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The high-fidelity storage of quantum information is crucial for quantum computation and communication.
Many experimental platforms for these applications exhibit highly biased noise, with good resilience to spin
depolarization undermined by high dephasing rates. In this work, we demonstrate that the memory performance
of a noise-biased trapped-ion-qubit memory can be greatly improved by incorporating error correction of
dephasing errors through teleportation of the information between two repetition codes written on a pair of
qubit registers in the same trap. While the technical requirements of error correction are often considerable, we
show that our protocol can be achieved with a single global entangling phase gate of remarkably low fidelity,
leveraging the fact that the gate errors are also dominated by dephasing-type processes. By rebalancing the
logical spin-flip and dephasing error rates, we show that for realistic parameters our memory can exhibit error
rates up to two orders of magnitude lower than the unprotected physical qubits, thus providing a useful means of
improving memory performance in trapped-ion systems where field-insensitive qubits are not available.
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I. INTRODUCTION

The realization of quantum technologies will require
long-term maintenance of coherent quantum states. Both
noisy-intermediate-scale quantum algorithms and future fault-
tolerant codes are most often evaluated with respect to their
performance in the presence of gate errors alone. However, in
large-scale devices certain qubits will remain idle for extended
periods, due to limits on the parallelism of gate operations
across the qubit register [1]—both intrinsic to the circuit or
code, or due to constraints of the architecture. In this con-
text, memory performance becomes a crucial consideration
beyond its impact on gate fidelity, and the associated storage
errors can become a significant barrier to the performance
of the wider system [1-3]. Beyond computational applica-
tions, such performance is also of crucial concern in repeater
nodes, where coherence must be preserved for extended pe-
riods while entanglement is established between the endpoint
nodes [4,5]. In addition to developing error correction codes
for the protection against operational errors it is thus highly
desirable to also develop codes tailored for long term storage
of information.

Memory decoherence is typically characterized by the life-
time or depolarization time of the logical states 77 and their
coherence time 7;. While coherence is fundamentally limited
by depolarization (7, < 277), in most qubit systems dephasing
rates far exceed this minimum, biasing the memory to some
greater or lesser degree towards Pauli Z-type errors [6,7].
In this paper, we will consider trapped-ion qubits encoded
in hyperfine- or Zeeman-split ground-state manifolds. These
systems typically exhibit collision-limited 77 times of many
thousands of seconds, while 7, times due to magnetic-field
noise are far lower, typically 1-100 ms [8—11], corresponding
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to a factor 10*~107 bias between phase-flip (Z) and bit-flip
(X/Y) error channels. While the mechanisms responsible for
the bias vary, similar imbalances are commonplace across a
wide range of qubit platforms, e.g., dissipatively stabilized
superconducting cat qubits can exhibit biases of up to 10°
[12,13].

Considerable work has been dedicated to improving the
coherence times of individual ions by minimizing the effects
of magnetic-field noise using, for instance, field-independent
qubits [8,14], shielding [11], and dynamical decoupling [15].
These interventions can be highly effective, but are not uni-
versally applicable, nor without cost. The use of clock qubits
is restricted to certain isotopes, many less accessible (e.g.,
133Ba* [16]) or less easily manipulated (e.g., **Ca™ [17,18]),
and the use of these qubits is associated with increased gate
and mapping errors. Magnetic shielding can greatly enhance
the performance of field-sensitive qubits, but a considerable
noise bias remains, and other sources of dephasing are unaf-
fected. Dynamical decoupling methods can yield significant
improvement but are only effective in suppressing corre-
lated noise and have no impact on memoryless or stochastic
processes.

In this paper we propose a simple protocol to extend the
coherence time of an encoded qubit, utilizing repetition codes
written on a chain of trapped ions. By teleporting the logical
information periodically between two such codes and deter-
mining syndrome information in the process, we can detect
dephasing errors before they grow large enough to introduce
logical errors. It has long been recognized that strongly po-
larized noise can be highly desirable when devising schemes
for error correction [7,19,20] and that repetition codes pro-
vide a particularly straightforward solution in this scenario.

©2023 American Physical Society
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However, the significant experimental overheads associated
with encoding, decoding, and syndrome readout via two-qubit
gates, combined with the fact that such codes degrade perfor-
mance on the unprotected channels, have limited the interest
in these simple constructions.

In our protocol, the experimental overheads are minimized
via the use of single, global entangling operations, both to
teleport the initial qubit state into one code, and to subse-
quently teleport the logical information repetitively between
the two subsystems in the trap (each subsystem capable of
supporting a repetition code). Syndrome information is ef-
ficiently detected in a single projective measurement of the
qubits in the teleporting code. The use of a native interaction
which generates the complete circuit necessary for logical
teleportation greatly simplifies the protocol, reduces the as-
sociated error rate, and removes any need for local logical
operations. Crucially, it also makes the process much faster,
enabling repeated teleportation at a frequency sufficient to
significantly reduce logical errors, even in the presence of high
dephasing rates.

Crucial to the success of the protocol is the availability of
a global entangling gate (as opposed to only nearest-neighbor
two-qubit entangling gates) that preserves the noise bias of the
qubits, i.e., a gate with very low Pauli-X -type errors. The ZZ
geometric phase gates that can be engineered in trapped-ion
systems provide an ideal candidate, and for appropriate choice
of gate parameters the bit-flip error can be reduced to the 107>
level. Due to the global nature of the gate, small imperfections
in its execution will introduce an error on a given ion with a
probability that scales with the size of the system and indeed
for larger codes the gate fidelity rapidly approaches zero.
However, the Pauli-Z-type errors that dominate the gate per-
formance are identified and corrected by the code we prepare
and therefore do not present a significant problem. Instead,
small imperfections in the entangling operation control pa-
rameters only marginally reduce the threshold of dephasing
noise the code will tolerate, typically with negligible impact
on performance.

The result of implementing this protocol is a logical qubit
memory with balanced rates of error in each channel. For the
realistic parameters we consider, this reduces the net logical
error rate by up to two orders of magnitude, depending on the
size of the codes used and the degree of bias in the entangling
gate. Loosely analogous to a refresh cycle in classical com-
puter memory, we believe this simple protocol can provide a
vital boost to memory performance for idle qubits in larger
processors, networks or repeater nodes.

This paper is structured as follows: In Sec. II we describe
the experimental setup, the operations we have available, and
the states we use in our code. In Sec. III, we give the explicit
program to execute error correction. In Sec. IV, we provide
some estimates of the projected performance of the scheme
by means of a noise analysis. Finally we give some concluding
remarks and propose extensions in Sec. V. Appendixes A, B,
C, and D give technical details of important calculations.

II. EXPERIMENTAL SETUP

We consider a register of N ions in a linear radiofrequency
ion trap. The trap frequencies are generally adjusted such

that the laser-cooled ions crystallize into a one-dimensional
Coulomb crystal. We assume the trap is segmented allowing
for the definition of multiple trapping zones arranged along
the zero point of the oscillating radiofrequency (rf) trapping
field, enabling splitting, merging, and shuttling of ion crys-
tals between zones. We will make use of these features to
divide the register into two equally sized smaller partitions
which will host the encoded information. These partitions
can be physically separated via shuttling operations enabling
addressing of each partition individually, or combined within
a single trapping zone for operations addressing the entire
register simultaneously.

We encode qubits in pairs of Zeeman or hyperfine sublevels
in the S}/, ground states of each ion, with the particular sub-
levels depending on the ion species. We will typically write
qubits using the eigenbasis of the Pauli-Z operator, such that
a qubit register is denoted [s) = |55 ...sy) where s; =0, 1.
We denote the standard Pauli matrices acting on the jth qubit
of the register as X, Y;, and Z;. States |£,) = (|0) & 11))/+/2
and |£,) = (|0) £ i|1))/ﬁ denote the eigenstates of the X
and Y matrices with eigenvalue %1, respectively.

State preparation of the qubits is achieved by optically
pumping the ions on a strong dipole transition, driving the
population into |0) or |1) as required. Projective measure-
ments in the Pauli-Z basis are performed by driving the qubit
on the dipole transition and observing state dependent fluo-
rescence. Collective local rotations R,(6) and R, (6) of all the
qubits in the trap can be achieved via the application of rf
or microwave radiation at the qubit frequency. By combining
projective measurements and state preparations in the Z basis
with collective rf or microwave rotations of the whole register,
it is possible to measure and prepare partitions in other bases
as required.

Many-ion entanglement can be achieved via a generalized
geometric phase gate, namely, a periodic, state-dependent
optical dipole force (ODF) driving the collective motional
modes of the crystal. This ODF is typically produced via a
pair of crossed, far-detuned Raman lasers, producing a one-
dimensional optical lattice which scans across the crystal at
the difference frequency of the two beams. If this frequency
is slightly detuned from a vibrational mode resonance of the
Coulomb crystal [21,22], the interaction entangles spin states
to states of motion, executing state-dependent excursions in
phase space, which periodically return to zero. At this point
the spin states are left disentangled from the motion, but
acquire a geometric phase related to the degree of excitation
[22,23].

By tuning the ODF drive frequency close to different vi-
brational modes of the crystal it is possible to achieve qubit
couplings proportional to the amplitude of the motion of each
ion in the collective eigenmodes. Applied to two-ion crystals,
this qubit-phonon coupling provides the basis for most forms
of bipartite entangling gate [24]. In previous work, some of us
proposed the use of inhomogeneous but structured global cou-
plings to many-ion crystals to produce complex entanglement
in Penning traps, where the target states shared the symme-
try of the driven mode [25]. The protocol described in this
proposal also utilizes global entangling operations, but uses
excitations of the center-of-mass (CoM) mode alone. When
driven by a force perpendicular to the crystal axis this couples
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homogeneously to all ions, allowing the approach to be ap-
plied to the linear chains common to most radiofrequency ion
traps. As we only require control of the individual partitions
during state preparation or readout, no local coherent control
is required, avoiding the experimental complexity associated
with high-fidelity addressing of single ions within a many-ion
crystal.

Unitary operations in ion traps

To generate the entanglement necessary for our protocol
we require the ability to perform a global unitary operation U
such that, up to local Z rotations on the individual spins, we
have

Uls) = (=DIE=D2s), (1)

on basis states |s) where |s| is the Hamming weight of s, i.e.,
the number of spins of |s) in the |1) state. In Appendix A
we show that driving the CoM interaction for time 7 =
2mk/8, with integer k, detuning § = u; — w;, Raman laser
difference frequency py (i.e., the periodic driving force fre-
quency), CoM mode frequency w;, and appropriately chosen
ODF magnitude allows us to implement this unitary opera-
tion. Specifically, we show that this allows us to implement
U'(T) ~ U (the two unitaries being equal up to single qubit
operations), where

U'(T) = e, )

with the interaction Hamiltonian for the CoM vibrational
mode

g
Hin = % szzk, 3)
Jj<k
and the coupling strength is given by
F2
J R —
aM 0)15
where each ion has mass M, and the traveling one-
dimensional optical lattice imparts a periodic force on each
ion with magnitude F. We also note that provided we keep
track of the local Z rotations that may occur we need not cor-
rect the single-qubit rotations. Indeed, as we will see, they do

not alter the capability of the code to protect against dephasing
errors.

“4)

III. PROTOCOL

Having introduced the experimental setup we now give
an explicit program to carry out our protocol based on the
repetition code. For a detailed discussion of the code and the
teleportation of information between codes, see Appendix B.

In the protocol, we partition the register of N ions into
two codes of size n = N/2. We teleport the information be-
tween two codes, one hosted on each of the partitions Q;
and Q,. We obtain syndrome data at each cycle from the
collective local projective measurement of the qubits in the
teleporting partition, enabling us to correct for Z errors that
might have occurred on that partition postinitialization, while
keeping the logical information continuously protected with
an error-correcting code. The smallest implementation of the

protocol can be performed in a linear crystal with N > 6 phys-
ical qubits (with codes of larger size giving better protection
against dephasing errors), where each code partition hosts the
smallest possible repetition code with n = 3 qubits.

The protocol program

We first define the code partitioning. The crystal is divided
into three subsets Q;, Q,, and Q. as illustrated in Fig. 1.
Partitions Q; and Q, support codes 1 and 2, respectively,
while Q. is a single communication qubit used to initialize the
code. As discussed in Sec. II, by shuttling the qubits of each
partition into separate trap zones, we can choose to perform
state preparation and projective measurement on a single par-
tition, while global rotations affect qubits in all zones equally.

In what follows we describe the steps to encode and read
out logical information from the qubit register, together with
the steps we follow to learn syndrome data while informa-
tion is encoded on the register. Here we focus only on the
procedure to perform the protocol; details explaining how
the protocol works are given in Appendixes A, B, and C.
Technical details on how the necessary physical operations
can be implemented are discussed in Appendix D.

The following three steps first encode an arbitrary state
onto a repetition code across the qubits of subset Q; (see
“Encoding” in Fig. 1, where step numberings coincide).

(1) Initialize the crystal such that the qubits of Q; are in
|4+x), and the communication qubit Q. in the state we
wish to encode, [Y,) = al|+,) + B|—)).

(2) Apply the global unitary U.

(3) Measure the communication qubit in the Y basis to
teleport the information onto Qj, up to a correction
determined by the measurement outcome.

By completing the first three steps we teleport the logical
data onto a repetition code encoded on Q;. From here we
can measure syndromes while maintaining the encoding by
teleporting the information onto a second partition Q,, via
entanglement of the two partitions and measurement of the
qubits of Q;. Alternatively we can read out the information by
teleporting the logical state back to the communication qubit,
which provides us with syndrome data while decoding the
information. To read out the encoded information, we proceed
to step 7 below. To move the encoded information to a new
partition, we continue with steps 4 to 6 (corresponding to
“Teleportation” in Fig. 1).

(4) Prepare all of the qubits of Q, in the state |+,).

(5) Apply the U operation.

(6) Measure all of the qubits of Q; in the Pauli-X basis to
teleport the state onto Q, up to a correction determined
by the majority outcome of the X measurements.

The program between step 4 and step 6 teleports the pro-
tected information from Q;, which may have suffered phase
errors, to the freshly initialized state in Q, which has not
yet undergone decoherence. Any ions that have experienced
dephasing errors will give a inverted measurement outcome
in step 6, providing the necessary syndrome. By determining
the teleportation correction via a majority vote we effectively
utilize this syndrome data, ensuring that the protocol preserves
the logical state provided fewer than half the qubits experience
errors. Similarly, if the information is stored in Q,, we can
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FIG. 1. The experimental protocol performed in a linear radiofre-
quency ion trap with functionalized areas for qubit manipulation. The
numbering corresponds to the protocol steps in Sec. III of the main
text. Qubits hosting the logical information are colored in (dark) blue,
with single qubit Z errors marked in striped (dark) blue, initialized
qubits in (light) red and other qubits in the |0) state in white. In the
“Initialization” and “Measurement” areas, thin dotted ellipses denote
initialization into the |+,) states and measurement in the Pauli-X
basis, respectively. Thick dashed ellipses in the “Entanglement” area
denote the global unitary U. Encoding: The logical information is
teleported from the (leftmost) communication qubit Q. to a rep-
etition code on Qj, where it is better protected against Z errors.
Teleportation: If Z errors occur on Q;, we can teleport the infor-
mation to a clean repetition code on Q, and preserve the quantum
state, provided a minority of physical qubits experienced this type
of error. This step is repeated, moving the information between Q;
and Q, alternately. Readout: The quantum state can be read out by
teleporting to the communication qubit. Again, small numbers of
Z errors on Q; can be corrected for and are not transferred to the
communication qubit.

detect and correct for errors by performing the reciprocal

operation where we teleport the information from Q, to Q.
Note that, while we carry out steps 4 through 6, the com-

munication qubit remains idle. During this period, we are free

to include the communication qubit within one of the code
subsets provided it is once again isolated before proceeding to
step 7.

In the final steps we read out information from the code,
where in the following steps we suppose that information is
stored in code 1. However, the steps are easily adapted if
information is stored in code 2. The “Readout” steps in Fig. 1
are as follows:

(7) Initialize the communication qubit to |+,).

(8) Apply U.

(9) Measure the qubits of Q; in the X basis to teleport
logical information back to the communication qubit,
determining the appropriate Pauli correction via a ma-
jority vote of the measurement outcomes.

With the logical information moved back to the communi-
cation qubit, we are free to extract this quantum information
via single-qubit operations.

We remark that the state we encode is vulnerable to errors
affecting the communication qubits before it is encoded in
step 3. This is common to all schemes for encoding arbitrary
states for any choice of quantum error-correcting code. Alter-
natively, there are certain special states that we can prepare
on the code partition which are never left unprotected. We
can encode logical X eigenstates |A_(9)) or |[A_()) (where
the overbars indicate the logical qubit space, the subscripts
the logical eigenstates, and ¥ the equatorial encoding basis of
the physical qubits) by initializing all the qubits of Q; into the
|+5) or |—y) state, respectively, neglecting the communica-
tion qubit and skipping steps 2 and 3—these encoded states
are simply product states. Observing that our teleportation
protocol applies a logical Hadamard operation at each step,
we can see that it is also possible to initialize logical states
[Ap,1 (D)) = (|A+(z9)) + |A_(19)))/ﬁ on Q; by initializing
all of the qubits in Q; and Q, in the |+,) state, applying
U, and measuring the syndromes on Q,. The result is then
equivalent to having teleported the logical state | A, (1)) state
that would have been on Q5 onto Q.

IV. NOISE ANALYSIS

We now investigate how our proposed protocol performs in
the presence of environmental noise and imperfect operations.

A. Noise model

Qubits encoded in ions are usually much more vulnerable
to dephasing errors than spin flips. Assuming that the qubits
dephase with a rate y; = 1/T,7, and depolarise at a rate yx =
1/T;, we define the noise bias of the system as n = yz/yx.
We work in units where y; = 1, scaling our dynamics to the
characteristic decoherence rate of a single, unprotected qubit.
The actual value of n will vary greatly between experiments,
but for qubits encoded in magnetically sensitive electronic
ground-state sublevels, it is typically n &~ 10*-107.

Given these parameters, the noise incident on each ion
is described by the noise map €& = &7 o &, where E (&)
describes spin-flip (dephasing) noise acting on each individual
ion of the system. At time ¢ after initialization of a clean code
subset, we write these maps as

E(p) = (1 = ps(t))p/2+ ps(t)opo /2, @)
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where o = X, Z are the standard Pauli matrices and

px(t) = (1 —e'/")/2, (6)

and

pz(t) = (1 —e™)/2 )

are the probabilities of an X or Z error having occurred by
time ¢. It is worth noting that the noise channels &; and
Ex commute. We are therefore able treat the two channels
separately. To simplify our analysis, we also frequently make
the assumption that px (¢) and pz(¢) are small.

B. Figure of merit

Because the repetition code only protects against errors on
one channel, it does not have an associated threshold physical
error probability, below which logical errors can be strongly
suppressed. Instead, we define our figure of merit as the total
logical error rate I, which we wish to minimize. We will
consider three error mechanisms (which we define explicitly
in Sec. IV C below) that contribute to I': the logical X error
rate ['y of the code, the logical Z error rate I'; of the code and
the average logical error rate I'r due to teleportations between
codes.

The purpose of our codes is to improve our resilience to
dephasing at the cost of an increased vulnerability to spin-flip
errors. With careful choice of code size, the total rate of
logical errors I' = I'z + I'y + I'r on the encoded state can
be greatly reduced below the total physical error rate. The op-
timum performance is achieved when the rate of logical errors
for both channels are approximately equal, I'y + I'r ~ I'.
As we will now show, the improvement that can be achieved
increases with the degree of noise bias but will be limited
by the quality of the gate operations available. Note that the
structure of the repetition code means that physical X errors
lead to logical X errors, and physical Z errors (to half or more
of the qubits) lead to logical Z.

We foresee that, for varying code sizes, there exists a
minimum in I' using the following intuition: If the number
n of ion qubits in each of the code partitions Q; and Q) is
low, the logical information is vulnerable to phase-flips (I'z
is large), while spin-flips degrade the stored state by only a
small amount (I'y is small), and teleportation operations are
possible with high fidelity ("7 is small). By increasing n, we
improve the protection that the code offers against dephasing
errors, while logical errors due to spin-flips and teleportation
errors become more appreciable. If n becomes too large, the
overall logical error rate becomes dominated by these chan-
nels and starts to increase with n.

C. Error rates of the teleportation protocol

With the repetition code protecting against phase errors, the
logical information is lost once a single spin flip is introduced
to the system. The probability Py(#, n) that a single spin has
flipped scales linearly with n, as described by the first-order
expression

Pe(t.n) ~ npx (1) ~ % ®)

assuming that each ion of the system is subject to the noise
map Ex given in Eq. (5) and px(¢) is small.

We can correct dephasing errors introduced to the rep-
etition code provided fewer than half of the qubits have
experienced dephasing. The probability that a majority of
qubits suffer a dephasing error is

n

Pylt,n) =) <?)pz(t)j (1 = p(0))"™, ©)

J=ne

where each ion is subject to the noise map &; and
n, = (n—1)/2 when n is odd and n, = n/2 — 1 when n is
even. For illustration, we plot Py (¢, n) and P(t, n) for varying
numbers of physical qubits in Fig. 2(a).

So far the probabilities Py and P, only looked at the errors
occurring while the information is already encoded in the
entangled state. To these error probabilities we also add the er-
rors induced by the entangling operation. In Fig. 2(b) we plot
the probabilities for X and Z errors as function of the num-
ber of the entangling qubits. Teleportation-induced phase-flip
errors will reduce the number of qubits effectively available
in the code: [26] if on average, say, one qubit experiences
a phase-flip during the teleportation this effectively reduces
the code size from n to nes = n — 1, although we note that
for the code sizes considered n — n.ir << 1. We see here that
while the teleportation operation induces some Z errors in the
physical qubits, our code is able to mitigate them. On the other
hand, bit-flip errors during the teleportation, which we denote
Pr(N), are not correctable and add to the total logical error
rate as shown below. Note that in considering entangling gate
error probability, we must consider all the N qubits involved
in the operation, whereas for memory or measurement errors
we consider n ~ N/2 qubits.

In our protocol we propose to teleport the logical informa-
tion many times between two codes. Given the probabilities of
logical error per cycle, we can express the total logical error
rate as

_ PZ(Eeley Hegr) + Py(ﬂelea n)+ Pr(2n)
Ttele

r

;. (10)

where Ti is the time between two teleportation operations.

This expression for I' reveals a trade-off in logical error
rates for increasing Tieje. For fixed n, the logical X error rate
I'y = Py(Ticie, n)/Tiele 1s constant in time and equal to n/2n,
as seen from Eq. (8). However the logical Z error rate I'; =
Pr(Ticie, Refr)/ Tiele grows with Tie, while the teleportation
error rate 'y = Pr(2n)/ T decreases with Ty For a register
with 2n (or 2n + 1) qubits, the decoherence rate I' is thus
minimized by teleporting the logical information between the
two code subsets at certain period Tiele.

Note that, for large noise bias, such as the example of
n = 10° given in Fig. 2(d), the system exhibits virtually no
fidelity loss due to X errors. Instead, logical errors occur
during teleportation and due to insufficient protection against
physical dephasing, leading to large I'r and I', respectively.
The performance of the protocol is optimized when I'r ~ I',
and improving the efficiency of the protocol mainly relies on
the reduction of physical X errors during the global entan-
gling operation, allowing teleportation to be performed more
frequently, and/or between higher-n codes.
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FIG. 2. Logical error probabilities. (a) Calculated logical X and Z error probabilities for codes of size n = 19, 25, and 31 (assuming
n = 10°), when we do not consider any teleportation-induced errors. The curves correspond to Egs. (8) and (9) and arrows indicate increasing
n. (b) Average total number of physical X and Z errors occurring across the register during each teleportation process as function of the
number of qubits being entangled, N. Gate errors are strongly biased toward Z, and both error channels scale as approximately O(N*/?) for
large N, due to the /N scaling of gate duration. The assumed error rate corresponds to a two-qubit gate fidelity of 99.7% (see Appendix D
for full details of error model). We emphasize that physical X errors lead to logical Z errors and vice versa, with the color-coding consistent
across the subfigures. (c) Calculated logical X and Z error probabilities for codes of size n = 3, 5, and 7 (y = 10°), where we now include
the teleportation-induced errors given in panel (b). Teleportation errors manifest as a nonzero Z probability at ¢ = 0. Note that, compared
with panel (a), we must use much lower numbers of qubits to keep error probabilities low. (d) Fidelity loss as the information is repeatedly
teleported between codes of size n = 5 for n = 10°. The circles correspond to teleportation events, which are here chosen to be when Py and
P; are equal. The dashed line corresponds to an average error rate (I'/2) for each of the X and Z channels.

D. Protocol robustness and performance

Finally, let us compute the total error rate I as function
of the number of qubits in the code and of the teleportation
period for low (7 = 10%) and high (n = 10°) values of the
noise bias.

In Figs. 3(a) and 3(b), we plot I" as function of the number
n of qubits in the code and the time T between teleporta-
tions. First, for both values of 5 there is a region of low error
rate for suitable combinations of n and Ti..: as n increases,
the optimal Tie must also go up to keep the contribution of
I'r to T relatively low. As already alluded to in Sec. IV B,
to the left of this high-performance region (low n), the stored
information is vulnerable to Z errors on the physical qubits.
Similarly from arguments in Sec. IV C, below this region (i.e.,
for small Ti.) I'r dominates in I, whereas, above it (large
Ticic), I'z dominates the total error rate.

Second, as illustrated graphically in Fig. 2(d), the region
of improved storage corresponds to a choice of teleportation
period that ensures the overall logical error rates for the X
channels (I'y, T'7) and Z channel (T';) are approximately bal-
anced. Third, Figs. 3(a) and 3(b) show that we can achieve this
large improvement in storage time over a wide range of n and
Tiele values, which makes the protocol robust to experimental
constraints and imperfections.

In Fig. 3(c) we plot the optimal teleportation time which
minimizes the total error (where curves for different n over-
lap). For n = 109, the teleportation period ranges from 0.1 ms
at low n to ~3 ms at n = 20, when taking yx’l = 10000 s.

Finally, to assess the code performance, we compare the
total error rate I to the single qubit error rate /2. For a given
code size n and value of 1, we compute the best code improve-
ment y7/2I" in Fig. 3(d), where we take the lowest value of I"
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FIG. 3. Minimization of the total error rate I" and protocol robustness. Using the teleportation error model plotted in Fig. 2(b), we plot
the error rate when varying the number n of qubits in the code subsets and the time Tige (in units of y, 1) between teleportation events
for (a) n = 10° and (b) n = 10* [panels (a) and (b) share the same color bar]. The black crosses indicate n and T, where I' is minimized
(I' = I'min), giving an improvement of almost two orders of magnitude versus the unprotected qubit error rate. The dashed contour line encloses
the region I' > 2I',;,, emphasizing that our protocol gives good improvements for a large range of code sizes and teleportation periods. The
dotted line represents the choice of Tiee Which minimizes I" for a given n. (¢) The optimal value of the teleportation period 7 in units of y,~ !
for arange of n and . Note that the curves for varying n are almost perfectly identical, indicating that, in the considered regime, the protocol is
limited by gate errors and independent of the spin-flip rate y,. For typical trapped-ion bit-flip times of 10 000 s, with an error bias n = 10%, i.e.,
a phase-flip time of 10 ms, the information should ideally be teleported every 0.12 ms (0.45 ms) in codes of size n = 3 (n = 5). (d) The code
improvement yz/2I" yielded by codes of varying n and 1, when T is chosen to minimize I'. For the smallest implementations with codes of

n = 3 and 5, the improvement factors are 22 and 60, respectively.

optimized over Ti.. This optimal configuration is represented
by a dashed line in Figs. 3(a) and 3(b). The projected error
rates achieved with this scheme are in the region of 10-100
times lower than the dephasing error rate y/2 of the individ-
ual physical qubits, far beyond the break-even point. Note that
the largest relative improvements with increasing code size
occur for the smallest implementations of the code (n = 3, 5),
making significant gains in performance readily accessible to
experimental realization in current systems.

V. CONCLUSION

To summarize, we have proposed a simple yet efficient pro-
tocol to encode logical quantum information by continuously
teleporting between two repetition codes on noise-biased
trapped-ion qubits. The strength of the scheme lies in the use
of a single global unitary operation for fast entanglement of
the two code subspaces and allows for simple syndrome read-
out by a majority vote on the measured qubits. Furthermore,
we have made use of the fact that the dominant error type

introduced by the teleportation operation is also the type cor-
rected by the repetition encoding. The noise bias preserving
nature of the teleportation complements the choice of physical
qubits. For the considered high-fidelity gates it can lead to
an improvement in coherence time of up to two orders of
magnitude by rebalancing the rates of the logical Pauli X and
Z errors.

We envision the use of such a protocol as an interven-
tion between the level of the physical qubits and higher-level
quantum network or computing algorithms, to improve the
memory performance of idling qubits, functionally anal-
ogous to the memory refresh cycle in classical dynamic
random-access memory (DRAM). The results of our analysis
emphasize that in architectures with heavily biased noise we
can achieve significant memory improvements without the
need for a full quantum error-correcting code and the overhead
in resource and complexity that it entails.

For some applications, such as quantum network repeater
nodes, this improvement in memory may be sufficient; in
others it may be necessary to embed the stored information
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in a larger code. In both the establishment of long-distance
entanglement across a multinode network and in the genera-
tion of large codes via stabilizer measurements, it is necessary
to produce and combine graph states via the application of
ZZ gates between qubits. Because the global operation we
propose generates the logical ZZ natively, such graph states
can be assembled from qubits stored in multiple repetition
codes, leaving the information protected throughout. This is
of particular utility when the graphs to be generated involve
many bipartite links, and many qubits within the state must
thus be held idle during assembly (e.g., for point-to-point
communication via long chains of repeater nodes, or for high-
weight stabilizer or resource-state assembly in distributed
computational architectures).

Finally, we note that the modest number of physical qubits
required (N > 6) and the simple protocol make our pro-
posal readily realizable in current trapped-ion experiments,
with the potential for significant improvement in memory
performance.
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APPENDIX A: THE CENTER-OF-MASS INTERACTION

In this Appendix we show that we can realize the uni-
tary operator U shown in Eq. (1) by applying the interaction
Hamiltonian given in Eq. (3) for atime T = 2wk/$§.

We consider a system with a spin-dependent ODF whereby
ions in the |0) (]1)) state experience a force Fy (F}). The
motion of the crystal is excited, conditional on the internal
spin states. If the excitation frequency is detuned from the
CoM mode frequency w; by §, the crystal returns to its initial
motional state after atime r = 277 /§ (assuming § < w so that
the rotating wave approximation holds) [22]. This leads to the
effective interaction Hamiltonian

J N
Hin = ;Z,-Zk, (A1)

where

, 1(FR 0

and J &~ F 2/4Mu)18, with N being the number of ions in
the crystal, w; the CoM mode frequency, M the ion mass,
and F = (Fp — F1)/2 the strength of the differential force
applied on the ion crystal by the optical traveling lattice. The
entangling operation is least sensitive to laser intensity noise
if we set Fy = —F) = F, leading to the Hamiltonian defined
in Eq. (3). However other factors may constrain us to applying
unbalanced forces. For this calculation it will be convenient to
write Z} in terms of Pauli matrices such that Z; = R1; + Z;
where the parameter R = (Fy + F1)/(Fy — F1) captures the
force imbalance.

To determine the entangled state which we produce we
consider the energy eigenvalues of Hi,. Given that Hyy is
written in terms of Pauli-Z matrices, it is diagonal in the
computational basis (with s labeling bit strings in the compu-
tational basis and |s| is the Hamming weight of the bit string).
Using that Zj/-lsj) = (R+1—2s;)|s;), we satisfy the energy
eigenvalue expression Hin|S) = Ag|s) with

N N N
S
; :4Zsjsk—AZsj+C, (A3)
Jj<k J
where
NN — DR+ 1)?
A=2R+ 1IN —-1) and C = ( MR+ ), (A4)

2

yielding the unitary evolution e~ |s) = ¢~i*'|s).
To produce the desired unitary evolution in Eq. (1), we
must then verify that we can find system parameters such that

e T — V(_l)ls\(\slfl)/Z (A3)
for all values of s up to local rotations on the spins, denoted by
V. To find parameters fulfilling Eq. (AS), we use the identity

N
> sise = Isl(Isl — 1)/2, (A6)

Jj<k

and adjust the ODF to set J such that 4JT /N = & [27]. We
then have

e HnT gy = VUs), (A7)

where

V =exp (—i(—Als| + C)z /4). (A8)
Ignoring the irrelevant global phase of Cxr /4, the additional
unitary V introduces a local Z rotation on every physical qubit,
which will not be problematic in our protocols provided we
can keep accurate account of its magnitude. We discuss this in
Appendixes B 1 and D 3 a.

APPENDIX B: THE REPETITION CODE

In this Appendix we give explicit details on the repetition
code. We describe how to teleport encoded quantum states
between two separate repetition codes to learn the locations
of incident dephasing errors using the global operation and
single-qubit measurements described in Sec. Il A. We also
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show that we can encode arbitrary states to the repetition code
using the same operations.

1. Codewords

We consider repetition codes of n physical qubits that
protect one logical qubit against dephasing errors. Encoded
states, or codewords, are spanned by general equatorial basis
states:

[AL (D)) = [+o)+o) ... [+s),

n

[A_(D)) = |=s)—0) ..

n

where |+9) = (|0) £ ¢|1))/+/2 and ¥ takes an arbitrary
value. We follow the convention that we denote vectors in the
logical basis with a bar above the vector label. We thus write
a logical qubit encoded in an arbitrary state as

|Ay (9)) = alAL(9)) + BIA_(D)). (B2)

Note that we define x = 0 and y = 7 /2 such that |£,) =
|[£9=0) (I£y) = |£y=r,2)) are eigenstates of the Pauli-
X (Pauli-Y) operators, as defined in the main text.

Dephasing errors affect physical qubits prepared in basis
states |+ ) as follows:

As such encoded states will have equal protection against
dephasing errors for any value of . We maintain the freedom
to vary the parameter ¥ of encoded states as the V term in
Eq. (A7) will change its value. The rotation of the basis is of
no concern when applying our global single qubit rotations
provided the value of ¥ is known. The presence of V is
therefore only problematic if there is a relative uncertainty
€r in our ODF strength F which leads to an uncertainty in
the phase of €5 = (2¢r + €2). In Appendix D we show how
such errors can be nulled to first order through the use of
appropriate ODF configurations.

=), (BI)

2. Syndrome readout by teleportation

We first show that we can use a global entangling operation
together with single-qubit measurements to learn syndrome
information. We begin with two codes prepared in the initial
state:

1C) = [Ay (D)) |A+(9))2, (B4)

where the encoded information is stored on the first code,
indexed 1, and we prepare a second code, indexed 2, in the
logical state |A.(¢)), as in Eq. (B1). Each code can take an
arbitrary size and they do not necessarily have to use the same
number of physical qubits. Note that this includes the special
case where code 1 consists of a single qubit, allowing us to
write and read arbitrary single qubit states to and from the
code.

We can read syndrome data by entangling two codes in
the trap and teleporting the information onto the second code
with single-qubit measurements. We can entangle the codes in
Eq. (B4) with the global entangling operation which acts like
a controlled-phase gate on the logical space of the two codes.

One can check that

__ - o+ :3 - o — :3 -
CZIC) = A (=5 IR+ === Ao
+IAZO), (%|A+<¢»z—%m_<w>>z>,

(BS)

where CZ is the controlled phase gate explicitly defined in
Eq. (C13). We prove the equivalence between U and CZ in
Appendix C, up to local rotations that are not detrimental to
our procedure for syndrome readout.

Now that the register is in the entangled state given in
Eq. (BS), we measure the physical qubits in code 1 in the
|£y) basis to teleport the logical information onto code 2. If
no dephasing errors have occurred, the measurements will col-
lapse all the qubits in code 1 onto a common eigenstate, either
|+s5) or |—y), and thus either all ions will fluoresce or none
of them will. The logical information will be successfully
transferred onto the second subsystem up to a single-qubit
unitary rotation, namely a Hadamard rotation on the logical
qubit. This unitary squares to the identity operator and thus
cancels after an even number of teleportations are performed.

Considering now the case where a few dephasing errors
have occurred, the affected qubits will collapse to the orthog-
onal state to that of the majority and exhibit correspondingly
different fluorescence. If the majority of ions fluoresce, we
assume the postmeasurement state to be |A,(d')); where
the prime indicates our inference that this corresponds to the
initial state of code 1 having been |A(¥)), and this having
experienced a small number of dephasing errors. Similarly if
the majority are dark, we assume the state to be |A_(¢)),,
i.e., the state |[A_(¥)); after a small number of dephasing
errors [25]. In this way, the teleporting measurement provides
syndrome information telling us whether we need to apply a
logical correction to recover the original encoded state. This
syndrome information will only fail if more than (n — 1)/2
of the qubits in code 1 have suffered a dephasing error (in
which case we would apply the wrong correction, introducing
a logical error). Each time we perform a teleportation the
logical data is mapped to recently initialized qubits, free of
errors, so the probability of failure is kept low.

APPENDIX C: TELEPORTING LOGICAL INFORMATION
BETWEEN TWO REPETITION CODES

Here we show that the global operation U, as defined
in the main text in Eq. (1), will generate the entangle-
ment we require to teleport the logical information from one
repetition code to another through single-qubit measurements
as we have already presented in Eq. (B5). We will show this
statement holds for the case where the two repetition codes
have different numbers of qubits, n; and n,, respectively. It
will be convenient to denote the two subsets of qubits of the
system Q, with ¢ = 1, 2. One repetition code is written to
each of the two qubit subsets.

It is readily checked that Eq. (BS) holds provided we can
show, up to local rotations on the logical space, that

UIAA@)) 11 As(@)r = (=1Y*P[AA@0) 1| As(¢))2,  (C1)
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where we rewrite encoded states in the basis
|A+(19)> + (=DAAZ(D)),
V2 ’

where A, B =0, 1 denotes the state of the logical degree of
freedom and o = 1, 2 specifies the subset of qubits Q, to
which a code is written. The states |A (%)) and |A_(¥})) are
defined in Eqgs. (B1).

To show that Eq. (C1) holds, it is convenient to express the

basis states given in Eq. (C2) in the computational basis. Up
to normalization coefficients we have

[AA(®))g (C2)

Ao@)e = Y €"is),. (C3)
even |s|
and
M@)o = Y, €"Mis),, (C4)
odd |s|

where the symbol s labels bit strings of length n, and |s| is the
Hamming weight of the bit string.

We will prove Eq. (C1) by applying U to pairs of the
encoded basis states shown in Egs. (C3) and (C4). First we
consider a simpler calculation where we find the action of U
when applied to unentangled states written in the computa-
tional basis. From Eq. (1) we have

Uls)lt), = (=1 =D 2|s),|t),, (C5)

where » = |s| + |t| and s and t are bit strings of length n; and
n,, respectively.

The result shown above in Eq. (C5) can be applied directly
to the orthogonal states shown in Egs. (C3) and (C4) to prove
Eq. (C1). To do so, we expand the exponent of the eigenvalue
found in Eq. (C5). We find

r(r—1) Is[(Is| = 1) [t|(]t] — 1)
2 2 2
where, importantly, the term |s||t| takes an odd value if and

only if both |s| and [t| are odd.
Now, it follows from the discussion given above that

UIAs()) [ Ap(@)) = (=DFIMAL @), [AR(e)),
= (=D)AL (), 1 AR(9)),, (CT)

where we use primed ket vectors on the right-hand side of the
equation to capture the remaining phase »(r — 1)/2 — |s]||t] =
Is|(Is| — 1)/2 + [t|(|t| — 1)/2 from Eq. (C6).

The phase (—1)*2 in the result shown in the above equality
generates the entanglement we require to perform the telepor-
tation as shown in Eq. (B5). We finally check the effect of U
on the two partitions of the system to verify our global unitary
is suitable for our syndrome readout protocol. In particular we
have that

+ Islitl,  (Co6)

[AL(D)), = (=D AL + 7/2)),. (C8)

The above expressions follow from the fact that the new terms
that appear in the coefficients of the computational basis ket
vectors of state |A4(?)), are of the form

(—D)SISI=D2 — exp(in|s|/2) (C9)

for even values of |s| and

(_1)\5\(\SI*1)/2 —

—iexp(ir|s|/2) (C10)

for odd values of |s|.
With this we have that U acts on the logical space of the
system expressed in the logical basis like

U=WxG ®5)xCZ, (C11)
where S is the phase gate,
S = [Ao@)) (Ao(D)] + i| A1 (D)) (A1 (D), (C12)

and CZ is the controlled-phase gate such that

CZ =A@, ©) (Ao, @)l + [Ao1 (9, 9)) (Ao (D, )
+ A1, @) (A1, @) — [A1(D, @) (A (D, @),
(C13)

where |Aap(¥, ¢)) = |Aa(9))|Ap(p)) as defined above. The
operator W = HjeQ exp(inZ;/2) rotates the angle of the lo-
cal bases of the physical qubits such that ¢ — ¢ + 7 /2 and
¢ — ¢ + /2. Like the V term that appears in Eq. (A7),
as discussed in Appendix A, this W term is inconsequen-
tial provided we track the change in local basis the operator
introduces.

It is important to be vigilant of the imaginary phase terms

that emerge due to the S' ® S term of U. In particular, the

states S| A+ () and ET |A1(¥)) are not product states, and as
such we cannot measure the state of this subsystem to com-
plete the teleportation using the single-qubit measurements
that are available with our proposed experimental apparatus.
However, this is not problematic in practice as each partition
of the system is acted upon by the global unitary exactly twice
from its initialization, i.e., in the encoding and subsequent de-
coding steps, thus canceling the problematic imaginary phase
and we thus restore the subsystem to a basis that we can mea-
sure through single-qubit measurements. Indeed, suppose we
begin in the state |C') = (ST ® DIAy (D)), |A4(@)),, where
the first subsystem supports the encoded information up to a
phase gate, and the second subset has been initialized in the
product state | A (¢)). We find that

uic) =w (S e5")cz(c), (C14)

where CZ|C) is shown in Eq. (B5). Using that the states
(ET)2|Ai(z9)) = |Ax(¥)) are product states we find that
we can teleport the encoded information successfully using
single-qubit measurements. Repeating the syndrome readout
protocol again which involves a second application of U will

similarly introduce a second 5 operation on the second sub-
system which enables us to read this state with a measurement
in a product basis. We thus see that we can carry out the
desired syndrome readout via teleportation measurement as
specified in our procedure. It is in this point we also see that
the logical state we encode into the system at step 1 in fact

differs by a 5" rotation as the logical qubit that is initialized
on the communication qubit at the beginning of the protocol
is only acted upon by the global operation once. This is easily
accounted for since this rotation is made only when the logical
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information is written on a single physical qubit before it is
encoded to a larger subsystem of the crystal.

APPENDIX D: PRACTICAL CONSIDERATIONS

In Sec. II we give a general overview of the experimental
configuration and ion trap layout, and in Sec. IV we give
an analysis on the capability of our system to tolerate noise
in the environment and gate operations. We now discuss the
likely sources of such noise by considering practical aspects
of the experiment, and detail the actual operations used in
performing each step of the protocol.

1. Qubit properties and noise bias

The qubits of the system we propose are encoded in
the ground-state Zeeman or hyperfine sublevels of suitable
ions, often singly charged Group-II species. The spontaneous
emission lifetime of such levels is effectively infinite, but in
practice is limited to several thousand seconds by background
gas collisions [15]. The coherence time depends on the cho-
sen qubit levels and magnetic field noise at the ion. For the
magnetic-field sensitive qubits that must be used when imple-
menting phase gates [28], this is typically <100 ms [8—11],
leading to typical noise bias 10* < n < 10”.

2. State preparation and measurement

We next consider the technical aspects of single-qubit mea-
surement and preparation and the logical errors that may be
introduced, as well as details of the collective local rotations
necessary to perform the protocol.

a. Z-basis state preparation and detection

The only local operations required by the protocols we
have described are the read-out and state preparation of
partitions of the qubit register. While a variety of readout
techniques are used for different ion species and magnetic-
field strengths [21,29,30], all ultimately depend on applying
light resonant with a strong, dipole-allowed transition. With a
suitably focused laser, this will allow us to prepare or measure
qubits within a certain partition of the Coulomb crystal in the
Pauli Z basis.

State preparation can be achieved via optical pumping with
frequency or polarization selectivity and can require as little as
10 scattered photons to prepare with high fidelity. The process
can thus be considered near-instantaneous in the context of
our protocols, taking only a fraction of a microsecond.

State detection is slower, and often more difficult to achieve
with similar fidelity, limited by the ability to distinguish bright
and dark qubit states. With a background of <1 count per
readout period, a 10~* error rate for a single ion can be
achieved by detecting an average of ~15 photons. Assuming
a typical detection efficiency of 3% and scattering rate during
readout of 1 x 107 s~!, this will be achieved with 50 us of
measurement time. For our protocol we must detect the state
of multiple ions, which can be more challenging. However, if
a fast scientific camera and suitable optics are available, these
can be used to resolve the fluorescence from each site with
low crosstalk, and the state of every qubit in the register can

be detected in a measurement similar to that for the single ion
described above.

We note that, in more scalable approaches to ion trap sys-
tem design, it may not be practical to integrate a camera and
optics of suitably high quality into each trap. Furthermore, in
multizone traps it can be hard to achieve the necessary field of
view to resolve individual ions within chains across multiple
trapping zones separated by many hundreds of microns. In this
case, readout must be achieved via poisson discrimination of
the overall fluorescence signal from all of the ions in a single
zone. Achieving determination of the precise number of bright
or dark ions in a large register requires very high statistics,
due to the increasing overlap of the corresponding poisson
distributions, and the time required to collect sufficient pho-
tons could limit the achievable teleportation rate. However,
we note that determination of the exact number is not neces-
sary for the successful implementation of our protocol, but
merely the determination of the “majority vote” outcome.
Indeed, whatever the method used, it is important to note that
very high single qubit readout fidelities are not necessary as
discrimination errors during readout are equivalent to phys-
ical Z errors, which can be identified and corrected by the
code, provided the total number of errors remains sufficiently
low. This relaxation makes it significantly easier to achieve a
readout operation of sufficiently high fidelity, in the case that
individual-ion readout is not available.

b. Readout-induced logical errors

During readout it is essential that the partitions which are
not being measured are left unperturbed, as any scattered
photons will destroy the coherence of the information they
store. Depending on the read-out method used and required
fidelity, hundreds to thousands of photons must be scattered
from each measured ion without any scattering occurring from
ions in the subset we wish to leave encoded. The lasers used
for read-out must therefore be cleanly focused, and any stray
scattered light minimized, but this is not too onerous a require-
ment given the significant distance between trap zones.

Finally, we note that the use of different ion species for
the two partitions would permit perfect, independent read-
out and state preparation without individual addressing or
shuttling, and furthermore present the possibility of contin-
uous sympathetic cooling between teleportation operations.
Several methods for multispecies entanglement have been
demonstrated in recent years [10,31,32], and while these
demonstrations have yet to be extended beyond two-qubit
gates, there is no fundamental barrier to doing so.

¢. Microwave control

Following the discussion above, we assume for the pur-
poses of this work that combined state preparation and
measurement (SPAM) in the Z basis can be achieved with
1073 error per qubit. However, most of the operations used
in our protocol require measurement and preparation in, e.g.,
the Pauli X basis, achieved by applying a collective local
rotation using microwaves resonant with the qubit transition
frequency. We will now highlight several important but more
subtle aspects of our application of microwave control in the
context of our protocol.

While the protocol itself works for partitions prepared in
any equatorial bases (i.e., arbitrary and different azimuthal
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angles ¥, ¢ for the two partitions Q; and Q5), if we want
to perform all local rotations with a global microwave field
we require |¢ — ¢| = /2 in order to allow independent ro-
tations of the of the partitions. After the global entanglement
operation, resulting in the state described in Eq. (BS), the two
partitions will then be encoded in different, orthogonal bases,
such as X and Y. We measure one partition in a certain basis,
say X, as follows: we rotate the entire qubit register around
the Y axis and measure the desired partition in the Z basis
via state-dependent fluorescence detection. The qubits in the
other partition remain oriented in the Y basis, while acquiring
a relative phase: the information therefore remains protected
throughout the measurement.

The same procedure is used in Sec. III of the main text
when initializing one partition in a given basis: one partition
is initialized to the Z basis, then the entire register is rotated
around the axis in which the second partition is already en-
coded. During this operation, it is important to consider the
action of the microwaves on the encoded partition: this ma-
nipulation applies a unitary operation on the logical subspace.
This does not present an issue, provided we keep track of the
rotation on the logical qubit.

The relative phase acquired by the logical qubit depends on
the number of physical qubits in the code which have experi-
enced a dephasing error. Since we do not assume the ability to
resolve the fluorescence of individual ions, we need to manage
the relative phase introduced by this operation to preserve the
encoded data. Our solution to this is a three-step preparation
process. We first perform the prescribed global rotation. We
then pump the qubits that are undergoing initialization back
into the |0) state, before rotating the entire register again
using an equal but opposite rotation thereby nulling the error
due to any dephasing noise. This initialization protocol is
not robust to dephasing errors that occur during the process,
which will lead to the improper nulling of the phase. How-
ever, this is not a major limitation as the optical pumping
and microwave rotations can be performed much faster than
the entangling operation itself, and make up an insignificant
fraction of the total storage time. It should also be noted
that this issue may be circumvented entirely by replacing
global microwave control with rotations induced by Raman
lasers that physically address certain subsets of the register,
although this introduces considerable additional experimental
complexity.

Throughout Secs. II and III we have assumed that encoding
and measurement are always in the Pauli ¥ and X bases.
However, as we have shown in Appendix A, residual single
qubit rotations will lead to codewords in a more general
equatorial basis |A (D)), |A_(2)). This provides equivalent
protection against dephasing errors, but it is essential that the
angle ¢ is well known. This angle will define the basis for
subsequent qubit state preparation and read-out and thus the
phase angle of the microwaves that must be applied. Later
in this Appendix (see Sec. D3a) we propose a method to
suppress fluctuations in ¢+ due to laser intensity noise.

High-fidelity readout and qubit rotations will require mi-
crowaves with an intensity and polarization that are both
stable and uniform across at least one trapping zone. While
this is made easier by the long wavelength of the radiation
relative to the dimensions of the ion crystals, it is not always

trivial to achieve in small Paul traps, where the proximity
of electrode surfaces can lead to greater local variations in
the microwave field. However, provided the uncertainty in the
microwave Rabi frequency across all ions can be reduced to
the 1072-103 level, any contribution to the effective error
rate will be negligible.

3. Entangling-gate-induced errors

We finally focus on errors that may be introduced while
applying the entangling gate operation, including those more
generally associated with the generation of optical dipole
forces (ODFs).

The displacement drive required to produce the phase
gates used in this proposal relies on the application of spin-
dependent ODFs. There are a variety of ways to engineer
ODFs, depending upon the species of trapped ion, Zeeman
splitting, and presence of hyperfine structure; detailed dis-
cussions can be found in Refs. [21,33,34]. Importantly, we
require a highly stable and uniform ODF across the qubit
array. As such it will be necessary to position the crystal
within the center of a large (and most likely elliptical) beam.
In general, the force is generated by configuring a pair of
crossed laser beams with difference frequency py, incident
at angles +6g/2 symmetric about the trap axis, such that the
optical lattice is aligned to the ion crystal axis and the ODF
drives the transverse motional modes. The relative detuning
wnyp of the crossed beams will typically be set close to the
frequency of one of the trap modes, while both are also
detuned several THz from the nearest electronic transition.
Depending on the angle of the quantization magnetic field,
beam polarization, transition type, and detuning, a variety of
different ODF beam configurations are possible [35-39]. As
discussed in Sec. D 3 b, the choice of polarization or transition
can be crucial in minimizing errors due to spontaneous photon
scattering.

a. Nulling of single-qubit-rotation errors

In Appendix A we show that application of a suitable ODF
drive leads to the desired unitary evolution, up to a global
phase and an unwanted collective local Z rotation on every
qubit, with magnitude proportional to F2. Similar local-Z
rotations are produced directly by the optical dipole force with
magnitude proportional to F due to time-averaged differential
AC Stark shifts between the qubit states. As we describe
below, these light shifts can be nulled for suitable choice of
ODF beam polarization, but alternatively we can choose to set
these such that they minimize the sensitivity of the combined
Z rotation angle to variations in the ODF beam intensity.

For beams with random intensity noise €r, a rotation

around the Z axis due to the gate will occur with an angle
D o (F(1 4 €r))” = co(1 + 26r + €7), (D1)

with a constant c,. The corresponding rotation due to the

residual AC Stark shift during the gate period is
D X F(1+€r) =cue(l +€r) (D2)

for a constant c,.. If, by adjusting the detuning and polariza-
tion, we set the residual shift such that ¢,c = —2c,, we see a
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net rotation of

2
Doy = _Cg(l - GF), (D3)
nulling our sensitivity to intensity noise during the gate to first
order.

b. Errors due to spontaneous emission

Decoherence due to spontaneous scattering of photons is a
key consideration in all optical-dipole force driven quantum
logic gates (for a detailed discussion see Ref. [35]). Decoher-
ence can occur due to both Rayleigh scattering and inelastic
Raman scattering. The latter is of most pressing concern to our
protocol, because the dephasing induced by Rayleigh scatter-
ing will lead to correctable Z errors, while inelastic processes
are equivalent to X errors, against which the code offers
no protection. Furthermore, for alkali-like ions heavier than
magnesium, the presence of low-lying d or f orbitals provide
alternative Raman decay processes from the upper p states
that leave the electron outside the qubit states. Because the
occurrence of Rayleigh (or Raman) scattering on the dominant
decay channel implies a nonvanishing p-level population, any
nonzero scattering rate will also be accompanied by decays
on these weaker channels, equivalent to uncorrectable “loss”
errors.

For appropriate choices of the ODF beam polarization,
the spin-flip Raman-scattering process can be asymptotically
suppressed by detuning the Raman beams far beyond the
S-P transition resonance, ideally to a little beyond the p-state
fine-structure splitting [35]. In beryllium or magnesium, this
allows complete suppression of unprotected errors due to
ODF photon scattering, providing sufficient laser intensity is
available to produce the necessary ODFs so far from reso-
nance. For strontium ions, the total rate of unprotected errors
can be reduced to <10~ over the duration of a two-qubit
gate, limited by the d-channel Raman decays associated with
residual Rayleigh scattering. For N-qubit gates, the duration
of a gate for constant ODF intensity—and, therefore, the error
rate per qubit due to photon scattering—scales as +/N (assum-
ing the detuning § from the CoM mode is adjusted to ensure
we complete a single loop in phase space). The probability of
a sin§/l§: uncorrectable error across the register therefore scales
as N°/<.

c. Gate area errors

We finally consider how imperfections in the global en-
tangling operation add noise to the system. We consider the
encoded state that has been prepared to teleport information
from one subsystem to another with the global entangling
operation U’ as in Eq. (2). However, instead of performing
the ideal operation we instead apply

U'(T + &) = exp (—iHin(T + €)), (D4)
where T is the ideal pulse length and ¢, is some small error in
its length. Given that U'(T +¢,) = U'(¢,)U'(T) and U'(T)
acting on a code state is another code state where the two
subsystems we consider within the crystal are entangled, we
need only consider the unitary U’ (¢, ) acting on code state [).

Using that ¢, is small we write

U'(e) =~ /\/1_[(1 —i&Z;Zy),

Jj<k

(D5)

where tane¢, ~ sine, ~ ¢ and N ~ (1 — e2)VV=D/2,

Imperfections in the unitary will only introduce an even
parity of errors. We will thus look at the amplitude of the
terms of the state U ’(et)W) where an error lies on two par-
ticular qubits which we index gand r. We have that the state
[V (€,)) = U'(&)|¥) is such that

[V (e)) ~ N(1 —i&Z,Z, — (N — 2)e}Z,Z, + -+ ) |¥).
(D6)

The probability of an error occurring at site g and r is given
by P(E,) ~ (W |Z,Z | (€)) |2, and we can easily check that

<$|Zqu|$(€z)) ~ —N(ie, + (N — 2)63 + ... )’

where the ellipsis represents higher-order terms in €,. We thus
come to the effective probability of error per qubit

P(Eg)~ Y P(E,)
r#q
~ NN —1)(6f + N +--+).

(D7)

(D8)

If we take relatively small system size such that N < 1/ 6,2,
we find

P(E,) ~ Ne. (D9)

The effective single qubit error rate increases linearly with the
number of qubits, due to the global nature of the entangling
gate, and the size of the system is thus also limited by the
precision to which we are able to tune the pulse length. For
the purposes of this work, we assume that gate area can be
controlled to within 1%.

TABLE I. Summary of the error contributions of the model ver-
sus total qubit number N, for the complete teleportation process.
The contribution of each channel and scaling with qubit number is
discussed in the earlier sections of this Appendix. The actual values
will vary considerably between species and experiments, but for pur-
poses of this study we assume the following: State preparation and
measurement (Sec. D2 a) is assumed to be achieved with a modest
combined error of 0.1%. Gate area errors on the microwave single
qubit rotations (see Sec. D 2 ¢) and entangling gates (see Sec. D 3 ¢)
assume pulse area noise of 1%. Scattering errors (see Sec. D3 b) as-
sume strontium ions, an optimally chosen polarization, and operation
near the asymptotic limit (i.e., high ODF laser power) [35].

Term Description Value
Z errors
2 |0) state preparation 5x 107
7Y Single qubit microwave rotation 1074
Py Entangling gate area 107 x N
Py Rayleigh scattering VNJ2 x 1073
P State detection 5x 107
X errors
pram Raman scattering VNJ2 x 1073
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4. Overall teleportation-error model

Here we summarize the overall teleportation-error model,
i.e., the code-protected Z-channel errors which lead to a re-
duction in the effective code size n — nf, and a single X
error channel corresponding to Raman-scattering processes,
which dominates the unprotected teleportation error Pr.

The total probability of Z errors per qubit during each
teleportation cycle is given by

Py =Py + Py + o+ + Py (D10)
while the probability of X error per qubit per cycle is simply

px = PR™ (D11)

The contributing components and the corresponding errors are
given in Table I.

Assuming the error rates remain small, we can then find
the values of n.¢ and Pr used in Eq. (10):

~ T
Neff ’\’n_szs

Pr ~ Npk. (D12)

Note that for our assumed errors, p; < 1% for N < 90, so
the impact of Z-type errors in the teleportation process is
insignificant and n =& ne¢. However, the same cannot be said
of the physical X errors associated with teleportation, and for
large noise biases, Py is likely to be the limiting factor on the
performance of the protocol.
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