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Abstract. In this paper we show how re-interpreting PageRank as an argumentation semantics for a bipolar argumentation
framework empowers its explainability. After showing that PageRank, naively re-interpreted as an argumentation semantics
for support frameworks, fails to satisfy some generally desirable properties, we propose a novel approach able to reconstruct
PageRank as a gradual semantics of a suitably defined bipolar argumentation framework, while satisfying these properties. We
then show how the theoretical advantages afforded by this approach also enjoy an enhanced explanatory power: we propose
several types of argument-based explanations for PageRank, each of which focuses on different aspects of the algorithm and
uncovers information useful for the comprehension of its results.
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1. Introduction

In the context of search engines, a user wants to
find the (web) pages that are the most relevant to a
search query, potentially among millions of them. The
web has an essential feature: each piece of informa-
tion (page) may link to other pieces of information
(through hyperlinks), and therefore the web organisa-
tion can be regarded as a directed graph, where pages
correspond to nodes and links to edges. This is the
idea that in 1999 inspired the revolutionary PageRank
(PR) algorithm [1]: a method for computing a ranking
score for every page based on the graph structure of
the web. Given its conceptual simplicity and general
formalisation for any kind of directed graph, PR has
been applied to many other domains where entities can
be evaluated on the basis of their connections to other
entities, including citation networks [2], recommenda-
tion systems [3], chemistry [4], biology [5] and neu-
roscience [6], and has been studied from several view-

*Corresponding Author. Email: emanuele@imperial.ac.uk

points including an axiomatic characterisation from a
social choice theory perspective [7].

Graph-based representations are also pervasive in
the field of computational argumentation. In particular
Dung’s abstract argumentation frameworks [8] are es-
sentially directed graphs whose nodes are arguments
and edges represent attacks. Dung’s seminal proposal
has been subsequently extended in several directions,
e.g. bipolar argumentation frameworks [9] encompass
also a notion of support, while in quantitative bipo-
lar argumentation frameworks [10] a base score is as-
signed to each argument. In this context, the argument
graph structure is the basis of the assessment of ar-
gument acceptability according to some argumenta-
tion semantics [11]: in Dung’s traditional approach the
evaluation is qualitative, while in further developments
numerical argument assessments based on gradual se-
mantics have been investigated [10,12]. Given the sim-
ilarity between PR and gradual argumentation seman-
tics as formal tools producing a numerical assessment
of connected entities in a graph, it appears that explor-
ing possible cross-fertilisation opportunities between
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the two areas represents on its own an interesting re-
search direction.

But drawing bridges between the two areas pos-
sesses not only theoretical yields. In fact, reconstruct-
ing PR in an argumentative perspective opens the door
to the use of such a re-interpretation to generate ex-
planations, exploiting in particular the graphical rep-
resentation of the reasoning behind the algorithm. Ex-
planations are crucial for the users of an algorithm
such as PR: they may allow them to understand why
the algorithm gives a certain output (e.g. attribution
methods such as LIME [13] or SHAP [14]), to as-
sess which components of the input led to different out-
comes (e.g. contrastive explanations such as those pro-
posed in [15]) or to identify which changes in the in-
put could change the output (e.g. counterfactual ex-
planations such as those proposed in [16]); for an
overview see [17]. In particular, argumentation-based
explanation techniques have been proposed for many
AI methods, e.g., neural networks [18,19], schedul-
ing [20], Bayesian networks [21] and classifiers [22],
query answering [23] and recommender systems [24].

In this paper we first explore how PR [1] can be
directly interpreted, from an argumentation perspec-
tive, as a gradual semantics for support argumenta-
tion frameworks [25] in which pages are arguments
and links are supports. We then evidence some limi-
tations of this simplistic correspondence and propose
the novel approach of reconstructing PR as a semantics
in suitably constructed quantitative bipolar argumen-
tation frameworks (QBAFs). Finally, we show how
this gradual semantics produces a strength value for
each argument satisfying desirable theoretical proper-
ties and empowering the generation of several types of
explanations for PR, that emphasise different aspects
of its underlying mechanism.

In a broader perspective, the contribution of the pa-
per is two-fold. On one hand we define a new grad-
ual semantics for QBAFs based on PageRank. On the
other hand, we support the idea of using argumentation
frameworks, not only to model dialectical debates, but
also to describe the mechanism underpinning graph al-
gorithms in order to present them in a dialectical form,
with the main aim of generating explanations but pos-
sibly also enabling other practical applications.

The paper is organized as follows. In Section 2 we
recall some background concepts on PR. In Section
3 we detail how PR can be directly interpreted as
a gradual semantics in support argumentation frame-
works, showing however that, as such, it does not sat-
isfy some desirable properties for argumentation. In

Section 4 we reconstruct PR as a gradual semantics of
suitable QBAFs, achieving in this way the satisfaction
of the above mentioned desirable properties. In Section
5 we first show the practical limitations of explanations
based on the support argumentation framework intro-
duced in Section 3 and then introduce four types of ex-
planations for PR based on the gradual semantics of
Section 4. In Section 6, using several datasets crawled
from English and Irish universities’ websites and the
Wikipedia dataset, we evaluate the different notions of
explanations we introduced along several dimensions
including size and cognitive tractability. We conclude
the paper and outline lines of future work in Section 7.

This article builds upon [26] and [27]. In particular,
Sections 2, 3 and 4 are adapted and revised from [26]
and 5 and 6 extensively expand the preliminary results
presented in [27].

2. PageRank Background

We firstly recall the PR definition from the origi-
nal paper [1], using a different but equivalent notation
when necessary for our purposes.

We assume a set of pages/nodesP = {u1, u2, ..., uN}
and a set of links between the pages L ⊆ P×P , where
(u, v) ∈ L indicates that there is a link from page u
to page v and we call the directed graph 〈P,L〉 the
web graph. We say N = |P| > 0 is the total num-
ber of pages, Ou = {v ∈ P:(u, v) ∈ L} is the set
of pages u points to and Iu = {v ∈ P:(v, u) ∈ L}
is the set of pages that point to u. We assume that
∀u ∈ P,@(u, u) ∈ L, i.e. self-loops are ignored to
prevent the manipulation of PR. We also assume that
∀u ∈ P, |Ou| > 0, i.e. there are no dangling pages,
that is, no pages without outgoing links (in practice,
if such a page is found it is treated as having links
towards all other pages as in [28]).

A random surfer model is used, which is based on
the assumption that a user can either reach a page from
a link in another page with probability d ∈]0; 1[, re-
ferred to as damping factor, or land on a page directly
with probability 1−d. Unless otherwise specified, we
assume the value suggested in [1] of d = 0.85 and a
uniform probability of directly landing on a page (i.e.
we focus on non-personalized PR). In Section 7 we
discuss how in future works these assumptions could
be changed.

Definition 1. [1] The PageRank (PR) of a set of pages
is an assignment R : P →]0, 1] to the pages which
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satisfies:

R(u) = (1− d) · 1

N
+ d ·

∑
v∈Iu

R(v)

|Ov|
∀u ∈ P.

Note that R is the solution of a system of linear
equations derived from Definition 1 (we refer to R as
both the assignment and the vector resulting from it).
Notice also that, as described in [28], R is unique and
||R||1 =1, i.e. the L1 norm of R is 1.

The aim of PR is to assign to every page a score that
describes how relevant it is: the higher the score, the
more important the page, since the score is intended to
approximate the amount of users visiting the page. The
latter is calculated through a mathematical model aim-
ing at probabilistically estimating the number of user
visits. The assumption here is therefore that the higher
the number of links to (from) a page, the more it (the
less each page linked by it, respectively) will be visited
and hence the higher (lower, respectively) its PR score
should be.

3. PageRank as a Gradual Semantics

In this section we show how PR may be interpreted
directly as a gradual argumentation semantics and ex-
amine its ability to satisfy some desirable properties.
First, we recall in Definition 2 some necessary formal
notions from [10,29].

Definition 2. A Quantitative Bipolar Argumentation
Framework (QBAF) is a 4-tuple 〈X ,R−,R+, τ〉,
comprising:

– a finite set of arguments X ,
– a binary attack relation between argumentsR− ⊆
X × X ,

– a binary support relation between arguments
R+ ⊆ X × X ,

– a total function τ : X → I, with τ(α) the base
score of α, where I is a set equipped with a pre-
order ≤ where, as usual, a<b denotes a≤b and
b�a.

Given a QBAF, a total function σ : X → I, called a
gradual semantics, may be used to assign a strength to
each argument.

We define an sQBAF as a QBAF such that R− =
∅. Finally, we let R−(α) = {β ∈ X : (β, α) ∈ R−}
and R+(α) = {β ∈ X : (β, α) ∈ R+}, and similarly
R−(α) = {β ∈ X : (α, β)∈R−} and R+(α) = {β ∈
X : (α, β)∈R+}.

A web graph 〈P,L〉 can be interpreted as an sQBAF
where the pages (nodes) are arguments and the links
between them (edges) are supports, as follows.

Definition 3. Given a set of pages P and a set of links
L, a PageRank Argumentation Framework (PRAF) is
an sQBAF defined as PR = 〈X , ∅,R+, τ〉, where:

– X = P is the set of arguments corresponding to
the set of pages,

– R+ = L is the set of supports corresponding to
the set of links between pages,

– τ : X 7→ I = [ 1−d|X | , 1] is the base score, defined
as a constant function:

τ(α) =
1− d
|X |

∀α ∈ X .

Given Definition 1 and the notes on loops and dan-
gling nodes in Section 2, Remark 1 can be trivially de-
rived.

Remark 1. Given a PRAF it always holds that:

– each argument has at least one outgoing link:
| R+(α)|>0, ∀α∈X ;

– there are no self-supports: @(α, α) ∈ R+, ∀α ∈
X .

We then interpret PR as a gradual semantics for
sQBAFs.

Definition 4. The PageRank semantics is a gradual
semantics σ : X 7→ I such that:

σ(α) = τ(α) + d ·
∑

β∈R+(α)

σ(β)

| R+(β)|
∀α ∈ X .

The following remark is directly derived from Defi-
nition 4.

Remark 2. The codomain of σ is I = [ 1−d|X | , 1]

In order to formally assess PR as an argumenta-
tion semantics, we now review some desirable prop-
erties for argument strength, called group properties
(GPs) in [10,29], as they imply groups of other proper-
ties. Some preliminary definitions need to be recalled
first. Given a QBAF 〈X ,R−,R+, τ〉 and a gradual se-
mantics σ, for any A ⊆ X , we refer to the multiset
{σ(β):β ∈A} as Aσ . Given A,B ⊆ X , A is strength
equivalent to B, denoted A σ

= B, iff Aσ = Bσ; A is at
least as strong as B, denoted A

σ
≥B, iff there exists an

injective mapping f from B to A such that ∀α ∈ B,
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σ(f(α)) ≥ σ(α); and A is stronger than B, denoted
A
σ
>B, iff A

σ
≥B and B

σ
�A.

GPs are then defined as follows (some being refor-
mulated in more general or more specific ways wrt
[10,29], where useful for our present purposes):

GP1. IfR−(α)=∅ andR+(α)=∅ then σ(α) = τ(α).
GP2. IfR−(α) 6=∅ andR+(α)=∅ then σ(α) < τ(α).
GP3. IfR−(α)=∅ andR+(α) 6=∅ then σ(α) > τ(α).
GP4. If σ(α) < τ(α) thenR−(α) 6= ∅.
GP5. If σ(α) > τ(α) thenR+(α) 6= ∅.
GP6. If R−(α)

σ
= R−(β), R+(α)

σ
= R+(β) and

τ(α) = τ(β) then σ(α) = σ(β).
GP7. If R−σ (α) ( R−σ (β), R+(α)

σ
= R+(β) and

τ(α) = τ(β) then σ(β) < σ(α).
GP8. If R−(α)

σ
= R−(β), R+

σ (α) ( R+
σ (β) and

τ(α) = τ(β) then σ(α) < σ(β).
GP9. IfR−(α)

σ
= R−(β),R+(α)

σ
= R+(β) and τ(α) <

τ(β) then σ(α) < σ(β).
GP10. If R−(α)

σ
< R−(β), R+(α)

σ
= R+(β) and

τ(α) = τ(β) then σ(β) < σ(α).
GP11. If R−(α)

σ
= R−(β), R+(α)

σ
> R+(β) and

τ(α) = τ(β) then σ(β) < σ(α).

In [10,29], two general principles (and their strict
counterparts) were also identified as a more synthetic
way of describing the desirable (group) properties of a
gradual semantics.

The intuition for the first principle is that a differ-
ence in an argument’s strength and base score must
correspond to an imbalance in its attackers’ and sup-
porters’ strengths.

Principle 1. [10,29] A gradual semantics σ is bal-
anced iff for any α ∈ X :

1. ifR−(α)
σ
= R+(α) then σ(α) = τ(α);

2. ifR−(α)
σ
> R+(α) then σ(α) < τ(α);

3. ifR−(α)
σ
< R+(α) then σ(α) > τ(α).

A gradual semantics σ is strictly balanced iff σ is bal-
anced and for any α ∈ X :

4. if σ(α) < τ(α) thenR−(α)
σ
> R+(α);

5. if σ(α) > τ(α) thenR−(α)
σ
< R+(α).

In [10,29] it is shown that if σ is balanced then it
satisfies GP1 to GP3 and if it is strictly balanced then
it satisfies GP1 to GP5.

The second principle requires that the strength of
an argument depends monotonically on its base score
and on the strengths of its attackers and supporters.
To introduce this principle formally, we first recall

the notion of shaping triple of an argument [10,29],
where for any α ∈ X , the shaping triple of α
is (τ(α),R+(α),R−(α)), denoted ST (α). Given
α, β ∈ X , ST (β) is said to be: as boosting as
ST (α), denoted as ST (α)'ST (β), iff τ(α) = τ(β),
R+(α)

σ
= R+(β), and R−(β)

σ
= R−(α); at least

as boosting as ST (α), denoted as ST (α)�ST (β),
iff τ(α) ≤ τ(β), R+(α)

σ
≤ R+(β), and R−(β)

σ
≤

R−(α); or strictly more boosting than ST (α), de-
noted as ST (α)≺ST (β), iff ST (α)�ST (β) and
ST (β)�ST (α). (See [10,29] for intuitions and illus-
trations.)

Principle 2. [10,29] A gradual semantics σ is mono-
tonic iff:

1. for any α, β ∈ X , if ST (α) ' ST (β) then
σ(α) = σ(β);

2. if ST (α)�ST (β) then σ(α) ≤ σ(β).

A gradual semantics σ is strictly monotonic iff σ is
monotonic and:

3. for any α, β ∈ X , if ST (α)≺ST (β) then
σ(α) < σ(β).

In [10,29] it is shown that if σ is (strictly) monotonic
then it satisfies GP6 to GP11.

We will now show that the PR semantics σ satis-
fies some, but not all, of these desirable properties for
gradual semantics. We will consider whether or not
the properties are satisfied by the semantics σ when
applied to a generic QBAF, in Propositions 1 and 2,
or when applied to a PRAF (denoted as 〈PR, σ〉), in
Propositions 3 and 4 (see Table 1 for a compact sum-
mary). Note that in the first case, if attacks are present
in the QBAF, they are simply ignored by the definition
of the semantics, and some of the properties may not
hold for this mere reason.

Proposition 1. σ satisfies GP1, GP3, GP4, GP5 but
not GP2, and thus is not balanced.

Proof. GP1 holds as when R+(α) = ∅, σ(α) =
τ(α). GP3 and GP5 hold as σ(α) > τ(α) is true
iff
∑
β∈R+(α)

σ(β)
| R+(β)| > 0 that in turn is true iff

R+(α) 6= ∅ because if ∃β ∈ R+(α) then, by Re-
mark 1, | R+(β)| > 0 and, by Remark 2, σ(β) > 0.
GP4 holds because its preconditions cannot be veri-
fied: by Remark 2, ∀α ∈ X , σ(α) ≥ τ(α). GP2 does
not hold as when R+(α) = ∅, σ(α) = τ(α) indepen-
dently of R−(α), which is ignored in the definition of
σ.
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Proposition 2. σ satisfies GP8 and GP9 but not GP6,
GP7, GP10 and GP11, and thus is not monotonic.

Proof. GP8 holds as if τ(α) = τ(β) and R+
σ (α) ⊂

R+
σ (β) and we assume by contradiction that σ(α) ≥

σ(β), then
∑
γ∈R+(α)

σ(γ)
| R+(γ)| ≥

∑
γ∈R+(β)

σ(γ)
| R+(γ)| ,

but this is not possible, by Remark 2 because @γ such
that σ(γ) ≤ 0. GP9 holds because its preconditions
cannot be verified: by Definition 3 τ is a constant, thus
@α, β ∈ X : τ(α) 6= τ(β). GP6: in the framework
in Figure 1, we have R+(β)

σ
= R+(δ) but σ(β) 6=

σ(δ). GP7 and GP10 cannot hold as attackers do not
affect σ. GP11: in the framework in Figure 1, we have
R+(ζ)

σ
> R+(η) but σ(ζ) < σ(η).

Fig. 1. Counter-example to GP6 and GP11 for the PR semantics σ
in Proposition 2.

Proposition 3. 〈PR, σ〉 is strictly balanced and thus
satisfies GP1 to GP5.

Proof. For balance, Point 1 holds as, by Definition 4,
if R+(α) = ∅ then σ(α) = τ(α). Point 2 holds triv-
ially because its preconditions cannot be satisfied by
an sQBAF since @α such that R+(α)

σ
< ∅. Points 3

and 5 hold as if R+(α)
σ
> ∅ then R+(α) 6= ∅ and

we already proved in Proposition 1 for GP3 and GP5
that σ(α) > τ(α) iff R+(α) 6= ∅. For strict bal-
ance, Point 4 holds because, by Remark 2, @α such that
σ(α) < τ(α).

Proposition 4. 〈PR, σ〉 satisfies GP7 to GP10 but not
GP6 or GP11 and thus is not monotonic.

Proof. GP6 and GP11 can be shown not to hold with
the same counterexamples given in Proposition 2. GP8
and GP9 hold as, by Proposition 2, they hold for σ in
general. GP7 and GP10 hold because their precondi-
tions cannot be verified: ∀α ∈ X , R−(α) = ∅, thus
triviallyR−(α)

σ
= ∅.

We have thus shown that directly interpreting PR as
a gradual semantics for an sQBAF does not give rise
to a satisfactory outcome in terms of formal proper-
ties. Indeed, while using PR as a semantics is some-
how straightforward, it does not appear fully appropri-
ate from a modeling perspective, as it does not provide
a suitable argumentative counterpart to some key as-
pects of PR. In particular, note that, as a consequence
of the PR definition, the strength of each node de-
pends not only on the strengths of its supporters but
also on the cardinality of their outgoing supports. This
has quite counter-intuitive effects from an argumenta-
tion perspective which could also affect explanations
generated from this sQBAF. For example, consider
the situation where two nodes have the same strength
σ(α) = σ(β), but α has one outgoing support, while β
has ten: the latter’s support to each of its children is ac-
tually ten times ‘less powerful’ (i.e. it transfers 1/10 of
the strength) than the former’s. It follows that a node γ
supported by α only and a node δ supported by β only
would have different strengths even if their supporters
appear to be equivalent (formally the shaping triples
of γ and δ are the same). This is the main reason for
the lack of several desirable properties and calls for an
alternative approach, which we introduce next.

4. PageRank as a Gradual Semantics in a
Meta-Argumentation Framework

In this section, we introduce an alternative approach
to capture PageRank as an argumentation semantics.
To this purpose we transform the sQBAF correspond-
ing to a set of linked pages into a QBAF including
additional meta-arguments and attacks between them.
The underlying intuition is that each additional meta-
argument can be understood as a vehicle of support
from one page to another and that supports from the
same page are in mutual conflict as they ‘compete’ in
drawing strength from the same source.

In particular, as shown in Figure 2, we add a meta-
argument on every support relationship in the origi-
nal PRAF, and all the meta-arguments supported by
the same page attack each other. While the ‘regular’
arguments still represent the pages, these new meta-
arguments correspond to the links between them. This
increases the expressivity of the representation, as it
includes attacks between the meta-arguments corre-
sponding to links from the same page in order to
describe the fact that they ‘compete’ for conveying
strength, as mentioned above. As a consequence, the
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more links originating from the same page, the lower
the strength transferred through each of them.

Definition 5. Given a PRAF PR = 〈X , ∅,R+, τ〉, the
PageRank Meta-Argumentation Framework (MPRAF)
derived from PR is a QBAF 〈X ∪ M, R̂−, R̂+, τ̂〉,
where:

– M = {mα,β :(α, β) ∈ R+} is the set of meta-
arguments,

– R̂+ = {(α,mα,β), (mα,β , β):α, β ∈ X ,mα,β ∈
M} is the set of supports,

– R̂− = {(mα,β ,mα,γ) ∈M×M:(α, β), (α, γ) ∈
R+} is the set of attacks,

– τ̂ : X ∪M 7→ Î = [0, 1[ is the base score defined
as the function:

τ̂(α) =

{
0 if α ∈M
1−d
|X | if α ∈ X .

Figure 2 illustrates the transformation of a PRAF
into an MPRAF: the supports go from a ‘regular’
argument to another through an intermediate meta-
argument. The following remarks illustrate some of the
properties of MPRAFs 〈X ∪M, R̂−, R̂+, τ̂〉.

Remark 3. For any α ∈ X , R̂−(α) = ∅.

Remark 4. For any mα,β ∈ M, ∃!α ∈ R̂+(mα,β),

∃!β∈ ̂R+(mα,β) , α∈X and β∈X .

Remark 5. For any mα,β ∈ M, |R̂−(mα,β)|+1 =

| R+(α)|= |̂R+(α)|.

Remark 6. For any α ∈ X such that ∃! mα,β :

(α,mα,β) ∈ R̂+, R̂−(mα,β) = ∅.

With reference to MPRAFs, we now define a grad-
ual semantics σ̂, whose outcomes on ‘regular’ argu-
ments coincide with the score produced by PR, as
proved in Theorem 1.

Definition 6. The Meta-PageRank semantics (M-PR)
is a gradual semantics σ̂ : X ∪M 7→ Î such that:

σ̂(α) = τ̂(α)+
√
d·
∑
β∈R̂+(α) σ̂(β)

|R̂−(α)|+ 1
∀α ∈ X∪M.

We now prove that, given a PRAF and correspond-
ing MPRAF, for any α ∈ X , the strength σ̂(α) accord-
ing to Definition 6 is the same as the strength σ(α)
according to Definition 4, i.e. to the PR score.

(a) PRAF

(b) MPRAF

Fig. 2. Example of a transformation from a PRAF to an MPRAF.

Theorem 1 (Equivalence of σ-σ̂). Given a PRAF
〈X , ∅,R+, τ〉, denoted as PR, and the corresponding
MPRAF 〈X ∪ M, R̂−, R̂+, τ̂〉, denoted as P̂R, with
the semantics σ for PR and σ̂ for P̂R, for any argu-
ment α ∈ X it holds that σ(α) = σ̂(α).

Proof. σ̂(α) = 1−d
|X | +

√
d ·

∑
γ∈R̂+(α)

σ̂(γ)

|R̂−(α)|+1
by Defi-

nition 6. By hypothesis α ∈ X , thus if γ ∈ R̂+(α)
then γ ∈ M, so we can rewrite γ as mβ,α where
β ∈ R+(α). By the same hypothesis, we can derive,
by Remark 3, that |R̂−(α)| = 0. This means that σ̂(α)
can be rewritten as 1−d

|X | +
√
d·
∑
mβ,α∈R̂+(α) σ̂(mβ,α).

Expliciting σ̂(mβ,α) by Definition 6 and recalling that,
by Definition 5, τ(mβ,α) = 0 because mβ,α is a meta-
argument, σ̂(α) =

= 1−d
|X | +

√
d·
∑
mβ,α∈R̂+(α)

(√
d ·

∑
β∈R̂+(mβ,α)

σ̂(β)

|R̂−(mβ,α)|+1

)
.

We recall that, by Remark 4, ∃!β : β ∈ R̂+(mβ,α) be-
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cause mβ,α ∈ M. Furthermore, we know by Remark
5 that |R̂−(mβ,α)| + 1 = | R+(β)|. Thus, σ̂(α) =
1−d
|X | + d ·

∑
mβ,α∈R̂+(α)

σ̂(β)
| R+(β)| . This is equivalent to

σ̂(α) = 1−d
|X | + d ·

∑
β∈R+(α)

σ̂(β)
| R+(β)|= σ(α).

Proposition 5 proves that the codomain of σ̂ is Î.
Proposition 5. The codomain of σ̂ on an MPRAF 〈X∪
M, R̂−, R̂+, τ̂〉 is Î = ]0, 1]. Moreover, for any α ∈
X ∪M, if α ∈ X then σ̂(α) ≥ 1−d

|X | , otherwise σ̂(α) >
0.

Proof. By Definition 6, σ̂(α) is the sum of τ̂(α) and
positive values. Hence if α ∈ X then σ̂(α) ≥ 1−d

|X | >

0. Otherwise, if α ∈ M then, by Definitions 5 and 6,

σ̂(α) =
√
d ·

∑
β∈R̂+(α)

σ̂(β)

|R̂−(α)|+1
≥
√
d ·
∑
β∈R̂+(α) σ̂(β),

and since β ∈ X then σ̂(β) > 0 ∀β, hence σ̂(α) >
0. By Theorem 1 and by Remark 2, we have that if
α ∈ X then σ̂(α) ≤ 1. Otherwise, if α ∈ M then,
by Remark 4, R̂+(α) = {β} and β ∈ X , hence by
Definition 6, σ̂(α) =

√
d · σ̂(β)

|R̂−(α)|+1
≤ 1.

The next proposition sheds light on the intuition be-
hind our MPRAFs, in that the support from non-meta-
arguments is partitioned among the meta-arguments.
Meta-arguments supported by the same ‘regular’ ar-
gument all have the same strength since according to
the random surfer model the probability of clicking on
links is uniform.

Proposition 6. In an MPRAF 〈X ∪M, R̂−, R̂+, τ̂〉,
if a meta-argument α ∈M has attackers then σ̂(α) =

σ̂(γ), ∀γ ∈ R̂−(α).

Proof. By Definition 5, ∀γ ∈ R̂−(α) γ ∈M and by
Definition 5 and Remark 4 ∀γ ∈ R̂−(α) R̂+(α) =

R̂+(γ) = {β} where β ∈ X is the single sup-
porter of α. By Definition 6, σ̂(α) = τ̂(α) +

√
d ·∑

β∈R̂+(α)
σ̂(β)

|R̂−(α)|+1
, and by Definition 5 and Remark 4,

σ̂(α) =
√
d · σ̂(β)

|R̂−(α)|+1
, and the same is true for any

γ ∈ R̂−(α): σ̂(γ) =
√
d · σ̂(β)

|R̂−(γ)|+1
. By construc-

tion α and the elements of R̂−(α) all attack each other,
thus |R̂−(α)| = |R̂−(γ)| ∀γ ∈ R̂−(α), and the result
follows.

We now assess this framework and semantics with
respect to the desirable properties.

Proposition 7. σ̂ satisfies GP1, GP4, GP5, GP6, GP8,
GP9 and GP11.

Proof. GP1: by Definition 6, if R̂+(α) = ∅ and
R̂−(α) = ∅ then the second term of the sum is
always 0, therefore σ(α) = τ(α). GP4 holds be-
cause the GP’s preconditions cannot be verified: by
Proposition 5, ∀α ∈ X σ̂(α) ≥ τ̂(α). GP5: by
Definition 6, σ̂(α) > τ̂(α) iff

∑
β∈R̂+(α) σ̂(β) >

0. Thus, it must be the case that ∃β ∈ R̂+(α) :

σ̂(β) > 0, therefore R̂+(α) 6= ∅ GP6: follows di-
rectly from Definition 6. GP8: if R̂−(α)

σ
= R̂−(β)

then |R̂−σ (α)| = |R̂−σ (β)| and if R̂+
σ (α) ( R̂+

σ (β)
then

∑
γ∈R̂+(α) σ̂(γ) <

∑
γ∈R̂+(β) σ̂(γ). The result

follows from Definition 6. GP9: if R̂−(α)
σ
= R̂−(β)

then |R̂−σ (α)| = |R̂−σ (β)| and if R̂+(α)
σ
= R̂+(β)

then
∑
γ∈R̂+(α) σ̂(γ) =

∑
γ∈R̂+(β) σ̂(γ). The result

follows from Definition 6. GP11: if R̂−(α)
σ
= R̂−(β)

then |R̂−σ (α)| = |R̂−σ (β)| and if R̂+(α)
σ
> R̂+(β)

then
∑
γ∈R̂+(α) σ̂(γ) >

∑
γ∈R̂+(β) σ̂(γ). The result

follows from Definition 6.

Proposition 8. 〈P̂R, σ̂〉 is balanced and thus satis-
fies GP1 to GP3. However, 〈P̂R, σ̂〉 is not strictly bal-
anced.

Proof. For balance, Point 1: (A) If R̂−(α)
σ
= R̂+(α) =

∅ then the result follows by Definition 6. (B) Other-
wise, if R̂−(α) 6= ∅ then α ∈ M and thus it has a
single supporter β. There are two possible scenarios,
which turn out to be impossible, as they contradict the
hypothesis. (B.i) ∃!γ ∈ M : (β, α), (β, γ) ∈ R̂+,
then we get {β} = R̂+(α)

σ
> R̂−(α) = {γ} (which

contradicts the hypothesis) because by Definition 6
σ̂(α) = σ̂(γ) < σ̂(β) (B.ii) ∃>1γ1, ..., γn ∈ M :

(β, α), (β, γ1), ..., (β, γn) ∈ R̂+, hence |R̂−(α)| > 1,
therefore it cannot hold that {γ1, ..., γn} = R̂−(α)

σ
=

R̂+(α) = {β}, since by Definition 6 it holds again
σ̂(α) = σ̂(γ1) = ... = σ̂(γn) < σ̂(β), hence
there cannot be any injective mapping f : R̂−(α) →
R̂+(α) : ∀α ∈ R̂−(α), σ(f(α)) ≥ σ(α), and
thus there is no strength-equivalence relationship be-
tween R̂−(α) and R̂+(α), contradicting the hypothe-
sis. Point 2. For R̂−(α)

σ
> R̂+(α) to hold R̂−(α) 6=

∅, thus α ∈ M. Hence, we are in the same sit-
uation of (B) in the proof of Point 1, and there-
fore the precondition cannot hold and the result fol-
lows. Point 3. By Proposition 5, σ̂(α) > 0 and if
R̂−(α)

σ
< R̂+(α) then R̂+(α) 6= ∅. Hence by Defi-

nition 6, σ̂(α) > τ̂(α), thus 〈P̂R, σ̂〉 is balanced. For
strict balance, Point 4 holds because @α : σ̂(α) <
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τ̂(α). But, Point 5 does not hold. For example, con-
sider the framework in Figure 2.b and in particular
mα,γ ∈ M that it is supported by α ∈ X and at-
tacked by mα,β ,mα,δ ∈ M. By Definition 5 and
Proposition 5, we have that σ̂(mα,γ) ≤ σ̂(α) and
σ̂(mα,γ) = σ̂(mα,β) = σ̂(mα,δ) > 0. Hence,
σ̂(mα,γ) > τ̂(mα,γ), but R̂+(mα,γ)

σ
� R̂−(mα,γ)

because no injective mapping exists from R̂−(mα,γ)

to R̂+(mα,γ). Thus R̂+(mα,γ)
σ
≯ R̂−(mα,γ) and

therefore 〈P̂R, σ̂〉 is not strictly balanced.

Proposition 9. 〈P̂R, σ̂〉 is strictly monotonic and thus
satisfies GP6 to GP11.

Proof. Point 1: if R̂−(α)
σ
= R̂−(β) then |R̂−(α)| =

|R̂−(β)| and if R̂+(α)
σ
= R̂+(β) then

∑
γ∈R̂+(α) σ̂(γ) =∑

γ∈R̂+(β) σ̂(γ). The result follows from Definition 6.

Point 3: if α, β ∈ X then τ̂(α) = τ̂(β) and R̂−(β)
σ
=

R̂−(α) = ∅, hence |R̂−(α)| = |R̂−(β)|. If R̂+(α)
σ
<

R̂+(β) then
∑
γ∈R̂+(α) σ̂(γ) <

∑
γ∈R̂+(β) σ̂(γ).

Thus, by Definition 6, σ̂(α) < σ̂(β). If α ∈ M
and β ∈ X then τ̂(α) < τ̂(β) and R̂−(β) =

∅. If R̂−(α)
σ
≥ ∅ then |R̂−(α)| ≥ |R̂−(β)| =

0. If R̂+(α)
σ
≤ R̂+(β) then

∑
γ∈R̂+(α) σ̂(γ) ≤∑

γ∈R̂+(β) σ̂(γ). Thus, by Definition 6, σ̂(α) < σ̂(β).

If α, β ∈ M then τ̂(α) = τ̂(β). If R̂−(β)
σ
≤ R̂−(α)

then |R̂−(α)| ≥ |R̂−(β)|. If R̂+(α)
σ
≤ R̂+(β) then∑

γ∈R̂+(α) σ̂(γ) ≤
∑
γ∈R̂+(β) σ̂(γ). Hence, by Def-

inition 6, σ̂(α) ≤ σ̂(β). For ST (β)�ST (α) to hold,
either:

– R̂−(β)
σ
< R̂−(α) and R̂+(α)

σ
= R̂+(β), or

– R̂−(β)
σ
= R̂−(α) and R̂+(α)

σ
< R̂+(β), or

– R̂−(β)
σ
< R̂−(α) and R̂+(α)

σ
< R̂+(β).

In the first case, by construction of the framework PR,
|R̂−(α)| < |R̂−(β)|, thus σ̂(α) < σ̂(β). In the sec-
ond case,

∑
γ∈R̂+(α) σ̂(γ) <

∑
γ∈R̂+(β) σ̂(γ), thus

σ̂(α) < σ̂(β). In the third case,
∑
γ∈R̂+(α) σ̂(γ) <∑

γ∈R̂+(β) σ̂(γ) and |R̂−(α)| ≤ |R̂−(β)|, thus σ̂(α) <

σ̂(β). Point 3 implies Point 2, thus the result fol-
lows.

We have thus proven that, through MPRAF, in ex-
change for a little structural addition, it is possible to
ensure equivalence with PR while at the same time sat-
isfying more desirable properties from an argumenta-
tion semantics perspective.

Table 1 shows a summary of the properties that the
M-PR semantics applied on MPRAFs satisfies, includ-
ing in particular monotonicity. This means that, from
a dialectical viewpoint, the strength of an argument
depends exclusively on its intrinsic strength, the rea-
sons supporting it and the reasons against it, and any
strengthening/weakening of these will affect the argu-
ment’s strength in an intuitive way.

The satisfaction of monotonicity is achieved through
the role ascribed to meta-arguments and is a key fac-
tor for exploiting MPRAFs for practical applications,
such as the generation of intuitive explanations of the
PR score of a page. In this scenario, monotonicity is
clearly a crucial factor because it allows a user to iden-
tify direct dependencies between the strengths of ar-
guments according to the attacks and supports linking
them in the graph structure of the MPRAF.

5. Argumentation-based Explanations for
PageRank

In this section we first evidence the limits of argu-
mentative explanations for PR based on PRAFs and
propose several novel explanations utilising the QBAF
with meta-arguments introduced in Section 4. In par-
ticular we will consider explanations allowing the user
to understand the reasons for a given PR score, pro-
viding hints on changes that can improve the score, or
giving warnings on strong dependencies of the score
on other pages. Throughout this section we assume as
given a PRAF 〈X , ∅,R+, τ〉 and its MPRAF counter-
part 〈X ∪ M, R̂−, R̂+, τ̂〉. For ease of comprehen-
sion, we will also propose some examples generated
from the Wikipedia web graph that we will introduce
in more detail in Section 6.

5.1. Types of explanations: singular explanations and
plural explanations

Explanations may have different scopes and levels
of abstraction. In this paper, we focus on local expla-
nations concerning the score of a page or a group of
pages, rather than global explanations concerning the
overall PR score assignment. In particular, we consider
two families of explanations:

– singular explanations concerning the score of a
single page, and

– plural explanations concerning the scores of a set
of pages.
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Table 1

Satisfaction ( ) or not (×) of GPs and principles (Balance, Strict
Balance, Monotonicity, Strict Monotonicity) by σ, 〈PR, σ〉, σ̂ and
〈P̂R, σ̂〉

GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 GP10 GP11 B SB M SM
σ × × × × × × × × ×

〈PR, σ〉 × × × ×
σ̂ × × × × × × × ×

〈P̂R, σ̂〉 ×

We understand a singular explanation as a set of
(meta-)arguments in the PRAF or in the MPRAF, ac-
companied by a function describing their importance
w.r.t. the page whose score is explained.

Definition 7. A singular explanation for a page α ∈ X
is a pair E(α) = (E , i) where:

– E ⊆ X ∪M is the set of explaining arguments,
and

– i : E 7→ R is the importance function.

In the case of plural explanations, the explanation
concerns the scores of a set of pages: for each of these
pages a set of explaining arguments is given and a
function describes the importance of all explaining ar-
guments.

Definition 8. A plural explanation for a set of pages
A ⊆ X is a pair E(A) = ({Eα : α ∈ A}, i) where:

– Eα ⊆ X ∪M is the set of explaining arguments
for any page α ∈ A, and

– i :
⋃
α∈A Eα 7→ R is the importance function.

We will consider several instances of singular expla-
nations and plural explanations, obtained by specific
choices of explaining arguments and importance func-
tions, drawn from the underlying PRAF or MPRAF.

5.2. PRAF-based explanations

Consider the problem of identifying which pages
have a major role in determining the score of a given
page one is interested in. If we were to answer this
query using only PRAFs we could return the set of sup-
porters of the page of interest: we call this form of ex-
planation a basic explanation, in that it is solely based
on the PRAF.

Definition 9. A basic explanation for page α ∈ X is a
singular explanation E←(α) = (R+(α), σ).

Basic explanations essentially provide a magnifica-
tion of the original PRAF focused on an argument
(page) and its supporters (pages linking to it, whose
importance coincides with their score). The result is an
explanation like the one presented in Fig. 3.i. Here, the
score of the page Nguyen Dynasty is explained show-
ing its supporters, with each page score being repre-
sented by the size of the relevant bubble. Notice how,
looking at this basic explanation, a user might (erro-
neously) deduce that the score of Nguyen Dinasty is
mostly determined by Official Residence, which is ac-
tually not the case (due to the high number of out-
going links from Official Residence). Thus, basic ex-
planations have clear limitations. The extent to which
basic explanations could be misleading can be quite
large, as shown by the excerpt of the MPRAF in Fig-
ure 3.ii, where we can see how the actual contributions
of the supporters of Nguyen Dinasty (the opaque bub-
bles) compare with their strengths (transparent bub-
bles).

In fact, basic explanations of this kind answer the
question ‘Which are the pages with the highest score
with a link to a page p?’ but this is different from an-
swering the question ‘Which are the pages with the
highest contribution to the score of a page p?’ or, more
concisely, ‘Why does page p have this score?’. To an-
swer this question using the PRAF representation a
user should both have a deeper understanding of how
PR works and be shown a larger part of the PRAF, in-
cluding all the pages linked by the supporters of the
considered page. Only then might the user realise that
Hue, instead of Official Residence, is the Wikipedia ar-
ticle providing most support to Nguyen Dynasty.

5.3. MPRAF-based explanations

Attribution explanation. The unsuitability of PRAFs
as explanatory tools can be overcome by attribution
explanations based on MPRAFs that focus the atten-
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Fig. 3. Transition, for the Wikipedia article Nguyen Dynasty, from its basic explanation (i), to the excerpt of the QBAF including it and its
supporters, to eventually its attribution explanation (iii). Each bubble represents an argument and its size is proportional to the strength of the
argument. In (ii) the opaque bubbles highlight the actual contribution of an argument to the Nguyen Dynasty page. Labels − and + indicate,
respectively, attacks and supports.

tion of the user only on the meta-arguments supporting
the page of interest, thus truly answering the question
‘Why does page p have this score?’.

Definition 10. An attribution explanation for page α ∈
X is a singular explanation E←(α) = (R+(α), σ̂).

Fig. 3.iii, shows an example of an attribution ex-
planation for the Wikipedia article Nguyen Dynasty
as an excerpt of the QBAF comprising the argu-
ment of Nguyen Dynasty and its supporting meta-
arguments. Intuitively, the strength assigned to each
meta-argument by our novel semantics corresponds to
the support actually flowing from one page to another.
In this representation it is clear that the contribution of
Hue to the score of Nguyen Dynasty is bigger than that
of Official Residence, despite the former’s lower PR
score.

Besides better supporting explanations of the rea-
sons behind the PR of a page, attribution explanations
appear to enable answering other kinds of user queries,
like counterfactual questions of the kind: ‘What would
happen if a given link is suppressed?’. In this context,
meta-arguments’ strengths directly show an approxi-
mation1 of the portion of the score that a page would
lose if a link were removed. For example, in the attri-
bution explanation in Figure 3.iii, if we remove from
the supporters of Nguyen Dynasty the page Hue then

1If there are cycles in the MPRAF, the removal of a link could in-
directly strengthen or weaken the other incoming links, e.g., because
the page of interest is cyclically supporting one of its supporting
pages. However, in most cases this gives rise to negligible changes
due to PageRank’s design.

its PR will reduce considerably since Hue is the sup-
porter contributing the most to the strength of Nguyen
Dynasty. Although the full set of meta-arguments po-
tentially included in attribution explanations of a page
may be very large (in the order of hundreds) we will
show in Section 6 that considering only a limited sub-
set is enough to produce a satisfactory explanation.
This means that our explanations fulfil the desideratum
of simplicity, avoiding overwhelming the user with too
much information when the number of supporters is
large.

Contrastive attribution explanation. When two
(or more) pages have many shared supporters, under-
standing why the pages have different scores through
attribution explanations is not trivial. Contrastive at-
tribution explanations tackle this issue: given a set of
pages of interest they show for each of them the nodes
contributing exclusively to its score, ignoring the ones
they share. Thus, these explanations answer questions
of the kind: ‘Which are the links that make pages p and
q have different scores?’. explanations of this kind find
their typical usage scenario in the assessment of the
reasons behind a page having a higher (or lower) score
than other pages, comparing their non-shared support-
ers sorted by their strengths.

Definition 11. A contrastive attribution explanation
for a set of pages A ⊆ X is a plural explanation
E↔(A) = ({R̂+

\A(α) : α ∈ A}, σ̂) where R̂+
\A(α) is

the set of exclusive supporters of α in A i.e., R̂+
\A(α) =

R̂+(α) \ {mβ,α ∈ R̂+(α) : β ∈
⋃
γ∈A\{α}R+(γ)}.

Fig. 4 shows an example of a contrastive attribution
explanation for the Wikipedia articles Calorimeter and
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Fig. 4. Contrastive attribution explanation for the Wikipedia articles Calorimeter and Spectrophotometer from the Wikipedia dataset. The size
of the bubbles is proportional to the arguments’ strengths. The bubble labeled SHARED encompasses the contributions from the 40 shared
supporters.

Spectrophotometer. Using this explanation, users can
focus on the differences in the supporters of two pages
rather than on their common supporters, which in this
example amount to 40 nodes. As we will show in Sec-
tion 6, the number of shared supporters typically in-
creases if one of the two pages supports the other, and
even more so if they mutually support each other.

Additive counterfactual explanations. This form
of explanation extends our effort in answering counter-
factual questions in that additive counter-factual ex-
planations provide the user with information on links,
not currently present, that if added would increase the
score of a page of interest. These explanations answer
the question ‘To which pages could a link to p be added
to maximize the increment of its score?’. A typical us-
age scenario of this explanation is searching for pages
that could be modified to increase the score of a spe-
cific page.

In order to formally define additive counter-factual
explanation we will now introduce the definition of the
MPRAF with a link addition or removal.

Definition 12. Given two arguments α, β ∈ X , then:
if (α, β) /∈ R+, we define the PRAF with the addi-
tion of the support (α, β), denoted by PR+(α,β), as
〈X , ∅,R+

+(α,β), τ〉 whereR+
+(α,β) = R+ ∪ {(α, β)}.

We denote with P̂R+(α,β), σ̂+(α,β) the MPRAF cor-
responding to PR+(α,β) and the semantics σ̂ on
P̂R+(α,β), respectively.

We now formally define additive counter-factual ex-
planations.

Definition 13. An additive counter-factual explana-
tion for page β is a singular explanation E↔(β) =

(R̂+
2 (β), σ̂+(α,β)) where R̂+

2 (α) is the set of meta-
arguments that are not supporters of α or supported
by α with backward hop-distance of 2 from α, i.e.,
R̂+

2 (α) = {mx,α : x /∈ R+(α) ∧ x /∈ R+(α) ∧ x ∈⋃
β∈R+(α)R+(β)}.

Note that, in principle, the set of pages from which
one could draw an additional link is potentially very
large, thus some restriction is needed, also to ensure
that the considered additions are somehow meaning-
ful. For this reason, for this form of explanation to
be useful in practice, we opted to include only meta-
arguments (links) from pages with backward hop-
distance of 2 to the page of interest in the web graph.
As we will show in Section 6 this allowed us to se-
lect a smaller but “more relevant” portion of meta-
arguments.

Fig. 5.i shows an example of this type of explanation
for the Wikipedia article Aztec Empire, visualizing the
10 most (potentially) influential meta-arguments (se-
lected from 515).

Edit-sensibility counterfactual explanation. While
an additional incoming link positively affects the
newly linked page, this addition will negatively af-
fect the score of all the other pages linked by the
same source. Edit-sensibility counterfactual explana-
tions aim to inform the user about this aspect, giving
information on how sensitive the score of a page is to
changes in the supporting pages. This type of explana-
tion answers the question ‘If an outgoing link is added
to page q (a supporter of page p), how much will the
score of p change?’.

To formally define edit-sensibility counterfactual
explanations we first define the concept of the sensi-
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Fig. 5. Additive counterfactual explanation for the Wikipedia article Aztec Empire (i) and edit-sensibility counterfactual explanation for the
Wikipedia article Rate (Mathematics) (ii). Sizes are proportional to the arguments’ strengths for blue bubbles, and to the importance of the
meta-arguments according to the form of explanation for the red and purple bubbles.

tivity of an argument, describing the extent to which a
page is susceptible to the change of its supporters.

Definition 14. Given α, β, δ ∈ X , (α, β) /∈ R+,
and (α, δ) ∈ R+, the sensitivity to addition of node
mα,δ ∈M is defined as :

φ(mα,δ) = σ̂(mα,δ)− σ̂+(α,β)(mα,δ)

We can now define edit-sensibility counterfactual
explanations.

Definition 15. An edit-sensibility counterfactual ex-
planation for page α is a singular explanation
EΦ?←

(α) = (R̂+(α), φ).

Essentially, this form of explanation highlights
how much a page score is “exposed” to endoge-
nous changes in the “link structure” of other pages.
Fig. 5.ii shows an example of this explanation for the
Wikipedia article Rate (Mathematics). Here, the sizes
of the supporting meta-arguments (including that of
the page Rate (Mathematics)) are proportional to the
sensitivity to addition (φ), that is the score loss that
they would experience if another outgoing link were
to be added to their parent page. This means that, for
instance, a single new link from the Wikipedia article
Ratio to another page would significantly change the
PageRank score of Rate (Mathematics), reducing it by
almost 20%.

5.4. Computational Approximations of Explanations

The counterfactual explanations that we introduced
require the values of σ̂+(α,β) to be computed. In par-
ticular, to generate the explanations for a node, the PR

scores of the supporters of the node have to be assessed
on the web graph with a single link changed, a compu-
tationally expensive operation that should be avoided
when not necessary. To this purpose, with Proposition
10 we show that, under certain assumptions, it is not
necessary to re-run PR on the whole web graph to com-
pute the values of σ̂+(α,β).

Figure 6 provides a graphical support to the propo-
sition. It shows the relationships between the nodes α,
β and δi used in the proposition itself and in its proof.

Proposition 10. For P̂R+(α,β) and ∀δi ∈ R+(α) it
holds that:

1. |R̂−+(α,β)(mα,δi)| = |R̂−(mα,δi)|+ 1.
2. If there is no support path2 from β to α it holds

that σ̂+(α,β)(mα,δi) =

= σ̂(mα,δi)−
σ̂(mα,δi )

|R̂−(mα,δi )|+2

3. If there is no support path also from β to δ then it
holds that σ̂+(α,β)(δi) =

= σ̂(δi)− d · σ̂(α)

|R̂−(mα,δi )|·(|R̂−(mα,δi )|+1)

Proof. Point 1. By Definition 5, it is immediate that
∀δi ∈ R+(α), |R̂−+(α,β)(mα,δi)| = |R̂−(mα,δi)| + 1.
Point 2. Given that, by Remark 3, α does not have
any attacker and that there is no support path from
β to α then the strength value σ̂(α) does not change
when adding (α, β) to R+ because by Definition 6
σ̂(α) depends only on the strengths of its support-

2For any α, β ∈ X there exists a support path from α to β iff
∃γ1, . . . , γl such that γ1 = α, γl = β, l > 0 and ∀i ∈ {1, . . . , l−
1}, (γi, γi+1) ∈ R+. Note that, by construction of the MPRAF,
this is equivalent to requiring (γi, γi+1) ∈ R̂+.
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Fig. 6. Excerpt of an argumentation framework in support of the
proof of Proposition 10. Red and blue arrows represent, respectively,
attacks and supports; orange and violet represent, respectively, ad-
ditional attacks and supports; grey arrows highlight forbidden paths.
nc is the number of children of α.

ers and attackers. Thus, given Definition 6 and Re-
mark 4 (meta-arguments only have a single support),
we can write σ̂(mα,δi) =

√
d · σ̂(α)

|R̂−(mα,δi )|+1
and

σ̂+(α,β)(mα,δi) =
√
d · σ̂(α)

|R̂−
+(α,β)

(mα,δi )|+1
. Now iso-

lating σ̂(α) from the former and substituting it back
into the latter we get σ̂+(α,β)(mα,δi) = σ̂(mα,δi) ·
|R̂−(mα,δi )|+1

|R̂−
+(α,β)

(mα,δi )|+1
. Using what we just proved in point

1 then σ̂+(α,β)(mα,δi) = σ̂(mα,δi)·
|R̂−(mα,δi )|+1

|R̂−(mα,δi )|+2
that

is also equivalent to σ̂+(α,β)(mα,δi) = σ̂(mα,δi) −
σ̂(mα,δi )

|R̂−(mα,δi )|+2
. Point 3. Given Definition 6 and the hy-

pothesis that @ path also from β to δi, we can write
σ̂+(α,β)(δi) = 1−d

|X | +

+
√
d ·

∑
mζ,δi

∈R̂+
+(α,β)

(δi)
σ̂+(α,β)(mζ,δi )

|R̂−(δi)|+1
. Given Re-

mark 3 (non-meta-arguments have no attacks), we can
rewrite the previous as σ̂+(α,β)(δi) = 1−d

|X | +

+
√
d ·
∑
mζ,δi∈R̂

+
+(α,β)

(δi)
σ̂+(α,β)(mζ,δi). Now, if we

isolate α’s contribution to δi in the summation, we get

σ̂+(α,β)(δi) = 1−d
|X | +

√
d·
[(∑

mζ,δi∈R̂+(δi)
σ̂(mζ,δi)

)
−

−σ̂(mα,δi)+σ̂+(α,β)(mα,δi)

]
. And given that σ̂(δi) =

1−d
|X | +

√
d ·
∑
mζ,δi∈R̂+(δi)

σ̂(mζ,δi) then it holds that

σ̂+(α,β)(δi) = σ̂(δi) +
√
d · [−σ̂(mα,δi)+

+σ̂+(α,β)(mα,δi)]. Using what we proved in point 2,
we can rewrite as σ̂+(α,β)(δi) = σ̂(δi)+

+
√
d ·
(
−σ̂(mα,δi) + σ̂(mα,δi) ·

|R̂−(mα,δi )|+1

|R̂−(mα,δi )|+2

)
or

equivalently as σ̂+(α,β)(δi) = σ̂(δi)−
−σ̂(mα,δi) ·

√
d

|R̂−(mα,δi )|+2
.

In practice, this proposition has a twofold use. On
the one hand, it provides a computationally efficient
procedure to compute σ̂+(α,β) under certain assump-
tions. On the other hand, the same procedure can pos-
sibly be used as an estimation method when those as-
sumptions do not hold. We denote such estimator as
σ̂e+(α,β).

σ̂e+(α,β) = σ̂(δ)−d· σ̂(α)

|R̂−(mα,δ)| · (|R̂−(mα,δ)|+ 1)

In Section 6 will use this procedure to generate ad-
ditive counter-factual explanations and we will also
show empirically that this is a good estimator for
σ̂+(α,β) in terms of approximation error.

6. Experiments

In this section we evaluate the proposed explana-
tions on the Wikipedia web graph and several other
web graphs crawled from some British and Irish uni-
versities, see Table 2 for information. In particular, we
aim to address the following research questions:

– Misleading basic explanations: do basic explana-
tion provide a misleading picture of the pages
contributing the most to the PR score of a page?

– Cognitive tractability of explanations: Are expla-
nations cognitively tractable? In particular:
(A) What is the size of explanations?
(B) How many arguments must be included in

explanations to best explain page scores?
– Contrastive attribution explanations usefulness:

which portion of supporters is shared between
two pages?
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Table 2
Characteristics of the web graphs used in the experiments. (†) These web graphs result from a partial crawl, i.e. the crawling of these websites
was stopped before it completed after running for more than 1 month.

Web Graph Website
Number of Number of Average number

pages links of links per page

Leeds Trinity University www.leedstrinity.ac.uk 1,119 35,011 31.28
Homerton College www.homerton.cam.ac.uk 1,261 55,903 44.33
National University of Ireland www.nui.ie 1,295 11,632 8.98
University of East Anglia www.uea.ac.uk 2,871 120,735 42.05
Cardiff Metropolitan University www.cardiffmet.ac.uk 4,467 107,354 24.03
University of Leeds www.leeds.ac.uk 25,824 180,196 6.97
Queen’s University Belfast www.qub.ac.uk 64,659 451,882 6.98
University College Dublin www.ucd.ie 81,893 1,129,103 13.78
University of Exeter † www.exeter.ac.uk 118,005 1,859,492 15.75
Imperial College London † www.imperial.ac.uk 146,125 4,758,430 32.56
University of Reading www.reading.ac.uk 302,130 7,063,264 23.37
London School of Economics † www.lse.ac.uk 426,434 2,622,280 6.14
University of Oxford † www.ox.ac.uk 430,490 5,429,420 12.61
Wikipedia simple.wikipedia.org 965,748 7,388,700 7.65

Table 3
Average divergence ratio of the strength of arguments (in the basic explanations) and meta-arguments (in attribution explanations).
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r% 35.2 41 99.2 40.2 17.2 25.6 701.4 51 523.7 1324.9 97.9 34.3 56.3 73.8

– Approximation: is the estimator σ̂e+(α,β) based on
Proposition 10 a good approximation for σ̂+(α,β),
i.e., for the M-PR semantics on the MPRAF with
the addition of a support?

Note that, when conducting experiments on con-
trastive attribution explanations and additive counter-
factual explanations, we randomly sampled 500,000
and 200,000 pairs of pages, respectively, for perfor-
mance reasons; in all other experiments we used all the
pages instead.

Misleading basic explanations. To assess if and
how often basic explanations provide a misleading pic-
ture of the pages contributing to the score of a page
of interest, we checked the divergence ratio of the
strengths of arguments in basic explanations and meta-
arguments in attribution explanations for the same

page. We denote with σ%(β, α) and σ̂%(β, α) the
contribution to page α ∈ X from a supporter β ∈
R+(α) according to, respectively, the basic explana-
tion and the attribution explanation, i.e., σ%(β, α) =

σ(β)∑
γ∈Eb

σ(γ) and σ̂%(β, α) =
σ̂(mβ,α)∑

γ∈E← σ̂(mγ,α)
. We

then define the divergence ratio, denoted with r%,
as r%(β, α) =

∣∣∣σ%(β,α)
σ̂%(β,α) − 1

∣∣∣, describing how much
the contribution of a supporter β is under or over-
estimated in a basic explanation of α wrt to its ac-
tual contribution in the attribution explanation. Table 3
shows that the divergence ratio ranges between 35%

and 1324% in our experiments. This means that the
picture portrayed by basic explanation can be very
misleading in some web graphs.
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Table 4
Average size of attribution explanations (E←), contrastive attribution explanations (E↔), additive counter-factual explanations (E+?←

) and edit-
sensibility counterfactual explanations (EΦ?←

). (†) Additive counterfactual explanations’ sizes are equal to those of attribution explanations.

Explanation E← E↔ E+?←
EΦ?←

Leeds Trinity University 177.1 166.1 259.3 †
Homerton College 228 223.9 347.8 †

National University of Ireland 229.8 228.5 245 †
University of East Anglia 456.4 448.8 531.1 †

Cardiff Metropolitan University 868 849.4 979.8 †
University of Leeds 3887 3884.8 3973.1 †

Queen’s University Belfast 8710.8 8704.2 9353.1 †
University College Dublin 12605.3 12605.9 12765.6 †

University of Exeter 18495.1 18493.5 19310.4 †
Imperial College London 21072.1 21070.6 22313.4 †

University of Reading 47246.9 47237.1 37557.4 †
London School of Economics 61911 61663.7 33907.1 †

University of Oxford 63804.7 63778.4 36124.3 †
Wikipedia 123495.6 59340 38594.3 †

Table 5
Percentages of PageRank score explained by the top meta-arguments in explanations according to their importances.
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E← top-1 73.4 83.7 88.2 84.5 76.9 82.2 86 79.8 82.1 79.1 67.2 90.5 80.6 82.3
top-3 81 87.4 97.1 92.1 90 94.6 94.1 90.4 91.3 88.9 85.6 97.7 92.6 92.9
top-5 83.9 88 98 92.6 93 96.2 95.9 92.6 93.7 91 92.3 98.8 95.7 95

top-10 84.8 89.1 98.9 93.1 96.2 97.8 97.5 95.2 96 93.1 96.3 99.4 97.8 96.9
EΦ?←

top-1 74.6 86.2 90.7 85.9 77 83.6 87.1 80.9 83.5 80.8 69.4 92.3 82.9 85.7

top-3 81.4 89.7 97.2 92.6 89.9 94.9 94.5 90.8 91.9 89.2 87.3 98.2 93.8 94.4
top-5 84 90.3 98.1 93.1 93.1 96.4 96.1 93 94.2 91.1 93.6 99 96.4 96.1

top-10 84.9 91.2 99 93.6 96.3 98 97.7 95.4 96.3 93.1 96.9 99.4 98 97.5
E↔ top-1 96.8 90 90.7 91.4 85.5 92.6 93.1 83.3 88.9 75.3 66.1 88.9 84.3 90.2

top-3 97.9 91.1 98.9 94.7 95.9 97.7 97.5 94.4 96 86.8 83.5 96.7 96.1 98.5
top-5 98.1 91.4 99.4 95.2 97.9 98.6 98.4 95.3 97.5 89 91 97.9 98.2 99.2

top-10 98.2 91.9 99.5 95.4 99 99.7 99.1 96.4 98.3 91.6 95.2 98.6 99.4 99.7
E+?←

top-1 73.4 83.7 88.2 84.5 76.9 82.2 86 79.8 82.1 79.1 67.2 90.5 80.6 82.3

top-3 81 87.4 97.1 92.1 90 94.6 94.1 90.4 91.3 88.9 85.6 97.7 92.6 92.9
top-5 83.9 88 98 92.6 93 96.2 95.9 92.6 93.7 91 92.3 98.8 95.7 95

top-10 84.8 89.1 98.9 93.1 96.2 97.8 97.5 95.2 96 93.1 96.3 99.4 97.8 96.9
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Table 6
Percentages of shared supporters in contrastive attribution explanations of (1) two random pages, (2) a page and one of its supporters and (3) two
pages mutually supporting each other.
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Random pages (%) 45.6 25.7 21.1 20.7 3.7 0.5 3.2 0.6 4.3 1.8 0.1 0.1 0.2 0
Supporting pages (%) 27.1 17.1 9.7 25.4 18.7 13.7 8.8 14.7 20.8 12.5 25.4 5.4 10.7 12.1

Mutually supporting pages (%) 96.2 63.4 50.3 70.3 59.1 47.4 49.4 62 55.5 38.7 67.3 37.7 55 42

Table 7
Approximation error of σ̂e

+(α,β)
, i.e.,

∣∣∣∣ σ̂e+(α,β)−σ̂+(α,β)

σ̂

∣∣∣∣.

L
ee

ds
Tr

in
ity

U
ni

ve
rs

ity

H
om

er
to

n
C

ol
le

ge

N
at

io
na

lU
ni

ve
rs

ity
of

Ir
el

an
d

U
ni

ve
rs

ity
of

E
as

tA
ng

lia

C
ar

di
ff

M
et

ro
po

lit
an

U
ni

ve
rs

ity

U
ni

ve
rs

ity
of

L
ee

ds

Q
ue

en
’s

U
ni

ve
rs

ity
B

el
fa

st

U
ni

ve
rs

ity
C

ol
le

ge
D

ub
lin

U
ni

ve
rs

ity
of

E
xe

te
r

Im
pe

ri
al

C
ol

le
ge

L
on

do
n

U
ni

ve
rs

ity
of

R
ea

di
ng

L
on

do
n

Sc
ho

ol
of

E
co

no
m

ic
s

U
ni

ve
rs

ity
of

O
xf

or
d

W
ik

ip
ed

ia
Average (%) 0.006 0.002 0.006 0.005 0.014 0.008 0.012 0.024 0.007 0.019 0.006 0 0.002 0.005

Maximum (%) 0.415 0.009 0.066 0.242 0.906 0.25 0.633 1.255 0.091 0.566 0.126 0.009 0.06 0.105

Cognitive tractability. In order to assess the cog-
nitive tractability of the explanations we proposed, we
checked the size of explanations, in terms of overall
number of arguments and the percentage of a score ex-
plained by the top arguments according to their im-
portance in the explanation. Table 4 and Table 5 show
the results on the sizes of the explanations and the per-
centage of score explained by the top arguments, re-
spectively. We note that: (1) the average explanation
size ranges from some hundreds of arguments for the
smaller web graphs, to hundreds of thousands for the
bigger ones, significantly increasing with the number
of pages and links in the web graph; (2) selecting only
arguments with backward hop distance of 2 in additive
counter-factual explanation considerably reduces the
number of arguments in the explanations to an amount
similar to that of other types of explanations. This is
a reasonable amount when compared to the number
of nodes in the web graph that would have been oth-

erwise included. (3) Although the full set of meta-
arguments potentially included in the explanations of
a page may be very large, considering only a limited
subset is enough to produce a satisfactory explanation.
In fact, 10 meta-arguments are enough to explain on
average between 84.8% and 99.7% of the score of a
page depending on the web graph and the type of ex-
planation.

Contrastive attribution explanation usefulness.
Contrastive attribution explanations are useful only
when the amount of shared supporters is not negligible.
We checked therefore the average number of shared
supporters in different scenarios. Table 6 shows the re-
sults. We note that: (1) the average number of shared
supporters of two random pages can be more than 45%
in some (smaller) datasets; (2) despite the small aver-
age number of shared supporters for two random pages
in some datasets, in other scenarios where one of the
two pages supports the other or they support one an-
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other, the number of shared supporters increases up to
96.2%.

Approximation of σ̂+(α,β). We checked whether
σ̂e+(α,β) is a good estimator for σ̂+(α,β) on 50 random
pairs of pages in each dataset. As shown by Table 7,
the average approximation error is at most 0.024%
and the maximum error ranges between 0.009% and
1.255% depending on the dataset. These low values
confirm that the approximation provided by σ̂e+(α,β)

for σ̂+(α,β) is satisfactory.

7. Conclusions

In this paper we have investigated connections
between PageRank (PR) and formal argumentation.
Firstly, we have introduced a novel approach capable
of reconstructing PR as a gradual argumentation se-
mantics of a suitably defined bipolar argumentation
framework, while ensuring the satisfaction of a set
of generally desirable properties. Secondly, we have
shown how using this approach enables the genera-
tion of better explanations of PR scores to end-users,
proposing four different types of explanation.

To the best of our knowledge, the investigation of
the relationships between PR and argumentation se-
mantics has not been previously considered in the lit-
erature. The work in [30] explores the application of
PR to rank the relevance of arguments available on the
web to support or attack a given stance. This is an in-
teresting but different goal: in [30] PR is not related
to any semantics notion and the links have a differ-
ent meaning, relating the conclusion of an argument
with the premises of another one. On a different but
related line, some works, e.g. [31], have explored con-
nections between argumentation semantics and matrix
representations from network theory, whose relation-
ships with our approach are worth future investigation.
To the best of our knowledge, the generation of expla-
nations based on argumentation for PR has not been
previously considered in the literature. We have illus-
trated the promise of our method in helping users to
better understand PR, a popular algorithm for ranking
pages, but leave user evaluations to future work.

Our proposal can be extended mainly in two direc-
tions. The role of bipolar argumentation framework
representation with meta-arguments in enhancing the
explainability of graph-based algorithms could be fur-
ther investigated. In this regard, understanding how
other algorithms designed for directed graphs could
be re-interpreted in an argumentative perspective and

developing other types of explanations from their ar-
gumentative counterparts represent two interesting re-
search possibilities. Another fruitful direction would
be the investigation of the relation between PR and ar-
gumentation semantics could be expanded. In this re-
spect, firstly, the investigation of PR-inspired gradual
semantics for various kinds of argumentation frame-
works could be pursued. For example, it would be in-
teresting to consider weighted versions of PR where a
node’s strength can be distributed unevenly to its chil-
dren and, more generally, to the variants of PR consid-
ered in various domains [6]. Secondly, one can notice
that PR is essentially a mechanism to produce a score
based on a relation of support, but it could be con-
sidered that, in several domains where PR is applied,
also other relations, in particular attack, could be rele-
vant for a proper scoring. Also, in the web domain, one
could argue that the absence of a link from one page
to another (where this link could instead be expected
according to some criterion) could be interpreted as
an attack diminishing the relevance of the non-linked
page. Given the strong tradition on attack-based and
bipolar evaluations in argumentation semantics, this
suggests that the study of argumentation-inspired vari-
ants of PR may also represent a fruitful research direc-
tion.
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