temporal dynamics of
target gene expression, a key fact that needs to be established is the precise mode of
transport of morphogens, on which secondary mechanisms are then likely to act. Sur-
prisingly, and partly due to the difficulty of visualising single molecule motion in vivo
(however, see [162] for recent related work), this has been a somewhat controversial
topic [274]. It has been suggested that Dpp spreads by planar transcytosis or on spe-
cial filopodia (membrane protrusions) called cytonemes; however, direct evidence for
these specialised processes remains limited. On the other hand, hindered diffusion in
the extracellular space, whereby single Dpp molecules repeatedly bind and unbind from
receptors before eventually being degraded, offers a simpler alternative. In this Chap-
ter, we present a mathematical model of morphogen transport by hindered diffusion in
the presence of multiple extracellular binders based on a set of experiments carried out
by our collaborators in which Dpp was replaced by an inert fluorescent protein (GFP)
[273]. Remarkably, engineering the Dpp receptors to be able to bind GFP with high
affinity – specifically by fusing an anti-GFP nanobody (Nbhigh) to the former – leads
to the establishment of a functional GFP gradient. Furthermore, near-wild-type pat-
terning quality is achieved upon concomitant expressions of low affinity non-signalling
receptors (Nblow). Interestingly, the observed levels of bound GFP in the disc are af-
fected by the expression of high-affinity binders in different tissues, specifically the fat
body, that are not in direct contact with the disc, suggesting that leakage into and
back-flow from the haemolymph might play a non-trivial role in morphogen transport.
Together, these results support the view that Dpp transport occurs via non-specific,
signal-agnostic processes such as hindered diffusion.

Author contributions: KS performed all the experiment, collected the data presented
the the published article and wrote the first draft of the main body. MDG, LC and
GS developed the mathematical model and wrote the Supplementary Material. In
particular, MDG focused on the diffusion-degradation models with a single receptor,
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while LC focused on the role of multiple receptors and receptor diffusion. JPV and GS
supervised the project throughout.

Abstract

In this Chapter (which originally appeared as the supplementary document of the as-
sociated paper [273]), we derive equations describing the formation of a morphogen
gradient with leakage (section 7.1). In addition to considering the consequences of leak-
age, we discuss the effect of varying receptor density on the shape of the morphogen
gradient and on the domains of target activation inferred from the gradient. We show
that a maximal range of target activation is achieved for intermediate values of the
density of receptors. We then describe a model gradient with two types of receptors:
one type of signaling receptor, and one type of non-signaling receptor which is allowed
to undergo a hopping process between neighbouring cells (section 7.2). We study how
introducing a hopping non-signaling receptor can allow for modulation of the gradient
range.

Abstract of original paper ∗

Morphogen gradients provide positional information during development. To uncover
the minimal requirements for morphogen gradient formation, we have engineered a
synthetic morphogen in Drosophila wing primordia. We show that an inert protein,
green fluorescent protein (GFP), can form a detectable diffusion-based gradient in the
presence of surface-associated anti-GFP nanobodies, which modulate the gradient by
trapping the ligand and limiting leakage from the tissue. We next fused anti-GFP
nanobodies to the receptors of Dpp, a natural morphogen, to render them respon-
sive to extracellular GFP. In the presence of these engineered receptors, GFP could
replace Dpp to organize patterning and growth in vivo. Concomitant expression of
glycosylphosphatidylinositol (GPI)–anchored nonsignaling receptors further improved
patterning, to near–wild-type quality. Theoretical arguments suggest that GPI anchor-

∗Here we make a distinction between the abstract of the Chapter and that of the original paper on
which the former is based due to the difference in focus (theoretical in the first, experimental in the
second).
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age could be important for these receptors to expand the gradient length scale while at
the same time reducing leakage.

7.1 Ligand diffusion and inferred signaling activity with one receptor

7.1.1 Model description

We discuss here a description of basolateral ligand gradients with leakage. The ligand
is GFP and binders are anti-GFP nanobodies expressed only in the posterior compart-
ment. This is meant to match the experimental setup, where the DNA encoding the
GFP binder was knocked into the hedgehog (hh) locus. We consider leakage occurring
towards the hemolymph, basal to the epithelium. The ligand is produced in a source
of width LS (Fig. 7.1). It can diffuse in a tissue of total width 2L, bind and unbind to
receptors at the cell surface, and be degraded. Degradation can occur in two ways: the
ligand can be internalised after binding to a receptor, or it can diffuse out of the tissue
to the underlying hemolymph. For simplicity we assume translational invariance in the
direction tangential to the source, and we consider homogeneous concentrations in the
tissue along the apico-basal axis, so that all quantities only vary with x, the coordinate
perpendicular to the source. We choose the reference position x = 0 to denote the
boundary between the source and the posterior compartment. The density of unbound
receptors at the cell surface is denoted nu, the density of bound receptors is denoted nb.
These densities are taken per surface of intercellular junctions and are twice as large as
the cell membrane density, as each intercellular junction includes two cell membranes
facing each other. The concentration of freely diffusing ligand in the tissue, within the
intercellular space, is denoted by c. The concentration of ligand in the hemolymph is
assumed to be uniform, and is denoted cH. We do not take into account the potential
role of advection due to tissue growth.

The concentration of extracellular ligand in the posterior part of the tissue is then given
by:

∂tc = D∂2
xc+

1

h
[−konnuc+ koffnb]− 1

H
jTH − kdc, 0 ≤ x < L , (7.1)
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Figure 7.1: (A) Schematic representation of a wing imaginal disc of Drosophila. In the set of experi-
ments reported in [273], a secreted form of GFP (SecGFP) is expressed under the control of the patched
(ptc) promoter (brown), and a membrane-tethered anti-GFP nanobody is expressed under the control of
the hedgehog (hh) promoter (gray). (B) Schematic representation of the paths a diffusing protein can
take following secretion (diffusion through the basolateral space and exchange with the hemolymph). The
fat body is a large adipose tissue with extensive contact with the hemolymph. (C) Schematic of one-
dimensional model geometry. The mean intercellular distance is denoted h (upper schematic). The width
of the source is denoted LS , the width of the anterior and posterior compartments L (lower schematic).

where D is the free GFP diffusion constant, kon is the rate of binding to receptors, koff

the rate of unbinding from receptors, h is the width of the intercellular space (Fig. 7.1),
jTH is the local flux of GFP to the hemolymph, H is the tissue height, and kd is the
rate of dilution associated with tissue growth. In the following we will assume that the
contribution of dilution to the dynamics of free GFP is negligible compared to other
processes, such as diffusion. We further assume that the GFP flux from the tissue to
the hemolymph can be written as:

jTH = Hκ(c− cH) , (7.2)

with κ an effective leakage rate in between the tissue and hemolymph. The dynamics
of the unbound and bound receptor densities is given in the posterior compartment
(0 ≤ x < L) by:

∂tnu = −konnuc+ koffnb − knu + jr, (7.3)

∂tnb = konnuc− koffnb − knb , (7.4)

where jr is the rate of increase of free receptor surface density, following from receptors
biosynthesis and export to the membrane. k = kint + kd is the total rate of degradation
of receptors, which could arise from cell internalisation and degradation (with rate
kint) or from dilution due to cell growth (with rate kd). In this part we assume that
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ligand binding to the receptors does not affect receptor degradation. In the anterior
compartment, receptors are not expressed and nb = nu = 0.

The GFP concentration within the source changes according to diffusion, production
from source cells and losses from fluxes to the hemolymph:

dc

dt
= D∂2

xc+ j − κ(c− cH) ,−LS < x < 0 , (7.5)

where j is the rate of GFP secretion in the source (defined as the rate of increase
of extracellular free GFP concentration per unit time). In the anterior compartment,
outside of the source, the GFP concentration follows the equation

dc

dt
= D∂2

xc− κ(c− cH) ,−L < x ≤ −LS . (7.6)

We postulate the following evolution of the concentration of GFP in the hemolymph:

dcH

dt
=
φw

VH

∫ L

−L
jTHdx− kHcH , (7.7)

where VH is an effective volume of the hemolymph, w the transverse width of the tissue
(orthogonal to the antero-posterior direction) and kH is the ligand degradation rate in
the hemolymph. Here we have introduced the intercellular volume fraction φ ' h/R

with R the radius of a cell in the plane of the tissue; the total influx from the tissue
to the hemolymph is proportional to φ. In vivo, ligands and receptors production does
not occur only in wing imaginal discs. We assume that the contribution of the other
imaginal discs and the larval epidermis can be captured by modulating the effective
volume VH; this approximation is discussed more extensively in section 7.1.6. At steady-
state Eq. (7.7) becomes, using Eq. (7.2),

〈c〉 =

(
1 +

k̄H

κ

)
cH (7.8)

with k̄H = kHVH

2φwHL
and 〈c〉 = 1

2L

∫ L
−L cdx the average ligand concentration in the tissue.

In one of the experimental conditions considered, which we refer to as “fat body trap” in
the following, GFP binders were overexpressed in the fat body, resulting in a sponging
effect which dramatically reduced cH, thus suppressing GFP backflow into the tissue.
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In the model, this perturbation is captured by a modified degradation rate k̄FB
H > k̄H.

In addition we assume that there is no free GFP flux at the anterior and posterior
boundaries of the tissue:

∂xc(−L) = ∂xc(L) = 0 . (7.9)

7.1.2 Steady state

At steady state, we obtain the density of bound and unbound receptors by solving Eqs.
(7.3) and (7.4):

nb = nT
konc

k + koff + konc
(7.10)

nu = nT
k + koff

k + koff + konc
(7.11)

nT = nb + nu =
jr
k
. (7.12)

The density of bound receptors depends on the extracellular ligand concentration, with
possible receptor saturation effects for large concentrations, c > (k + koff)/kon. Using
Eq. (7.1), the steady-state concentration profile of the free ligand in the posterior part
of the tissue is given by:

D∂2
xc−

knT

h

konc

k + koff + konc
− κ(c− cH) = 0 . (7.13)

7.1.3 Results for low production rate of ligand (no receptor satura-
tion)

Steady-state relations at low ligand production rate

If the production of GFP at the source is sufficiently weak, or if the degradation through
leakage and internalisation is sufficiently high, konc � (k + koff), then the term asso-
ciated with degradation of the bound receptors in Eq. (7.13) becomes linear in the
concentration c. This corresponds to a situation where the receptors are nowhere sat-
urated. The concentration of free ligands then takes the simple form, assuming L� `
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:

c = c0 exp
(
−x
`

)
+ cH

κ

κ+ kr

, (7.14)

where we have defined kr the effective ligand degradation rate due to binding to recep-
tors:

kr ≡
knT
h

kon

k + koff

=
jr

h

kon

k + koff

, (7.15)

and ` the length scale of the gradient which is given by:

` ≡
√

D

kr + κ
. (7.16)

In addition, for low concentrations of ligand, c� (k + koff)/kon, the density of steady-
state bound receptors given in Eq. (7.10) becomes:

nb =
nTkon

k + koff

c . (7.17)

For low receptor degradation k � koff , Eqs. (7.17) leads to nb ' nTkonc/koff . Away
from the source for x � `, using Eq. (7.14), one then finds the asymptote n∞b '
nTkoncH/(koff(1 + kr/κ)).

The free ligand concentration at the source c0 and the hemolymph concentration cH are
then determined by solving for the concentration profile in the source and in the anterior
compartment, and calculating the total flux towards the hemolymph. Solving Eqs. (7.5)
and (7.6), the free GFP concentration profile decays in the anterior compartment on a
length scale `0 =

√
D/κ (we assume that `0 � L, and also note that ` < `0). Matching

concentrations and fluxes at the interface between the source and the anterior and
posterior parts of the tissue, we then obtain:

c0 =
`

κ(`+ `0)

(
cH

κkr

κ+ kr

+ j
(

1− e−
LS
`0

))
, (7.18)

and calculating the average free ligand concentration in the tissue, we obtain from the
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balance equation (7.8) the hemolymph concentration for L� `0:

cH =
j

L

LS − (`0 − `)
(

1− e−
LS
`0

)
2k̄H + krκ

κ+kr

. (7.19)

We also note that a simple, intuitive condition can be obtained by writing that all GFP
produced in the source must, at steady-state, either be degraded in the tissue or in the
hemolymph. As a result, with VS = wLSH the volume of the source,

φVSj = φwHkr

∫ L

0

c(x)dx+ VHkHcH

LSj ' kr

[
c0`+ LcH

κ

κ+ kr

]
+ 2Lk̄HcH , (7.20)

for L � `. One can verify that this condition is indeed satisfied with the expressions
given in Eqs. (7.18) and (7.19) for L→∞.

Boundaries of expression domains of target genes as a function of the
total receptor density

We now discuss the expression domain of a hypothetical target gene activated by ligand-
receptor complexes. We ask how the expression domain changes when the total density
of receptors nT is varied. We first consider the case where there is strong degradation
in the hemolymph, so that cH = 0. In that case, using Eqs. (7.14), (7.17), and (7.18),
the profile of bound receptors is given by

nb =
nTkon

k + koff

j
(

1− e−
LS
`0

)
κ+

√
κ(κ+ kr)

exp
(
−x
`

)
. (7.21)

We consider that the target is activated above a threshold value of bound receptors,
nb > n∗b. This sets a domain boundary with position x∗ (Fig. 7.2):

x∗ = ` ln

 nTkonj
(

1− e−
LS
`0

)
n∗b(k + koff)(κ+

√
κ(κ+ kr))

 . (7.22)
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Figure 7.2: (A) A threshold level of surface density of bound receptors n∗B determines the boundary of
the activation domain (x∗) of a hypothetical downstream target (orange). (B) On/off target boundary
(x∗) as a function of the total receptor surface density, in the absence of receptor saturation and ligands
in the hemolymph. The activation threshold (n∗B = 10nM. µm) was used to determine x∗ for different
receptor surface density (dots). A maximal target domain size can be found for intermediate values of the
total receptor surface density. (C) Phase diagram of target activation domain size, as a function of to-
tal receptor surface density and effective ligand degradation rate in the hemolymph. Receptor saturation
is not taken into account. At low receptor density level, no activation occurs; at intermediate receptor
density and for low enough degradation in the hemolymph, a region of full activation appears; the third
domain of parameter space is that of biologically relevant spatially restricted activation. (D) Phase dia-
gram as described for panel F, but with receptor saturation included. Color code corresponds to the size
of the activated domain.
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Using this expression, we discuss below the limits nT → 0 and nT → ∞, at a fixed
degradation rate k.

• When the total receptor density is small, nT → 0, the length scale `→ `0 =
√
D/κ

(Eq. (7.16)), which depends only on diffusion and leakage. In addition following
Eq. (7.21), nb ∼ nT → 0. Therefore the profile maintains a fixed characteristic
length scale and decreases in magnitude as nT → 0. As a result as nT decreases, x∗

first approaches the position of the interface between the posterior compartment
and the source, and for small enough nT there is no target activation in the tissue.
This occurs when the term within the logarithm in Eq. (7.22) is equal to 1.

• When the total receptors density is large, nT →∞, the effective degradation rate
kr increases (Eq. (7.15)) and the length scale `→ 0 (Eq. (7.16)). The decrease in
the length scale is due to faster binding and overall degradation of the ligand as
a result of a higher number of available receptors. The magnitude of the bound
receptors profile (nb(x = 0)) also increases as ∼ √nT as can be seen from Eq.
(7.21) in the limit nT → ∞; so that the profile becomes higher and sharper.
Overall the position of the boundary x∗ converges to 0 for large nT (Eq. (7.22)).

• In between these two limits, the boundary position x∗ exhibits a maximum (Fig.
7.2).

We now take into account a non-zero value of the concentration in the hemolymph. In
this case the target gene can be fully activated in the tissue when the ligand concentra-
tion at large distance becomes high enough. Using Eqs. (7.14), (7.17) and (7.19), the
condition for full activation to occur is given by:

nTkon

k + koff

j

L

LS − (`0 − `)(1− e−
LS
`0 )

2k̄H
κ+kr

κ
+ kr

> n∗b . (7.23)

As the total receptor density increases, nT → ∞, two different behaviours can occur.
For high enough ligand production, if jhκ

(
LS − `0(1− e−

Ls
`0 )
)
> Lkn∗b(2k̄H+κ), full ac-

tivation of the target occurs even for a high number of receptors. If jhκ
(
LS − `0

(
1− e−

Ls
`0

))
<

Lkn∗b(2k̄H + κ), increasing the total receptor density results in a shrinking expression
domain near the source. In general a phase diagram can be drawn in the space of (k̄H ,
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Parameter Name Value Unit
Free ligand diffusion constant D 21 µm2.s−1 As measured for Dpp [168]
Thickness of intercellular space h 20 nm Estimated from EM

Tissue height H 53 µm Measured (n=10 wings)
Length of one AP compartment L 116 µm Measured (n=10 wings)

Length of the source LS 26 µm Measured (n=11 wings)
Binding rate of GFP

to Nb1high (VHHGFP4) kNb1high

on 7.7× 10−4 nM−1.s−1 [303]

Unbinding rate of GFP
from Nb1high (VHHGFP4) kNb1high

off 1.7× 10−4 s−1 [303]

Binding rate of GFP
to Nblow (LAG3) kNblow

on 2× 10−3 nM−1.s−1 [40]

Unbinding rate of GFP
from Nblow (LAG3) kNblow

off 5× 10−2 s−1 [40]

Ligand production rate
in the source j 0.32 nM.s−1 Fitted

Leakage rate to hemolymph κ 0.074 s−1 Fitted
Rescaled degradation rate

in hemolymph k̄H 0.01 s−1 Fitted

Rescaled degradation rate
in hemolymph,

fat body experiment
k̄FB

H 0.23 s−1 Fitted

Receptor production rate jr 0.0027 nM.µm.s−1 Fitted

Table 7.1: Parameter table for single receptor model (EM stands from electron micrographs).

nT) with regions of finite activated region, full activation and no activation. For inter-
mediate values of k̄H , increasing the total receptor density can change the activation
region from full activation to a spatially restricted activated region (Fig. 7.2C), a result
which is confirmed by numerical analysis of the full model with saturation (Fig. 7.2D).
Qualitatively, the behaviour of going from full activation to restricted activation with an
increasing receptor concentration is observed experimentally for the pMAD expressing
region, when increasing the concentration of signaling receptors [273].

7.1.4 Parameters

To compare the model with experimental results, we solved for the steady-state bound
receptor density profile nb. We discuss here the set of parameters used in numerical
solutions, listed in Table 7.1. We used the same set of parameters to fit different
experiments, since we expect most of the parameters (e.g. those characterising the
tissue geometry) to be independent by the level and affinity of the binders; except
that the degradation rate of ligands in the hemolymph was assumed to be increased
in experiments with the fat body trap (from k̄H to k̄FB

H ) and the on and off rates of
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ligands to receptors were modified depending on whether the Nblow or Nbhigh receptors
were expressed. Additionally, in one of the conditions included in the dataset, our
collaborators quantified the shortening of the bound GFP gradient upon overexpression
of Nbhigh, which we capture by increasing the receptor density by a factor 20. This factor
was estimated from ex vivo experiments (see Fig. 7.3). Much of the detail regarding
the experimental side of this work was left out of the following for the sake of brevity
but and extensive discussion can be found in the Materials and Methods, as well as the
full Supplementary Text accompanying the original publication [273].

• Measurements of the geometry of the tissue (tissue height H, length of the pos-
terior compartment L, length of the source LS) are obtained by averaging mea-
surements from cross-sections of wing discs.

• The width of the intercellular space is variable but a reasonable value of h = 20nm
can be estimated from electron micrographs (C. Rabouille, personal communica-
tion).

• The diffusion constant D is the effective diffusion constant of free GFP in the
tissue along the antero-posterior direction. An order of magnitude for this value
can be obtained by noting that Dpp and GFP are proteins with similar sizes,
and that the diffusion constant of extracellular Dpp has been measured in wing
imaginal discs by fluorescence correlation spectroscopy to be ∼ 10 − 21µm2/s
[316]. Here we take D = 21µm2.s−1. We discuss below how parameters values
vary when D is taken in the range 5− 45µm2/s.

• The on and off rates of GFP to the Nbhigh and Nblow nanobody are obtained from
biophysical measurements with purified proteins [241, 104, 161].

• To obtain the parameters j, κ, k̄H, k̄FB
H and jr, we fitted experimental measure-

ments of fluorescence intensity of bound GFP profiles to the model of diffusion-
degradation-leakage (Eqs. (7.10) and (7.13)). We fitted simultaneously profiles
obtained with the Nbhigh receptor with or without the fat body trap, or with the
Nblow receptor (Fig. 7.4).

To estimate the turnover rate of bound receptors, our collaborators performed a
pulse-chase experiment where the tissue was exposed ex vivo to GFP and subse-
quently washed, incubated for different durations and imaged. The result suggests
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Figure 7.3: (A) Normalized fluorescent GFP intensity in the Nbhigh condition (hh-Nb1highCD8, green
bar) and Nbhigh overexpression condition (hh-Gal4, UAS-Nb1highCD8, orange bar) after ex vivo incuba-
tion in a GFP bath. The difference in GFP intensity suggests that (Gal4-mediated) overexpression leads
to a ∼ 20 fold increase in surface receptor levels. (B) Nbhigh-expressing discs (Nb1highCD8 condition)
were saturated with GFP on ice, washed, incubated for different durations and imaged. Normalized GFP
intensity in hh- Nb1highCD8 wing discs decreased by ∼25% over the time course of 6 h. Since GFP is
quenched in late endosomes due to a low pH (58), this observation suggests that Nbhigh is degraded only
slowly (on the scale of several hours as predicted by modelling). (C) To estimate the concentration of
Nb1highCD8 at the cell surface, a GFP invasion assay was used. hh-Nb1highCD8 discs were incubated
in 2 nM, 20 nM and 200 nM GFP baths for 5 min at 25◦C. The resulting basal-to-apical GFP gradient
in the posterior compartment was imaged and quantified. (D) A simple model of apico-basal gradient
formation.
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that degradation occurs on a timescale of several hours (Fig. 7.3). This low rate
can be rationalized from the lack of specific endocytic signals. Therefore we as-
sume that k � kNbhigh

off and k � kNblow

off , and we simplify Eqs. (7.10) and (7.13) to
obtain:

nb

nT

=
konc

koff + konc
(7.24)

0 = D∂2
xc−

jr

h

konc

koff + konc
− κ(c− cH) . (7.25)

using that jr = knT at steady-state. With this simplification, and fitting nb/nT to
normalized fluorescence intensity profiles, the fitting procedure can be performed
for the parameters j, κ, k̄H, k̄FB

H and jr, without specifying the value of k or nT. We
use a least-square minimization performed with the scipy minimization Nelder-
Mead method. Experimental and theoretical curves are normalized to the mean of
the profile for Nbhigh. We performed a bootstrapping analysis in order to estimate
the robustness of the fitting process. We used a resampling residuals approach
to generate 1000 set of artificial data curves, fitted each of them individually,
and calculated the standard deviation of the resulting distribution of parameters.
We find j = 0.3 ± 0.04nM.s−1, κ = 0.075 ± 0.004s−1, k̄H = 0.01 ± 0.001s−1,
k̄FB

H = 0.19±0.02s−1, jr = 0.0026±0.0003nM.µm.s−1. We also tested the influence
on parameters of shifting the assumed position of the AP boundary by ±0.76µm,
and found 0.28 < j < 0.34nM.s−1, 0.073 < κ < 0.078s−1, 0.009 < k̄H < 0.011s−1,
0.19 < k̄FB

H < 0.2s−1, 0.0025 < jr < 0.0028nM.µm.s−1.

We note that the ligand production rate we obtain is j = 0.3 nM.s−1. For a cell of
lateral surface 500µm2 producing GFP in an intercellular space of width h = 0.02µm,
this is equivalent to a production rate of ∼ 0.9 GFP/cell/s. Here we have counted
that each cell contributes specifically in the domain h/2 away from its surface. This
production rate is in the same range as previously fitted production rates of Dpp (∼ 2.7

molecules/cell/s [154] ).

In Nbhigh overexpression experiments, we use a receptor production rate jr increased by
a factor 20, as we estimated an increase of fluorescence intensity of 20 in this condition
(Fig. 7.3).

In section 7.1.7 we discuss a method based on a GFP invasion experiment, where a wing

276



disc that does not secrete GFP but expresses Nbhigh is put in contact ex vivo on the
basal side with a GFP bath at different concentrations, to estimate the receptor surface
density. With this method we find nT = 80nM.µm (corresponding to 1600 nM.µm in
Nbhigh overexpression experiments). This corresponds to a single cell surface receptor
density of 40nM.µm. This value is smaller but comparable to the surface density of
receptors measured in mammalian cells [311] . With the fitted value of jr (Table 7.1),
the relation nT = jr/k gives k ' 3.3×10−5s−1 or a degradation time scale of ∼ 8 hours,
consistent with our previous assumption of low receptor degradation rate.

To test how our results depend on an estimate of the diffusion constant D, we first note
that in the limit k � koff , the steady-state solution c of Eqs. (7.1), (7.5), (7.6) and (7.7)
is invariant under the transformation D → αD, jr → αjr, κ→ ακ, kH → αkH, j → αj

and nT → αnT; and the concentration of bound receptors changes by nb → αnb. We
also found numerically that in the regime of parameters that we explored (including
5 < D < 45µm2/s), the dynamics of c in GFP invasion simulations was approximately
quasi-static, ∂tc ' 0 (see Eqs. (7.30)-(7.32)). In this limit Eqs. (7.30)-(7.32) are also
invariant by Df → αDf , nT → αnT, nb → αnb, Dr → Dr; where Df is the diffusion
constant of free GFP and Dr the diffusion constant of Nbhigh-CD8 receptors within the
surface. Since we only study normalized profiles of the bound concentration nb in our
analysis, we conclude that changing the estimate of D and Df by a factor α, in the
range that we explored, leads to the approximate parameter change jr → αjr, κ→ ακ,
kH → αkH, j → αj, nT → αnT, and Dr → Dr.

7.1.5 Effect of replacing Nbhigh receptor by Nblow receptor

Here we discuss the effect of replacing the Nbhigh by the Nblow receptor, using results
obtained in section 7.1.3 in the regime below receptor saturation. Bound GFP intensity
profiles in tissues expressing the Nbhigh receptor exhibit a non-zero tail, which is reduced
by a factor ∼ 3 compared to intensity profiles in tissues expressing the Nblow receptor
(Fig. 7.4).

With known receptor parameters, this implies that the plateau value of the free GFP
concentration profile is actually increased by a factor ∼ 30. Indeed, at steady-state and
outside the receptor saturation regime, and since k � koff , the free GFP density c is
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related to the bound GFP density nb by (Eq. (7.17)):

c ' koffnb

konnT

. (7.26)

The overall affinity of Nblow to GFP kNblow

on /kNblow

off = 0.04nM−1 is ∼ 100 times lower
than the affinity of Nbhigh to GFP kNbhigh

on /kNbhigh

off = 4.53nM−1 (Table 7.1). The density
of receptors nT should be identical in tissues expressing the Nblow and Nbhigh receptors.
Therefore, application of Eq. (7.26) indeed implies that the plateau of free GFP con-
centration profile c is increased by a factor ∼ 30 with the Nblow receptor compared to
the Nbhigh receptor.

In addition, one also observes that the Nblow bound receptor profile is flat, with no
detectable gradient, in contrast to the gradient formed with the Nbhigh receptor (Fig.
7.4).

To rationalize these observations, we consider the limit of low ligand-receptor affinity,
kon/koff → 0, of the steady-state gradient formed outside of the regime of receptor
saturation (section 7.1.3), since Nblow has a smaller affinity to GFP than Nbhigh. In
that limit kr � κ and also taking kr � k̄H for simplicity, the predicted gradient is given
by

nb =
nTkonj

2κkoff

[
(1− e−

Ls
`0 )e

− x
`0 +

LSκ

Lk̄H

]
, (7.27)

where we have assumed k � koff . In the limit LSκ
Lk̄H
� 1, the first term in brackets

becomes negligible and the profile of bound receptors becomes flat, as observed ex-
perimentally. We note however that with the parameters listed in Table 7.1, we find
LSκ
Lk̄H
' 1.7 so that this limit is not exactly reached; indeed the corresponding profile

still has a weak gradient for the Nblow case (Fig. 7.4).

In addition, one can discuss how the free ligand concentration at large distance depends
on the receptor affinity for the ligand. In Fig. 7.5, we plot the predicted free GFP con-
centration when kon and koff are varied around the known Nbhigh parameters. The free
GFP concentration at large distance increases when kon is reduced or koff is increased.
This arises in the model because decreased ligand-receptor affinity leads to a smaller
effective degradation in the tissue (rate kr). As a result, the concentration cH in the
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indicate that the GFP fluorescence profile is largely dominated by bound receptors. nT = 80nM.µm, and
other parameters as in Table 7.1.
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hemolymph is higher, as a larger fraction of produced GFP molecules accumulates in
the hemolymph instead of being degraded in the tissue (see Eq. (7.19)). Besides, more
ligands coming from the hemolymph can remain in the tissue without binding to a re-
ceptor and being degraded (factor κ/(κ+kr) in Eq. (7.14)). Overall, our model predicts
a larger free ligand concentration far from the source when ligand-receptor affinity is
reduced. This is consistent with the reasoning at the beginning of this section, which
showed that the free ligand concentration at large distance should be ∼ 30 higher for
Nblow than for Nbhigh.

7.1.6 Effect of GFP production and trapping by multiple tissues

The hedgehog and patched genes are active in several tissues besides wing imaginal
discs [277, 174, 140, 117, 160]. These tissues are therefore expected to express GFP
and binders and hence affect the level of GFP in the hemolymph. Here we assess these
contributions.

We consider that i = 1...N different tissues which, as in section 7.1.1, have a cuboidal
shape (Fig. 7.1). We assume as before that the concentration of free GFP in the
hemolymph is uniform. The equation for the hemolymph concentration (previously
Eq. (7.7)) then becomes:

dcH

dt
=
∑
i

Viφiκi
V tot

H

(〈c〉i − cH)− kHcH , (7.28)

where 〈c〉i is the average free ligand concentration in tissue i, Vi = 2LiwiHi is the volume
of tissue i, φi is the intercellular volume fraction of tissue i, and κi is the leakage rate of
tissue i into the hemolymph. If we assume that all regions have the same intercellular
volume fraction, leakage rate and average free ligand concentration, we obtain

dcH

dt
=
κφ(
∑

i Vi)

V tot
H

(〈c〉 − cH)− kHcH , (7.29)

which is identical to Eq. (7.7), with an effective hemolymph volume VH = V tot
H V/(

∑
i Vi)

with V the volume of one wing imaginal disc. Here we make the simplifying assumption
that this approximation holds. A more detailed description would require, for each
tissue, the knowledge of the size of each domains of expression of patched and hh, and
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the cell geometries, in order to solve Eq. (7.28).

7.1.7 Estimate of the receptor surface density from GFP invasion ex-
periments

In Fig. 7.3, we describe GFP invasion experiments. In these experiments, a wing
disc that does not secrete GFP but expresses Nbhigh is put in contact ex vivo on the
basal side with a GFP bath at different concentrations cbath=2nM, 20nM, 200nM. Free
GFP then diffuses through the basal membrane into the tissue, along its apico-basal
direction, and binds and unbinds to receptors. After τc = 300s of contact with the bath,
the disc is washed and fixed and the apico-basal profile of GFP intensity is quantified.
Here we denote the diffusion constant of free GFP Df and choose Df = 2D. Indeed
assuming that GFP diffuses within the small intercellular space, and treating the edge
of cells as straight lines with a random orientation, the effective diffusion constant along
the antero-posterior axis is D ' 〈cos2 θ〉Df = Df/2, where the average is over possible
junction orientations θ.

We assume that the process of GFP invasion in the tissue can be described using the
following equations for the free GFP concentration c, the surface density of bound
receptors nb and the surface density of unbound receptors nu,

∂tc = Df∂
2
zc+

1

h
(−koncnu + koffnb) , (7.30)

∂tnb = Dr∂
2
znb + koncnu − koffnb , (7.31)

∂tnu = Dr∂
2
znu − koncnu + koffnb , (7.32)

where we denote z the apico-basal coordinate, with z = 0 denoting the basal side
and z = H the apical side (Fig. 7.3). We assume that on the short time scale of
the experiment, receptor production and internalization can be neglected, such that
the total receptor density nT = nb + nu is fixed. We also assume that free and bound
receptors can diffuse within the cell membrane with a diffusion constant Dr. In addition,
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we impose the boundary conditions

c(z = 0, t) = cbath (7.33)

∂zc(z = H, t) = ∂znb(z = H, t) = ∂znu(z = H, t) = 0 (7.34)

∂znb(z = 0, t) = ∂znu(z = 0, t) = 0 (7.35)

Eq. (7.33) arises from the condition that the GFP bath imposes its concentration at the
basal side (we assume that there is no barrier between the bath and the basal side of the
tissue). Eq. (7.34) arises from the lack of exchange between the basolateral compartment
and the apical compartment, such that free GFP or receptors have a vanishing diffusion
flux at the apical end of the tissue. Eq. (7.35) arises from the condition that receptors
can not leave the cell membrane on the basal side.

Solving for these equations with the initial conditions c(z, t = 0) = nb(z, t = 0) = 0, we
calculate the profile nb(z, τc) for different values of cbath and compare to experiments.
A fit to experimental data is performed by a least-square minimization between the
experimental GFP fluorescence and the profile nb(z, τc), normalizing all curves by the
mean of the profile for cbath = 200nM. From this fitting procedure we find nT = 80 ±
1.8nM.µm and Dr = 1.36 ± 0.05µm2/s. Here the uncertainty values are standard
deviations, obtained from a bootstrapping method, where we fitted synthetic curves
generated by adding errors to the best fit theoretical curve. Errors were taken from a
normal distribution with a standard deviation given by the maximal residual between
theoretical and experimental curves, for each condition. In section 7.2 we use the
rounded value nT = 100nM.µm for the receptor surface density.

7.2 Model with second hopping receptor

In this section we introduce a description of gradients that involves a second class of
receptors binding to the ligand. We discuss the possibility that this second receptor
effectively diffuses in the tissue, through hopping between neighbouring cells. We show
that this receptor effective diffusion can lead to gradient expansion, i.e. an increase in
the characteristic length scale of the gradient. In this section, we consider receptors
which are expressed uniformly in the tissue, including in the source.
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Figure 7.6: Diffusion-leakage-degradation models with one or two receptor types, as discussed in the
text: (a) simple model of ligand binding to immobile, membrane-bound receptors. (b) As in (a), but with
receptor release from the membrane and subsequent reinsertion. (c) As in (a) but considering effective
diffusion of receptors at the surface of the tissue, through membrane diffusion and hopping. (d) As in (c),
but with two receptor types: one type of receptor is allowed to hop and diffuse, while the second type
remains membrane-bound and immobile. The two receptor types are color-coded according to the same
convention for signalling/non-signalling receptors followed in Fig. 7.7B.

7.2.1 Morphogen gradient with receptor release and reinsertion

Simplified model of a single receptors with release and reinsertion

We first discuss a simplified model where a single receptor type can be released from the
membrane, diffuse in the inter-cellular space, and reinsert in the membrane of another
cell (see Fig. 7.6(b) for a schematic). For simplicity we describe the epithelium as a
continuous material and do not describe explicitly discrete cellular interfaces. As in
the previous section, we denote c the concentration of freely diffusing ligand, and nu

and nb, the concentrations of unbound and ligand-bound membrane receptors. We also
introduce the concentrations of unbound and ligand-bound freely-diffusing receptors,
cu and cb. The ligand can bind to receptors with on-rate kon and unbind with off-rate
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koff . The concentration equations read:

∂tc = D∂2
xc+

1

h
[−konnuc+ koffnb]− koncuc+ koffcb − κ(c− cH) + jS(x) (7.36)

∂tnu = −konnuc+ koffnb − knu − koutnu + hkincu + jr (7.37)

∂tnb = konnuc− koffnb − knb − koutnb + hkincb (7.38)

∂tcu = Dru∂
2
xcu +

1

h
koutnu − kincu + koffcb − konccu − κr(cu − cu,H) (7.39)

∂tcb = Drb∂
2
xcb +

1

h
koutnb − kincb + konccu − koffcb − κr(cb − cb,H) . (7.40)

Here we have introduced the rates of receptor detachment from the membrane kout

and reattachment to the membrane kin. Drb and Dru are the diffusion constants of
untethered ligand-bound and free receptors, respectively; in the following we take these
diffusion constants equal to D for simplicity. jS(x) is the ligand secretion rate, which
is non-zero and equal to j only in the source. jr is the rate of increase of free receptor
surface density, following from receptors biosynthesis and export to the membrane. In
this section, jr is uniform within the tissue. κr is the rate of exchange of receptors with
the hemolymph, which we assume can be different from the rate of exchange of ligands
κ. We also have introduced for completeness the concentrations of freely-diffusing
receptors in the hemolymph, cu,H and cb,H; in the following we set these concentrations
to 0 for simplicity.

At steady-state, nT = nu + nb and cT = cu + cb = kout

h(kin+κr)
nT are uniform, assum-

ing no flux-boundary conditions for the freely diffusing receptors at both ends of the
tissue. Then at steady-state, outside of the source, away from receptor saturation
(c� koff/kon), one obtains, eliminating cb from the steady-state equations:

D∂2
xc−

konnT

h

(
1 +

koff

kin

+
kout

κr + kin

)
c− κ(c− cH)

+
koff

hkin

(koff + k + kin + kout)nb = 0 (7.41)

(koff + k + kout)(D∂
2
x − kin − koff − κr)nb + kinkoutnb =

konnT(D∂2
x − kin − koff − κr −

kinkout

kin + κr

)c . (7.42)

The concentration profile solution of these equations is a double exponential. For kin →
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∞, k � koff and k � konnT/h, the longer length scale on which the gradient decays, ˜̀,
is given by:

˜̀2 ' `2

[
1 +

konkoutnT

kin

(
1

hkoff

− κr

hκkoff + kkonnT

)]
, (7.43)

with `2 = D/
(
κ+ k konnT

hkoff

)
. The equation above indicates that for 0 < κr < κ, the net

effect of receptor detachment in the intercellular space is to enlarge the characteristic
length scale of the gradient. For κr = 0 (no receptor leakage), the relation above
becomes

˜̀2 ' `2

(
1 +

kout

kin

konnT

hkoff

)
. (7.44)

The non-dimensional factor konnT

hkoff
can be large (∼ 2 · 104 for the Nbhigh receptor and

∼ 200 for the Nblow receptor, with nT = 100nM.µm), so that even a small value of
kout/kin (corresponding to a small fraction of receptors circulating in the intercellular
space) can have a significant effect in extending the length scale of the gradient, if the
receptors do not leak.

Effective surface diffusion of receptors

We start from the model described in section 7.2.1, and consider the limit kin, kout →∞
with kout

kin
→ Kmd being kept constant (Kmd is the dissociation constant of receptors from

the membrane). Starting from Eqs. (7.39) and (7.40) for the intercellular concentration
of free and bound receptors, we divide both sides of these equations by kin and obtain
in this limit:

cu '
Kmd

h
nu, cb '

Kmd

h
nb . (7.45)

We now substitute Eq. (7.39) into Eq. (7.37), Eq. (7.40) into (7.38) and use Eq. (7.45)
to remove cb and cu from the system of equations. The concentration equation for the
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unbound and bound receptors thus reads to zeroth order in 1/kin:

∂tnu =

(
KmdD

1 +Kmd

)
∂2
xnu −

(
k +Kmdκr

1 +Kmd

)
nu − konnuc+ koffnb +

jr
1 +Kmd

∂tnb =

(
KmdD

1 +Kmd

)
∂2
xnb −

(
k +Kmdκr

1 +Kmd

)
nb + konnuc− koffnb (7.46)

We conclude that in the limit of fast binding/unbinding to the membrane relative to
receptor-ligand dynamics, receptor release and reinsertion in the membrane results in an
effective diffusion term for the membrane-bound receptor, with a characteristic diffusion
coefficient Deff

r = KmdD
1+Kmd

.

We now consider that in addition, receptors diffuse within the cell membrane, and
can directly hop between neighbouring cells (see Fig. 7.6(c) for a schematic). We
assume that these processes result in an effective diffusion constant of membrane-bound
receptors at the surface of the tissue, Dm [36, 143]. One then obtains the following
dynamical equations for the receptors:

∂tnu = Deff
r ∂2

xnu − κeff
r nu − konnuc+ koffnb +

jr − knu

1 +Kmd

(7.47)

∂tnb = Deff
r ∂2

xnb − κeff
r nb + konnuc− koffnb −

k

1 +Kmd

nb , (7.48)

with Deff
r = Dm+KmdD

1+Kmd
an effective diffusion constant and κeff

r = Kmdκr

1+Kmd
is an effective

leakage rate. For large Kmd, corresponding to receptors spending a large fraction of
their time in the intercellular space, this effective diffusion constant approaches the
original diffusion constant of the intercellular species D; conversely for Kmd � 1 the
diffusion constant approaches Dm. When freely diffusing intercellular receptors leak
into the hemolymph, corresponding to κr > 0, the effective leakage rate of receptors
is modified by release and reinsertion. For large Kmd the intercellular receptor leakage
constant κr contributes to the overall degradation of receptors. For large affinity of
receptors for the cell membrane, Kmd � 1, the effective leakage rate κeff

r vanishes.

Neglecting for now the role of receptor degradation, Eqs. (7.47) and (7.48) involve a
characteristic length scale `r =

√
Deff

r

κeff
r

=
√

κ
κr

√
1 + Dm

KmdD
`0, where `0 =

√
D/κ is the

length scale set by diffusion and leakage. Considering the characteristic length scales
of the steady-state solution of Eqs. (7.36), (7.47), (7.48), outside of saturation, we
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find that that receptor diffusion, release and reinsertion in the membrane contribute to
expand the gradient when `r > `0. For κr = κ and Dm = 0, i.e. if receptors leak with
the same rate as ligands, and do not diffuse at the surface of the tissue, `r = `0 and
there is no gradient expansion. Gradient expansion could be achieved however either
with a low value of κr � κ, corresponding to inhibition of receptor leakage; or in the
case where κr = κ, with a small value of Kmd together with a sufficiently large value of
Dm. In the following, we assume that κeff

r can be neglected.

Simplified model of one fixed + one diffusing receptor

We now discuss a simplified model involving two receptor species, only one of which can
diffuse and hop at the surface of the tissue (see Fig. 7.6(d) for a schematic). We identify
the hopping species with the GPI-anchored non-signaling receptors (NR) discussed in
the main text, while the non-hopping species is meant to describe the signaling receptors
(SR). For simplicity, we absorb the details of the hopping dynamics into a diffusion term
for the NR, an approach we discussed in section 7.2.1; and we assume that leakage of
intercellular receptors can be neglected and take the limit κr → 0. Similarly to what was
observed in section 7.2.1, we find that NR diffusion always increases the gradient length
scale compared to the corresponding system without diffusion. We also derive an exact
expression for the threshold receptor diffusion coefficient, above which introduction of
NR extends the gradient length scale compared to the SR-only case. We find that
this threshold diffusion constant is set by a competition between NR-mediated ligand
degradation and hopping.

The concentration equations read for 0 < x < L, outside of the source:

∂tc = D∂2
xc+

1

h
[−ka

onn
a
uc+ ka

offn
a
b] +

1

h

[
−kb

onn
b
uc+ kb

offn
b
b

]
− κ(c− cH) (7.49)

∂tn
a
u = −ka

onn
a
uc+ ka

offn
a
b − kana

u + ja
r (7.50)

∂tn
a
b = ka

onn
a
uc− ka

offn
a
b − kana

b (7.51)

∂tn
b
u = Dr∂

2
xn

b
u − kb

onn
b
uc+ kb

offn
b
b − kbnb

u + jb
r (7.52)

∂tn
b
b = Dr∂

2
xn

b
b + kb

onn
b
uc− kb

offn
b
b − kbnb

b , (7.53)

where superscripts a and b are used to indicate the concentrations of SR and NR,
respectively. Dr is the effective diffusion constant of receptors, which was discussed more
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extensively in section 7.2.1. Away from receptor saturation (c � koff

kon
), the dynamics

become linear; we now take this approximation. At steady-state the total receptor
densities naT = nau + nab = ja

r /k
a and nb

T = nb
u + nb

b = jb
r /k

b are uniform, assuming no
flux-boundary conditions for the freely diffusing receptors at both ends of the tissue.
This allows to eliminate na

u and nb
u from the system of equations. Finally, we turn (7.49)

into a steady-state equation for c only, by multiplying both sides with the operator
(Dr∂

2
x − kb

off − kb) and performing suitable substitutions. We then obtain the following
equation for the concentration profile of free ligand:[

DrD

kb + kb
off

]
∂4
xc−

[
D +

Dr

kb + kb
off

(
ka

onj
a
r

h(ka + ka
off)

+
kb

onj
b
r

hkb
+ κ

)]
∂2
xc

+

[
ka

onj
a
r

h(ka + ka
off)

+
kb

onj
b
r

h(kb + kb
off)

+ κ

]
c− κcH = 0 , (7.54)

which is then related to the profile of bound SR via

na
b =

ka
onj

a
r

ka(ka + ka
off)

c . (7.55)

At large distance away from the source where the derivatives of the concentration profile
vanish, the background ligand concentration is given by

c∞ = cH
κ

kab
r + κ

, (7.56)

where we have defined kab
r the effective degradation rate of ligand due to the presence

of the two receptor species:

kab
r =

ka
onj

a
r

h(ka + ka
off)

+
kb

onj
b
r

h(kb + kb
off)

. (7.57)

By comparing this result with the corresponding expression obtained for the single-
receptor model (Eq. (7.15)), we notice that the effective ligand degradation rate is in
general increased by the introduction of a second receptor. This is not surprising, since
adding receptors adds a route for ligand degradation. The introduction of a low-affinity
non-signaling receptor could thus allow to vary the effective degradation rate without
changing the characteristics of the signaling-receptor.
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A further comparison with the single-receptor model presented in section 7.1 suggests
that an increase in effective degradation rate due to the introduction of a second receptor
also leads to a reduction of the length scale ` of the gradient. This is indeed the case
when Dr = 0, in which case ` is a monotonically decreasing function of jb

r (` =
√

D
kab

r +κ
).

For Dr > 0, the situation is more complex and, in order to find the new length-scale ˜̀,
we need to solve the following polynomial equation[

DrD

kb + kb
off

]
−
[
D +

Dr

kb + kb
off

(
ka

onj
a
r

h(ka + ka
off)

+
kb

onj
b
r

hkb
+ κ

)]
˜̀2 +

[
kab

r + κ
]

˜̀4 = 0 (7.58)

obtained by plugging an exponential ansatz in Eq. (7.54).

To get a qualitative picture of the effect of finite non-signaling receptor diffusion, we
start by treating this equation perturbatively in small Dr. We expand the largest length
to linear order, such that ˜̀= `+δ`, with ` =

√
D

kab
r +κ

and δ` a small correction of order
Dr. We obtain:

δ` =
Dr

2`(kab
r + κ)(kb + kb

off)

kb
onj

b
r

hkb

kb
off

kb + kb
off

> 0 . (7.59)

We thus conclude that introducing an effective diffusion process of the NR extends the
signaling gradient length scale. Assuming slow degradation of this receptor (kb � kb

off)
and dividing both sides of (7.59) by `, we can obtain a more transparent expression for
the relative increase in gradient length scale:

δ`

`
=
Dr

2D

kb
onn

b
T

hkb
off

, (7.60)

which has a similar form as Eq. (7.44). In this approximation, the relative increase in
gradient length scale is therefore controlled by the ligand affinity to the NR, and the
ratio of NR and ligand diffusion coefficients.

We now ask whether this extension is sufficient to counter-balance the effect of the
increased degradation brought by the presence of the second receptor, thus allowing for
a longer gradient compared to the limiting case where the NR is absent, jb

r = 0. For
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Dr →∞, the larger length scale solution of Eq. (7.58) diverges and is

˜̀=

√
Dr

kb + kb
off

√√√√ ka
onj

a
r

h(ka+ka
off)

+ kb
onj

b
r

hkb + κ

kab
r + κ

, (7.61)

so that for large enough Dr, gradient expansion is always possible. We then ask for the
threshold value of Dr where ˜̀= ˜̀

0 = limjbr→0
˜̀=

√
D/(ka

r + κ) with ka
r = ka

onj
a
r /(h(ka+

ka
off)). Using Eq. (7.58), we find that ˜̀> ˜̀

0 for

Dr > D∗r =
kbD

ka
r + κ

. (7.62)

We find therefore that the threshold for extension is set by a competition between
the additional degradation introduced by the NR and the expansion allowed by its
diffusion. The full dependence of ˜̀/˜̀

0 on Dr for the set of parameters stated in Table
7.1 can be found by solving Eq. (7.58) numerically and is shown in Fig. 7.7D (blue
curve). Steady-state gradients in the different conditions of interest are also shown in
Fig. 7.7A, where we have taken Dr = 0.1µm2/s to capture a combination of lateral
diffusion in the cell membrane and intercellular hopping (simulation parameters will be
discussed more extensively in the next subsection).

7.2.2 Two-receptor model with GFP dimers

In this subsection we outline the numerical implementation of the two-receptor model
with GFP dimers that is used to investigate the role of SR and NR coexpression in
rescuing near-wild-type patterning [273] (see schematics in Fig. 7.7B). The correspond-
ing plots of the steady-state signalling gradient are presented in Fig. 7.7C and 7.8A.
These numerical simulations allow us to explore the dynamics underlying the simplified
models presented above, beyond the far-from-receptor-saturation regime. Additionally,
they account for the dimeric nature of the artificial ligand by allowing for single as well
as double binding to receptors. This last feature allows in principle for the formation
of mixed SR-NR bound configurations, a process that we will refer to as handover. We
will discuss the effect of handover later in this section. The effect of increased ligand
size on its diffusion constant, formalised in the Stokes-Einstein relation, is accounted
for by approximating the GFP dimer as a sphere with twice the volume of a GFP
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Figure 7.7: Role of hopping and handover of the non-signaling receptor: simulations. (A) Signaling ac-
tivity profile predicted by the simplified GFP monomer model of Fig. 7.6(d) in the three experimental
conditions of interest, namely SR (blue), SR+SR (green), SR+NR (red). These gradients are qualita-
tively similar to those of the dimer model, shown in Fig. 7.8A. (B) Schematic of the reactions involved
in the two-receptor model with GFP dimers. The arrows indicate reversible transitions and have been
labelled according to the notation introduced in the text. The colored boxes contain subgraphs corre-
sponding to the different mechanisms at play in the model, namely single and double binding to receptors
(red), handover (orange), hopping (blue). (C) Concentration gradient of signaling complex obtained from
the two-receptor model with GFP dimer shown in (B), for different choices of effective NR diffusion co-
efficient K0. Introducing a non-diffusing NR (orange curve) shortens the gradient compared to the case
with SR only (blue curve). In line with our analytical calculations, the gradient length scale is however
observed to increase with increasing NR diffusion constant Dr. The dotted line indicates 1/e of the maxi-
mal value of the SR only profile, used to determine gradient extension factors in panel (D). Other param-
eters are as described in the text. (D) Blue line: Gradient extension factor as a function of the effective
NR diffusion coefficient Dr (other parameters are as described in the text), in the simplified model with
two receptors (Fig. 7.6(d)), in the regime far from receptor saturation. The gradient extension factor is
defined as the ratio of the longer gradient length scale for a given value of Dr and for Dr = 0, with other
parameters kept the same. The dashed line indicates no extension of the gradients, and its intersection
with the blue line sets the threshold diffusion coefficient D∗r for gradient extension. Square marks: gra-
dient extension factor obtained with characteristic length scales extracted from the curves in Panel (C),
plotted for comparison with the result of the simplified model.

291



Parameter Name Value Unit
GFP dimer

diffusion constant D 21× 2−
1
3 µm2s−1 estimated from D in

Table 7.1
Effective NR

diffusion constant Dr 0.1 µm2s−1 [180, 262]

Degradation rate
signaling configuration kaa 2.1× 10−3 s−1 [168]

Degradation rate
non-signaling configurations ka, kb, kbb, kab 2.7× 10−5 s−1 as in Table 7.1

SR production rate ja
r 2.7× 10−3 nM.µm.s−1 as in Table 7.1

NR production rate jb
r 2.7× 10−3 nM.µm.s−1 as in Table 7.1

Table 7.2: Parameter table for numerical simulations of the two-receptor models. Unlisted parameters
are as in Table 7.1 or given in the text.

monomer (Table 7.2). Since the NR are GPI-anchored in the experimental set up, we
explore a possible role for NR hopping and it is therefore included in the model through
an effective diffusion term for the membrane NRs. We further assume that leakage of
intercellular receptors can be neglected and take the limit κr → 0. Finally, although
in experiments there are two distinct SR types, for simplicity here we consider a single
type of SR which can form dimers when bound to a ligand.

We will maintain the previously introduced notation nb, nu to indicate the concentra-
tions of membrane-bound receptor complexes, with superscripts specifying the com-
position (b = NR, bb = NR-NR, a = SR, aa = SR-SR, ab = SR-NR). As in other
sections, the extracellular concentration of GFP is denoted c, the hemolymph GFP
concentration cH. All concentrations equations are solved numerically imposing no flux
boundary conditions at x = −LS/2 (centre of source, a condition arising from an as-
sumed symmetry between each side of the source, in this section) and x = L (end of
AP compartment). In our simulations x = 0 corresponds to the posterior boundary of
the source. The concentration equations for the diffusible species read:

∂tc = D∂2
xc+ jS(x)− 1

h
(r∅→a + r∅→b)− κ(c− cH) , (7.63)

dcH

dt
=
φw

VH

∫ L

−L
Hκ(c− cH)dx− kHcH . (7.64)

These equations describe ligand diffusion in the tissue and leakage into/out of the
hemolymph. The position dependent ligand production term jS(x) describes uniform
production in the source with rate j and vanishes for x > 0 and x < −LS. The
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Figure 7.8: Modeling the effect of GPI-anchored nonsignaling receptors on a gradient length scale. (A)
Predicted profiles of signaling complexes in three conditions: a reference case with signaling receptors
only (SR; red), doubling SR levels (SR + SR; green), and adding nonsignaling receptors (SR + NR;
blue). As observed experimentally, doubling SR leads to a steeper gradient, whereas adding NR reduces
backflow-induced (GFPhemo) signaling and extends the gradient, due to nonsignaling receptor effective
diffusion. For illustration, arbitrary thresholds were chosen to indicate the position where high- and low-
level target genes would be activated (tables 7.1 and 7.2 report the parameter values). (B) Width of the
high (top) and low (bottom) target activation domains [arbitrary threshold shown in (A)], as a function
of normalized levels of SR and NR. Warmer colors indicate a wider target activation domain. Colored
dots show parameter combinations used in (B). (Top) For the normalized SR value of 1, increasing NR
initially lengthens the high target domain, while a further increase shortens it by preventing access of
GFP to SR. (Bottom) For the normalized SR value of 1 and in the absence of NR, GFPhemo signaling
dominates and low target gene is activated throughout (bright yellow region). Increasing SR or NR pro-
duction both lead to a reduction in the low target domain size.
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concentration equations for the membrane-bound receptor complexes under the effective
diffusion approximation discussed in Section 7.2.1 read:

∂tn
a
u = −r∅→a − ra→aa − rb→ab − kana

u + ja
r (7.65)

∂tn
a
b = r∅→a − ra→aa − ra→ab − kana

b (7.66)

∂tn
aa
b = ra→aa − kaanaa

b (7.67)

∂tn
b
u = Dr∂

2
xn

b
u − r∅→b − rb→bb − ra→ab − kbnb

u + jb
r (7.68)

∂tn
b
b = Dr∂

2
xn

b
b + r∅→b − rb→bb − rb→ab − kbnb

b (7.69)

∂tn
bb
b = Dr∂

2
xn

bb
b + rb→bb − kbbnbb

b (7.70)

∂tn
ab
b = ra→ab + rb→ab − kabnab

b , (7.71)

where, for the sake of readability, we have defined the following reaction rates:

r∅→a = mka
onn

a
uc− ka

offn
a
b (7.72)

r∅→b = mkb
onn

b
uc− kb

offn
b
b (7.73)

ra→aa = gka
onn

a
bn

a
u − ka

offn
aa
b (7.74)

rb→bb = gkb
onn

b
bn

b
u − kb

offn
bb
b (7.75)

ra→ab = gkb
onn

a
bn

b
u − kb

offn
ab
b (7.76)

rb→ab = gka
onn

a
un

b
b − ka

offn
ab
b . (7.77)

These equations describe GFP (un)binding to receptors as well as receptor production,
diffusion and degradation. Although the degradation rates are allowed to be different for
different receptor complexes, we will henceforth assume that all non-signaling complexes
undergo slow passive degradation with rate ka = kb = kbb = kab ∼ 10−5s−1 (Table
7.2). On the other hand, the SR-SR signaling complex is actively degraded at a rate
kaa ∼ 10−3s−1 (Table 7.2).

The geometric factor g introduced in Eqs. (7.74)-(7.77) has dimensions of inverse length
and it accounts for the enhancement in binding rate due to proximity to the membrane
when the GFP dimer is already bound to one receptor. We estimate g as the reciprocal
of the typical receptor size (Lrec ∼ 10 nm [161, 157] ) since this is the distance from the
membrane within which single-bound GFP is found, whence g = 100µm−1. We neglect
further effects of multiple binding on receptor affinities (e.g. the possible stabilisation of
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the first bond following a second binding). The factor m = 2 appearing in the definition
of fluxes r∅→a and r∅→b accounts for the multiplicity of binding sites available for the
first binding.

Parameters

Most of the parameters entering the two-receptor model are borrowed directly from the
single receptor model outlined in section 7.1. In particular, all quantities related to the
geometry of the system, as well as the (un)binding rate for the high- and low-affinity
nanobodies and leakage rate carry through to this model. The ligand production rate j
is controlled by the patched promoter in the experiments used to extract the parameters
in Table 7.1 and by the dpp promoter in the rescue experiments. Since they have similar
activities (13 vs 29 a.u [283, 124]), we keep the same parameter value. Similarly, the
production rate of non-signaling receptors jb

r , which controlled by the dally promoter in
the rescue experiments (38 a.u. in the whole disc, which is roughly equal to that of hh
[283, 124]) , is fixed to the value of jr presented in Table 7.1. The signaling receptors are
under the control of the ubi promoter. The significant difference of reported activities
between the endogeneous hh and ubi promoter (16 a.u. and 359 a.u., respectively
[283, 124]) might not apply to our situation because only part of the regulatory region of
the ubi promoter was used to create the NR-expressing transgene, inserted at a random
genomic location. We find that the qualitative features of the experimental gradients
are well described by a value of ja

r comparable to that in Table 7.1. Finally, we set the
NR diffusion constant to reported values of diffusion constant of GPI on the membrane
[283, 124] , assuming that NR hopping between cells is not limiting for NR diffusion
at the surface of the tissue. In Fig. 7.7C, we show how the gradient properties change
for different values of the effective receptor diffusion constant Dr, while in Fig. 7.8B
we show the effect of modifying the levels of the two types of receptors on the position
of hypothetical high and low target activation boundaries. The numerical values of the
parameters discussed above are given in Table 7.2.
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Effect of handover

Although handover seems to be a natural consequence of the dimeric nature of the
artificial morphogen, we would like to disentangle its the effect on gradient formation
from that of hopping, which occurs independently of the ligand. To assess the impor-
tance of handover we briefly consider a simplified two-receptor model involving a GFP
monomer, rather than dimer (Figs. 7.6(d)). This corresponds to the model described
in section 7.2.1, and also amounts to setting g = 0 and m = 1 in Eqs. (7.72)-(7.77).
Since SR-SR complexes can no longer form in this model, we identify the single bound
SR as the signaling configuration, and we therefore enhance its internalisation rate so
that ka = kaa ∼ 10−3s−1 to account for active degradation of the signaling complexes.
Leaving all other parameters unchanged, this simplified model still displays a notice-
able extension of the signaling gradient upon introduction of NR (Fig. 7.7A). This is
in line with our analysis of two single receptors discussed in section 7.2.1. The main
difference that is observed when comparing these gradients with those produced by the
GFP dimer model concerns the behaviour close to the source. There signalling can
be non-monotonous (Fig. 7.7C and 7.8A) and, as a result, the high target could be
activated in a stripe located away from the source boundary. In such rare cases, in
Fig. 7.8B the boundary position was defined as the distance between the end of the
activation domain and the source. Because the monomer gradients do not exhibit the
extended saturation region seen in the dimer case, we conclude that handover is not
essential to extending the gradient length scale (which controls low-level targets), while
it could play a role in setting the high-level target range.
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8
Thermodynamics of Information Processing:

a Case Study

L. Cocconi, G. Pruessner, G. Salbreux

Overview As we have seen in the previous Chapter, fundamental processes in or-
ganism development are often orchestrated through cell-cell signalling. In the case of
morphogen gradients, positional information is encoded in the local concentration of a
set of specialised proteins, which decreases away from a localised source region. The
usefulness of this information for the robust and highly reproducible patterning of a
developing tissue, i.e. the extent to which it allows individual cells to infer their rela-
tive position, depends fundamentally on how reliable cell machinery is in recording and
processing information about the chemical environment [284, 11]. Unicellular organ-
isms capable of performing chemotaxis, i.e. directed migration in response to spatial
gradients of specific chemical species, are faced with very similar challenges [166], as
are effectively all living systems when required to adapt to environments that are in-
homogeneous, either spatially or temporally. Precision, however, comes at a cost and
thermodynamic approaches have recently started to shed light on the constraints im-
posed by the energetics of information processing [34, 301]. In this short Chapter, we
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augment the familiar run-and-tumble process in one dimension (introduced in Chapter
1) in a minimal way to allow for binary measurement of the particle’s position with
respect to a target, upon which the active force is adjusted as to typically propel the
particle towards the target. We then apply the methods of Chapter 1 to compute the
entropy production and discuss its relation with the variance of the particle position,
which measures the localisation of the particle around its target. As expected, we iden-
tify a trade-off between precision and dissipation, originating from the constraint that
the two cannot be minimised independently.

Author contributions: LC performed the mathematical analysis and wrote the code
used to study the model numerically. GP and GS supervised the project.

Abstract

The field of active matter has historically focused on the collective behaviour of self-
propelling (motile active) particles in the overdamped regime, whose local dissipation
is dominated by viscous contributions. More recently, information processing at the
single agent level has been recognised as an important driver of non-equilibrium dy-
namics. The task of extending the theoretical tool-kit of active matter beyond the
paradigm of unbiased active motility, however, is complicated by the non-reciprocal
nature of measurement-mediated interactions, as well as by the non-trivial thermody-
namic impact of information processing. To explore these issues further, we introduce
a minimal model of “adaptive active matter”, a proposed new class of models which
interpolate between standard active matter models (here, the run-and-tumble particle)
and measurement-driven models as a function of the measurement error rate.

8.1 Introduction.

One important open problem in the field of active matter is that of characterising the
out-of-equilibrium behaviour of active systems capable of recording and processing infor-
mation about their environment at the single agent level. The deep relationship between
thermodynamics and information theory [301, 213], which has its roots in Maxwell’s
demon and the Bennet-Landauer bound [176], offers a fascinating perspective on biolog-
ical active matter, as being able to respond to a changing environment is often chosen as
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a criterion to define living systems. New techniques need to be developed to efficiently
capture the “adaptive” interactions between information processing units, one common
feature of which is non-reciprocity [181], in the sense that unlike potential-type forces
they do not respect Newton’s third law of action and reaction. Interestingly, infor-
mation theory also offers a systematic way of distinguishing redundant and synergistic
contributions to the correlation structure of multivariate stochastic processes [240], a
type of analysis that might elucidate different modes of collective behaviour in adaptive
active matter.

Since cyclical information processing is an intrinsically out-of-equilibrium process and
thus requires a finite amount of energy to be carried out reliably, it is easy to imag-
ine that living systems might under particular circumstances be faced with the multi-
objective optimisation problem of reducing the energetic expenditure as much as pos-
sible while maximising some biologically-relevant objective function.

8.2 The Adaptive Run-and-Tumble Model

A simple but illustrative example of how such a trade-off can be explored through the
combined tools of stochastic thermodynamics and statistical mechanics is a generalisa-
tion of one-dimensional Run-and-Tumble (RnT) motion which we will refer to here as
the Adaptive Run-and-Tumble model (ARnT). In the ARnT, the position x ∈ R of the
self-propelled particle evolves according to the Langevin equation

ẋ(t) = ν(t) +
√

2Dη(t) (8.1)

with η(t) a zero-mean additive noise of unit covariance. Similarly to a standard RnT
process, the self-propulsion velocity ν(t) ∈ {νL, νR} switches between the two allowed
values in the manner of a Markov jump process, sometimes referred to a dichotomous
noise or telegraph process [291]. However, in this particular case, the transition rates
are made position-dependent in order to capture the ability of the particle to measure
its position relative to a target (here x = 0 without loss of generality) and adapt its
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self-propulsion direction accordingly. In particular, we set the transition probabilities

P (ν(t+ ∆t) = νL|ν(t) = νR, x(t) = x′) = ∆t τ [(1− ε)θ(x′) + ε(1− θ(x′))] +O(∆t2)

P (ν(t+ ∆t) = νR|ν(t) = νL, x(t) = x′) = ∆t τ [εθ(x′) + (1− ε)(1− θ(x′))] +O(∆t2)

(8.2)

with θ(x) the Heaviside step function and ε ∈ [0, 1
2
] the error rate. In other words,

the particle measures the sign of its position relative to the target position x = 0 and,
with a Poisson rate τ , adjusts its self-propulsion direction based on the outcome of the
measurement, so as to typically be self-propelling towards its target. In the limiting
case ε = 1

2
, the binary measurement conveys no information about the environment

and the model reduces to the standard RnT process on the real line, as introduced
in Chapter 1. Assuming νR = −νL = ν for the sake of simplicity, this model can be
solved analytically starting from the set of coupled Fokker-Planck equations for the
joint probability densities PL(x) and PR(x) of the particle being at position x while in
the left or right self-propelling mode,

(ν∂x +D∂2
x)PL(x) = (τ̄ − τ(x))PL(x)− (τ̄ + τ(x))PR(x) (8.3)

(−ν∂x +D∂2
x)PR(x) = (τ̄ + τ(x))PR(x)− (τ̄ − τ(x))PL(x) (8.4)

with τ̄ = τ/2 and

τ(x) = τ

(
1

2
− ε
)

[θ(x)− (1− θ(x))] = τ

(
1

2
− ε
)

[2θ(x)− 1] . (8.5)

First, we perform a change of variable by introducing polarity and density fields as ψ(x)

and φ(x) respectively,

ψ(x) =
1

2
(PL(x)− PR(x)) (8.6)

φ(x) =
1

2
(PL(x) + PR(x)) . (8.7)

Adding Eq. (8.3) to (8.4) we thus obtain

νψ(x) = −D∂xφ(x) , (8.8)
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which can be read as a statement of probability current balance at steady state. Notice
that, for D = 0, Eq. (8.8) imposes ψ(x) = 0, which in turn implies PR(x) = PL(x). This
may be counter-intuitive in this setup but it is a necessary consequence of currents only
being induced by the drift component of the motion in this limit. Subtracting Eq. (8.3)
from (8.4) and using (8.8) we then obtain a third order ODE for φ(x) only,

− D2

ν
∂3
xφ(x) +

(
ν +

Dτ

ν

)
∂xφ(x) + τ(1− 2ε)φ(x) = 0 . (8.9)

For D = 0, Eq. (8.9) simplifies dramatically and find by inspection that the density has
a simple exponential form,

φ(x) = PR(x) = PL(x) =
τ(1− 2ε)

8ν
exp

(
−τ(1− 2ε)

2ν
|x|
)
. (8.10)

For the more general case of D > 0 we make a double exponential ansatz for the
steady-state density φ(x), eventually finding

φ(x) = a1e
−α1|x| + a2e

−α2|x| (8.11)

ψ(x) =
ν Sgn(x)

D
(a1α1e

−α1|x| + a2α2e
−α2|x|) (8.12)

where Sgn(x) is the sign function and the constants of integration

a1 =
−α1α

2
2

4(α2
1 − α2

2)
, a2 =

α2
1α2

4(α2
1 − α2

2)
(8.13)

have been fixed by normalisation (
∫
dx φ(x) = 1/2) and continuity of the total proba-

bility density at x = 0 (ψ(0) = 0). The coefficients α1,2 appearing in the above are the
two positive roots of the characteristic depressed cubic equation

D2

ν
α3 −

(
ν +

Dτ

ν

)
α + τ(1− 2ε) = 0 . (8.14)

See Fig. 8.1 for an example of the typical steady-state probabilities. With the analytical
solution at hand we can compute a number of interesting observables but here we will
focus on only two, namely the steady-state entropy production Ṡi and the variance σ2

x
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Figure 8.1: Steady-state probability density functions for the ARnT model with D = 0.01, ν = 0.1,
ε = 0 and τ = 1 as given in Eqs. (8.11) and (8.12).

of the resulting steady-state positional probability density function. These are given by

σ2
x =

∫ ∞
−∞

dx x2(PR(x) + PL(x)) =
α2

1 + α2
2

α2
1α

2
2

=
1

α2
1

+
1

α2
2

(8.15)

and, using the techniques of Chapter 1,

Ṡi =
ν2

D
+
τ

4

(
log

1− ε
ε

)(
(1− 2ε) +

D

ν

α1α2

α1 + α2

)
. (8.16)

Interestingly, we find that the entropy production is made up of two non-negative
contributions, the first of which is equal to the entropy production of a traditional
RnT particle (see Chapter 1), while the second accounts for the thermodynamic cost
of information processing. In particular, the second contribution vanishes at ε = 1/2

and diverges logarithmically as ε → 0, as expected due to the irreversibility of the
measurement process in this limit. The dependence of σ2

x and Ṡi on the parameters of
the model is explored in more detail in Fig. 8.2.

8.3 Precision-dissipation tradeoff

Assuming D and ε are not under the control of the particle and are thus fixed, what
choice for the pair (ν, τ) should the particle make in order to simultaneously minimise
the typical distance from the target and the dissipation? Since the two cannot be
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Figure 8.2: Parameter dependence of the variance (σ2
x) and entropy production (Ṡi) of the non-

equilibrium steady state of the ARnT model, as given in Eq. (8.15) and (8.16). It is interesting to ob-
serve that σ2

x is a non-monotonic function of the self-propulsion velocity ν, suggesting a non-trivial con-
nection between precision and the degree of activity. Similarly, increasing the measurement rate τ eventu-
ally leads to the asymptotic convergence of σ2

x to a finite value, while Ṡi diverges linearly, pointing to the
fact that an increase in measurement frequency is not sufficient to achieve arbitrary precision. When not
otherwise specified, D = 0.01, ν = 0.1, ε = 0, τ = 1.

minimised independently, the solution is not unique. However, Pareto optimal solutions
can be identified by scanning the accessible parameter space for those combinations for
which the dissipation cannot be decreased without also increasing the variance, and vice
versa. This family of solutions is known as the Pareto frontier [207] and is visualised
for the ARnT model in Fig. 8.3.

8.4 Conclusion

The ARnT model is just one example of what we may refer to as adaptive active matter,
a class of models that promises to push our understanding of non-equilibrium dynamics
beyond the paradigm of unbiased self-propulsion. In fact, a number of well-known active
matter models (RnT, Active Brownian Particles, Active Ornstein-Uhlenbeck Particles
etc) whose self-propulsion velocity evolves stochastically but independently of the par-
ticle position, can be thought of as the limit of maximum measurement error rate of
an associated adaptive model (ε = 1/2 for binary self-propulsion states). While this
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Figure 8.3: Numerically determined Pareto frontiers, thick lines, for the ARnT model at fixed diffusivity
D = 1 and error rate ε ∈ {0.01, 0.1, 0.4}. The shaded regions correspond to the accessible parameter
space covered by physical choices of the self-propulsion speed ν > 0 and measurement rate τ > 0.
Interestingly, it appears that the accessible values of Ṡi and σ2

x for the smallest error rate considered,
ε = 0.01, are not a superset of those of the intermediate error rate ε = 0.1, suggesting that a higher error
rate might be preferable when minimising dissipation is more important than minimising the spread of the
distribution.

might often be a relevant limit in the case of synthetic self-propelled particles (see how-
ever [203]), adaptation and information processing are key features of real biological
systems, from single cells to whole populations. The work presented in this chapter
illustrates a promising route to further investigating the physical principles underlying
their implementation.
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Discussion and outlook

This thesis covers a fairly broad range of topics at the interface between mathematical
physics and biology, one of the key conceptual threads being the development of theo-
retical tools for the quantification of the capabilities and limitations of active matter,
as opposed to its passive counterpart. The assumption of thermodynamic equilibrium,
which is crucially at the basis of much of our physical understanding of passive materi-
als (think of the success of statistical mechanics in describing the properties of systems
undergoing continuous phase transitions [135]) is broken by definition in living systems.
This fact makes it necessary to develop new frameworks for their study, in what is a
vast and interdisciplinary research program that continues to attract widespread inter-
est. On the theoretical side, two complementary such frameworks are non-equilibrium
statistical mechanics and stochastic thermodynamics, which are combined here to ex-
plore both the dynamics and energetics of microscopic systems subject to non-negligible
noise. In particular, field theoretic approaches turn out to be particularly suited to this
kind of analysis, thanks to their flexibility and applicability to both microscopic and
effective models. Path integrals are also the natural framework for the study of thermo-
dynamic quantities defined along single fluctuating trajectories [254]. While technically
challenging, analytical approaches offer a more complete understanding of the model
at hand, as they are generally not restricted to specific choices of parameters. On the
experimental side, novel techniques are being developed to resolve the subcellular de-
tails of energy management and transduction in specific processes [306] and to explore
the microscopic origins of seemingly generic metabolic principles, such as Kleiber’s law
[282].

In this thesis, after reviewing the basic tool kit of stochastic thermodynamics, we have
compiled a catalogue of exact results for the entropy production of prototypical non-
equilibrium processes characterised by both discrete and continuous state-spaces (Chap-
ter 1). We have then applied the same methods to study the rate of heat dissipation
for a Brownian particle trapped in a fluctuating potential, a model of direct relevance
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in a number of contexts, from realistic implementations of stochastic resetting to the
experimental manipulation of colloidal particles by means of optical tweezers (Chapter
2). In Chapters 3 and 4, we then turned our attention to two controversies arising
from the thermodynamic characterisation of increasingly complex systems by means of
effective mesoscopic theories, namely the effect of coarse graining on the inferred dissi-
pation and the formalisation of ‘single particle entity’ in dynamical field theory. Having
introduced the Coupon Collector and Cover Time problems, including a novel dynami-
cally accelerated variant thereof, in Chapter 5, we proceed in Chapter 6 to demonstrate
how path integral methods, specifically the Doi-Peliti formalism already introduced in
the context of our study of single particle entity, offer a valid alternative to standard
probabilistic approaches for the study of such non-equilibrium stochastic processes. In-
terestingly, the key features of these problems have to do with extreme events and are
crucially related to the finiteness of the system size, in contrast to the more common
focus of field-theoretic approaches on asymptotic behaviour in the infinite system-size
limit. Chapter 7 offers an example of how mathematical modelling can shed light on a
real-life non-equilibrium process of wide biological interest, namely morphogen trans-
port in vivo. While the modelling is guided here by experiments in the specific context
of the Dpp signalling network in the wing disc of Drosophila Melanogaster, the type of
hindered diffusion that we study is believed to describe a number of other well known
long-range morphogenetic signals (e.g. Nodal-Lefty in Zebrafish [162] and, potentially,
the Wnt signalling network [197]). Finally, in Chapter 8, we discussed how the gap be-
tween analytically tractable and biologically relevant models could be bridged, at least
in some regards, through the systematic study of information processing in “adaptive”
active matter, focusing on a generalisation of the standard run-and-tumble process as
a case study.

A question at the interface of bioenergetics and thermodynamics that has attracted
growing attention in recent years is that of the extent to which energy can be efficiently
harvested from microscopic active systems [77, 223, 281]. The qualifier ‘microscopic’
should be stressed here since, far from being a 21st century concept, the exploitation
of non-human organisms’ work (think horses and oxes) has been a staple of human
technology and economy for millennia, at least up until the Industrial Revolution and
the invention of the steam engine. Here, however, we are thinking of much smaller
energy and length scales, such as those characterising collections of unicellular organ-
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isms, which have only becomes accessible to direct physical manipulation over the last
century. Technologies capable of harvesting energy from such microorganisms are of
potential interest for at least two reasons: firstly, the nutrients required to sustain them
might be easily available; secondly, such technologies could complement current ones
in contexts where large scale energy production is infeasible, e.g. in microengineering
designs for medical applications. Furthermore, rather than having to engineer efficient
systems from scratch, “active matter engines” could allow us to leverage millions of
years of evolution to efficiently convert chemical energy into a more directly usable
form. Engines of this type, such as turbines driven by the persistent motion of bacteria
in solution, already exist but are typically characterised by an extremely low efficiently
due to the difficulty of rectifying the collective motion of swimmers with weak alignment
interactions in the bulk [77]. One problem is thus how to improve the design of partic-
ular setups to achieve higher efficiency [314]. Other fundamental questions remain to
be addressed, however, such as the intrinsic limits on energy extraction when inference
of some hidden state is required [65]. Exploring these questions promises to cast light
on stochastic thermodynamics more generally, for example by clarifying the extent to
which entropy production represents an upper bound to the power extractable from an
non-equilibrium process in cases where only coarse-grained observables are accessible.

In conclusion, the material presented in this thesis adds to the necessary groundwork
for the refinement of our understanding of living matter at the microscopic scale and the
establishment of the connection between fundamental physical concepts and observables
of direct biological interest (e.g. time-reversal symmetry and energy expenditure). As it
is often the case, the rapid development of new mathematical tools allows us to ask more
detailed questions, which in turn highlight the limitations of our current mathematical
tool-kit, in a virtuous cycle that makes the current state of this field extremely exciting.
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hopping receptor, 282
Hurst exponent, 138
hypergeometric function, 162
hyperuniform, 133
hyperuniform fluctuations, 128, 159
hyperuniformity exponent, 161

indistinguishable, 59
information processing, 304

interaction vertex, 177
interaction vertices, 148, 244
intermittent potential, 88
intermittent quadratic potential, 122
invasion assay, 274, 281
Ito, 51

Jacobian, 52, 144, 214

kinetic proofreading, 34
Kirchhoff’s theorem, 140
Kleiber’s law, 305
Kolmogorov-Smirnov distribution, 224, 227
Kullback-Leibler divergence, 44, 235

L’Hôpital’s rule, 47
Langevin equation, 49, 71, 93, 300
Laplace transform, 227
Legendre transform, 199
Lindeberg condition, 224, 237
long range correlation, 135, 235

Martin-Siggia-Rose, 138
Martin-Siggia-Rose field theory, 132, 169
master equation, 42, 95, 128, 241
Maxwell’s demon, 299
mesoscopic entropy production, 127
modified Bessel function of the first kind,

67
molecular motor, 127
molecular motors, 34, 136
morphogen gradient, 260
morphogenesis, 35, 259
morphogens, 35
multi-objective optimisation, 299
multiplicative noise, 138, 174
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negative entropy, 33
Nelder-Mead method, 277
non-equilibrium steady-states, 33
non-reciprocity, 299

one-particle irreducible diagrams, 199
Onsager-Machlup construction, 51, 213
optical trap, 88
Ornstein-Uhlenbeck particle, 90, 304

Pareto frontier, 303
particle entity, 35
partitions, 190, 202
phosphorilated Mad, 261
Poisson distribution, 66, 248
Poisson point process, 221
polarity field, 300
positional information, 35, 260
power spectrum, 153, 237
projector, 253
promoter, 295
propagator, 47, 148, 172, 244
pulse-chase array, 274

quenched disorder, 130

random matrices, 232
random walk, 66, 69
random walks in random environments, 130
renormalisation group, 240
run-and-tumble, 77, 90, 300

scaling exponent, 128
Schrödinger equation, 171
second law of thermodynamics, 34
Shannon entropy, 42, 93

shuffling operation, 234
single particle entity, 169
spectral density, 133
static path integral, 138
Stirling number of the second kind, 248
Stirling numbers of the second kind, 190
stochastic resetting, 88, 107, 253
stochastic Runge-Kutta method, 122
Stokes-Einstein relation, 292
Stratonovich, 214
Stratonovich convention, 50
strong disorder regime, 135
switching diffusion process, 81
symmetry factor, 201, 247

telegraph process, 90, 299
teleportation, 235
thermodynamic uncertainty relation, 34, 41
Thickveins, 261
time-reversal symmetry, 41, 127
time-reversal symmetry breaking, 34
Tracy-Widom density, 232
transcytosis, 262
transmutation, 82
tree level, 149

upper critical dimension, 140
upper incomplete gamma function, 246

Ward identities, 156
weak disorder expansion, 137
wing imaginal disc, 261
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