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ABSTRACT 

 Cardiovascular diseases (CVD) are the leading causes of mortality around the world and 

disentangling cause and effect is central to better understanding and treating these diseases. While 

randomised clinical trials are the “gold standard” of assessing the effect of an intervention, some 

hypotheses cannot be feasibly tested in the randomised setting. In these cases, observational 

studies with appropriate methods of confounding adjustment can deliver reliable evidence 

concerning the association between an exposure and outcome. Indeed, trusted conventional 

statistical models guided by subject area experts for confounder selection have been used to 

estimate associations in many observational studies; however, in the observational studies for 

which confounding is unknown and/or the population suffers from complex illness, the 

conventional approaches render insufficiently adjusted estimates. In parallel, recently, there has 

been unprecedented access to nationally representative multimodal electronic health record 

(EHR) datasets and advances in statistical learning including “deep” machine learning, a form of 

machine learning that relies on automatic feature capture dissolving the need for expert-driven 

feature engineering. 

 In this doctoral research, the aim was to develop a deep learning approach for causal 

inference on EHR. To do so in a structured way, the research was split into three investigations: 

1) The development of a deep learning model for EHR data and assessment of risk 

prediction performance 

2) Given the “black box” nature of deep learning modelling, the development of methods to 

explain the proposed model. 

3) The derivation of a model for causal inference, and application of the models for 

association estimation in elderly/at-risk patient subgroups. 

 The model, Bidirectional EHR Transformer (BEHRT) was created for EHR 

representation learning and risk prediction. The model outperformed several benchmarks for risk 

prediction on a variety of tasks including incident heart failure prediction. Furthermore, in the 

second work, explainability investigations yielded that the model captured validated factors of 

risk (e.g., hypertension, diabetes, and other diseases) and offered several more factors that could 

be potentially preventative of incident heart failure. Lastly, a derivation of BEHRT was developed 

for association estimation, Targeted-BEHRT, that fused advances in deep learning and semi-

parametric statistics. The model demonstrated superior estimation abilities on several simulated 

data experiments, and was applied to better understand the effects of antihypertensives, blood 

pressure, and paracetamol on cardiovascular endpoints, mortality, and other outcomes in at-risk 

patients.  

 Overall, the doctoral research has made advances in both methodological and clinical 

cardiovascular research. While the research focuses on developing methods for the study of 

cardiovascular diseases, the methods developed and tested have several important implications 

for epidemiological research in the observational setting at large. Especially in patient groups 

with pre-existing health issues, the causal models developed can be a more appropriate approach 

for association analysis than conventional statistical ones. In terms of clinical impact, the research 

has progressed our understanding of risk and protection in the context of CVD. 
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1 INTRODUCTION 

 

1.1 Motivation 

 Understanding cause and effect is central to cardiovascular disease research. 

While randomised clinical trials (RCT) are considered the “gold standard” of causality, 

trials are, at times, unethical or infeasible to conduct. While observational studies can be 

an appropriate alternative to answers questions about associations between hypothetical 

exposures and outcome, these non-randomised studies have limitations. Since exposures 

are not randomised, one must take appropriate measures to account for confounding in 

the observational data1. Several methods in statistics that adjust for confounding and 

estimate effect size have found acceptance in epidemiological observational research. 

However, these methods suffer from known limitations: (1) the confounders need to be 

conventionally selected for modelling, (2) the models are linear models and interactions 

must be manually engineered, (3) the models have difficulty addressing other biases that 

distort findings (e.g., selection, finite sample estimation, and other biases).  

 Moreover, cardiovascular diseases are the leading causes of mortality across the 

world with cardiometabolic multimorbidity heavily prevalent in today’s populations. 

With predictions that more than 50% of individuals between 65 and 74 will be 

multimorbid by 2035, research of cardiovascular disease risk in sicker populations is 

becoming increasingly important2. However, there is currently a limited understanding of 
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multimorbidity, directly implying a limited understanding of confounding factors in 

observational cardiovascular research focused on individuals with poorer health3.  

 Recently, access to comprehensive electronic health records (EHR) and 

developments in statistical methodologies such as deep learning give rise to opportunities 

in causal inference4. However, deep learning has been insufficiently explored on 

comprehensive EHR and models remain uninterpretable.  

1.2 Aims of the thesis 

 This doctoral thesis aims to ultimately develop accurate deep learning models 

for causal inference for United Kingdom (UK) EHR data with a focus on cardiovascular 

disease research.  

To this end, the research addresses the following three objectives: 

(1) To develop deep learning models that can efficiently incorporate rich multimodal 

EHR and learn representations that are useful with respect to benchmarks.  

(2) To develop auxiliary methods to understand the “black-box” decision making 

processes of proposed models. 

(3) To tailor the model to conduct causal inference in the observational setting. 

1.3 Structure of the thesis 

 In order to meet the overarching goal of developing deep learning methods for 

causal inference on administrative EHR, significant foundational work was conducted to 

appropriately facilitate the proposed research. In chapter 2, I present a literature review 

of concepts and past investigations relevant to my doctoral research. In chapter 3, I 

describe the routine clinical EHR dataset that I have utilised for the doctoral research, the 
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Clinical Practice Research Datalink (CPRD) dataset. This dataset contains anonymised, 

linked UK EHR data from primary care, secondary care, and the death registry that is 

nationally representative of the UK5.  

 Building on these foundations, I begin the presentation of the work to meet the 

outlined objectives. In chapter 4, I describe the development of the Transformer-based 

deep learning architecture that can handle minimally processed longitudinal EHR called 

Bidirectional EHR Transformer (BEHRT). In order to test the utility of both, features 

automatically captured by the model and generally, the deep learning architecture prior 

to conducting causal investigations, the proposed model was applied to a variety of 

clinical prediction tasks (e.g., subsequent disease occurrence prediction) and the incident 

heart failure prediction task. Since deep learning models are known to be “black-box” 

models, and hence, “unexplainable”, it was imperative to unmask the BEHRT model to 

better understand its processes given the safety-critical setting of healthcare research. 

Hence, after establishing that the model was able to conduct accurate prediction on some 

conventional clinical prediction tasks, in chapter 5, I describe methods developed to better 

understand the prediction processes of BEHRT. For this objective, BEHRT was firstly 

used to predict incident heart failure (HF) and secondly, auxiliary methods were 

developed in order to better understand the risk prediction processes of the BEHRT 

model. The research yielded that BEHRT can not only capture medically validated risk 

and protective factors of incident heart failure, thereby validating the feature extraction 

processes of the “black-box” deep learning model, but also, BEHRT generated novel 

hypotheses. 

 Upon establishing that BEHRT can (1) capture useful representations from 

routine clinical EHR demonstrated by superior predictive performance and (2) be trusted 

for EHR research, I finally proceed to present the development of deep learning models 
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for observational causal inference in chapter 6. Combining advances in semi-parametric 

statistics and deep learning for causal modelling, I developed a derivation of BEHRT for 

causal inference, Targeted-BEHRT. The proposed model was tested in a host of semi-

synthetic data experiments and demonstrated more accurate estimation of causal effect 

than both statistical and deep learning benchmark models.  

 Following evaluation of the model in semi-synthetic data settings, I present in 

the second half of chapter 6 and the entirety of chapter 7, four applications of Targeted-

BEHRT to better understand blood pressure, cardiovascular diseases (CVD), and relevant 

outcomes such as mortality: 

(1) Association of various drug classes of antihypertensives and cancer outcomes. 

(2) Association of systolic blood pressure and cardiovascular endpoints in patients 

with diabetes. 

(3) Association of systolic blood pressure and cardiovascular endpoints in patients 

with chronic obstructive pulmonary disease. 

(4) Association of sodium-based paracetamol and incident CVD, all-cause mortality, 

and systolic blood pressure as a continuous outcome with respect to non-sodium 

formulations. 

In chapter 8, I present a summary of the findings, the strengths and limitations of the 

doctoral research as a whole, implications for research and clinical practice, future 

directions, and concluding remarks. Finally, chapter 9 presents the appendices containing 

supplementary material relevant to the four research chapters. 
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2 BACKGROUND 

 In this section, key concepts in the interdisciplinary doctoral research will be 

briefly introduced. First, cardiovascular diseases and some select risk and associated 

factors will be discussed. Second, EHR data will be briefly introduced. Third, risk 

prediction, important theoretical considerations, and established conventional methods 

for assessing risk of diseases will be discussed. Fourth, both the theoretical foundations 

and established approaches for causal inference methods will be discussed. Lastly, deep 

learning theory and modern neural networks will be discussed. The following material 

serve to gently motivate and introduce ideas central to the doctoral research. While 

breadth is the goal of these following sections, certain context-dependent concepts will 

be elaborated in greater depth in following chapters.  

2.1 Cardiovascular diseases and related conditions 

 CVD is one of the leading causes of mortality and multimorbidity worldwide6. 

Despite progress in prognostication, prevention, and treatment of CVD, the disease still 

poses a serious global burden on mortality6. In the UK exclusively, cardiovascular 

mortality causes 30% of all mortality costing the National Health Services (NHS) over 

15 billion dollars annually7. In addition, those with CVD suffer from other associated 

conditions with over two-thirds of all CVD patients with multimorbidity.  

 Much of the increased risk of CVD-related mortality manifests from four core 

risk factors. Smoking, hypertension (defined as systolic blood pressure ≥ 140 mm Hg and 
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diastolic blood pressure of ≥ 90 mm Hg), high cholesterol, and obesity are the four 

modifiable risk factors responsible for approximately 60% of all cardiovascular-related 

mortality8. Of the four, hypertension presents itself as the strongest modifiable factor of 

risk – prevalent in a fifth of all individuals globally and in over 30% of individuals in 

England8,9. The presence of hypertension poses even greater risk of CVD when 

considering that more than two-thirds of hypertensive individuals also have 

multimorbidity9. Obesity measured often via body-mass index (BMI) is another key risk 

factor of the four core factors exacerbating CVD risk. While the relationship between 

obesity and CVD endpoints (e.g., myocardial infarction) has been found to be log-linear 

in healthy individuals, there is still much contention surrounding the shape of the 

association of BMI and all-cause mortality10,11. The so-called “obesity paradox” has been 

found; while overweight individuals have higher risk of CVD, the same individuals are 

at lower risk of mortality than those at normal or even low weight range 10. Researchers 

speculate perhaps this paradoxical relationship is a result of poor confounding adjustment 

and/or the limitations of BMI itself, which can’t inherently differentiate between body fat 

and lean mass10.  

 Other risk (and associated) factors of CVD include atrial fibrillation, chronic 

kidney disease (CKD), diabetes, and chronic obstructive pulmonary disease (COPD). In 

fact, in the UK, guidelines for CVD care recommend preventative statin and blood 

pressure lowering therapy for an individual comorbid with any of these conditions12. This 

automatic recommendation for treatment is in part due to a lack understanding of risk and 

protection in those with pre-existing comorbidities (in addition to lower costs of 

manufacturing preventative pharmacological therapies); trial evidence is limited and 

observational studies are conflicting ultimately leading to cautious recommendations 

concerning treatment. For example, the association between systolic blood pressure 
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(SBP) and cardiovascular outcomes in those with risk factors has not been explored 

comprehensively in both observational and randomised studies. While some studies find 

a discontinuous relationship between SBP and cardiovascular endpoints, several others 

find this to be a result of uncontrolled confounding and alternatively hypothesize a 

continuous one13–16. Evidence in either randomised or observational form is lacking and 

needed to more accurately understand risk and protection in these subgroups with pre-

existing conditions. 

 The following subsections will explore major conditions constituting CVD in 

addition to a few diseases associated with CVD: heart failure, ischaemic heart disease, 

stroke, hypertension, diabetes mellitus, and COPD. 

2.1.1 Heart failure 

 HF, simply defined, is a condition that indicates that the heart is unable to pump 

blood around the body to sufficiently meet the needs of the various organs of the body17–

19. HF can manifest due to multiple causes such as hypertension, valvular heart disease, 

or prolonged, untreated damage to heart tissue20,21. HF is generally subcategorised based 

on measurements of the left ventricular ejection fraction (LVEF), which is a percentage 

quantification of how much blood is pumped out of the left ventricular in relation to the 

amount of blood entering said ventricle19,20.  

 Due to the complex nature of the condition, HF is diagnosed in a multi-factorial 

way22. Initially, an initial clinical examination accounting for various risk factors, 

immediate symptoms, and history of other cardiovascular events is pursued22. Further 

examinations vis-à-vis electrocardiogram (ECG) can be recommended to 

comprehensively complete initial assessment22. Most commonly however, cardiac 

imaging via echocardiography is utilised for assessing incident HF since it captures data 
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on ejection volume in real time analyses of the chambers of the heart22. Alternatively, an 

investigation of the plasma concentration of natriuretic peptides (NPs) can be 

conducted23. Elevated levels of NPs can help inform an initial conception and screen for 

HF and can filter patients for further examination23.  

 Furthermore, while HF may be the first of many cardiometabolic disorders, often 

arises in the presence of other comorbidities. In general, incident HF is a common 

condition following a long history of cardiac defect especially in elderly patients20. Thus, 

HF generally does not present itself in isolation but in the midst of other conditions such 

as COPD, diabetes, hypertension, and other risk factors19,20. In addition, treatment of 

various conditions such as corticosteroids have been found to cause iatrogenic risk of 

HF24.  

 In general, HF incidence rates have declined in the 60 to 79 years age group 

implying that significant progress has been made in preventative therapy19,22. In 

comparison to incidence of cancer, HF incidence is now commensurate with the four most 

common cancers: lung, breast, bowel and the prostrate19. On the other hand, the absolute 

increase of heart failure around the world exerts great stress on health care systems 

worldwide19. 

2.1.2 Ischaemic heart disease 

 Ischaemic heart disease (IHD) or coronary artery disease is another such 

cardiovascular condition associated with substantial global mortality25,26. IHD is caused 

by blockages to the heart’s blood supply or by build-up of fatty substances in the coronary 

arteries25,26. Specifically, the blockages can be caused clots, but more often, the blockage 

is due to an accumulation of plaque, termed artherosclerosis25.  When the flow of blood 

is blocked to the heart muscle, the heart cells may die; this phenomenon is more 
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commonly known as a heart attack or a myocardial infarction (MI)25. IHD can be 

identified with a variety of tests including treadmill tests, radionuclide scans, a magnetic 

resonance imaging scan, or coronary angiography25.  

 Additionally, while IHD may manifest as a sole condition and the first of many, 

the condition often occurs in the presence of multimorbidity similarly to HF9. Many IHD 

patients have concomitant diabetes, COPD, and other conditions; of the many risk factors, 

hypertension specifically is the most common risk factor in those with IHD 9,25.   

 Even though age standardised mortality rate of IHD has decreased, IHD still 

remains a substantial contributor of mortality and burden of disease globally9,27. Absolute 

incidence has remained constant (between 3 and 4 percent) ultimately leading to increased 

health care service utilisation across UK27.  

2.1.3 Stroke 

 Stroke as a cardiovascular condition has repercussions on both vascular and 

cerebral structures28. Stroke occurs when there is a disruption of blood to the brain, which 

can often result in brain damage and mortality29. Alternatively, when blood flow is only 

temporarily disrupted, a transient ischaemic attack or “mini stroke” may occur29. The 

condition of stroke accounts for over 6 million deaths worldwide and especially effects 

those who are 40 years of age and older30.  

 Much like heart failure and IHD, stroke, while occurring as a preliminary or sole 

condition, often presents itself in the midst of multimorbidity; age standardised incidence 

and prevalence rate has attenuated over the recent years, but the overall absolute burden 

of this cerebrovascular condition has exerted great pressures on the health care 

systems9,30. In addition, elevated blood pressure is a leading risk factor for stroke31.  
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2.1.4 Hypertension 

 As discussed, one of the greatest individual contributors of CVD risk is 

hypertension8,32. Hypertension is a condition that is marked with consistently raised 

pressure in the blood vessels. Blood or arterial pressure is measured by two numbers; the 

first number, the systolic blood pressure (SBP), measures the pressure when the heart 

beats and the second measures the diastolic blood pressure (DBP), the pressure in the 

vessels when the heart is resting or between beats. Normal blood pressure lies below 120 

and 80 mm Hg of systolic and diastolic blood pressure respectively33. 

 Elevated blood pressure (i.e., systolic and diastolic blood pressure measured 

higher than the aforementioned measurements) is responsible for a third of all annual 

deaths globally32. Hypertension has even been labelled as the “silent killer” due to its 

prolonged sub-clinical period. Presentation of condition via symptoms is limited in these 

sub-clinical stages of the disease. In large part due to this reason, the disease of 

hypertension often goes undiagnosed and remains a global burden32. However, if 

diagnosed early, controlling elevated blood pressure can significantly protect against 

downstream CVD29,32.  

 The optimal threshold of blood pressure has caused significant controversy, 

especially in those with pre-existing conditions16,34,35. In those free of cardiovascular risk 

factors, the recommendation for SBP has generally been, “the lower, the better” – i.e., the 

lower the blood pressure, the lower the risk of a variety of cardiovascular disease and 

mortality endpoints36,37. However, in those with pre-existing conditions, the research into 

optimal threshold for SBP has generated much controversy in recent years. Some research 

has defended the paradoxical, “J-curve” association between SBP and various 

cardiovascular outcomes – an optimal SBP such that below and above this optimum, risk 

increases13,16,35. In large part due to these studies advocating an optimal SBP threshold, 
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hypertension guidelines have indeed recommended a recommendation of blood pressure 

lowering treatment goal of SBP <130 mm Hg (140 in elderly patients)38. However, as 

discussed, the degree to which residual confounding and reverse causation have roles to 

play in these conclusions is yet to be addressed with empirical evidence15. 

2.1.5 Diabetes 

 Diabetes is a metabolic disease afflicting one in ten people in the UK and 

worldwide, the cause of 1.5 million deaths directly as of 201939–41. The condition 

manifests when blood glucose levels are elevated41. Furthermore, the condition, a known 

risk factor of CVD leads to multiple issues including HF, stroke, IHD and peripheral 

arterial diseases29. Additionally, as a direct consequence, it is also known to cause other 

downstream conditions such as diabetic neuropathy and diseases of the eye42. The disease 

is known to contribute to all-cause and specifically, cardiovascular-related mortality as 

well9,42.  

 In previous research, the relationship between blood pressure and diabetes was 

captured to be log-linear much like established knowledge of the association between 

blood pressure and cardiovascular outcomes in those without prior risk43. Furthermore, 

meta-analysis of randomised trials has also demonstrated that blood pressure lowering 

indeed reduces risk of incident diabetes regardless of baseline blood pressure44. However, 

the relationship between blood pressure and CVD in patients with diabetes is lesser 

understood16.  

2.1.6 Chronic obstructive pulmonary disease 

COPD is a respiratory disease consisting of emphysema and chronic bronchitis45. This 

disease has affected 1.2 million as of 202045 . Those who are elderly or smoke are at high 

risk of contracting this respiratory condition45. Furthermore, the condition shares many 
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risk factors with CVD and has been associated with increased hospitalisation, all-cause 

mortality, and specifically CVD (and cardiovascular death)46. In fact, IHD, HF, and 

cardiac arrhythmias are the most frequently observed outcomes in those with COPD47. 

Estimates of prevalence of IHD in those with COPD range between 20 to 60% across 

various, diverse study populations46.  

 Despite the established increased risk of CVD in those with COPD, the 

association between SBP and CVD in those with COPD remains controversial. As 

discussed previously, past research advocates the “j-curve” association between the two 

and guidelines recommend the optimal blood pressure lowering treatment goal to be <130 

mm Hg in those with COPD35,48.  

2.2 Electronic health records 

 Electronic health records (EHR) are a collection of patient health information 

recorded over health encounters stored electronically in a digital format. The data within 

EHR can range from unstructured (e.g., handwritten notes) to structured (e.g., diagnoses, 

measurements of biomarkers, prescriptions). EHR systems were originally devised for 

billing and other administrative purposes (e.g., quality of care assurances)4. For 

administration, the patient health data remains digital and private, and with appropriate 

permissions, can be easily shared between clinical care providers4. Additionally, 

recordings do not need to be replicated; instead, a single file can be copied and shared 

seamlessly allowing for easy access and low-cost transfer of healthcare date4. In large 

part due to these administrative benefits, there is now widespread adoption of EHR 

systems around the world4. For example, in the United States, as of 2019, about 75% of 

office-based physicians and 96% of acute care hospitals have adopted administrative 

EHR systems49.   
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 EHR databases furthermore present an incredibly rich source of data for 

downstream clinical and epidemiological research4. Partly due to the fact that the 

databases offer access to multitype, high-dimensional health variables at low-cost, the 

EHR sources of observational data offer ample opportunity for observational analyses4,50. 

Many impactful projects answering questions about immediate epidemics, rare diseases, 

generalisations of findings, and many other critical research topics in epidemiology have 

utilised data collected from EHR systems 4,50. In fact, much of our understanding of the 

disease trajectories of the COVID-19 pandemic caused by the coronavirus comes from 

high impact observational studies utilising administrated EHR databases51.  

 For research purposes, large-scale EHR databases provide some vital 

components: large-sample size, rich patient-level health data, and long follow-up4. 

Typically, observational studies are conducted by pooling many individual patients’ EHR 

in the form of diagnostic, prescription, measurements, and other health annotations across 

time and by analysing them50. For research into, for example, subgroups of patients (those 

who satisfy a particular condition), for which data are usually scarce, large-scale EHR 

databases provide the opportunity for well-powered epidemiological research. 

Furthermore, the opportunity to follow patients for longer directly benefits our 

understanding of diseases that have lengthy sub-clinical periods (e.g., cancer)4,50. We can 

additionally better understand chronic conditions (e.g., cardiovascular conditions such as 

ischaemia) and chronic disease progression with longer follow-up periods. Overall, 

access to large samples of individuals, rich multidimensional health data, and longer 

follow-up offers fertile grounds for impactful research of complex conditions such as 

CVD 4,50 (Table 2-1).  
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Table 2-1: Comparison between conventional and electronic health records studies 

Feature  Conventional study  Electronic health records study  

Purpose of data collection Research Administrative use or clinical care; 

research is not the primary 

objective 

Costs Generally expensive; mostly funded 

by large institutions (e.g., 

governmentally funded) 

Generally, less expensive; usually 

funded by the healthcare 

provisioner (e.g., National 

Healthcare Services) 

Population definition Recruitment based Based on how much a patient 

utilises the health care system. 

Thus, large number of eligible 

patients for inclusion in cohort 

study 

Follow-up Dependent on how long funding is 

available. Thus, generally visits are 

defined in terms of fixed intervals 

Dependent on encounters with 

provider. Also, usually timing 

between visit is not unform. 

Data capture Dependent on protocol defined prior 

to data collection. All data that is pre-

specified will be collected - genetic 

sample, covariates, health variables, 

etc 

Data are recorded by clinical staff 

(E.g., doctor, nurse) and organised 

into diagnoses, medications, 

laboratory tests, clinical notes 

(unstructured) 

Variable capture All covariates and outcome variables 

prespecified to be collected at 

beginning of study will be collected. 

The variables and outcome 

variables that are a result of clinical 

encounter will be recorded. Health 

variables that have not manifested 

as diagnosis, medication, 

laboratory test, etc will not be 

recorded since those variables have 

not been assessed as a product of 

clinical care. Absent clinical states 

often not noted. 

Socioeconomic data Geographical information systems 

data are captured if prespecified. 

Also, directly measured if sample 

size is small. 

Patient-level socioeconomic factors 

are sometimes linked to 

geographical datasets (i.e., with 

patient home address).  

Adapted and restructured from tabular data from Casey et al4. 

 Furthermore, the linkage of data across many healthcare datasets allows for more 

robust accounting of patient health4. Those between various healthcare settings – primary 

and secondary for example – afford researchers greater breadth of healthcare variables. 

Specifically, some aspects of health not covered in one dataset may be provided in a 

linked dataset ultimately facilitating more comprehensive accounting of patient 

health50,52. For example, while primary care may capture more chronic or long-term 

conditions and related biomarkers, acute conditions may be captured in the secondary 

care setting 4,50,52.  Furthermore, linkage to geographical and socioeconomical health 
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indicator datasets help capture orthogonal health variables, which may serve as proxy for 

other factors of health not fully accounted by clinical care datasets (e.g., primary care 

data) within the EHR database4,50. Lastly, access to mortality-related data and cause-

specific mortality data specifically offer researchers the opportunity to conduct high-

quality analyses concerning mortality and causes of death 50,52. In these ways, EHR 

databases with rich linkages can capture the patient health timeline from “cradle to grave” 

50,52. 

 Additionally, utilising the longitudinal aspect of records in EHR databases offers 

the promise of more nuanced data-analyses 4,50. For instance, instead of just noting a 

condition at a fixed point of time, the date of diagnoses annotated by administrative EHR 

databases can give us a more sensitive understanding of disease occurrence and perhaps 

even, severity4,50. Naturally, for the researcher, the opportunities include richer 

downstream analyses (e.g., stratified analyses by age of diagnosis of incident condition) 

and more flexible cohort designs (e.g., setting random index date) with provisioning of 

temporal information4. The recording of time generally allows for more nuanced design 

and analysis of the medical history (adjustment) period, the baseline date, and the follow-

up time window. Incorporating this information into observational studies can be crucial 

in the case of chronic conditions.  

 While there are issues of missingness, incorrectness, and heterogeneity in 

recording practices over time, there are many practical ways to attend to some of these 

matters4,50. For example, advanced statistical techniques such as imputation of EHR data 

can be used to directly address issues of missingness53. For the cases of continuous 

measurements (e.g., cholesterol and blood pressure) and categorical variables (e.g., 

deprivation or smoking status) as examples, imputation strategies have been 

demonstrated to be useful strategies for overcoming missingness in the observational 
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setting43. While incorrectness on the other hand is an issue, many administrative EHR 

databases provide algorithms to check the validity of the particular record, sometimes 

with validity measured across a spectrum54. With this measure, individual researchers can 

choose an appropriate threshold to filter “valid” records for downstream analyses. In this 

way, the validity of records can be more objectively measured and filtered thereby 

directly addressing concerns of the validity of individual records. Of course, EHR 

databases can still contain noise and contain erroneity; however, EHR data has been found 

to be more reliable for measuring health state than data points collected as a product of 

self-reporting4. In order to account for changes in practice, detailed attention must be 

given to research spanning several decades and the results stemming from said research. 

It is vital that sensitivity analyses are conducted to investigate the effects of temporal 

systemic changes in clinical care4.  

2.3 Risk prediction 

 Assessment of the risk of a particular condition (e.g., CVD) is incredibly 

important for questions in medicine and epidemiology. Predicting risk of a condition like 

CVD is vital for raising awareness about the burden of CVD to multiple stakeholders: 

patients themselves, clinical practitioners, and public health policy makers12. In the UK, 

risk assessment tools have been used to help identify those at high risk of CVD12. While 

some individuals are at lower predicted risk for CVD and can be encouraged to make 

changes to lifestyle choices (e.g., smoking and alcohol), others at higher risk require 

preventative pharmacological therapy in order to avoid developing CVD12,55. In this way, 

utilising risk assessment methods to identify those who need preventative therapy can 

ultimately be more efficient and lower costs for healthcare providers in the long run12.   
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 The following sections explores the motivations for risk prediction modelling, 

the development of risk prediction tools, and the limitations of risk prediction modelling 

with conventional statistical methods.   

2.3.1 Motivating context 

 Both diagnosis and prognosis have an overlapping challenge: diagnosis is the 

capture of disease in the present, and prognosis is the capture of the disease state in the 

future. While diagnosis involves a diagnostic test or a biomarker capture, statistical 

models utilise several predictors captured in the present to capture disease state in the 

future56. For many epidemiological and clinical questions, the outcome of interest is 

usually the presence of a disease, meaning a binary variable. The prediction of the 

presence of said disease comes in the form of a predicted probability.  

2.3.2 Development of models 

 In order to develop a discriminative statistical model that can conduct risk 

prediction, outcome and predictors must be defined. For binary outcomes, the outcome 

can be defined as an event that occurs within a finite period of time from the start of the 

study (study entry or index date). The predictors chosen can be diseases, medications, 

measurements, lab tests or any other health data points recorded at or before the start of 

the study. These predictors are conventionally chosen based on expert knowledge55,57 and 

extracted from raw healthcare datasets (e.g., administrative EHR datasets), and 

appropriately transformed and normalised to be considered as input for modelling. 

Similarly, presence of disease in the follow-up period following start of the study must 

be extracted as a binary variable for each patient. 

 Following model development, the predictive performance of the model must be 

measured in order to inform the worth of the predictions. The conventional approach to 
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quantify performance is by simply measuring accuracy of the predictions: measure how 

close are the predicted values to the actual outcome56,57. Also, R2 statistics and Brier score 

are additionally used to quantify performance56,57.  

 Another method of quantifying predictive performance is by answering the 

question: do those who develop the disease outcome have higher predicted risk than those 

who do not? This is the central question that metrics of discrimination directly address. 

The receiver operator characteristic curve is one such metric of discrimination 

quantification; the curve plots sensitivity (i.e., true positive rate or recall) against 1.0- 

specificity (i.e., false positive rate)56,57. Quantifications of the area under the receiver 

operator characteristic curve (AUROC) can provide a summary statistic of the trade-off 

between true and false positive rate. While an AUROC of 0.5 represents a random model 

– a model that is predicting incidence of disease with random probability (i.e., coin flip 

prediction), one of 0.0 represents the poorest model (and one that performs worse than a 

random model), and one of 1.0 demonstrates that the model is predicting the outcome 

perfectly57. Other metrics utilising precision (i.e., number of correctly predicted positives 

out of all positive predictions) along with recall such as the area under the precision-recall 

curve (AUPRC) and F-measure combine and balance multiple measures into one omnibus 

statistic57.  

 Before clinical acceptance and utilisation of these risk assessment models in the 

healthcare setting, the models need to be internally and often, externally validated using 

some of the aforementioned techniques57. Internal validation consists of assessing model 

for predictive performance on the same data used for development. Some common 

techniques to conduct internal validation is bootstrapping and k-fold cross validation57,58. 

While there are variations to the process, generally, bootstrapping involves repetitive (1) 

sampling of the dataset with replacement, (2) training on one part of the sample, and (3) 
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testing on the remaining part of the sample. Predictive performance is computed as a 

metric (e.g., AUROC) averaged across the repetitions with the additional option to 

compute standard deviation of the same metric. K-fold cross validation is an alternate 

method for internal validation, for which the dataset is split into a fixed number (i.e., k) 

of mutually exclusive partitions or “folds”, and all the folds but one is used to train, and 

the remaining is used to test the model. This is repeated iteratively until every single fold 

has been used exactly once as a test set. Model performance on the dataset can be 

computed as an average over the test folds; similarly standard deviation can be calculated 

as well57,58. Both methods are commonly accepted methods to measure predictive 

performance of developed models. External validation is used to assess the 

generalisability of the model. In gist, the model is trained on an internal dataset but tested 

on a cut of data from another dataset57. Sometimes, data from a different geographical 

area or time-period are used to ensure that the model is generalisable57. If the model 

demonstrates acceptable discrimination, then the model has generalised acceptably to 

other data. However, if the model poorly discriminates, this means that likely, a new 

model is needed to perform adequately on the external data57.  

2.3.3 Limitations of conventional risk prediction modelling  

 Risk prediction models currently face many limitations especially for prediction 

of cardiovascular events. Risk prediction models currently require conventional predictor 

selection. In situations, in which risk factors are comprehensively understood, predictors 

can be easily extracted from data and statistical models can be efficiently developed. 

However, in situations, in which risk factors are lesser known, development of robust risk 

assessment solutions becomes infeasible59. For example, in the case of incident heart 

failure predictions, many proposed solutions for risk assessment demonstrate poor 
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predictive performance60. This is in part due to the limited understanding of factors of 

risk of heart failure60.  

 Furthermore, even if the condition to be predicted is widely understood, 

conventional models such as logistic regression or log-binomial modelling for binary 

outcomes, are inherently linear models and have to undergo manual feature engineering. 

Complex non-linearities and interaction variables must be manually engineered. If the 

precise functional form of the interaction is unknown, the interaction variable may be 

poorly defined and thus provide limited utility for predictive performance. Thus, 

modelling of complex phenomenon is difficult in the conventional modelling paradigm.  

2.4 Causal inference and association analyses 

 Central to research in medicine and epidemiology, is the determination of the 

cause of a particular disease or the effect of a particular intervention61. When an 

association such as the association of antihypertensives and CVD, is able to be 

investigated in a randomised setting, such as the setting of the RCT, the drug classes are 

randomly assigned to the patients (e.g., some receive beta-blockers, one class of 

antihypertensives while others, calcium channel blockers)62. In the randomised setting, 

all other variables contributing to risk or protection of the outcome are randomly 

distributed in both groups and hence controlled. Thus, the effect of the variable of choice 

on the outcome, the intervention can be directly assessed. For this reason, the RCT is 

considered the “gold standard” of assessing causality62. 

 However, there are several hypotheses that cannot be tested in the standard RCT 

setting. Some hypotheses cannot be tested in the randomised setting due to ethical 

concerns61,62. For example, the effect of smoking on cancer cannot be ethically tested in 

an RCT; there are ethical issues with randomising smoking, the intervention in question 
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in this experiment. Furthermore, sometimes the hypothesis in question does not attract 

enough participants in order to have sufficient sample size. If sample size is lacking, for 

a complex question regarding cause and effect, even with randomisation, pre-intervention 

variables may not be balanced amongst the intervention and control groups62. 

Additionally, implementing, recruiting, and analysing an RCT takes time and resources. 

As of 2016, estimates of costs to run a trial for clinical interventions can be as expensive 

as $1.4 billion63. With these high costs, not all hypotheses can be allocated resources for 

testing63. Lastly, while RCTs are useful for estimating the association, the results are not 

generalisable. While some RCTs may claim that a hypothetical association is negative, 

others may defend that the association is positive. Often, a meta-analysis of multiple 

RCTs must be conducted to identify the generalisability of findings64.  

 Causal inference methods indeed seek to emulate the trials whilst directly 

addressing the aforementioned limitations of the conventional randomised investigation. 

Observational studies utilising non-randomised data, if conducted appropriately can seek 

to find answers to questions relating to causation.  

 In the following sections, a hypothetical investigation of the aforementioned 

effect of antihypertensives on CVD will motivate and facilitate the discussion of 

causality. First, naïve methods of estimating causal effect will be introduced. Second, 

formalised frameworks of capturing causal effect will be presented. Third, a survey of 

methods for estimating causal effect will be presented.  

2.4.1  Motivating causal inference 

 Motivating the discussion about causality with the aforementioned research of 

the effect of antihypertensives on CVD, the question is asked: how can this association 

be modelled using methods for the observational setting? As an initial causal analysis, a 
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researcher might conduct a cohort study of the association of beta-blockers on CVD with 

respect to calcium channel blockers.  

 The study design will be the following: for a patient, the first date of the initiation 

of either of the two drugs would be considered the date the patient entered the study (i.e., 

study entry or “baseline” date). The outcome of CVD would be assessed within a follow-

up time window; perhaps this window could be set as the 10-year window of time 

following study entry date.  

 Following this design, a cohort would be extracted using an appropriate data 

source, and for each patient, the information concerning exposure group assignment and 

the presence of the outcome will be extracted. With this data, the researcher might 

estimate risk ratio (RR), a widely accepted method of estimating strength of the 

association: 

 �̂� =
𝔼[𝒀|𝑻 = 𝟏]

𝔼[𝒀|𝑻 = 𝟎]
 (2-1) 

 With 𝑌, as the outcome of CVD, and 𝑇 = 1 as the indication of beta-blockers 

and 𝑇 = 0 as the indication of calcium channel blockers, the �̂� is the crude RR estimate. 

�̂� > 1 implies that beta-blockers cause CVD more so than the calcium channel blockers, 

�̂� < 1  implies that the beta-blockers cause CVD less so than the calcium channel 

blockers, and the �̂� = 1 implies that the effect of beta-blockers on CVD is commensurate 

with that of calcium channel blockers. 
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Figure 2-1: Illustration of confounding    

 

This figure illustrates the confounding factors present in a hypothetical observational 

setting. X denotes some pre-treatment covariates solely associated to the exposure (T), 

and Z is a confounding variable associated to all variables: X, exposure and outcome (Y). 

Red arrows denote associations necessary for Z to be confounding variable. 

  However, given that the true association is �̂� = 1, if there are factors associated 

to both, use of beta-blockers and the outcome, CVD, and the association captured is �̂� ≠

1, it is said that these common causes of both intervention and outcome are “confounders” 

and responsible for distorting the effect measure (Figure 2-1 and discussion of 

confounding below in section 2.4.2). As a concrete example of confounding, if certain 

patients have COPD, they are less likely to be prescribed beta-blockers65. Furthermore, 

COPD is a condition that exacerbates risk of CVD46. With association to both exposure 

and outcome, COPD is a confounding variable61. With the naïve method of estimating 

RR shown in Equation (2-1), �̂�, the confounder of COPD is not accounted, and thus 

conclusions drawn from the effect measure, �̂�, may be biased and incorrectly capture of 

the true relationship between the classes of antihypertensives and CVD.  

 Conventionally in epidemiology, in order to more accurately capture causal 

effect in the presence of confounding, a statistical model would adjust for confounders. 
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However, this may not be possible if the confounders are not measured. If the 

investigation is poorly defined or if the observational setting is heavily confounded, 

identifying causal effects may not be possible61. In these cases, a formal framework is 

beneficial in these circumstances in order to delineate if (1) association analysis can be 

pursued and (2) if causal effect is identifiable. 

2.4.2  Formal framework of causal inference 

 With many open questions about causal inference, the pursuit of formalising the 

framework of causal inference was undertaken by Donald Rubin in the 1970s when he 

extended the initial conception of the “potential outcomes framework” from Jerzy 

Neyman, who initially introduced the concept in his master’s dissertation in 192366–68.  

 The potential outcomes framework explains cause and effect in the following 

way. With reference to the motivating example, if a patient given beta-blockers was 

offered calcium channel blockers, then the probability of the outcome of CVD would be 

different than if the patient had been given what the patient was assigned67.  

 More formally, we let 𝑇𝑢 and 𝑌𝑢 be the functional form of exposure and outcome 

respectively for patient 𝑢. Now to understand the effect of exposure on outcome, 𝑇 is 

considered to be a function that can represent effect of intervening on the treatment in 

question. 𝑌 can now be functionally represented as 𝑌𝑢(𝑡) for a patient u and exposure t. 

Of course, 𝑇𝑢 is hypothetical as opposed to set, and the variable 𝑌(𝑡), is a counterfactual 

or potential outcome variable.  

 In the antihypertensive study, the exposure is binary implying the variable 𝑇𝑢, 

may take on two states: 0 and 1. In notational form, the two states are 𝑌𝑢(0) and 𝑌𝑢(1). 

Thus, the RR can be defined as: 
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 𝑹𝑹 =
𝔼[𝒀𝒖(𝟏)]

𝔼[𝒀𝒖(𝟎)]
 

(2-2) 

Equation (2-2) explains the causal effect in the potential outcomes or counterfactual 

framework. Philosophically, all units are the same in every way except the intervention, 

which is the variable of interest. So, under this framework, the outcome in those with the 

intervention status can be compared to those with the control status67.  

2.4.2.1 Assumptions for causal identifiability 

 Under some assumptions, the average causal effect can indeed be identifiable. 

Specifically, there are a number of variations of the assumptions themselves, but 

generally, the core sufficient assumptions for identifiability are ignorability, positivity, 

and consistency1. 

 First, under the assumption of ignorability, sometimes clarified as strong 

ignorability, there are “no hidden confounders” and only if this condition is met, the 

average causal effect can be identifiable1. In notational, the assumption of strong 

ignorability is formalised as {𝑌(1), 𝑌(0)} ⊥ 𝑇, 𝑋 21. More informally, this conditional 

independence relationship means that the potential outcomes are independent of the 

treatment given all confounders , 𝑋 . In randomised and synthetic data situations, the 

assumption is more easily met. Randomised scenarios directly implies that the 

confounders in both exposure groups are likely balanced by randomisation of the 

exposure (given sufficient sample size), and in the synthetic data situations, in which 

confounding factors are generated and thus all known and identifiable, complete 

adjustment is possible. On the other hand, in observational settings utilising non-

randomised, routine clinical data, the scope of known and unknown confounding is not 

measurable1. Thus, evaluating if all confounders are accounted is infeasible1,61. With 

access to richer observational data such as multimodal, longitudinal EHR with a host of 



 

     26 

health indicators variables, more comprehensive confounding adjustment is possible; of 

course, uncontrolled confounding cannot be discounted. Thus, while strong ignorability 

may be theoretically an absolute assumption, in reality, the assumption functions on a 

spectrum from total disregard of ignorability (e.g., naïve or crude risk ratio estimation) to 

strong ignorability; while most observational studies cannot truly guarantee strong 

ignorability, weaker forms of ignorability can more feasibly be met69.  

 Second, the assumption of positivity means there is a non-zero probability of 

being assigned either treatment for any given patient. To explicate upon positivity in 

terms of the motivating example, each patient needs to have a non-zero probability of 

being assigned either beta-blockers or calcium channel blockers. Since both drugs are 

antihypertensives, there is a realistic chance that patients in this hypothetical 

observational study are eligible of being assigned either drug class. However, taking 

another hypothetical observational study of the effect of a novel cancer drug on tumour 

size with respect to a placebo/control intervention, a patient without cancer at study entry 

has 0.0 probability of being assigned the cancer drug simply because the drug is not 

prescribed to those without cancer. Hence, in this hypothetical situation, the assumption 

of positivity would have failed to have been met. Failing to meet the assumption of 

positivity directly implies that those in the control group are being inappropriately 

compared to those in the intervention group61. Perhaps, some individuals selected for 

participation in the observational study do not have a positive probability of being 

assigned either exposure, and those individuals should not be included in the study.  

 Lastly, consistency is the assumption that for every patient, the potential 

outcome for the actual treatment assigned to the patient is equal to the factual outcome61. 

For example, if a hypothetical patient in the running example observational study was 

assigned beta-blockers, the potential outcome for the exposure, beta-blockers, would be 
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the same as what the patient actually experienced as the factual outcome. While this may 

be a natural statement to assume whilst conducting an observational study, often times, 

the assumption is not met if the exposure is not properly defined. For example, given a 

hypothetical study investigating the effect of body mass index (BMI) on CVD, a patient 

with a particular BMI may have the same BMI as another patient, but the outcome of 

CVD may differ between the two patients. This is because while one patient has a 

particular weight and height, the components of BMI, the other, might have a different 

set of the same two components. Due to poorly formulated exposure, the outcome of CVD 

is different for a particular exposure state. In this observational study, the exposure status 

would be considered “inconsistent”61. 

2.4.3  Methods in causal inference 

 While James Robins extended Rubin’s potential outcomes framework in the 

1980s, Judea Pearl coalesced and generalised these frameworks utilising directed acyclic 

graphs (DAGs) in order to appropriately illuminate the variables potentially distorting 

and/or biasing the causal effect1. Fundamentally, given modelling of all elements – 

exposure, outcome, and confounding variables – researchers can appropriately adjust for 

confounding variables and thus directly satisfy the assumption of ignorability in 

downstream analyses utilising stratification, regression modelling, or propensity-based 

methods. 

2.4.3.1 Directed acyclic graphs 

 Mathematically, DAGs are inspired by causal graph theory. Variables are 

represented by nodes and relationships/association are represented by edges between 

nodes1. Paths are formed by a sequence of edges. Furthermore, the edges of DAGs are 

directed, meaning that a particular edge describes a directional relationship between two 

nodes1. Also, the graphs are specifically acyclic meaning that no variables can cause itself 
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either by self-loop or by path1. In some ways, DAGs have temporality in-built; since the 

DAGs use directed, acyclic edges between nodes, this naturally means that some variables 

manifested before others1.  

 Importantly, the DAGs enable identification of conditional independence of 

variables defined on the causal graph1. If a dataset were to be generated from a particular 

DAG with formalised independence relationships, the generative process would preserve 

the same relationships between the same variables. To better formalise independence, the 

language of d-separation is introduced1. Two nodes on the DAG are d-separated from one 

another if all paths between the two nodes are blocked. A path, p, is defined to be blocked 

by a set of nodes, V, if and only if: (1) p contains a chain from i → j → k or i ← j → k 

such that the middle node, 𝑗 ∈ 𝑉 or (2) p contains a “V-structure”: i → j ← k, such that 

the middle node(s), j, and any descendants of j are not in V 1. The latter V-structure is also 

known as a collider structure; colliders naturally can block paths, and conditioning on 

these colliders can open paths1. The chain, i → j → k functions with j as mediator, and i 

← j → k functions with j as a confounder variable1. Conditioning on j in these two cases 

blocks the path since the chain is not a collider structure. Alternatively, given a set {j}, 

that contains nodes that blocks all paths between i and k (given there is only the one 

discussed path between i and k), this means that i is independent from k conditioned on 

{j}1. 

 With this language of conditional independence, confounder variables can be 

described by DAGs. Using DAGs simultaneously with established frameworks such as 

the potential outcomes framework, causal effect can be identifiable. Specifically, using 

DAGs to capture variables to be conditioned upon (e.g., confounder variables) enables 

identification of the sufficient adjustment set (SAS) of confounders1. Defining the SAS 

using causal graphs and the mathematical framework underpinning the causal graph, 
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renders the exposure and outcome variables conditionally independent 1. In addition to 

meeting assumption of strong ignorability with SAS of confounding variables, if 

observational studies are well designed and appropriately adhere to assumptions of 

positivity and consistency and any other study-specific assumptions, causal identification 

is directly enabled.  

 DAGs can be a very useful tool in expert-driven studies in guiding identification 

of confounding and mediating variables in an observational study. Furthermore, for 

didactic and explanatory purposes, DAGs can efficiently communicate the general 

relationship between variables. However, DAGs are non-parametric and thus cannot be 

used to infer magnitude of association between two variables or nodes on the graph1.  

2.4.3.2 Methods for confounding adjustment 

 Once the DAG has been identified for a particular observational study, in order 

to estimate causal effect, the identified confounders must be conditioned upon. 

Confounding adjustment can be conducted in many ways including but not limited to, 

mainly stratification, regression, and propensity score-based methods.  

 Stratification methods have a long history of use in epidemiological studies with 

first formalisation of the method by Cochran in the 1960s70,71. It has been used often when 

the SAS is limited in cardinality (i.e., perhaps simply age or sex as confounders). In this 

case, the data are split up into a fixed number of subgroups for the particular confounder; 

for example, with sex as a confounder, the number of subgroups would be two. The 

stratum specific estimand (e.g., RR) is calculated and then for an omnibus static, a 

weighted mean can be taken over the multiple strata; for the example of sex as a 

confounder, the final RR would be a weighted mean of the RR for male and RR for female 

patients70,72. The estimand is often a crude effect measure since confounding adjustment 

via stratification conditions upon the confounding variable(s) rendering the association 



 

     30 

between exposure and outcome to be independent given stratification over confounders. 

The main drawback of stratification is that many confounders directly imply many 

stratifications of the data72. If the number of confounder combinations are far greater than 

the cardinality of the data, then sample size becomes insufficient in any given stratum. 

Rothman and Greenland eloquently refer to this as “when stratification exceeds the limits 

of the data” and the resulting estimates of causal effect over stratum can be highly volatile 

and susceptible to bias71. 

 Regression indirectly addresses these issues and is another way to adjust for 

confounding variables71. Once confounders are selected perhaps through DAG based 

visualisation or expert-based selection, the outcome variable is regressed upon the 

exposure variable and the multiple confounders71. Depending on the model and given that 

the modelling assumptions are met, a regression coefficient for a variable in the model 

estimates the effect of the increase of one unit of that particular variable given the 

assumption that all other variables modelled remain the same. Thus, the exposure 

variable’s respective coefficient can be extracted from a fit model and with minimal 

transformation (e.g., exponentiation), can provide an effect measure that could be 

interpreted as an appropriate estimand of association strength (e.g., risk ratio, hazard 

ratio)71. Alternatively, counterfactual estimation may be possible with regression models. 

With a fit model, the risk can be estimated as if all patients were given the exposure and 

compared with the risk as if all patients were given the non-exposure. In regression-based 

confounding adjustment, poor measurement of confounders may result in distorted 

coefficient for the exposure variable. For example, binarizing a more complex variable 

such as BMI status, originally a continuous variable, may be a form of insufficient 

adjustment of confounding, leaving the study susceptible to many issues of residual 

confounding71. With respect to stratification-based methods, while stratification-based 
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confounding adjustment fails to handle many confounding variables, the regression 

model can theoretically handle many confounding variables. Thus, regression-based 

confounding adjustment is preferred in observational studies, in which there are many 

confounding factors71. 

 Lastly, propensity-score based methods are a more recent class of methods of 

confounding adjustment and have slowly begun to find acceptance in mainstream 

epidemiological research73,74. Propensity-score based modelling is based on two-stage 

modelling defined first by Rosenbaum and Rubin in 198374. In the first stage, a regression 

model is implemented such that the treatment variable is regressed upon any and all pre-

treatment variables. With this model, each patient in the study is given a propensity score 

– a probability-based score that informs the probability the patient will be given the 

exposure with 1.0 implying that the patient has a 100% chance of being in the exposure 

group and 0.0, a 100% chance of being in non-exposure group73.  

 In the second stage, matching, stratification, weighting, and regression-based 

methods can be used, in gist, to “adjust” for the propensity score and estimate effect on 

the outcome variable73. In the case of matching, a variety of techniques can be used to 

match patients in one exposure group who have the same or similar (up to a caliper 

distance) propensity score in another. However, a common drawback of this procedure is 

that many individuals are not matched or inappropriately matched resulting in issues with 

samples and biasing effect measures downstream. Rosenbaum and Rubin extended the 

idea of stratification formalised by Cochran to the propensity score75. Specifically, the 

two demonstrated that implementing stratification on propensity score eliminates 90% of 

bias due to measured confounding variables73. Alternatively, weighting-based methods 

can be used. In the case of weights, the propensity score estimates are transformed into 

inverse probability of treatment weights (IPTW) defined as 𝒘𝒊 =
𝑻𝒊

𝑷(𝒁𝒊)
+  

𝟏− 𝑻𝒊

𝟏− 𝑷(𝒁𝒊)
 with 
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𝑇𝑖, the assigned treatment for patient i, and the 𝑃(𝑍𝑖), the propensity score of patient i76. 

With this measure, the average treatment effect of RR can be directly estimated76. 

However, this method leads to instability in the estimation of treatment effect for subjects 

in the study with very low probability of receiving the treatment actually received. 

Specifically, the denominator vanishes, rendering large weights for a particular subject73. 

Lastly, one can adjust for confounding and estimate effect size by implementing covariate 

adjustment utilising propensity score73,74. The outcome variable is regressed upon the 

exposure indicator variable and the propensity score, and the association strength between 

exposure and outcome is determined from the fit model’s exposure regression 

coefficient73,74. Since this method directly models the relationship between the propensity 

score and the outcome, this regression method requires that the modelling is correctly 

specified. 

 While these methods are most often used, this survey is by no means an 

exhaustive list. Other methods include doubly-robust estimators (introduced in Chapter 

6) and other approaches that incorporate modern machine learning advances and address 

issues such as finite sample estimation and selection biases prevalent in the observational 

setting77,78.  

2.5 Deep learning 

 In order to introduce the concept of deep learning, the fundamental linear 

regression is important to facilitate discussion. For linear regression, a set of N input-

output pairs {(𝒙𝟏, 𝒚𝟏), … , (𝒙𝒏, 𝒚𝒏)} are given. For example, input can be health status at 

study entry and output can be the outcome of BMI. Assuming that there exists a linear 

function that can map the input 𝒙𝒊 to the output 𝒚𝒊, the linear model can simply function 

as a linear transformation of the input. 𝒇(𝒙) = 𝑾𝒙 + 𝒃, with 𝑾 as a real number weight 
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matrix and 𝒃  a real number weight vector79. Varying the two weights would yield 

different transformations of the input space, 𝒙. The aim of the linear regression is to 

minimise some objective function – perhaps, the average squared error over the data and 

simultaneously best predict the outcome space, 𝒀 79. 

 While linear transformations are useful for learning some relationships between 

input and output, many relationships are, in fact, not linear in nature. Instead, non-linear 

functions must be used to map the input to the output more accurately than simpler linear 

maps. For this purpose, linear basis function regression can be used80. In this case, a 

feature vector is created Φ(𝒙) = [𝜙1(𝒙), … , 𝜙𝑘(𝒙)], and this feature vector can be used 

to perform linear regression instead of solely using the input, 𝒙. These transformations 

are the basis functions and with the scalar input, x, these transformations can be non-

linear in nature (e.g., polynomial, sinusoidal, and other non-linear functions). However, 

the basis functions are often just assumed to be fixed and orthogonal implying that the 

optimal basis functions are unknown and requires deduction. In order to alleviate the 

issues of these fixed functions, parametrised basis functions instead can be 

implemented80. As an example, the basis function, 𝜙𝑘
𝒘𝒌,𝑏𝑘 is the aforementioned linear 

basis function 𝜙𝑘but applied with inner product to the input 𝒙, yielding, 〈𝒘𝒌, 𝒙 〉 + 𝒃𝒌. 

With this inner product, the linear regression model can be notated as 𝑓(𝑥) =

 Φ𝑾𝟏,𝒃𝟏(𝒙)𝑾𝟐 + 𝒃𝟐 , with Φ𝑾𝟏,𝒃𝟏 = 𝜙(𝑾𝟏𝒙 + 𝒃𝟏) . Not only is the linear model 

parametrised by weights, 𝑾𝟐 and 𝒃𝟐, also the basis itself is parametrised with weights to 

optimise, 𝑾𝟏 and 𝒃𝟏. With this construction, the task is to find the optimal four weights 

that yields the minimal average squared error. 

 In gist, the most fundamental architecture in deep learning can be described with 

parametrised basis functions. The parametrised basis functions demonstrate that the 

weights are functional compositions or more informally, nested functions; while the linear 



 

     34 

regression weights itself need optimisation, the weights that directly transform the input 

require optimisation as well. This nested or hierarchical structure can be referred to as a 

neural network, with each level of feature vector constituting a layer in the network. Each 

layer is an iterative block in the hierarchy and with more layers comes “deeper” networks 

with more complex, non-linear transformations.  

 In the following sections, common neural network models will be introduced 

briefly followed by a brief comment on the “black box” nature of deep learning models 

and interpretability of these models.  

2.5.1 Feed-forward neural networks 

 First, a fundamental neural network model with one hidden layer will be 

introduced81. Again, input is 𝒙 and the first linear map is denoted by 𝑾𝟏 and the bias 

term, 𝒃 will be the translation. The resulting linear map will be 𝑾𝟏𝒙 + 𝒃. A non-linear 

function, 𝜹 is used to transform the output of the linear map. Some common functions are 

the rectified linear unit (ReLU) or the hyperbolic tangent function (TanH). A second 

linear map, 𝑾𝟐 maps the output of the first linear map to the output layer (perhaps the 

output is a real number). The total neural network can be functionally expressed �̂� =

𝛿(𝑾𝟏𝒙 + 𝒃)𝑾𝟐.  

 To optimise the weights such that neural network estimates the true outcome 

with minimal loss, a loss function must be chosen. The loss function can be the Euclidean 

loss function, 𝐸(𝑋, 𝑌)𝑾𝟏 ,𝑾𝟐 ,𝒃 =
1

2𝑁
∑ ‖𝑦𝑖 − �̂�𝑖‖

2𝑁
𝑖=1 . Minimising this loss with respect to 

the weights, 𝑾𝟏, 𝑾𝟐, and 𝒃 would yield a model that perhaps generalises appropriately 

to test data (evaluation data that is not seen). However, one frequent problem with neural 

networks is the issue of overfitting on seen training data. To ameliorate this issue, the 

technique of regularisation is implemented. Regularisation in the form of weight decay is 
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added to the loss function on each of the parametrised weights. The full loss function is 

the following function: 

 𝓛(𝑾𝟏, 𝑾𝟐, 𝒃) = 𝑬(𝑿, 𝒀)𝑾𝟏 ,𝑾𝟐,𝒃 + 𝝀𝟏‖𝑾𝟏‖ + 𝝀𝟐‖𝑾𝟐‖ + 𝝀𝟑‖𝒃‖ (2-3) 

With this function, one can see how the loss function is simply an addition of loss terms. 

If the neural network gets larger in number of layers and thus, weights, the loss can easily 

scale allowing more expressive modelling of the data.  

2.5.2 Recurrent neural networks 

 Recurrent neural networks (RNN) are important methods to handle sequential 

data82. The model can take as input, sequential data, such as language or time-series data, 

and output both sequential outputs (e.g., next word prediction) and static outputs (e.g., 

text sentiment classification)83,84. The RNN model, at every time step, can take as input a 

vector of input. At the time step, an RNN cell processes the input in addition to the output 

from previous time steps. RNNs have demonstrated superior performance on a host of 

tasks. There have been many expansions and variations of the original conception of the 

RNN model including the Long Short-Term Memory (LSTM) and the more lightweight, 

Gated Recurrent Unit (GRU) networks82,85. With additions to the architecture such as 

provisioning of attention mechanisms, the model has demonstrated impressive predictive 

performance across many tasks including language translation83. In a way, a 

generalisation of the recurrent neural network with attention is the Transformer neural 

network. Instead of sequential processing of the sequential data, the Transformer model 

processes all inputs of the sequence at once and instead exclusively utilises self-attention 

to attend to all elements at once86.  
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2.5.3 Convolutional neural networks 

 Convolutional neural networks (CNN) are special architectures of the neural 

network family of models that can attend to image processing tasks better than simpler 

statistical and neural network models themselves81,87. The CNN family of models uses 

convolution layers, a unique layer of linear transformations that attends to patches of a 

given image. In the layer, a kernel, a weight matrix that is smaller than the image size 

usually, attends to each image position one at a time and maps a small group of pixels to 

an output space. Following the linear map, a pooling layer maps the output space to a 

smaller output space.  In this way, spatial context is preserved in the linear map. 

Furthermore, the kernel is a shared parameter that is used across the entire image, so the 

parametrised variables are less and lighter than fully connected neural networks. 

2.5.4 Interpretability of neural network models 

 Unlike neural networks themselves, there is much contention about a 

mathematically valid definition of interpretability. Biran and Cotton define 

interpretability as: “the degree to which an observer can understand the cause of a 

decision”88. While more of a heuristic measure as opposed to a formal mathematical one, 

this definition is more or less accepted in the statistical and machine learning community. 

Perhaps proportionally, the “more” interpretable a model is, the “more” an observer or 

scientist can understand the pathways of model decision making. Ease of understanding 

is also important; if tools are developed to more efficiently and simply communicate the 

decision to the observer, this is also an important facet of a highly interpretable model. In 

this thesis, explainability and interpretability is used interchangeably. Although it is noted 

that some specialists in the field consider the two as different facets of models. 

 Neural networks are mathematically precise models however, the sequence of 

weights and non-linear activations makes it hard to understand the decisions. Rocher calls 
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this the “lack of transparency” in deep learning modelling89. In sensitive areas of research 

such as medicine, there is a proper need for models that are trustworthy. Without trust in 

these solutions, these models cannot be implemented in clinical practice. Thus, many 

secondary methods have been created to interpret these “black box” models. 

 Some of the methods offer more interpretability than others and some are more 

appropriate for certain types of networks (e.g., feed forward as opposed to recurrent). One 

of the fundamental ways is to directly inspect the weights. However, with many neural 

network models having millions if not billions of parametrized weights, the complexity 

of inspecting the neural network is replaced with another complex task: distilling the 

results of the direct weight analyses in a palatable way. With weight-sharing models such 

as CNN, this is easier, but only the first layer can be easily understood. With multiple 

non-linearities and pooling operations in subsequent layers, the deeper features extracted 

are not made transparent; ultimately, the issue is still a lack of transparency. There are 

many activation methods as well such as DeepLift that present the output of the neuron 

in a particular layer for a given input image/matrix90. Variations involving the gradient 

have been proposed as well; however, these are mostly used in the image setting with 

CNNs90–92. For sequence-based models such as RNNs, attention has helped interpret the 

decision making for these difficult models. However, there are concerns that attention is 

actually not a good measure of the processes of a neural network; rather attention is a 

noisy predictor of output at best, and is not completely trustable indicator of signal93. 
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3 DATA: CLINICAL PRACTICE 

RESEARCH DATALINK 

 In this section, the EHR dataset, the CPRD database will be introduced. First, 

background information concerning the CPRD dataset will be presented. Second, the 

organisation of the dataset will be presented. Third, given the organisation of the database, 

the nuances of the linkages to other datasets will be presented. Fourth, the degree of 

validity and completeness of the records will be discussed. Fifth, the ethical approval 

required for undertaking research will be summarised and presented. Lastly, the data cut 

and high-level details of the dataset used in these doctoral research projects will be 

presented. 

3.1 Background 

 The CPRD organisation is a service intended to support epidemiology and 

clinical studies that utilise EHR for research purposes. The CPRD is partly sponsored by 

the National Institute for Health Research, and collects anonymised patient health data 

from a network of primary care practices around the UK54. In addition, the CPRD 

database offers provisions to link to other healthcare datasets in the UK54.  

 Historically, the CPRD database has progressed from a general practice 

information recording system to a database that collects and organises a full range of 
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healthcare variables and in addition, allows linkage to various other healthcare datasets. 

An organisation that has been conducting data collection for over 30 years, the database 

has evolved into one of the most trusted and utilised primary care databases in the world54. 

 As of November 2021, the CPRD database holds patient data from over 60 

million individuals registered at over 2,000 practices, of whom, approximately 16 million 

are currently registered. Furthermore, over 25% of patients have over 20 years of follow-

up allowing for high-quality study of long-term, chronic conditions54,94. The database 

contains coded EHR that captures information on demographic characteristics, diagnoses, 

medications, vaccinations, laboratory tests, and referrals to secondary hospital and 

specialist care. All forms of data are prospectively collected are derived from routine 

clinical care. Hence, observational studies utilising such data are free of biases such as 

recall bias and non-response bias, both forms of biases prevalent in traditional 

observational studies95. The dataset used in this doctoral research is the “CPRD-GOLD” 

database henceforth referred to as CPRD. Specifically, the “GOLD” version of this 

dataset uses the Vision EHR software for recording and organization of the records94.  

 CPRD has been used as data source in over 3,000 publications including several 

epidemiological observational studies investigating conditions such as cardiovascular 

diseases, blood pressure, diabetes43,96,97. Furthermore, more recent publications have 

investigated multimorbidity and blood pressure trajectories in UK patients98–100. In large 

part due to the data richness and linkage capabilities that CPRD offers, the database has 

been vital for observational research.  

3.2 Organization 

 CPRD, first and foremost, is a dataset that contains health variables collected 

during primary care visits. Multiple modalities (e.g., diagnosis, medications, 
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measurements) are offered by the dataset; however, the patient identification information 

that can assist in the de-anonymisation of the patient (e.g., patient name) is naturally 

excluded from the dataset. Linkage, furthermore is not guaranteed across the dataset. Only 

data from primary care practices that have agreed to allow patient-level linkage have the 

potential for linkage to secondary care, specialist care, and death registries datasets94.  

Figure 3-1: Clinical Practice Research Datalink (CPRD) organisation    

 

This is a figure of the organisation of the CPRD database and relevant linkages derived 

from Herrett et al5. 

 CPRD records are organised in a relational organisation; a hypothetical identifier 

(e.g., practice identifier) from one particular dataset has the potential to be linked to other 

datasets via the same identifier. An illustration of the linkage potential of CPRD is offered 

in Figure 3-1. In future chapters, the data processing for a particular investigation will 

offer more details into exact data modalities utilised. 

 In terms of representativeness of the CPRD data, the CPRD patient cohort used 

in this doctoral research has been demonstrated to be broadly representative of the UK 

population in terms of age, sex, region of birth, and body mass index101–103.  
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3.3 Linkage 

 The datasets offered in CPRD, as discussed, offers access to a host of health 

variables across multiple datasets providing a comprehensive view of health for a 

hypothetical patient. First and foremost, the CPRD primary care database offers the 

potential to link eligible patients (i.e., those patients from practices that have agreed to 

CPRD linkage) to hospital episode data (Hospital Episode Statistics (HES)). Second, the 

CPRD importantly offers linkage to mortality data from the national death registry (Office 

of National Statistics (ONS)) enabling downstream research to make use of time and 

cause of death information. These linkages are only available for patients in England as 

opposed to all UK patients; due to the differences in NHS data collection in Wales, 

Northern Ireland and Scotland, linkage across the UK is not offered. With the data 

provided by CPRD for this doctoral research, linkage was offered for approximately 75% 

of the English practices accounting for approximately 50% of patients in CPRD.  

 The HES dataset covers data on all hospital admission to English NHS hospitals 

including hospital, primary care, and mental health trusts. In this doctoral research, HES 

data considered primarily stems from the Admitted Patient Care (APC) relevant health 

records. HES APC data consist of the health variables recorded during a hospital 

admission, in which a hospital bed was required (including day cases). In the dataset used 

for this doctoral research, accident and emergency-based hospital encounters were not 

given and hence not considered in downstream research104,105. HES data notably provide 

information at the patient-level, with diagnoses recorded during hospital admissions. First 

diagnoses in a single hospital admission are considered as primary diagnoses. The coding 

dictionary used to identify the hospital admissions are the International Classification of 

Diseases and Health-Related Problems, 10th edition, henceforth referred to as ICD-10 

codes. Lastly, whilst procedures are theoretically provided as a part of the hospital 
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admission package, the data on hospital procedures were not provided for the data cut 

utilised for this doctoral research. 

 Secondly, the death registry data from ONS provides health information 

concerning mortality and relevant details concerning death of patients. The death registry 

provides data for all deaths in England and Wales. The dataset provides date of death, 

primary cause of death, and 15 secondary causes of death. The diagnostic coding system 

to identify cause of death is the ICD-10 system106. 

3.4 Data validity 

 Downstream research utilising EHR is predicated upon the fact the data analysed 

is valid and provides some minimal assurance of completeness and quality. To meet the 

demands of high-quality research, the CPRD organisation has taken efforts to ensure that 

the data provisioned meets high standards for downstream research.  

 Various contributors of data to the CPRD database are required to meet criteria 

for data submission. Primary care practices contributing to CPRD data are required to (1) 

record episode of illness or new occurrence of symptom or (2) all notable morbidity 

encounters (e.g., notable clinical contacts, diagnoses, abnormal laboratory test outputs, 

referrals to secondary care)107. In the case of diagnoses specifically, diagnoses must be 

manually recorded in the computers provided implying incompleteness and accidental 

errors in coding/phenotyping. Naturally, in terms of recording errors, there might be 

errors in diagnoses itself that may be recorded107.  

 Therapy data points in CPRD is directly an output of administrative recording 

of the prescription in NHS computers. Specifically, minimal effort is required on the side 

of the clinical care practitioner; once the prescription has been initially noted, the dosage, 

renewals, and other information is automatically inputted. Ultimately, this implies that 
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the prescription recordings in CPRD are quite complete save medications taken over the 

counter or those prescribed in secondary care practices.  

 In terms of methods to validate quality of a particular record, the CPRD 

organisation conducts a variety of checks to validate the data points and make sure that 

the records provided are “up to standard” (UTS). The UTS checks are an assessment of 

individual patient data (e.g., checks of age, sex, registration, etc) in addition to 

completeness checks at the population level. As an example of the latter form of checking, 

the CPRD organisation ensures that a certain percentage of deaths are recorded at the least 

thereby ensuring a minimal measure of completeness107. Additionally, for contributing 

practices, all data points provided may not be considered as UTS; specifically, time 

periods, in which data points remains UTS and high-quality are offered by the evaluation 

services provided by the CPRD organisation. At the level of individual records, the 

records are labelled as “acceptable” or unacceptable as a function of an algorithm that 

excludes patients (and thus records) based on algorithmically determined suspicious 

recording patterns (e.g., discontinued follow-up, unknown general practice registration 

date)54. The dataset used in this doctoral research has exclusively been limited to records 

that have met quality standard checks; records that fall within UTS time periods provided 

and those, which are given the “acceptable” label.  

3.5 Ethical approval for research 

 For this doctoral research, scientific approval was given by the CPRD 

Independent Scientific Advisory Committee (ISAC). The protocol number is 16_049R. 

The CPRD organisation provides anonymised data for research purposes under approval 

given the National Research Ethics Service Committee. Other than the approval by the 

CPRD ISAC, no other approval was sought or required for this doctoral research94. 
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 Whilst conducting research, safeguards have been taken to ensure that the CPRD 

data was handled with care. Data storage and processing occurred on secure computing 

environments – namely, servers on the university network and university provided 

personal computing devices that are provisioned with data encryption and password 

protection. As stated in the ISAC protocol, data in this doctoral research were exclusively 

utilised for the purpose of research. 

3.6 Data used in doctoral research 

 In this dissertation, the CPRD cut used for analyses covers records from January 

1 1985 to September 30 2015. This data cut contains primary care longitudinal records 

from a network of 674 general practices (GP) in the UK, linked to secondary care APC 

HES data and covers approximately 7% of the UK population. Furthermore, the data cut 

provides linkage to mortality records from the ONS providing causes and date of death.  
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4 MODEL DEVELOPMENT AND 

RISK PREDICTION  

4.1 Introduction: From inference to causal inference 

 Conventionally, when using adjusted statistical models for association studies, 

model fitting in some form is conducted. For example, with the regression modelling 

approach, the outcome variable is regressed on a host of adjustment variables in addition 

to the exposure variable of interest. Specifically, the fit of the model is tested, and the 

study of the exposure variable does not proceed without ensuring adequate model fit. If 

the fit and generally speaking, predictive accuracy, is acceptable, analysis of the direction 

and strength of the association between the exposure and outcome is conducted. 

 In the same vein, the modelling paradigm for statistical models is extended to 

the deep learning framework of modelling. By testing proposed deep learning 

architectures in risk prediction experiments, the model is vetted for fit and predictive 

accuracy prior to exploring the potential of the model for causal inference and association 

analyses.  

 To this end, in these following sections, the various risk prediction investigations 

conducted for ascertaining sufficient predictive accuracy (i.e., the first objective – see 

section 1.2) will be presented. On the path to developing deep learning models for 
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observational causal inference utilising rich EHR, first, I present development of deep 

learning models that can appropriately handle multimodal, longitudinal records and 

capture important features in EHR shown via risk prediction investigations. Specifically, 

in section 0, I present development of the model, BEHRT, for handling multimodal EHR. 

Furthermore, I present how the model is utilised for prediction of subsequent occurrence 

of diseases and compared to benchmark deep learning models. Second in section 4.3, I 

present how the model was utilised for incident HF risk prediction. Investigations on these 

two tasks are conducted in order to ascertain the predictive utility (i.e., inference 

capability) of the proposed architecture prior to conducting causal inference downstream.  

 The following sections are published works: “BEHRT: Transformer for 

Electronic Health Records” in Scientific Reports (doi.org/10.1038/s41598-020-62922-y) 

and “An Explainable Transformer-Based Deep Learning Model for the Prediction of 

Incident Heart Failure” in Journal of Biomedical and Health Informatics (JBHI) 

(doi.org/10.1109/JBHI.2022.3148820). These publications are products of work by 

multiple authors. As a co-first author, for both publications, my role consisted in 

designing the study, conducting literature review, processing data, conducting 

statistical/deep learning analyses, and writing the first draft of the manuscripts. Material 

from the publications (including figures, tables, and text) have been amended for 

presentation in the following sections. 
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4.2 Deep learning modelling for electronic health records: model 

development and subsequent disease prediction 

4.2.1 Introduction 

 Prognostication of future disease is key for preventative care. While simpler 

models indeed show that, for example, CVD risk is elevated generally in the population 

in the presence of some select risk factors (e.g., diabetes), the end goal is to create models 

that predict accurately in a personalised fashion. While the means to conduct such 

nuanced prediction requires further thought and research, the ultimate aim is to improve 

preventative medicine with precision and nuance108.  

 Deep learning modelling has made some initial progress in cardiovascular 

medicine, radiology, and other subfields of medicine. For example, recent research has 

developed and validated high performing deep learning models for the prediction of atrial 

fibrillation utilising electrocardiograph data109. In the area of general cardiovascular 

disease research too, recent research has demonstrated that deep learning can perform 

cardiovascular disease-related prediction quite well utilising photographs of the retinal 

fundus110. In terms of understanding trends in clinical data, a study by Liu et al 

demonstrated how deep learning can predict paediatric “no-shows,” or scheduled but 

unattended appointments111.  

 With respect to accessibility of EHR data specifically, adoption of EHR has 

increased over the past several years. EHR administrative databases are now capturing 

millions of patient lives with recordings of health variables spanning over many decades. 

Furthermore, with linkage to multiple other healthcare databases, researchers using EHR 

data can get a comprehensive view of the medical health timeline of a hypothetical 
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patient. With this, large-scale EHR is a rich source of untapped research potential that is 

fertile grounds for interdisciplinary research concerning deep learning and health.  

 In traditional EHR data research, including ones using conventional machine 

learning techniques (e.g., tree-based regression methods), health for an individual is 

represented as input predictors. These predictors can be normalised and transformed and 

represented as a vector for each individual. Of course, as previously discussed, many a 

time, conventional predictor selection is predicated upon experts selecting some subset 

of important variables to be considered for modelling. On the other hand, recent deep 

learning approaches capture useful representations of baseline health using raw or 

minimally processed health variables. 

 Due to this reason, deep learning models have found initial success in modelling 

of EHR data as well. For example, Liang et al demonstrated that deep neural network 

models can outperform other conventional machine learning solutions (i.e., support 

vector machines, decision trees) on a number of different EHR related tasks and 

datasets112. In more recent research, Tran et al proposed the use of Restricted Boltzmann 

Machines for EHR modelling for suicide prediction outperforming models that utilised 

expert curation of predictors113. While these works applying deep learning on EHR failed 

to take into account the subtleties of EHR data (e.g., ordering of events, irregularity of 

the time interval), Nguyen et al developed a deep convolutional neural network model, 

Deepr, to address this limitation of past methods. Deepr utilised different concepts 

including diagnoses and medications to predict hospital readmission. In addition, the 

model sensitively accounted for time between visit by adding a token that represents the 

time difference114. Deepr was developed for the Australian EHR data setting; the model 

was developed, trained, and internally validated on data from a private Australian hospital 

offering diagnosis and procedure records for modelling114. Similarly, Choi et al, utilised 
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a recurrent neural network, Doctor AI, for predicting of health outcomes115. Unique to 

both Deepr and Doctor AI modelling, high-dimensional embeddings were used to 

represent clinical concepts114,115. 

 In parallel, in natural language processing research, there was a landmark 

development in methods to process sequential data leading to the “attention” class of 

methods83. In the case of long sequences, a frequent problem manifested with RNN 

modelling: the issue of the fixed-length vector information bottleneck. As sequences get 

longer, more information must be represented by a summarisation vector that takes into 

account data in the long sequences. Alternatively, for both long and short sequences, the 

dimensionality of the downstream high-dimensional vector representation of health 

remains constant implying degradation in information retention in these vectors. The 

attention mechanism was developed to take into account only the relevant parts of data in 

the long sequence; relevance, naturally, is a function of the task at hand83. Features 

considered relevant for the task of language translation might be irrelevant for language 

sentiment classification. Incorporating this attention mechanism in traditional RNN 

architectures, such as LSTM yielded great improvements in predictive performance over 

a diverse set of tasks83.  

 Given the success of the attention mechanism is language-based tasks, Choi et 

al proposed a LSTM model called RETAIN utilising reverse-time attention to focus on 

past notable visits for incident heart failure prediction116. RETAIN and more complex 

varieties such as RETAIN-EX successfully outperformed benchmark deep learning 

models and demonstrated the power of incorporating minimally processed EHR 

data116,117. RETAIN and RETAIN-EX models were developed on American and Korean 

datasets respectively. RETAIN was developed on a private Sutter Health dataset, 

consisting of patients between 50 and 80 years of age chosen for a HF prediction study116. 
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The Sutter Health dataset offered access to demographic information (e.g., sex, ethnicity) 

in addition to disease, medication, and procedure records. On the other hand, the 

RETAIN-EX model was developed on the Health Insurance Review and Assessment 

Service Dataset, the national insurance services dataset for Korea118. This dataset 

consisted of 1.4 million Korean patients and provided demographic information in 

addition to disease, medication, interventional data records. 

 As the attention mechanism found success across language and EHR-based 

prediction tasks in recurrent neural network models, the same mechanism was generalised 

into a model that solely utilises attention without recurrent neural networks: the 

Transformer model. The Transformer demonstrated superior performance on several 

language translation tasks86. Furthermore, the encoder module of the Transformer was 

developed into a stand-alone model called Bidirectional Encoder Representations from 

Transformers for language classification tasks119. 

4.2.2 Aims 

 In this work, I aim to develop a Transformer-based model for EHR data: 

BEHRT, named after Bidirectional Encoder Representations from Transformers (BERT), 

from which the model derives inspiration and more concretely, a large part of its neural 

network architecture. I aim to evaluate this model on a host of EHR-related prediction 

tasks and compare predictive performance to that of benchmark models. In addition, I 

aim to investigate elements of the model’s architecture, such as the embedding structure, 

for clinical relevance.  
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4.2.3 Methods 

4.2.3.1 Data 

 In this study, we used the described cut of CPRD (see section 3.6) covering 

records from January 1 1985 to September 30 2015 5. Initially with access to data from 8 

million patients, in this study, we only considered data from GP that allowed for data 

linkage with HES in order to only consider patients with documented comprehensive 

medical health history. Furthermore, we limited the analyses to records that have met the 

quality checks that CPRD conducts. Additionally, to only keep those patients that have 

enough records for prediction, we kept those patients with at least 5 visits in the medical 

history – specifically, a visit counting as an encounter with GP or HES staff, in which 

diagnoses for conditions were recorded. 

 In the CPRD dataset, the disease coding system for GP diagnosis records are 

different than that for the APC HES linked diagnosis records. While the diseases in GP 

records are classified using Read codes, the diseases recorded in the HES dataset is 

encoded in 10th Revision of the International Statistical Classification of Diseases and 

Related Health Problems (1CD-10)120,121. ICD-10 system forms a clear hierarchical 

formulation of categorizing diseases; diseases systems form chapter while disease groups 

form sections in individual disease chapters and so on. In this way, while there exist 22 

chapter-level ICD-10 codes, at the sub-chapter level, the coding system yields 

approximately 1,900 codes121.  

 Since both these coding systems are heterogenous from one another, for machine 

readability, a harmonised coding system would be more appropriate. To this end, we used 

the Caliber phenotyping system to map codes from Read system and ICD-10 system to 

301 Caliber disease codes122. In this way we denote 𝐷 = {𝑑𝑖}𝑖=1
𝐺  where 𝑑𝑖 denotes the ith 

disease code. Given a patient 𝑝 ∈ {1, 2, … , 𝑃}, the medical history is made up of various 
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visits to the GP and hospital. Each visit contains encounters such as diagnosis, 

medications, and laboratory tests. In this study, however, only diagnoses records were 

considered.  

Figure 4-1: Medical history of a hypothetical patient    

 

The raw medical history of a hypothetical patient visualised. This patient’s medical 

history consists of 8 total visits. In each of the visits, the records are diagnoses, 

medications, and measurements. For this work, we only take into account the diagnosis 

and the age. At the bottom of the image, the disease and age sequences are demonstrated 

for clarity. Some visits in the medical history will not be represented in this investigation 

due to the lack of diagnoses in those particular visits (purple boxes in the lower part of 

the figure). This figure was adapted from Li et al123.  

 A hypothetical patient’s EHR is denoted as 𝑉𝑝 = {𝑣𝑝
1 , 𝑣𝑝

2 , 𝑣𝑝
3, … , 𝑣𝑝

𝑛𝑝}, for which 

the value, 𝑛𝑝 is the number of visits in the medical history of the patient p. 𝑣𝑝
𝑗
 is the 

collection of diagnoses in a particular visit – in this case, the jth visit. Since there may be 

more than one diagnosis in this particular visit, we generalise the notation of a visit to 

contain a list of 𝑚𝑝
𝑗

 diagnoses (i.e., can be written out as 𝑣𝑝
𝑗

= {𝑑1, … , 𝑑
𝑚𝑝

𝑗 } ). 

Additionally, since sequential data are unsuitable for proposed deep learning architecture, 

BEHRT, we (1) order the data sequentially as written out in notation above, (2) introduce 
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a new token to separate the visits (“SEP”), and (3) introduce a new token to denote a 

classification token or alternatively a token to signal the start of the medical history 

(“CLS”)119. Ultimately, the sequence of medical history is amended to become: 𝑉𝑝 =

{𝐶𝐿𝑆, 𝑣𝑝
1 , 𝑆𝐸𝑃, 𝑣𝑝

2, 𝑆𝐸𝑃, … , 𝑣𝑝

𝑛𝑝 , 𝑆𝐸𝑃}. Henceforth, the medical history of a hypothetical 

patient will be represented in this way (shown in Figure 4-1). 

4.2.3.2 Model development 

 In the conventional Transformer model, language is modelled at the word, 

sentence, and the paragraph level86. Words are encoded as individual tokens represented 

by high-dimensional embeddings, sentences are collections of tokens organised using 

sequential cues given to the model, and paragraphs are ordered sequences of sentences 

with separation tokens indicating the end of one sentence and the beginning of another.  

 While the Transformer model addresses some of the challenges posed by 

sequential data, the modelling of EHR specifically needs to account for four necessities 

of modelling: (1) necessity of capturing complex, non-linear interactions between 

encounters/visits, (2) necessity of representing heterogeneous encounters in visits of 

various cardinalities, (3) necessity of modelling irregularity of time between visits, and 

(4) necessity of modelling associations across time. 
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Figure 4-2: BEHRT embedding structure and overall architecture 

 

Utilising the hypothetical simulated data in Figure 4-1, the figure illustrates the BEHRT 

model handling multimodal EHR. (a) demonstrates how BEHRT handles medical history 

sequence of variables. With disease, age, position, and visit segment embeddings, the 

model represents each encounter with rich attributions of relative time and visit number. 

The summation of these individual embeddings serves as a rich, time-aware way of 

embedding encounters. (b) presents the BEHRT architecture and the Transformer 

architecture in general. The summed embeddings are inputted and stacked layers of 

multi-head attention extract associations. Masked Language Modelling (MLM) is used 

for pre-training the model weights and the subsequent disease prediction task is the main 

supervised prediction task. This figure was adapted from Li et al123. 

 BEHRT, with modification of the original Transformer chassis can directly 

account for these four requirements. First off, BEHRT is a Transformer derivation 

implying that certain elements of the model are defined a priori. The BEHRT model 

makes use of the native elements of Transformer model: the contextualised embedding 

layer, multi-head self-attention, and stacked Transformer encoder layers86.  

 With contextualised embedding layers, the richness of raw EHR can be flexibly 

handled (Figure 4-2). Embeddings simply are high-dimensional vectors that can be 

trained with respect to a prediction task. The embedding layer consists of four individual 

embedding structures: the encounter (i.e., in this case, disease embedding), the position, 

the age, and the visit segment embeddings. Diseases are represented by the encounter 
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embeddings layer; the Caliber codes as described earlier, is mapped to high-dimensional 

vectors. In this way, the multiple disease codes can be represented by these vectors 

stacked on top of one another to form medical history. The same disease in medical 

history perhaps repeated is mapped to the same vector. The position encoding is directly 

borrowed from the original Transformer architecture; in this case, this encoding is a pre-

determined function that maps visit number (position) to a vector86. The pre-defined 

function (given by Vaswani et al) was used in order to mitigate issues in imbalanced 

learning of variable sequence lengths in EHR data. In recurrent networks, the position 

may be implicitly given to the model via the sequential ordering of the data points. 

Transformers, on the other hand, do not use a recurrent architecture86. Thus, sequential 

ordering must be given to the model in an alternate way and positional encodings have 

demonstrated utility in informing sequence to the model (Figure 4-2). Age embedding is 

an embedding formulation created exclusively in order to handle the age component 

within EHR data86. Age at the time of the record of the encounter is mapped to a trainable 

high-dimensional vector. Much like position, this is done for every encounter (Figure 

4-2). While language data do not have to handle this problem since age is not a construct 

native to language, age must be sensitively handled in EHR data since age is an important 

risk factor for many conditions. Lastly, the visit segment, denoted as either A or B, are 

additional symbolic information provided to the model to denote the separation between 

visits (Figure 4-2).  

 In total, the four embeddings, encounter, position, age, and visit segment 

embeddings form a sequence by themselves of the same cardinality for each patient 

(Figure 4-2). For “SEP” tokens (represented as encounter embeddings), age, visit 

segment, and position embeddings are supplemented from previous visit. For “CLS”, the 

other three embeddings take the values of the same embeddings from the first encounter 
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of the first visit. There is no prescribed order for the many diagnoses within a particular 

visit. Since position, age, visit segment is the same across all the diagnoses within a visit, 

the ordering of the individual diagnoses within a visit is irrelevant. Hence, an issue in 

some RNN architectures is alleviated; the sequence of individual diseases does not have 

any effect on the predictive process, but rather, the annotations of position, age, and visit 

segment of the visits are important82. This makes the BEHRT model order-invariant for 

the encounters within a visit. The total embedding for a particular encounter is the sum 

of the embeddings of the disease, the age, the position, and the visit segment.  

 Next, another important component of the BEHRT model is the multi-head self-

attention module86. This module is a generalised attention mechanism which conducts 

multiple attention mechanism operations in parallel with the use of “heads”86. The 

independent outputs of each of the heads are concatenated and transformed into the 

required dimensionality. With multiple heads, each head can conduct a particular niche 

form of attention (e.g., attention on short-term dependencies as opposed to longer term or 

vice-versa).  

 Lastly, in addition to the embeddings and multi-head self-attention innovations 

for sequential learning, the Transformer architecture has a flexibly modular design86. 

Specifically, after the initial transformation using the embedding layer, BEHRT can stack 

multi-head self-attention layers to create a deeper model. With more layers, the network 

can naturally extract more complex longitudinal associations hidden in rich EHR. Thus, 

the modular design implemented on a slew of graphical processing units (GPUs) allows 

for high-throughput, deep network modelling of EHR.  

 Overall, BEHRT has many advantages with respect to previous approaches to 

model EHR. Firstly, we use feed-forward-like neural network models instead of the 

sequential variety thereby handling EHR encounters across time in parallel with one 
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another as opposed to sequentially. In addition to modelling advantages of the multi-head 

self-attention, the run time for training is cut down. Furthermore, RNN’s suffer from the 

issue of exploding/vanishing gradient – meaning at some weights the gradient either 

explodes meaning the model weight updates involve large updates on the weights and 

training becomes unstable or the gradient vanishes, implying that the weights are failing 

to be updated efficiently, implying that the model has effectively stopped training124. Both 

issues hurt the models’ ability to train effectively and thus hurt predictive performance. 

Convolutional neural networks, alternatively, suffer from issues in predictive power due 

to limitations in the receptive field. BEHRT’s structure addresses both problems 

methodologically. First, often, the recurrent structure is one of the root causes of gradient-

based issues, and BEHRT adapts the attention mechanism to function effectively without 

the RNN framework. Second, the limitations of a narrow receptive field are circumvented 

by multi-head self-attention attending to the entire sequence at once – effectively 

implying a receptive field that encompasses the length of the medical history. In sum, the 

model theoretically addresses many limitations of previous forms of deep learning 

models. 

4.2.3.3 Pre-training 

 In order to allow the weights to capture latent longitudinal associations in the 

data (in both forward and reverse time fashion), the model was pre-trained on a 

unsupervised learning task. The task, masked language modelling (MLM) was derived 

and amended from the original BERT paper119. In gist, the model weights are first 

initialised using random initialisation. Then, the model is fed input of disease encounters 

and accompanying, age, position, and visit segment information. However, the disease 

encounters are not given as per the original data; instead, only 86.5% of the disease 

encounters are given as original encounters, 12% of the encounters are masked and 
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replaced with a “MASK” token, and the remaining 1.5% of the encounters are replaced 

with randomly-chosen diseases119. With this input, the model, BEHRT, is asked to predict 

the masked diseases correctly. Since the model is formulated as an end-to-end model, 

BEHRT predicts the masked disease and the error in prediction is calculated across a 

mini-batch of patient medical histories and gradients are computed with backpropagation 

and model weights are updated. Furthermore, with more modalities such as medications 

or laboratory measurements, this process can easily adapt to different vocabularies for 

encounters. Simply, the disease, medication, or test will be masked, and the model will 

be tasked with prediction of this generic health encounter. The classifier for the MLM 

task takes the output encounter states, shown as 𝑇1 … 𝑇𝑁 in Figure 4-2. 

 In this task, the BEHRT model does not actually know which diseases are 

masked, so a contextual representation of all diseases is kept in latent space.  Furthermore, 

the deviation from ground truth records only makes up 13.5%, so the model still learns 

from EHR data that has undergone minimal corruption due to masking and relabelling. 

Interestingly, of the 13.5% of corruption, the 1.5% due to the relabelling of disease 

alternatively acts as noise injection, a common method to build autoencoder models with 

better generalisation properties125. Alternatively, another interpretation of the 13.5% 

manipulation of encounter data is that the model is being trained using data augmentation 

strategies via masking and noise injection. Data augmentation strategies are also useful 

for improved generalisation and robustness of the model126.  

4.2.3.4 Subsequent disease prediction 

 The BEHRT model, following pre-training was trained and evaluated on three 

subsequent disease prediction tasks: (T1) prediction of disease in the next visit, (T2) 

prediction of diseases in the next 6 months, and (T3) prediction of diseases in the next 12 

months.  
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 For data processing, the patients in our dataset following initial CPRD data 

cleaning and filtering for patients with adequate number of visits, were split into train and 

test (80% and 20% of the data respectively) sets.  

 The examples in terms of input and output were defined in the following way for 

T1. First, randomly a visit index was chosen, j (such that 3 < 𝑗 < 𝑛𝑝) for each patient. 

And then, with this index, j, the input derived was 𝑥𝑝 = {𝑣𝑝
1, … , 𝑣𝑝

𝑗
} and the output was 

𝑦𝑝 = 𝑤𝑗+1, with 𝑤𝑗+1 being a multi-hot vector with cardinality G, with indicators of 1 

denoting that indeed, the disease has occurred in the next visit. In this setup, for each task, 

each patient can maximally only contribute to one input and output pair.  

 For T2 and T3, the input and output have slightly amended processing steps. For 

patients without 6 or 12 months of history respectively for the two tasks after 𝑣𝑝
4  (i.e., 

those without 6/12 months of history following the fourth visit) will be excluded from the 

experiments. Additionally, the j is chosen randomly for these patients from (3, 𝑛∗), for 

which the 𝑛∗ denotes the greatest visit index such that after this visit there exists at least 

6 or 12 months of records for T2 and T3 respectively. Lastly, we clearly identify the 

outputs for T2 and T3 as 𝑦𝑝 = 𝑤6𝑚 and 𝑦𝑝 = 𝑤12𝑚 respectively. These two vectors are 

again similar multi-hot vectors with cardinality as defined above for T1. 

 As a note, the BEHRT model is by design, “forced” to predict diseases in the 

patient’s medical history, and only patients with at least 1 diagnosis in the next visit, next 

6 months, and next 12 months for T1, T2, and T3 respectively will be included in the 

dataset as eligible patients. 

 These inputs (defined for each task) are inputted into BEHRT as medical history 

with appropriate age, position, and visit segment annotations. The output multi-hot 

prediction is created using a pooling layer implemented on the output state for the “CLS” 
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encounter token (see Figure 4-2). In this way the model is trained and tested on each of 

the tasks, with the predictions denoted as 𝑦𝑝
∗, in which the ith entry of the prediction 

corresponds to the prediction of the patient having disease, 𝑑𝑖. 

 For evaluating the predictive performance, two metrics were used: area under 

the receiver operator characteristics (AUROC) and the AUPRC. AUPRC is a weighted 

mean of the precision and recall as a function of threshold. The AUROC and AUPRC 

was calculated for each patient first, and then averaged over all patients for a summary 

statistic.  

 In order to evaluate the proposed model’s predictive performance with respect 

to known benchmarks in deep learning, we also implemented the Deepr and RETAIN 

model for model comparison114,116. While the implementation of Deepr was identical to 

the one used in the original publication, to boost predictive power, we amended RETAIN 

to include sex as a predictor, encoded timing into the visit level data, and additionally 

included bidirectionality on the foundational RNN framework127. These suggestions were 

offered by the original authors in the open-source code repository containing code 

material from the original publication127. 

 For all three tasks, all three models (BEHRT, Deepr, and RETAIN) were 

evaluated on identical training and testing data (i.e., total of nine implementations). 

Naturally, while modifications of raw EHR (e.g., “SEP” and “CLS” inclusion) were 

conducted for inputting data into BEHRT, appropriate modifications of raw EHR were 

made for inputting data into Deepr and RETAIN. 

 In order to further investigate the worth of the BEHRT predictive performance, 

two secondary analyses were conducted: (1) we investigated if BEHRT can capture sex 

implicitly (since sex is not explicitly modelled by BEHRT embeddings), and if the 
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knowledge captured is useful for downstream prediction, and (2) we investigated the 

model’s performance on the prediction of incidence of diseases (i.e., predicting diseases 

that had not previously occurred in the medical history prior to prediction period). 

4.2.3.5 Embedding analyses 

 Furthermore, we investigated the embeddings after pre-training to investigate 

disease in a qualitative and quantitative manner. While clinical members of our team 

probed the clinical validity of the clusters derived in embedding latent space in a 

qualitative manner, a quantitative investigation was additionally conducted in-house 

within the Deep Medicine research group. For each disease that occurred in at least 1% 

of the population (87 Caliber phenotype diseases), the top 10 neighbouring diseases were 

first captured (using cosine similarity measures). We compared these derived 

neighbourhoods to 10 diseases provided as “neighbouring” conditions by a clinical 

researcher in a quantitative analysis. Specifically, for a given disease, as a fraction, we 

quantified how many of the 10 neighbouring diseases found by the model were found by 

the clinical researcher (i.e., 
𝑥

10
). We calculated the mean of this measure calculated for all 

87 diseases in order to present on average, the overlap between model-derived sets of 10 

closest neighbours for diseases and those found by the clinical researcher.  

4.2.3.6 Implementation 

 All data processing and modelling was conducted using the language, Python. 

For deep learning analyses, the NVIDIA Titan Xp Graphical Processing Units (GPU) 

were utilised for pre-training, training, and testing of the BEHRT model. Furthermore, 

we used Bayesian optimisation methods to find the optimal hyperparameters at the MLM 

pre-training stage128. The main hyperparameters investigated were number of layers, 

number of attention heads, hidden size, and intermediate size. These hyperparameters are 

also the same hyperparameters in the original, BERT architecture as well. Naturally, 
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optimal hyperparameters captured in this stage were used in the three subsequent disease 

prediction tasks. Also, for RETAIN and Deepr, Bayesian optimisation was used to find 

the optimal hyperparameters for the models128. The hyperparameter details can be found 

in Supplementary Table S1, Table S2, and Table S3. 

4.2.4 Results 

4.2.4.1 Population characteristics 

Figure 4-3: Data processing flowchart 

 

This is the flowchart for data processing on Clinical Practice Research Datalink (CPRD) 

data. Linkage is conducted between general practice and Hospital Episode Statistics 

dataset (HES). This figure was adapted from Li et al123. 

 After data-processing, 1.6 million individuals were eligible for downstream 

MLM pre-training. For risk prediction analyses, after filtering processes on 1.6 million 

patients to ensure sufficient number of visits for T1, T2, and T3, we had 699, 391, and 

342 thousand patients respectively (Figure 4-3).  Full patient characteristics for each of 

the three tasks are shown in Table 4-1. 
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Table 4-1: Characteristics for patients eligible for subsequent disease prediction 

Characteristic   Next visit Next 6m Next 12m 

Gender   Male 41.80% 42.30% 41.70% 

   Female 58.20% 57.70% 58.30% 

Ethnicity   White 46.40% 48.30% 47.40% 

   Unknown 43.80% 44.00% 44.50% 

   Indian 0.40% 0.50% 0.50% 

   Other 0.30% 0.30% 0.30% 

   Pakistani 0.20% 0.30% 0.20% 

   BI Carib. 0.20% 0.30% 0.20% 

   other Asian 0.10% 0.10% 0.10% 

   BI Afric. 0.10% 0.10% 0.10% 

   Mixed 0.10% 0.10% 0.10% 

   Bangladeshi 0.08% 0.07% 0.07% 

   BI Other 0.07% 0.06% 0.06% 

   Chinese 0.06% 0.06% 0.05% 

Age Start   0.25 Quantile  45 46 46 

   0.5 Quantile  58 60 59 

   0.75 Quantile  70 71 70 

Age End   0.25 Quantile  56 58 58 

   0.5 Quantile  70 71 71 

   0.75 Quantile  81 82 82 

Unique Codes   0.25 Quantile  7 8 8 

   0.5 Quantile  9 10 11 

   0.75 Quantile  12 14 14 

Number of Visits   0.25 Quantile  10 14 14 

   0.5 Quantile  15 20 20 

   0.75 Quantile  24 30 30 

Age start and age end correspond to the age at first and last visit respectively. Table 

adapted from Li et al123. 

4.2.4.2 Risk prediction model comparison 

 The results from the risk prediction task can be seen in Table 4-2. Across the 

three tasks, we see that BEHRT clearly demonstrates superior predictive performance as 

compared to the benchmark model, RETAIN and Deepr on both metrics for evaluating 

performance (AUROC and AUPRC).  
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Table 4-2: Predictive performance of deep learning models for subsequent disease 

prediction 

Model   Next Visit (AUPRC|AUROC)   Next 6M (AUPRC|AUROC)   Next 12M (AUPRC|AUROC)   

BEHRT  0.462 | 0.954  0.525 | 0.958  0.506 | 0.955   

Deepr  0.360 | 0.942  0.393 | 0.943  0.393 | 0.943 

RETAIN  0.382 | 0.921  0.417 | 0.927  0.413 | 0.928 

Performance in terms of Area under receiver operator characteristic (AUROC) and Area 

under the precision-recall curve (AUPRC). Table adapted from Li et al123. 

 In addition to comparing AUROC and AUPRC on the population level, we also 

assessed BEHRT performance for each disease. For this analysis, we analyse disease by 

disease (i.e., for disease i, the ith entry on a prediction 𝑦𝑝
∗ is analysed) prediction under 

the second task (6-month prediction) and compare AUROC and AUPRC across diseases. 

The analysis is shown in form of a graph in Figure 4-4. We see that BEHRT can make 

predictions with high AUPRC for diseases such as epilepsy, prostate cancer, and 

depression. A full summary can be found in Supplementary Table S4. 

Figure 4-4: Predictive performance of BEHRT for prediction of individual diseases 

 

Receiver Operator Characteristic (ROC) score and Area under the precision-recall curve 

(AUPRC) for individual disease prediction for task 2, 6-month prediction. (A) is the 

complete figure. The right figures (B and C) are subset plots of A. This figure was adapted 

from Li et al123. 
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Furthermore, we investigated the model’s ability to capture sex accurately without being 

given the sex variable explicitly also conducted on the model trained for T2. The gender 

analyses investigated the predictions for sex-specific diseases; how many times did the 

BEHRT model predict that a female sex-specific disease happened to a male patient and 

vice-versa. The analysis (Supplementary Table S5) shows that, in general, BEHRT has 

correctly identified sex-specific diseases to the correct sex. In gist, those diseases that are 

female diseases are mostly being predicted in female patients, and in those diseases that 

are male sex-specific, in male patients. However, for male infertility, we see that some 

female patients have been predicted with this condition. For this condition, we 

investigated in our dataset and find that 365 male patients are diagnosed with this 

condition while 1,734 female patients are diagnosed with condition. Due to the sex-

agnostic Read codes (“K26y300”, “K26y400”, and others) mapped to both male and 

female infertility with the Caliber phenotyping algorithms. Other than these issues with 

“male” and “female” infertility, BEHRT demonstrated that the model can implicitly 

capture sex albeit not explicitly fed the variable as a predictor in modelling.  

 For the diseases that have occurred as incident diseases in the dataset, we have 

analysed the results as well (Table 4-3). The results were immaterially different in ranking 

of models than the analyses of predictive performance across T1, T2, and T3. In absolute 

terms, the AUROC and AUPRC of the models are much lower than those for subsequent 

disease prediction across all models.  
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Table 4-3: Predictive performance of deep learning models for incident disease 

prediction 

Model  Next Visit (AUPRC |AUROC) Next 6 M (AUPRC |AUROC) Next 12 M (AUPRC |AUROC) 

BEHRT 0.216|0.904 0.228|0.907 0.226|0.905 

Deepr 0.095|0.800 0.104|0.814 0.098|0.805 

RETAIN 0.108|0.836 0.115|0.845 0.109|0.836 

Performance in terms of Area under receiver operator characteristic (AUROC) and Area 

under the precision-recall curve (AUPRC) for diseases occurring for the first time. Table 

adapted from Li et al123. 

4.2.4.3 Embedding analyses 

 For the embedding analyses, we investigated the embeddings mapped into two-

dimensional space (via projection by t-distributed stochastic neighbour embedding) as 

shown in Figure 4-5. Generally, the clusters naturally formed by the embedding 

visualisation were in line with clinical knowledge; with that being said however, there are 

some disease clusters, due to issues in dimensionality reduction are presented visually as 

more counter-intuitive.  

 One interesting and reassuring pattern captured by BEHRT is that the sex-

specific diseases are stratified quite naturally. Female diseases (e.g., dysmenorrhea, 

endometriosis, and others) are quite distant from male ones (e.g., prostate cancer, erectile 

dysfunction, and other diseases). These patterns demonstrate that BEHRT embeddings 

might find these diseases contextually dissimilar; naturally while some diseases occur 

with one another, in one patient, male and female diseases cannot technically occur in the 

same medical history (barring patients who undergo sex-change procedures).  

 Additionally, the model is able to pick up clusters that are defined by Caliber 

(denoted by colour in Figure 4-5) in addition to other natural clusters not explicitly 

annotated by Caliber phenotyping. For example, eye diseases and musculoskeletal 

diseases are clustered around nervous system disorders even though all these conditions 
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do not belong to one homogenous Caliber group. Circulatory system diseases are also 

clustered around one another in addition to select nervous system diseases (e.g., stroke 

related).  

Figure 4-5: Two-dimensional visualisations of condition embeddings 

 

Caliber disease embedding projections in two-dimensional space. A, B, C, D are cut-out 

graphs of the top-left graph. This figure was adapted from Li et al123. 

 Lastly, for more quantitative evaluation, for each disease that occurred in at least 

1% of the population, the ten closest diseases were computed using cosine similarity 

metrics. Comparing these neighbourhoods against those provide by a clinical researcher 

in the Deep Medicine group, we found a 0.757 overlap. In other words, nearly 76% of the 

BEHRT-derived clusters were clinically valid and overlapping with clusters derived as a 

result of clinical knowledge. Furthermore, the clinical researcher notes that the 
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associations had clear overlap in symptomatology; however, some associations were poor 

disease associations. The researcher concluded that BEHRT presents a strong ability to 

understand latent characteristics of diseases without being offered explicit information of 

underlying pathophysiology and symptomatology.  

4.2.5 Interpretation 

 In sum, in this work, we introduced a novel deep learning model for EHR, 

BEHRT – a personalised, risk assessment tool which can model health encounters with 

attributions of age, visit, and position information. With its powerful Transformer-based 

modular architecture, the model can be used in a variety of settings. Pre-trained on large 

datasets and fine-tuned on task-specific datasets has been demonstrated as a powerful 

learning strategy on linked CPRD data. In terms of predictive performance, this model 

outperforms benchmark convolutional and recurrent neural network modelling 

counterparts in the prediction of approximately 300 conditions. Additionally, the model 

can naturally capture attributes such as sex without explicit inclusion. Lastly, in both 

qualitative and quantitative evaluation, the contextualised embeddings space was found 

to be clinically meaningful implying that the model is not just powerful, but capable of 

grasping clinically valid associations latent in data.  

 In terms of architecture, the BEHRT model is a flexible deep learning feature 

extractor and prediction model that can assimilate four forms of sequential data found in 

comprehensive EHR: encounter, age, segment, and position. With these encounters and 

respective attributes, the model can learn about past diseases, the change in age as these 

diseases manifest, and the change in the frequency of visits as well. Since the embedding 

structure is flexible, the four embedding structures can be expanded upon; for example, 

year can be included and other types of encounters can be explored (E.g., medications). 
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 In this work, the primary goal was to understand limitations in current 

approaches of modelling multimodal EHR and address them directly with a modelling 

solution. Furthermore, the goal was to understand the worth of the model in a variety of 

different ways: predictive performance on both occurrence and incidence of diseases, 

secondary prediction analyses, and embedding analyses to try and understand the 

concepts captured by the model. With predictive performance, we have shown that 

BEHRT has outperformed both benchmark models in both the occurrence and incidence 

prediction-based tasks. Furthermore, the model not only appropriately predicted sex-

based disease, but also illuminated issues in mapping of certain sex-specific diseases (e.g., 

infertility-based disorders) unknown to us at the onset of the investigations. Lastly, the 

ablation study illuminated how certain embedding structures were more important than 

others such as the age and position structures.  

 In future works, some limitations of this study must be addressed. First, in terms 

of study design, we only included those patients with at least 5 visits with diagnoses data. 

This exposes the work to bias as the prediction tasks do not investigate predictive 

performance in those with fewer than 5 visits of data. However, this was conducted in 

order to specifically test the proposed model in high-risk settings; while statistical models 

have appropriately modelled health in lower-risk subgroups, the utility of BEHRT can 

truly be explored in higher risk subgroups as simpler models would be limited in 

appropriately capturing risk. Also, in terms of other cohort selection procedures, while all 

EHR was explored as a data source for this work from 1985 onwards, the HES data only 

become usable from 1998 onwards. Hence, the data before 1998 would be limited in 

capturing the patient medical journey and heterogenous data before and after 1998 would 

bias model training and feature capture. Additionally, the inclusion of data before 2004 

might hamper robust evaluation of the models; with Quality and Outcomes Framework 
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(QOF) introduced in 2004 incentivising healthcare providers to report conditions 

accurately and in accordance with guidelines, usage of data for modelling after 2004 will 

be of higher quality than data before129. Hence, training one model on data from both 

before and after this period may be inappropriate. While both sources of bias discussed 

may be consequential, the intention was to evaluate and rank model performance. Indeed, 

all models were trained on the same data and tested on the same cut of test data; hence, 

internally this is a fairly conducted investigation and while the predictive metrics may be 

quantitatively different if data from 2004 onwards were considered, we expect ranking of 

model performance to be same as what we presented.  

 In terms of phenotyping, while Caliber was an incredibly rich phenotype for 

mapping and outcome ascertainment, other phenotyping methods should be explored for 

input encounters. In this work, models were trained Caliber phenotypes as opposed to 

more granular codes such as ICD-10 codes or the Read codes for the GP records. At the 

time of research, this was an initial exploration of Transformers for EHR data and the 

desire was to first investigate model performance on disease codes of a modest 

cardinality. While there are approximately 300 Caliber codes, there would have been 

many more codes if the model utilised ICD-10 codes leading to questions such as: (1) 

Can the model handle approximately all 70,000 codes in the ICD-10 coding system or 

will there be curse of dimensionality issues to handle? (2) If not, then at which level is 

appropriate (e.g., ICD-10 at 3-character level)? Hence, in this proof-of-concept 

exploration of Transformers for EHR, the language was limited to 300 Caliber phenotype 

codes. More granular disease codes (e.g., ICD-10) should be explored in future works. 

 While medications and procedures are indeed often beneficial for patient health 

and quality of life, often they can have adverse effect (e.g., iatrogenic risk of some 

pharmacological therapies). Hence, accounting for these modalities would be important; 
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however, the current data cut of CPRD offers limited procedures data. Future data 

supplements may be useful for getting access to procedures. Also, other methods of 

offering data to model may be useful. To understand cohort effects (i.e., changes across 

calendar years), perhaps, calendar year can be included as an embedding layer in future 

investigations. Furthermore, perhaps the source of data (i.e., GP or hospital) in the 

diagnoses (and possibly, medications) encounter input would be another orthogonal 

source of knowledge that would be useful for the model.   

4.3 Deep learning modelling for electronic health records: 

incident heart failure prediction 

4.3.1 Introduction 

 HF remains a major cause of global mortality and economic burden. Despite 

recent evidence suggesting improvements in the quality of care of HF patients and 

improving prognosis trends, HF incidence has remained relatively constant with little 

reduction19. Due to population ageing and growth in the past few decades, indeed the 

absolute incidence of HF has actually been increasing. Hence, there is a great need for 

better HF preventative strategies and deeper investigations into risk factors of the 

complex condition19. While several statistical approaches have been developed to predict 

incident HF, the models have been quite unsatisfactory in predictive performance. 

4.3.2 Aims  

 In this work, the aim was to amend and implement a state-of-the-art sequential 

deep learning model, BEHRT, to predict incident HF using temporal multimodal EHR. 

The model was compared against state-of-the-art deep learning models, RETAIN-EX and 
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Deepr. Furthermore, a secondary ablation analysis was undertaken to better understand 

the predictive performance of BEHRT. 

4.3.3 Methods 

4.3.3.1 Data 

 In this study, we used the described cut of CPRD (see section 3.6)5. Initially with 

access to data from 8 million patients, in this study, we only considered patients from GP 

that are eligible for linkage with HES in order to only consider patients with documented 

comprehensive medical health history. Additionally, to only keep those patients that have 

enough records for prediction, we kept those patients with at least 5 visits in the medical 

history.  

 Diagnoses and medication encounters in medical history were extracted. 

Diagnoses codes from primary and secondary care were mapped to the Caliber phenotype 

codes122. The medication codes were encoded using the British National Formulary 

(BNF) hierarchical format130. The medication data in CPRD only indicate prescription as 

opposed to the retrieval or dispensation of the actual medications. While many forms of 

coding can be used for modelling, the codes at the BNF section level were used. In total, 

299 diagnostic codes and 426 medications as well as patient age in months and calendar 

year were extracted for modelling. Specifically, only the data for medication in BNF code 

format was utilised; dosage and number of days of treatment data values were not utilised 

for modelling.  
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Figure 4-6: Incident heart failure prediction task 

 

For a hypothetical patient, study entry is start of patient medical history. And baseline 

marks beginning of “follow-up”. This figure was adapted from Rao et al131. 

 In this study, the focus was the prediction of incident heart failure. Figure 4-6 

describes the task: for each patient, all patient medical history before baseline was used 

for model training. The outcome was ascertained in a six-month window following 

baseline. The incidence of HF was defined as the first recorded HF diagnoses code 

(adopted from Caliber122) in EHR for each patient. The phenotype specifically for HF was 

“heart failure” as defined by Caliber. Only diagnoses codes were used to capture the 

incidence; historical diagnoses codes were not used. For those with at least one diagnosis 

of HF, the baseline was defined as a random timestamp within 6 months before the 

incidence of HF, and for those without HF in their medical history, the baseline was a 

randomly selected time stamp. Patient medical history considered for modelling started 

at the date of the GP registration for each patient. This cohort is henceforth referred to as 

the HF cohort.  

 The follow-up window of six months was chosen in order to simply test model 

prediction abilities on an important clinical outcome. As opposed to previous proof-of-

concept prediction works (e.g., 12-month multi-condition prediction in section 4.2.3.4), 

this work was intended to test the predictive power of BEHRT on a clinically significant 
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outcome: HF, a major cardiovascular outcome. Furthermore, the purpose was to train a 

model that can be ultimately probed in explainability studies (Chapter 5). Hence, the 

modest six-month window was chosen. 

4.3.3.2 Model development 

 BEHRT as previously introduced was amendment to address the incident heart 

failure prediction task. The first amendment was inclusion of calendar year embedding 

structure in addition the embeddings of encounter, and age (Figure 4-7). The second 

amendment to the modelling was that both diagnoses and medications were used. 

Medication codes were incorporated into the BEHRT model similarly as the disease 

encounters; when a medication record was found for a particular visit, the respective BNF 

code was included for modelling as an encounter with appropriate age and year attributes. 

In terms of handling repeat records, all diagnoses and prescriptions were included for 

modelling and repeats were not excluded.  

 The model was pre-trained using the Masked Language Modelling derivation as 

previously introduced (see Pre-training). Instead of predicting multiple diseases at once 

as done in previous experiments, the model predicted a probability. Specifically, the latent 

space after pooling layer in the BEHRT architecture was mapped to (1x1) real space and 

transformed using sigmoid activation function to yield a probability as opposed to a real 

number.  
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Figure 4-7: BEHRT model for incident HF prediction task 

 

The figure shows the embeddings used, and the two tasks investigated in this work: 

unsupervised training vias masked encounter modelling and incident heart failure 

prediction.  This figure was adapted from Rao et al131. 

 Furthermore, the proposed model was compared against two state-of-the-art 

models for EHR, Deepr, the previously introduced convolutional neural network, and the 

model, RETAIN-EX, an expansion of the RETAIN model.  

 For hyperparameters, we applied Bayesian optimisation for deriving optimal 

hyperparameters: number of attention heads, number of layers, intermediate size, and 

hidden size – all core components of the BEHRT architecture. 20 iterations of searching 

the hyperparameter space yielded optimal number of layers: 4, hidden size: 120, attention 

heads: 6, and intermediate size: 108. All models were coded, trained, and evaluated on 

Pytorch. 



 

     76 

4.3.3.3 Evaluation 

 For implementation of the models and evaluation, we first cut the extracted HF 

cohort into random, non-overlapping partitions consisting of 60%, 20%, and 20% for 

training, tuning, and evaluation cohorts respectively. The training and the tuning cohorts 

were used for the hyper-parameter tuning, while the evaluation cohort was used for 

conducting downstream analyses (see 5.2). For predictive performance analyses, k-fold 

cross validation (k=5) was applied on the HF cohort, and AUROC and AUPRC were 

reported with confidence intervals derived over the folds. 

 Furthermore, an ablation study investigating the utility of the various modalities 

was conducted. Specifically, we investigated the utility of: diagnoses (D), medications 

(M), age (A), and year (Y) by alternatively including them in the modelling structure. The 

six experiments investigated the following various combinations of modalities:  D, DA, 

DAY, DM, DMA, and DMAY (full model). Model performance for each of the 6 

experiments was assessed with both AUROC and AUPRC and corresponding 95% 

confidence intervals (derived via the aforementioned 5-fold cross validation paradigm).  

4.3.4 Results 

4.3.4.1 Population characteristics 

 Of 100,071 patients for incident HF prediction (HF cohort), 13,050 patients got 

incident HF in the follow-up period. 58.3% were women, the median age in years at 

baseline was 70; 1st and 3rd quartile: (59, 79), 65.7% had history of hypertension, 9.3% 

a prior myocardial infarction, and 5.1% an ischaemic stroke (Table 4-4). Furthermore, 

there was low prevalence of those with rheumatoid arthritis, but a larger percentage of 

individuals had atrial fibrillation and diabetes.  
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Table 4-4: Population characteristics for the heart failure cohort 

Table presents the population characteristics for the heart failure (HF) cohort. This 

figure was adapted from Rao et al131. 

4.3.4.2 Model evaluation 

 

Table 4-5: Predictive performance of deep learning models for incident heart failure 

prediction 

Model Name AUROC (95% CI)  AUPRC (95% CI)  

BEHRT 0.93 (0.926, 0.934)  0.69 (0.667, 0.713)  

RETAIN-EX 0.90 (0.893, 0.901)  0.62 (0.596, 0.636)  

Deepr 0.91 (0.901, 0.913) 0.61 (0.577, 0.633) 

Performance in terms of Area under receiver operator characteristic (AUROC) and Area 

under the precision-recall curve (AUPRC) for incident heart failure prediction. 95% 

confidence interval (CI) is also given. This table was adapted from Rao et al131. 

 The BEHRT model with four modalities: DMAY, achieved best predictive 

performance in terms of AUROC and AUPRC. Specifically, with respect to the 

benchmark models, the BEHRT model demonstrated absolute improvement of 2% and 

7% in terms of AUROC and AUPRC respectively.  

Number of incident cases of heart failure (%) 13050 (13.1) 

Characteristics 

Women (%) 58331 (58.3) 

Men (%) 41740 (41.7) 

Median follow-up duration (year) 9 

Median age (year); Interquartile Range 70; (59,79) 

Diabetes Mellitus (%) 20606 (20.6) 

Hypertension (%) 65760 (65.7) 

Rheumatoid arthritis (%) 3288 (3.3) 

Atrial fibrillation and flutter (%) 26257 (26.2) 

Myocardial infarction (%) 9278 (9.3) 

Chronic obstructive pulmonary disease (COPD) (%) 13897 (13.9) 

Ischaemic stroke (%) 5124 (5.1) 
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Figure 4-8: BEHRT model ablation study 

 

The figure shows the ablation study conducted on the BEHRT model for incident heart 

failure prediction. Various modalities, D: Diagnosis, M: Medications, A: Age, Y: Year 

were alternatively given and removed from modelling and Area under receiver operator 

characteristic (AUROC) and Area under the precision-recall curve (AUPRC) were 

calculated. The figure was adapted from Rao et al131. 

 Ablation study of the various modalities (DMAY) for BEHRT modelling 

illuminated two notable results. Medication data points were indeed important for 

predictive performance as seen in the greatest leap in predictive performance between D 

and DM in terms of both AUROC and AUPRC. Also, we saw that calendar year was 

found more useful by the model than inclusion of age denoting that this absolute capture 

of time was more important than the relative measure of time, age. 

4.3.5 Interpretation 

 We expanded the BEHRT model for a more clinically relevant task: the 

prediction of incident heart failure. When compared to the known EHR deep learning 

models of Deepr and RETAIN-EX, the model demonstrated superior prediction 

performance across metrics. Furthermore, the ablation study showed that inclusion of 

medications was found to be important for prediction. Solely diagnoses were insufficient 

for high predictive performance. Furthermore, calendar year was found to be more useful 

for prediction than the relative concept of time, age.  
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 We included more predictors of health than previously demonstrated in 

literature. The inclusion of age for risk prediction is well known; however, the utilisation 

of calendar year is not frequently done. Our ablation study found that calendar year is a 

powerful element of input for predictive performance. One potential explanation is that 

the temporal variability caused by changes in medical practice such as changes in disease 

pattern, policy, and availability/use of treatments can be tracked by calendar year. Hence, 

calendar year stands as an expressive proxy for more latent changes in medicine not 

exclusively captured by disease/medication/age modalities. BEHRT’s flexible 

architecture allows for inclusion of these variables. 

 In terms of strengths, our study presented a comparison of three varieties of deep 

learning models: recurrent, convolutional, and Transformer neural networks. The 

proposed modelling approach achieved the highest AUPRC and AUROC as opposed to 

benchmark comparisons. Furthermore, the ablation study conducted offers some model 

transparency; specifically, the ablation of various modalities clarifies which input 

modalities are indeed important for prediction. Additionally, the Caliber phenotyping 

algorithm, utilising expert-driven phenotyping of approximately 300 conditions, allows 

nuanced identification of complex diseases. Our study also has some limitations. First, 

the cohort selection procedure only investigated patients with higher interactions with 

clinical services – i.e., those with sufficient number of records. This could potentially 

compromise model generalizability for prediction in low-risk groups who have fewer 

clinical encounters. Additionally, the BEHRT model for incident HF risk prediction needs 

to be evaluated on other datasets for a full examination of its external validity and 

generalisability. 
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5 EXPLAINABILITY  

 In this chapter, the research that address the second objective (see section 1.2) 

will be presented. After establishing that the proposed deep learning architecture learns 

useful representations for prediction, second, the following section attempts to answer the 

question: how can deep learning modelling be trusted?  

 To this end, I develop tools to better understand the decision-making processes 

of the “black-box” deep learning modelling. Continuing the study of risk prediction for 

incident heart failure, I first develop metrics to better understand the importance of 

temporal modalities of age and calendar year. Second, I develop tools to extract input 

variables and encounters that are important for the outcome prediction. With the 

developed tools, I proceed to discuss a pipeline of analyses to better trust deep learning 

modelling.  

 The contents of this chapter are published as a manuscript, “An Explainable 

Transformer-Based Deep Learning Model for the Prediction of Incident Heart Failure” 

in Journal of Biomedical and Health Informatics (JBHI) 

(doi.org/10.1109/JBHI.2022.3148820). The publication is a product of work by multiple 

authors. As a co-first author, my role consisted in designing the study, conducting 

literature review, processing data, conducting statistical/deep learning analyses, and 

writing the first draft of the manuscript. Material from the publication (including figures, 

tables, and text) have been amended for presentation in the following sections. 
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5.1 Introduction 

 Heart failure (HF) is a complex condition that remains a major cause of death 

around the world. The complexity is due to the multifactorial nature of the disease as 

described in the introduction section relevant to HF (see section 2.1.1). More importantly, 

given limited knowledge about risk factors of HF (e.g., diabetes, atrial fibrillation, and 

hypertension), further investigation into factors of risk and protection is needed to better 

inform preventative care.  

 The current understanding of the aetiology of HF comes from medical 

knowledge and evidence from randomised and observational investigations. Statistical 

models have been used to understand association of the various factors to the risk of HF. 

Through modelling, 27 clinical factors have been verified to be associated with incident 

HF across 15 studies132. Since the predictive performance is lacklustre, this implies of 

course, that many factors of risk are being omitted from modelling; alternatively, with 

more comprehensive capture of risk and protection at baseline, models can more 

accurately predict incident HF60. 

 However, with data-driven modelling of the condition of HF, the potential for 

using models agnostically capturing those variables which are predictive of HF remains 

unexplored. On the other hand, unlike statistical models, which model a host of variables 

and allow interpretation of the contribution of these variables to the outcome prediction, 

the deep learning models are more black-box, and lack “explainability”.  

 Given the BEHRT model’s striking performance on a variety of predictive tasks 

as compared to benchmark RNN and CNN models (Chapter 4), the investigation of 

capturing data-driven associations to better understand incident HF should be optimally 

conducted on the BEHRT model. However, for Transformer-based models, that too for 
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EHR-based studies, there are a dearth of readily available methods for interpreting these 

complex multi-level attention-based networks.  

5.2 Aims 

 In this work, on the task of incident HF prediction, I aim to explain the BEHRT 

predictive process in two ways: 

1. I investigate the temporal modalities and their contribution to prediction of HF. 

2. I develop a surrogate model – an auxiliary, simpler model – that uses parametrized 

noise to derive the contributions of each of the encounters in medical history (with 

contextualised age/year annotations) to the prediction of incident HF. 

5.3 Methods 

5.3.1 Data 

 In this work, the focus was explaining the predictions for the task of incident HF 

prediction. As introduced earlier, Figure 4-6 describes the task and the cohort, in which 

we conducted the analyses, was the HF cohort as described in the section, 4.3.3.1. 

Furthermore, non-overlapping partitions of 60%, 20%, and 20% of the HF cohort were 

extracted for training, tuning, and the explainability analyses.  

5.3.2 Explainability investigations 

 Two forms of explainability were conducted in this study: embedding based 

analyses and perturbation theory driven analyses. 

5.3.2.1 Temporal variability analyses 

 The first was the explanation of temporal modalities of specifically age and 

calendar year embedding structures. Considering passage of time in the relative sense 
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(age) and absolute sense (calendar year) should be theoretically useful for modelling 

ageing as well as changes in medical practice, disease patterns, and other properties of 

medicine that change over time, we expect that modelling both in the BEHRT model 

would be informative for prediction of incident HF.  

 To test the utility of both the embeddings, four candidate diseases were chosen. 

The diseases were prevalent in the HF dataset to ensure sufficient training of their 

respective embeddings. For each disease, the trained disease embedding was added to 

each and every trained age embedding (embeddings representing age 192 to 1200 in 

months). These summed embeddings represent the disease at various ages between 192 

and 1200 months of age. In this work, cosine distance was applied; cosine distance is a 

distance metric that measures the similarity between representations of diseases at 

different ages. The greater the difference in the age-contextualised disease representation 

implies greater temporal variability. Similarly, summation and cosine distance were 

computed for year embeddings (embeddings representing years 1988 to 2014). The 

dissimilarity across the age spectrum was compared against the same across the year 

spectrum. 

5.3.2.2 Contribution analyses 

 To further understand the BEHRT model’s decision-making processes, a method 

was derived and implemented in the incident HF setting to derive the contribution of an 

encounter to final outcome prediction. We extended a perturbation-based technique 

created for Transformer-based language modelling133. Utilising the summed embedding 

as a predictor (encounter/age/year) to represent the encounter contextualised with age and 

calendar year data, the fundamental concept was to quantify change between the predicted 

probability given input of the predictor embedding perturbed by parametrised noise and 

the predicted probability given input of the untouched predictor embedding. 
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 As a facilitating example, analysing a calcium tablet encounter 

(prescription/medication) at a given age/calendar year, if large perturbations of this 

calcium tablet predictor contribute to minimal change in output probability, that means 

that this predictor is unimportant for the output prediction. If even small perturbations of 

the same predictor amount to a great degree of change in predicted probability, then 

calcium tablets are indeed an important predictor of incident HF. In this work, an 

asymmetric loss function was proposed to prioritise encounters that maximally capture 

HF/non-HF predictions with accuracy. HF/non-HF represent those who have HF, and no 

HF respectively as a label. Equation(s) (5-1) presents the algorithm for the perturbation-

based contribution extraction. 

 The perturbation modelling is a local surrogate model that can quantify 

contribution of the encounters at an individual, patient-by-patient basis. By aggregation 

of the individual-level encounters (i.e., diagnosis/medication) contribution over the entire 

population considered for analysis (Figure 5-1), we can understand the encounter 

 

Algorithm 1 Perturbation algorithm.  

𝑴: Model, 𝑵: Number of encounters, 𝑿: input encounter embeddings 

𝑿 ∈ 𝓡𝑵×𝑲 , �̃� : perturbed input embeddings, 𝒀:  indicator of HF 

patient, 𝑳: loss function, 𝑺: contribution score. 

 

PERTURBATION (X,Y) 

Initialise 𝜖 ← [𝜖1, 𝜖2, … , 𝜖𝑁] and 𝜖1𝑖
~𝒩(0, 𝜎𝑖

2𝐼) 

While (not converged) 

 

�̃� ← 𝑋 +  𝜖  

𝑂 ← 𝑀(𝑋), �̃�  ← 𝑀(�̃�)  

𝐿𝑜𝑠𝑠 ← 𝐿(𝑂, �̃�, 𝑌, �̃�)  

𝑢𝑝𝑑𝑎𝑡𝑒 𝜖  

𝑆 ← 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝜖)  

Return 𝑆 

 

(5-1) 
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contribution at a global level (i.e., population level). This work only utilised the 

contribution of the first incidence of the disease/medication in medical history; 

contribution of the repeat encounters was not considered.  

 Further description of the loss function and the optimisation of the perturbation 

surrogate model is presented in supplementary section 9.2. 

Figure 5-1: Contribution analyses utilising perturbation surrogate model  

 

The pipeline for population-level contribution analyses. Trainable perturbation-based 

noise is used to understand contribution of a particular encounter to the outcome 

prediction. On the right, individual-level contribution scores (for example, D1) is 

aggregated and the final mean contribution score is presented (D1 – 0.35). The figure 

was adapted from Rao et al131. 

 The analysis was developed to understand the association between a particular 

encounter in medical history and the outcome, HF. For this reason, the relative 

contribution (RC) metric was created (with associated 95% confidence interval (CI)). 

This metric is calculated by dividing the average contribution of the encounter in HF 

patients by the same in non-HF patients. In this way, RC>1.0 and <1.0 means that the 
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encounter is associating more towards the HF outcome and non-HF outcome respectively. 

In other words, there is a positive and negative association with HF respectively. 

 The analysis was conducted on the patient with confident prediction (predicted 

probability larger than 0.8 and less than 0.2) and focused on the encounters in medical 

history that had sufficient prevalence in order to ensure that associated embeddings were 

sufficiently trained for downstream analyses.  

 The pipeline to trust the model utilising perturbation analyses was developed and 

organised as follows: 

1. For medically validated risk factors, investigate RC in medical history 

2. Examine if the results from analysis are consistent with medical understanding 

3. Identify novel factors of risk and protection captured by BEHRT in prediction of 

incident HF 

Specifically, for all three parts above, the differential contribution to HF by age and 

calendar year were investigated. Age stratified relative contribution analyses were 

conducted for age groups: (50-60], (60-65], (65-70], (70-75], (75-80], and calendar year 

stratified analyses were conducted for calendar year groups: [1990-1995], (1995-2000], 

(2000-2005], (2005-2010] when clinical events were first recorded. the “(” and “]/[” 

symbols represent exclusion and inclusion, respectively for age/year bands. 

5.4 Results 

5.4.1 Analysis of temporal variability 

 The cosine similarity matrices for both age and year embeddings summed with 

the four representative diseases are shown in Figure 5-2. The diseases are depression, 

peripheral arterial disease, anxiety disorders, and hypo or hyperthyroidism. 
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Figure 5-2: Temporal embeddings analysis  

 

The age and year embedding analyses with cosine similarity measure. The cosine 

similarity is shown for year (left) and age (right) groups A: depression, B: peripheral 

arterial disease, C: anxiety disorders, D: hypo or hyperthyroidism. Age runs from 16-100 

years in months and year, 1988-2014 in years. Lighter colours inherently mean greater 

dissimilarity and higher, lesser. The figure was adapted from Rao et al131. 

 Calendar year (left) showed greater dissimilarity across the pairwise 

comparisons than age (as seen in the lighter colours prevalent in the year embedding 

figure as opposed to the age one). Disease representation of any of the four diseases were 

more sensitive to changes in year than changes in age. This suggests that calendar year as 

an embedding supplement to the encounter offers more signal to the raw encounter 

embedding than the age embedding; in other words, any of the four diseases at age 192 

are immaterially different in terms of embedding values from the same at age 1192 or any 

other age between 192 and 1192.   
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5.4.2 Contribution analyses 

Figure 5-3: Contribution analyses for validated risk factors 

 

The age-stratified relative contribution (RC) analyses for established risk factors. X and 

y axes represent the age groups and relative contribution is presented as (mean; 95% 

confidence interval). The black dotted line denotes 1.0 RC.  The figure was adapted from 

Rao et al131. 

 As the pipeline presented, we first examine if BEHRT can capture established 

risk factors of HF with the proposed RC metric134. We derived the RC for known risk 

factors: hypertension, myocardial infarction, diabetes, ischaemic stroke, atrial fibrillation 

and flutter. For these risk factors the average RC was greater than 1.0 in the general and 

age-stratified analyses (Table 5-1 and Figure 5-3). In general, it is seen that the association 

is stronger in younger ages and diminishes closer to the line of parity across all known 

risk factors as age increases. These results were indeed consistent with evidence from 

past works135,136.  
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Table 5-1: Relative contribution of validated risk factors of heart failure 

Disease Overall 50-60 60-65 65-70 70-75 75-80 

Myocardial 

infarction 

1.37; (1.28, 

1.48) 

1.55; (1.33, 

1.8) 

1.45; (1.25, 

1.68) 

1.36; (1.13, 

1.63) 

1.16; (0.99, 

1.37) 

1.29; (1.09, 

1.53) 

Ischaemic 

stroke 

1.29; (1.09, 

1.53) 

1.86; (1.05, 

3.3) 

1.21; (0.64, 

2.27) 

0.84; (0.57, 

1.24) 

1.29; (0.95, 

1.75) 

1.17; (0.88, 

1.54) 

Hypertension 1.18; (1.11, 

1.24) 

1.59; (1.39, 

1.83) 

1.21; (1.05, 

1.4) 

1.04; (0.93, 

1.17) 

0.83; (0.75, 

0.92) 

0.79; (0.73, 

0.86) 

Diabetes 

mellitus 1,2 

1.08; (1.03, 

1.14) 

1.48; (1.05, 

2.07) 

1.19; (0.86, 

1.65) 

0.84; (0.64, 

1.1) 

0.8; (0.62, 

1.03) 

0.7; (0.56, 

0.89) 

Atrial 
fibrillation 

and flutter 

1.02; (0.9, 
1.15) 

1.23; (1.02, 
1.47) 

1.08; (0.89, 
1.32) 

1.3; (1.15, 
1.47) 

1.07; (0.96, 
1.2) 

1.02; (0.93, 
1.12) 

Table presents the general relative contribution and associated 95% confidence interval 

for overall analyses and age-stratified analyses. This figure was adapted from Rao et 

al131. 

 Interestingly, for hypertension and diabetes specifically, the RC trended slightly 

below the line of parity; we hypothesized that this occurrence might be due to 

contextualisation with treatments of the two diseases. Often patients with those diseases 

are indeed put on medications to directly address the issues – antihypertensives for 

hypertension and antidiabetic drugs for diabetes, and these drugs mitigate risk of incident 

HF. Hence, while medications indeed are negatively associated to incident HF, by 

contextualisation, these diseases, for which treatments are given, are also negatively 

associated due to consistent contextualisation across patients. 

 To properly test this hypothesis, we first investigated disease prevalence: 73% 

of patients older than 65 years of age with hypertension are treated with antihypertensives. 

And for diabetes, 70% of those with diabetes are treated with medication for diabetes. 

The contextualisation of the disease/treatment pair is indeed quite consistent across 

patients; i.e., often a patient with this disease will be treated, so to the model, the two 

might be interchangeable or indistinguishable.  
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Figure 5-4: Contribution analyses for medications and contextualisation analyses  

 

The lowest age-stratified relative contribution (RC) for medications (A) and the 

contextualisation of medication/risk factors (B). Specifically, in (A), x and y axis 

represent the age groups RC and the black dotted line is the line of parity for RC (1.0) 

(B), shows the RC of the risk factor in patients with variety of different stratifications. 

Black forest plot: general population of people with disease (column); red forest plot: 

those with disease (column) not treated with medication (row); blue forest plot: those 

with disease (column) and treated with medication (row). Some of the forest plots had 

insufficient sample size (e.g., drugs for diabetes and the risk factor, diabetes). The figure 

was adapted from Rao et al131. 
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 Given that these diseases frequently contextualise with paired treatments 

(especially in older age groups), we investigated if treatments associate with non-HF or 

RC<1. Indeed, we captured that antihypertensives, digoxin, and drugs for diabetes and 

other established treatments of validated risk factors were associated with non-HF (Figure 

5-4). This confirms that the model was able to capture elements known to mitigate risk 

of HF by directly counteracting elements that exacerbate risk of HF (risk factors)15,137.  

 In order to better understand the relationship between risk and treatment of risk, 

we conducted an analysis of disease encounter RC stratified by treatment status. As a 

motivating example, to understand the association between treated/untreated 

hypertension and incident HF, we computed the RC for hypertension in the subgroups of 

patients with hypertension and the desired antihypertensive treatment status (all patients 

with hypertension, those treated with antihypertensive, those not treated with 

antihypertensives). In Figure 5-4, with respect to all with hypertension generally (black 

lines), in treated patients (blue lines), there is an attenuation in the RC for most diseases 

(16 of 19 RC computations on disease encounters). While RCs of several risk factors were 

lower in the treated as opposed to the untreated stratifications, the RCs were most clearly 

attenuated in those groups treated with antihypertensives, digoxin, and medications for 

diabetes. In some of these cases, we note that the RC was not calculated because of 

insufficient sample size for the computations. With these analyses into various 

disease/medication pairs, it is made transparent that BEHRT can naturally capture the 

difference between untreated and treated risk. BEHRT can understand that untreated risk 

heightens association to HF while treatment mitigates it.  
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Figure 5-5: Contribution analyses for model derived risk factors  

 

The age-stratified relative contribution (RC) for (A) top-10 diseases and (B) medications. 

X and y axis represent the age groups RC and the black dotted line is the line of parity 

for RC (1.0). 95% confidence intervals are shaded. The figure was adapted from Rao et 

al131. 
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 Continuing to the third step of the pipeline, after validating the risk and 

protective factors known in medical literature, we investigated other novel factors gleaned 

from the RC analyses conducted on disease/medication encounters. We found many 

diseases like myocardial infarction, pleural effusion, and lower respiratory tract infection 

and medications such as bronchodilators, corticosteroids, and acne drugs were all 

positively associated with HF (Figure 5-5) in age-stratified analyses of the ten highest RC 

diseases and medications. As age increased, these encounters most strongly associated 

with HF showed a trend similar to that of the age-stratified analysis of validated risk 

factors as well – i.e., limited discriminatory independent contribution to incident HF. 

Lastly, for some of the predictors such as left bundle branch block, the confidence 

intervals were too wide due to limited sample size and heterogeneity in contribution 

across the population in individual age-bands to allow for any conclusions about these 

predictors’ differential RC contribution by age. 

 Similar to the analyses conducted on paired disease/treatment, the encounters 

shown in section B of Figure 5-5 were directly treatment of paired conditions in section 

A of the same. The model again is able to capture that contextually, some diseases and 

medications appear concurrently in medical history and might be causally associated. For 

example, dermatitis is treated with corticosteroids, which is linked to increased 

cardiovascular risk, as may be depression, and its paired medication, antidepressant24,138. 

Additionally, lower respiratory tract infections, asthma, and chronic obstructive lung 

disease are treated and hence paired contextually with cough preparations, 

bronchodilators, and antibacterial drugs139,140. These medications are associated with HF 

often because of misattribution of HF symptoms for respiratory conditions140. On the 

other hand, it may be because some of the aforementioned medications are in part, at 
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least, non-steroidal anti-inflammatory drugs – medications known to increase risk of 

HF141.  

 In both the ablation study of incident HF prediction (see section 4.3.3.3) and the 

investigation of temporal variability analyses, calendar year is an important modality in 

the prediction task; hence, we wish to further investigate the differential RC by calendar 

year. For presentation, we have analysed three studies of <1 RC medications shown in 

Figure 5-6: digoxin, treatments for glaucoma, and analgesics.  

 Figure 5-6 part A shows the RC for the three medications stratified by calendar 

year. While digoxin was consistently negatively associated with incident HF across year 

groups, and analgesics, positively associated across the same, the results were more 

heterogenous for the medication, treatment for glaucoma. A hypothesis: while BNF 

coding was consistent over the decades, the underlying drug composition might have 

changed at approximately, the year 2000. Thus, we analyse the number of times different 

digoxin, analgesic, and glaucoma medications were first prescribed in patients between 

1990 and 2010 in part B of the same figure. For this analysis, repeat medications were 

not counted. 

 We found that throughout the decade of the 1990s, timolol, a beta-blocker, was 

a common topical treatment for glaucoma142. With the introduction of novel medications 

in the 2000s, the use of the ophthalmic timolol began to decline143.   
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Figure 5-6: Calendar year stratified relative contribution analyses  

 

The year-stratified RC of medications. A, RC (mean; 95% CI) of three medications to HF 

prediction stratified by year. X and y represent year group and RC respectively; black 

line denotes 1.0 RC. B, frequency of drugs by components in different year groups in 

Dataset A. X/y represent the year group/counts of first-time drug (component) 

prescriptions to patients respectively. Individual drug components are represented with 

bars in different colour. Part of this figure is from Rao et al131. 

 Our RC analyses in Figure 5-6 part A shows that BEHRT implicitly captured 

this change in the prescription of the treatment. Specifically, the BEHRT identifies that 

the treatment timolol, prescribed before 2000 highly associated with HF with RC>1144. 
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Timolol indeed has had known cardiovascular side-effect such as bradycardia with the 

potential to exacerbate incident HF144. Following the year 2000, BEHRT can identify that 

the prevalent treatment, prostaglandin analogues, has <1 RC. As opposed to timolol, 

prostaglandins and related analogues – such as I2 and others – have known potential to 

reduce cardiovascular risk145–147. However, large-scale trials investigating potential 

preventative effect of are currently lacking145,146. 

 In the case of analgesics, a declining trend, albeit firmly >1 RC trend emerges. 

Prescription of the analgesics were more non-opioid-based than opioid, prior to 1996. We 

see that BEHRT parallels this generational shift in drug component prescription through 

RC; non-opioid analgesics are primarily composed of nonsteroidal anti-inflammatory 

drugs and generally increase the risk of cardiovascular events141,148. Thus, RC prior to 

1995 is shown to be quite high. Tracing the gradual change in majority preference to 

favour opioid based analgesics following 1995, RC captures this change in prescription 

behaviour and as a result, attenuates in the following decades. 

 On the other hand, prescription of digoxin wanes following 2005. However, the 

stable <1 RC across any and all years, further reinforces the hypotheses that the positive 

inotropic drug could help with preventative efforts for HF.  

5.5 Interpretation 

 Our investigations into explainability had several outputs. The temporal 

variability analyses complemented and confirmed our results from previous 

investigations of calendar year. Furthermore, the contribution analyses appropriately 

worked through the proposed pipeline for trust in deep learning for clinical prediction, 

and captured validated risk factors of HF. Furthermore, the analyses provided insights 
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into a variety of potentially novel risk and protective factors in the forms of both diseases 

and medications.  

 In terms of novelties, this work, is by our understanding, the first work to 

introduce methods to better understand Transformer based models for incident HF 

prediction interpretability. While methods to query convolutional and recurrent models 

do exist, the methods have not been extended for the Transformer framework; thus, the 

perturbation method is a novel and useful contribution to model explainability, especially 

in the context of EHR and cardiovascular medicine. 

 With regards to the results from the contribution analyses, we showed that 

BEHRT can capture the dichotomy of risk and treatment with nuance. While BEHRT 

generally protective and risk factors appropriately, the age-stratified results had some 

interesting insights. 

First, we show that in validation of established risk factors and the top 

disease/medication risk factors, as age increases, the individual contribution of risk 

factors attenuate. This is consistent with previous epidemiological evidence135. 

Additionally, this is in line with understanding of multimorbidity; as age increases, 

patients develop more illness (i.e., develop multimorbidity), and each individual illness 

might contribute less to incident HF. Second, we saw that risk factors sometimes 

associated with non-HF or equivalently, were negatively associated with HF. A cursory 

analysis might point towards an incorrect conclusion that BEHRT has incorrectly 

captured risk factors, such as hypertension, negatively associating with HF. This 

conclusion is biased by indication; the correct interpretation is that the medication for 

hypertension serves as a proxy for the disease itself, and ultimately has a negative 

relationship with HF, as noted in several studies15,149. Our analyses of risk and treatment 

of risk generally shows that while risk factors associate with HF, treated risk attenuates 



 

     98 

while untreated risk exacerbates the association with HF – conclusions consistent with 

understanding of HF protection and risk. 

 In the age and year stratified analysis, the BEHRT model demonstrates that some 

medications might potentially provide preventative benefits. In the case of both digoxin 

and the prostaglandin analogues form of treatment for glaucoma, the consistent RC <1 in 

both age and year stratification signals that these drugs associate more so with non-HF, 

and hence, potentially preventative. However, as with conventional models, causal 

interpretations are not the most appropriate per se and must be presented with caution. 

On the other hand, this work does not justify causality but rather generates hypotheses; 

with triangulation of evidence from this source and others, further confirmatory studies 

can be appropriately crafted to appropriately identify the nature of the association.  
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6 CAUSAL INFERENCE AND 

ASSOCIATION ANALYSES  

 In this chapter, the research to meet the final objective (see section 1.2) will be 

presented. I have demonstrated, to a considerable degree, that deep learning models fit 

well and are useful for prediction tasks and can capture known factors of risk and 

protection well. With this, I proceed to developing models for conducting causal inference 

more efficiently than benchmark models. When confounding variables are not known or 

latent interactions in the data, the fundamental issue is that implemented models for 

understanding causal effect in a given observational study will be under-adjusted. Under-

adjustment biases can lead to incorrect conclusions regarding both the strength and 

direction of the association. Hence, in this chapter, I develop a derivation of BEHRT for 

estimating causal effect that directly address these issues in addition to others and more 

accurately estimate effect size as compared to benchmark methods. Furthermore, I 

implement the model to study the association between antihypertensives and cancer, an 

association, which is well-studied in meta-analyses of randomised evidences. 

 The following sections are published in IEEE Transactions on Neural Networks 

and Learning Systems (doi.org/10.1109/TNNLS.2022.3183864). This publication is a 

product of work by multiple authors. As a first author, my role consisted of designing the 

study, conducting literature review, processing data, conducting statistical/deep learning 
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analyses, and writing the first draft of the manuscript. Material from the publication 

(including figures, tables, and text) have been amended for presentation in the following 

sections. 

6.1 Introduction 

 Estimating causal effect of a hypothetical exposure (intervention) is a core 

problem for epidemiology. The following association is used as a facilitating example: 

the effect of antihypertensive drug classes on cancer. As this example centres around a 

study of medications, which are randomizable exposures, this association is optimally 

studied with a randomised control trial (RCT). In gist, as discussed in section 2.4.1, in 

RCTs, the intervention is randomly given to patients – some treated with Calcium channel 

blockers (CCBs) and others with Angiotensin receptor blockers (ARBs) – and incidence 

of cancer is compared in the two exposure groups over some finite follow-up period. RR, 

as discussed in section 2.4.1, is a common measure of comparing the risk of cancer in one 

group versus the other. Directly, the randomisation means that confounders are 

randomised and hence as a result, balanced between the two groups. Because of this 

balance in confounding factors, the confounding factors ultimately “washes” away. 

Hence, given sufficient sample size, the trials offer unconfounded estimates of causal 

effect.  

 In the case of the association of the various classes of the antihypertensives and 

cancer, numerous RCTs have indeed found the association to be null meaning that no 

class of antihypertensives cause cancer any more than any other class of the same150. 

 In situations, in which RCTs cannot exist, are unfeasible, or fail to generalise, 

well conducted observational studies alternatively offer answers on the nature of the 

association 74,75,151,152. However, important to carrying out observational studies, the 
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adjustment of variables that are confounding the association between exposure and 

outcome is necessary. Omission of confounding variables can render biased and hence, 

false conclusions concerning the strength and at times, even direction of the association. 

 As discussed in sections introducing causal inference (see section 2.4.3), 

traditionally, semi-parametric and parametric statistical modelling have been explored in 

observational causal inference in the field of epidemiology. Regression based models 

(e.g., log-binomial or logistic regression) incorporate the exposure variable into the 

modelling in addition to any adjustment variables and implement regression fitting for 

estimation of outcomes153,154. Another solution proposed is to adjust solely for the 

variables that are associated to exposure by propensity score modelling; however, naïve 

propensity score-based methods require correct specification of both the exposure and 

outcome prediction models, often not guaranteed155,156. Misspecification directly implies 

that the errors of the weights rapidly increase ultimately producing high-variance and 

volatile downstream causal estimates157. Furthermore, these statistical models all rely on 

conventional confounder selection (feature engineering); those confounders unknown to 

the experts conducting observational studies will be omitted from modelling. In 

observational settings involving high-risk, multimorbid, or simply, poorly understood 

patient cohorts, comprehensive adjustment of confounders is less guaranteed invariably 

hampering downstream association estimation. 

 “Doubly robust” modelling, a recent development in semi-parametric modelling, 

addresses issues of misspecification directly. As opposed to requiring consistency of both, 

these doubly robust estimators only require the consistency of either prediction of 

propensity score or prediction of outcome to produce unbiased causal effect estimates, 

and examples such as Targeted Maximum Likelihood Estimation (TMLE) and derivatives 

such as the Cross Validated TMLE (CV-TMLE) have been prolifically used to explore 
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causal inference problems of average treatment effect (ATE)151,158–160. TMLE-based 

methods have recently also been applied for epidemiological studies on routine EHR-

based causal inference161. 

 In addition to access to high quality and multimodal EHR allowing for more 

comprehensive adjustment if conducted appropriately, the developments in deep learning 

modelling have allowed for scalable modelling of a variety of data as discussed in section 

2.5. Additionally, the development of representation learning methods such as 

unsupervised training strategies have given rise to deep learning frameworks that can 

conduct richer feature extraction offering better generalisability162. Research has shown 

that auxiliary unsupervised learning 1) adds an additional inductive bias (i.e., forces a 

relevant learning task) ultimately improving generalizability and 2) helps to learn 

representations shared or beneficial for the main task – in our case, the two tasks being 

propensity confounding adjustment and causal inference162–164.  

 In the last decade, there have been advances in deep learning for causal 

inference. Models like Treatment Agnostic Representation Network (TARNET), 

Dragonnet, Causal Effect Variational Autoencoder (CEVAE), and others have been tested 

on synthetic and semi-synthetic derivations of static tabular data152,165–167. The TARNET 

model have also been applied in the epidemiological setting in COVID-19 related 

research168. Additionally, the Dragonnet model explores observational causal inference 

by exploiting the sufficiency of the propensity score to simultaneously model the 

propensity score and the outcomes74,152. However, these models have not been tested in 

the context of Transformer models and in the setting of routine EHR. And even though 

multimodal deep learning modelling is a staple approach for risk prediction and 

classification studies, few approaches firstly model both temporal and static variables for 

causal inference and secondly, develop appropriate environments to objectively test 
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estimation abilities of various models. Lastly, the considerable literature of deep learning 

for causal inference investigates conditional ATE/ Individualized Treatment Effect (ITE) 

almost exclusively; methods have rarely been evaluated for accuracy of RR estimation – 

a metric preferred by clinicians since RR captures relative utility of a hypothetical 

exposure variable (i.e., as compared to the risk in the control cohort).   

6.2  Aims 

 Since RR is often the estimand of choice in clinical research, I aim to develop 

and evaluate methods that combine advances across deep learning and statistics in order 

to estimate RR more accurately than the conventional modelling benchmarks. This 

overarching objective is achieved through three independent contributions. 

 The first contribution is the design of a novel deep learning model, Targeted 

Bidirectional EHR Transformer, (Targeted-BEHRT) for more accurate RR estimation. 

The method synthesizes the following elements in a unique multi-task learning 

framework: 1) extenedd BEHRT architecture (Transformer-based feature extractor) for 

incorporation of both temporal and static variables, 2) auxiliary unsupervised learning 

framework for richer feature and hence, confounder extraction, and 3) doubly robust 

semi-parametric estimation for mitigating various selection biases including finite-

sample estimation biases123,156.  

 As the second contribution, a testing environment is developed to objectively 

evaluate accuracy of RR estimation of various models. Focusing on the aforementioned 

case study: the effect of various classes of antihypertensives on cancer, we form an 

observational dataset by including patients taking different classes of antihypertensives 

and investigate risk of cancer. Our reference exposure is Angiotensin Converting Enzyme 

Inhibitors (ACEIs), one of said classes of antihypertensives. Since the data generating 
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function for real-world patient data is unknown and counterfactual outcomes (i.e., 

outcome under a specific exposure status) are missing in the observational dataset, ground 

truth RR is inaccessible. Hence, objective comparison of model estimation is difficult. To 

directly address this issue, semi-synthetic derivations of the observational dataset are 

constructed with generated ground truth RR, and then the proposed model is applied 

against statistical and deep learning benchmarks in several experiments to identify the 

model with best RR estimation. Additionally, to test the model in situations of limited 

data, the utility of Targeted-BEHRT compared to other models is demonstrated in finite-

sample estimation experiments.  

 As the third and final contribution: after validating the model on semi-synthetic 

derivations of routine clinical observational data, we demonstrate the model can be 

applied to the aforementioned observational study: the effect of ACEIs on cancer relative 

to other drug classes. Traditional observational studies have demonstrated conflicting 

results; however, these associations have been deemed null in numerous RCTs and meta-

analyses of randomised evidences with narrow confidence intervals, across a wide range 

of patient groups, for multiple cancer subtypes150,169. 

6.3  Methods 

6.3.1 Formal definition of task 

 The objective is to estimate RR in the setup of binary exposure and outcome. As 

described in section 2.4.2, we revisit the potential outcomes framework67. Consider the 

population of patients described by a tuple generated independently and identically: 

(𝑋𝑖 , 𝑌𝑖 , 𝑇𝑖)~𝑃. Each patient i is described by medical records, 𝑋𝑖 and is assigned exposure 

status, 𝑇𝑖 ∈ {0,1} . The exposures, 𝑇𝑖  in the presented work are two classes of 

antihypertensives with one of the classes acting as reference group. The variable 𝑌𝑖 
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corresponds to the observed outcome – cancer – in the proposed investigations. In a fixed 

amount of “follow-up” time after hypothetical treatment, 𝑇𝑖 = 0, outcome of cancer is 

notated as 𝑌𝑖(0), and similarly for treatment, 𝑌𝑖(1).  

 The RR cannot be directly computed since the counterfactual outcome is not 

available for inclusion. Hence, under the conditions of consistency, positivity, and 

unconfoundedness (see section 2.4.2.1), the exposure effect is identifiable and RR can be 

estimated as 𝑹𝑹 =
𝔼[𝒀𝒖(𝟏)]

𝔼[𝒀𝒖(𝟎)]
. 

6.3.2 Data 

 In addition to dataset pre-processing as discussed in section 3.6, the dataset for 

the investigations was restricted to patients who were (1) registered with the general 

practice for at least 12 months and (2) registered with a practice that provided consent for 

linking the data with national databases for hospitalizations and death registry. 

Figure 6-1: Data selection for representation learning 

 

We use Clinical Practice Research Datalink (CPRD) and extract diagnoses, medications, 

blood pressure, smoking, region, and sex records. We homogenize codes from ICD-10 

and Read to one format. Unmapped Read codes were kept for completeness. The figure 

was adapted from Rao et al170. 

 We extracted diagnoses, medications, blood pressure measurements, sex (male, 

female), region (10 regions in England), and smoking status (non, previous, or current 
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smoker). Diagnoses and medication codes were homogenized for machine readability. In 

sum, this processing led to a dataset of 6,777,845 patients, which was used for general 

representation learning (shown in Figure 6-1) for deep learning models.  

 For the causal inference investigation (i.e., investigating the effect of 

antihypertensive on incident cancer), a dataset containing five subpopulations had to be 

selected – one for each class of antihypertensives: ACEIs, diuretics, CCBs, Beta Blockers 

(BBs), and ARBs. Patients were selected in one of these groups based on first class of 

antihypertensive medications recorded before 2009 and if free of cancer diagnosis before 

this first prescription; the year 2009 was chosen to allow sufficient ‘follow-up’ time for 

the analysis of the occurrence of potential cancers. The date of this first prescription was 

defined as the “baseline” (a date between 1 January 1985 and 31 December 2008). 

Patients were then followed up from baseline until incident cancer report (including 

cancer diagnoses as cause of death) or end of the five-year follow-up period. The learning 

period included the entire patients’ medical records up to a random point between 6 and 

12 months before baseline. This feature of adjustment is to account for any potential 

inaccuracies in timing of prescription (or decision to prescribe) and to avoid possibility 

of antihypertensive prescription itself influencing the model training. “CPRD Product 

codes” are used for identifying classes of antihypertensives obtained from a dataset 

published by University of Bristol171. Codes for identifying cancer were found in 

published code sets validated for CPRD data9.  

6.3.3 Semi-synthetic data generation 

 Data generation of sequential, temporal variables is currently a difficult and 

arguably an unsolved task; many approaches have been suggested but have not undergone 

rigorous validation. Hence, instead of synthesizing all medical history variables including 

pre-exposure, exposure, and outcome variables, the existing medical history and exposure 
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variables in observational data was used to exclusively simulate binary factual and 

counterfactual outcomes.  

 Inspired by other semi-synthetic data simulations, intuitively, the association 

between a medical history variable 𝑍𝑖 (e.g., some diagnosis/medication) and exposure 𝑇𝑖 

with the empirical propensity in the dataset: 𝜆𝑖 = 𝑃(𝑇𝑖 = 1|𝑍𝑖)167,172 were first modelled. 

If associated to an exposure (𝜆𝑖 ≠ 0.5), the potential outcomes, 𝑌𝑖(𝑇 = 1) and 𝑌𝑖(𝑇 = 0) 

as a function of 𝜆𝑖 and exposure 𝑇𝑖 = 1 and 𝑇𝑖 = 0 respectively were generated. In this 

way, semi-synthetic outcomes arose from an association between 𝑍𝑖 and exposure and 𝑍𝑖 

and the outcome. Hence, the relationship between exposure and outcome is confounded 

via simulation by 𝑍𝑖. While the empirical RR – the proportion of the outcome in one 

exposure group divided by the same in the other – would yield confounded causal 

conclusions, effectively adjusting for the confounder variable, 𝑍𝑖 , would yield 

identifiable (see section 6.3.1 and extended introduction in section 2.4.2) causal 

association between exposure and outcome.  

 In addition, to test model adjustment potential in situations of varying 

confounding intensity, the contribution of the confounding was weighted with a β factor: 

the greater the β implies the greater the confounding. More details of the semi-synthetic 

data generative process and functions modelled are in supplementary methods section 

9.3. 

 In this work, investigations in semi-synthetic data utilizing two forms of 

confounders, persisting and transient confounding are presented. Persisting confounding 

is defined as confounders that are assigned at birth and persist through one’s life course: 

ethnicity, sex, genes, and other variables assigned at birth that associate to variables later 

in age. Transient confounding is defined as confounders that manifest at a point or period 

of one’s life effecting events downstream in time: disease diagnoses, age itself, 
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prescriptions, and other variables manifesting during one’s life course (and specifically, 

after birth). These two distinctions of confounding are presented in this work because 

these are prevalent forms of confounding seen in population health research173. While 

these forms of confounding are not comprehensive, these two forms allow testing of 

various models. 

 From the observational dataset, two exposure groups – ACEIs and Diuretics are 

investigated; upon close examination of pre-exposure variables and associations with 

exposure status, it was found that female sex was associated to the Diuretics exposure 

status and hence, it is chosen to be a persistent confounder and conditional outcomes were 

generated. For another pair of exposures, i.e., ARBs and CCBs, the association of 

incidence of at least one of heart failure, hypertension, ischaemic heart disease, and 

diabetes mellitus to CCBs was found associated to exposure status. Thus, occurrence of 

at least one of these diseases as “cardiometabolic diseases” is set as the confounding 

variable and is utilized as a transient confounder for the second set of semi-synthetic data 

experiments. The various strengths: low, medium, and high confounding intensity are set 

for experiments with sex and cardiometabolic disease as confounders (β values: [1, 5, 10] 

and [25, 50, 75] respectively). In sum, with this confounding generation method, model 

confounding adjustment ability is tested with two forms of confounding at various 

degrees of intensity (β values) offering a total of 6 experiments (two forms of confounding 

at three levels of strength each). 

 On the semi-synthetic dataset with highest intensity of cardiometabolic disease 

confounding, finite-sample causal estimation experiments are conducted. Since 

estimation in limited sample settings are known to be unstable in many cases (e.g., for 

inverse probability weighted estimators) despite asymptotic guarantees, the finite-sample 

estimation ability of models is important and worth testing174. And, the confounding 
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strength level is specifically set to the highest intensity level (β=75) because we wished 

to investigate how the model performs in estimation of RR in situations subject to the 

greatest/strongest confounding. The finite-sample estimation ability of the proposed 

model and other deep learning models are explored by applying the models on random 

sub-samples of this dataset:  2.5%, 5%, 10%, 25%, 50%, and finally, the entire dataset. 

6.3.4 Model development 

 The model, Targeted-BEHRT, utilizes a modified feature BEHRT extractor to 

capture both static and temporal medical history variables and captures initial estimates 

of RR. After predicting propensity score and conditional outcomes with independent 

linear maps (and appropriate sigmoid activation functions for binary 

outcomes/exposures), we use CV-TMLE to correct for bias in initial RR estimate and 

compute corrected RR (see Figure 6-2).  
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Figure 6-2: Targeted-BEHRT model and embedding structure 

 

A. Above, the model is shown. Generally, an input x (static and temporal variables) is fed 

to a feature extractor, which outputs a dense latent state (for EHR modelling, this feature 

extractor is BEHRT). The output of the final layer of the BEHRT feature extractor is fed 

to the Masked EHR modelling (MEM) prediction head to predict any masked encounters. 

TN+1 token state is fed to a Variational Autoencoder (VAE) neural network to predict 

masked static variables. The latent state of the first token (T1) is fed to a pooling layer to 

predict propensity and conditional outcomes with multiple prediction heads with feed 

forward (FF) neural network layers. The loss consists of the unsupervised loss from two 

MEM components – temporal (temp) and static (static) unsupervised data training - and 

the supervised loss of the propensity and factual outcomes. B. Below, the embedding 

structure for modelling rich EHR data is shown. Clinical encounters timestamped by 

age/year/position (visit number) are converted to vector representations and fed to model 

as temporal variables. Static data variable embeddings: patient sex, region in UK, and 

smoking status are concatenated to the temporal variable embeddings. The figure was 

adapted from Rao et al170. 

 Intuitively, Targeted-BEHRT first extracts latent EHR features from static 

covariates and fixed sub-sequences of medical history with BEHRT. Second, the model 

predicts propensity of exposure and conditional outcome using these learned features. 
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Third, by additionally conducting auxiliary unsupervised learning, the model trains on 

reconstruction of both static and temporal data with two-part Masked EHR modelling 

(MEM).  

 The propensity prediction model is modelled as 1-hidden layer multilayer 

perceptron (MLP) and for each conditional outcome, we use a 2-hidden layer MLP with 

Exponential Linear Unit (ELU) activation. 

 With patient data tuple (𝑋𝑖 , 𝑌𝑖 , 𝑇𝑖) as described in section 6.3.1, parameters θ, 

propensity prediction head 𝑔(𝑋𝑖), and conditional outcome prediction heads, 𝐻(𝑋𝑖 , 𝑇𝑖)  

for input 𝑋𝑖 and exposure 𝑇𝑖 for patient i, the loss is: 

 
�̂�(𝑿𝒊; 𝜽) = 𝑪𝒓𝒐𝒔𝒔𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑯(𝑿𝒊, 𝑻𝒊; 𝜽), 𝒀𝒊)

+ 𝑪𝒓𝒐𝒔𝒔𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝒈(𝑿𝒊; 𝜽), 𝑻𝒊) 

(6-1) 

 Next, we conduct MEM for two-part unsupervised learning: (1) temporal 

variable and (2) static variable modelling. The first part – unsupervised learning on 

temporal data – functions similarly to MLM in Natural Language Processing119. In MLM, 

the model receives a combination of masked, replaced, and unperturbed tokens (temporal 

or textual data) and the task is to predict the masked or replaced encounters. We do the 

same but additionally enforce another constraint: when replacing encounters, we do not 

replace encounters with those that define the exposure or outcome - antihypertensives and 

cancer in the current set of experiments. With encounter j for patient i represented as 

𝐸𝑖,𝑗 ⊂ 𝑋𝑖 (i.e., encounters being a subset of the input 𝑋𝑖), masked/replaced encounters 

represented as �̃�𝑖,𝑗 , BEHRT feature extractor B, temporal unsupervised prediction 

network M, neural network parameters 𝜙𝑀𝐸𝑀−𝑇𝑒𝑚𝑝, we develop objective function:  
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𝓛𝑴𝑬𝑴−𝑻𝒆𝒎𝒑
̂ (𝑬𝒊,𝒋; 𝝓𝑴𝑬𝑴−𝑻𝒆𝒎𝒑)

= ∑ 𝑪𝒓𝒐𝒔𝒔𝑬𝒏𝒕𝒓𝒐𝒑𝒚 (𝑴 (𝑩(�̃�𝒊,𝒋; 𝝓𝑴𝑬𝑴−𝑻𝒆𝒎𝒑 )) , 𝑬𝒊,𝒋)

|𝑬𝒊|

𝒋=𝟏

 

(6-2) 

 For the second part of the MEM, static data modelling, variational autoencoders 

(VAEs) were chosen for the representation learning for the static data. We model static 

categorical variables: region, smoking status at baseline, and sex; the three variables are 

embedded in high dimensional embeddings (embedding dimensions for each variable are 

hyperparameters of the Targeted-BEHRT model) and mapped (via 1-layer MLP) to the 

size of the encounter (temporal) embeddings and finally, concatenated to the encounter 

embeddings. Hence, the BEHRT model functions as feature extractor for static/temporal 

variables and encoder for the VAE (see Figure 6-2). The temporal variables interact with 

the static variables through the multi-head self-attention mechanism of the BEHRT 

architecture123. For training the VAE, similarly to the temporal modelling, we mask some 

variables as input, and use a variable-specific decoder to decode the variable (if masked). 

Specifically, for static variable 𝑋𝑖,𝑣 of a total of 𝑉 static variables patient i, 𝑞𝜙𝐸𝑛𝑐
(𝑍𝒊|𝑋𝒊) 

representing the encoder, and 𝑝𝜙𝐷𝑒𝑐
(𝑋𝑖,𝑣|𝑍𝒊)  representing the multivariate Bernoulli 

decoder for variable v, the VAE loss is: 

 

𝓛𝑴𝑬𝑴−𝑺𝒕𝒂𝒕𝒊𝒄 
̂ (𝒙𝒊; 𝝓𝑬𝒏𝒄, 𝝓𝑫𝒆𝒄)

= ∑ ∑ 𝐥𝐨𝐠 𝒑𝝓𝑫𝒆𝒄
(𝑿𝒊,𝒗|𝒁𝒊)

𝒏

𝒊=𝟏

𝑽

𝒗=𝟏

− ∑ 𝑫𝑲𝑳 (𝒒𝝓𝑬𝒏𝒄
(𝒁𝒊|𝑿𝒊) ||𝒑𝝓𝑫𝒆𝒄

(𝒁𝒊))

𝒏

𝒊=𝟏

 

(6-3) 

 The complete objective function to be minimized is the summation of Equations 

(6-1),  (6-2), and (6-3) as shown in Equation (6-4): 
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�̂�, �̂�, �̂�𝑬𝒏𝒄, �̂�𝑫𝒆𝒄, �̂�𝑴𝑬𝑴−𝑻𝒆𝒎𝒑

= 𝐚𝐫𝐠𝐦𝐢𝐧
𝜽,𝜺,𝝓𝑬𝒏𝒄,𝝓𝑫𝒆𝒄,𝝓𝑼

∑ �̂�(𝑿𝒊; 𝜽)

𝒏

𝒊=𝟏

+ 𝜹 (𝓛𝑴𝑬𝑴−𝑻𝒆𝒎𝒑
̂ (𝑬𝒊,𝒋; 𝝓𝑴𝑬𝑴−𝑻𝒆𝒎𝒑)

+ 𝓛𝑴𝑬𝑴−𝑺𝒕𝒂𝒕𝒊𝒄
̂ (𝑿𝒊; 𝝓𝑬𝒏𝒄, 𝝓𝑫𝒆𝒄))  

(6-4) 

 With hyperparameter δ for weighting the contribution of the unsupervised MEM 

loss terms. 

6.3.5 Processing data for modelling 

 The modalities of CPRD considered for130 deep learning modelling were sex, 

region, diagnoses from both primary and secondary care, medications, SBP 

measurements, and smoking status. We mapped Read codes from primary care and ICD-

10 codes from secondary care to 1,471 unique ICD-10 diagnostic codes to harmonize 

disease codes in the dataset; unmapped codes were included for completion120,175. 

Furthermore, we mapped medication codes to 426 codes in the BNF coding format. Since 

SBP is a continuous variable and the feature extractor requires discretized elements (see 

section 6.3.4) SBP measurements (in mm Hg) were grouped into 16 categories based on 

pre-specified boundaries ([90-116], (116,121], (121,126], …, (181,186], >186). 

Furthermore, calendar year, age (months), and relative position (visit number) were 

utilised for the sequential/temporal modalities. Each patient p had np encounters, or 

instances of modalities: diagnoses, medications, and SBP measurements. Smoking status 

at baseline (non, previous, or current smoker), region (10 regions in England, and sex 

(male, female), were static variables included in modelling. 
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6.3.6 Benchmarks and causal estimation 

 Before pursuing the causal investigations with deep learning modelling, 

contextualized EHR embeddings and network weights are pre-trained via the MEM task 

on the pretraining dataset. This MEM task is used to generally train weights on all patients 

in CPRD before progressing to causal modelling (6,777,845 patients in Figure 6-1). 

 For semi-synthetic investigations, several statistical and deep learning models 

are implemented to serve as benchmarked comparison models for causal inference. The 

benchmarks include Bayesian Additive Regression Trees (BART), Logistic Regression 

(LR) and L1/L2 regularization variants, and LR with Targeted Maximum Likelihood 

Estimation (TMLE)156,176. The covariates for these models were chosen to be baseline 

age, smoking status, sex, region, incidence of 33 curated disease groups, and additionally 

prescription of four additional medication groups. While inclusion of baseline variables 

in epidemiological observational studies is standard practice, the disease/medication 

groups were included to enable a fairer comparison to deep learning modelling. 

Furthermore, diagnoses and medications are known to be confounders in observational 

studies, so adjustment of these variables is important for causal estimation. To ensure that 

the diagnoses and medication groups are medically valid clusters of diseases and 

medications respectively, groups compiled by past medical research are utilised in this 

research project9,171. A deeper explication is given in Supplementary section 9.3.2. 

 To serve as deep learning benchmarks, staple deep learning models for average 

causal effect are implemented: TARNET, TARNET + MEM (i.e., with unsupervised 

MEM component), and Dragonnet with BEHRT feature extractor and the embedding 

format presented in Figure 6-2A. These models are initialised with pretrained weights. 

After implementing and evaluating benchmarks, the proposed model, Targeted-BEHRT 
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with pre-trained network weights where applicable is implemented and modelling of 

semi-synthetic data investigations is pursued.  

 For the semi-synthetic data experiments, variables of cardiometabolic disease 

and sex respectively as input are not fed into models; it was necessary that the statistical 

and deep learning models infer confounding from remaining input variables. In routine 

clinical data, the observational studies would often not have access to all confounding 

variables. Hence it is important to test models’ ability to adjust for confounding given 

limited input variables. 

 For all investigations, experiments with five-fold cross validation causal 

estimation were conducted. We calculated RR on the test dataset for each fold as advised 

by Chernozhukov et al and compute 95% Confidence Intervals (CI) over the five folds158. 

RR defined by naïve estimator on a finite sample: �̂� = 𝔼 [
𝔼[𝐻(𝑋,1)]

𝔼[𝐻(𝑋,0)]
]  for TARNET, 

TARNET-MEM, LR (and L1/L2 regularization variants), and BART are estimated. For 

Targeted-BEHRT, we use the CV-TMLE method for the estimation of RR. For 

Dragonnet, the model with the CV-TMLE estimator in order to directly compare the 

model with this benchmark model. In addition, we also implement the Dragonnet model 

with the naïve estimator (i.e., the original model without post-hoc estimator). For more 

information on the CV-TMLE method, advantages over TMLE, and implementation, 

please refer to supplementary material section 9.3.3. For models that utilized predicted 

propensity scores, we conducted propensity score trimming and exclude patients with 

predicted propensity score greater than 0.97 and less than 0.03 before pursuing RR 

calculation177.  

 We identified the superior model by identifying the model with least Sum 

Absolute Error (SAE) over the three β values for each confounding experiment. We report 
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the Standard Error (SE) for the SAE; this metric was calculated using additive 

propagation of error178. For deep learning models, we also present the same results with 

an ablation study; the change in SAE is presented as modules are iteratively removed 

from the proposed Targeted-BEHRT model. 

6.3.7 Implementation 

 We developed all statistical and deep learning models on python (deep learning 

models on Pytorch)179. Hyperparameters for the BEHRT feature extractor are reported in 

Supplementary Table S6. The Adam optimizer with exponential decay scheduler (decay 

rate=0.95) was used on all deep learning models to ensure training convergence180. For 

TARNET-MEM and Targeted-BEHRT, we pre-trained 5 epochs on exclusively the MEM 

task on the cohort investigated (in addition to pre-training on the ~6.7 million patients) 

before initiating joint MEM-causal task training.  

 After fitting deep learning and statistical models, in order to derive estimates for 

RR estimation, evaluation of the model on the test fold of the dataset using standard direct 

estimation methods was conducted61. For all patients in the test set, we first derived risk 

estimates (e.g., estimation of 𝑃(𝑌|𝑋, 𝑇 = 0)) patients as if they were all assigned 𝑇 = 0, 

and similarly, derived estimates (e.g., estimation of 𝑃(𝑌|𝑋, 𝑇 = 1)) as if they were all 

assigned 𝑇 = 1. In this way, the RR estimate, �̂� can be derived as a function of these two 

quantities: 

 �̂� = 𝔼 [
𝔼[𝑯(𝑿, 𝑻 = 𝟏)]

𝔼[𝑯(𝑿, 𝑻 = 𝟎)]
] (6-5) 

 LR (and regularization variants), BART, TMLE and CV-TMLE were 

implemented in python inspired by past works utilising TMLE152. To fit the nuisance 

parameter for the TMLE estimate update step, Nelder-mead optimisation was 
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utilised181,182. For deep learning models implemented with CV-TMLE, the naïve 

estimator (Equation (6-5)) was not used; rather, the CV-TMLE estimator was 

implemented utilising conditional outcome predictions, 𝐻(𝑋, 𝑇 = 1), 𝐻(𝑋, 𝑇 = 0), and 

propensity score prediction, 𝑔(𝑋). 

6.4  Results 

6.4.1 Population statistics 

Table 6-1: Characteristics for patients eligible for cohort study concerning 

antihypertensives and cancer 

YOB: year of birth; baseline: the time of exposure assignment; SD: standard deviation; 

%: percentage. The table was adapted from Rao et al170.  

 In the dataset for the investigation of antihypertensives on incident cancer, 

186,709, 150,098, 128,597, 28,991, and 21,970 patients for ACEIs, BBs, CCBs, diuretics, 

ARBs were identified respectively totalling 516,365 patients. We demonstrate population 

statistics in Table 6-1. Cancer incidence counts/percentage of exposure group were 

13,728 /7%, 9,819/7%, 10,232/8%, 1,784/6%, and 1,709/8% for ACEIs, BBs, CCBs, 

diuretics, ARBs respectively. 

6.4.2 Semi-synthetic data experiments 

 In the semi-synthetic experiments on confounders cardiometabolic diseases and 

sex, we tested the Targeted-BEHRT models against several statistical and deep learning 

 Classes of antihypertensives 

ACEIs BBs CCBs Diuretics ARBs 

Number (%) 186709 (36) 150098 (29) 128597 (24) 28991 (5) 21970 (4) 

Male (%) 101629 (54) 67794 (45) 60395 (46) 8134 (28) 10454 (47) 

YOB (SD)  1938 (15) 1941 (15) 1936 (14) 1934 (16) 1940 (14) 

Baseline Age (SD) 63 (14) 59 (14) 64 (13) 63 (15) 63 (13) 

Number of visits (SD)  7 (4) 6 (4) 6 (4) 4 (4) 7 (4) 

Baseline Year (SD) 2001 (4.2) 1999 (4.3) 2000 (4.9) 1996 (5.2) 2002 (2.8) 
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benchmarks. In Figure 6-3, we show SAE with SE measures calculated over all β-specific 

semi-synthetic data experiments. We include more detailed experimental results in 

Supplementary Table S7 in section 9.3.5. 



 

     119 

Figure 6-3: Semi-synthetic data experiments on various confounders and ablation 

analyses 

 

Experiments on semi-synthetic data with sex (A) and cardiometabolic disease (B) as 

confounders; module inclusion analysis of causal modules (C). We show Sum Absolute 

Error (SAE) between ground truth risk ratio (RR) and estimated RR with standard error 

measures in both panels. The x axis is shown by the models implemented on these 
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datasets, and the y axis is the SAE (lower is better). We present the numerical value and 

standard error measures underneath the model names. In C, we present the 

transformation from Targeted-BEHRT into other deep learning benchmarks. We show 

increase in average SAE (i.e., increase in error) across experiments of transient and 

persistent confounding in red as the model strips away components from its architecture 

indicated by (–). The figure was adapted from Rao et al170. 

 Targeted-BEHRT was found to outperform all given deep learning and statistical 

model solutions in terms of SAE whilst maintaining narrow SE. Additionally, across both 

experiments, we found that deep learning models for EHR benefit from inclusion of CV-

TMLE. This is seen by superior performance of both Dragonnet + CV-TMLE and 

Targeted-BEHRT in comparison with TARNET, which does not handle propensity score 

modelling. However, by investigating the exclusion of various modules from the chassis 

of Targeted-BEHRT shown in the ablation analysis (Figure 6-3C), we see that exclusion 

of MEM diminished RR estimation accuracy in a parallel way; the TARNET model with 

inclusion of MEM (SAE increase of 0.213) did approximately as well as Dragonnet + 

CV-TMLE (SAE increase of 0.305) averaged over experiments of persistent and transient 

confounding. Removal of CV-TMLE from Dragonnet + CV-TMLE further deteriorated 

performance of the Dragonnet model (SAE increase of 0.077). Ultimately, the 

improvement in combining both MEM and propensity/CV-TMLE modelling and forming 

Targeted-BEHRT demonstrated greatest SAE reduction of 0.676 - more so than the sum 

of its parts: 0.518 (0.231 + 0.305).  

 In the finite-sample estimation experiments shown in Figure 6-4, we showed that 

Targeted-BEHRT outperforms other models in RR estimation in individual and across 

data subsamples. While improvement of Targeted-BEHRT over Dragonnet + CV-TMLE 

is less pronounced than over other models, panel B shows that Targeted-BEHRT still 

demonstrates superior RR estimation performance with respect to the deep learning 

benchmarks. Furthermore, we found that inclusion of MEM aids more precise estimation 

of RR; TARNET + MEM and Targeted-BEHRT perform better than TARNET over all 
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finite samples as shown in Figure 6-4B. However, we note the application of CV-TMLE 

is more important than MEM in smaller datasets as seen by superior performance of 

Dragonnet + CV-TMLE as opposed to TARNET + MEM in Figure 6-4B. Furthermore, 

models equipped with propensity modelling (and CV-TMLE specifically) maintain 

relatively stable SAE across subsampling fractions while TARNET and derivatives suffer 

in RR estimation in smaller datasets. Lastly, across experiments in this work, while Figure 

6-3 demonstrates that MEM is more important in observational settings with more 

samples (full dataset), Figure 6-4B shows that CV-TMLE provides greater utility in 

observational settings with limited samples. Implemented simultaneously (i.e., the 

Targeted-BEHRT model), both components ensure robust estimates across various 

sample sizes.  

Figure 6-4: Finite-sample estimation experiments 

 

A. We conduct experiments on finite subsamples of the semi-synthetic dataset for 

cardiometabolic confounding (𝛽 =75). The subsampling fraction of the dataset is shown 

on the x axis. The y axis shows error from ground truth risk ratio (RR). The models: 

TARNET (and with Masked EHR Modelling (MEM)), Dragonnet (and with CV-TMLE), 

and Targeted-BEHRT estimate RR on the fractional samples of the dataset. The point 

estimate is the mean value on five-fold cross validation and the error bars represent 95% 

confidence intervals for those point estimates of RR. B. Sum Absolute Error (SAE) across 

the seven subsamples of the dataset are shown for each model (Denoted by colour) is 

shown. The four models are represented by the four bars with interval defined by 

Standard Error (SE) and colour scheme is the same as part A. The figure was adapted 

from Rao et al170. 
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 As a trend, SAE across models began to converge as the dataset size increased 

as shown in Figure 6-4. Theoretically, as the number of samples increases, the finite-

sample bias is mitigated, and hence, the performance of TARNET and derivations should 

be similar to those of models assisted by propensity modelling also noted by Shi et al152. 

Figure 6-5: Association of antihypertensives and incident cancer (fatal and non-

fatal) 

 

Application of Targeted-BEHRT on routine clinical data: Association of ACEI on 

incident cancer with respect to BBs, CCBs, Diuretics, and ARBs. We demonstrate 

Targeted-BEHRT with CV-TMLE risk ratio (RR) estimates with 95% Confidence 

Intervals (CI) on the Targeted-BEHRT model. In addition, we show empirical RR in the 

observational cohort selected for these experiments. The ground truth is assumed to be 

1.0 (null) for all four associations validated by meta-analysis of RCTs. BBs: beta 

blockers; CCBs: calcium channel blockers; ACEIs: angiotensin-converting-enzyme 

inhibitors; ARBs: angiotensin receptor blockers; RR: risk ratio. The figure was adapted 

from Rao et al170. 
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 We applied the model on the routine clinical data study of association of ACEIs 

and incident cancer with respect to other antihypertensive drug classes and show the 

results in Figure 6-5. Across all four drug class comparisons, while the empirical RR often 

tended away from null implying a preventive or harmful effect, we showed that the 

model’s 95% confidence interval for RR covered the null hypothesis (1.0 RR) across 

almost all drug class comparisons with exception of CCBs. 

6.5  Interpretation 

 In this work, by utilizing large scale comprehensive EHR and deep learning 

methods, a model for observational causal inference was developed. The proposed model 

was validated against both statistical and deep learning models across six semi-synthetic 

experiments involving simulated confounding at various levels of strength (including 

finite-sample data experiments). Finally, we applied the model to a routine clinical data 

observational study to demonstrate ease of implementation in addition to the utility of the 

model in a case-study, in which all confounders are not explicitly given and perhaps not 

comprehensively measured (breakdown of strong ignorability).  

 Our work has contributions to the field of EHR-based deep learning research for 

causal inference and modelling generally. First, the Targeted-BEHRT model incorporates 

both static and temporal data embeddings into a unified embedding structure hence 

allowing adjustment over a spread of data types. Second, the model utilises a unique 

MEM unsupervised learning task combining MLM and VAE-based representation 

learning in tandem with the causal inference objective. The benefits of the unsupervised 

learning objective were clarified across multiple experiments as both TARNET and 

Targeted-BEHRT benefited with the MEM training. In our assessment, this is the first 

work conducting causal inference incorporating unsupervised learning on multiple EHR 
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data types. Third, CV-TMLE estimation correction was utilised for less biased RR 

estimation for deep learning causal models on EHR data. While MEM modelling for RR 

estimation was found to be especially useful in larger dataset sizes, we found that in the 

finite-sample estimation experiments, CV-TMLE is more critical for accurate RR 

estimation. Finally, we show that the model can be easily applied to test a clinical 

hypothesis regarding treatment effect in an observational setting.  

 Our work has some limitations and scope for future development. First and most 

fundamentally, while comprehensive EHR is very useful for observational studies, there 

is no guarantee of strong ignorability; in fact, realistically, confounders have been omitted 

in observational modelling. A variety of variables affecting outcome may be unadjusted 

(explicitly or through latent representation modelling) and further modality inclusion is 

necessary in future work to help mitigate residual confounding. While variational 

modelling strategies have been adopted in this work, latent confounding adjustment can 

be subsequently investigated in future works with more expressive latent variable 

modelling techniques to enrich EHR183. Also, in terms of encoding diseases in the model, 

the ICD-10 codes were used for encoding disease records. However, there are known 

issues of losing specificity of the code information when normalising to lower levels of 

ICD-10 (e.g., 3-character level). Future studies should investigate different resolutions of 

the ICD-10 encoding for inputting disease codes into Transformer models. In terms of 

data curation, we have allocated patients into an exposure group based on first 

prescription of class of antihypertensives. Subgroup investigations involving drug 

formulation, intensity, and duration of treatment should be additionally pursued in future 

studies. Other stratified analyses (e.g., sex, age, prior cardiometabolic disease) must also 

be actively pursued to perhaps identify heterogeneous treatment effect. In terms of 

applying the model to a case study, Targeted-BEHRT estimated null in most drug 
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comparisons in the routine clinical data study, but we note that the model finds the 

comparison to CCBs to deviate from the null (although quite proximal to the null 

hypothesis with <1.1 RR). While findings from the RCTs generally demonstrate that 

antihypertensives pose no effect on cancer, the evidence regarding CCBs is still 

conflicting and further research is required169. 

 On the other hand, it must be noted that over-adjustment may also result in biased 

estimation. Although found to be an uncommon issue in observational modelling, M-

structure bias variables (a special case of collider variables) might exacerbate estimation 

biases if included in adjustment; although in general, empirical studies have shown 

conditioning on all pre-treatment variables is still the optimal course of action184,185. The 

bias due to omission of confounders is found to be stronger than that due to over-

adjustment184,185. However, further research must be conducted on the effect of complex 

variables such as M-structure variables specifically in the context of propensity-score 

modelling and the observational data setting. 
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7 ASSOCIATION ANALYSES IN 

AT-RISK PATIENTS 

 In this chapter, we apply the model, Targeted-BEHRT (see section 6.3.4) to 

better understand various associations in those with pre-existing conditions or 

multimorbidity. We have demonstrated in semi-synthetic experiments that Targeted-

BEHRT is a powerful model that outperforms benchmark statistical and deep learning 

solutions for causal effect estimation on EHR data. Furthermore, the model’s estimation 

of the association between antihypertensives and cancer was in line with meta-analyses 

of randomised evidence as well. Given the initial success of this model, I proceed to 

implement this model in observational cohorts, for which less is known about factors 

contributing to risk and protection. In this chapter, I implement the Targeted-BEHRT 

model in three analyses: 

1. The association of systolic blood pressure and cardiovascular outcomes in patients 

with diabetes 

2. The association of systolic blood pressure and cardiovascular outcomes in patients 

with COPD 

3. The association of sodium-based paracetamol and cardiovascular outcomes, all-

cause mortality, and systolic blood pressure as a continuous outcome in the elderly 

with respect to non-sodium-based formulations of the same. 
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 The material in the first section has been organised in the manuscript titled 

“Systolic blood pressure and cardiovascular risk in patients with diabetes: a prospective 

cohort study” and has been published in Hypertension 

(doi.org/10.1161/hypertensionaha.122.20489). The material in the second section has 

been organised in the manuscript titled “Systolic blood pressure, chronic obstructive 

pulmonary disease, and cardiovascular risk: a prospective cohort study” and is under 

review at Heart.  The material in the third and final section has been organised into a 

manuscript titled, “Association of sodium-based paracetamol with changes in systolic 

blood pressure, cardiovascular events and all-cause mortality: a cohort study” and has 

been submitted for publication. The manuscripts are a product of work by multiple 

authors. As first author on all three of the manuscripts, my role consisted of designing the 

study, conducting literature review, processing data, conducting statistical/deep learning 

analyses, and writing the first drafts of the manuscripts. Material from the 

manuscripts/publications (including figures, tables, and text) have been amended for 

presentation in the following sections. 

7.1 Systolic blood pressure, cardiovascular outcomes, and 

diabetes 

7.1.1 Introduction 

 BP reduction is a well-known primary and secondary preventive strategy for 

cardiovascular events in addition to diabetes15. Observational studies conducted in the 

general cohort have suggested that the association between elevated BP and risk of major 

cardiovascular disease continuous or log-linear186,187. However, the association in patients 

with pre-existing cardiometabolic disorders is less well understood.  
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In people with diabetes, reports have been inconsistent in their conclusion about 

the nature of the association between SBP and risk of cardiovascular disease. In patients 

with known diabetes free of pre-existing cardiovascular conditions, prospective cohort 

studies have rendered conflicting conclusions. While some studies generally preserved 

the established log-linear relationship, others have concluded a “J-shaped” association in 

which, the lowest risk of cardiovascular events was at SBP between 135 and 139 mm Hg 

16,188. Moreover, in patients with diabetes with and without prior cardiovascular diseases, 

as seen in supplementary analyses conducted by Adamsson Eyrd et al., a clear J-shaped 

pattern is presented with a nadir of risk between 130 and 139 mm Hg for most 

cardiovascular outcomes (adapted below in Figure 7-1)16. This apparent discontinuous 

relationship has found some support from conventional meta-analyses of randomised 

controlled trials. For instance, in one study of BP-lowering in people with diabetes was 

found to increase the risk of cardiovascular death when the trial-average SBP was below 

140 mm Hg 189. However, previous observational studies using conventional statistical 

models are prone to reverse causation and uncontrolled confounding 15,16. 

Figure 7-1: Association of systolic blood pressure and cardiovascular endpoints in 

patients with diabetes as conducted by previous studies 
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Association with composite of a composite of myocardial infarction, stroke, coronary 

heart disease, heart failure, and all-cause mortality estimated by Cox proportional 

hazards modelling and hazards ratio with 95% confidence interval (CI) given across the 

spectrum of systolic blood pressure (SBP). Nadir of risk illuminated with blue highlight. 

Figure redrawn from supplementary material of publication by Adamsson Eyrd et al16. 

7.1.2 Aims 

 As a consequence, it has remained uncertain as to whether the effect of SBP on 

cardiovascular diseases in patients with pre-existing diabetes varies by baseline SBP. In 

this study, we applied Targeted-BEHRT to evaluate the relationship between SBP and 

cardiovascular events in a sample of 49,000 UK patients with diabetes using EHR data 

from the CPRD dataset. 

7.1.3 Methods 

 We used retrospective anonymised EHR data from CPRD5,131. We used EHR 

from two data sources, primary care and secondary care (HES) within CPRD to identify 

a cohort of 49,000 individuals with diabetes: Those between 50 and 90 with at least one 

blood pressure measurement taken between the years 1990 and 2005 were included in 

this study with index date (baseline) being defined as the date of the first SBP 

measurement in this time period. We identified individuals as having diabetes at baseline 

using validated phenotyping methods9,130,190. Consistent with standard epidemiological 

studies, patients with heart failure before baseline were excluded from the study15.  

 This cohort study followed the Strengthening the Reporting of Observational 

Studies in Epidemiology (STROBE) reporting guidelines.  

7.1.3.1 Exposure 

 The exposure variable in this study was SBP and was derived from the CPRD 

measurements dataset. Blood pressure measurements are recorded by staff at the general 

practice (GP) during a visit/consultation5. In our study, we extracted SBP values and 

excluded measurements below 50 and above 300 mm Hg; this exclusion was conducted 
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based on recommendations by previously published methods to remove erroneity in 

measurements191. Following extraction and filtering, the exposure status for a patient was 

calculated as mean of the SBP measurements in the exposure period, defined as the first 

12 months after index date. Patients were categorised into six exposure categories of this 

averaged measure of SBP over the course of the exposure period:  ≤120 mm Hg 

(reference), 120–129 mm Hg, 130–139 mm Hg, 140–149 mm Hg, 150–159 mm Hg, and 

≥ 160 mm Hg. 

7.1.3.2 Outcomes 

The primary outcome was fatal/non-fatal cardiovascular diseases defined as a 

composite of IHD, incident heart failure, stroke, and cardiovascular-related death. 

Secondary outcomes investigated in this study were individual components of the defined 

primary outcome (1) IHD, (2) incident heart failure, and (3) stroke.  We identified 

cardiovascular events using three data sources in CPRD: (1) primary care, (2) secondary 

care (HES), and (3) the Office of National Statistics (cause-specific mortality) using 

previously published phenotyping algorithms 9. Read codes were used to identify the 

conditions in the primary care setting while ICD-10 codes were used to identify cases in 

the secondary care and mortality setting. Follow-up period started one year from index 

date (i.e., following the exposure period). Events within 9 years of the follow-up period 

(i.e., between 12 and 120 months after index date) were captured for analysis; this feature 

of study design was incorporated to avoid conducting causal inference in the time period 

overlapping with the exposure period (i.e., the first 12 months following index date). 

Those who had events or left the study within the first 12 months following index date 

were removed from the analysis (Figure 7-2).  
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Figure 7-2: Study design: systolic blood pressure, cardiovascular endpoints, and 

diabetes  

 

Study design of investigation of the association between systolic blood pressure (SBP) 

and cardiovascular outcomes in patients with diabetes. Index date (baseline) for a given 

patient is the date of the first SBP measurement recorded between 1990 and 2005 and 

ages 50 and 90.  

7.1.3.3 Statistical and deep learning analyses 

For analyses of the primary and secondary outcomes, the causal deep learning 

model, Targeted-BEHRT was implemented170. For inclusion of EHR variables in the 

Targeted-BEHRT model, we conducted data processing of raw CPRD data. First, 

diagnostic codes were harmonized by mapping Read codes from primary care and ICD-

10 codes from hospital data to a total of 1,497 unique diagnostic codes120. Second, we 

mapped CPRD medication codes in the “Product code” format to 386 codes in the BNF 

coding format 130. Third, we derived the variable, smoking status (current, former, never 

a smoker) identified by last known status in the 12 months before baseline. Fourth and 

finally, patient sex was extracted from CPRD for Targeted-BEHRT modelling. The 

sex/smoking status were included as static variables for modelling. Five-fold cross 

validation was used for the training/testing and evaluation of association. As necessary 

for the Targeted-BEHRT modelling approach, initial estimates were computed on 

patients from test set of each of the five iterations. Second, equipped with these initial 

estimates, we “updated” risk estimates utilising “doubly-robust” post-hoc estimator, CV-

TMLE, to further mitigate biases181. RR and 95% CI were derived from this post-hoc 
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estimation procedure. More details on the Targeted-BEHRT model can be found in 

section 6.3.4. 

 To compare against the Targeted-BEHRT framework, logistic regression (LR) 

models were implemented to investigate the studied association. The exposure, SBP 

group was included as a categorical variable and adjusted for age, sex, smoking status at 

baseline, BMI at baseline, atrial fibrillation, chronic kidney disease, antihypertensive use 

at baseline, high density lipoprotein (HDL) at baseline, total cholesterol (TC) at baseline, 

and triglycerides (TG) at baseline. Baseline BMI, TC, HDL, and TG were calculated as 

the average of measurements in the 12 months before baseline. Antihypertensives were 

identified by BNF code171. Smoking status (current, former, never a smoker) was 

identified by last known status in the 12 months before baseline. Chronic kidney disease 

and atrial fibrillation were identified with established phenotyping algorithms for CPRD9. 

To ensure a fairer comparison to the deep learning model, we conducted imputation 

before inputting data to LR models. Multiple imputation using chained equations was 

used to impute missing variables BMI, HDL, TC, TG, and smoking status; 25 imputations 

were conducted. For the LR, an estimate for the RR was obtained utilising direct 

estimation61. We calculated RR as the average across the test sets of k-fold cross 

validation (k=5) and calculated 95% CI over the five runs158. In addition to the LR model, 

the crude risk ratio was calculated as the average risk of the outcome in a particular 

exposure group divided by the average risk of the same outcome in the reference exposure 

group. This crude measure is an unadjusted measure.  

Additionally, seven sensitivity analyses were conducted using Targeted-BEHRT. 

First and second respectively, we conducted sex (male and female) and baseline age-

stratified (≤75 and 75 years of age) analyses. Third, since antihypertensives have been 

shown to be preventative for various cardiovascular events, we restricted the analyses of 
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the primary outcome to patients who had not taken antihypertensives during the exposure 

or follow-up period since treatment can dilute association192. Fourth and fifth 

respectively, to assess the possible impact of reverse causality, we excluded individuals 

who had cardiovascular events in the first 12 and 24 months of follow-up period. Sixth, 

we conducted stratified analysis of the primary outcome by baseline antihypertensive use 

to better understand association in the context of antihypertensive treatment. Seventh, we 

analysed the primary outcome including patients who left the study or had an event during 

the exposure period (Figure 7-2). 

7.1.4 Results 

7.1.4.1 Population statistics 

 A total of 49,000 patients with diabetes were included in this study (Figure S1). 

Demographic and baseline characteristics of patients in the exposure groups are provided 

in Table 7-1. The median follow-up from baseline was 7.3 with lower baseline SBP 

having higher prevalence of baseline IHD. On the other hand, patients in higher SBP 

exposure groups had greater antihypertensive use at baseline. BMI at baseline generally 

indicated an overweight cohort across all exposure groups. 45% of the individuals in the 

cohort were women and 39% current or former smokers. Further analyses of event rates 

are given in Table S8. 
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Table 7-1: Characteristics for patients with diabetes 

 Categories of baseline systolic blood pressure   

<120 mm 

Hg 

120-129 

mm Hg 

130-139 

mm Hg 

140-149 

mm Hg 

150-159 

mm Hg 

≥160 mm 

Hg 

 

No. (%) 2706 (5.5) 5881 (12.0) 10793 (22.0) 12203 (24.9) 8704 (17.8) 8713 (17.8)  

Follow-up, yrs 

(IQR) 

6.9 (2.5-9.0) 7.8 (3.1-9.0) 7.5 (3.2-9.0) 7.5 (3.2-9.0) 7.3 (3.0-9.0) 6.5 (2.8-9.0)  

Age, yrs (IQR)  60.0 (52.0-

70.0) 

61.0 (53.0-

70.0) 

63.0 (55.0-

72.0) 

65.0 (56.0-

73.0) 

66.0 (58.0-

74.0) 

69.0 (61.0-

76.0) 
 

Women (%) 1045 (38.6) 2309 (39.3) 4466 (41.4) 5350 (43.8) 4048 (46.5) 4638 (53.2)  

YOB (IQR)  1941 (1931-

1948) 

1940 (1931-

1948) 

1938 (1929-

1947) 

1936 (1928-

1945) 

1934 (1926-

1942) 

1931 (1924-

1939) 
 

BMI, kg/m2 (IQR)† 29.3 (26.8-

31.1) 

29.6 (27.3-

31.4) 

29.5 (27.4-

31.5) 

29.5 (27.5-

31.5) 

29.4 (27.5-

31.3) 

29.1 (27.4-

31.0) 
 

HDL, mmol/L 

(IQR)† 

1.3 (1.2-1.4) 1.2 (1.2-1.4) 1.3 (1.2-1.4) 1.3 (1.2-1.4) 1.3 (1.2-1.4) 1.3 (1.2-1.4)  

TG, mmol/L (IQR)† 2.2 (1.6-2.6) 2.2 (1.7-2.6) 2.2 (1.7-2.6) 2.2 (1.8-2.6) 2.2 (1.8-2.6) 2.1 (1.8-2.5)  

TC, mmol/L (IQR)† 5.1 (4.8-5.5) 5.1 (4.8-5.5) 5.1 (4.8-5.5) 5.2 (4.9-5.5) 5.2 (4.9-5.5) 5.3 (5.0-5.5)  

Smoking status†:  

     

  

   Current/former 

smoker (%) 

1234 (45) 2604 (44) 4479 (41) 5005 (41) 3172 (36) 2928 (33)  

   Never smoker (%) 1472 (54) 3277 (55) 6314 (58) 7198 (58) 5532 (63) 5785 (66)  

Disease at baseline:              

   IHD (%)  409 (15.1) 763 (13.0) 1235 (11.4) 1219 (10.0) 870 (10.0) 823 (9.4)  

   Chronic kidney 

disease (%) 

30 (1.1) 76 (1.3) 125 (1.2) 134 (1.1) 103 (1.2) 82 (0.9)  

   Stage 1 and 2 

kidney disease (%) 

37 (1.4) 67 (1.1) 123 (1.1) 143 (1.2) 79 (0.9) 103 (1.2)  

   Atrial fibrillation 

(%) 

122 (4.5) 194 (3.3) 320 (3.0) 315 (2.6) 232 (2.7) 207 (2.4)  

Medications at 

baseline: 

             

   Antihypertensive 

use(%) 

1036 (38.3) 2556 (43.5) 5459 (50.6) 6771 (55.5) 5045 (58.0) 5333 (61.2)  

Values presented are median with interquartile range (IQR) or percentage (%) YOB: 

year of birth; BMI: body mass index; HDL: high density lipoprotein; TC: total 

cholesterol; TG: triglycerides; IHD: ischaemic heart disease; SD: standard deviation; 

%: percentage. †The percentage of missing variables – BMI (55.1%), smoking status 

(29.2%), HDL (75.3%), TC (49.9%), TG (68.7%).  

7.1.4.2 Association analyses 

RR estimates from adjusted Targeted-BEHRT model demonstrated a rise in the 

risk of cardiovascular events with a rise in SBP categories (Figure 7-3). The crude and 

LR estimates of RR both depicted a J-shaped pattern (Figure S2). Compared with 
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reference SBP group (<120 mm Hg), the adjusted LR model demonstrated a nadir of risk 

at SBP between 130 and 139 mm Hg.  

Figure 7-3: Association with primary composite outcome in patients with diabetes 

 

Forest plot of risk ratio estimates of the Targeted-BEHRT model with 95% confidence 

intervals (CI) for association of systolic blood pressure and the primary composite 

outcome. From the left, the six exposure groups are shown in first column. Number of 

events and total number of patients in each exposure group is shown in second column. 

The forest plot and corresponding risk ratio estimates are shown in the right-most column 

relative to reference class, <120 mm Hg. The forest plot is plotted in logarithmic scale. 

For all estimates for reference class, there is no confidence interval.  

Estimates from the Targeted-BEHRT model investigating the association between 

SBP and secondary outcomes showed that the lowest risk of all secondary cardiovascular 

outcomes was observed at <120 mm Hg (Figure 7-4). On the other hand, both crude and 

adjusted LR modelling estimated that SBP between 130 and 140 mm Hg exhibited lowest 

risk of the secondary outcomes: incident heart failure and IHD (Figure S3). However, 

specifically for the investigation of stroke, the crude and adjusted LR models estimated 

that <120 mm Hg SBP demonstrated lowest risk similar to the Targeted-BEHRT model. 

Lastly, all models showed that patients with ≥160 mm Hg exhibited highest risk of 

secondary outcomes. 
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Figure 7-4: Association with secondary outcomes in patients with diabetes 

 

Forest plot of risk ratio estimates of the Targeted-BEHRT model with 95% confidence 

intervals (CI) for association of systolic blood pressure and secondary outcomes. From 

the left, the six exposure groups are shown in first column. Number of events and total 

number of patients in each exposure group is shown in second column. The forest plot 

and corresponding risk ratio estimates are shown in the right-most column relative to 

reference class, <120 mm Hg. The forest plot is plotted in logarithmic scale. For all 

estimates for reference class, there is no confidence interval.  

Shown in Figure 7-5, the sensitivity analyses investigating the association between SBP 

and the primary composite outcome using the Targeted-BEHRT model preserved the 

trend found in the main analysis. In both sex and age-stratified analyses, the log-linear 

trend across the spectrum of SBP was generally preserved. In analysis of patients who 

have not taken antihypertensives during the exposure and follow-up periods, the RR 

estimates and corresponding 95% CI for each exposure group was slightly higher than 

their counterparts in the main analysis but overall mirrored the trend in the main analyses. 

Furthermore, excluding patients who had events in the first 12 and 24 months of follow-

up also captured a similar trend as that of the main analysis. Stratifying by 
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antihypertensive usage at baseline, albeit the slight presence of a local minimum, the trend 

showed little material difference from the main result. Lastly, incorporating those who 

dropped out during the first 12 months following baseline, the trend presented was similar 

to that in the main analysis.  

Figure 7-5: Sensitivity analyses of association with primary outcome in patients with 

diabetes 
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Forest plot of risk ratio estimates of the Targeted-BEHRT model with 95% confidence 

intervals (CI) for association of systolic blood pressure and primary outcomes in 

sensitivity analyses. The particular sensitivity analysis is italicised on the left with strata 

indented. From the left, the six exposure groups are shown in first column. Number of 

events and total number of patients in each exposure group is shown in second column. 

The forest plot and corresponding risk ratio estimates are shown in the right-most column 

relative to reference class, <120 mm Hg. The forest plot is plotted in logarithmic scale. 

For all estimates for reference class, there is no confidence interval.  

7.1.5 Interpretation 

In this study, using deep learning modelling on a comprehensive dataset of UK 

EHR in a cohort of 49,000 individuals with diabetes, we found SBP to be monotonically 

associated to cardiovascular risk. Patients with SBP below 120 mm Hg exhibited lowest 

risk of both the primary and secondary outcomes. Furthermore, the results from the 

sensitivity analyses were inconsequentially different from the main analyses.  

Conventional statistical models are usually implemented in observational studies 

with curated, low-risk cohorts relatively free of multimorbidity at baseline. By ensuring 

the cohort is healthy, statistical models need to include a handful of established 

confounding variables and deliver adjusted and trustworthy estimates of causal effect. 

However, in cohorts like ours with high baseline BMI and a host of underlying conditions 

– including some cardiovascular in nature indicating prevalent multimorbidity – 

traditional models such as logistic regression might be insufficient for adjustment of 

confounding variables.  

Our work implementing deep causal modelling addresses the issues and fills some 

of the gaps in this research of SBP and cardiovascular outcomes. With Targeted-BEHRT 

modelling, our research found no evidence of the J-shaped association between SBP and 

primary and secondary outcomes. While a recent individual-participant data meta-

analysis of randomized evidence has indirectly dismissed the existence of a J-shaped in 

patients with or without prior cardiovascular disease15, evidence of heterogeneity of 
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treatment effects in patients with diabetes has been controversial. In particular, a tabular 

meta-analysis of randomised trials in patients with diabetes has suggested that BP 

lowering might increase the risk of cardiovascular death when SBP is below 140 mm Hg. 

Our observational study provides complementary evidence against a potentially harmful 

effect of BP lowering on cardiovascular outcomes across a wide range of baseline SBP 

categories; moreover, in line with the findings of the work by Nazarzadeh et al, our work 

presents complementary, independent support for “the lower, the better” paradigm of 

hypertension management – especially in those with pre-existing conditions14. 

This study further shows that the Targeted-BEHRT framework requires high-

dimensional longitudinal data. The Targeted-BEHRT estimator can function optimally 

with access to multiple EHR modalities (diagnoses, medications, etc) and associated 

temporal annotation (age, calendar year). Furthermore, the original methods paper 

demonstrated that when such rich data are provided the unsupervised process (masked 

EHR modelling) works well in reducing bias in estimation. When data are sparse or 

limited (finite sample), the doubly-robust estimation, with known benefits for finite-

sample estimation, more accurately estimates RR than the variants without utilisation of 

doubly-robust estimation181. Furthermore, when positivity (overlap) between exposure 

groups is limited, the Targeted-BEHRT model fares better than other benchmark 

models61. Specifically, in our study of patients with cardiometabolic multimorbidity – 

where the traditional logistic regression model insufficiently adjusts for confounders, 

deep learning modelling in tandem with semi-parametric methods can be appropriately 

implemented for robust RR estimation. Further testing to assess model estimation 

accuracy is needed for settings in which the exposure is poorly defined (e.g., “generic 

painkiller”) or when the outcome is categorical or continuous. Future confirmatory 
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investigations on additional data sources would be invaluable for studying the association 

from different perspectives.  

We note in our cohort of high-risk patients, relatively modest associations were 

observed using the Targeted-BEHRT approach. This, however, was also the case in our 

conventional modelling and comparable with previous research16. The weak associations 

might be due to two main reasons. First, as shown by meta-analysis of randomised 

evidence, BP lowering’s effect on cardiovascular outcomes was half as effective in people 

with diabetes as compared to those without diabetes 14. This might be due to the fact that 

the prevention of diabetes itself may be mediating a part of the effect of BP lowering on 

CVD outcomes – a pathway that might not be relevant to people with pre-existing 

diabetes44. Second, our cohort included patients with several comorbidities and 

prescriptions in medical history. While all these attributes are typical in diabetes patients 

(and a suitable case for complex models such as Targeted-BEHRT), this manifestation of 

complex baseline health could lead to attenuation of the association with cardiovascular 

disease as compared to the association in lower risk cohorts 16,149.  Sensitivity analyses 

support this claim, where for example, exclusion of patients with use of antihypertensives 

at baseline or during follow-up led to stronger associations between SBP and risk of CVD.  

 In parallel, in comparison to past works, the general strength of associations 

from the supplementary analyses by Adamsson Eyrd et al. was more-or-less in line with 

our findings even though our work dismisses the trend demonstrated by the same work; 

including patients with cardiovascular diseases at baseline, the analyses presented effect 

sizes generally more diluted than those in patients free of cardiovascular diseases at 

baseline 16. In sum, while effect sizes are modest, the log-linear pattern captured is in line 

with established understanding of the relationship between SBP and cardiovascular 

outcomes in the general population.  
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Previous observational studies investigating this association of SBP and 

cardiovascular events in diabetic patients have rendered conflicting conclusions using 

conventional statistical modelling. However, in totality, they have remarked upon a larger 

phenomenon: the shape of the association as a function of degree of “ignorability” (i.e., 

the “unconfoundedness” of estimation). Simple confounding adjustment of baseline age, 

sex, and demographic variables falls short of eliminating the J-shaped association in 

cohorts with diabetes free of cardiovascular diseases as shown in past studies such as the 

NDR-BP-II study with 54,000 patients and the ROSE study with 34,000 patients 188,193. 

Extending the predictor set to include key cardiovascular risk factors better modelled the 

association as compared to the former two studies and thus rejected the J-shaped 

association in a cohort of 187,000 patients 16. However, in the same study, in extended 

supplementary analyses including patients with pre-existing cardiovascular conditions, 

the conventional modelling approach failed to reject the J-shaped relationship for all 

outcomes, save those with outcome, stroke16. Similarly, in our direct implementation, we 

found that conventional crude and adjusted statistical modelling exhibited evidence of the 

J-shaped relationship in studies of the primary outcome and the secondary outcomes of 

incident heart failure and IHD.  

These results have important implications for cardiovascular research and the 

clinical community. Many hypertension guidelines have changed their stance for 

recommended SBP in diabetic patients 194–197. The current guidelines actively advocate a 

BP lowering treatment goal of <130 mm Hg as opposed to <120 mm Hg in those with 

concomitant diabetes. In elderly patients (>65 years), the recommendation is currently a 

SBP goal of <140 mm Hg 195,197.   

Our analysis provides some clarity concerning the relationship between SBP and 

cardiovascular events in patients with diabetes. In parallel, a recent individualised patient 
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data meta-analyses of randomised studies investigating the effect of blood pressure 

lowering interventions on cardiovascular endpoints in diabetic patients concluded while 

effect sizes are diluted in the diabetic population with respect to those free of diabetes, 

there is indeed benefit of blood pressure lowering to diabetic patients across the spectrum 

of blood pressure14. In defence of “the lower, the better” paradigm for blood pressure in 

diabetic patients, the conclusions from the meta-analysis are consistent with ours. Hence, 

the results from both, our study and meta-analysis, independently illuminate that SBP 

lower than current guidelines might be justified for further reducing the risk of 

cardiovascular events.  

In terms of strengths and limitations, our first strength is the large sample size that 

includes patients from a representative, administrative primary care database. The size 

and linkage capabilities of CPRD allow us to extract individuals eligible for our research. 

In addition to breadth, CPRD allows us a host of rich diagnosis, medication, and 

measurements variables. With repeat measurement data available, we were able to 

leverage a summary metric (average) of multiple measurements thereby mitigating issues 

of measurement error. Lastly, unlike previous studies that have excluded various 

stratifications of the population, we did not exercise strict exclusion on the cohort. Unlike 

previous studies of SBP and cardiovascular events that have excluded older aged 

individuals, patients between 50 and 90 years of age were included in this work. 

Exclusion based on baseline attributes was limited; only those with heart failure were 

excluded at baseline.  

 Second, deep learning feature extraction was used to automatically adjust for 

confounding variables and latent interactions in the input data. We also implemented 

conventional statistical approaches enabling direct comparison of Targeted-BEHRT to 

established methods in the study of SBP and cardiovascular outcomes. We showed that 
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by using superior adjustment methods, we can more effectively model the association in 

observational data, thereby refuting the J-shaped argument.  

This study also has some limitations. EHR data might have some level of 

measurement error or misclassification. Despite evidence of the validity of diagnoses in 

the CPRD dataset198, ascertainment of diabetes might have some possible 

misclassifications (e.g., metabolic syndromes and related disorders as opposed to 

diabetes). Furthermore, measurement errors are a natural issue with EHR data, especially 

that of BP, but attempts have been made to mitigate these issues in the case of SBP data 

by taking an average of multiple measurements over the course of 12 months following 

baseline. Survival modelling can alternatively be used to better address issues of 

capturing CVD risk in the time-to-event setting (i.e., more comprehensive accounting of 

censored data); currently, although, classical survival models have been extended to 

several deep learning variants, further methodological advancement is needed to 

appropriately alter the model for causal/association estimation. Lastly, as is the case for 

all observational research, residual confounding cannot be ruled out; the model, Targeted-

BEHRT cannot fully capture all confounding variables with its adjustment processes. 

Further randomised investigations, given sufficient sample size, is the optimal way to 

validate findings captured in the observational setting. 

7.2 Systolic blood pressure, cardiovascular outcomes, and COPD 

7.2.1 Introduction 

In subgroups with COPD, the association of SBP with cardiovascular outcomes 

is less well understood. Independently, SBP and COPD have both been associated with a 

higher risk of cardiovascular disease 15,37,199,200. However, there is a dearth of evidence 

when it comes to conclusively understanding the effect of SBP on cardiovascular 
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endpoints in patients with COPD. A J-shaped association between SBP and 

cardiovascular events was found in a previous observational analysis using traditional 

statistical modelling in patients with COPD who had or had not previously developed 

cardiovascular disease 35. However, observational studies utilising conventional 

statistical modelling might be limited in investigating this question. The adjusted 

variables need to be manually chosen, naturally exposing models to issues of residual 

confounding. Additionally, in subgroups of patients with multiple comorbidities at 

baseline and a large number of complicated factors of risk and prevention, confounding 

factors are lesser understood; as a result, conventional statistical models with insufficient 

adjustment can result in confounded or spurious J-shaped associations 15,34,201. 

7.2.2 Aims 

 As a consequence, it has remained uncertain as to whether the effect of SBP on 

cardiovascular diseases in patients with pre-existing COPD varies by baseline SBP. In 

this study, we applied Targeted-BEHRT to evaluate the relationship between SBP and 

cardiovascular events in a sample of 39,602 UK patients with COPD using EHR data 

from the CPRD dataset. 

7.2.3 Methods 

 We used prospectively collected EHR data from CPRD. We used EHR data from 

three resources in which we identified a cohort of 39,602 individuals with prevalent 

diabetes: primary care, secondary care (Hospital Episode Statistics), and the Office of 

National Statistics (cause-specific mortality). We included people between 55 and 90 

years of age with at least one BP measurement taken between the years 1990 and 2009. 

The baseline was defined as the date of the first BP measurement. We identified 

individuals as having COPD at baseline using validated phenotyping methods9.  
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The REporting of studies Conducted using Observational Routinely-collected 

Data (RECORD) reporting guidelines were followed for this cohort study. 

7.2.3.1 Exposures 

SBP was the exposure variable and was derived from CPRD measurement data. 

In CPRD, BP measurement is recorded by GP staff during an in-person visit or 

consultation5. The European Society of Cardiology (ESC) guidelines recommend three 

BP measurements measured 1–2 min apart with BP recording as the average of the last 

two BP readings202. In CPRD, the GPs follow the same approach but a single BP 

measurement is recorded from each visit5. We excluded the SBP values below 50 and 

above 300 mm Hg as suggested by previously published phenotyping methods to exclude 

outlier measurements191. All analyses were conducted with exposure status calculated as 

mean of SBP measurements in the first 12 months after baseline (i.e., exposure period). 

For example, for a hypothetical individual with four measurements in the first 12 months 

following baseline, the exposure would be the mean value of the four measurements. 

Patients were categorised into six exposure categories of SBP:  less than 120 mm Hg, 

120–129 mm Hg (reference), 130–139 mm Hg, 140–149 mm Hg, 150–159 mm Hg, and 

greater than or equal to 160 mm Hg.  

7.2.3.2 Outcomes 

The primary outcome was fatal or non-fatal cardiovascular disease, defined as a 

composite of IHD, heart failure, stroke, and cardiovascular death. Secondary outcomes 

were components of the primary outcome: (1) IHD, (2) heart failure, and (3) stroke. All 

outcomes were identified by Read codes (primary care) and ICD-10 codes (secondary 

care and mortality data) as reported previously9. Follow-up period started 12 months after 

baseline; this was done in order to avoid conducting inference within the exposure period 

(first 12 months after baseline). Thus, events that occurred between 12 and 72 months 
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after baseline (e.g., 60 months or 5 years of follow-up period) were captured for analysis 

and patients who had a cardiovascular outcome (i.e., event of HF, IHD, stroke, or 

cardiovascular death) or left the study within the first 12 months following baseline were 

removed from the analyses. 

7.2.3.3 Statistical and deep learning analyses 

For the deep learning approach, we used Targeted Bidirectional Electronic Health 

Records Transformer (Targeted-BEHRT) for risk ratio (RR) estimation of association 

between SBP and cardiovascular outcomes with SBP of 120-129 mm Hg considered as 

reference group170. For each of these comparisons, Targeted-BEHRT was first trained to 

jointly predict exposure category (propensity score) and risk of outcome with five-fold 

cross-validation implemented for training and testing. The Targeted-BEHRT model 

adjusted for the diagnoses/ medication in medical history prior to baseline in addition to 

baseline smoking status (current, former, never a smoker) – identified by last known 

status in the 12 months before baseline – and sex. RR and 95% CI were derived from the 

CV-TMLE post-hoc estimation procedure. More details and implementation of the 

Targeted-BEHRT approach can be found in section 6.3.4. 

In order to compare the deep learning approach against established statistical 

modelling, logistic regression (LR) was implemented to estimate the studied association. 

The SBP exposure group was included as a categorical variable. Since we motivated the 

work with findings from the research conducted by Byrd et al, we adjusted for the same 

variables as those chosen in their research: sex, age, BMI, smoking status (current, 

former, never a smoker), BB use, long-acting beta agonist (LABA) use, and inhaled 

corticosteroid use 35. In a second LR model with an expanded set of predictors including 

known cardiovascular risk factors, we additionally adjusted for TG, low density 

lipoprotein (LDL), TC, atrial fibrillation, rheumatoid arthritis, severe mental illness 
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(psychosis, schizophrenia, or bipolar disorder), chronic kidney disease, and diabetes. 

Diagnoses and medication use were identified using validated phenotyping algorithms 

9,171,203. For BMI, TC, TG, and LDL, average of the measurements recorded in the 36 

months before index date were computed to minimise issues of random measurement 

error 15,204. We conducted imputations on missing variables to ensure fairer comparison 

with the deep learning approach. Multiple imputations using chained equations were 

implemented (15 imputations) to impute the continuous and categorical missing 

variables: BMI, TC, TG, LDL, and smoking status. Estimation of RR was conducted 

using the direct standardisation method 61.  More details on LR modelling and tutorial of 

the direct estimation can be found in Supplementary section 9.4.2.1. Crude RR was also 

estimated to provide the unadjusted estimate of the association with primary and 

secondary outcomes. 

Four sensitivity analyses were pursued in our studies using the Targeted-BEHRT 

model. First, we investigated the effect of SBP on cardiovascular risk in patients who had 

not taken antihypertensives during the exposure/follow-up period. Antihypertensives are 

established medications for lowering high blood pressure thereby potentially attenuating 

cardiovascular risk; thus, we conducted this sensitivity analysis in order to investigate the 

undiluted association between SBP and cardiovascular outcomes in COPD patients 36. 

Second, to investigate the effects of time period, we limited the investigation to only 

include those with index date after January 1 2001. Third and fourth, to mitigate issues of 

reverse causality, we investigated the primary outcome excluding individuals who had 

cardiovascular events in the first 12 and 24 months of the follow-up period respectively. 
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7.2.4 Results 

7.2.4.1 Population statistics 

39,602 individuals with COPD at baseline were included in our analysis. The median 

follow-up time was 3.9 years (interquartile range [IQR]: 1.5-5.0) with 10,987 events, and 

the median age at baseline, 69 years (IQR: 60-76) shown in Table 7-2. Patients with lower 

SBP had a higher percentage of atrial fibrillation, chronic kidney disease, and IHD and 

were more likely to be current smokers at baseline. Also, patients with lower SBP had 

more clinical encounters (medications and diagnoses) recorded in GP/secondary care. 

However, individuals with a higher SBP had a higher percentage of antihypertensive 

usage.  
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Table 7-2: Characteristics for patients with COPD 

Categories of systolic blood pressure 

SBP categories  <120 mm 

Hg 

120-129 

mm Hg 

130-139 

mm Hg 

140-149 

mm Hg 

150-159 

mm Hg 

≥160 mm Hg 

No. (%)  3943 (10.0) 5870 (14.8) 8097 (20.4) 9050 (22.9) 6101 (15.4) 6541 (16.5) 

Follow-up, yrs (IQR)  3.4 (1.1-5.0) 3.0 (1.5-5.0) 4.0 (1.6-5.0) 4.0 (1.6-5.0) 4.0 (1.5-5.0) 3.7 (1.5-5.0) 

Age, yrs (IQR)  66.0 (58.0-

75.0) 

67.0 (58.0-

75.0) 

68.0 (59.0-

76.0) 

69.0 (61.0-

77.0) 

70.0 (62.0-

77.0) 

72.0 (65.0-78.0) 

Women (%)  1892 (48.0) 2695 (45.9) 3774 (46.6) 4179 (46.2) 2765 (45.3) 3142 (48.0) 

YOB (IQR)  1937 (1927-

1945) 

1936 (1927-

1945) 

1935 (1926-

1944) 

1933 (1925-

1942) 

1931 (1924-

1940) 

1927 (1921-1935) 

BMI† kg/m2 (IQR)  25.7 (24.0-

27.0) 

26.0 (24.4-

27.2) 

26.0 (24.7-

27.4) 

25.9 (24.7-

27.2) 

25.9 (24.8-

27.1) 

25.6 (24.7-26.8) 

LDL†, mmol/L (IQR)  3.1 (2.9-3.2) 3.1 (2.9-3.2) 3.1 (2.9-3.2) 3.1 (3.0-3.2) 3.1 (3.0-3.2) 3.1 (3.0-3.2) 

TG†, mmol/L (IQR)  1.6 (1.4-1.8) 1.6 (1.4-1.8) 1.6 (1.4-1.8) 1.6 (1.4-1.8) 1.6 (1.4-1.8) 1.6 (1.4-1.7) 

TC†, mmol/L (IQR)  5.3 (5.0-5.7) 5.3 (5.0-5.6) 5.3 (5.0-5.6) 5.3 (5.0-5.6) 5.3 (5.0-5.6) 5.3 (5.0-5.6) 

Smoking status†:  

      

      Current smoker % 1960 (49) 2831 (48) 3627 (44) 4074 (45) 2728 (44) 3049 (46) 

      Former smoker % 1453 (36) 2131 (36) 3148 (38) 3490 (38) 2336 (38) 2307 (35) 

      Never smoker (%)  530 (13) 908 (15) 1322 (16) 1486 (16) 1037 (16) 1185 (18) 

Disease at baseline:  

      

      IHD (%)  711 (18.0) 872 (14.9) 1131 (14.0) 1085 (12.0) 650 (10.7) 670 (10.2) 

      CKD (%)  41 (1.0) 36 (0.6) 38 (0.5) 51 (0.6) 30 (0.5) 34 (0.5) 

      Diabetes (%)  268 (6.8) 477 (8.1) 684 (8.4) 618 (6.8) 390 (6.4) 300 (4.6) 

      Severe Mental 

illness (%) 

47 (1.2) 62 (1.1) 54 (0.7) 46 (0.5) 29 (0.5) 33 (0.5) 

      Atrial fibrillation 

(%)  

290 (7.4) 319 (5.4) 397 (4.9) 386 (4.3) 220 (3.6) 225 (3.4) 

Medications at 

baseline:  

      

      Antihypertensive 

(%)  

1283 (32.5) 1898 (32.3) 2851 (35.2) 3273 (36.2) 2337 (38.3) 2444 (37.4) 

      IC (%)  2221 (56.3) 3214 (54.8) 4557 (56.3) 5280 (58.3) 3617 (59.3) 3874 (59.2) 

      LABA (%)  637 (16.2) 873 (14.9) 1271 (15.7) 1263 (14.0) 756 (12.4) 602 (9.2) 

Values presented are median with interquartile range (IQR) or percentage (%). YOB: 

year of birth; Yrs: years; BMI: body mass index; IHD: ischaemic heart disease; CKD: 

chronic kidney disease; LABA: long-acting beta agonists; IC: inhaled corticosteroids; 

TC: total cholesterol; TG: triglycerides; LDL: low density lipoprotein. †Percentage of 

missing variables – BMI (56.3%), smoking status (24.4%), TC (71.7%), TG (80.7%), LDL 

(85.6%).  
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7.2.4.2 Association analyses 

Figure 7-6: Association with primary outcome in patients with COPD 

 

Forest plot of risk ratio estimates of the Targeted-BEHRT model with 95% confidence 

intervals (CI) for association of systolic blood pressure and primary outcome. From the 

left, the six exposure groups are shown in first column. Number of events and total number 

of patients in each exposure group is shown in second column. The forest plot and 

corresponding risk ratio estimates are shown in the right-most column relative to 

reference class, 120-129 mm Hg. The forest plot is plotted in logarithmic scale. For all 

estimates for reference class, there is no confidence interval.  

 The Targeted-BEHRT model estimated a continuous relationship between SBP 

and the primary outcomes in patients with COPD (Figure 7-6). By contrast, the crude and 

adjusted LR estimates of RR both demonstrate a nadir of risk at SBP between 130 and 

139 mm Hg (Figure S4). The adjusted LR model with expanded set of predictors 

demonstrated similar trends as compared to the base adjusted LR model (i.e., predictors 

defined in Byrd et al.) for the analysis of the primary outcome (Figure S5)35. All models 

found that ≥160 mm Hg demonstrated greatest risk of cardiovascular events. 
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Figure 7-7: Association with secondary outcomes in patients with COPD 

 

Forest plot of risk ratio estimates of the Targeted-BEHRT model with 95% confidence 

intervals (CI) for association of systolic blood pressure and secondary outcomes. From 

the left, the six exposure groups are shown in first column. Number of events and total 

number of patients in each exposure group is shown in second column. The forest plot 

and corresponding risk ratio estimates are shown in the right-most column relative to 

reference class, 120-129 mm Hg. The forest plot is plotted in logarithmic scale. For all 

estimates for reference class, there is no confidence interval.  

 In analyses of the components of the primary outcome, the Targeted-BEHRT 

model showed a continuous association between SBP and individual cardiovascular 

endpoints with lowest risk at <120 mm Hg in comparison to the reference category 

(Figure 7-7). Additionally, for endpoints of heart failure and IHD, the crude and adjusted 

LR estimates of RR found SBP between 130 and 150 mm Hg to contribute to the lowest 

risk of secondary outcomes (Figure S6) with little deviation in findings from the adjusted 

LR approach utilising the expanded predictor set (Figure S5). All four approaches found 

<120 mm Hg is associated with the lowest risk of stroke. Lastly, the trends discovered in 
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the four sensitivity analyses demonstrated little deviation from the patterns found in the 

main analysis (Figure 7-8). 

Figure 7-8: Association with secondary outcomes in patients with COPD 

 

Forest plot of risk ratio estimates of the Targeted-BEHRT model with 95% confidence 

intervals (CI) for association of systolic blood pressure and primary outcomes in 

sensitivity analyses. From the left, under a particular sensitivity analysis, the six exposure 

groups are shown in first column. Number of events and total number of patients in each 

exposure group is shown in second column. The forest plot and corresponding risk ratio 

estimates are shown in the right-most column relative to reference class, 120-129 mm 

Hg. The forest plot is plotted in logarithmic scale. For all estimates for reference class, 

there is no confidence interval.  

7.2.5 Interpretation 

Using a deep learning approach for assessing causality on longitudinal EHR, we 

found that SBP was continuously associated with cardiovascular risk in patients with 

COPD in a cohort of 39,602 patients. Individuals with SBP <120 mm Hg were found to 
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have the lowest risk of both the primary and secondary outcomes. Lastly, there was little 

material difference between the trends found in the sensitivity analyses and the main 

analysis. 

SBP is established to be linearly associated with cardiovascular risk in the general 

population and in fact, naturally below average values in industrialized communities 

37,205–207. However, in subgroups with prior cardiovascular diseases and associated risk 

factors, the relationship remains insufficiently described. In this context of high-risk 

subgroups – such as those with diabetes, IHD, and other risk factors at study entry – many 

observational studies reject the monotonic relationship between SBP and cardiovascular 

risk concluding a “J -shaped” trend 13,16,35. However, these observational studies are 

criticised for improperly dealing with manifestations of reverse causality and 

confounding. With cardiometabolic multimorbidity at baseline more prevalent in those 

with lower SBP than higher, additional variables capturing this poor baseline health and 

associated cardiovascular illnesses must be included for adjustment. Given an insufficient 

understanding of risk and protection in multimorbid patients currently, solely relying on 

expert-selection of known confounders (e.g., gender, age, BMI, known risk factors of 

CVD) exposes the modelling to issues of residual confounding 59. As a result, unadjusted 

confounding due to multimorbidity in lower SBP groups can result in the J-shaped 

pattern: an optimum exists such that SBP below and above is associated with higher 

cardiovascular risk 35,193. 

In our own implementation of LR adjusting for predictors defined in Byrd et al, 

the results captured this described trend and rejected the established linear relationship 

between SBP and cardiovascular outcomes 35,37. In our cohort, we found that established 

risk factors of cardiovascular diseases were inversely related with the exposure, SBP. In 

patients with lower SBP, there was generally a higher incidence of IHD, chronic kidney 
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disease, diabetes, mental illness, and atrial fibrillation lending support to the hypothesis 

that issues of reverse causation may indeed be at play in our observational cohort. Even 

the fully adjusted LR model with the expanded set of predictors resulted in a non-

monotonic association between SBP and cardiovascular risk in our cohort of COPD 

patients. This non-monotonicity or J-shaped pattern was preserved across analyses of both 

primary and secondary outcomes with the adjusted LR approaches. 

Implementing the deep learning approach for assessing causality directly 

confronted these modelling issues. By utilising minimally processed diagnoses and 

medications data in routine clinical EHR, our deep learning approach accounts for a 

breadth of risk and protective factors potentially confounding the exposure-outcome 

relationship. In our cohort with COPD and cardiometabolic multimorbidity at baseline, 

in which traditional approaches failed to sufficiently captured confounding factors in 

observational data, our approach was appropriately implemented to model the association 

between SBP and cardiovascular events.   

The continuous association concluded in this work raises important clinical 

questions for cardiovascular care. What is the optimal SBP in patients with COPD? Does 

this threshold differ from the recommendations for the general population (<120 mm 

Hg)? How should the decision calculus for blood pressure lowering treatment be 

formulated for those with COPD and hypertension? While guidelines for hypertension 

indeed endorse blood pressure lowering in patients with concomitant COPD and high 

blood pressure, the recommendations suggest a treatment target of <130 mm Hg (<140 

mm Hg in the elderly) 48. However, assuming causality, our results demonstrated an 

infimum of risk at SBP of <120 mm Hg – lower than currently recommended guidelines 

and consistent with the established log-linear understanding of the association between 

SBP and cardiovascular risk. Additionally, with median age of 69 years, our results 
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illuminated an SBP target of <120 mm Hg might be preferred over the recommended SBP 

target of <140 mm Hg in elderly COPD patients 48. Given that randomised evidence of 

blood pressure lowering in COPD patients is unavailable and likely to remain unavailable 

in the near future, our study helps disentangle the relationship between SBP and 

cardiovascular events in COPD patients. However, further observational research 

independently evaluating the association between both, SBP and blood pressure lowering 

interventions, and cardiovascular outcomes in COPD patients utilising robust 

confounding adjustment methods like Targeted-BEHRT would be imperative for 

reassessing hypertension guidelines. 

 Looking at the strengths of the study, first, in terms of data, the comprehensive 

information provided by CPRD is a strength of our research. The linkage capabilities of 

CPRD allow the capture of rich health encounters (e.g., diagnoses, medications, 

measurements, static attributes) from various sources including primary care, secondary 

care, and mortality-based datasets. Strength of deep learning modelling is derived in part 

by richness of data; with access to rich EHR, the deep learning approach could better 

extract confounders, both known and latent in routine clinical data170. Second, with access 

to repeated SBP measurements specifically, we were able to derive a summary value 

(mean value of multiple SBP measurements) limiting issues of measurement error 204. 

Third, we were able to capture many more patients than prior studies investigating this 

association, and also, unlike previous studies of SBP and cardiovascular risk, we included 

older aged patients and those with cardiovascular multimorbidity at baseline 35. Exclusion 

from our study was limited; thus, this allowed us to understand the association of SBP 

and cardiovascular outcomes in high-risk subgroups with COPD. Fourth, rich 

longitudinal data in CPRD afforded us the opportunity to follow patients for a median of 

3.9 years as opposed to the prior exploration of this association in patients with COPD, 
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which reported median follow-up of 1.9 years 35. With a longer follow-up period, 

potential biases in RR estimation due to issues of reverse causation are mitigated. Fifth, 

we explored various sensitivity analyses in order to understand the role of unforeseen 

biases (e.g., reverse causality) and supplement the narrative of the main results.  In terms 

of modelling, a strength of our work is the deep learning approach capable of extracting 

and adjusting for confounding factors in rich annotated EHR. Additionally, we 

implemented the conventional statistical approach with validated predictors set allowing 

direct comparison with the deep learning approach 35. By utilising superior confounding 

adjustment methods, we demonstrated the utility in data-driven causal inference 

ultimately rejecting the evidence of a J-shaped relationship.  

 This study also had some limitations. The EHR data in CPRD has some degree 

of recording error, and the process of identifying COPD patients may have led to 

misclassifications. However, past studies have validated the use of primary care, 

secondary care, and mortality-based sources within the CPRD database for observational 

research; specifically, for COPD, there is ample evidence to suggest that the condition 

can be accurately identified in the CPRD dataset with a positive predictive value (PPV) 

of more than 80% as compared to clinician judgment 5,9,123,208.  Also, with continuous 

measurement like SBP measurements, random measurement error is a known issue; we 

have attempted to ameliorate this issue by taking an average of repeat measurements over 

the course of 12 months following index date – a recommended course of data processing 

in order to deal with issues of measurement error 204. Lastly, as is the case with all 

observational studies, the proposed Targeted-BEHRT approach cannot fully capture all 

confounders and residual confounding may still bias estimation of the association; 

however, further validation with randomised trials would be prudent to fully disentangle 
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the nature of the relationship between blood pressure (lowering) and CVD in those with 

COPD. 

7.3 Paracetamol, systolic blood pressure, incident cardiovascular 

diseases, and all-cause mortality 

7.3.1 Introduction 

Paracetamol, also known as acetaminophen, is the most commonly used analgesic 

worldwide and is recommended as a first-line treatment of pain in many acute or chronic 

conditions209. Although it is generally known to be safer than other frequently used 

analgesics, its conventional tablet formulation has certain disadvantages, such as low 

systemic bioavailability in oral administration and the potential for hepatotoxicity if taken 

in excess. To mitigate these issues, a soluble effervescent formulation of the drug was 

launched into the market. This is a compacted tablet that contains carbonates, acids, and 

sodium bicarbonate in addition to the active drug ingredients210.  

Access to effervescent pain treatments has become essential in some clinical 

circumstances, for example in people with swallowing disorders211–213. However, since 

effervescent formulations include sodium, concerns have been raised that it may increase 

the risk of elevated blood pressure, CVD, and mortality214. These concerns were recently 

supported by a study that found that initiating sodium-containing paracetamol is 

associated with an elevated risk of incident CVD and all-cause death 215,216. This and 

another study that came to a similar conclusion, however, were based on conventional 

statistical approaches with their typical limitations3. The adjustment variables in such 

models are usually selected by experts, resulting in the omission of variables and 

interactions unknown to subject-area specialists. This can ultimately lead to residual 
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confounding and biased estimates, and can be particularly problematic in patients with 

multiple comorbidities and complicated risk factors, where complex interactions and 

hidden confounding are more likely3. 

With the development of deep learning approaches for causal inference, we have 

the opportunity to address pertinent issues of conventional confounding 

adjustments123,170. Specifically, concerning association analyses on EHR data, the 

Targeted-BEHRT model has demonstrated more accurate estimation of causal effect in a 

host of semi-synthetic data experiments and has even been applied to better understand 

risk and protection in multimorbid individuals170. 

7.3.2 Aims 

In this study, we applied the Targeted-BEHRT deep learning approach to 

investigate the association of sodium-based paracetamol versus non-sodium formulations 

with SBP, incident CVD and all-cause mortality 214. 

7.3.3 Methods 

We used UK EHR from CPRD, validated for population-based epidemiological 

research5,9,123. Using EHR from primary care, linked with data from the ONS, we 

identified a cohort of 475,442 individuals. We included people between 60 and 90 years 

of age with at least one prescription of paracetamol between the years 2000 and 2014, 

aiming to replicate the approach in a previous study216. The index date was defined as the 

date of the first paracetamol prescription. Patients with any type of cancer, previous CVD 

(composite of heart failure, stroke, myocardial infarction), and prior use of compound 

paracetamol (e.g., paracetamol with codeine) were excluded similar to previous 

research216. Cancer and CVD were identified using previously validated disease 
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phenotyping methods while compound paracetamol was identified by CPRD “product 

code” (i.e., native coding system for medications designed by CPRD organisation)217.  

7.3.3.1 Exposures and outcomes 

We compared forms of paracetamol containing sodium (i.e., formulations of 

“soluble” and “effervescent”) as the exposure group with non-sodium-based formulations 

(i.e., formulations of “capsule”, “tablet”, and “oral suspension”) as the comparison group. 

The information about the type of paracetamol was identified with the CPRD “product 

codes”. 

Three outcomes were investigated in a 1-year follow-up period: (1) systolic blood 

pressure (SBP) as a continuous outcome for patients with SBP measurements (as recorded 

in CPRD), (2) incident major CVD defined as a composite of MI, heart failure, and stroke, 

and (3) all-cause mortality, identified by death in the ONS registry. To mitigate 

measurement error, SBP was calculated as an average value of the measurements taken 

in a 6-months window around the 1-year mark (i.e., between 9 and 15 months following 

baseline)204. 

7.3.3.2 Deep learning and statistical analyses 

We used Targeted-BEHRT, a causal deep learning model developed for causal 

inference on EHR data170. The Targeted-BEHRT modelling approach uses minimally 

processed EHR for accurate estimation of causal effect than benchmark 

statistical/machine learning approaches (see section 6.3.4). The model was adjusted for 

primary care diagnosis and medication records with attributions of age and calendar year 

of recording, as well as static attributes of sex and smoking status at baseline. By jointly 

predicting propensity score and outcome risk in one deep learning framework, the 

approach utilises CV-TMLE for downstream estimation of RR for binary outcomes and 
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mean difference (MD) for continuous outcomes181. Analysis was additionally conducted 

on patients with and without hypertension at index date.  

 For incident CVD, SBP, and all-cause mortality as outcomes, to directly 

compare our deep learning approach with conventional modelling, we implemented a 

two-stage propensity-based statistical modelling. In this conventional model, the 

propensity score was assessed with logistic regression; IPTW were derived and utilised 

for log-binomial modelling for binary outcomes, incident CVD and all-cause mortality, 

and linear regression for the continuous outcome, SBP; both models were regressed on 

the exposure variable74,184. We adjusted for a total of 52 variables based on past research, 

with the exception of the Townsend Deprivation Index, which was replaced with the 

Index of Multiple Deprivation (IMD)216. For BMI, the average of the measurements 

recorded in the 36 months before the index date were used to mitigate measurement 

error204. Multiple Imputation by Chained Equations (15 imputations) was conducted on 

missing continuous and categorical variables218. Estimation of RR for incident CVD and 

all-cause mortality investigations and MD for the SBP investigation, in addition to 

associated 95% confidence intervals were derived from model coefficients. Lastly, crude 

(unadjusted) effect size was calculated for all three outcomes as a naive approach. 

Analyses of those with and without hypertension was additionally conducted for all 

adjusted and unadjusted analyses. 

We conducted several complementary and sensitivity analyses to check the 

robustness of the finding and investigate bias in estimation of all-cause mortality risk. 

First, in order to account for the possibility of reverse causality, we re-analysed the data, 

excluding those who died in the first month of follow-up repeated up to the sixth month 

of follow-up. Second, using conventional mediation analysis of direct effect estimation, 

we identified and analysed potentially mediating variables219. In order to conduct this 
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analysis, first, we identified factors reported in the time interval between exposure and 

outcome that were most associated with the exposure through unadjusted RR modelling. 

Second, we additionally conducted adjusted modelling of the association between 

exposure and individual mediators using log-binomial modelling controlled for sex, age, 

IMD, BMI, region, ethnicity, alcohol status, and smoking status. For the mediators that 

demonstrated a non-null association with the exposure in the analyses (i.e., implying 

mediation was present), we estimated direct effect utilising Targeted-BEHRT modelling. 

In essence, direct effect estimation aims to evaluate the strength of the association 

between exposure and outcome controlling for confounding and mediation220. 

Importantly, mediation is present if direct effect estimates are diluted with respect to the 

main analysis (i.e., association between paracetamol and all-cause mortality). Lastly, we 

pursued both aforementioned sensitivity analyses simultaneously to comprehensively 

mitigate the potential biases on the estimation for all-cause mortality risk. For these three 

sensitivity analyses, diagnosis records from secondary care were additionally included in 

Targeted-BEHRT modelling. 

7.3.4 Results 

A total of 475,442 eligible individuals were included in this study (Figure S7). The mean 

follow-up time was 11.0 months and 11.2 months for CVD and all-cause mortality as 

outcomes, respectively. Participants' characteristics by exposure categories are shown in 

Table 7-3 with extended data presented in Table S9. 460,980 and 14,462 patients were 

selected for the non-sodium and sodium-based paracetamol exposure groups respectively. 

Mean age at baseline was 74 (standard deviation: 8.6) years and 64% were women. While 

many characteristics at index date including BMI, year of birth, and several diseases and 

prescriptions were balanced between both exposure groups, smoking status, alcohol 

status, diabetes, hypertension, dementia, gout, and blood pressure lowering medications 
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were not, consistent with past studies investigating the same assocation216. For 

investigation of SBP as outcome, 235,699 patients were included; baseline characteristics 

for this subset of patients are comprehensively described in Supplementary materials 

(Table S10). 
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Table 7-3: Characteristics for the investigation of risk of sodium-based paracetamol 

on all-cause mortality and incident cardiovascular disease as outcomes 

 

Non-sodium formulation Sodium formulation 

No. (%) 460980 (97.0) 14462 (3.0) 

Age, yrs (SD)  73.7 (8.6) 76.1 (9.1) 

Women (%) 296190 (64.3) 10342 (71.5) 

Ethnicity (White) (%) 126248 (27.4) 4060 (28.1) 

IMD (SD †  1.9 (1.4) 1.9 (1.3) 

SBP (SD)† 141.2 (13.7) 139.4 (14.5) 

BMI (SD)†  27.7 (4.3) 26.0 (4.0) 

Smoking status†   

      Current or former smoker (%) 252522 (54) 5431 (37) 

      Never smoker (%) 208458 (45) 9031 (62) 

Alcohol status† 

  

      Current or former drinker (%) 343602 (74) 9221 (63) 

      Never drinker (%) 117356 (25) 5241 (36) 

Comorbidity at baseline 

  

      CKD (%) 3757 (0.8) 86 (0.6) 

      Diabetes (%) 41894 (9.1) 988 (6.8) 

      Hypertension (%) 118022 (25.6) 2640 (18.3) 

      Arthritis (%) 140161 (30.4) 2960 (20.5) 

      Gout (%) 16239 (3.5) 297 (2.1) 

      Rheumatoid arthritis (%) 7477 (1.6) 238 (1.6) 

      Hyperlipidaemia (%) 35861 (7.8) 737 (5.1) 

      Atrial fibrillation (%) 17563 (3.8) 443 (3.1) 

      Gastrointestinal bleeding (%) 5457 (1.2) 226 (1.6) 

      Reflux disease (%) 24349 (5.3) 663 (4.6) 

      Dementia (%) 9973 (2.2) 985 (6.8) 

Medications use at baseline   

      Statins (%) 112124 (24.3) 2304 (15.9) 

      Blood pressure lowering (%) 216574 (47.0) 5465 (37.8) 

      Anticoagulants (%) 21102 (4.6) 570 (3.9) 

      Antiplatelet (%) 120975 (26.2) 3612 (25.0) 

      Opioids (%) 139717 (30.3) 3031 (21.0) 

SD: standard deviation; No: number; Yrs: years; BMI: body mass index; SBP: systolic 

blood pressure; CKD: chronic kidney disease; IMD: index of multiple deprivation* 

Imputed variables Values presented are median with interquartile range (IQR) or 

percentage (%) YOB: year of birth; BMI: body mass index; HDL: high density 

lipoprotein; TC: total cholesterol; TG: triglycerides; IHD: ischaemic heart disease; SD: 

standard deviation; %: percentage. †The percentage of missing variables –alcohol status 

(54.6%), smoking status (36.9%), IMD (38.7), SBP (26.4%), BMI (40.9%) 
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The RR of incident CVD in patients who had initiated sodium-based paracetamol 

compared to those who had initiated non-sodium-based paracetamol use is shown in 

Figure 7-9. In the overall analysis using Targeted-BEHRT model, we did not find any 

association between sodium-based paracetamol and incident CVD (RR 1.03; 95% CI: 

(0.91,1.16)). Likewise, in stratified analysis by hypertension status, the relative effects 

were similar between the two groups. By contrast, a positive association with the risk of 

CVD events was observed in analysis using two-stage statistical and crude modelling 

(Figure S8).  

Figure 7-9: Association of sodium-based vs non-sodium-based paracetamol and 

incident cardiovascular disease and all-cause mortality 

 

Forest plots of Targeted-BEHRT modelling for analyses of binary outcomes (all patients, 

stratified by hypertension status) is shown. Number of events and total number of patients 

in each exposure group is shown in second and third columns. The forest plot and 

corresponding risk ratio estimates are shown in the right-most column relative to the 

reference exposure, non-sodium paracetamol. The effect size is plotted on a logarithmic 

scale.  

Additionally, in both the overall analysis and the subgroup analysis by the status 

of hypertension at baseline, we observed no association between the type of drug and SBP 

as a continuous outcome (Figure 7-10). While there was no association in the overall 

analysis of the crude model, there was some heterogeneity in the subgroup analysis by 



 

     165 

hypertension status, with a rise in blood pressure in those with a history of hypertension 

at baseline and a decrease in those without (Figure S9).  

Figure 7-10: Association of sodium-based vs non-sodium-based paracetamol and 

systolic blood pressure 

 

Forest plots of Targeted-BEHRT modelling for analyses of continuous outcome, systolic 

blood pressure (all patients, stratified by hypertension status) is shown. Number of events 

and total number of patients in each exposure group shown in second and third columns 

are left blank. The forest plot and corresponding mean difference (MD) estimates are 

shown in the right-most column relative to the reference exposure, non-sodium 

paracetamol. The effect size is plotted on a logarithmic scale.  

Figure 7-9 shows the associations of drug types with all-cause mortality as the 

outcome. We found that sodium-based paracetamol is associated with an elevated risk of 

all-cause death, both in the overall analysis and in subgroups of hypertension status 

(Figure 7-9). Similar results were observed using two-stage statistical analysis and crude 

modelling, but with a greater magnitude of effect (Figure S8).  

Because of a relatively short follow-up period of 12 months, we examined if the 

association with all-cause mortality was distorted by reverse causation. Excluding those 

who had died in the first month of follow-up, repeated up to six months, the Targeted-

BEHRT effect size attenuated by roughly 50% as compared to the effect size on the entire 

cohort (Figure 7-11). 
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Figure 7-11: Association of sodium-based vs non-sodium-based paracetamol and all-

cause mortality in sensitivity analyses 

 

Forest plots of Targeted-BEHRT modelling for sensitivity analyses of all-cause mortality 

as outcome. From left, the type of sensitivity analyses is presented. Number of events and 

total number of patients in each exposure group is shown in second and third columns. 

The forest plot and corresponding risk ratio estimates are shown in the right-most column 

relative to the reference exposure, non-sodium paracetamol. The effect size is plotted on 

a logarithmic scale.   

In order to investigate additional sources of bias, we analysed mediation on the 

pathway between paracetamol initiation and all-cause mortality. Table 7-4 presents the 

first 10 mediator variables ranked by the strength of the unadjusted exposure-mediator 

association. Furthermore, adjusted modelling demonstrated immaterial difference from 

the unadjusted findings (Table 7-4). Several neuro-cognitive and digestive tract disorders 

were identified as conditions associated with the exposure.  
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Table 7-4: Top ten conditions recorded post-index date with the largest difference 

in prevalence between the exposure groups (non-sodium-based and sodium-based 

paracetamol groups)   

Disease Prevalence in 

non-sodium-

based 

Prevalence in 

sodium-based 
Prevalence ratio 

association 

(unadjusted) 

Prevalence ratio 

association 

(adjusted) 

Malignant neoplasm of 

oesophagus 

0.001 0.009 5.826 5.34; (4.12, 6.933) 

Pneumonitis due to 

solids and liquids 

0.002 0.014 5.749 5.72; (5.002, 6.545) 

Dementia in Alzheimer 

disease 

0.002 0.008 4.274 3.78; (3.294, 4.334) 

Dysphagia 0.004 0.017 4.232 3.39; (3.135, 3.669) 

Alzheimer disease 0.007 0.031 4.117 2.76; (2.54, 3.009) 

Multiple sclerosis 0.001 0.005 3.852 2.33; (1.898, 2.863) 

Decubitus ulcer and 

pressure area 

0.006 0.021 3.488 2.19; (1.874, 2.565) 

Unspecified dementia 0.017 0.056 3.316 2.63; (2.455, 2.808) 

Seizures 0.002 0.007 3.296 2.66; (2.353, 3.005) 

Hemiplegia  0.002 0.007 2.916 2.67; (2.367, 3.015) 

Association (unadjusted): relative prevalence of that disease in sodium-based 

paracetamol group versus the control exposure group (i.e., column 2 divided by column 

3). Association adjusted: log-binomial modelling estimating association between 

exposure and condition adjusting for baseline covariates 

Examination of these variables yielded insight that all of the variables were related 

to dysphagia, comorbid with dysphagia, or caused by dysphagia (Table 7-4) 212,221–224. In 

light of this, for direct effect estimation utilising Targeted-BEHRT, we first assessed the 

association between jointly, exposure and the sole mediator, dysphagia, and the outcome 

of all-cause mortality. As compared to the main analyses (RR: 1.46; (1.4,1.52)), the direct 

effect estimated a slight reduction (RR: 1.39; (1.35, 1.45)) (Figure 7-11). Second, we 

assessed the association between jointly, the exposure and all of the ten mediators (Table 

7-4), and the outcome of all-cause mortality using Targeted-BEHRT. The direct effect 

was estimated to be RR: 1.27; (1.22,1.30) attenuated with respect to the previous direct 

effect analysis and the main analysis of all-cause mortality (Figure 7-11).  
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 Lastly, we investigated a combination of the presented strategies: in addition to 

excluding patients who had died in the first month of follow-up, repeated up to six 

months, we estimated the association between jointly, exposure and the ten mediators 

(Table 7-4), and the outcome. As the cut-off time was increased, the effect size diluted 

commensurately. Investigating the association in patients alive 6 months into the follow-

up period (“Cut-off (5)” in Figure 7-11), Targeted-BEHRT estimated RR: 1.08; 1.01, 

1.16. 

7.3.5 Interpretation 

Utilising a deep learning approach for assessing causality on a rich EHR data, we 

found that sodium-based paracetamol had no effect on incident CVD and SBP as 

outcomes with respect to non-sodium formulations. For all-cause mortality, our deep 

learning approach captured a positive association in the main analysis, however in 

sensitivity analysis we found attenuation of the effect towards the null after considering 

mediation and the presence of reverse causality. Similar to results from past works, 

conventional approaches captured higher risk for all three outcomes. 

 Previous research utilising conventional approaches have shown that sodium-

based paracetamol increases the risk of both incident CVD and all-cause mortality215,216. 

Our conventional statistical modelling utilising IPTW-based propensity score methods 

regressing on predictors comparable to those from previous studies captured a similar 

positive association with all outcomes215,216. However, our analyses showed that more 

comprehensive adjustment of known and inferred health variables with deep learning 

modelling weakened the association.  

While sodium-based paracetamol was found to increase risk of all-cause mortality 

by all models, sensitivity analyses using Targeted-BEHRT illuminated that the distorted 
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causal effect captured in the main analyses is multifactorial in nature. On one hand, noting 

the limited follow-up period of one year, we analysed our observational study for 

manifestation of reverse causation. We captured attenuation of effects as we excluded 

those who died early in the follow-up period, directly and clearly capturing distortion of 

effect size by reverse causation. On the other hand, excess risk captured in the main 

analysis due to dysphagia and associated comorbidities potentially yields two different 

interpretations.  

One interpretation is that dysphagia and associated conditions as mediator 

variables are responsible for increasing all-cause mortality risk. In which case, utilising 

Targeted-BEHRT for direct effect estimation (association between jointly, exposure and 

mediators, and all-cause mortality) addressed the root of the excess mortality risk and 

demonstrated that the association between sodium-based paracetamol and all-cause 

mortality converges towards the null hypothesis when mediation is appropriately handled. 

A second, perhaps orthogonal interpretation is that as opposed to indirect effects by 

mediation, dysphagia and associated comorbidities are rather confounding variables with 

biases of recording delay/missingness and are responsible for increasing all-cause 

mortality risk. As previously discussed, dysphagia is a major reason that patients are 

prescribed effervescent formulations of paracetamol as opposed to solid formulations 

(e.g., tablets or capsules). Associated with exposure status and, in many cases, all-cause 

mortality in the elderly, dysphagia-driven confounding is challenging to assess using 

administrative EHR. Albeit noted to be quite common in the elderly, dysphagia is 

underdiagnosed for numerous reasons (e.g., patient embarrassment), and even if 

diagnosed, recording is delayed and often recorded as a secondary diagnosis to often more 

serious associated comorbidities including head and neck diseases, complications due to 

paralysis, cancer, epilepsy, and neurodegenerative diseases212,221–224. Additionally, 
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diagnostic delays of the associated neuro-cognitive conditions of dementia and 

Alzheimer’s disease in addition to cancer is established225,226. In the presence of these 

conditions, effervescent formulations of medications, if available, are indeed 

recommended by prescription guidelines in the UK for those complaining of difficulties 

with swallowing – even if formal recording of dysphagia or associated conditions is 

absent in EHR227,228.  

In our retrospective data, at least partly due to complaints of swallowing 

difficulties, clinicians prescribed patients effervescent formulations for paracetamol, 

forming the exposure group. Thus, in addition, considering the short follow-up period of 

1 year, while these conditions are sometimes recorded only after index date likely due to 

the more sub-clinical and perhaps, asymptomatic nature of many of these conditions at 

index date, the dysphagia and associated comorbidities are likely present at the time of 

exposure initiation. Moreover, the ten diseases (Table 7-4) are associated with exposure 

status and mortality. Therefore, since Targeted-BEHRT only accounts for predictors up 

to index date, patently an issue of residual confounding, omission of these conditions 

from confounding adjustment would demonstrate a positive association between sodium-

based formulations and all-cause mortality (Figure S10)212.  

Given (1) the short follow-up period of one year, (2) the evidence on recording 

biases concerning dysphagia and associated comorbidities, and (3) known issues in 

association modelling in failing to capture all confounders, there is compelling evidence 

in support of this interpretation for excess all-cause mortality risk. With this 

interpretation, our direct effect analyses alternatively function as simply, confounding 

adjusted analyses using Targeted-BEHRT – additionally adjusting for confounding by 

dysphagia and related conditions (allowing for delayed recordings after index date).  
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While each interpretation has merits and substantial supporting evidence, by 

either mediation or confounding, ultimately, the association between sodium-based 

paracetamol and all-cause mortality is diluted when appropriately handling variables 

independently increasing mortality risk. Interestingly, solely accounting for dysphagia in 

sensitivity analyses resulted in limited risk reduction as compared to the main analyses. 

Perhaps, this is because while dysphagia itself might be associated with mortality, the 

diseases associated with dysphagia exert greater risk on mortality in comparison (e.g., 

oesophageal cancer and dementia in (Table 7-4)223,229. Estimating the association between 

exposure and all-cause mortality accounting for dysphagia and additionally, the 

associated conditions as mediators (or conversely, confounders under the second 

interpretation), indeed further diminished the effect size.  Lastly, in parallel, accounting 

for both reverse causation and dysphagia and associated conditions, the association 

tended towards the line of parity hinting that the two pathways might be independently 

contributing to excess risk of all-cause mortality. Depression of the effect size in these 

analyses reflects the heavy presence of bias in the main analysis of all-cause mortality as 

outcome. 

Given the compelling evidence in support of the second interpretation, a question 

regarding confounding emerges: how can we ensure modelling adjusts for these incipient 

confounders in the observational study? While impossible to truly guarantee the causal 

assumption that all confounders are adjusted, models that can take into account both 

known and latent confounding such as Targeted-BEHRT can more accurately estimate 

causal effect than conventional approaches170,230. As an example, while we note dementia 

is more prevalent in the exposure group ( 
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Table 7-3), modelling by past works and our independent statistical implementation omit 

this variable from the predictor set – perhaps simply overlooked for a useful adjustment 

variable215,216. However, this variable is indeed imbalanced in exposure groups; 

independently, dementia is established to be associated with mortality229. Therefore, 

omission of this variable is the omission of a confounder rendering downstream estimates 

to be exaggerated. While we have uncovered that dementia, a single variable, is 

confounding the association, there may be several other confounder factors not explicitly 

measured. On the other hand, Targeted-BEHRT extracts confounding elements from 

minimally processed EHR more comprehensively than statistical model estimation, 

rendering attenuated effect sizes even in the main analyses of all of the three outcomes 

investigated. 

Especially in multimorbid elderly patients, pain is a common symptom of many 

conditions. Inappropriate clinical recommendations derived from biased estimations of 

risk will limit access to the only pain-management option available212,231. The immaterial 

effects on CVD and SBP as outcomes should help mitigate concerns regarding the effect 

of sodium-based paracetamol. In the investigation of all-cause mortality, the strong 

positive effect size was found to likely manifest from various biases as opposed to the 

exposure. Further confirmatory randomized evidence would be beneficial to validate 

findings from our study; a trial would (1) yield greater sample size for the exposure group 

and (2) would provide conclusive, unconfounded evidence of the association since 

confounders, known and unknown, would be theoretically randomised at index date. 

In terms of strengths of our study, first, in terms of data, the comprehensive EHR 

provided by CPRD is a strength of our work. Whilst replicating Zeng et al’s work, we 

restricted our work to GP-based adjustment; for sensitivity analyses, the access to 

secondary care data enabled more comprehensive adjustment. Second, the deep learning 
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approach extracted both known and latent confounders in comprehensive EHR, an asset 

in our approach not available in more conventional approaches in modelling. Third, with 

access to repeat measurements, we were able to mitigate issues of measurement error with 

our definition of SBP as an outcome. Fourth, our sensitivity analyses into all-cause 

mortality as outcome enabled better understanding of biases prevalent in this 

observational study. Specifically, reverse causality analyses demonstrated the issues with 

a short follow-up period while inspection of mediator variables illuminated how 

unadjusted confounding was present and distorting effect sizes. Lastly, we also 

implemented conventional models to compare directly against the deep learning approach 

whilst mirroring Zeng et al’s work216. 

In terms of limitations, CPRD, as an administrative dataset, has known issues of 

recording biases and measurement errors. In fact, uncontrolled confounding at baseline 

due to recording biases played a prevalent role in the estimation; incipient diseases at 

baseline due to latent nature of conditions hampered estimation of treatment effect in 

main analyses. Furthermore, more accurate modelling of the outcome and patient 

censoring is necessary232. However, because survival deep learning modelling is still in 

its nascent stages and has not been appropriately developed for assessing causality, we 

were unable to pursue a more nuanced evaluation of risk with time-to-event deep learning 

modelling. In the same vein, there have been numerous advancements in mediation 

analysis, but few have been tailored for deep learning approaches. Thus, further work 

combining deep learning with, for example, doubly-robust estimation for mediation 

analysis needs to be explored in future works. Lastly, a frequent criticism levied at direct 

effect estimation is that the presence of mediator-outcome confounding can explain away 

the direct effect association220,233. Assuming there exists unadjusted variables perhaps that 

associate with both the mediator and the outcome, it is possible that the direct effect 
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measured is overestimated. With the RR estimate of 1.27, as an example, there could 

hypothetically exist a mediator-outcome confounder (e.g., another neurological condition 

associated with both dysphagia/comorbidities and all-cause mortality) with RR of 4.5 

with prevalence of 15% in the exposure group and 5% in the non-exposure group, that 

could explain away the direct effect234,235. Albeit unlikely, the existence of this mediator-

outcome confounder would only further weaken the captured association and ultimately 

nullify the relationship between sodium-based paracetamol and all-cause mortality.  
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8 DISCUSSION 

 The presented doctoral research explored deep learning modelling for causal 

inference. The following sections will discuss the summary of main findings from the 

doctoral research, strengths and limitations, the methodological implications of the 

findings, the clinical implications of the findings, future directions for research, and 

salient concluding remarks concerning the doctoral research.  

8.1 Summary of main findings 

 In chapter 2, an in-depth review of literature relevant to the thesis was presented. 

First, this review introduced the cardiovascular diseases, risk factors, and related 

comorbidities studied in this thesis. The national (UK) and global burden of these diseases 

were discussed in these initial sections. Second, an introduction of electronic health 

records was presented. Third, risk prediction was discussed; the motivations, theory, and 

evaluation of risk prediction models are discussed and conventional models and their 

strengths and limitations are discussed in the context of epidemiological studies. Fourth, 

following this material, with risk prediction introduced as the foundation of conventional 

statistical modelling in epidemiology, the foundations of causal inference were discussed 

in the section. In this section, motivations for causal investigations were introduced, 

followed by discussion of the theoretical framework of causal inference including 

elucidation of assumptions for identifiability of causal effect, and methods for causal 

inference and association analyses in the observational setting. Fifth and finally, deep 
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learning is explored and material concerning some notable neural network architectures 

are discussed in this section.  

 In chapter 3, the CPRD database, the dataset used for the thesis, was discussed. 

Information concerning the data collection, processing, regulation, and validation was 

presented in this section. Particular focus was devoted to ascertaining the legitimacy, 

validity, and reliability of the CPRD database. Establishing validity of the CPRD database 

was necessary since my doctoral research utilises this dataset for deep learning and 

statistical analyses of various exposures and cardiovascular-related outcomes in the 

observational capacity. Lastly, the data cut used in this research was described in full in 

this section.  

 In chapter 4, model development and risk prediction were conducted and two 

studies were presented: (1) the development of the Transformer-based BEHRT model and 

prediction of occurrence of subsequent diseases in different settings, and (2) the risk 

prediction of incident heart failure utilising BEHRT. In these works, the model, BEHRT 

was developed to utilise minimally processed EHR and consolidate them in a unified 

Transformer-based feature extractor. Specifically, the model incorporated raw diagnosis 

and medications records from the primary and secondary setting along with attributions 

of time (patient age). With this rich modelling of longitudinal health variables, the model 

achieved state-of-the-art predictive performance on subsequent disease prediction tasks. 

Furthermore, the sex and embedding analyses demonstrated that the model was able to 

capture clinically valid concepts in high dimensional latent space. In the heart failure risk 

prediction investigation, I showed that the BEHRT architecture can be flexibly modified 

for further annotation of medical history with inclusion of the calendar year embedding 

layer. With this inclusion, I demonstrated that BEHRT can achieve superior predictive 

performance in terms of AUROC and AUPRC metrics on incident heart failure prediction 
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task. Furthermore, ablation analyses of modalities utilised for modelling illustrated that 

certain modalities are more important than others for predictive performance. In 

particular, I found that the medication and year modality was important for predictive 

gain. While medications complemented the diagnostic medical history data, the year 

modality on the other hand likely provided more latent elements that allows for capture 

of the “birth cohort effect” in the cohort extracted for the investigation. 

 In chapter 5, while BEHRT demonstrated superior risk prediction performance 

on a host of tasks, I investigated if the model could be trusted by breaking open the “black 

box” Transformer architecture and deriving what the model captured as elements of risk 

and protection in medical history with respect to prediction of incident heart failure. The 

temporal embedding analyses complemented analyses presented in Chapter 4; year is 

indeed an informative embedding structure that provides utility for the prediction task. 

Furthermore, the contribution analyses demonstrated that (1) BEHRT captured validated 

risk and protective factors of heart failure, and (2) BEHRT captures potentially novel risk 

and preventative factors that can be formally tested in a hypothesis testing framework.  

 In chapter 6, given that deep learning has demonstrated superior predictive 

performance and can be trusted, a derivation of the BEHRT model was created for causal 

inference and association analyses. The model, Targeted-BEHRT, utilised a two-step 

procedure consisting of (1) deep learning-based confounding adjustment and (2) targeted 

learning that enabled more accurate RR estimation with mitigated selection/finite sample 

estimation bias. Furthermore, the model successfully estimated RR more accurately as 

compared to several benchmark statistical and deep learning models in semi-synthetic 

data experiments. Ablation analyses demonstrated that the unsupervised modelling was 

instrumental for mitigating bias in estimation when the model was allowed access to 

large-scale, rich EHR, but doubly-robust estimation was instrumental in mitigating bias 
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in data sparse settings (i.e., finite sample estimation). Lastly, the Targeted-BEHRT model 

was implemented to investigate the effect of antihypertensives on incident cancer in a 

population free of cancer at baseline. The Targeted-BEHRT analysis captured a null 

association with exception of the association between CCBs and cancer with respect to 

control, ACEIs; these results were consistent with established meta-analyses of 

randomised evidences.  

 In chapter 7, I implemented Targeted-BEHRT in three more association studies 

investigating at-risk patients either due to existing comorbidity or old age. First and 

second, in the investigation of the association of SBP and cardiovascular endpoints in 

those with diabetes and COPD respectively, while conventional modelling generally 

estimated a J-shaped pattern (with exception of stroke as outcome), the Targeted-BEHRT 

model utilising both longitudinal and static medical history captured a continuous, log-

linear trend. Several sensitivity analyses pursued using the Targeted-BEHRT modelling 

demonstrated little deviation from the results of the main analyses. Third, in the 

investigation of the association between sodium-based paracetamol on SBP, incident 

CVD, and all-cause mortality with respect to non-sodium formulations in elderly patients, 

the Targeted-BEHRT model captured a null association for outcomes, SBP and incident 

CVD. However, the model estimated significant increased risk of all-cause mortality. In 

sensitivity analyses of all-cause mortality as outcome, I found that both reverse causality 

and dysphagia-related confounding were likely biasing the association. Appropriately 

accounting for these issues in observational data, the association tended towards the null. 

While Targeted-BEHRT captured a null association between sodium-based paracetamol 

and SBP, incident CVD, and all-cause mortality (with appropriate handling of the 

elements distorting the effect size), the conventional statistical modelling demonstrated 

increased risk for all three outcomes. In gist, the Targeted-BEHRT model, with better 
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confounding adjustment and bias mitigation abilities than conventional approaches, 

introduced robust observational evidence for hypotheses, which otherwise are not likely 

to be tested in a randomised trial setting. 

 A summary of doctoral research conducted for this thesis is presented in Table 

8-1. 
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Table 8-1: Summary of doctoral research 

Chapter Objective Cohort Tasks Results/Conclusions 

4 Develop risk prediction model for 

subsequent disease prediction using 

minimally processed multimodal, 

longitudinal EHR with attributions 
of time 

1.6 million registered patients 

with linkage to HES and more 

than 5 visits 

Predict subsequent diseases: 

1) Next visit 

2) Next 6 months  

3) Next 12 months 

1) BEHRT outperforms recurrent and convolutional neural network models 

on subsequent disease occurrence task 

2) BEHRT captures sex and diseases in latent space in line with clinical 

knowledge 

 

4 Develop risk prediction model for 

incident heart failure prediction  

100,071 registered patients with 

linkage to HES, free of heart 

failure, and more than 5 visits 

Predict incident heart failure 
1) BEHRT outperforms recurrent and convolutional neural network models 

on incident heart failure prediction task 

2) In ablation analyses, BEHRT finds medication and calendar year to be 

important sources of data 

5 Develop tools to explain deep 

learning model  

100,071 registered patients with 

linkage to HES, free of heart 

failure, and more than 5 visits 

Develop tools for understanding contribution of 

various disease/medications to incident heart 

failure prediction 

1) BEHRT independently captures risk factors in medical literature 

2) The explainability tool generates novel factors of prevention (e.g., 

prostaglandin analogues)  

6 Develop deep learning model for 

accurate causal effect estimation     

516,365 registered patients with 

linkage to HES free of cancer at 
baseline  

1) Develop deep learning model that can more 

accurately estimate causal effect than 
benchmark models 

2) Develop testing environment using semi-

synthetic data to objectively test estimation 

capabilities of various models   

1) Targeted-BEHRT more accurately estimates RR utilising unsupervised 

modelling in tandem with propensity score/outcome modelling and 
mitigates selection biases utilising doubly robust estimation 

 

6 Implement Targeted-BEHRT for 

estimation of effect of 

antihypertensives on incident cancer 

516,365 registered patients with 

linkage to HES free of cancer at 

baseline  

Estimate effect of BBs, CCBs, diuretics, and 

ARBs on cancer with respect to ACEIs. 

1) Null effect for all association with exception of the one with CCBs 

2) Effect estimates were consistent with meta-analyses of randomised 

evidence 

7 Estimate association of SBP and 

cardiovascular endpoints in patients 
with diabetes 

49,000 registered patients with 

diabetes and free of heart failure 
at baseline 

In patients with diabetes, estimate association 

between SBP and cardiovascular endpoints with 
Targeted-BEHRT and conventional modelling  

1) While conventional modelling estimated a J-shaped association, the 

Targeted-BEHRT model estimated a log-linear relationship in both main 
and sensitivity analyses 

7 Estimate association of SBP and 

cardiovascular endpoints in patients 

with COPD 

39,602 registered patients with 

COPD at baseline 

In patients with COPD, estimate association 

between SBP and cardiovascular endpoints with 

Targeted-BEHRT and conventional modelling  

1) While conventional modelling estimated a J-shaped association, the 

Targeted-BEHRT model estimated a log-linear relationship in both main 

and sensitivity analyses 

7 Estimate association of paracetamol 
and SBP, all-cause mortality, 

incident CVD in patients with COPD 

475,442 registered patients free 
of cancer, CVD, prior 

compound paracetamol use at 

baseline 

Estimate association between sodium-based 
paracetamol and SBP, incident CVD, and all-

cause mortality with respect to non-sodium 

formulations.   

1) While conventional modelling estimated increased risk for all outcomes, 
Targeted-BEHRT model estimated null effect estimate for outcomes of 

SBP and incident CVD with increased risk of all-cause mortality.  

2) In sensitivity analyses, accounting for reverse causality and dysphagia 

related confounding, the estimates tended towards the null.  

Left most column is chapter number. CVD: cardiovascular disease, COPD: chronic obstructive pulmonary disorder, HES: hospital episode 

statistics; SBP: systolic blood pressure; EHR: electronic health records; RR: risk ratio; 
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8.2 Strengths and limitations 

 In the following sections, the strengths and limitations of the doctoral research 

will be presented.  

8.2.1 Strengths: Data 

 One of the greatest assets in this research is the dataset, CPRD. The CPRD 

dataset is an incredibly rich dataset providing access to multiple data modalities for 

patients registered in the primary care setting. Furthermore, the dataset offers linkages to 

other secondary care and mortality-based datasets. In sum, this is a powerful dataset for 

nationally representative epidemiological research. In fact, the breadth and depth of 

CPRD is in many ways, unparalleled. Few other datasets offer as many attributes of health 

for as many patients. Furthermore, the work presented in this research is conducted on 

UK patients; for this reason, the results and conclusions derived from these research 

works are likely representative of other high-income countries. Ultimately, this implies 

that the analyses conducted on CPRD data is clinically important in the global context in 

addition to the national context.  

8.2.1.1 Validity 

 While the reliability and validity of CPRD is generally presented in Chapter 3, 

there are also numerous other research works that demonstrate the reliability of the 

dataset. As examples, previous works have demonstrated that the diagnoses in the primary 

healthcare setting for a host of disease groups are generally concordant with national 

statistics. Generally, the PPV of the diagnosis records found in CPRD is 89% (92% 

completeness) when compared with statistics from national registries107. Additionally, 

previous research has also found that utilising linked data sources of rich EHR improves 

the completeness and validity of diagnostic medical history of registered patients5,104,107. 
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 Also, the works in this thesis also employs appropriate and validated data 

extraction and processing methods preserve the consistency of the raw CPRD data. 

Specifically, the data processing and cohort selection was carefully conducted to mitigate 

injections of bias into the analysis. Furthermore, several reliability checks were conducted 

to ensure the data points were “up to standard” and of high quality for downstream 

research5. For several works, erroneous data entries were removed with data filtering 

steps and carefully designed criteria. In addition, diagnosis and medication codes were 

mapped to harmonised codes in order for ease of machine-readability using validated 

phenotyping algorithms120,122. Caliber phenotyping was crucial for conducting disease 

code harmonisation for research presented in Chapters 4 and 5122. Overall, with these 

methods of cleaning the data, the validity of the original CPRD is maximally retained in 

the processed data. 

8.2.1.2 Sample size 

 The research conducted in this thesis benefits from the large sample size offered 

by the CPRD data. In risk prediction and explainability investigations, 1.6 million and 

100 thousand patients with higher number of interactions with healthcare providers (i.e., 

at least 5 visits) were selected for investigation of subsequent diseases and incident heart 

failure prediction respectively (Chapters 4 and 5). In investigations of association 

analyses in the observational setting, 516 thousand patients were selected for the 

investigation of the association between various antihypertensive drug classes and cancer. 

Furthermore, 49 thousand, 40 thousand, and 475 thousand eligible patients were selected 

for the three studies involving high-risk and elderly patients respectively. 

 The large sample size offered by CPRD is beneficial for epidemiological 

research for a host of reasons. In association analyses, the 7 million patients registered 

between 1985 and 2015 offers the possibility of high-powered studies with slimmer 
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confidence intervals than past works. Additionally, larger sample sizes can allow for 

identification of smaller effect measures as well; for example, in the investigation of 

antihypertensives and cancer, while most drug classes presented a null association with 

ACEIs, a slight statistically significant positive association was captured with CCBs170. 

These results were consistent with meta-analyses of randomised evidences, and the large 

sample size allowed for high-powered investigations of drug class comparisons. 

Furthermore, in the investigations studying SBP and cardiovascular endpoints in at-risk 

patients, the selection criteria restricted analyses to those with prior illness and at 

specified age ranges. However, each exposure group and outcomes (both primary and 

secondary) had sufficient numbers for analyses. In fact, in the investigation in COPD 

patients, the analysis was conducted on a cohort with far greater numbers than those in 

previous research35. For the investigation of paracetamol and various outcomes, large 

sample sizes were available for both the analyses of cardiovascular and all-cause 

mortality as outcomes as well as SBP as a continuous outcome. For all association 

analyses, the large sample size also allowed for numerous sensitivity analyses ultimately 

allowing the opportunity to trust the robustness of the results of the main analyses in 

various subgroups. 

 Additionally, given that Transformer models require large amounts of data for 

training, the CPRD dataset is an optimal dataset for Transformer-driven risk prediction 

and causal inference119. Specifically, for BEHRT and related models, the large sample 

size allows for pre-training of embeddings and model weights and downstream fine-

tuning. For the risk prediction works, the extracted cohort of 1.6 million patients allowed 

for pre-training of model weights prior to task-specific fine tuning. This strategy helped 

secure the superior predictive performance on the subsequent disease and incident heart 

failure prediction tasks (Chapter 4). In the works for causal inference, the Targeted-
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BEHRT model was initially pre-trained on 6.8 million patients prior to further tandem 

unsupervised (MEM) and supervised modelling on the specified cohort for association 

analyses (Chapters 6 and 7).  In the case of high-risk cohorts, since the cohort of eligible 

patients for analysis is naturally smaller than other healthier cohorts, the large amounts 

of data offered by CPRD for pre-training is even more important for downstream 

Targeted-BEHRT modelling of the association of interest.  

8.2.1.3 Richness 

 Additionally, unlike many other datasets for EHR, the CPRD dataset is 

especially rich in two ways: longitudinal nature of data available and number of variables. 

 In terms of the longitudinal nature of variables provided, the benefits are 

manyfold. Previously, many epidemiological research works were exclusively conducted 

on cross-sectional data. However, cross-sectional datasets directly imply that there will 

be certain restrictions on the research. For example, data will be collected at certain time 

points hence the collected variables might have less information concerning time (e.g., 

age, calendar date, etc). Ultimately, for both statistical and deep learning modelling, 

adjustment might be impacted; with longitudinal data, the models like BEHRT and 

Targeted-BEHRT can more accurately capture the medical trajectory of the patient 

thereby allowing for more nuanced adjustment of variables at baseline for both risk 

assessment and association analyses (Chapters 4, 6, and 7). Furthermore, for 

ascertainment of variables such as pre-exposure and exposure variables; longitudinal data 

variables are necessary to ensure that modelling is not adjusting for variables “on the 

causal pathway” – i.e., happening between the time of exposure and outcome as done in 

Chapters 6 and 7. Similarly, outcome ascertainment is easier and more robust with access 

to longitudinal data variables. Also, when dealing with issues of reverse causation as 

shown in investigations in Chapter 7, longitudinal data allows for careful cohort selection 
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procedures that alleviate the presence of reverse causation and associated issues of 

uncontrolled confounding. 

 In terms of number of variables, the CPRD dataset offers so many variables for 

more comprehensive modelling. The data used in this doctoral research includes: 

diagnoses in the primary and secondary care settings, prescription data, measurements, 

death (cause/date). In addition to this, the phenotyping for specifically the CPRD dataset 

is validated allowing for seamless processing of diagnosis and prescription data. 

8.2.1.4 Other benefits 

 Use of routine clinical EHR offers other benefits in terms of mitigations of 

biases. Unlike self-reported data, recall bias is limited with the use of routine clinical 

EHR236. Sensitive diseases like developmental disorders can be studied with lesser 

concerns of recall bias distorting conclusions236. Also, the CPRD dataset offers accurate 

time information on records from the primary and secondary care settings that are also 

not susceptible to issues of recall bias.  

8.2.2 Strengths: Modelling 

8.2.2.1 Transformer-driven modelling: Maximal preservation of EHR 

 The proposed BEHRT architecture and derivations take great care in preserving 

the natural complexity and longitudinal structure of the CPRD database. Disease and 

medication data serve as input into the model; repeat diagnoses/medications are included 

as opposed to discarded to provide further latent information concerning duration and, in 

some cases, intensity of the condition123,170. Especially, this repetition implicitly informs 

the model if a disease is chronic versus acute; diseases, which are chronic or at the least, 

episodic, are more likely to repeat as opposed to those which are acute or isolated (e.g., 

“one-off” conditions)123. The idea of a visit to the healthcare services is also inputted for 

the model in the form of the “SEP” token; summarisation of the medical history into one 
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single vector is also easily possible with the pooling layer acting on the “CLS” token’s 

hidden state123. Furthermore, both relative and absolute forms are used to provide time-

based information for the diseases123,170. Position is encoded as a pre-determined function 

in order to alleviate issues of biased and/or weak learning of position of visits due to 

imbalanced distribution of history length in EHR86. This positional encoding in a 

Transformer model is the substitute for representing sequential data in the recurrent and 

convolutional neural network framework. Lastly, while longitudinal variables are indeed 

important for modelling, some variables are static and unchanging (e.g., ethnicity). In the 

Targeted-BEHRT model, the inclusion of static variables in the architecture allowed more 

comprehensive modelling of patient characteristics; not only were longitudinal variables 

included to model the health trajectory of the patient but also static variables were 

included that could form latent interactions with these temporal variables in deeper layers 

of the network170.  

 In addition, for a given visit in medical history, the age, position, year, and 

segment embeddings are identical; this ultimately makes the BEHRT and other derived 

models order-invariant (i.e., within a visit, the order of diagnoses do not matter). In stark 

contrast to recurrent and convolutional networks, for which ordering of encounters 

matter, the BEHRT model allows for more generalised learning of sequential data. 

Specifically, the attention mechanism in the BEHRT model investigates intra-visit 

relationships amongst diseases123. Furthermore, due to the feed-forward structure of 

BEHRT’s model and therefore, its ability to handle longer medical history sequences as 

compared to the recurrent neural network structures such as RETAIN/RETAIN-EX 

(suffering from issues of vanishing/exploding gradient), more comprehensive medical 

history modelling is possible with Transformer-driven modelling124. In this way, the 
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model can maximally preserve the complexity and the high-dimensional nature of patient 

medical history.  

8.2.2.2 Explainability  

 While the BEHRT model is not fully explainable, some aspects are quite 

transparent ultimately paving the way for stronger confidence in deep learning models in 

the healthcare setting. When investigating embeddings and time-related embeddings 

(e.g., age and calendar year), certain examinations can directly illuminate how the model 

assimilates and processes input and what the model finds as important input for learning. 

In Chapter 4, the embedding analyses demonstrate that the model captures clinical 

encounters in concordance with clinical understanding; in terms of sex-related, 

cardiovascular, renal, and other disease groups, the model naturally clustered these 

diseases without manual feature engineering or prompting. Specifically, the model’s 

trained clinical encounter embeddings were in line with symptomatology and progression 

of the diseases.  

 In addition, the ablation analyses in Chapter 4 itself can be a simple way of 

explaining model predictions. While this is an indirect way of quantifying utility of 

certain modalities in the model, the ablation analyses directly illuminated that certain 

predictors were key: medications and calendar year embedding structures provided 

information perhaps, orthogonal to diagnoses and age, respectively allowing for more 

nuanced modelling. Also, the importance of calendar year was in line with understanding 

of the “birth cohort effect” in epidemiological modelling131. Furthermore, the temporal 

embedding analyses confirmed the utility of the year embedding separately from the 

ablation analyses131.  
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 These forms of direct evaluation of the embedding space and relevant ablation 

studies performed in this thesis is one strong step in the path to trusting deep learning 

models.  

 For those elements of BEHRT not readily explainable, a major strength of this 

research is the development of the perturbation-based tool to explain incident heart failure 

predictions (Chapter 5). This tool captured several associations that enable more trust in 

deep learning solutions: (1) several medically validated risk factors were indeed captured 

by the BEHRT model in both main and age-stratified analyses, (2) while not causal, 

understanding of risk, treated risk, and untreated risk was also in line with clinical 

understanding of heart failure and associated care, (3) the year-stratified analyses 

confirmed the underlying change in the prescription composition of several medications.  

 Lastly, in addition to instilling more confidence in deep learning approaches, the 

explainability tool (Chapter 5) also helped to generate hypotheses concerning incident 

heart failure prevention. Prostaglandin analogues and digoxin were captured as 

medications that could potentially prevent incident heart failure; hypothesized to be 

beneficial in previous works, the presented work for this doctoral research provides 

another source of evidence. Further downstream hypothesis testing in a formal 

observational or if possible, randomised, setting would be crucial to further clarify the 

strength and direction of the association.  

8.2.2.3 Association analyses 

 While many models exist for association analyses in the observational setting 

for healthier patients, when cohorts are lesser understood, conventional modelling 

strategies do not work. The confounding adjustment strategies may be weak for a variety 

of reasons: (1) the understanding of risk/protection in the context of a particular exposure-

outcome relationship may be poorly studied, (2) the population may be very unhealthy 
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(e.g., high number of comorbidities, high BMI, etc) implying conventional confounders 

selection may be insufficient for comprehensive identification of confounding variables, 

(3) confounding variables may be missing/recorded late. While data collection may have 

to be improved to fix reason (3), given enough data and modalities of EHR data, data-

driven and automatic confounder selection as opposed to conventional expert-driven 

confounder selection may help address issues, (1) and (2). Given the proposed deep 

learning model is fitting adequately (Chapter 4) and the model can be trusted (Chapter 5), 

the model can be amended for data-driven causal/association modelling.   

 The developed model, Targeted-BEHRT is a major focal point and strength of 

this thesis (Chapter 6)170. In theory, the model, utilising both deep learning adjustment 

processes and doubly-robust estimation for selection bias mitigation, is a robust approach 

for causal inference and association analyses. Furthermore, in simulation experiments, 

the model estimated ground truth more accurately than benchmark statistical models170. 

Furthermore, the ablation analyses and finite-sample estimation experiments further 

illuminated that the unsupervised modelling provided greater utility in large/rich datasets, 

and the CV-TMLE procedure provided greater utility in finite sample data situations170. 

Also, with utilisation of both longitudinal and static variables, the model is an appropriate 

choice for association analyses when confounding adjustment is difficult due to reasons 

(1) and (2) described above. In sum, a major strength of works presented in Chapters 6 

and 7 is the deep learning approach capable of extracting and adjusting for confounding 

factors in rich annotated EHR. With more comprehensive adjustment of confounders at 

baseline, the studies converge towards operating in the “strong ignorability” setting.  

 In addition, in this doctoral thesis, the statistical models were also implemented 

to directly compare with the proposed approach. The results from benchmark statistical 

models directly demonstrated the utility of conventional confounders (and in section 7.3, 
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pre-exposure variable) selection. Specifically, in both investigations of SBP, the 

Targeted-BEHRT modelling reject the J-curve hypothesis while the conventional 

modelling with expert selected confounders demonstrated a statistically significant J-

shaped pattern (Sections 7.1 and 7.2). Also, in the investigations of paracetamol and 

cardiovascular/all-cause mortality outcomes, even adjustment of over 50 variables in the 

conventional modelling paradigm was insufficient to dismiss elevated risk. The 

association was quantitatively larger than the Targeted-BEHRT approach likely implying 

residual confounding in play in the case of the conventional modelling. However, in the 

investigations of paracetamol and SBP, the estimation from conventional modelling was 

qualitatively indifferent from that of the deep learning approach. 

 Furthermore, in the case of point (3) when confounders are missing/sparsely 

recorded, a mixed strategy of automatic and expert-driven/conventional confounder 

selection must be conducted. Targeted-BEHRT allows for this hybrid strategy; in the case 

of paracetamol of all-cause mortality, manually including variables recorded post-

exposure but likely recorded late and pre-exposure as static variables explicitly in the 

Targeted-BEHRT model was instrumental to accurately modelling the clinically 

validated DAG (section 7.3). This example further demonstrates that data-driven 

modelling left without supervision of subject area specialists is a faulty and even more 

importantly, a dangerous approach. Supervised data-driven modelling allowing for 

careful expert-driven selection of confounding variables is necessary for high-quality 

investigations.  

 In sum, the Targeted-BEHRT approach is a major strength of this thesis; the 

model has the ability to deliver trustworthy evidence specifically in association studies 

for which the scope of confounding is not fully understood. In collaboration with subject 

area specialists, reliable interpretation of model estimates can be conducted.  
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8.2.3  Limitations: Data 

8.2.3.1 Noise and missingness 

 Missing and erroneous data are indeed a problem that needs to be carefully 

handled. While for deep learning modelling, imputation was not conducted, several 

variables in investigations in Chapter 7 underwent imputation for inclusion in statistical 

modelling. Also, since patient data variables are recorded in the primary and secondary 

care settings, certain diagnoses in medical history might bias number and frequency of 

future visits. As an example, given a patient is diagnosed with diabetes, they might be 

requested to come to the GP more frequently for management of diabetes and health 

checks. Furthermore, the same patient may be measured for SBP and BMI more 

frequently than others in the same age group due to their chronic illness. Another issue 

with CPRD research is that absence of a code in records is considered as the absence of 

the condition itself; while this is accepted practice for CPRD data, this may not be true5. 

Sometimes, the patient may not go to GP appointments, the GP/hospital may not record 

the event, or there may be other issues with regards to how the CPRD organisation 

organised the GP data. With all this being said, the validity and reliability of the CPRD 

dataset is well established and the dataset has been used for ground-breaking research 

into cardiovascular and associated diseases5,104,107. 

8.2.3.2 Standardization of data 

 In routine clinical data, not all of the data for all patients will be collected in the 

same way. Across patients, the recording of diagnoses, measurements, prescriptions 

might be subject to recording practices differing across GPs and hospitals. For this reason, 

the algorithms for case ascertainment are even more important whilst using datasets such 

as CPRD. Hence, the phenotyping algorithms are crucial for comprehensively assessing 

a particular exposure or outcome in a particular population. With adoption of the 
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established Caliber phenotyping algorithms as well as phenotyping algorithms for CPRD 

developed by Tran et al, standardisation issues were directly addressed in the doctoral 

research works.  

8.2.3.3 Unrecorded conditions 

 Because of how the CPRD dataset collects data, some conditions are more 

difficult to identify in patients and hence harder to study. Specifically, since the variables 

are routine clinical care data from primary and secondary data sources, only those 

conditions, for which the patient seeks medical attention are more regularly and reliably 

recorded in the clinical care setting. Milder conditions (e.g., slight headache, light 

muscular pain) or diseases that have stigma associated with them often go unreported. In 

our research dysphagia is one such condition (Chapter 7); as both a mild condition in 

many cases and one that causes embarrassment, this condition is poorly recorded, 

recorded late, or wholly unreported212,222–224. In the case of conditions like dysphagia and 

others as confounding variables, this remains problematic for variable adjustment. 

However, an interdisciplinary research environment with data scientists, machine 

learning scientists, epidemiologists, and clinical experts can identify potential issues such 

as the ones illustrated in Section 7.3  and can work together to address them.  

8.2.3.4 Other factors relevant to the data 

 CPRD only has patient records on patients who are using the primary care 

services. This ultimately means that the patients who are contributing to records in the 

CPRD dataset are those who understand that they must seek primary care services for the 

betterment of health. As a result, those who are not in the CPRD dataset might be 

unhealthier as they are rejecting preventative care, screening services, and the 

professional advice of health care professionals in the clinical care setting4 While 

population selection bias endemic to the CPRD dataset may be an issue, the dataset is still 
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a far better source of health data for epidemiological studies than others; in other studies, 

participants have to explicitly wish to be included (i.e., opt in) for study ultimately 

exposing the study to other more problematic forms of selection bias4.  

 Also, the CPRD dataset is not a good source of data to understand the views and 

perspectives of the patient. There is quite a discrepancy between patient’s perception of 

illness and clinical diagnoses of the condition as reported in past prospective cohort 

studies237. For studies that rely on patient-reported symptoms, the self-reported data are 

often a better source of data-driven analyses than datasets like CPRD237. 

8.2.4 Limitations: Modelling 

8.2.4.1 Risk prediction 

 In risk prediction studies including subsequent diseases and incident heart failure 

prediction presented in Chapter 4, there are certain methodological limitations in 

modelling. First, the phenotyping in the Caliber encoding simplifies the diagnoses into 

approximately 300 codes meaning that certain inaccuracies in disease identification 

manifest122. However, the causal inference and association studies conducted in Chapters 

6 and 7 adopt more granular methods of representing the patient health (i.e., ICD-10 

encoding). Additionally, only the diagnosis, measurement, and medication modalities 

were used in this thesis. While data for procedures were sparse in the cut of CPRD used 

in this thesis, further inclusion of procedures and even laboratory tests in addition to static 

variables (e.g., ethnicity) would be prudent for downstream research. 

 Second, in both investigation in Chapter 4, filtering was implemented to conduct 

risk prediction studies on an enriched set of patients – i.e., those with greater interactions 

with clinical care providers. While this is useful to assess model performance in a cohort 

of patients with more clinical interactions or perhaps even those with higher baseline risk 
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(by proxy of higher interactions with healthcare providers), this is not useful for assessing 

risk prediction in the general population131.  

 Third, for more robust assessment of the BEHRT model’s predictive ability and 

generalisability, validation was not conducted on another external dataset. The models 

were internally trained and tested in CPRD; while CPRD is a reliable and validated 

nationally representative dataset as discussed in Chapter 3, a more comprehensive test of 

model predictive ability would involve external validation. Hence, external validation is 

left as an important goal to be addressed in future works (see section 8.5).  

 Indeed, the models trained and tested in these settings are not suited for 

deployment in the clinical setting as further validation is needed. However, the risk 

prediction studies pursued in these studies were not intended for deployment in the 

clinical setting. In fact, the prediction of subsequent diseases – especially including 

conditions that may repeat – presented in the first half of Chapter 4 has little clinical 

significance and impact. Rather, BEHRT was built and compared to other convolutional 

and recurrent architectures in the two risk prediction studies to better understand, which 

models demonstrated promise for causal inference and association analyses. By analysing 

BEHRT’s prediction performance measures across tasks, it was understood that 

BEHRT’s feature extractor captured signal that aided risk prediction as compared to the 

convolutional and recurrent architectures. 

8.2.4.2 Causal inference and association analyses 

 First, all of the four association analyses fail to fully satisfy the assumptions of 

conducting causal inference and hence not causal. In all four investigations, the works are 

conducted in the observational setting implying that residual confounding cannot be fully 

ruled out. Hence, the assumption of “strong ignorability” is not met. With this being 

stated, however, ignorability in the observational setting is a spectrum, and with access 
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to more informative variables concerning patient health and more robust 

estimation/adjustment methods, association studies converge towards meeting this 

assumption. Also, in the investigations of SBP and cardiovascular endpoints in at-risk 

patients, SBP fundamentally cannot be randomised directly implying that these works are 

not causal by nature.  

 Second, while the Targeted-BEHRT model was tested in a host of semi-synthetic 

data experiments, further experimentation is needed to validate the model. Similar to 

research presented in Chapter 6, further assessment of statistical and deep learning models 

needs to be conducted on two fronts: assessment of estimation with respect to 1) generated 

ground truth and 2) clinically validated/established ground truth. Consistent reliable 

estimation in both settings can better instil trust in more contemporary modelling 

solutions such as Targeted-BEHRT. 

 Third, the proposed Targeted-BEHRT model may be suffering from collider 

adjustment and other over-adjustment biases. Regarding colliders, study design is an 

important consideration; study designs were chosen that has a clear baseline with 

Targeted-BEHRT modelling health variables up to baseline. Hence, potential collider bias 

is already mitigated in this way with strict study design methods. Furthermore, for certain 

special colliders (e.g., the M-structure), these special colliders are actually quite 

uncommon in real world data settings. Nevertheless, the M-structure variables might 

indeed be a source of bias if adjusted184. However, empirical research has demonstrated 

that fully conditioning on all pre-exposure variables is still far more optimal avoiding 

adjustment of variables hypothesized to be M-structure variables185. Fundamentally, this 

is because effects of confounding malign the estimation far more heavily than 

hypothetical M-structure bias. Hence, the collider bias should not be a substantial source 

of bias in Targeted-BEHRT estimation. 
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 Fourth, much like trusting deep learning models in the context of risk prediction, 

a fundamental question arises: can we trust Targeted-BEHRT and generally, deep 

learning modelling for causal inference and association analyses? The Targeted-BEHRT 

deep learning model builds on the fundamental BEHRT feature extractor123. In past 

works, the opaque, “black-box” BEHRT model has been shown to capture clinically 

meaningful and validated signal131,170. Specifically, the feature extractor can (1) capture 

known risk and preventative factors of cardiovascular conditions, (2) capture established 

progression and advances in pharmacotherapy across time (e.g., changes in treatment for 

glaucoma). Since Targeted-BEHRT’s feature extraction builds on the BEHRT model 

(allowing for static variables as well), cracking open the “black-box” BEHRT architecture 

and probing the learning process also mitigates concerns about the Targeted-BEHRT’s 

learning process170. Nevertheless, directly addressing the issue and conducting analyses 

that make the Targeted-BEHRT model more transparent would immensely benefit causal 

inference research and perhaps facilitate better acceptance of deep learning based causal 

modelling in epidemiological research as well.  

 Fifth, bias and confounding are endemic to observational studies. Hence, for the 

three observational studies presented in Chapter 7, a variety of sensitivity analyses were 

conducted to ensure the robustness of results. While for the SBP studies, the sensitivity 

analyses affirmed the results presented in the main analyses, the sensitivity analyses in 

the paracetamol investigation were particularly useful to illuminate the bias present in the 

analysis of the outcome of all-cause mortality. In this way, the natural limitations of 

modelling in the observational setting have been partially addressed. Lastly, residual 

confounding can never fully be captured in observational studies; orthogonal methods of 

addressing the research question (including randomised sources of evidence) can help in 

clarifying the nature of the association 
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8.2.4.3 Modelling complexity and environmental impact  

 For modelling with BEHRT and derivations, one of the foremost issues of the 

model are the number of parameters and training time. Because of the numerous 

parameters associated with multi-head self-attention architecture, the model is slow to 

train and requires large amounts of data238. The BEHRT model has several million 

parameters to be tuned implying that GPUs are necessary for efficient training. However, 

further research is needed to understand the necessity of this high parameter count and if 

more efficient versions of the model can be made that can retain predictive/estimation 

performance. In terms of data, CPRD indeed is a good source of data for such 

investigations; however, the training time required for such large amounts of data is in 

the unit of days and not hours. Hence, research must be better conducted on making model 

training more efficient in terms of time and computational complexity. While some 

solutions exist for accelerating model training (e.g., PyTorch lightning), these solutions 

must be thoroughly investigated for deep learning for EHR data239.  

 Additionally, there are environmental costs when conducting deep learning 

modelling238. As an example, training a large Transformer model just once leaves a 

carbon footprint roughly 1/10th of that of a passenger travelling from New York to San 

Francisco238. While training a model just once may be acceptable and even negligible, 

during the course of this doctoral research, hundreds if not thousands of experimental 

models are trained and fine-tuned for prediction or association estimation. Hence, the 

environmental impact is indeed not nominal. However, in this doctoral research, the 

models are much smaller than those used in NLP research. In terms of vocabulary, the 

EHR vocabulary is only a few thousand disease/medication concepts while the original 

BERT model is trained on more than 30,000 English words; downsizing vocabulary 

ultimately directly means that there are fewer parameters to be trained (i.e., fewer 
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encounter embeddings) and shorter training times. Furthermore, while initial BEHRT 

model development in Chapter 4 were conducted with 12 layers and 12 attention heads 

for the BEHRT model much like the heavier BERT model (i.e., the BERTBASE model) 

implementations, in the majority of the following works presented in this thesis, only 4 

layers were used with 6 attention heads for both BEHRT and Targeted-BEHRT models 

(Chapters 5, 6, and 7) 119,123. Hence, while the environmental costs of deep learning are 

generally high, there have been efforts to mitigate the computational complexity and 

hence the environmental impact in this thesis for EHR related studies. 

 Furthermore, as stated in section 8.2.2.3, for causal modelling specifically, if the 

association studied is in relatively healthy populations, the recommendation offered is to 

use conventional models. These models are simpler to code, train, and evaluate, and 

additionally, leave a much lower carbon footprint. Hence, while the modelling proposed 

in this doctoral research is valuable in certain observational settings, the conventional 

modelling and associated benefits must be capitalised upon where appropriate. 

8.3 Implications for methodological research 

 This doctoral research has contributed methods to the fields of deep machine 

learning, explainability, and causal inference.  

 In deep learning, while the Transformer and BERT model was developed for 

natural language processing tasks in mind, Transformers for EHR were not yet developed 

at the onset of the doctoral study86,119. Given the natural differences between EHR and 

text data, the modelling of the record data are also different. BEHRT directly handled the 

unique nature of EHR with its embedding structure123. Furthermore, the embedding 

structure was extended to not only include calendar year as a feature of absolute time in 
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the heart failure prediction studies, but also include static features in Targeted-BEHRT 

studies131,170. 

 In terms of explainability, at the time, there were few methods for “explaining” 

Transformer models. While work by Guan et al helped pave the way for my explainability 

research, this perturbation-based method was expanded with a novel weighted loss 

function131,133. Given our understanding of risk and protection, this customisation was 

necessary for modelling the explainability studies appropriately. Furthermore, the relative 

contribution, to my understanding, is a novel metric that quantifies contribution of a 

variable to final predictive probability. Rather than providing an absolute view of 

predictor contribution, the relative contribution metric provides how much greater is the 

contribution in those predicted to be at risk of the outcome versus those who are not. 

While absolute measures of contribution for some predictors may be negligible, the 

relative contribution allows for more nuanced analyses of all predictors (Chapter 5).  

 For causal inference and association analyses, in terms of both modelling and 

data, there have been notable contributions to methodological research. First, the model 

Targeted-BEHRT is a contribution to causal inference methodological research and 

brings together many advancements in deep learning and statistics in one unified structure 

for more accurate estimation of causal effect. The unsupervised learning element of the 

model aids confounding adjustment as shown in the ablation analyses (Figure 6-3). 

Furthermore, the tandem propensity score estimation and outcome prediction allows for 

an end-to-end framework for generating initial estimates and propensity scores for 

doubly-robust estimation via CV-TMLE ultimately mitigating selection biases as shown 

in finite-sample estimation experiments (Figure 6-4). Also in another way, in the survey 

of past literature, BEHRT and other known EHR deep learning models (e.g., RETAIN, 

Deepr) have not been extended for EHR-driven causal inference or association analyses. 
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In my view, this is the first expansion of multimodal EHR deep learning models for 

conducting causal inference and association analyses. In downstream application works, 

I also demonstrate that the Targeted-BEHRT approach can be flexibly and easily applied 

to cardiovascular epidemiological research questions. Lastly, the development of the 

semi-synthetic data environment is another contribution to the field. While past works 

have indeed developed simulation datasets for testing models, the presented research is 

the first in our knowledge that derives semi-synthetic data from large-scale, multimodal 

EHR. Furthermore, this synthesizes propensity score-based data simulation and 

multimodal EHR processing in a novel way.  

8.4 Implications for medical sciences 

 The research presented has been developed from its infancy in theory to 

application in epidemiological research. While the Targeted-BEHRT model has initially 

been explored in a sandbox environment with strict adherence to framework of causal 

inference, the model has been implemented in several association studies in the 

observational capacity.  

 Specifically, the model has been implemented to study four associations. While 

the evidence on the association between antihypertensives and cancer is well established 

due to well conducted meta-analyses on randomised studies, observational studies have 

presented more conflicting results. The work presented in this thesis is the first work that 

presents well-adjusted observational evidence on the matter that is in line with meta-

analyses of randomised investigations.  

 Furthermore, the model was used to better disentangle the relationship between 

SBP and cardiovascular outcomes in at-risk patients with diabetes and COPD. The 

Targeted-BEHRT model provided comprehensively adjusted evidence on the association 
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rejecting the J-curve hypothesis in both cases across both primary and secondary outcome 

investigations and numerous sensitivity analyses. This advances our understanding of 

SBP and the relationship it has with cardiovascular endpoints in those at heightened risk 

and pre-existing conditions. With lowest risk at <120 mm Hg, the research confirms that 

the relationship remains log-linear in these sicker cohorts in addition to those at lower 

risk (i.e., general population).  

 Furthermore, due to issues of limited power, associations between blood 

pressure lowering medications and cardiovascular outcomes in those with pre-existing 

disease are likely to remain untested in the randomised nor in the individual level meta-

analysis setting. For this reason, the deep learning-driven association analyses provide 

well-adjusted observational evidences for re-examination of guideline recommendations 

for blood pressure lowering treatments in at-risk patients. With lowest risk at <120 mm 

Hg, the presented research affirms “the lower, the better” paradigm for hypertension 

management. On the whole, further independent examination of this association in other 

datasets would also be valuable for ascertaining the generalisability of the results 

presented. Lastly, while solely observational evidence is insufficient for revising the 

guidelines, observational evidences in the past have indeed been seminal for the re-

examination and discussion of guidelines if not the revision itself240.  

 In the analyses of paracetamol and various outcomes, the results demonstrate 

that, for the most part, any excess risk of any outcome is a result of confounding and bias 

as opposed to actual signal. Furthermore, this observational work has clinical implications 

concerning treatment of the elderly; given that elderly patients often have little recourse 

but to take effervescent forms of medication, this research allays fears of excess risk 

associated with taking this medication. Furthermore, much like the case with high-risk 

individuals, it is unlikely that this association can and will be tested in a randomised 
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setting. It is all the more important that Targeted-BEHRT be implemented to study these 

associations. Also, given the noisiness of dysphagia recording, this research raises an 

important point for observational research on EHR: datasets like CPRD are more 

appropriate to study conditions that are not considered “mild” or go under-reported 

(raised in 8.2.3.3). It is important to only derive significance for clinical care when the 

study is fully appreciative of the strengths and weaknesses of the underlying EHR. 

8.5 Future directions 

 There are several directions for future research. For risk prediction 

investigations, the binary prediction setting has several drawbacks for precision medicine 

research. With a binary label indicating presence or absence of the desired outcome, the 

nuances of the time of the outcome in the follow-up time window are ignored in analyses. 

Furthermore, patient censoring is not appropriately accounted in modelling. Hence, the 

more optimal method of modelling risk is with survival models in the time-to-event 

setting. There have been several initial explorations of deep learning models for 

prediction in the survival modelling setting; however, more research needs to be 

conducted to amend models for EHR data-based risk prediction tasks241. Future 

cardiovascular research should investigate the utility of the modifying the BEHRT model 

for the time-to-event prediction setting.   

 Furthermore, the external validation of risk prediction models is a necessity. The 

While CPRD was the dataset of choice for this doctoral research and was crucial for 

model development and testing, future research should focus on validating the models 

presented on different EHR data. Also, this ultimately implies the vocabulary for 

representing encounters must be harmonised across data settings. While the Caliber 

disease phenotyping has been validated for CPRD, it has not been extensively tested for 
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other datasets122. On the other hand, for encoding disease data, the ICD-10 or SNOMED 

disease encoding is a far more universal dictionary for identifying conditions across 

electronic health recording systems around the world242. For the medications, while BNF 

is UK-specific, more universal medication encodings such as the “RxNorm” encoding 

exists and mapping from BNF to RxNorm is offered through validated data 

dictionaries243. With these advancements in phenotyping, validating BEHRT and similar 

models in different data settings may be more feasible.  

 Furthermore, for causal inference and association analyses as well, developing 

causal models in the time-to-event setting is crucial for more sensitive modelling of risk. 

While this implies that first, survival DL models must be built for representation learning 

and risk prediction as previously discussed, the models should be amended for association 

analyses in the time-to-event setting. While the proportional hazards framework may be 

useful for deep learning, several other frameworks exist (e.g., logistic hazards) that do not 

rely on the assumptions and conditions for proportional hazards modelling exist and must 

be fully explored244. 

 Also, further investigation of heterogenous treatment effect estimation must be 

pursued. While doubly-robust estimators discussed in this doctoral research and as an 

extension, Targeted-BEHRT, are not intended for heterogenous treatment effect 

estimation, there have been some recent explorations of doubly-robust estimators for 

stratified effects estimation245. Furthermore, other methods exist for stratified analyses 

and must be appropriately amended for EHR and rigorously tested in the EHR data 

setting166.  

 Also, while external validation is not per se recommended by clinical guidelines, 

further research into SBP and paracetamol must be conducted and would be beneficial to 

advancing knowledge concerning generalisability of findings. Specifically, while in this 
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doctoral research, the relationship between SBP and cardiovascular endpoints were 

explored, future investigations should directly investigate the effect of blood pressure 

lowering medications on cardiovascular endpoints in high-risk patients perhaps using the 

trial emulation framework for designing the study246. 

8.6 Conclusions 

 This doctoral research advances knowledge in cardiovascular disease research 

through methodological advances in risk prediction, explainability, and causal inference. 

First, the research develops the BEHRT model and presents its utility in the risk prediction 

setting. Second, while the proposed deep learning model indeed demonstrated better 

prediction performance than benchmark models, the explainability study of the model 

instilled more confidence in the deep learning approach. Third and finally, Targeted-

BEHRT demonstrated that Transformer-driven confounding adjustment in tandem with 

targeted learning for causal analyses enables better confounding adjustment and more 

accurate estimation of associations in the observational setting.  

 In terms of epidemiological and clinical impact, the research has advanced risk 

prediction for cardiovascular studies – specifically, the risk prediction of incident HF. 

Furthermore, the explainability investigations of the “black-box” BEHRT model for 

incident HF prediction has independently captured known risk factors and generated other 

factors of potential protective utility that could be formally assessed in future hypothesis 

testing investigations. Also, the Targeted-BEHRT model has advanced understanding of 

SBP, antihypertensives, paracetamol, and CVD; especially, in the context of elderly or 

at-risk patients, while conventional approaches fall short of appropriately adjusting for 

complex confounding, the deep learning Targeted-BEHRT approach provided well-

adjusted evidences in the observational setting. 



 

     205 

 

 

 

 

 



 

     206 

9 APPENDICES 

 In the following sections, the supplementary material relevant to the body of the 

thesis (i.e., Chapters 4, 5, 6, and 7) is presented ordered by chapter. A full accounting of 

tables and figures for these supplementary sections are provided below. Lastly, all code 

from the research projects presented can be found on both the Deep Medicine group 

GitHub site (https://github.com/deepmedicine) and my GitHub site 

(https://github.com/srn284).  

  

https://github.com/deepmedicine
https://github.com/srn284
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9.1 Supplement for Chapter 4: Model Development and Risk 

Prediction  

9.1.1 Deep learning modelling for electronic health records: model 

development and subsequent disease prediction 

Supplementary tables from section 4.2 is found below. 

Table S1: Hyperparameters for BEHRT model 

Iteration Hidden size Layers Attention 

heads 

Intermediate 

Size 

Precision 

1 216 3 6 256 0.6191 

2 288 9 12 512 0.6399 

3 216 3 12 512 0.6175 

4 432 3 18 512 0.6397 

5 288 6 6 784 0.638 

6 216 6 18 512 0.6262 

7 288 3 18 512 0.6292 

8 432 3 6 784 0.6426 

9 288 6 12 512 0.6356 

10 288 3 12 256 0.6283 

11 432 9 18 512 0.6466 

12 576 9 6 1024 0.6538 

13 432 3 18 1024 0.6411 

14 432 9 6 1024 0.6508 

15 576 6 6 256 0.6503 

16 576 6 12 256 0.651 

17 360 9 18 512 0.6404 

18 576 9 6 512 0.6513 

19 288 6 6 512 0.6363 

20 288 3 6 512 0.6297 

21 288 6 12 512 0.6597 

22 576 3 12 512 0.6487 

23 360 6 6 784 0.6412 

24 432 9 6 512 0.6497 

25 360 6 12 512 0.6423 

The table was adapted from Li et al123. 
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Table S2: Hyperparameters for Deepr model 

Iteratio

n 

Filters Kernel 

Size 

FC 1  FC 2  FC 3 Dropout 

1  

Dropout 

2 

Dropout 

3  

Learning 

rate 

Average 

Precision 

1 37 7 10 46 28 0.4139 0.4997 0.3718 0.0004 0.2599 

2 24 5 28 19 13 0.4936 0.1722 0.4643 0.0062 0.2319 

3 17 7 16 48 40 0.225 0.3945 0.3264 0.031 0.1815 

4 33 7 6 10 25 0.1602 0.4476 0.3544 0.0026 0.264 

5 32 7 4 30 32 0.3714 0.3382 0.3573 0.0353 0.2005 

6 13 4 50 17 47 0.3424 0.183 0.3056 0.0008 0.3274 

7 12 3 3 6 43 0.4201 0.2387 0.3884 0.0123 0.2112 

8 30 7 16 26 41 0.2055 0.3343 0.1541 0.0011 0.3256 

9 35 5 50 24 25 0.1567 0.4056 0.1329 0.0004 0.3433 

10 41 7 9 35 19 0.4885 0.3548 0.308 0.0004 0.2343 

11 4 4 33 12 39 0.1811 0.1251 0.1066 0.001 0.3051 

12 48 4 36 45 37 0.2143 0.3486 0.1222 0.0015 0.3504 

13 36 3 39 10 48 0.1992 0.4164 0.1183 0.005 0.3291 

14 45 4 44 40 26 0.2329 0.29 0.128 0.0903 0.0042 

15 40 4 35 48 11 0.16 0.4704 0.1211 0.0019 0.3125 

16 49 3 47 41 40 0.1002 0.2541 0.1284 0.0019 0.3588 

17 47 3 50 47 12 0.2519 0.2125 0.1668 0.0005 0.2988 

18 47 3 37 35 50 0.1059 0.4225 0.112 0.0034 0.3487 

19 47 4 48 34 39 0.2177 0.3607 0.1301 0.0016 0.3567 

20 46 3 46 45 43 0.2007 0.1609 0.1196 0.0044 0.3356 

FC: Fully connected layer. The table was adapted from Li et al123. 
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Table S3: Hyperparameters for RETAIN model 

Iteration Embedding 

size  

Recurrent 

Size 

Dropout 

embedding 

Dropout 

context 

L2 Average 

precision 

1 142 90 0.3846 0.0224 0.0891 0.1822 

2 124 43 0.3922 0.0382 0.0003 0.1815 

3 173 90 0.3929 0.2238 0.0014 0.3479 

4 145 91 0.4117 0.0404 0.0102 0.2049 

5 153 92 0.4569 0.0642 0.0116 0.2049 

6 120 37 0.4335 0.4017 0.0728 0.1815 

7 180 102 0.3567 0.3307 0.0039 0.2469 

8 195 38 0.3805 0.2711 0.001 0.374 

9 165 119 0.4969 0.1964 0.0047 0.2292 

10 174 92 0.3862 0.2078 0.0019 0.3329 

11 145 110 0.3928 0.1926 0.0891 0.1813 

12 195 83 0.4418 0.4787 0.0011 0.3543 

13 187 110 0.3456 0.2083 0.0123 0.2122 

14 144 80 0.3717 0.0932 0.0032 0.3038 

15 193 68 0.4528 0.395 0.0022 0.328 

16 198 45 0.4344 0.3324 0.0442 0.1828 

17 145 64 0.4213 0.195 0.0626 0.1813 

18 171 116 0.4166 0.495 0.0028 0.3197 

19 186 38 0.4062 0.4916 0.0011 0.3309 

20 136 54 0.3503 0.1678 0.0067 0.2162 

L2 is regularization weight. The table was adapted from Li et al123. 
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Table S4: BEHRT prediction performance metrics for individual diseases  

Description APS AUROC Ratio Chapter 

  Gastritis and duodenitis  0.066765 0.723828 0.011198   Diseases of the digestive system  

  Diaphragmatic hernia  0.108185 0.797633 0.01149   Diseases of the digestive system  

  Hearing loss  0.118093 0.742646 0.021964   Diseases of the ear and mastoid 

process  

  Spondylosis  0.132567 0.773249 0.013459   Diseases of the musculoskeletal 

system and connective tissue  

  Pleural effusion  0.142594 0.844596 0.010229   Diseases of the respiratory system  

  Other anaemias  0.162186 0.798654 0.023303   Diseases of the blood and blood-

forming organs and certain disorders 

involving the immune mechanism  

  Bacterial Diseases (excluding 

TB)  

0.163355 0.822707 0.023979   Certain infectious and parasitic 

diseases    

  Iron deficiency anaemia  0.167457 0.804545 0.02078   Diseases of the blood and blood-

forming organs and certain disorders 

involving the immune mechanism  

  Urinary Tract Infections  0.169674 0.83661 0.022534   Diseases of the genitourinary system  

  Diverticular disease of intestine 

(acute and chronic)  

0.170852 0.811759 0.015966   Diseases of the digestive system  

  Allergic and chronic rhinitis  0.17717 0.810068 0.023241   Diseases of the respiratory system  

  Osteoporosis  0.181182 0.847938 0.013982   Diseases of the musculoskeletal 

system and connective tissue  

  Dyslipidaemia  0.184 0.790655 0.02601   Endocrine, nutritional and metabolic 

diseases  

  Oesophagitis and oesophageal 

ulcer  

0.184629 0.799592 0.022426   Diseases of the digestive system  

  Primary Malignancy Other Skin 

and subcutaneous tissue  

0.203218 0.855593 0.012013   Neoplasms  

  Gastro-oesophageal reflux 

disease  

0.206455 0.776367 0.026271   Diseases of the digestive system  

  Type 1 Diabetes Mellitus, Type 

2 Diabetes Mellitus, and 

Diabetes Mellitus – other or not 

specified  

0.208524 0.814481 0.021226   Endocrine, nutritional and metabolic 

diseases  

  Actinic keratosis  0.219637 0.869366 0.01249   Diseases of the skin and subcutaneous 

tissue  

  Irritable bowel syndrome  0.220017 0.874319 0.011182   Diseases of the digestive system  

  Urinary Incontinence  0.223863 0.824114 0.020057   Diseases of the genitourinary system  

  Osteoarthritis (excluding spine)  0.234444 0.785766 0.043714   Diseases of the musculoskeletal 

system and connective tissue  

  Other or unspecified infectious 

organisms  

0.245906 0.834062 0.030963   Diseases of the respiratory system  

  Glaucoma  0.249208 0.894444 0.011367   Diseases of the eye and adnexa  

  Hyperplasia of prostate  0.250573 0.885547 0.020842   Diseases of the genitourinary system  

  Peripheral arterial disease  0.264687 0.879325 0.010951   Diseases of the circulatory system  

  Enthesopathies 0.265863 0.762939 0.047036   Diseases of the musculoskeletal 

system and connective tissue 
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  Erectile dysfunction  0.267187 0.905812 0.017873   Mental and behavioural disorders  

  Lower Respiratory Tract 

Infections  

0.268504 0.867094 0.023518   Certain infectious and parasitic 

diseases    

  Dermatitis 

(atopic/contact/other/unspecified)  

0.271027 0.753816 0.049051   Diseases of the skin and subcutaneous 

tissue  

  Macular degeneration  0.292598 0.893802 0.010752   Diseases of the eye and adnexa  

  Stable Angina  0.296798 0.889236 0.032039   Diseases of the circulatory system  

  Coronary heart disease not 

otherwise specified  

0.301041 0.900088 0.035177   Diseases of the circulatory system  

  Stroke Not otherwise specified 

(NOS)  

0.307238 0.911618 0.023395   Diseases of the nervous system  

  Cataract  0.319433 0.863447 0.042099   Diseases of the eye and adnexa  

  Abdominal Hernia  0.319972 0.845171 0.01918   Diseases of the digestive system  

  Carpal tunnel syndrome  0.325143 0.84348 0.012013   Diseases of the nervous system  

  Heart failure  0.334902 0.912117 0.024918   Diseases of the circulatory system  

  Obesity  0.335131 0.87967 0.017442   Endocrine, nutritional and metabolic 

diseases  

  Asthma  0.348523 0.885055 0.026133   Diseases of the respiratory system  

  Gout  0.349361 0.882694 0.018058   Diseases of the musculoskeletal 

system and connective tissue  

  Diabetic ophthalmic 

complications  

0.350132 0.942604 0.018919   Endocrine, nutritional and metabolic 

diseases  

  Migraine  0.368465 0.911541 0.012028   Diseases of the nervous system  

  Psoriasis  0.398842 0.904686 0.011751   Diseases of the musculoskeletal 

system and connective tissue  

  Anxiety disorders  0.410899 0.858498 0.041914   Mental and behavioural disorders  

  Menorrhagia and 

polymenorrhoea  

0.433645 0.969406 0.015504   Diseases of the genitourinary system  

  Hypo or hyperthyroidism  0.489456 0.905032 0.047897   Endocrine, nutritional and metabolic 

diseases  

  Vitamin B12 deficiency anaemia  0.491672 0.855823 0.014489   Diseases of the blood and blood-

forming organs and certain disorders 

involving the immune mechanism  

  Chronic obstructive pulmonary 

disease (COPD)  

0.501496 0.923082 0.036869   Diseases of the respiratory system  

  Atrial Fibrillation and flutter  0.514881 0.901268 0.077629   Diseases of the circulatory system  

  Hypertension  0.531597 0.819527 0.200618   Diseases of the circulatory system  

  Dementia  0.542223 0.950442 0.024656   Mental and behavioural disorders  

  Depression  0.553561 0.877904 0.076876   Mental and behavioural disorders  

  Female genital prolapse  0.57388 0.934049 0.015781   Diseases of the genitourinary system  

  Primary Malignancy Prostate  0.575574 0.964776 0.011844   Neoplasms  

  Alcohol Problems  0.583305 0.952656 0.014535   Mental and behavioural disorders  

  Polymyalgia Rheumatica  0.647243 0.955062 0.013213   Diseases of the musculoskeletal 

system and connective tissue  

  Epilepsy  0.648763 0.977907 0.016104   Diseases of the nervous system  

APS: Average precision score; AUROC: Area under the receiver operator characteristic. 

The table was adapted from Li et al123. 
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Table S5: Sex-based analysis of BEHRT predictions 

Caliber phenotype Sex Male prediction (count) Female prediction 

(count) 

Hyperplasia of prostate  M  384 0 

Hydrocoele (including infected)  M  36 0 

Male Infertility  M  1 24 

Primary Malignancy Prostate  M  557 0 

Erectile Dysfunction  M  425 1 

Menorrhagia and polymenorrhoea  F  0 697 

Endometriosis  F  0 47 

Female Genital Prolapse  F  0 865 

Female Infertility  F  2 36 

Benign neoplasm of ovary  F  0 69 

Postmenopausal bleeding  F  0 140 

Primary Malignancy Breast  F  0 11 

Primary Malignancy Ovarian  F  1 193 

M: male, F: female. The table was adapted from Li et al123. 

9.2 Supplement for Chapter 5: Explainability  

9.2.1 Explanation of the perturbation-based method for explainability  

 In sections below, the perturbation method for the explainability analyses is 

described. 

 In addition to the methods proposed by Guan et al, we developed an asymmetric 

loss function for focused learning of a specific objective in addition to the original 

information entropy-based loss term133. The objective function is shown below in the 

equation (9-1). 

 

𝒂𝒍𝒑𝒉𝒂(𝒚, 𝒙, 𝒔) =  {

𝜷𝟏,   𝒊𝒇 𝒚 = 𝟏, 𝐌(𝒙) − 𝒔 ≥ 𝟎

𝜷𝟐,   𝒊𝒇 𝒚 = 𝟎, 𝐌(𝒙) − 𝒔 ≤ 𝟎
𝜷𝟑,   𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

𝑳(𝝈) = 𝒂𝒍𝒑𝒉𝒂(𝒚, 𝒙, 𝒔) × 𝚬𝝐‖(𝐌(𝒙) −

𝒔)‖𝟐 𝝀 ∑ 𝑯(𝒙 |𝒔)|𝒏
𝒊=𝟏 𝝐𝒊~𝓝(𝟎,𝝈𝒊

𝟐𝑰)
  

(9-1) 
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 In this equation, 𝑥  represents the input encounter embedding that has been 

perturbed (the original is x), the value, n, represents the number of encounters in patient 

medical history, and the value, s, represents the latent output state of the original input (x 

i.e., the input without perturbations), M(𝑥) is the output latent state of perturbed input, 

the values of 𝛽1 𝑎𝑛𝑑 𝛽2 are weight hyperparameters with the weights designed such that 

(β1 < β2). If the values equal one another (β1 = β2), then the loss function becomes a 

symmetric loss formulation. y is the outcome (heart failure incidence). The value, 

𝔼ϵ‖M(𝑥) − s‖2 represents mean squared error described in Guan et al133. 

 The equation in words can be explained as the following: when the intention is 

to understand contribution of the prediction to this with heart failure in follow-up 

(label=1), the perturbations to be prioritized are those that increase the outcome 

probability that those that decreases the probability – i.e., how much more confident 

(closer to 1.0 prediction) can prediction be if input is perturbed. However, if the patient 

does not get heart failure in follow-up (label=0), then we want to see how much more 

confident can the prediction of non-heart failure be (i.e., closer to 0.0 prediction) as a 

function of perturbing the input space. Hence, we penalize the loss function with the 

above 𝑎𝑙𝑝ℎ𝑎(𝑦, 𝑥, 𝑠) term; asymmetric losses are often used in modelling situations, for 

which the error in one direction is “worth” more than the in the other direction. 

 This method outputs certain elements that is discussed here. The learned ϵ = [ϵ1, 

ϵ2, …, ϵn] with ϵ1 per predictor is the delivered quantity in this training process. This ϵ1 in 

this training process is the allowable variance that indicated predictor contribution; the 

maximal allowable variance is defined by a user-specified hyperparameter value (in this 

work, the hyperparameter is set to 0.5). To actually derive the individual-level, predictor 

embedding contribution, we transform the value, ϵ1 to the value of 0.5-ϵ1 in order to reflect 

the following understanding of contribution: the lower the value of ϵ1, the higher the 
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contribution of the predictor to the heart failure prediction. The vice-versa statement holds 

true here as well. Specifically, this is elucidated in the algorithm showed as Equation(s) 

(5-1). Furthermore, as seen in Figure 5-1, we first derive the individual-level contribution 

and then derive the population-based understanding of the relative contribution presented 

in the following figures in the chapter.  

9.3 Supplement for Chapter 6: Causal Inference and Association 

Analyses 

9.3.1 Semi-synthetic data generation 

 Data generation of the sequential, temporal variables is a difficult task; it is well 

noted that there are few (if any) medically validated methods of generating realistic EHR 

medical history. Hence, in gist, I utilise routine clinical data components in medical 

history data: (1) medical history and (2) known exposure status – observed exposure 

status in medical history. With these two constructs, the potential outcomes can be born, 

and with the potential outcomes – both counterfactual and naturally, factual, outcomes, a 

ground truth risk ratio (RR) can be synthesized. Comparison of model estimation 

accuracy can be conducted with respect to this ground truth RR. 

  In order to create this semi-synthetic dataset, we first form the dataset for the 

investigation: effect of antihypertensives on incident cancer allowing us access to 

components (1) and (2). Since confounding often manifests partly due to imbalanced 

variables between exposure groups, we find an imbalanced variable, Zi in medical history. 

We then force this imbalanced variable, Zi to be a confounder and generate conditional 

outcome from a sampling function: 
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 𝒀𝑻𝒊
𝒊 = 𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊 (𝝈(𝒂𝑻𝒊 + 𝒎𝜷(𝝀𝒊 + 𝒄))) (9-2) 

 In Equation (9-2), 𝜆𝑖 represents 𝑃(𝑇𝑖|𝑍𝑖), 𝑇𝑖 ∈ {0,1} is the value that represents 

the intervenable exposure status for patient i, 𝑌𝑇𝑖
𝑖  is the outcome for patient i given 

exposure 𝑇𝑖, 𝜎 is the sigmoid function, and 𝛽, the intensity of confounding. Variables a, 

m, and c are coefficients to terms weighting their importance in the function.  

 Intuitively, we first model the association between a variable 𝑍𝑖 and exposure 

((𝑃(𝑇𝑖|𝑍𝑖)) with 𝜆𝑖. Next, we generate 𝑌𝑇𝑖
𝑖 with two variables: the variable  𝑍𝑖 and 𝑇𝑖. In 

this way, we form an association between 𝑍𝑖 and exposure and 𝑍𝑖 and the outcome; with 

association to both exposure and outcome, 𝑍𝑖  becomes a confounder in this data 

generating process. This process synthesizes controlled confounded observational data; 

by generating the outcome with this function, we control confounding with a confounder 

𝑍𝑖. Thus, in this way we can generate factual/counterfactual outcomes and consequently 

ground truth RR. Lastly, we can modify β value to vary the degree of confounding in the 

data generation process. 

9.3.2 Statistical model development and adjustment 

 RR was the estimand of interest for statistical modelling as well. The covariates 

adjusted were: baseline age (continuous variable: [0,1]), sex (male/female), region, 

smoking status (smoker/non-smoker), chronic kidney disease (presence/absence), human 

immunodeficiency virus/acquired immune deficiency syndrome (presence/absence), 

ischaemic heart disease (presence/absence), cardiac arrhythmia (presence/absence), 

stroke (presence/absence), heart failure (presence/absence), anemia (presence/absence), 

diabetes mellitus (presence/absence), hypertension (presence/absence), osteoporosis 

(presence/absence), arthritis (presence/absence), connective tissue disorder 

(presence/absence), gout (presence/absence), rheumatoid arthritis (presence/absence),  
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peptic ulcer disease (presence/absence), liver disease (presence/absence), asthma 

(presence/absence), peripheral arterial disease (presence/absence), chronic obstructive 

pulmonary disorder (presence/absence),  hemiplegia (presence/absence), epilepsy 

(presence/absence), dementia (presence/absence), learning disorder (presence/absence), 

eating disorder (presence/absence), adjustment (presence/absence), anxiety 

(presence/absence), affective disorder (presence/absence), depression 

(presence/absence), bipolar disorder (presence/absence), psychoses (presence/absence), 

schizophrenia (presence/absence), hyperlipidemia (presence/absence), obesity 

(presence/absence), substance abuse (presence/absence), anticholinergics 

(presence/absence), drugs that cause gastrointestinal bleedings (presence/absence), 

statins (presence/absence), drugs for diabetes (presence/absence). The exposure variable 

was antihypertensive medications (class 1 as control and class 2 as the exposure). The 

outcome was defined as the synthetic outcome/cancer (presence/absence). The models 

were fit and tested using five-fold validation. The naïve risk ratio estimates were 

calculated on the testing dataset in each fold and mean risk ratio (RR) estimate and 95% 

confidence intervals (CI) for estimates were derived.  

 The TMLE was a two-stage propensity score-based approach that utilised two 

logistic regression models. One of the models was for outcome prediction and the other 

for exposure prediction. The outcome prediction model adjusted for covariates and 

exposure variable listed above, and the exposure prediction model used just the 

covariates. The TMLE algorithm was fit and tested using five-fold validation. The TMLE 

RR estimates were calculated on the testing dataset in each fold and mean RR estimate 

and 95% (CI) for estimates were derived from the TMLE estimation procedure. 



 

     219 

9.3.3 CV-TMLE  

 After using the Targeted-BEHRT model to compute initial estimates, the CV-

TMLE estimation procedure was used to “correct” these initial estimates by removing 

selection bias. Source material for the TMLE and the cross validated form, CV-TMLE, 

can be found in publications by van der Laan156,181. In brief, the original formulation of 

the CV-TMLE algorithm requires targeting steps for each of the k folds pre-defined in 

the iterative version of TMLE. However, Levy forms a simpler construction of the CV-

TMLE which is less computationally cumbersome; the advised method is to pool all the 

initial estimates across folds and compute the estimation update vis-à-vis a standard 

TMLE update step156,181. Albeit procedurally different, the original formulation and 

Levy’s more recent formulation of CV-TMLE are mathematically identical. Upon 

scoping relevant literature, in our understanding, this is the first work utilizing CV-TMLE 

paired with deep learning methods.  

 CV-TMLE provides a host of benefits to observational causal inference. CV-

TMLE is a form of TMLE which is robust to issues of fold-wise overfitting whilst 

conducting k-fold cross validation181. Furthermore, previous works show that the CV-

TMLE estimator provides more robustness than other cross-validated estimators (e.g. 

CV-augmented inverse probability treatment weighting) in the case of violations of the 

assumption of overlap247. Lastly, operating with fewer assumptions than the original 

TMLE estimator, the CV-TMLE process does not require the necessity of assuming the 

Donsker class condition and hence allows for initial estimators of the nuisance parameters 

to be overfitted given a remainder term is asymptotically negligible181.  
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9.3.4 Targeted-BEHRT modelling details  

Table S6: Hyperparameters for the Targeted-BEHRT modelling 

Hyperparameter Attribute 

Hidden size (BEHRT) 150 

Intermediate size (BEHRT) 108 

Region embedding size 7 

Sex embedding size 1 

Smoking status embedding size 2 

Hidden dropout probability 0.3 

Attention dropout probability 0.4 

Number of hidden layers (BEHRT model) 4 

Hidden activation functions GeLU 

Initialiser range of parameters 0.02 

N – number of encounters 200 

D – weight of the coefficient for the 

unsupervised learning component 

0.1 

The table was adapted from Rao et al170.  

9.3.5 Semi-synthetic data experimentation results 

Table S7: Estimation of risk ratio on semi-synthetic data experiments 

Confounder 

and type of 

model 

 Risk ratio ground truth and estimates from semi-

synthetic data experiments  
 

  Risk ratio Error 

Cardio-

metabolic 

disease 

Beta 25 50 75  

Modelling     

 Ground Truth 
2.207 2.727 3.178 

1.555 

 Empirical 2.532 
3.251 

3.883 1.365 

Statistical LR 
2.398; (2.37, 2.

43) 

3.003; (2.97, 3.

03) 

3.569; (3.5, 3.6

4) 

0.859; 0.0

2 

LR-L1 
2.399; (2.37, 2.

43) 

3.005; (2.97, 3.

04) 

3.576; (3.51, 3.

64) 

0.867; 0.0

2 

LR-L2 
2.399; (2.37, 2.

43) 

3.004; (2.97, 3.

03) 

3.574; (3.5, 3.6

4) 

0.864; 0.0

2 

TMLE 
2.411; (2.28, 2.

54) 

3.005; (2.87, 3.

14) 

3.622; (3.4, 3.8

4) 

0.928; 0.0

4 

BART 
2.398; (2.37, 2.

43) 

3.011; (2.98, 3.

04) 

3.592; (3.53, 3.

65) 

0.890; 0.0

7 

Deep learning TARNET 
2.283; (2.21, 2.

35) 

3.183; (2.76, 3.

6) 

3.899; (3.43, 4.

36) 

1.254; 0.2

3 

TARNET + MEM 
2.226; (2.14, 2.

31) 

2.719; (2.35, 3.

09) 

3.561; (2.94, 4.

19) 

0.41; 0.26 

Dragonnet 
2.308; (2.12,2.5

0) 

3.098; (2.57,3.6

2) 

3.12; (2.55,3.69

) 

0.529; 0.2

5 

Dragonnet+CV-

TMLE 

2.281; (2.26, 2.

31) 

2.954; (2.91, 3.

0) 

2.922; (2.85, 2.

99) 

0.556; 0.0

5 
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Targeted-

BEHRT+CV-TMLE 

2.263; (2.24, 2.

29) 

2.753; (2.71, 2.

8) 

3.227; (3.14, 3.

31) 

0.131; 0.0

5 

      

  Risk Ratio Error 

Sex Beta 1 5 10  

 Modelling     

 Ground Truth 1.465 1.926 2.154  

 Empirical 1.456 1.823 1.979 0.287 

Statistical 

 

 

 

 

Deep learning 

LR 1.455; (1.45, 

1.46) 

1.83; (1.81, 

1.85) 

1.996; (1.95, 

2.04) 

0.263; 

0.01 

LR-L1 1.455; (1.45, 

1.46) 

1.83; (1.81, 

1.85) 

1.992; (1.95, 

2.04) 

0.267; 

0.01 

LR-L2 1.455; (1.45, 

1.46) 

1.829; (1.81, 

1.85) 

1.993; (1.95, 

2.04) 

0.267; 

0.01 

TMLE 1.453; (1.44, 

1.47) 

1.824; (1.79, 

1.86) 

1.982; (1.93, 

2.03) 

0.285; 

0.01 

BART 
1.455; (1.45, 1.

46) 

1.826; (1.8, 1.8

5) 

1.981; (1.94, 2.

02) 

0.282;0.0

2 

TARNET 
1.465; (1.44, 1.

49) 

1.803; (1.71, 1.

89) 

1.948; (1.83, 2.

02) 

0.329;0.0

5 

TARNET+MEM 
1.457; (1.44, 1.

47) 

1.863; (1.77, 1.

96) 

1.977; (1.72, 2.

24) 

0.247;0.1 

Dragonnet 
1.479; (1.45,1.4

9) 

1.969; (1.84,2.1

0) 

2.439; (1.82,3.0

6) 

0.342; 0.2

3 

Dragonnet+CV-

TMLE 

1.469; (1.45, 1.

49) 

1.827; (1.78, 1.

87) 

1.973; (1.85, 2.

09) 

0.285; 0.0

7 

Targeted-

BEHRT+CV-TMLE 

1.47; (1.45, 1.4

9) 

1.854; (1.81, 1.

9) 

2.132; (1.98, 2.

29) 

0.1; 0.08 

This table shows the risk ratio and standard deviation (five-fold) for statistical and deep 

learning models over the two semi synthetic experiments with cardiometabolic diseases 

and sex as confounders (top and bottom respectively). Over various values of Beta, 

confounding experiments are conducted. Ground truth risk ratio is calculated and 

displayed for both experiments. Risk ratio and 95% confidence interval for each model is 

presented in the table. The sum absolute error from ground truth risk ratios for models 

over all the confounding experiments and standard error is shown in the far-right column. 

LR: Logistic Regression; LR-L1; Logistic Regression with L1 penalty; LR-L2; Logistic 

Regression with L2 penalty; TMLE: Targeted Maximum Likelihood Estimation; BART: 

Bayesian Additive Regression Trees. The table was adapted from Rao et al170.  
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9.4 Supplement for Chapter 7: Association analyses in at-risk 

patients 

9.4.1 Systolic blood pressure, cardiovascular outcomes, and diabetes 

Table S8: Statistics for primary and secondary outcome event rates stratified by 

exposure status 

  Primary outcome IHD HF Stroke 

<120 mm Hg 32.52 23.2 7.72 9.49 

120-129 mm Hg 32.01 22.05 7.12 10.03 

130-139 mm Hg 33.43 22.4 7.68 10.68 

140-149 mm Hg 36.49 24.07 8.89 12.23 

150-159 mm Hg 39.56 25.9 10.17 13.94 

≥160 mm Hg 45.12 27.99 14 16.65 

HF: heart failure; IHD: ischaemic heart disease. 
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Figure S1: Flowchart for cohort selection for patients with diabetes 

 

CPRD: Clinical Practice Research Datalink; BP: blood pressure;  

 

7,612,760 patients in CPRD meeting 
CPRD quality standards

6,062,407 patients were not:
• Between 50 and 90 years of age at 

anytime between 1990 and 2005
• Having at least one BP measurement
• Having at least one year of follow-up 

in CPRD prior to baseline

1,550,353 patients remaining

1,494,398 patients did not:
• Have a diagnosis of diabetes before 

baseline
• Have a medication that indicated 

diagnosis before baseline

55,955 patients remaining

1,728 patients did:
• Have a diagnosis of heart failure 

before baseline  

54,227 patients remaining

5,227 patients did:
• Have an event or left the study in 

the first 12 months

49,000 patients remaining
• 16,378 (33.4%) events in follow-up

• 12,797 (26.1%) patients censored
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Figure S2: Association with primary outcomes in patients with diabetes (statistical 

benchmark modelling) 

 

Forest plot of risk ratio estimates with 95% confidence intervals (CI) for association of 

systolic blood pressure and primary outcome. From the left, the six exposure groups are 

shown in first column. Number of events and total number of patients in each exposure 

group is shown in second column. The forest plot and corresponding risk ratio estimates 

are shown in the right-most column relative to reference class, <120 mm Hg. The forest 

plot is plotted in logarithmic scale. For all crude estimates and estimates for reference 

class, there is no confidence interval. LR: logistic regression; CI: confidence interval.  
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Figure S3: Association with secondary outcomes in patients with diabetes (statistical 

benchmark modelling) 

 

Forest plot of risk ratio estimates with 95% confidence intervals (CI) for association of 

systolic blood pressure and secondary outcomes. From the left, the six exposure groups 

are shown in first column. Number of events and total number of patients in each exposure 

group is shown in second column. The forest plot and corresponding risk ratio estimates 

are shown in the right-most column relative to reference class, <120 mm Hg. The forest 

plot is plotted in logarithmic scale. For all crude estimates and estimates for reference 

class, there is no confidence interval. LR: logistic regression; CI: confidence interval.  
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9.4.2 Systolic blood pressure, cardiovascular outcomes, and COPD 

9.4.2.1 Details on the logistic regression modelling 

 Logistic regression modelling (LR) was used for the conventional approach in 

this work. The modelling utilised direct estimation method for estimation of the RR61. As 

an example, to estimate the effect of 150-159 mm Hg on cardiovascular outcomes with 

respect to the reference exposure, the trained LR model predicted risk with exposure for 

all patients set to the categorical variable representing 150-159 mm Hg and predicted risk 

with exposure similarly set to the reference group. The RR was derived as the ratio of the 

average of these two sets of predictions. For theoretical guarantees, we implemented k-

fold cross-validation (k=10) for causal estimation. RR was calculated as the average of 

RR estimations on the 10 individual test sets, and the 95% CI was calculated via 

bootstrapping58. Lastly, the crude RR was calculated as the ratio between the average 

empirical risk of outcome in a particular exposure group divided by the same in the 

reference exposure group. 

9.4.2.2 Statistical benchmark modelling 
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Figure S4: Association with primary outcomes in patients with COPD (statistical 

benchmark modelling) 

 

Forest plot of risk ratio estimates with 95% confidence intervals (CI) for association of 

systolic blood pressure and primary outcome. From the left, the six exposure groups are 

shown in first column. Number of events and total number of patients in each exposure 

group is shown in second column. The forest plot and corresponding risk ratio estimates 

are shown in the right-most column relative to reference class, <120 mm Hg. The forest 

plot is plotted in logarithmic scale. For all crude estimates and estimates for reference 

class, there is no confidence interval. LR: logistic regression; CI: confidence interval.  
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Figure S5: Association with all outcomes in patients with COPD (logistic regression 

modelling with expanded predictors) 

 

Forest plot of risk ratio estimates with 95% confidence intervals (CI) for association of 

systolic blood pressure and all outcomes with logistic regression modelling with 

expanded predictor set. From the left, the six exposure groups are shown in first column. 

Number of events and total number of patients in each exposure group is shown in second 

column. The forest plot and corresponding risk ratio estimates are shown in the right-

most column relative to reference class, <120 mm Hg. The forest plot is plotted in 

logarithmic scale. For all crude estimates and estimates for reference class, there is no 

confidence interval. LR: logistic regression; CI: confidence interval.  
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Figure S6: Association with secondary outcomes in patients with COPD (statistical 

benchmark modelling) 
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Forest plot of risk ratio estimates with 95% confidence intervals (CI) for association of 

systolic blood pressure and secondary outcomes. From the left, the six exposure groups 

are shown in first column. Number of events and total number of patients in each exposure 

group is shown in second column. The forest plot and corresponding risk ratio estimates 

are shown in the right-most column relative to reference class, <120 mm Hg. The forest 

plot is plotted in logarithmic scale. For all crude estimates and estimates for reference 

class, there is no confidence interval. LR: logistic regression; CI: confidence interval. 

9.4.3 Paracetamol, systolic blood pressure, incident cardiovascular 

diseases, and all-cause mortality 

Figure S7: Flow chart for patient selection for paracetamol study cohort 

 

This is the flow chart to select eligible patients for the study investigating paracetamol 

and various outcomes. CPRD: Clinical Practice Research Datalink. 
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Table S9: Extended baseline characteristics among patients initiating non-sodium-

based or sodium-based paracetamol 

Exposure Non-sodium Sodium 

No. (%) 460980 (97.0) 14462 (3.0) 

Age, yrs (STD)  73.7 (8.6) 76.1 (9.1) 

Women (%) 296190 (64.3) 10342 (71.5) 

Ethnicity (White) (%) 126248 (27.4) 4060 (28.1) 

No. of GP visits (STD)  3.3 (3.5) 3.3 (3.7) 

No. of secondary care visits (STD) 1.3 (8.7) 1.7 (6.7) 

IMD (STD) †  1.9 (1.4) 1.9 (1.3) 

YOB (STD)  1933.4 (9.7) 1930.2 (10.3) 

SBP (STD) †  141.2 (13.7) 139.4 (14.5) 

BMI (STD) †  27.7 (4.3) 26.0 (4.0) 

Smoking status†:      

      Current or former smoker (%) 252522 (54) 5431 (37) 

      Never smoker (%) 208458 (45) 9031 (62) 

Alcohol status†:      

      Current or former drinker (%) 343602 (74) 9221 (63) 

      Never drinker (%) 117356 (25) 5241 (36) 

Disease at baseline:     

      CKD (%) 3757 (0.8) 86 (0.6) 

      Diabetes (%) 41894 (9.1) 988 (6.8) 

      Hypertension (%) 118022 (25.6) 2640 (18.3) 

      Arthritis (%) 140161 (30.4) 2960 (20.5) 

      Gout (%) 16239 (3.5) 297 (2.1) 

      Rheumatoid arthritis (%) 7477 (1.6) 238 (1.6) 

      Liver disease (%) 1300 (0.3) 41 (0.3) 

      PUD (%) 6224 (1.4) 176 (1.2) 

      Asthma (%) 31659 (6.9) 939 (6.5) 

      COPD (%) 25775 (5.6) 794 (5.5) 

      PAD (%) 12949 (2.8) 338 (2.3) 

      Epilepsy (%) 3815 (0.8) 213 (1.5) 

      Dementia (%) 9973 (2.2) 985 (6.8) 

      Depression (%) 45231 (9.8) 1324 (9.2) 

      Substance abuse (%) 3260 (0.7) 97 (0.7) 

      Hyperlipidaemia (%) 35861 (7.8) 737 (5.1) 

      Venous thromboembolism (%) 18915 (4.1) 471 (3.3) 

      Atrial fibrillation (%) 17563 (3.8) 443 (3.1) 

      Fracture (%) 50478 (11.0) 1596 (11.0) 

      Pneumonia (%) 6471 (1.4) 329 (2.3) 
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      Fall (%) 1227 (0.3) 42 (0.3) 

      Gastrointestinal bleeding (%) 5457 (1.2) 226 (1.6) 

      Reflux disease (%) 24349 (5.3) 663 (4.6) 

      Gastritis (%) 15600 (3.4) 474 (3.3) 

Medications at baseline:     

      Anticholinergics (%) 243209 (52.8) 7676 (53.1) 

      Statins (%) 112124 (24.3) 2304 (15.9) 

      Bisphosphonates (%) 38965 (8.5) 1194 (8.3) 

      Calcium (%) 52365 (11.4) 1839 (12.7) 

      Benzodiazepines (%) 61521 (13.3) 2254 (15.6) 

      Dementia (%) 4241 (0.9) 370 (2.6) 

      Antihypertensives (%) 216574 (47.0) 5465 (37.8) 

      Anticoagulants (%) 21102 (4.6) 570 (3.9) 

      Antiplatelet (%) 120975 (26.2) 3612 (25.0) 

      Anxiolytics and hypnotics (%) 112258 (24.4) 4033 (27.9) 

      Opioids (%) 139717 (30.3) 3031 (21.0) 

      Antipsychotic (%) 85393 (18.5) 3324 (23.0) 

      Steroids (%) 83460 (18.1) 2222 (15.4) 

      Nitrates (%) 29985 (6.5) 868 (6.0) 

      Loop diuretics (%) 60549 (13.1) 2094 (14.5) 

      Thiazide diuretics (%) 129818 (28.2) 3133 (21.7) 

      Potassium sparing diuretics (%) 27226 (5.9) 1013 (7.0) 

      Anti-diabetic (%) 6212 (1.3) 122 (0.8) 

      Calcium channel blockers (%) 108754 (23.6) 2528 (17.5) 

      ACE inhibitors (%) 106362 (23.1) 2361 (16.3) 

      Angiotensin receptor blockers (%) 38717 (8.4) 794 (5.5) 

      Beta blockers (%) 103282 (22.4) 2483 (17.2) 

      Oestrogen (%) 65340 (14.2) 1656 (11.5) 

      Insulin (%) 8357 (1.8) 209 (1.4) 

      H2 blockers (%) 66324 (14.4) 2018 (14.0) 

      Proton pump inhibitors (%) 159288 (34.6) 4379 (30.3) 

      DMARDs (%) 7386 (1.6) 198 (1.4) 

      Glucocorticoid (%) 92014 (20.0) 2391 (16.5) 

%: percent; STD: standard deviation; No: number; Yrs: years; GP: general practice; 

YOB: year of birth; BMI: body mass index; SBP: systolic blood pressure; CKD: chronic 

kidney disease; PUD: peptic ulcer disease; COPD: chronic obstructive pulmonary 

disease; PAD: peripheral artery disease; ACE: Angiotensin-converting enzyme; 

DMARDs: Disease-modifying antirheumatic drugs; †The percentage of missing variables 

–alcohol status (54.6%), smoking status (36.9%), IMD (38.7), SBP (26.4%), BMI 

(40.9%). 
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Table S10: Baseline characteristics among patients with systolic blood pressure 

measurements initiating non-sodium-based or sodium-based paracetamol 

Exposure Non-sodium Sodium 

No. (%) 230351 (97.7) 5348 (2.3) 

Follow-up, yrs (STD) 11.7 (1.5) 11.7 (1.5) 

Age, yrs (STD)  73.7 (8.3) 75.4 (8.9) 

Women (%) 149345 (64.8) 3929 (73.5) 

Ethnicity (White) (%) 64540 (28.0) 1618 (30.3) 

No. of GP visits (STD)  3.6 (3.6) 3.6 (3.7) 

No. of secondary care visits (STD) 1.2 (8.3) 1.5 (5.6) 

IMD (STD)*  1.9 (1.4) 1.9 (1.4) 

YOB (STD)  1933.5 (9.3) 1931.2 (10.1) 

SBP (STD)  142.4 (14.3) 141.8 (15.6) 

BMI (STD)*  28.1 (4.6) 26.6 (4.5) 

LDL (STD)  3.1 (1.4) 3.1 (0.7) 

TG (STD)  1.6 (1.5) 1.6 (0.7) 

TC (STD)  5.2 (1.7) 5.2 (0.9) 

Smoking status*:      

      Current or former smoker (%) 122388 (53) 2018 (37) 

      Never smoker (%) 107963 (46) 3330 (62) 

Alcohol status*:      

      Current or former drinker (%) 171599 (74) 3496 (65) 

      Never drinker (%) 58742 (25) 1852 (34) 

Disease at baseline:     

      CKD (%) 2433 (1.1) 41 (0.8) 

      Diabetes (%) 29231 (12.7) 555 (10.4) 

      Hypertension (%) 81154 (35.2) 1503 (28.1) 

      Arthritis (%) 74113 (32.2) 1301 (24.3) 

      Gout (%) 9592 (4.2) 133 (2.5) 

      Rheumatoid arthritis (%) 3799 (1.6) 99 (1.9) 

      Liver disease (%) 605 (0.3) 13 (0.2) 

      PUD (%) 3041 (1.3) 66 (1.2) 

      Asthma (%) 16927 (7.3) 439 (8.2) 

      COPD (%) 12721 (5.5) 304 (5.7) 

      PAD (%) 7238 (3.1) 149 (2.8) 

      Epilepsy (%) 1689 (0.7) 73 (1.4) 

      Dementia (%) 3459 (1.5) 207 (3.9) 

      Depression (%) 22608 (9.8) 518 (9.7) 

      Substance abuse (%) 1360 (0.6) 25 (0.5) 

      Hyperlipidaemia (%) 22207 (9.6) 411 (7.7) 
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      Venous thromboembolism (%) 9884 (4.3) 182 (3.4) 

      Atrial fibrillation (%) 10162 (4.4) 198 (3.7) 

      Fracture (%) 24039 (10.4) 589 (11.0) 

      Pneumonia (%) 3095 (1.3) 107 (2.0) 

      Fall (%) 611 (0.3) 11 (0.2) 

      Gastrointestinal bleeding (%) 2756 (1.2) 81 (1.5) 

      Reflux disease (%) 13139 (5.7) 297 (5.6) 

      Gastritis (%) 8211 (3.6) 206 (3.9) 

Medications at baseline:     

      Anticholinergics (%) 123050 (53.4) 2852 (53.3) 

      Statins (%) 71388 (31.0) 1220 (22.8) 

      Bisphosphonates (%) 19423 (8.4) 460 (8.6) 

      Calcium (%) 25976 (11.3) 706 (13.2) 

      Benzodiazepines (%) 30821 (13.4) 810 (15.1) 

      Dementia (%) 1513 (0.7) 81 (1.5) 

      Antihypertensives (%) 139362 (60.5) 2807 (52.5) 

      Anticoagulants (%) 11607 (5.0) 236 (4.4) 

      Antiplatelet (%) 71042 (30.8) 1476 (27.6) 

      Anxiolytics and hypnotics (%) 55343 (24.0) 1412 (26.4) 

      Opioids (%) 70787 (30.7) 1196 (22.4) 

      Antipsychotic (%) 42913 (18.6) 1142 (21.4) 

      Steroids (%) 43083 (18.7) 938 (17.5) 

      Nitrates (%) 17495 (7.6) 355 (6.6) 

      Loop diuretics (%) 32194 (14.0) 753 (14.1) 

      Thiazide diuretics (%) 86469 (37.5) 1749 (32.7) 

      Potassium sparing diuretics (%) 14320 (6.2) 366 (6.8) 

      Anti-diabetic (%) 4436 (1.9) 71 (1.3) 

      Calcium channel blockers (%) 72588 (31.5) 1369 (25.6) 

      ACE inhibitors (%) 72549 (31.5) 1301 (24.3) 

      Angiotensin receptor blockers (%) 27605 (12.0) 498 (9.3) 

      Beta blockers (%) 65951 (28.6) 1262 (23.6) 

      Oestrogen (%) 34010 (14.8) 731 (13.7) 

      Insulin (%) 5742 (2.5) 119 (2.2) 

      H2 blockers (%) 34181 (14.8) 842 (15.7) 

      Proton pump inhibitors (%) 82365 (35.8) 1763 (33.0) 

      DMARDs (%) 3987 (1.7) 93 (1.7) 

      Glucocorticoid (%) 47660 (20.7) 1015 (19.0) 

%: percent; STD: standard deviation; No: number; Yrs: years; GP: general practice; 

YOB: year of birth; BMI: body mass index; SBP: systolic blood pressure; LDL: low-

density lipoprotein; TC: total cholesterol; TG: triglycerides; CKD: chronic kidney 

disease; PUD: peptic ulcer disease; COPD: chronic obstructive pulmonary disease; 

PAD: peripheral artery disease; ACE: Angiotensin-converting enzyme; DMARDs: 

Disease-modifying antirheumatic drugs; *: imputed variables. 
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Figure S8: Association of sodium-based vs non-sodium-based paracetamol and 

incident cardiovascular disease and all-cause mortality (conventional modelling) 

 

Forest plots of log binomial with IPTW and crude modelling for analyses of binary 

outcomes (all patients, stratified by hypertension status) is shown. Number of events and 

total number of patients in each exposure group is shown in second and third columns. 

The forest plot and corresponding risk ratio estimates are shown in the right-most column 

relative to the reference exposure, non-sodium paracetamol. The effect size is plotted on 

a logarithmic scale. 

Figure S9: Association of sodium-based vs non-sodium-based paracetamol and 

systolic blood pressure (conventional modelling) 

 

Forest plots of log binomial with IPTW and crude modelling for analyses of continuous 

systolic blood pressure as outcome (all patients, stratified by hypertension status) is 



 

     236 

shown. Number of events and total number of patients in each exposure group is shown 

in second and third columns. The forest plot and corresponding risk ratio estimates are 

shown in the right-most column relative to the reference exposure, non-sodium 

paracetamol. The effect size is plotted on a logarithmic scale. 

Figure S10: Diagram of confounding due to dysphagia and related comorbidities 

 

The purple panel contains dysphagia and associated disorders connected to both 

exposure and outcome. The green box represents the exposure of sodium-based 

paracetamol, connected to outcome. The orange box is outcome of all-cause mortality. 
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