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Abstract
Background: Several studies have reported that polygenic risk scores (PRSs) can enhance risk prediction of coronary artery disease 
(CAD) in European populations. However, research on this topic is far from sufficient in non-European countries, including 
China. We aimed to evaluate the potential of PRS for predicting CAD for primary prevention in the Chinese population.
Methods: Participants with genome-wide genotypic data from the China Kadoorie Biobank were divided into training 
(n = 28,490) and testing sets (n = 72,150). Ten previously developed PRSs were evaluated, and new ones were developed using 
clumping and thresholding or LDpred method. The PRS showing the strongest association with CAD in the training set was 
selected to further evaluate its effects on improving the traditional CAD risk-prediction model in the testing set. Genetic risk 
was computed by summing the product of the weights and allele dosages across genome-wide single-nucleotide polymorphisms. 
Prediction of the 10-year first CAD events was assessed using hazard ratios (HRs) and measures of model discrimination, 
calibration, and net reclassification improvement (NRI). Hard CAD (nonfatal I21–I23 and fatal I20–I25) and soft CAD (all 
fatal or nonfatal I20–I25) were analyzed separately.
Results: In the testing set, 1214 hard and 7201 soft CAD cases were documented during a mean follow-up of 11.2 years. The HR 
per standard deviation of the optimal PRS was 1.26 (95% CI:1.19–1.33) for hard CAD. Based on a traditional CAD risk prediction 
model containing only non-laboratory-based information, the addition of PRS for hard CAD increased Harrell’s C index by 0.001 (–
0.001 to 0.003) in women and 0.003 (0.001 to 0.005) in men. Among the different high-risk thresholds ranging from 1% to 10%, 
the highest categorical NRI was 3.2% (95% CI: 0.4–6.0%) at a high-risk threshold of 10.0% in women. The association of the PRS 
with soft CAD was much weaker than with hard CAD, leading to minimal or no improvement in the soft CAD model.
Conclusions: In this Chinese population sample, the current PRSs minimally changed risk discrimination and offered little 
improvement in risk stratification for soft CAD. Therefore, this may not be suitable for promoting genetic screening in the 
general Chinese population to improve CAD risk prediction.
Keywords: Coronary artery disease; Polygenic risk score; Risk prediction model; Chinese population

Introduction

Coronary artery disease (CAD), a subtype of cardiovas-
cular disease (CVD), is a major cause of morbidity and 

mortality in China and worldwide.[1,2] Risk prediction 
models can help identify individuals who are at high risk 
of CAD and may benefit from lifestyle modifications 
and medical interventions. Current guideline-recommended 
CAD or CVD risk prediction models, such as the World 
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Health Organization CVD risk chart,[3] pooled cohort 
equations (PCEs) in the United States,[4] SCORE2 in 
Europe,[5] and the China-PAR model[6] achieve risk 
stratification mainly based on sex, age, blood pressure, 
blood lipid levels, diabetes, smoking, and other tradi-
tional risk factors.

Genome-wide association studies (GWAS) have identi-
fied more than 160 genetic loci associated with CAD.[7,8] 
There has been considerable interest in whether incorpo-
rating genetic information such as a polygenic risk score 
(PRS) could enhance CAD risk prediction beyond tradi-
tional risk factors. Based on summary statistics derived 
from large-scale GWAS such as the CARDIoGRAM-
plusC4D collaboration group and UK Biobank (UKB), 
researchers have constructed several CAD PRSs in Western 
populations using different methods and containing 
genetic variants ranging from 40,000 to 6.6 million.[9–17] 
Most studies have found that the addition of PRS to 
traditional models (TMs) (such as Framingham Risk 
Score, PCE, and QRISK3 [University of Nottingham and 
EMIS; https://www.qrisk.org/index.php]) could enhance 
risk prediction,[9,10,12,17–23] with a potential increase of 
up to 0.03 to Harrell’s C index, a measurement of 
discrimination.[22] However, there were two studies 
reporting negative results.[14,24] Due to the lack of large-
scale GWAS on CAD conducted in the Chinese popula-
tion, the development of PRS and the use of PRS in risk 
prediction are insufficient in China. Recently, a PRS 
comprising 540 genetic variants was developed using a 
meta-analytical approach and results from a GWAS for 
CAD and CAD-related traits in East Asian populations. 
The addition of this PRS to the China-PAR model 
yielded a modest yet statistically significant improve-
ment in Harrell’s C by 0.01 and a net reclassification 
improvement (NRI) of 3.5%.[25]

In this study, based on nearly 100, 000 participants with 
genome-wide genotypic data from the China Kadoorie 
Biobank (CKB), we examined the association of PRSs 
developed in previous studies[9–17,25] with the risk of CAD 
in the Chinese population. We also developed new PRSs 
based on publicly available summary statistics from the 
largest CAD GWAS conducted globally and in East Asian 
populations.[8,13] The PRS showing the strongest associa-
tion with CAD risk was selected to further evaluate its 
effects on improving the traditional risk prediction model.

Methods

Ethical approval

CKB was approved by the Ethical Review Committee of 
the Chinese Center for Disease Control and Prevention 
(Beijing, China) (No. 005/2004) and the Oxford 
Tropical Research Ethics Committee, University of 
Oxford (UK) (reference: 025–04). All the participants 
provided written informed consent.

Study population

The CKB is an ongoing prospective study with 512,725 
participants aged 30–79 years enrolled from five urban 

and five rural regions in China between 2004 and 2008. 
The details of this study have been described previ-
ously.[26] Briefly, all participants provided valid baseline 
data, including a complete interviewer-administered 
laptop-based questionnaire and physical measurements 
conducted by trained staff using calibrated instruments 
and standard protocols. A 10 mL random blood sample 
was collected from each participant at the time of their 
last meal on the investigation day.

Nearly one-fifth of all participants have genome-wide 
genotypic data until now [Supplementary Figure 1, http://
links.lww.com/CM9/B558]. Of them, 75,982 participants 
were randomly selected from the entire CKB cohort 
(“population-based samples”). The remaining partici-
pants were selected based on a case–cohort design (“case–
cohort samples,” n = 24,658). Based on “population-
based samples,” after excluding participants with CAD 
or stroke at baseline (n = 3832), the remaining partici-
pants were included in prospective analyses (“testing 
set,” n = 72,150). By combining the case–cohort samples 
with the 3832 patients mentioned before, we got a 
“potential training set” (n = 28,490), from which two 
matched case–control training sets (“training set for 
hard CAD” and “training set for soft CAD”) were deter-
mined [Supplementary Methods, Supplementary Table 1, 
http://links.lww.com/CM9/B558].

Study design

In this study, four interrelated components were involved 
[Figure 1]: (1) validation of previous PRSs: ten previ-
ously reported CAD PRSs were selected for validation; 
(2) development of new PRSs: clumping and thresh-
olding (“C + T”) and LDpred[27] were used to develop 

Figure 1: Study overview of the process evaluating  polygenic risk scores used for 
coronary artery disease risk prediction in Chinese population. C + T: Clumping & 
thresholding; GWAS: Genome-wide association study; HR: Hazard ratio; LD: Linkage 
disequilibrium; OR: Odds ratio; PRS: Polygenic risk score; SD: Standard deviation.
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new PRSs; (3) identification of the optimal PRS: Different 
PRSs were compared in the training sets of hard CAD 
and soft CAD, separately; and (4) validation and evalua-
tion of the optimal PRS: we prospectively examined the 
association between the optimal PRS and the risk of 
CAD and evaluated the improvement by adding the 
optimal PRS to traditional risk prediction models for 
CAD.

Collection and definition of variables in the traditional risk 
prediction models

The present analysis was based on “CKB-CVD models,” 
which are newly derived 10-year risk prediction models 
for CAD and stroke subtypes, based on the CKB cohort. 
The predictors included age, systolic and diastolic blood 
pressure, use of blood pressure-lowering treatments, 
current daily smoking, self-reported diabetes, and 
waist circumference [Supplementary Table 2, http://
links.lww.com/CM9/B558]. Details of the collection and 
definition of each variable were described in our 
previous study.[28]

Genetic data

Genotyping and imputation in this study were conducted 
centrally by the CKB research team and have been 
described elsewhere.[29] Briefly, two custom-designed 
single-nucleotide polymorphism (SNP) arrays optimized 
for Chinese Han participants (Affymetrix Axiom® CKB 
array) were used for genotyping. These arrays were 
developed by the University of Oxford’s Clinical Trial 
Service Unit and Epidemiological Studies Unit (Oxford, 
UK) in collaboration with the Beijing Genomics Institute 
(Shenzhen, China) and Affymetrix (now Thermo Fisher 
Scientific, Santa Clara, CA, USA). Standard quality 
control after genotyping revealed 532,415 biallelic vari-
ants present in both array versions. Qualified genotypes 
for each chromosome were phased using SHAPEIT3 
(https://jmarchini.org/software/#shapeit-3).[30] Imputation 
was performed for each 5-Mb interval using IMPUTE4 
(https://jmarchini.org/software/#impute-4)[31] based on 
haplotypes derived from the 1000 Genomes Project 
Phase 3 (1KGP) reference panels.[32] The genetic prin-
cipal components of ancestry (PCA) were also centrally 
computed. According to the quality control criteria of 
the UKB,[33] there were 9.54 million genetic variants 
with high reliability that achieved good coverage of the 
whole genome [Supplementary Figure 2, http://links.lww.
com/CM9/B558]. The QCTOOL (version 2; https://www.
well.ox.ac.uk/~gav/qctool/#overview) was used to convert 
the imputed genotype data to dosages.

PRSs

In the current analysis, we validated previous PRSs and 
developed new PRSs. First, we searched the PGS Catalog[34] 
and 10 previously reported CAD PRSs were selected for 
subsequent analyses [Supplemental Methods, Supple-
mentary Table 3, http://links. lww. com/CM9/B558].[9–16] 
Second, we developed new PRSs by using two methods: 
“C + T” and LDpred. In the “C + T” method, based on 

ethnicity, sample size, and accessibility of summary 
statistics files, Biobank of Japan (BBJ)[13] and “UKB-
CARDIoGRAMplusC4D meta-analysis (UCM)”[8] were 
selected as the basic data to develop PRS [Supplemen-
tary Figure 3, http://links.lww.com/CM9/B558]. We 
applied r2 thresholds of 0 (no pruning), 0.2, 0.4, 0.6, and 
0.8, and P value thresholds from 5 × 10-8 to 1 (40 values in 
total) [Supplementary Methods, http://links.lww.com/CM9/
B558]. In the LDpred method, the basic data were the same 
as the “C + T” method. In addition, the variants were 
restricted to HapMap3 SNPs.[35] East Asians (n = 504) 
and Europeans (n = 503) in the 1KGP were used as 
linkage disequilibrium (LD) reference panels for BBJ and 
UCM, respectively. A range of P values (fraction of causal 
variants) was used: 1.0, 0.3, 0.1, 0.03, 0.01, 0.003, and 
0.001 [Supplementary Methods, http://links.lww.com/
CM9/B558].

Outcomes

All participants were followed up for outcomes of inci-
dent disease identified at baseline. Incidental events were 
identified using linkages with local disease and death 
registries and the National Health Insurance database, 
supplemented by active follow-up.[26] The loss to follow-
up was <1% before censoring on December 31, 2017. 
Trained staff, blinded to the baseline information, coded 
all events using the International Classification of Diseases, 
Tenth Revision (ICD-10). In this study, hard CAD events 
included nonfatal myocardial infarction (I21–I23) and 
fatal CAD (I20–I25), while soft CAD events included all 
fatal or nonfatal CAD (I20–I25).

Statistical analysis

In the training set for hard CAD (n = 3513 pairs), condi-
tional logistic regression models were used to measure 
the association of each PRS with hard CAD, stratified by 
the case–control pair. The analyses were adjusted for the 
top ten PCA and array versions. The PRS with the 
highest odds ratio (OR) per standard deviation (SD) was 
selected as the optimal PRS for hard CAD (PRShard). 
These steps were repeated for the soft CAD training set 
(n = 7142) to obtain the optimal PRS for soft CAD 
(PRSsoft). We used the Pearson correlation coefficient to 
measure the correlation between two continuous vari-
ables.

In the test set, the optimal PRSs (PRShard and PRSsoft) 
were grouped by quintiles. Cox proportional hazards 
models were used to estimate the associations between 
PRSs and CAD risk, stratified by sex and the ten study 
regions, with age as the time scale. The covariates 
included the top ten PCAs and array versions. The 
proportional hazard assumptions were evaluated by 
examining the Schoenfeld residuals. Restricted cubic 
splines were used to examine the nonlinear associations 
between the PRS and CAD risk.

In this study, traditional risk prediction models for CAD 
were defined as sex-specific Cox models stratified by ten 
study regions, with time-on-study as the time scale, 
including models for hard and soft CAD. Predictors in 
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TMs were the same as the “CKB-CVD models.”[28] The 
addition of PRS to TMs led to “PRS-enhanced models.” 
The discrimination performance was assessed using 
Harrell’s C-statistic.[36] Calibration performance was 
graphically assessed by comparing the mean predicted 
risks at 10 years with the observed risks across the 
deciles of predicted risks. The Nam-D’Agostino[37] test 
was used to quantify the agreement or fit. Net reclassifi-
cation NRI and integrated discrimination improvement 
(IDI) were used to evaluate model reclassification before 
and after the addition of PRS.[38] Since the “CKB-CVD 
models” have not identified high-risk thresholds for 
each CVD subtype, we applied different thresholds for 
hard CAD (ranging from 1% to 10%) and soft CAD 
(ranging from 5% to 50%) while calculating the categorical 
NRI.

Analyses were performed using Stata (version 17.0; 
StataCorp, Texas, USA) and R (version 4.0.3; The R 
Foundation for Statistical Computing, Vienna, Austria). 
All statistical tests were two-sided. P values <0.05 were 
considered significant.

Results

Selection of the optimal PRS

In the hard and soft CAD training sets [Supplementary 
Figure 1, http://links.lww.com/CM9/B558], the median 
ages (25–75th percentile range) at baseline were 63 (55–
70) and 62 (54–69) years, respectively. Of all the partici-
pants, 42.6% (1496/3513) and 48.1% (3434/7142) 
were women, and 39.9% (1400/3513) and 38.4% 
(2746/7142) were urban residents, respectively [Supple-
mentary Table 4, http://links.lww.com/CM9/B558]. Of 
all previously reported PRSs, MetaPRS_CAD (PRS ID: 
PGS000337) performed the best in both training sets. 
The ORs per SD (ORSD) were 1.21 (95% confidence 
interval [CI]: 1.15–1.27) for hard CAD and 1.11 (1.08–
1.15) for soft CAD [Table 1 and Supplementary Figure 4, 
http://links.lww.com/CM9/B558]. In the “C + T” method 
and the LDpred method, the optimal PRSs for hard 
CAD and soft CAD both came from UCM. The corre-
sponding ORSD were 1.20 (1.14–1.26) and 1.11 (1.07–
1.14) in the “C + T” method [Table 1 and Supplemen-
tary Figure 5, http://links.lww.com/CM9/B558], and 1.19 
(1.13–1.25) and 1.12 (1.08–1.16) in the LDpred method 

[Table 1 and Supplementary Figure 6, http://links.lww.
com/CM9/B558]. Finally, the optimal PRSs for hard 
CAD (PRShard) and soft CAD (PRSsoft) were PGS000337, 
developed in a previous study, and LD-UCM-004 from 
the LDpred method, respectively [Table 1]. The Pearson 
correlation coefficients between PRShard and PRSsoft 
were 0.65 and 0.67 for the training sets of hard and soft 
CAD, respectively [Supplementary Figure 7, http://links.
lww.com/CM9/B558].

Validation of the optimal PRS

The median age (25–75th percentile range) for all partici-
pants in the training set was 51 years (43–59 years); 
59.8% (43,171/72,150) were women, and 47.0% (33,929/
72,150) were urban residents. PRSsoft was strongly corre-
lated with PRShard (Pearson’s correlation coefficient = 0.66) 
[Supplementary Figure 8,http://links.lww.com/CM9/B558]. 
Participants in the higher PRS quintile were more likely to 
have a higher mean blood pressure, diabetes, and a 
family history of CVD [Supplementary Table 5, http://
links.lww.com/CM9/B558].

During a mean follow-up of 11.2 years (SD = 1.9 years), 
we documented 1214 hard CAD and 7201 soft CAD 
cases. After multivariate adjustment, PRShard was posi-
tively associated with CAD risk. Hazard ratios per SD 
(HRSD) were 1.26 (95% CI: 1.19–1.33) for hard CAD 
and 1.11 (1.09–1.14) for soft CAD [Figure 2]. The corre-
sponding HRSD of PRSsoft were 1.24 (1.17–1.31) and 
1.10 (1.07–1.12) [Supplementary Figure 9, http://links.
lww.com/CM9/B558]. Considering the strong correla-
tion between the two PRSs and that PRShard showed 
slightly stronger associations with the risk of CAD than 
PRSsoft, only PRShard was included in the subsequent 
analyses. The HRSD for hard and soft CAD attenuated 
slightly after additional adjustment for education level, 
smoking status, systolic blood pressure, diabetes, and waist 
circumference [Supplementary Table 6, http://links.lww.com/
CM9/B558]. The associations between PRShard and CAD 
were consistent across different subgroups of sex, age, 
smoking status, body mass index, waist circumference, 
hypertension status, and diabetes status. The HRSD for 
soft CAD was greater in participants with a family 
history of CVD than in those without (P = 0.017) [Supple-
mentary Figure 10, http://links.lww.com/CM9/B558].

Table 1: Performance of the optimal PRSs in training sets.

Outcome*

Hard CAD

Soft CAD

Method
Previous study

C + T
LDpred

Previous study
C + T

LDpred

PRS name
PGS000337

CT-UCM-011†

LD-UCM-004‡§

PGS000337
CT-UCM-009§

LD-UCM-004‡

Number of variants
59,951
1403

1,018,036
59,951
1093

1,018,036

ORSD (95% CI)||

1.21 (1.15, 1.27)
1.20 (1.14, 1.26)
1.19 (1.13, 1.25)
1.11 (1.08, 1.15)
1.11 (1.07, 1.14)
1.12 (1.08, 1.16)

CAD: Coronary artery disease; CI: Confidence interval; LD: Linkage disequilibrium; OR: Odds ratio; ORSD: OR per SD; PCA: Principal compo-
nents of ancestry; PRS: Polygenic risk score; SD: Standard deviation; UCM: UK Biobank (UKB)–CARDIoGRAMplusC4D meta-analysis. *Hard 
CAD includes nonfatal myocardial infarction (I21–I23) and fatal CAD (I20–I25); soft CAD includes all fatal and nonfatal CAD (I20–I25).†Base 
data were UCM, r2 threshold = 0, P value threshold = 0.0004. ‡Base data were UCM, parameter P (the fraction of non-zero effects in the prior) 
was 0.1.§ Base data were UCM, r2 threshold = 0, P value threshold = 0.0002. ||Conditional logistic regression models were used to measure the as-
sociation of each PRS with CAD, stratified by the case–control pair. The covariates included array versions and the top ten PCA. The PRS with the 
highest ORSD is selected as the optimal PRS.

2479

D
ow

nloaded from
 http://journals.lw

w
.com

/cm
j by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1A

W
n

Y
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

4/O
A

V
pD

D
a8K

K
G

K
V

0Y
m

y+
78=

 on 10/26/2023

http://links.lww.com/CM9/B558
http://links.lww.com/CM9/B558
http://links.lww.com/CM9/B558
http://links.lww.com/CM9/B558
http://links.lww.com/CM9/B558
http://links.lww.com/CM9/B558
http://links.lww.com/CM9/B558
http://links.lww.com/CM9/B558
http://links.lww.com/CM9/B558
http://links.lww.com/CM9/B558
http://links.lww.com/CM9/B558


www.cmj.orgChinese Medical Journal 2023;136(20)

Addition of the optimal PRS to TMs

Based on the TMs defined in this study, the addition of 
the PRS did not improve or only slightly improved the 
discrimination performance of the models. For hard CAD, 
the addition of PRS increased Harrell’s C by 0.001 in 
women (P = 0.282) and 0.003 in men (P = 0.003). For 
soft CAD, the addition of PRS increased Harrell’s C by 
0.001 in both sexes (P = 0.028 for women and P = 0.043 
for men) [Figure 3]. The calibration performance showed 
little change before and after the addition of the PRS 
[Supplementary Figure 11, http://links.lww.com/CM9/
B558]. The addition of the PRS offered little improve-
ment in risk stratification. For hard CAD, the largest 
categorical NRI was 0.032 (95% CI: 0.004– 0.060) at 
the 10% high-risk threshold in women and 0.020 
(0.007–0.032) at the 1% high-risk threshold in men. For 
soft CAD, the categorical NRIs were below 0.01 in both 
sexes, and most were not statistically significant [Figure 4]. 
For hard CAD, the continuous NRI was 0.212 (95% CI: 
0.119–0.305) in women and 0.193 (0.108–0.278) in men; 
the relative IDI was 3.9% in women and 4.6% in men. 
The corresponding continuous NRI and relative IDI of the 
soft CAD model were lower than those of the hard CAD 
model [Supplementary Table 7, http://links.lww.com/CM9/
B558].

Discussion

In this study, we examined the association between 
previously developed PRSs and CAD risk and developed 
new PRSs in the Chinese population. The PRS developed 
by Koyama et al [13] performed the best in this analysis. 

This PRS was independently associated with CAD risk 
in prospective analyses. However, the addition of PRS to 
the traditional CAD risk prediction model, which 
contained only non-laboratory-based information, mini-

Figure 2: Adjusted HRs for CAD associated with the optimal PRS for hard CAD. The PRS reported here is the optimal PRS for hard CAD (PGS000337, see Table 1 for details). (A) Hard 
CAD events included non-fatal myocardial infarction (I21–I23) and fatal CAD (I20–I25). (B) Soft CAD events included all fatal or non-fatal CAD (I20–I25). The models were stratified by 
sex and 10 study regions and adjusted simultaneously for the top 10 PCA and array versions, with age as the time scale. In each subgraph, HRs and P values on the upper left were 
derived from linear trend tests. The abscissa of each closed square represents the mean value of the standardized PRS in the corresponding quintile group. The number above the 
closed square represents the HR. The number below the closed square represents the number of events in this group. The vertical lines indicate 95% CIs. CAD: Coronary artery 
disease; CIs: Confidence intervals; HRs: Hazard ratios; PCA: Principal components of ancestry; PRS: Polygenic risk score.

Figure 3: C statistics evaluating the performance of PRS. The PRS reported here is the 
optimal PRS for hard CAD (PGS000337, see Table 1 for details). Hard CAD events 
included non-fatal myocardial infarction (I21 – I23) and fatal CAD (I20 – I25); soft CAD 
events included all fatal or non-fatal CAD (I20–I25). TMs for CAD were defined as sex-
specific Cox models stratified by 10 study regions, with time on study as the time scale, 
including models for hard CAD and models for soft CAD. Predictors included in TMs were 
the same as the “CKB-CVD models,” including age, systolic and diastolic blood 
pressure, use of anti-hypertensives, current daily smoking, self-reported diabetes, and 
waist circumference. Interactions between age and the other six predictors were also 
included. The 95% CIs of Harrell’s C and Harrell’s C changes were calculated by 100 
bootstrap replications using the bias-corrected accelerated (BCa) method in Stata. 
CAD: Coronary artery disease; CIs: Confidence intervals; CKB: China Kadoorie Biobank; 
CVD: Cardiovascular disease; PRS: Polygenic risk score; TMs: Traditional models.
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mally changed risk discrimination and offered little to 
no improvement in risk stratification.

The PRS developed by Koyama et al [13] (PGS000337) is 
the optimal PRS for hard CAD in the training set. It 
used summary statistics with the largest sample size glob-
ally, simultaneously containing CARDIoGRAMplusC4D, 
UKB, and BBJ, and trained the optimal parameters 
among East Asians. Although PGS000337 was not the 
optimal PRS for soft CAD in the training set, it was still 
in second place, with an OR of only 0.003 away from 
the first PRS (ORPGS000337 = 1.114, ORLD-UCM-004 = 1.117). 
In the testing set, the HR of PGS000337 for soft CAD 
was slightly higher than that of LD-UCM-004. Compared 
to PGS000337, other PRSs developed based on Euro-
pean populations,[9–17] and the PRS developed based 
on the Chinese population (metaPRS_CAD, PRS ID: 
PGS002262)[25] have smaller GWAS based data, possibly 
leading to less robust regression coefficients, resulting in 
weakened associations between these PRSs and the risk 
of CAD in the current study. Koyama et al[13] reported 
the association of PGS000337 with the risk of CAD 
mortality over a median of 7.7 years of follow-up 
among 49,230 participants in BBJ, with the adjusted 
HRSD of 1.22 (95% CI: 1.11–1.33). To facilitate comparison, 
we examined the association between PGS000337 and 
the risk of CAD mortality in the testing set of the 
current study. A total of 800 CAD-related deaths were 
recorded during a mean follow-up period of 11 years. 
The adjusted HRSD in our study was 1.25 (95% CI:1.17–

1.34), similar to that reported by Koyama et al[13] (data 
not shown).

On one hand, the stronger the association between PRS 
and disease outcome, the more obvious the effect of PRS 
on improving the TM.[21,23] In previous studies, the 
HRSD of PRS for CAD was usually between 1.20 and 
1.60.[10,12,14,19,20,23–25,39,40] In the current analysis, however, 
the HRSD of PGS000337 was only 1.26 for hard CAD 
and 1.11 for soft CAD. These relatively weak associa-
tions might be the main reason why PRS hardly changed 
risk discrimination or improved risk stratification. A 
PRS developed by Riveros-McKay et al[22] had an HRSD 
of 1.62 (95% CI:1.57–1.67) among 186,451 UKB partici-
pants, which is much stronger than that in our study. 
The addition of this PRS to the PCE model increased 
Harrell’s C by 0.03 (95% CI: 0.02–0.04).[22] The PRS 
developed by Lu et al[25] had an HRSD of 1.44 (95% CI 
not reported) and increased Harrell’s C by 0.01 (P = 
7.72 × 10-7) based on the China-PAR model. Two 
previous studies reported a strength of association similar 
to that in our study. Mars et al[14] developed a PRS using 
LDpred, with GWAS summary statistics from the UKB 
as the base data (PRS_CHD, PRS ID: PGS000329). The 
HRSD was 1.25 (95% CI:1.18–1.32) in 20,165 FINRISK 
participants. The addition of this PRS to the PCE model did 
not improve risk discrimination (∆C = -0.003, P >0.05). 
Mosley et al[24] evaluated a previous PRS (GPS_CAD; 
PRS ID: PGS000013) based on summary statistics from 
CARDIoGRAMplusC4D in two independent cohorts. 
The HRSD was 1.24 (95% CI: 1.15–1.34) in the Athero-
sclerosis Risk in Communities study (N = 4847) and 
1.38 (95% CI: 1.21–1.58) in the Multi-Ethnic Study of 
Atherosclerosis (N = 2390). The addition of the PRS to 
the PCE model did not significantly increase Harrell’s C 
in either cohort (P >0.05).

On the other hand, the better the predictive performance 
of the TM, the more limited the improvement provided 
by the PRS. TM defined in the current study did not 
include lipid information, although dyslipidemia is an 
important risk factor for CAD. This is because blood 
lipid testing is not included as a free item for the entire 
population in the National Basic Public Health Service 
Program in China. The model, excluding blood lipids, 
may facilitate broader use in primary prevention.[3,28] 
The addition of blood lipids should further enhance the 
current TM. Therefore, adding PRS to a “lipid-enhanced 
TM” might lead to a more minor improvement than 
that we have observed in the present study.

In the current study, we observed that the association 
between the PRS and hard CAD was much stronger 
than that between the PRS and soft CAD, suggesting 
that the PRS may have a greater value in predicting the 
risk of hard CAD. Hard CAD accounted for approxi-
mately 15% of all CAD events among the participants. 
Most of the remaining events involved angina pectoris 
or chronic ischemic heart disease (ICD-10, I25).[41] 
Improving the risk prediction for soft CAD may be of 
greater public health significance. However, the diag-
nosis of angina pectoris and chronic ischemic heart 
disease is not well established in clinical practice. This 

Figure 4: Reclassification based on the categorical NRI. The PRS reported here is the 
optimal PRS for hard CAD (PGS000337, see Table 1 for details). (A) Hard CAD events 
included non-fatal myocardial infarction (I21–I23) and fatal CAD (I20–I25). (B) Soft CAD 
events included all fatal or non-fatal CAD (I20–I25). A range of high-risk thresholds was 
applied in the current analyses. For example, threshold = 1% represents participants 
with 10-year CAD risk >1% are grouped into a high-risk group. The 95% CIs of the 
categorical NRI were calculated by 100 bootstrap replications using the bias-corrected 
accelerated (BCa) method in Stata. CAD: Coronary artery disease; CIs: Confidence 
intervals; NRI: Net reclassification improvement; PRS: Polygenic risk score.
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may partially explain the weaker association between 
the PRS and soft CAD. Further studies are warranted to 
evaluate the effect of the PRS in improving risk predic-
tion for soft CAD.

The current study, which to date is the largest study 
based on a Chinese population, systematically evaluated 
the effects of previous PRSs on improving the traditional 
CAD risk prediction model. The loss to follow-up rate 
was <1% at an average follow-up of 11 years in the 
CKB group, with both the hard and soft CAD outcomes 
considered. Genotyping and imputation of genetic data 
in this study were conducted centrally using a standard 
quality control process. Genetic variants with high reli-
ability also covered the entire genome.

This study had several limitations that merit consider-
ation. First, in the current study, genetic variants with 
ambiguous SNPs (i.e., A/T, C/G) that were not found or 
had low imputation quality scores in the CKB were 
removed during the standard quality control process of 
PRSs. This may have weakened the association between 
previous PRSs and CAD. Second, because information 
on blood lipids was not available for the current study 
population, we were unable to compare the effects of 
blood lipids and PRS on improving the traditional CAD 
risk prediction model.

In conclusion, based on nearly 100,000 Chinese partici-
pants with genome-wide genotypic data and prospective 
follow-up, we examined the association between 
previous PRSs and the risk of CAD and developed new 
PRSs in the Chinese population. The optimal PRS mini-
mally changed risk discrimination and offered little to 
no improvement in risk stratification for CAD. There-
fore, this may not be suitable for promoting genetic 
screening in the general Chinese population to improve 
CAD risk prediction. With the development of CAD 
GWAS in the Chinese population, PRS with stronger 
associations with CAD may be developed to improve the 
predictive performance of existing models in the future.
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