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Abstract 

Studies have shown that many reported causes of failure of artificial joints such as hip, 

knee and spine are wear and friction related. Current modes of diagnosing failed artificial joints 

involve the use of imaging techniques like X-rays and CT scans, which although effective, are 

costly, time-consuming and harmful to patient health due to frequent exposure to radiation. 

There is the added limitation of the delay experienced before signs of failure become visible, 

causing further discomfort to the patient and, at times, health complications resulting from 

possible migration of wear debris into blood tissues. These complications have necessitated the 

need for a simpler and more dynamic system for identifying and diagnosing failed artificial 

joints, which is where the acoustic emission (AE) testing has shown promise. 

AE testing is a non-destructive test method used to detect the onset and progression of 

mechanical flaws that has proven advantageous in the analysis and understanding of 

tribological interactions in mechanical systems. In recent times, it has been increasingly used 

in the study of the tribology of artificial and natural human joints thereby showing potential as 

a tool for the identification and diagnosis of failed artificial joints. Thus, this research aimed to 

use AE to monitor the tribological characteristics of artificial joint materials as a first step 

toward using AE to diagnose artificial and natural joint pathologies.  

To gain an initial understanding of how AE features can be related to tribological 

mechanisms such as friction, in particular, a bio-tribo-acoustic tests system was developed. 

This enabled the acquisition of AE signals during biotribological testing of artificial joint 

materials. This proof-of-concept study showed that time-dependent (TDD) AE features can be 

used to predict the friction profile of a simulated polymer-metal artificial joint articulation. The 

prediction was carried out using a Non-linear Auto Regression with Exogeneous inputs 

(NARX) model. During testing of the trained model, predicted data had R2 values of 94% in 

tests on PEEK reciprocating at 2 Hz test and 98.6% for UHMWPE at 2 Hz. These regression 
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results support the hypothesis that AE TDD features can be used to predict the friction profile 

which can then be related to the wear behaviour of the simulated joint articulation.  

Having proved the potential of AE as a biotribological diagnostic tool, the next step is 

to be able to use the acquired AE signals to identify the perceived damage mode prompting the 

need for a method by which AE signals can be differentiated according to different wear 

mechanisms. To this end, AE signals from adhesive and abrasive wear, simulated under 

controlled joint conditions, were classified using supervised learning. Principal component 

analysis was used to derive uncorrelated AE features and then classified using three methods 

– logistic regression, k-nearest neighbours and back propagation (BP) neural network. The BP 

network emerged as the best performing network with a classification accuracy of 98%. 

One of the limitations of traditional artificial neural networks (ANN) such as the BP 

network is the complex feature engineering required to obtain a model with high accuracy and 

high sensitivity. To mitigate this, deep transfer learning, with GoogLeNet as the base 

convolutional neural network (CNN) model, was used to classify AE signals from simulated 

damage mechanisms observed in retrieved polyethylene inserts of failed knee implants - 

burnishing and scratching wear. It was found that using CNN to extract features to be trained 

with an SVM model obtained a higher classification accuracy (99.3%) than just training with 

CNN model (96.5%). 

The work presented in this thesis has shown that AE testing can be used to monitor the 

tribological properties of simulated articulating joint surfaces. With machine learning and deep 

transfer learning techniques, models with high accuracy and high sensitivity can be built to 

classify the acquired AE signals based on simulated real-life artificial joint damage modes. 

This confirms the initial hypothesis that with AE testing, a more dynamic, highly specific and 

highly sensitive process of identifying and diagnosing artificial joint pathologies can be 

developed, thereby reducing patient discomfort and NHS expenditure. 
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1.1 Introduction 

More people are suffering from joint pathologies such as acute trauma and 

osteoarthritis, necessitating the need for joint replacement procedures. In 2020 alone, over 

110,00 joint replacement procedures were carried out in the UK (Table 1.1) (National Joint 

Registry 2021). Tribological interactions are fundamental to the operation of these artificial 

joints, with wear and other wear-related factors such as aseptic loosening, subsidence and 

periprosthetic fracture emerging as the principal means of failure in these devices (Table 1.2 

and Table 1.3) (Abu-Amer, Darwech, and Clohisy 2007; Punt et al. 2008; Hossain, Patel, and 

Haddad 2010; Dowson 2012; Reeks and Liang 2015). As shown in Table 1.2, the migration of 

wear debris into the blood system can also cause adverse soft tissue reactions leading to the 

need for revision surgery (Eckold, Dearn, and Shepherd 2015).  

 

Table 1.1:Joint replacement surgeries carried out in 2020. Data obtained from the National 

Joint Registry 18th Annual Report 2021 

Reference Joint No of replacement procedures Selected reasons for replacement 

Hips 54,858 Acute trauma – 7 %  

Osteoarthritis – 88% 

Knees 50,904 Osteoarthrtis – 97% 

Unicondylar knee replacements – 13% 

Ankles 465 Osteoarthritis – 92% 

Rheumatoid arthritis and other inflammatory joint problems – 8 % 

Elbows 561 Total elbow replacement – 38% 

Radial head replacements – 45% 

Distal humeral hemiarthroplasty – 14% 

Shoulders 3,833 Acute trauma – 17% 

Osteoarthritis – 59% 

Effective cuff tear arthroplasty – 27% 
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Table 1.2: Knee and Hip revision procedures (and the reason for revision) in the year 2020. 

Data collated from the National Joint Registry 18th Annual Report 2021. 

Reason for revision surgery Hip revision surgeries – Total is 

4,910 

Knee revision surgeries – Total is 

3,907 

 No Percentage, % No Percentage, % 

Aseptic Loosening 1794 35 1359 34 

Infection 1066 21 1262 31 

Periprosthetic fracture 1120 22 285 7 

Dislocation/Subluxation 932 18 157 4 

Implant Fracture 228 5 56 1 

Lysis 660 13 449 11 

Wear 495 10 402 10 

Adverse soft tissue reaction to 

particulate debris 

390 8 N/A N/A 

Malalignment 205 4 162 4 

Unexplained Pain 129 3 213 5 

Component dissociation 91 2 76 2 

Instability N/A N/A 553 14 

Stiffness N/A N/A 160 4 

Progressive arthritis remaining 

knee 

N/A N/A 619 15 

 

Table 1.3: Total disc replacement failure modes and their corresponding causes. Data 

collated from (Reeks and Liang 2015). 

Failure Mode Cause of Failure 

Degradation Wear and corrosion 

Inflammation Presence of large UHMWPE wear particles 

Surface wear and damage Adhesive and abrasive wear 

Damaged UHMWPE core Plastic deformation and fracture of the rim 

Corrosion Fretting wear 

Osteolysis Micro-motion of implant and presence of 

wear debris 

 

Artificial joint failures are traditionally diagnosed using X-rays,  computed tomography 

(CT) scans and recently nuclear medicine bone scans, but these are expensive, time-consuming 

and harmful to health due to frequent radiation exposure (Devin, Myers, and Kang 2008; Karl 
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2013; David 2007; Lu et al. 2015; Leuridan et al. 2017; Malham and Parker 2017; Lee et al. 

2021). There is also a concern with these traditional diagnostic methods that clear signs of 

failure do not present early enough to prevent pathologies, causing patients to experience pain 

and allowing the migration of wear debris into the bloodstream leading to further medical 

complications (Abu-Amer, Darwech, and Clohisy 2007; Karl 2013; Brown et al. 2011).  

Previously, researchers have studied the tribological phenomena of artificial joint 

materials during the implant design process to assess its suitability for use in the body and for 

long term wear predictions (Moghadas et al. 2012; Baykal et al. 2014; Alnaimat, Shepherd, 

and Dearn 2016; Jin et al. 2016; Siskey et al. 2016; Saikko 2017). Although these have 

successfully predicted wear of artificial joints and identified which biomaterials are most 

appropriate, there are some limitations. One such limitation is that these traditional 

biotribological studies can only be used to evaluate the cause of failure of artificial joints after 

retrieval from the body. This still does not solve the problem of monitoring the condition of 

artificial joints in vivo.  Hence, there is a need for a simplified, dynamic and faster way of non-

invasively monitoring the condition of artificial joints with the added advantage of early 

diagnosis of failed artificial joints. This is where applying acoustic emission (AE) testing has 

potential. 

1.2 Thesis Overview 

The focus of this thesis is to use Acoustic Emission (AE) testing to diagnose tribological 

phenomena in artificial joint materials using two approaches. First, a bio-tribo acoustic test 

method was developed to monitor tribological phenomena of artificial joint materials, and 

second, traditional machine learning and deep learning techniques are used to analyse AE 

signals for damage mechanism identification. The thesis overview is presented in Figure 1.1. 
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Figure 1.1: An overview of this thesis 
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2.1 Introduction 

This chapter presents a review of previous research relevant to this thesis. Section 2.2 

introduces the concept of the acoustic emission (AE) testing system, its characteristics and the 

techniques used to analyse the waveforms. An overview of the tribology of artificial joints is 

presented in section 2.3 and section 2.4 details the tribological applications of AE. Last but not 

least, section 2.5 details the synergy of AE testing and biotribology and presents the research 

aims and objectives. 

2.2 Acoustic Emission 

Acoustic emission (AE) testing is a non-destructive test (NDT) method used to detect 

and locate faults in mechanically loaded structures and components (Hellier 2003). Joseph 

Kaiser first developed the AE testing technique in the 1950s whilst he was researching the 

sounds metals emit upon mechanical stress (Tensi 2004). It involves the use of piezoelectric 

sensors that convert mechanical movement to an electrical voltage signal which is then pre-

amplified before being detected and recorded via a data acquisition unit (Figure 2.1). The signal 

is then analysed and characterised based on the source location, voltage intensity and frequency 

content (Aggelis et al. 2015). A sample raw waveform along with the basic parameters is shown 

in Figure 2.1. Unlike other NDT methods, AE testing detects energy release that is initiated 

within the material due to applied loads. AE has become widely used to provide information 

on both the origin of a flaw and its progression due to repetitive stress (Hellier 2003). 
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Figure 2.1: Illustration of the AE test system showing the progression of signal from generation 

to acquisition and storage. A sample signal, with basic parameters labelled, is also shown. 

Acoustic emission waveforms are generally categorised into three modes (Figure 2.2) 

– continuous, burst and mixed emission (Unnporsson 2013). Continuous emissions are those 

with short amplitudes and long duration. They are most commonly generated by plastic 

deformation, sliding and rubbing (Rao 1990; Unnporsson 2013). Conversely, burst emissions 

are known to have high amplitudes and short duration. They are generated due to damage 

formation such as asperities breakage, crack propagation and delamination (Rao 1990; 

Unnporsson 2013). Mixed emissions are waveforms consisting of both continuous and burst 

emissions. This is the most common mode of emission observed as damage to most structures 

and components tends to consist of two or more damage/failure processes. 
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AE testing has been utilised in all engineering applications in one form or another. 

Some of its earliest applications were in the study of plastic deformation, crack propagation in 

materials and the detection and location of flaws in metallic and composite structures (Rao 

1990).  Its application has since evolved, and it is now being used as a tool for monitoring the 

conditions of structures such as cables, condition monitoring of tribological characteristics of 

mechanical systems and the study of the tribology of artificial and natural human joints (Li et 

al. 2012; Olorunlambe, Shepherd, and Dearn 2019).  

As far back as 1980, there have been various studies on how AE can be used to analyse 

the tribological characteristics of surfaces in contact. These studies have been successfully used 

for mechanical condition monitoring like bearings in motors, pumps and transport systems 
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Figure 2.2: The three modes of AE waveforms. The red dash line indicates the amplitude 

threshold. 
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(Rowland et al. 2004) and tool wear experienced during machining (Wang, Wood, and Sun 

2008). Many of these studies have been focused on the use of AE to measure wear, particularly 

adhesive and abrasive wear. Adhesive wear occurs when the atomic bonds between two 

contacting surfaces become stronger than the subsurface strength causing material 

removal/displacement whilst abrasive wear occurs when a hard material slides over a soft 

material causing material removal and/or when a third body is introduced to the bearing surface 

causing third body abrasive wear. Table 2.1 shows other modes of wear that are detectable by 

AE.  

Table 2.1: Modes of wear detected by acoustic emission testing (Wang, Wood, and Sun 2008; 

Price, Lees, and Friswell 2005; Mukhopadhyay et al. 2012; Rodgers et al. 2017). 

Application Modes of wear AE Features 

Transmission Systems Scuffing, pitting fatigue 

and bearing wear 

High signal-to-noise ratio; scuffing wear had 

higher RMS amplitude 

than pitting 

Machine tool monitoring Flank, abrasive and crater 

wear 

There is a linear relationship between tool 

wear and AE parameters 

Orthopaedic  applications Adhesive, abrasive and 

fatigue wear 

Implant AE is generally of the continuous 

type 

 

2.2.1 Attenuation Characteristic of AE Signals 

Attenuation is the phenomenon whereby the amplitude of acoustic waves decreases as 

they travel through a structure, mostly due to energy absorption, geometrical spreading and 

structural scattering (Hellier 2003). Geometrical spreading is one of the leading causes of 

attenuation as it relates to the geometry of the structure under observation. In compact 

structures like pipes, the narrowness of the space through which the wave propagates will 

reduce its dispersion, whereas in a solid object like concrete, there will be a dispersion of waves 

in all three dimensions leading to a rapid reduction of the wave amplitude as it propagates from 

the signal source to the sensor. Structural scattering happens when the wave encounters 
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discontinuities, for example, having to change direction, causing the wave to reflect; hence, 

attenuation of the signal occurs. The last cause is energy absorption which happens when 

kinetic and elastic wave energies are absorbed and turned to heat by the material. The type of 

material determines how much energy is absorbed; for example, non-metallic materials absorb 

more energy than metallic ones. It is important to consider attenuation effects during the 

monitoring of structures to ensure that all factors that could affect the propagation of the waves 

are considered when interpreting AE results. 

2.2.2 Analysis of AE Waveforms 

The analyses of AE waveforms are traditionally performed in one of two ways: 

parameter-based and frequency-based analysis. The parameter-based analysis involves 

evaluating the waveforms generated using parameters such as amplitude, count rate, number 

of hits, peak frequency and AE r.m.s (root mean square) value. Any trends in these parameters 

are observed and quantified using distribution plots such as scatter plots (Figure 2.3), 

histograms and line graphs. One of the early applications of AE in tribology by Belyi et al. 

(Belyi, Kholodilov, and Sviridyonok 1981) used this technique to investigate the possible 

relationship between AE parameters and mode of wear for polymers. Jiaa and Dornfeld (Jiaa 

and Dornfeld 1990) also analysed the AE waves generated during sliding tests and found the 

parametric-based method to be effective in showing the progression of wear from running-in 

to steady-state and beyond. 
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Figure 2.3: Duration against Amplitude Scatter Plot 

Despite the effectiveness of the technique, it gives limited information and there is a 

need for the frequency-based investigations as it allows for the significant frequencies of the 

signal to be identified. This can aid in determination of tribological properties related to the 

signals. The importance of frequency-based analysis was illustrated in the work by Lingard et 

al. (Lingard, Yu, and Yau 1993). By analysing the frequency characteristics of the AE signals, 

they were able to identify the peak frequencies and found that the wearing materials had 

different peak frequencies suggesting that AE could be used to distinguish between the 

different materials. Zykova et al. (Zykova, Mazal, and Pazdera 2006) also used frequency 

analysis to distinguish between running-in and pitting stages during fatigue tests of grey cast 

iron and carbon steel samples showing how useful frequency-based investigation can be for 

tribological investigations that involve the use of acoustic emission test system. 

Frequency-based investigations can take different forms: Continuous wavelet transform 

(CWT), power spectral density, frequency spectrum and short-time fast Fourier transform 

(STFFT). Their function is to extract hidden features of the waves usually in terms of the wave 

frequency. Examples of power spectral density and frequency spectral outputs from an AE 

signal are shown in Figure 2.4. The STFFT and CWT transform produce an image analysis of 
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the AE waveform in terms of frequency against time with a colour map showing the intensity 

of the different frequencies present in the signal. STFFT involves spectral analysis of the waves 

generated in small segments called wavelets (i.e., short waves) and averaging the results to 

reveal the hidden features of the generated wave. One of the limitations of FFT is its inability 

to localise the signal in the time domain, which the STFFT attempts to correct, but, as seen in 

Figure 2.5, it is difficult to extract the exact time at which each significant frequency 

component arrived at the sensor. Unlike the STFFT, wavelet transforms such as the CWT are 

able to show the actual time intervals for the different frequency components with no 

overlapping (Polat and Siraç 2018). This is useful because, despite the frequency components 

of the wave being generated at the source simultaneously, they arrive at the sensor at different 

times (Asamene and Sundaresan 2012). 

 

 

 

(a) Frequency Spectrum 

(b) Power Spectral Density 

Figure 2.4: Typical frequency and power spectral representations of a raw AE waveform 
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2.2.3 Application of Machine Learning in AE Signal Analysis 

The use of machine learning techniques to analyse and interpret data has become more 

widespread within the engineering industry due to its ability to find patterns within data that 

basic statistical analysis cannot provide. Applying some of these techniques to analysing AE 

data has been advantageous for achieving the diagnostic capabilities of AE testing.  

Gutkin et al. (Gutkin et al. 2011) analysed AE signals from carbon fibre reinforced polymers 

under various test configurations using three pattern recognition algorithms: k-means 

(a) Continuous Wavelet Transform (CWT) 

(b) Short-time Fast Fourier Transform 

Figure 2.5: Typical CWT and STFFT transforms of a raw AE waveform 
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clustering, Self Organising Map (SOM-k) combined with k-means and Convolutional Neural 

Network (CNN). SOM-k means was the most effective at classifying AE responses to failures. 

Qiao et al. (Qiao, Weng, and Li 2019) also used k-means clustering to classify AE signals from 

ceramic thermal barrier coatings during indentation testing into three distinct categories 

associated with different failure modes. Using Back Propagation (BP) neural networks to 

further identify failure types of the coatings after thermal exposure, the results showed that AE 

measurements could distinguish between the mechanisms of high-temperature oxidation that 

accelerated thermal barrier degradation. Yao et al. (Yao, Li, and Yuan 1999) used a 

combination of the wavelet fuzzy neural network with AE and fuzzy classification combined 

with a motor current to estimate tool wear successfully. Machine learning approaches, 

combined with AE, enable a deeper categorisation of signals based on damage recognition and 

failure modes. Deep transfer learning, in combination with wavelet transforms, have also been 

used to classify AE signals from fracture processes and for wear monitoring in sliding bearing 

systems (Xin et al. 2020; Ren and Chen 2021; König et al. 2021). This involves using already 

trained convolutional neural networks such as GoogLeNet and VGG Net to classify AE signals 

that have been transformed into their representative scalograms using wavelet analysis. 

Through the use of deep transfer learning, the complex feature engineering process required in 

a traditional machine learning approach is eliminated, thereby saving time and reducing the 

computing power required for the analysis.  

 2.3 Bio-Tribology 

Tribology is the study of friction, wear and lubrication whilst bio-tribology can be 

defined as the aspect of tribology related to biological systems (Jin et al. 2006). Examples of 

the application of tribology to biology include, but are not limited to, the tribology of natural 

and artificial joints, wear of dentures, and the friction of skin and garments. The focus of this 

thesis is the application of tribology to the bearing surfaces of artificial joints. The following 
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section provides an understanding of the concept of biotribology about the study of artificial 

joints.  

2.3.1 Tribology of artificial joints 

Joint diseases such as herniated discs, osteoarthritis and rheumatoid arthritis affect the 

functionality of a natural joint which often leads to a need for the affected joint to be replaced 

with an artificial one (Figure 2.6 and Figure 2.7) (Zhou and Jin 2015). The mechanics of natural 

joints mimic that of surfaces articulating against each other such as the multi-directional 

reciprocating motion of the hip and spine. The manufacturing of an artificial joint that can 

effectively replace a natural one would require an understanding of the tribological 

characteristics of a natural joint. 

 

Figure 2.6: Illustration showing the progression from (a) Normal lumbar spine to (b) 

Lumbar spine with herniated disc L4-L5(1) and (c) Lumbar spine where the herniated disc 

has been replaced with an artificial one (2). 
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Figure 2.7: Illustration showing the progression from (a) Normal functioning Knee joint to 

(b) Osteoarthritic Knee (1) and to (c) where the affected knee joint has now been replaced 

with an artificial one (2). 

Understanding the tribological characteristics of natural joints has several benefits such 

as choosing suitable biomaterials and for determining the required life of the artificial joint. 

Tribological testing has two aspects: bench testing using tribometers and long-term wear tests 

using joint simulators. The bench tests allow for in vitro wear and friction tests to be carried 

out at the material level first to build a profile of how the intended joint would behave in vivo 

before the manufactured implant is tested for durability using joint simulators. This would save 

time and money as unsuitable materials and/or designs would have been eliminated during 

bench testing, ensuring that only devices that have shown suitability for the intended use are 

tested on joint simulators. 
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Joint simulator tests are essential and necessary as they are used to decide if the device 

would meet the required conditions of use and therefore be allowed to go to market (Jin et al. 

2016). These tests are carried out by fixing the device to the corresponding simulator (i.e., an 

artificial hip joint to a hip simulator and inter-vertebral (IVD) spinal discs to a spine simulator) 

and applying standardised test parameters to simulate physiological conditions and to 

determine the life cycle of the device. Wear measurements are taken periodically (~ every1 

million cycles) until either the cycle limit is reached (10 million for IVDs and 5 million for 

hips) or a device failure occurs (BS ISO 18192-1 2011; BS ISO 14242-1 2014). 

Material bench testing has been used in the characterisation of the wear behaviour of 

ultra-high-molecular-weight polyethylene (UHMWPE) using multidirectional pin-on-disk 

tests for an improved understanding of how different formulations of UHMWPE behave in 

biotribological applications (Baykal et al. 2014) and to assess the suitability of different 

lubricants (Alnaimat, Shepherd, and Dearn 2016) for better and more optimised lubricant 

selection. Joint simulation testing has also been used in the comparison of bearing surfaces for 

use in IVD devices to determine optimal materials (Moghadas et al. 2012) and to replicate 

impingement loading conditions of lumbar total disc replacements in in vitro bench tests 

(Siskey et al. 2016) and so to be included in pre-clinical tests. Biotribological tests have also 

proven useful in identifying the causes of failure of artificial joints as they are used to assess 

the condition of retrieved failed implants. 

 

2.4 Tribological applications of AE 

2.4.1 Mechanical Systems  

AE is capable of identifying the different wear and friction mechanisms, such as 

adhesive and abrasive wear, that are active during tribological processes. During sliding three 

phases of wear that take place: running in, steady state and rapid wear. Studies by Belyi et al. 
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(Belyi, Kholodilov, and Sviridyonok 1981) and Jiaa and Dornfeld (Jiaa and Dornfeld 1990) 

showed that an AE signal can be used to distinguish between these. There was variation in the 

AE r.m.s and AE intensity values during running-in compared to during steady-state wherein 

the values were much more stabilised. It was also found that when the major wear mode 

developed from adhesive to abrasive, there was an increase in AE intensity (Belyi, Kholodilov, 

and Sviridyonok 1981), suggesting that AE can be used to distinguish between adhesive and 

abrasive wear modes.  In addition to identifying wear mechanisms, the study by Wang et al. 

(Wang, Wood, and Sun 2008) identified a correlation between AE signals and wear 

mechanisms. The oil starvation strategy they employed allowed for the observation of this 

relationship. After turning off the oil supply, four distinct stages of decay were identified and 

there was a decrease in the duration of burst raw AE signal acquired from stage A (start of 

starvation) to C (onset of scuffing). At point D where scuffing was visible, the AE signal 

acquired was of the continuous type with no burst emission superimposed as with the three 

previous stages.    

Studies have also shown that there is a relationship between AE signal energy and wear 

loss. By integrating the AE r.m.s value of the signal obtained, Boness et al (R. Boness, 

McBride, and Sobczyk 1990; R. J. Boness and McBride 1991) observed an empirical 

relationship between the r.m.s and the wear scar volume in the form of a power law expression. 

This expression was shown to be independent of lubricant used when it was used to estimate 

wear scar volume for lubricated tests, and there was an excellent agreement with experimental 

wear scar volumes. Similarly, Hase et al. (Hase, Mishina, and Wada 2013) observed a linear 

relationship between AE pulse energy(µV.s) and the amount of wear elements generated.  

AE can also distinguish between different lubricating conditions, i.e. wet or dry as 

shown in the work by Lingard et al. (Lingard, Yu, and Yau 1993). They discovered that AE 

outputs for lubricated tests were lower than that of unlubricated tests. In addition, the analysis 
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of frequency characteristics of the waves showed that material differences were evident in the 

frequencies observed (aluminium alloy slider at 140 kHz, steels at 195 kHz and brass slider at 

131 & 202 kHz). 

Although these studies were able to successfully use parameter-based analysis to 

interpret the AE waves generated, more recent studies have shown the advantage of using the 

frequency-based technique. Asamene & Sundaresan (Asamene and Sundaresan 2012) used the 

wavelet method to analyse the AE waves generated during wear and friction tests (reciprocating 

and oscillatory motions) of metallic specimens, and they were able to distinguish between 

friction-related AE and that of fatigue crack growth. CWT of friction-related AE waves 

exhibited more regions with AE impulses at different frequencies and at different times, 

indicating the continuous nature of the waves, while crack growth only had one significant 

frequency content at the start indicating the burst nature of the AE waves generated. This shows 

that CWT can be useful for the identification of the mode of AE generated, be it burst, 

continuous or a combination of both.  

Studies by Baccar & Soffker (Baccar and Söffker 2015; Baccar and Soffker 2013) have 

shown the advantage of using the frequency-based technique in addition to parameter-based 

analysis. In the first study, they used STFT to represent raw AE waves captured during wear 

examination of a test rig and found that although parameter-based analysis of the AE energy 

indicated   when each wear phase occurred, the same could not be said for the STFT results. 

When compared, STFT during the run-in phase looked similar to the wear-out phase, which 

did not allow for the identification of the two phases. They also found that the quantitative 

analysis of the frequency content of each phase was not possible with the STFT analysis 

(Baccar and Soffker 2013). In a further study by the same authors, they found that combining 

the STFT with CWT allowed them to distinguish between the wear phases and also identify 

the frequency components of each phase which was not possible in the previous study (Baccar 
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and Söffker 2015). This illustrates that although using the frequency-based technique provides 

more information than parameter-based analysis, a combination of the two techniques gives a 

more effective extraction of information from the raw AE waveforms. Other studies using 

frequency-based analysis include the use of the Window Fourier Transform technique to 

differentiate between plastic deformation and brittle fracture (Rubtsov et al. 2013); using 

frequency spectra to distinguish between abrasive and adhesive wear (frequency peak was at 

1.1 MHz during adhesive wear and between 0.25 to 1 MHz during abrasive wear) (Hase, 

Mishina, and Wada 2012); the study of the relationship between sound frequency spectrum and 

polymeric gear materials (Hoskins et al. 2011) and the use of spectral analysis to monitor 

fretting wear in a poly-methyl-meth-acrylate/steel contact where the acoustic energy was found 

to be dependent on the contact load and sliding speed (Briscoe et al. 2001). 

 

2.4.2 Tribology of Human Joints  

Schwalbe et al. (Schwalbe, Bamfaste, and Franke 1999) and Franke et al. (Franke et al. 

2004) used AE to study the in vivo friction and wear of knee joints. In both studies, a 

piezoelectric transducer was fixed directly to the skin over the medial femoral condyle of the 

knee joints of patients and measurements were taken while they carried out a variety of daily 

tasks, for example, climbing stairs. The AE waves from both studies were of the continuous 

type (continuous emission has been shown to represent friction-related event, (Asamene and 

Sundaresan 2012)), confirming the presence of friction processes during knee bending 

(Schwalbe, Bamfaste, and Franke 1999; Franke et al. 2004). Schwalbe et al. extended their 

study to investigate the probability of predicting bone fracture by applying combined bending 

and torsional loads to explanted human femur bones. The transducer was attached directly to 

the bone to collect and analyse AE waves generated. The AE signal was observed to be of  two 

types: burst emission followed by continuous emission. The burst type indicated crack 
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initiation whilst the continuous type showed the relaxation phase following cracking. Agcaoglu 

& Akkus (Agcaoglu and Akkus 2013) conducted a similar study whereby they investigated the 

fatigue life of human tibia cortical bone by applying three-point bending loads to the bone with 

two R15-α sensors from Physical Acoustics attached to the sides of the support. They could 

predict failure at an average of 95±7% of the fatigue life on average. AE, in both studies, was 

used to distinguish between tribological processes and material fracture and predict fatigue 

failure of bones. 

As humans age, the likelihood of developing osteoarthritis increases. Researchers have 

tribologically assessed the knee joint to diagnose osteoarthritis. It is understood that early 

diagnosis can lead to better management of diseases of this type, thereby reducing the 

likelihood of the knee degenerating to the point of requiring replacement. Shark et al. (L.-K. 

Shark, Chen, and Goodacre 2010) used a bespoke joint acoustic analysis system (JAAS) to 

assess knee osteoarthritis by identifying the differences between healthy and Osteoarthritic 

(OA) knee joints. 

The JAAS (Figure 2.8) is a measurement system that combines a traditional AE system 

with an electronic angle measurement system to provide AE data based on the joint angle. Knee 

data was collected from 8 healthy subjects and 5 osteoarthritic subjects. To allow for 

comparison of the results, the mean age of the groups was kept in the same range - OA knees, 

Figure 2.8: Illustration of the Joint Acoustic Analysis System 
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71.4 years and healthy knees, 71.5 years. They had the subjects perform sit-stand-sit 

movements in four phases: ascending-acceleration, ascending-deceleration, descending-

acceleration, and descending-deceleration. AE data was acquired throughout via a wide band 

piezoelectric sensor attached to the knee joint and a goniometer attached to the lateral aspect 

of the knee for joint angle measurement. Recorded AE signals were analysed based on two AE 

features (Average Signal Level (ASL) and Peak Magnitude) and it was observed that OA knees 

produced AE events with higher peak magnitude than healthy knees and the maximum ASL of 

AE events for OA knees were higher than that of healthy knees (L.-K. Shark, Chen, and 

Goodacre 2010). There were able to successfully use AE to differentiate between healthy and 

OA knees. 

In an extended study by the same authors, statistical analysis of the results identified 

further grouping of the OA knees based on different categories like age and progression of 

arthritis thereby indicating the possibility of a relationship between knee AE intensity and the 

progression of joint ageing and degeneration (L. K. Shark, Chen, and Goodacre 2011). A 

similar study by Khan & Yoho analysed the integrity of the knee joint between two groups of 

participants - young (average age of 23 years) and aged (average age of 42 years) (Khan and 

Yoho 2016) (refer to Table 2.2 for more information). They found that the aged knees generated 

AE signals with higher amplitude than the younger ones. This and the other studies show that 

there is a strong potential for knee AE to be used as a tool for the diagnosis of joint conditions, 

especially because it is a non-invasive procedure. 

2.4.3 Implant condition monitoring 

The promise shown by AE as a tool for measuring the tribology of human joints has prompted 

researchers to conduct studies of its use in arthroplasty research for implant condition 

monitoring as well as in the evaluation of implant failure mechanisms. 
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One of the first applications of AE in arthroplasty research was by Sugiyama et al. (cited 

in (Kapur 2016)) in 1989. Using AE, they established that hip implants were prone to failure 

at the implant-cement interface during torsional loading. 

Rowland et al. (Rowland et al. 2004) and Rodgers et al. (Rodgers et al. 2014) used AE 

to monitor the health of hip implants. Rowland et al. attempted to correlate AE activity of 

metal-on-metal hip implants to out-of-line wear using a five-station wear rig. Pancom P15 

sensors were attached to the upper and lower specimens (Figure 2.9). The presence of high 

attenuation made it possible for the upper and lower specimen to be isolated which in turn made 

zonal determination possible. They were able to show that there was a correlation between AE 

signals and out-of-line wear of metal-on-metal hip prostheses. How the AE signals related to 

the cup and head displacements and the load cycle was not given (Rowland et al. 2004). 

 

 

In contrast, Rodgers et al. (Rodgers et al. 2014) used their study to compare in vivo and 

in vitro data. For the in vivo tests, they used an AE system consisting of four sensors (so that 

the source of vibrations could be identified) placed against the skin of the patients to monitor 

the implants. The focus of the study was to characterize the squeaking of hard-on-hard bearing 

Figure 2.9: Illustration showing acquisition of AE signal from the hip implant 
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surfaces so they chose patients who were known to have experienced audible squeaking, and 

had them perform a range of different motions including sit-to-stand and stand-to-squat. 

Squeaking is a characteristic of the stick-slip phenomenon which occurs during the transition 

between static and dynamic friction in a contact pair (Ferrer et al. 2010). Asperities are in 

greater contact during slip leading to the presence of more AE events, therefore, audible 

squeaking is an effect of the slip phase. They compared the in vivo results to the in vitro result 

from one retrieved hip implant and found that the in vitro tests had higher magnitudes than the 

in vivo tests but they both exhibited similar frequency characteristics suggesting that the in vivo 

results were lower due to attenuation effect. Another instance where AE has been successfully 

used for implant condition monitoring is in the monitoring of dental implants. These studies 

include the in vitro assessment of the bone-implant interface using AE (Ossi et al. 2012), the 

transmission of AE in bones, implants and dental materials (Ossi et al. 2013) and for dental 

biomechanical testing under cyclic loads (Huang, Chen, and Lin 2016). 

It has been found that hip implants experience corrosive and fretting wear mechanisms 

at the stem-cement interface (Bryant et al. 2014; Howell et al. 2004; Zhang et al. 2009). Fretting 

will induce stress damage that has been shown to be detectable using AE (Briscoe et al. 2001). 

Hence, there is potential for using AE to detect fretting damage in implants.  

2.4.4 Effect of Attenuation on AE Tests 

Since bone within joints is surrounded by cartilage, muscle and fluids within the body, 

it is expected that there will be attenuation of the AE signal. Strantza et al (Strantza et al. 2014) 

carried out a study to highlight the complexity of wave propagation through bone tissue. They 

used AE sensors to conduct elastic stress wave measurements in human femur bones using the 

pencil lead break method for pulse excitation. This involves placing the lead of a pencil against 

the structure under test and applying a gentle load until it breaks. This break will allow the 

release of stress accumulated while force was applied which leads to a microscopic 
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displacement of the surface thereby causing the propagation of a pressure wave into the 

structure (Sause 2011). When compared to waveforms from a bulk and homogeneous metal 

block, it was found that the femur bones exhibited stronger dispersive and attenuative trends. 

This was due to the micro-structure and geometry of the bone. Increasing the propagation 

distance also led to strong changes in parameters such as rise time, central frequency and 

average frequency (Strantza et al. 2014). 

Khan-Edmundson et al. (Khan-Edmundson et al. 2012) conducted a study to determine 

the range of frequencies observed on the skin surface and consequently developed a soft tissue 

attenuation model. They placed 4 ultrasonic sensors against the skin (between the greater 

trochanter and the mid femur) of a patient and recorded data as they undertook motions such 

as standing from sitting and walking up the stairs. Using statistical methods such as Fourier 

transforms and bode plots, the maximum frequencies present at the skin were around 20 kHz 

with majority below 10 kHz (Khan-Edmundson et al. 2012). During in vitro studies, there will 

be interferences such as background noise which could lead to misinterpretation of signals 

when relating to in vivo behaviour. Having an attenuation model makes it easier to relate in 

vitro bench tests to actual in vivo behaviour. 

Mavrogordato et al. (Mavrogordato et al. 2011) proposed a possible solution by having 

the sensors embedded into the femoral stem of the hip implant before implantation. It was 

believed that this will not only reduce attenuation effects but also eliminate noise interference. 

They observed that specimens with embedded sensors produced a higher number of cumulative 

hit counts than those with external sensors only showing that the effect of attenuation had been 

reduced. The limitation to this method is that a failed sensor would not be replaceable as well 

as manufacturing difficulty as there are lots of factors (e.g., material compatibility, longevity 

and expense) to consider. Despite these limitations, an embedded sensor has a lot of potential 

as an effective method of minimising the attenuation effect of AE signals. 
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Table 2.2: Overview of selected biotribological applications of AE 

AUTHOR REFERENCE 

JOINT 

TEST 

CONDITION 

AE ACQUISITION 

SYSTEM 

ANALYSIS 

METHOD 

CONCLUSION 

Shark et al. 

2010 (L.-K. 

Shark, Chen, 

and 

Goodacre 

2010) 

Healthy and OA 

Knees 

In vivo JAAS Parameter-based 

technique 

JAAS showed 

potential as a tool for 

assessing knee joint 

conditions both in 

clinic and home 

settings. 

Shark et al. 

2011(L. K. 

Shark, Chen, 

and 

Goodacre 

2011) 

Healthy and OA 

Knees 

In vivo JAAS  Parameter-based 

technique 

Wider test group 

confirmed result from 

previous studies. 

Van Toen et 

al. 2012 (Van 

Toen et al. 

2012) 

Cadaveric Spine 

(Ligamentum 

flavum, LF and 

vertebral body, 

VB) 

In vitro Nano 30 sensor Parameter and 

frequency-based 

techniques 

There is potential for 

using AE to 

differentiate between 

failures of different 

spinal components. 

Khan-

Edmundson 

et al. 2012 

(Khan-

Edmundson 

et al. 2012) 

Artificial Hip In vivo 4 passive ultrasonic 

sensors 

Frequency-

based statistical 

analysis 

Soft tissue 

attenuation influences 

AE signals. 

Hua et al. 

2014 (Hua, 

Fan, and Jin 

2014) 

Artificial Hip In vitro tribo-

acoustic rig test 

Sound pressure was 

acquired with an 

omni-directional 

microphone 

Parameter and 

frequency-based 

techniques 

There is potential for 

tribo-acoustic tests 

for artificial joints. 

Rodgers et 

al. 2014 

(Rodgers et 

al. 2014) 

Artificial Hip In vivo and in 

vitro tests 

(retrieved hip 

implants) 

4 passive ultrasonic 

sensors and National 

Instruments Compac 

DAQ 

Frequency-

based technique 

Validates relating 

bench test result to 

implant performance 

and degradation 

within a patient. 

Arun et al. 

2014 (Arun 

et al. 2014) 

Cadaveric Spine In vitro 

compression test 

via impact 

loading 

4 Nano 30 sensors Frequency-

based technique 

Frequency-based 

analysis (STFT & 

spectral analysis) 

provides a complete 

understanding of 

tribological 

mechanisms present. 

Khan and 

Yoho 2016 

(Khan and 

Yoho 2016) 

Young and aged 

knees 

In vivo 4 R6α AE sensors 

and goniometers for 

joint angle 

measurements 

Parameter-based 

technique 

Onset of knee 

degeneration can be 

diagnosed using AE. 

Fitzpatrick 

et al. 2017 

(FitzPatrick 

et al. 2017) 

Artificial Hip In vivo and in 

vitro tests 

(retrieved 

implants) 

4 passive ultrasonic 

sensors and National 

Instruments Compac 

DAQ 

Frequency-

based technique 

AE has potential as a 

tool for monitoring 

the condition of 

artificial hips in vivo. 
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2.5 Bio-tribo-acoustic study – Aims and Objectives 

In order to achieve the potential of using AE to identify and diagnose failed artificial 

joints, a test system that can combine biotribological study with AE testing is required. AE 

testing has already been shown to be capable of identifying tribological mechanisms of 

mechanical systems through tribo-acoustic testing. It has been established that artificial joints 

fail mostly through biotribological mechanisms and the literature has shown that AE can be 

advantageous for implant condition monitoring. This shows there is potential for using AE to 

monitor tribological mechanisms of artificial joints for the purpose of identifying and 

diagnosing their failure. 

The overall aim of the research presented in this thesis is to diagnose tribological 

phenomenon in artificial joint materials using AE. This aim will be achieved by undertaking 

the following objectives: 

1) Predict the coefficient of friction profile using time dependent AE features. 

2) Investigate the progression of damage in a simulated artificial joint articulating 

surface using AE. 

3) Undertake a fundamental study on the use of supervised and unsupervised 

learning to classify AE signals. 

4) Identify the damage mode in a simulated artificial knee joint articulation using 

AE testing. 

2.6 Summary 

This chapter has presented a review of previous research relevant to this thesis including 

the aims and objectives. Coming up in chapter 3 is the general materials and methods used for 

the experimental work presented in this thesis. 
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Chapter 3 
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3.1 Introduction 

In the previous chapter, a review of previous research relevant to this thesis has been 

presented including the aims and objectives of the research project. This chapter presents the 

general materials and methods used in this thesis. The main materials used are presented in 

section 3.2. In section 3.3, the test methods, test parameters and data analysis that are employed 

in multiple chapters are presented. Methods and data analysis unique to each experimental 

work can be found in their individual chapters.  

3.2 Materials 

Materials used for the work reported in this thesis are those that have been used in the 

design and manufacture of artificial joints. They were chosen to represent a metal-on-polymer 

joint replacement articulation. The materials are presented in Table 3.1. 

Table 3.1: Materials used in alphabetical order. Properties were either provided by the 

suppliers or from other public sources (Geetha et al. 2009; Xin, Shepherd, and Dearn 2012). 

Material Young’s Modulus, GPa Poisson’s Ratio Density, gcm-3 

CoCrMo  240 0.29 8.4 

PEEK 3.4 0.36 1.29 

STEEL 210 0.29 8 

UHMWPE 0.7 0.46 0.93 

 

3.3 Methods 

3.3.1. Tribo-Acoustic Test System 

to allow for the acquisition of AE signals during tribological testing, a tribo-acoustic 

test system was designed. This consists of a tribometer for friction tests and an AE acquisition 

system for the acquisition and recording of AE signals. 
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Friction Tests 

In the design of artificial joint replacement devices, tribometers have been employed in 

material bench testing to investigate their suitability for the intended use before carrying out 

long term wear tests using joint simulators (Olorunlambe, Shepherd, and Dearn 2019). All tests 

reported in this thesis were carried out on the TE77 High-Frequency Friction Machine (Phoenix 

Tribology, Newbury, UK). It is a multi-function test machine for investigating materials’ 

friction, lubrication, and wear behaviour.  It can be loaded up to 1000 N and has a maximum 

stroke of 25 mm making it capable of simulating various sliding contact conditions for different 

applications. It has been shown to be capable of simulating biomechanical contacts such as hip 

replacement joints (Choudhury et al. 2013) making it a suitable choice of tribometer for the 

tests reported in this thesis.  

It has a COMPEND 2000 software connected to a PC for sequence control of test 

parameters such as load and frequency and the acquisition of measured data such as coefficient 

of friction. The friction force is measured using a piezo-electric transducer and the coefficient 

of friction is calculated on-line using the measured load and the time-smoothed friction value. 

Figure 3.1:The TE77 test configurations used in this thesis. (a) The face contact was used for 

tests in chapters 4 & 6; and (b) The line contact was used for tests in chapter 5. 
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The TE77 is capable of a number of several test configurations, but the two employed in this 

thesis are the line contact and the face contact (Figure 3.1).  The experimental layout is shown 

in Figure 3.2. 

 

 

Figure 3.2: Experimental layout of the TE77 tribometer and the AE acquisition system. (1) 

AE sensor mounted on (2) polymeric upper specimen, (3) flat lower specimen, (4) lubricant 

bath, (5) lubricant, (6) heater block. 

To simulate the in vivo joint environment, tests were conducted with Oxoid quarter 

strength Ringer’s solution (ThermoFisher Scientific, Oxoid Limited, Hampshire, UK) serving 

as the lubricating medium at a temperature of 37±2◦C (except for the adhesive tests in chapter 

5 which were conducted without a lubricant to maximise the adhesive process). The solution 

was prepared by dissolving one tablet (~1.2 g) in 500 ml of distilled water and sterilised in an 

autoclave at 121°C for 15 minutes. The prepared Ringer’s solution was drip-fed onto the 

contacting surface at 0.1 ml per minute. The Ringer’s solution tablet was made from sodium 

chloride, potassium chloride, calcium chloride 6H2O and sodium bicarbonate 0.05. 

Temperature has also been known to have an effect on AE signals (Boon et al. 2014) but since 

the temperature for all tests was kept constant, these effects were considered negligible. 
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Acquisition and Post-Processing of Acoustic Emission Signals 

AE signals were acquired using an acquisition and recording system (Mistras Group, 

Cambridge, UK) comprising of a nano-30 AE sensor, a 2/4/6 preamplifier with a gain of 60 dB 

and the AEWin PCI2 software for the conditioning and storage of the detected signal.  

The nano-30 miniature sensor was chosen due to its small size (8 mm outside diameter 

and a length of 8 mm, see Figure 3.3) so that it can be mounted directly on to the polymeric 

specimens (Figure 3.2). This will help reduce the effect of attenuation on the acquired signals. 

It has a resonant frequency of 300 kHz and a good frequency response over the range of 125 – 

750 kHz.  To ensure that significant AE signals are acquired, certain timing parameters need 

to be set by the user. Selected AE acquisition parameters that need to be defined before testing 

are presented in Table 3.2. 

The acquired AE signals were post-processed using the NOESIS Advanced AE 

Analysis software (Mistras Group, Cambridge, UK) to compute new discrete AE features from 

the waveforms for further analyses. Post-processing of AE signals can produce 50+ features 

which can be computationally expensive during analysis. The number of features was 

minimised by focusing on the features most used in literature. The AE features used in this 

thesis and their definitions can be found in Table 3.3. 

 

Figure 3.3: Pictures of the 2/4/6 Preamplifier (Left) and the Nano-30 AE Sensor (Right) 
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Table 3.2: AE Timing Parameters and their descriptions 

AE TIMING PARAMETERS DEFINITION 

Peak Definition Time (PDT) Ensures actual peak of the waveform is recorded. 

Hit Definition Time (HDT) Ensures that all counts in one hit are recorded. 

Hit Lockout Time (HLT) Used to decrease the negative effect of reflection in 

reverberant environment. 

 

Table 3.3: Selected AE features and their definitions in alphabetical order. 

AE FEATURES DEFINITION 

Absolute Energy (aJ)  The true energy of the signal on a 10 kohm resistor 

AE Root Mean Square (V) Root mean square of the area under the voltage curve 

Amplitude (dB) Maximum amplitude of the signal 

Average Frequency (kHz) Signal counts over signal duration 

Average Signal Level (dB) The RMS value converted to the dB scale 

Counts to Peak (#) Number of crossings from first threshold crossing to the point where maximum 

amplitude is reached 

Duration (µs) The time from first threshold crossing to the last threshold crossing  

Peak Frequency (kHz) Frequency corresponding to the peak value of the power spectrum of the FFT 

transform 

RA Value (µs/dB) Time per amplitude needed for signal to reach its peak value. Expressed as ratio 

of risetime to amplitude. 

Risetime (µs) The time from first threshold crossing to when the maximum amplitude is 

reached 

Signal Strength (pVs) The area under the signal envelope 

 

3.3.2. Friction Test Parameters 

TE77 Load 

The TE77 test load used in the work presented in chapters 4 and 5 was determined using 

Hertzian contact mechanics (Johnson 1985) and the Charite Lumbar Spinal Implant (LSI) was 

used as an exemplar joint (Figure 3.4) . The contact pressure of a ball-and-socket Charite 

Lumbar Spinal Implant (with radii of 10 mm and 14 mm with a radial clearance of 14 0.35 
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mm) was calculated using the load and displacement conditions defined by BS ISO 18192-1 

for wear of total intervertebral spinal disc prostheses (Moghadas et al. 2012; BS ISO 18192-1 

2011). The calculated contact pressure was then used to find an equivalent load based on the 

specific test configuration (face contact in chapter 4 and line contact in chapter 5).  The 

equations used for the calculations are presented in Equation 3.1 to Equation 3.4.  The 

calculated maximum contact pressure can be found in Table 3.4. 

1

𝐸∗
=  

1 −  𝜈1
2

𝐸1
+ 

1 − 𝜈2
2

𝐸2
 

Equation 3.1: Calculation for equivalent elastic modulus, E*, where E1 & E2 represent the 

elastic moduli of the socket and ball materials, respectively, and 𝜈1 & 𝜈2 are the Poisson’s 

ratios of the materials. 

1

𝑅
=  

1

𝑅1
+  

1

𝑅2
 

Equation 3.2: Calculation for equivalent radius, R, where R1 & R2 represent the radii of the 

socket and balls materials, respectively. 

𝑎 = (
3𝑃𝑅

4𝐸∗
)

1
3
 

Equation 3.3: Calculation for contact area radius, a, where P is the normal applied load. 

𝑝0 =  
3𝑃

2𝜋𝑎2
 

Equation 3.4: Calculation for maximum contact pressure, 𝑝0. 
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Table 3.4:Maximum contact pressure a ball-and-socket Charite Lumbar Spinal Implant is 

subjected to. Calculated using Hertzian contact mechanics. 

Ball radius, mm Load, N (BS ISO 18192-1 2011) Maximum contact pressure, MPa 

10 600 10.1 

2000 15.1 

14 600 6.5 

2000 9.7 

 

 

Figure 3.4: Image of a Lumbar Spinal Implant. 

Choice of contact surface configuration 

In order to closely simulate a ball and socket contact, a sphere-on-plane configuration 

was initially considered but calculations showed that a load of about 1 N would be required on 

the TE77 to simulate a contact pressure close to those achieved in a ball-on-socket Charite LSI. 

Such a low load could make for unstable friction calculation and a minimum sphere diameter 

of 20 mm would be required which is more than the 6 mm & 10 mm sphere diameters the TE77 

is configured for. Hence, a disc-on-plate configuration (i.e., face contact) was chosen as an 

alternative for the proof-of-concept tests presented in chapter 4. The calculations can be found 

in the appendix. 

Sliding Velocity 

The maximum sliding velocity a lumbar spinal implant is subjected to during long-term 

wear testing on a spine simulator was calculated using simple harmonic motion equations and 
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motion values from the BS ISO 18192-1 standard (BS ISO 18192-1 2011). Using the maximum 

sliding velocity calculated (6.909 mm/s) and a frequency of 2 Hz, an equivalent stroke length 

for the TE77 was found to be 1.0996 mm. With such a low stroke length, only fretting wear 

would occur and there is an added risk of fluid entrapment due to the large diameter of the discs 

(10 mm). A stroke of 12.5 mm was chosen instead to obtain an average sliding velocity of 50 

mm/s (when sliding at a frequency of 2 Hz) which is the recommended value for a linear 

reciprocating wear motion in the standard for wear testing of polymeric materials used in total 

joint prostheses (see Annex A1 of ASTM International 2017). This stroke value was kept 

constant for all tests presented in this thesis. 

3.3.3. Preparation of Test Specimens 

Before and after each test, polymeric test specimens were cleaned using the method 

described in appendix A6 of the Standard Test Method for Wear Testing of Polymeric 

Materials Used in Total Joint Prosthesis (ASTM International 2017). First, they were rinsed 

with tap water to remove bulk contaminants and then washed in an ultrasonic cleaner in a 

solution of 1% detergent for 15 minutes. They were then rinsed in a stream of distilled water 

before rinsing again in an ultrasonic cleaner in distilled water for a further 5 minutes. 

Afterwards, they were dried with lint-free tissue and then immerse in ethanol for 3 minutes. 

After immersion in ethanol, they were dried again with lint-free tissue and then air-dried at 

room temperature for 30 minutes. Metallic specimens were washed in ethanol before and after 

each test. 

3.3.4. Optical Imaging 

The Alicona InfiniteFocusG5 Optical 3D Measurement System (Alicona Imaging 

Gmbh, Raaba, Austria) was used to obtain and analyse images of the wear scars. Images were 

taken at a magnification of 20x with the polariser turned off to improve the quality of the image.  
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3.3.5. Data Analysis 

After post-processing of acquired AE signals in NOESIS, further analyses were carried 

out using MATLAB versions R.2019a and R.2020a (MathWorks, Cambridge, UK). 

The data analysis presented here was used in multiple chapters. The chapter-specific 

ones can be found in their respective chapters. 

Clustering of AE data 

Clustering is an unsupervised pattern recognition technique used to group data sets into 

one or more clusters based on similarities and differences detected between data points.  AE 

signals from tests in chapters 4 & 5 were clustered using the k-means clustering method. This 

method clusters data by minimising the sum of Euclidean distances from all vectors of a cluster 

to its centre (Momon et al. 2012). The k-means clustering algorithm is as follows; 

1. Sample data sets were defined as X = {𝑥𝑖|𝑖 = 1,2, ⋯ , 𝑛}, 𝐶𝑗(𝑗 = 1,2, ⋯ , 𝑘) where 

X denotes the 𝑘 categories of clusters and  𝑐𝑗(𝑗 = 1,2, ⋯ , 𝑘) represents the initial 

cluster centre. The clusters 𝐶1, 𝐶2, ⋯ , 𝐶𝑘 satisfy: 

a. 𝐶𝑖 ≠ ∅, 𝑖 = 1,2, ⋯ , 𝑘; 

b. 𝐶𝑖 ∩ 𝐶𝑗 = ∅, 𝑖, 𝑗 = 1,2, ⋯ , 𝑘; 𝑖 ≠ 𝑗; 

c. ∑ 𝐶𝑖 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}𝑘
𝑖=1 . 

2. 𝑘 samples were randomly selected, and (𝑐1, 𝑐2, ⋯ , 𝑐𝑘) was defined as the initial 

clustering centre.   

3. Using the squared Euclidean distance, each sample in the data sets {𝑥𝑖} was 

assigned to the 𝑘 cluster centres 𝑐𝑖. 

4. The centre of a new cluster  𝑐𝑖(𝑖 = 1,2, ⋯ , 𝑘), i.e., 𝑐𝑖 =
1

𝑛
∑ 𝑥𝑖=𝑆𝑖

, where 𝑛 is the 𝑆𝑖  

cluster domain containing the number of samples, could then be calculated, if 𝑐𝑖 ≠
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𝑐𝑖(𝑖 = 1,2, ⋯ , 𝑘) then step (3) was repeated. Otherwise, the algorithm converged, 

and the analysis ends.   

To determine the optimal cluster number k, the Silhouette Index (SI) was plotted and 

the cluster number with the highest SI value was chosen as the optimal cluster number k.   

Summary 

This chapter has presented the general materials and methods employed in this thesis. 

Coming up in chapters 4, 5 and 6 are the presentation and discussion of the results from the 

three main areas of experimental work carried out to meet the aims and objectives of this thesis. 
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Chapter 4 

 

Condition Monitoring of a 

Simulated Joint Articulation - 

A proof-of-concept study 

 
 

 

 

 

 

 

 

 

 

 

 

The content of this chapter is based on the following publication: 

Olorunlambe K.A.; Eckold D.G.; Shepherd D.E.T.; Dearn K.D. “Bio-tribo-acoustic 

emissions: condition monitoring of a simulated joint articulation” in Biotribology. – Article 

in Press 
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4.1. Introduction 

Chapter 2 has shown that AE testing has potential as a tool for condition monitoring of 

artificial joints. To achieve this potential, the relationship between AE signals and the wear of 

artificial joints first needs to be established. This is a challenging prospect because the wear of 

artificial joints is traditionally diagnosed during post-retrieval analyses of failed implants. 

Since the causes of failure of implants can be related to wear and wear cannot happen without 

friction occurring within the articulating surfaces (Simon et al. 1975; Moghadas et al. 2012), 

an alternative is to establish a relationship between AE features and the coefficient of friction 

to interpret the wear behaviour. The study by Patzer and Woydt has shown that combining AE 

with the coefficient of friction tests can help improve the interpretation of wear behaviour 

(Patzer and Woydt 2021).   

This chapter presents a proof-of-concept study on how AE features can be used to 

predict the coefficient of friction profile of simulated articulating joint replacement surfaces as 

a first step towards achieving the potential of AE as a tool for diagnosing joint pathologies. 

Time-dependent (TDD) AE features are used to predict the coefficient of friction profile during 

tribo-acoustic testing. The distribution of the different emission types from running-in to the 

prolonged sliding stage is also investigated to understand the evolution of surface damage. 

 

4.2. Materials and Methods 

4.2.1. Experimental Parameters 

AE signals were acquired using the tribo-acoustic test set-up described in chapter 3. 

Tests were performed using ultra-high-molecular-weight polyethylene (UHMWPE) discs 

(supplied by Penta Precision, Portsmouth, UK) as the reciprocating specimen and medical 

grade cobalt chromium molybdenum alloy (CoCrMo) (supplied by Phoenix Tribology, 
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Newbury, UK), machined to a surface finish of less than 0.02 µm Ra, as the fixed specimen. 

For comparison purposes, poly-ether-ether-ketone (PEEK, supplied by Penta Precision, 

Portsmouth, UK) was chosen as an alternative material. Studies have shown PEEK to be a 

viable bio-material used in several biomedical applications such as in cervical TDR devices 

(Xin, Shepherd, and Dearn 2012). It has also shown promise for use in hip implants (Nakahara 

et al. 2013) making it an appropriate choice of an alternative material for testing. The PEEK 

and UHMWPE discs were of diameter 10 mm and 4 mm thickness and machined to a surface 

finish of 1.16 µm Ra and 3.25 µm Ra (measured with the Alicona InfiniteFocusG5 Optical 3D 

Measurement System from Alicona Imaging Gmbh), respectively.  

Equivalent TE77 load was calculated using the maximum contact pressure reached by 

a Charite LSI with a 14 mm ball radius based on the loading parameters stated in BS ISO 

18192-1 2011 (See Equations 3.1 to 3.4 and Equation 4.1). The final load is chosen and other 

test parameters are presented in Table 4.1. For an understanding of how AE features behave at 

different sliding velocities, tests were carried out at 2 frequencies (2 Hz and 4 Hz). The 2 Hz 

tests resulted in a sliding distance of 360 m at 0.05 ms-1 while the 4 Hz tests resulted in a 

sliding distance of 720 m at 0.1 ms-1. Both sliding velocities were within the operating envelope 

of the TE77. 

𝑃∗ =  𝑝0𝑎∗ 

Equation 4.1: Calculation for equivalent TE77 load, P*, in a face contact where a* is the 

nominal contact area. 

During post-processing of AE signals using the NOESIS software, feature extraction 

settings were kept the same as the acquisition settings apart from the threshold which was 

increased to 40 dB as initial observation of the acquired signals (see Figure 4.1) show that some 

noise was still present in the data. 
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Table 4.1: Summary of Test Parameters 

 Parameters Values 

TE77 PARAMETERS Load 660 N 

Frequency  2 Hz, 4 Hz 

Stroke Length 12.5 mm 

Sliding Velocity 50 mm/s, 100 mm/s 

Test Duration 2 hours 

AE ACQUISITION 

PARAMETERS 

Preamplifier gain 60 dB 

Threshold 35 dB 

Sampling Rate 2 MHz 

Peak Definition Time (PDT) 400 µs 

Hit Definition Time (HDT) 400 µs 

Hit Lockout Time (HLT) 1000 µs 

Maximum Hit Duration 1000 ms 

Band Pass Filter  100 – 400 kHz 

 

 

Figure 4.1: Raw AE signal at (a) 37 dB and (b) 41 dB amplitudes. The 37 dB signal is noisier 

than the 41 dB signal. 
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4.2.2. Data Analysis 

Time Series Neural Network  

Artificial neural networks (ANN) are computational architectures modelled after the 

brain’s architecture (Curry and Rumelhart 1990). To further explore the relationship between 

time-dependent AE features and the coefficient of friction (CoF) profile, a nonlinear 

autoregressive neural network with external inputs (NARX) was deployed to predict CoF.  

NARX  is a dynamic form of ANNs based on the linear ARX, commonly used in time series 

analysis (Narendra and Parthasarathy 1991; Chen, Billings, and Grant 1989; Ouyang 2017). It 

effectively solves nonlinear time series problems (Ouyang 2017), making it suitable for this 

study.  The NARX model equation is shown in Equation 4.2, where y(t), the predicted value 

of the model, is predicted using its previous values, y(t-1) to y(t-ny), and the corresponding 

previous values of an external input signal, x(t-1) to x(t-nx).  There are two forms of NARX 

architecture: series-parallel and parallel architecture (Ouyang 2017). The series-parallel NARX 

architecture was chosen for this study because the availability of the previous values of y(t) 

makes the network more accurate. The Neural Net Time Series App in MATLAB version 

R2021a was used for training and testing the NARX models. 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑛𝑦), 𝑥(𝑡 − 1), 𝑥(𝑡 − 2), … , 𝑥(𝑡 − 𝑛𝑥)) 

Equation 4.2: NARX model equation 

Herein, y(t) is the coefficient of friction recorded throughout the test and x(t) is a 3-

element vector consisting of the three time-dependent AE features – absolute energy, average 

signal level, and AE root mean square value. The Neural Net Time Series App in MATLAB 

version R2021a was used for training and testing the NARX models. An illustration of the 

NARX network is shown in Figure 4.2. There will be differences in how the two polymeric 

materials behave when sliding against the CoCrMo plate due to different material properties; 

hence, two NARX models were built - one for PEEK and the other for UHMWPE. Both models 
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were trained using the Levenberg-Marquardt training function with ten neurons in the hidden 

layer. Training data were randomly divided into three splits - training data (70%), validation 

data (15%) and test data (15%). Performance was evaluated using mean squared error (MSE) 

and R2 values.  A low MSE and high R2 value indicate a good training performance. 

 

Figure 4.2: NARX Neural Network. Obtained from MATLAB. 

K-means clustering 

To understand the distribution of AE signals as the tests progressed from one stage to 

the other, acquired hits were clustered and then categorised into one of the three emission types 

– burst (hits with high amplitude and short duration), continuous (hits with low amplitude and 

long duration) and mixed mode (mixture of burst and continuous). The k-means clustering 

method was employed. The method is explained in detail in chapter 3 (section 3.2.5).  

Since the three emission types can be distinguished using duration and amplitude values 

(Olorunlambe, Shepherd, and Dearn 2019), they were the AE features fed into the clustering 

algorithm and the initial number of k clusters was set to three emission types. The silhouette 

index (S.I.) plot was then used to determine if it was the optimal number of clusters. 

4.3. Results and Discussion 

4.3.1. Using AE to predict coefficient of friction profile 
 

The three time-dependent AE features: root mean square value (RMS), average signal 

level (ASL) and absolute energy (AbsE), all exhibit similar transient response to the coefficient 
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of friction (CoF) (Figure 4.3 & Figure 4.4) for both polymeric specimens at the two test 

frequencies. This suggests a strong potential for using time-dependent AE features to predict 

CoF. Other studies investigating the potential of AE as a tool for predicting tribocorrosion 

processes in dental implants and for the early detection of failure modes in total hip 

replacements also found that the coefficient of friction and absolute energy of the AE signal 

exhibits similar transient responses (Lee et al. 2021; Barão et al. 2021). The predicted CoF can 

also be used to infer the wear behaviour of test specimens since previous studies have shown 

that the coefficient of friction of PEEK and UHMWPE can be directly related to the wear rate 

(Petrica et al. 2016; Kanaga Karuppiah et al. 2008). 

 

Figure 4.3: RMS (blue line) & CoF (black line) plots for (a) PEEK at 2 Hz, (b) UHMWPE at 

2 Hz, (c) PEEK at 4 Hz and (d) UHMWPE at 4 Hz. Red dash line indicates transition from 

running-in (stage I, after lowest CoF is reached) to prolonged sliding. 
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Figure 4.4:Plots of average signal level (ASL) and absolute energy (AbsE) in relation to 

coefficient of friction (CoF) 

 

The correlation between all three time-dependent AE features and the coefficient of 

friction for both PEEK and UHMWPE (Figure 4.3 & Figure 4.4) make them suitable as the 

external input for the NARX neural network model. The training performance and training 

response is shown in Figure 4.5 and Figure 4.6.  

Table 4.2 shows the mean square error (MSE) and R2 values obtained after training 

both models. Both models have R2 values greater than 90%, with PEEK having a slightly higher 

value than the UHMWPE model, implying that almost all variability is explained by both 

models indicating a good predictive capability. The trained network is then tested using data 

from the repeat bio-tribo-acoustic tests in open-loop feedback, and the results are presented in 

Table 4.3. The test response curves are presented in Figure 4.7 and Figure 4.8. 
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Table 4.2: NARX Neural Network Training Result Summary 

 PEEK UHMWPE 

MSE 7.78 x 10-8 7.30 x 10-8 

R2 value 0.9995 0.9858 

 

Table 4.3: A summary of CoF prediction results with test data 

 PEEK UHMWPE 

 2 Hz 4 Hz 2 Hz 4 Hz 

MSE 6.78 x 10-5 6.39 x 10 -7 0.0011 1.08 x 10-6 

Regression, R  0.9718 0.9979 0.5976 0.8691 

Mean CoF (Predicted) 

± Standard Deviation 

0.1079 ± 0.0150 0.0510 ± 0.0088 0.0251 ± 0.0062 0.0190 ± 0.0017 

Mean CoF (Actual) ± 

Standard Deviation 

0.1128 ± 0.0202 0.0513 ± 0.0093  0.0436 ± 0.0312 0.0187 ± 0.0020 

 

Figure 4.5: NARX Net Training Performance for PEEK (left) and UHMWPE (right) 
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Figure 4.6: NARX Net Training Response for PEEK (top) and UHMWPE (bottom) 
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Figure 4.7: Test Response for PEEK Tests at 2 Hz (top) and 4 Hz (bottom) 
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Figure 4.8: Test Response for UHMWPE Tests at 2 Hz (top) and 4 Hz (bottom) 
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The shape of the predicted CoF curve displays similar characteristics to the true curve 

for all tests (see Figure 4.7 and Figure 4.8). The difference between predicted and actual values 

is low as evidenced by the low MSE values (see Table 4.3). During prediction, it is assumed 

that the relationship between acquired AE data is uniform across all tests for each polymer at 

both test frequencies. Uniformity is not always guaranteed, as repeatability has been a 

limitation of AE testing (Hellier 2003). PEEK and UHMWPE have different physical and 

acoustic properties, such as Young’s modulus and attenuation coefficients affecting the 

characteristics of AE signals acquired from both materials. The effect of these different 

material properties is explained further in Section 4.3.4. The strain waves generated in the 

polymer (due to loading) would differ for each test, causing acquired AE data to have different 

characteristics, hence the difference between predicted and actual CoF. NARX neural net test 

result for UHMWPE at 2 Hz exhibited the smallest R2 value (Table 4.3), and is reflected in 

Figure 4.8, where the UHMWPE 2 Hz test curve has the most error between predicted and 

actual CoF values. There is a likelihood that the effect of the material and acoustic properties, 

in addition to the repeatability issues of AE testing, is more significant in the UHMWPE tests 

hence the low R2 values obtained compared to the PEEK tests. Despite these limitations, there 

is still a close similarity between the predicted and actual CoF response curves (in addition to 

the R2
 value of about 75 % obtained for UHMWPE 4 Hz test predictions), thereby supporting 

the hypothesis that time-dependent AE features predict the coefficient of friction profile of a 

metal-on-polymer joint articulation surface during in vitro testing.  This result has promising 

implications for the potential use of AE testing to evaluate the frictional (and, by extension, 

wear) behaviour of an artificial joint bearing surface in vivo when it will be impossible to carry 

out friction and wear tests.   
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4.3.2. AE parameters at different test stages 

The bio-tribo-acoustic tests can be split into two stages as shown in Figure 4.3. At the 

onset of sliding, CoF and RMS values are seen to first reach an initial maximum followed by 

a minimum. This initial increase is due to the collision of surface asperities at the onset of 

sliding also known as the running-in stage (Boness and McBride 1991). The source of AE 

signals during running-in is the energy released during the initial collision and subsequent 

fracture of asperities in addition to the material deformation and crack formation that occurs 

within the contact region (Belyi, Kholodilov, and Sviridyonok 1981). Stage 2 is where 

prolonged sliding occurs as proven by the continued variation in CoF and RMS values 

observed. These variations are less severe than during running-in, indicative of a small change 

in friction over a large time span. Continued plastic deformation and crack propagation as 

sliding progresses is the predominant source of AE at this stage. There is also the ploughing 

action of deformed asperities (for the UHMWPE specimens) and the presence of wear particles 

entrapped within the contacting surfaces (for the PEEK specimens) (Jiaa and Dornfeld 1990), 

hence, the variation in underlying tribological processes and the recorded CoF and RMS values. 

To better understand the distribution of AE signals across the two test stages, k-means 

clustering was used to cluster and categorise AE signals into three clusters. The choice of three 

clusters was affirmed by the silhouette index plot (Figure 4.9), where most of the hits in all 

three clusters had silhouette values greater than 70% proving that they belong to those clusters. 

It was assumed that the misclassified hits (hits with negative silhouette values) do not 

significantly affect the clustering results due to their small number. Cluster assignments for 

both polymeric materials at 2 Hz and 4 Hz are shown using the duration vs amplitude plots in 

Figure 4.10. After post-processing of AE signals, the UHMWPE 2 Hz tests had less hits than 

the other tests hence why its clusters are not as densely packed as the other tests. 
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Figure 4.10: Cluster Assignments 

Each cluster has similar properties for both materials at the two test frequencies. Based 

on observation of the cluster properties in conjunction with the features of the three emission 

types, the clusters are labelled as follows: 

Figure 4.9: Silhouette plot showing silhouette values of hits in each cluster 
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• Burst Emission - Clusters with high amplitude and short duration hits. These 

correspond to cluster 3 for the PEEK 2 Hz tests, cluster 2 for the PEEK 4 Hz 

tests, cluster 2 for the UHMWPE 2 Hz tests and cluster 1 for the UHMWPE 4 

Hz tests.  

• Continuous Emission - Clusters with low amplitude and long duration hits. 

These correspond to cluster 2 in PEEK 2 Hz tests and cluster 3 in PEEK 4 Hz, 

UHMWPE 2 Hz & UHMWPE 4 Hz tests. 

• Mixed Emission - Clusters with mid-range amplitude and short to medium 

duration hits. These correspond to cluster 1 in PEEK 2 Hz, PEEK 4 Hz & 

UHMWPE 2 Hz tests and cluster 2 in UHMWPE 4 Hz tests. 

 

In addition to duration and amplitude, the peak frequency values also exhibit significant 

differences for each emission type as shown in Table 4.4 to Table 4.7 where the mean value 

and 95% confidence interval (C.I.) of the three AE features are presented. 

 

Table 4.4: Mean and 95% confidence intervals (C.I.) of AE features in each cluster for PEEK 

at 2 Hz 

AE Feature  Burst  Mixed Continuous 

 Mean C.I. Mean C.I. Mean C.I. 

Duration, µs 208.73 187.92, 231.52 112.10 108.24, 115.27 901.20 896.32, 905.91 

Amplitude, dB 48.22 48.05, 48.50 41.06 41.04, 41.08 43.11 43.09, 43.13 

Peak Fre- 

quency, kHz 

260.31 258.05, 262.21 222.82 221.71, 223.88 218.96 217.98, 219.89 
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Table 4.5:  Mean and 95% confidence intervals (C.I.) of AE features in each cluster for 

PEEK at 4 Hz 

AE Feature  Burst  Mixed Continuous 

 Mean C.I. Mean C.I. Mean C.I. 

Duration, µs 679.61 676.57, 682.22 100.99 100.20, 101.76 1134.9 1132.37, 

1137.16 

Amplitude, dB 67.83 67.73, 67.92 44.87 44.85, 44.89 45.69 45.66, 45.72 

Peak Fre- 

quency, kHz 

238.58 238.14, 239.00 246.28 246.15, 246.40 240.23 240.00, 240.46 

 

Table 4.6: Mean and 95% confidence intervals (C.I.) of AE features in each cluster for 

UHMWPE at 2 Hz 

AE Feature  Burst  Mixed Continuous 

 Mean C.I. Mean C.I. Mean C.I. 

Duration, µs 50.78 48.71, 52.91 3.88 3.62, 4.18 282.47 263.05, 306.03 

Amplitude, dB 45.84 45.71, 46.00 41.15 41.11, 41.20 43.55 42.87, 44.51 

Peak Fre- 

quency, kHz 

231.45 230.14, 232.59 210.96 209.53, 212.56 218.99 209.02, 229.22 

 

Table 4.7: Mean and 95% confidence intervals (C.I.) of AE features in each cluster for 

UHMWPE at 4 Hz 

AE Feature  Burst  Mixed Continuous 

 Mean C.I. Mean C.I. Mean C.I. 

Duration, µs 154.68 151.66, 157.79 42.94 42.33, 43.63 503.98 500.81, 506.92 

Amplitude, dB 51.24 51.15, 51.33 42.63 42.61, 42.65 46.04 45.99, 46.09 

Peak Fre- 

quency, kHz 

219.34 218.69, 220.03 214.49 214.04, 214.89 229.07 228.79, 229.32 

 

Figure 4.11 shows the distribution of AE signal types across the two test stages for 

PEEK and UHMWPE at both test frequencies. All emission types are present in both test stages 

but in different proportions. Most of the burst emissions are present in stage I (i.e., running-in) 
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of the PEEK 2 Hz tests (Figure 4.11a), whilst a higher percentage of the continuous emissions 

are present in stage II (i.e., prolonged sliding) for all tests. Burst emissions are known to be 

generated due to damage formation such as asperity fractures (Asamene and Sundaresan 2012; 

Unnporsson 2013). Since micro-crack formations characterise the running-in stage due to 

contact and fracture of asperities at the onset of sliding which would cause an instantaneous 

release of high strain energy, it is no surprise that a higher percentage of the burst emissions 

are present during this stage of the PEEK 2 Hz tests. The force required to separate adhered 

particles or junctions as sliding progresses is another source of burst emissions during running-

in. 

Unlike the PEEK 2 Hz tests, a higher percentage of burst emissions were generated 

during the prolonged sliding stage not the running-in stage as expected. This results from  

ploughing causing either deformed asperities during UHMWPE/CoCrMo tests (Liu, Xiang, 

and Li 2004) or the generation of wear debris during PEEK/CoCrMo tests (Siskey et al. 2016). 

Both wear processes cause the release of sudden, instantaneous strain energy, thereby 

generating burst emissions. The tribological processes’ definition softens when mixed 

emissions are measured, where both burst and continuous emissions cannot always be isolated. 

What is most common is for them to coincide, thereby generating mixed emissions. 

The commonality between all tests is the higher percentage of the continuous emissions 

that are present in the prolonged sliding stage.  Continuous emissions are generated when 

multiple signals overlap making them indistinguishable and the envelope of the signal 

amplitudes becomes constant (Asamene and Sundaresan 2012; Unnporsson 2013). The source 

of these emissions are predominantly steady friction and plastic deformation of surface 

asperities mostly during prolonged sliding. 

The two test stages can be related to the everyday motion of the natural and artificial 

joints with the running-in stage representative of the static friction expected at the start of a 
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movement (e.g., starting to stand), during which more significant amount of force would be 

exerted whilst the prolonged sliding stage is representative of the period of the actual motion 

(e.g., walking).   

These findings suggest that the occurrence of frictional events and plastic deformation 

that generates continuous emissions can be vital for the condition monitoring of the tribological 

behaviour of two contacting surfaces during sliding. The distribution of continuous emissions 

can be used to identify test stages and, by extension the most dominant surface damage 

occurring. 

 

Figure 4.11: Distribution of AE signals across all test stages for (a) PEEK at 2 Hz, (b) PEEK 

at 4 Hz, (c) UHMWPE at 2 Hz and (d) UHMWPE at 4 Hz. The generation of more 

continuous emissions during prolonged sliding (stage II) is common to all tests. 
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4.3.3. Acoustic Emission and Wear 

The wear mechanism experienced by the test specimens is predominantly adhesive with 

a polymer sliding against a smooth metal surface (Belyi, Kholodilov, and Sviridyonok 1981). 

This was confirmed by wear scar imaging (see Figure 4.12 ) whereby the peak regions (regions 

with high z value) presenting in the centre of the contact zone, indicate where adhesion has 

taken place. Studies have shown that the frequency of AE signals can also be used to infer wear 

behaviour (Ferrer et al. 2010). It has been reported that the AE frequency spectra due to sliding 

friction have a frequency band of 50 to 250 kHz (Ferrer et al. 2010) and the majority of hits 

from these tests had peak frequencies in the range of 150 to 275 kHz (Figure 4.13), proving 

that sliding friction is the most dominant source of detected AE hits. This is further evidenced 

by the fact that continuous emission hits, known to be mostly due to sliding friction, have 

average peak frequencies in the range of 220 to 240 kHz (see Table 4.4 to Table 4.7). 
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Figure 4.12: Polymeric specimens wear scar images for (a) PEEK at 2 Hz, (b) UHMWPE at 

2 Hz, (c) PEEK at 4 Hz and (d) UHMWPE at 4 Hz. The regions of high z value indicate 

adhesion of displaced wear particles back onto the surface. 
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Figure 4.13: Peak Frequency Distribution Plots for (a) PEEK at 2 Hz, (b) PEEK at 4 Hz, (c) 

UHMWPE at 2 Hz and (d) UHMWPE at 4 Hz. Peak frequencies of the AE hits are mostly in 

the range 150 to 275 kHz. 

4.3.4. Effect of differing material properties 

It was observed that the PEEK tests produced more AE hits with higher intensities than 

the UHMWPE tests. This can be attributed to their differing mechanical properties, which 

govern their sliding characteristics. 

PEEK has a higher Young’s modulus and ultimate tensile strength compared to 

UHMWPE making it more resistant to deflection and plastic deformation. With the same load 

applied, it would require more force to break PEEK asperities compared to those on the 

UHMWPE surface. Hence, the generation of more strain energy at the contact zone, thereby 

producing AE hits with higher intensity as well as more hits overall. This is in line with the 

study by Belyi et al. (Belyi, Kholodilov, and Sviridyonok 1981), where it was found that AE 

intensity is higher for polymers with a higher Young’s modulus. 
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Other factors that could explain the differences are the attenuation coefficient and speed 

of sound in both materials. Although the attenuation coefficient of PEEK (0.38 dB/mm) is 

higher than that of UHMWPE (0.24 dB/mm), sound moves faster in PEEK (2555 m/s) than in 

UHMWPE (1950 m/s) (Cadot, Saillant, and Dulmet 2016). The low speed of sound coupled 

with the higher deformability of UHMWPE could lead to more loss of signal levels as it travels 

from the source to the sensor, which explains why AE signals from UHMWPE have less 

intensity than AE signals from PEEK. 

It is worth noting that despite the difference in intensity levels, AE signals from both 

materials behave similarly showing that differing material properties only affect the intensity 

of the signal. AE signals can be used to infer bio-tribological characteristics irrespective of the 

material type. 

 

4.4. Conclusion 

This chapter has shown that with the use of tribo-acoustic testing, AE signal features 

can be used to interpret frictional processes in a simulated metal-on-polymer joint articulation 

during in vitro testing. The following conclusions were reached. 

• The shape of the coefficient of friction profile can be predicted using a NARX 

neural network with time-dependent AE features. 

• The test stages can be distinguished using the percentage of continuous 

emissions generated, and this can be further used to infer the evolution of 

surface damage. 

• Although AE intensity differed between the two polymeric specimens, the 

quality of the acquired AE signals was not affected. This shows that the concept 

would be applicable to different artificial joint articulations irrespective of their 

bearing surfaces.  
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Having shown how frictional properties of simulated articulating joint surfaces can be 

interpreted using AE features, the next chapter will show how AE signals can be classified 

using machine learning techniques.  
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Chapter 5 

 

 Diagnostic Capabilities of AE 

Testing – a fundamental study 
 

 

 

 

 

 

 

 

 

 

 

 

The content of this chapter is based on the following publication: 

Olorunlambe, Khadijat A., Zhe Hua, Duncan E. T. Shepherd, and Karl D. Dearn. 2021. 

“Towards a Diagnostic Tool for Diagnosing Joint Pathologies: Supervised Learning of 

Acoustic Emission Signals.” Sensors 21 (23): 8091. https://doi.org/10.3390/s21238091. 
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5.1 Introduction 

The previous chapter has shown the capability of AE testing as a tool for monitoring 

the tribological conditions of artificial joints further emphasising the potential of the AE 

technique in diagnosing joint pathologies such as osteoarthritis and artificial joint failure. To 

achieve this, a technique for differentiating AE signals based on wear mechanism must be 

developed. This is a challenging problem if AE signals are only analysed using parameter and 

frequency-based techniques. However, recent studies (Gutkin et al. 2011; Qiao, Weng, and Li 

2019; Yao, Li, and Yuan 1999) have shown that machine learning techniques can be 

advantageous in the analysis of AE signals for damage recognition and identification of failure 

modes. 

This chapter focuses on the application of machine learning techniques in the 

classification of AE signals according to adhesive and abrasive wear mechanisms initiated 

under controlled joint conditions using supervised and unsupervised learning methods. 

5.2 Materials and Methods 

5.2.1. Experimental Parameters 

AE signals were acquired using the tribo-acoustic test set-up described in Chapter 2. 

Tests were performed using poly-ether-ether-ketone (PEEK) rods (6 mm diameter, 16 mm 

length – supplied by Direct Plastics, Sheffield, UK) as the reciprocating specimen and steel 

plates (38 mm by 33 mm by 4 mm) as the fixed lower specimen. For the abrasive wear tests, 

the steel plates were roughened with a belt sander fitted with P40 grade sandpaper. 

Hertzian contact mechanics (see Section 3.2.2) were used to calculate the initial test 

load. First, the maximum contact pressure in a ball-and-socket Charite Lumbar Spinal Implant 

with 10 mm ball radius and 0.35 mm radial clearance (Moghadas et al. 2015) was calculated 

using the loading and displacement conditions defined by BS ISO 18192-1 for wear of total 
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intervertebral spinal disc prostheses (BS ISO 18192-1 2011).  This was then used to calculate 

an initial equivalent TE77 load for a line contact using Equation 5.1. To simulate worst-case 

conditions, the calculated load was increased to 150 N. Final test parameters are given in Table 

5.1. 

AE signals were acquired at a sampling frequency of 2 MHz throughout the tests. After 

post-processing using the NOESIS Advanced AE analysis software, selected AE features were 

collated and loaded into MATLAB (R.2019a) for analysis using pattern recognition techniques 

from the machine learning toolbox and outlined in Section 5.2.2 below. 

𝐹 =  
𝑝0

2𝜋𝑙𝐸∗

2𝑅∗
 

Equation 5.1: TE77 Load calculation for a line contact where l is length of the cylindrical 

rod. 

Table 5.1: TE77 and AE Acquisition Parameters 

 PARAMETERS VALUE 

TE77 TEST 

PARAMETERS 

Load 150 N 

Frequency 2 Hz 

Stroke 12.5 mm 

Test Duration 1 hour 

Lubricant Dry (to induce adhesive wear) and Ringer’s Solution 

(to induce abrasive wear) 

AE ACQUISITION 

PARAMETERS 

Threshold 40 dB 

Pre-amplifier Gain 60 dB 

Band Pass Filter 100 – 600 kHz 

Sampling Rate 2 MHz 

 

5.2.2. Pattern Recognition Technique 

The portfolio of pattern recognition techniques used to drive the learning and matching 

between recorded AE data and the information stored in the training database is outlined below. 
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Feature Selection and Extraction 

AE features for clustering and classification were selected using hierarchical link 

clustering and principal component analysis (PCA). AE waveforms were defined using discrete 

parameters/features to allow pattern recognition techniques based on multi-parameter 

statistical analysis. However, post-processing of the AE signals produced 50+ AE features. 

Therefore, the input AE features were minimised to increase the speed and accuracy of 

classification. The feature selection method used is described in (Momon et al. 2012). First, the 

ten most common features used in previous studies were selected (Gutkin et al. 2011; Momon 

et al. 2012; Ech-Choudany et al. 2017) and then normalised to give a weighting using Equation 

5.2. Next, the correlation matrix was calculated and subjected to complete link-hierarchical 

clustering. Eight features with Pearson correlation coefficients in the range [−0.7: 0.7] were 

then selected. The eight selected features are shown in Table 5.2. 

 

𝑋′ =
 𝑋 −  𝜇

𝜎
 

Equation 5.2: Equation for normalising the discrete AE features. 𝜇 represents the mean value 

of the descriptor and 𝜎 the standard deviation.  

Table 5.2: Selected AE features after hierarchical clustering. Definitions can be found in 

Section 3.2.1. 

 

 

No  AE FEATURES 

1 Amplitude 

2 Duration 

3 Counts to Peak 

4 RA Value 

5 Average Frequency 

6 Peak Frequency 

7 AE Root Mean Square 

8 Absolute Energy 
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 Before supervised classification of the AE signals, PCA was used to determine new 

uncorrelated features by linear combinations of the features selected after hierarchical 

clustering. The principal components were chosen using the process outlined below: 

Normalised AE features were composed into a matrix 𝑋 of dimensions n by m 

(Equation 5.3): 

𝑋 =  [

𝑥11 𝑥12 … 𝑥1𝑚

𝑥21 𝑥22 ⋯ 𝑥2𝑚

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑚

] 

Equation 5.3: Matrix, X, of normalised AE features. 

                               

The eigenvalues of the covariance matrix and the corresponding eigenvectors were then 

obtained (Equation 5.4 and Equation 5.5).  

𝑅 = 𝐶𝑜𝑣(𝑋) = [

𝑟11 𝑟12 … 𝑟1𝑘

𝑟21 𝑟22 ⋯ 𝑟2𝑘

⋮ ⋮ ⋱ ⋮
𝑟𝑘1 𝑟𝑘2 ⋯ 𝑟𝑘𝑘

]  =  [

1 𝑟12 … 𝑟1𝑘

𝑟21 1 ⋯ 𝑟2𝑘

⋮ ⋮ ⋱ ⋮
𝑟𝑘1 𝑟𝑘2 ⋯ 1

] 

Equation 5.4: Covariance of Matrix X 

                                 

where 𝑟𝑖𝑗 =  
∑ (𝑋𝑘𝑖−�̅�𝑖)𝑛

𝑘=1 (𝑋𝑘𝑗− �̅�𝑗)

√∑ (𝑋𝑘𝑖−�̅�𝑖)𝑛
𝑘=1

2
   √∑ (𝑋𝑘𝑗−�̅�𝑗)𝑛

𝑘=1
2
 

Equation 5.5: Equation for calculating covariance 

                                                               

Next, the eigenvectors corresponding to the larger p eigenvalues were used to form the 

projection matrix 𝐴.  

P-eigenvalues, with a cumulative contribution rate of 95%, were selected for 

classification purposes. 

The new matrix ‘𝑌’ after the reduction of dimension was obtained (Equation 5.6):  
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𝑌 = 𝑋𝐴 

Equation 5.6: New matrix, Y. 

Unsupervised Learning: K-means Clustering 

The features listed in Table 5.2 were clustered using the k-means clustering method, 

which clusters data by minimising the sum of squared Euclidean distances from all cluster 

vectors to their centre. The algorithm can be found in Chapter 3 (see Section 3.2.5.) 

Supervised Learning 

AE data from all adhesive and abrasive wear tests were merged to create a library of 

labelled data for classification using supervised methods. First, hit vectors after a steady state 

was reached were selected. The merged dataset was then randomly split into two: training and 

test data at the ratio of 85% to 15%.  Three classification models were employed, running each 

one 20 times. The performance of each model was evaluated using the average classification 

accuracy, the ratio of correctly predicted cases to a total number of cases and the average F-

score (Equation 5.9), calculated from the precision (the ratio of the number of correct positive 

predictions to the total number of positive predictions, Equation 5.7) and recall (ratio of correct 

positive predictions to the number of actual positive cases, Equation 5.8), viz (Rousseeuw 

1987): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑃 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Equation 5.7: Formula for precision. 

 

𝑅𝑒𝑐𝑎𝑙𝑙, 𝑅 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Equation 5.8: Formula for recall. 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑃𝑅

𝑃 + 𝑅
 

Equation 5.9: Formula for f-score. 
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Logistic Regression Classifier 

Logistic regression, the most common method used in binary classification problems, 

employs a sigmoid function to compute the probability of a class as a function of the linear 

combination of multiple variables (Kleinbaum and Klein 2002). The sigmoid function allows 

mapping real numbers into binary form (0 and 1) and is represented by Equation 5.10 -Equation 

5.12: 

𝑔(𝑧) =  
1

1 + 𝑒−𝑧
 

Equation 5.10: Sigmoid function 

 

 Where z is an index that combines all the features of 𝑋. 

Where 𝛼 and 𝛽 are unknown constant parameter. Hence, the logistic regression model 

can be written as: 

𝑃(𝑿) =  
1

1 + 𝑒−(𝛼+∑ 𝛽𝑖𝑋𝑖)
 

Equation 5.12: Logistic regression model 

 

 

K-Nearest Neighbours (KNN) Classifier 

The KNN classifier categorises unknown vectors based on their distance to their nearest 

neighbours in the training dataset, the distance measured being the weighted squared inverse 

Euclidean distance between the training set and the unknown vector. The classifier finds the 

nearest neighbours to the unknown vector and specifies the class with the most representation 

among those nearest neighbours as the predicted class (Momon et al. 2012). The optimum k-

number was determined by training with different values and computing the average 

classification rate. A 5-fold cross-validation method measured classification rates, and the 

𝑧 =  𝛼 +  𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 

Equation 5.11: z index calculation 
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optimum k-number maximised classification rate whilst minimising training time. An 

illustration of how the KNN classifier works is shown in Figure 5.1 below. 

 

Figure 5.1: Illustration of the KNN Classifier 

Neural Network Classifier 

Lastly, backpropagation (BP) neural networks, computational architectures modelled 

after the brain's architecture (Curry and Rumelhart 1990), were used in the final classification 

process.  The BP network selected was a multi-layer feed-forward neural network with the 

onward transmission of features and backpropagation of errors characteristics of this network. 

A three-layer pattern recognition feed-forward network comprising one input layer, one hidden 

layer (10 neurons) and one output layer was used in training (Figure 5.2). The weights and bias 

values were updated using the Bayesian Regularisation backpropagation training function. This 

training function uses the Levenberg-Marquardt algorithm to optimise the weights and bias 

(Foresee and Hagan 1997). The performance of each iteration was evaluated using a mean 

square error calculation. 
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Figure 5.2: Illustration of a three-layer backpropagation neural network. The hidden layer 

has 10 neurons. 

 

5.3. Results and Discussion 

5.3.1. AE hits and wear mechanisms 

There was a clear distinction between the recorded AE signals for the two wear 

mechanisms. Hits from the abrasive wear tests were approximately eight times more than those 

generated during the adhesive tests. The source of these hits is the tribological processes that 

each specimen is exposed to during testing.  In addition to the friction profiles, microscopic 

examination of worn surfaces provides evidence of several underlying wear mechanisms 

present only in both tribological tests. These include micro-crack formation and deformation 

during sliding, and in abrasion, there is evidence of scouring and scratching, resulting in the 

generation of PEEK wear particles. Further analysis of the frictional data revealed that a quarter 

of the total AE hits were detected rapidly at the start of the adhesive test.  In contrast, it took 

much longer before 25% of hits were detected (Figure 5.3) in the abrasive tests.  
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Examination of the friction coefficient curves (Figure 5.4) provides a better 

understanding. The initial rapid rise of the friction coefficient in a short period for adhesive 

tests represents the initial sudden collision of asperities on contacting surfaces. This collision 

of asperities produces high strain energy, leading to many AE hits. The steady increase in hits 

correlates with the region of steady friction between contact surfaces, as shown in the friction 

coefficient (CoF) curve. Therefore, the plot of the cumulative hits for abrasion can also be 

related to the friction curve. There are three clear stages in the friction curve: 

1. Running-in (initial collision of surface asperities and a slight decrease in CoF) 

2. A second increase in CoF during prolonged sliding 

3. Steady-state 

These stages explain the three discernible sections in the plot of the cumulative hit.  

Figure 5.3:Cumulative AE hits vs time plot for adhesive (red) and abrasive (black) wear tests 
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Figure 5.4:Coefficient of friction vs time curves for adhesive (red) and abrasive (black) 

wear tests 

 

An Alicona Infinite focus optical microscope was used to analyse wear scars on the test 

specimens.  Analysis of the wear scar on the steel plate used for the adhesive test (Figure 5.5a) 

shows regions of increase in height with a corresponding loss of height on the PEEK wear scar 

surfaces (Figure 5.5b), indicative of wear particles separating from the PEEK rod and adhering 

to the metal surface thereby confirming adhesive wear mechanism.  
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The wear scar on the steel plate for the abrasive test (Figure 5.6a) shows the grooves 

formed by the pre-test conditioning. The constant low topographical height (around 0 𝜇𝑚) 

observed in the PEEK and steel's graphical profiles (Figures 5.6a & 5.6b) indicates that the 

severity of the asperities has reduced due to material transfer proving abrasive wear has 

occurred. The smooth surface of the PEEK wear scar also implies a complete breakaway of 

material. 

(a) (b) 

Figure 5.5: Adhesive test specimens, contour image & corresponding graphical profiles of worn region after testing 

for (a) steel plate & (b) PEEK rods. Regions of high height shows wear particle transfer from PEEK unto steel plate 

indicating adhesion. 
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5.3.2. K-means clustering 

Adhesive Wear 

According to the Silhouette Index, optimal clustering was obtained with 2 clusters for 

the adhesive wear tests. Feature correlation plots are given in Figure 5.7 for duration vs 

amplitude and hits (events) vs amplitude and show minimum overlapping between clusters. 

The average values of five AE features for both clusters are shown in Table 5.3. Events in 

cluster 2 are of higher intensity than those in cluster 1, evidenced by cluster 2 having higher 

average values for the features except average frequency, for which cluster 1 has a broader 

range and a higher average. These events indicate the presence of more burst emission types 

(hits with high amplitude and short duration) in cluster 2 and more continuous emission types 

(hits with low amplitude and long duration) in cluster 1. The clustering output of all adhesive 

wear tests showed similar characteristics. A higher percentage of AE events were assigned to 

cluster 1 (~96%) than cluster 2 (~4%).  This increase is expected as many of the cluster 2 events 

(a) 
(b) 

Figure 5.6: Abrasive test specimens, contour image & corresponding graphical profiles of the worn regions 

after testing for (a) steel plate & (b) PEEK rods. Low topographical height shows material has broken away 

indicating abrasive wear mechanism. 



77 

 

were generated towards the end of the test. The raw waveforms of a sample event from both 

clusters can be seen in Figure 5.8. It shows how events from the two clusters differ (see Table 

5.4 for feature data). 

 

Table 5.3: Range and mean (including standard deviation) of five features per cluster for 

adhesive wear tests 

AE FEATURES CLUSTER 1 CLUSTER 2 

 Range Mean (std) Range Mean (std) 

Amplitude, dB 40 – 71.43 43.81 (4.30) 40.27 – 79.99 56.70 (14.67) 

Duration, µs 0.5 – 1,308 85.71 (133.16) 226.5 – 1,998.5 1,048.60 (347.05) 

RA Value, µs/dB 0 – 12.47 0.57 (1.27) 0.01 – 35.25 10.08 (7.84) 

Average Frequency, kHz 0 - 1,000 333.73 (378.23) 1.46 – 194.26 60.36 (54.67)  

Absolute Energy, attoJ 0.26 – 28,610 96.48 (648.62) 41.29 – 687,510 59,834 (1.20 x 109) 

 

 

Figure 5.7: Clustering solutions for adhesive wear test showing (a) duration vs amplitude and (b) 

hits vs amplitude plots. 
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Table 5.4: Features of the sample AE waveforms (Figure 5.8) from adhesive wear tests 

clusters. 

AE Features Sample AE Waveforms 

 Cluster 1 Cluster 2 

Amplitude, dB 53.47 42.48 

Duration, µs 290.5 1855.5 

RA Value, µs/dB 0.8 23.47 

Average Frequency, kHz 141.14 75.99 

Absolute Energy, attoJ 261.08 326.04 

 

In general, wear tests tend towards three stages: running-in, steady-state and severe 

wear, often followed by rapid failure (Hase, Mishina, and Wada 2012; Mishina and Hase 2013). 

The running-in stage embodies initial contact between opposing micro-protrusions or asperities 

on the two contacting surfaces. As the wear process progresses, asperities gradually flatten (the 

so-called steady-state), and the actual contact area increases, leading to an initial rapid increase 

Figure 5.8: Waveforms of hits from adhesive wear test clusters in time domain (top) and frequency 

domain (bottom). Cluster 1 event is a burst emission while cluster 2 event is a continuous emission. 
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in the amount of wear before reducing gradually (Hase, Mishina, and Wada 2012; Mishina and 

Hase 2013, 2019). Tests in this study were categorised into running-in and steady-state.  

Selected experimental conditions made it unlikely that severe wear would be reached due to 

the short duration of the tests (1 hour).  

The most likely source of AE hits during running-in is the energy produced during 

asperity collisions and subsequent junction separation. Other sources could include micro-

cracking and material deformation. Due to the high strain energy produced during running-in, 

the amplitude of the AE hits is high and of short duration (i.e., burst emissions). The steady 

friction experienced during steady-state should generate mostly continuous emissions (hits 

with low amplitude and long duration). As observed in Figure 5.4, the adhesive wear tests 

reached steady-state very early on in the tests.  Reaching steady-state so early in the test makes 

it challenging to identify a clear distinction between the events recorded during running-in and 

steady-state. Cluster 1 events shown in Figure 5.7 were generated for much of the test duration. 

These AE events combine burst emission (running-in) and continuous emission (synonymous 

with steady-state tribological conditions). The low amplitude of the AE hits in cluster 1 

indicates that most of the signals were generated after asperities have been removed or flattened 

and the tribological test has reached steady-state conditions. Other sources of AE events in 

cluster 1 include micro-cracking and fracture of surface asperity junctions.  

 The mean duration value of 85.71 µs is also an indication of burst emissions present 

from the initial running-in stage. As the sliding progresses further, the continuous contact 

between surface asperities and the lack of lubricating medium would cause the generation of 

PEEK wear particles which then adhere to the steel plate (Figure 5.5), leading to the emission 

of higher intensity AE events in cluster 2 compared to cluster 1.  A similar observation was 

made by Hase et al. (Hase, Mishina, and Wada 2012), where they found that the generation of 

wear elements and transfer particles are the sources of burst emissions during adhesive wear 
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tests. The continuous adhesion process would require high strain energy, generating AE hits 

with high amplitude (burst emissions). As the test nears the 1-hour mark, other sources of AE 

hits would include steady friction between contacting surfaces and crack propagation. These 

are known to generate mostly continuous emissions; hence it is expected that hits generated 

would be mixed emissions (i.e., a combination of burst and continuous). Therefore, the duration 

and RA value of hits in cluster 2 are higher than in cluster 1.   

 

Abrasive wear 

Optimal clustering was also achieved with two clusters from the abrasive wear tests. 

Feature correlation plots (Figure 5.9) show that, unlike in adhesive wear, there is considerable 

overlap between clusters that can be attributed to the processes of abrasive wear, such as 

scratching, abrasion, and wear debris generation.  

 

 

 

Figure 5.9: Clustering solutions for abrasive wear showing (a) duration vs amplitude and 

(b) hits vs amplitude plots. 
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All abrasive wear tests had similar clustering results (Table 5.5) to adhesive wear (Table 

5.3), with AE events in cluster 2 having higher intensity than those in cluster 1. Although a 

higher percentage of AE events were assigned to cluster 1 than in cluster 2, the proportional 

difference was lower than that observed in the adhesive wear tests (~67% in cluster 1 and ~33% 

in cluster 2). Therefore, the average amplitude value cannot be relied upon to differentiate 

between the two clusters. However, the difference between the average values for the two 

clusters is low (43.76 dB in 1 and 46.22 dB in 2), and both clusters coincided, as shown in the 

hits vs amplitude plot (Figure 5.9b). The raw waveform plots in Figure 5.10 also shows how 

events from each cluster differ from each other (see Table 5.6 for the feature data). 

 

Table 5.5: Range and mean (including standard deviation) values of five features per cluster 

for the abrasive wear test 

AE FEATURES CLUSTER 1 CLUSTER 2 

 Range Mean (std) Range Mean (std) 

Amplitude, dB 40.01 – 55.42 43.76 (2.80) 40.14 – 75.36 46.22 (3.28) 

Duration, µs 0.5 – 1,200 116.84 (157.93) 45.5 – 2010 1,060 (422.05) 

RA Value, µs/dB 0.01 – 14.42 0.87 (1.75) 0.01 – 42.55 13.54 (9.40) 

Average Frequency, kHz 0 – 2000 212.22 (298.36) 1.57 – 193.80 27.72 (23.44) 

Absolute Energy, attoJ 0.57 – 567.11 45.99 (58.10) 11.73 – 30,200 326.96 (472.03) 
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Table 5.6: Features of the sample AE waveforms (Figure 5.10) from abrasive wear tests 

clusters. 

AE Features Sample AE Waveforms 

 Cluster 1 Cluster 2 

Amplitude, dB 43.23 58.33 

Duration, µs 108.5 1783.5 

RA Value, µs/dB 1.03 0.64 

Average Frequency, kHz 101.38 102.61 

Absolute Energy, attoJ 25.55 1003.82 

 

Abrasive wear is most commonly of two-body and three-body wear (Yang and Garrison 

1989). Figure 5.4 shows that the running-in stage lasted for c.1000 seconds, during which time 

Figure 5.10: Waveform of hits from abrasive wear test clusters in time domain (top) and 

frequency domain (bottom).  Event in cluster 1 is a burst emission while that of cluster 2 is a 

mixture of continuous and burst emissions. 
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there was a high number of burst emissions, i.e., events of short duration in cluster 1. The 

source radiated signals will include strain energy produced when surface asperities collide 

during running-in and the effects of third-body produced during contact (Boness and McBride 

1991). Furthermore, the presence of wear debris increases micro-cutting of the polymer 

surface. This, in addition to continued plastic deformation and micro-crack and crack 

propagation (Yang and Garrison 1989), would cause more AE events with burst emission 

(Hase, Mishina, and Wada 2012), evidenced by the fact that cluster 1 accounts for a higher 

percentage of total AE events detected.  

In addition to the processes mentioned previously, there is friction resulting from the 

two surfaces sliding against each other, another source of AE events (Belyi, Kholodilov, and 

Sviridyonok 1981; Asamene and Sundaresan 2012). As frictional events are known to generate 

continuous emissions (events with low amplitude and high duration), it can be concluded that 

cluster 2 events are primarily due to sliding friction between PEEK and steel. Continuous 

emissions would also have a long risetime hence the high RA value for events in cluster 2.   

 
 

5.3.3. Supervised Learning 

Hit (vectors) generated during steady-state phases were acquired for supervised 

classification using the three classification models discussed in Section 5.2.2. After selecting 

eight features using hierarchical link clustering, PCA extracted six new uncorrelated features 

that accounted for 95% of the variance between the eight features (Figure 5.11). After PCA, a 

24,075 by six training data matrix corresponding to a 24,075 by one labelled output matrix was 

established (Table 5.7). Training examples for adhesive wear were labelled '0' and '1' for 

abrasive wear. Before training, data were randomly split into 85% for training and 15% for 

testing. The training data was used to train all three models and test data was used to evaluate 
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each model’s performance on untrained data. Each classifier was used to train and test 20 times 

to examine the model robustness.  

 

Figure 5.11: Principal Component Analysis Output. The principal components that 

accounted for 95% variance were selected for training. 

Table 5.7: Extract of the data for supervised learning after PCA. Column seven is the known 

classification. 0 is for adhesive wear and 1 is for abrasive wear. 

No Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Class 

1 -0.5254 0.1712 1.5911 -0.0436 0.0650 -0.0137 1 

2 -0.2013 1.0705 -0.1417 0.1585 0.0888 -1.5526 0 

3 -0.2176 -0.2863 -1.1095 -0.7217 1.2744 -0.0381 1 

4 -0.3134 -0.4454 -2.1773 -0.8948 1.6665 0.2197 1 

5 -0.9043 0.1371 0.9589 0.0163 0.0178 0.4183 1 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

24071 1.7407 0.3037 0.2463 -1.7920 -1.4622 -0.6788 0 

24072 -0.3685 0.1461 2.0166 0.0383 -0.0839 -0.0863 1 

24073 0.0750 -0.9116 -1.1962 -0.5369 1.0159 0.1729 1 

24074 -1.2619 0.9060 -1.8599 1.1055 0.0243 -0.5239 0 

24075 -1.4791 0.9883 -0.9241 1.3757 -0.4782 -0.2947 0 
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The average classification accuracy and F-score for each classifier are presented in 

Table 5.8. Since F-scores are calculated assuming that classes are either positive or negative, 

two F-scores were calculated: adhesive wear as the positive class and abrasive wear as the 

positive class. An F-score of 1 is indicative of a perfect recall and precision. 

Table 5.8: Summary of Classifiers’ Performance 

CLASSIFIER Average 

Training 

Accuracy (±std) 

Average Test 

Accuracy (±std) 

Average F-score (±std) 

   Adhesive is positive Abrasive is positive 

Logistic Regression 0.73 (±0.0025) 0.72 (±0.0048) 0.66 (±0.0096) 0.77 (±0.0036) 

Weighted k-Nearest 

Neighbours 

0.96 (±0.0007) 0.97 (±0.0026) 0.96 (±0.0029) 0.97 (±0.0025) 

Backpropagation 

Neural Network 

0.98 (±0.0014) 0.98 (±0.0024) 0.98 (±0.0024) 0.98 (±0.0023) 

 

All three classifiers have 70% and above accuracy, with logistic regression being the 

least accurate at 73% (training) and 72% (test) accuracy. However, both the KNN and BP 

neural network classifiers perform better, with BP neural network (98%) slightly 

outperforming KNN (97%) accuracy.  The logistic regression model assumed a simple linear 

relationship between features, not recognising non-linear patterns hence the high 

misclassification rate compared to the other two classifiers.  By classifying unknown data using 

distance to its five nearest neighbours, in the case of KNN, all patterns between features are 

always considered resulting in an optimised classification. In the case of the BP neural network 

classifier, using a training function to optimise the weights and bias values and minimise the 

squared errors help train a generalised and optimised model.   

The classification accuracy achieved is comparable with other studies that have utilized 

machine learning algorithms in the analysis of AE signals. Qiao et al. (Qiao, Weng, and Li 

2019) obtained a 93% average classification accuracy when using BP neural network to classify 

8YSZ thermal barrier coatings according to the indentation failure experienced. In their use of 
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KNN to classify AE signals acquired during the fatigue testing of carbon fibre composites, 

Momon et al. (Momon et al. 2012) obtained an above 90% classification accuracy. McCrory 

et al. (McCrory et al. 2015) also found that using an artificial neural network can be 

advantageous for the classification of carbon fibre composites according to different damage 

mechanisms.    

All three models perform better at recognising abrasive wear features as indicated by 

the F-scores (higher when abrasive wear is a positive class) and the confusion matrix plots 

(Figure 5.12). Wear processes such as micro-crack, plastic deformation and sliding friction are 

common to adhesive and abrasive wear mechanisms. AE events from these processes are likely 

to have similar feature characteristics hence the misclassification. The clustering results further 

emphasise these similarities between feature characteristics, where overlap can be found in AE 

feature values in cluster 2 for both wear mechanisms. There are several ways in which the 

misclassification rate can be further minimised. 

• Increase the number of neurons in the hidden layer for the BP neural network 

(Yu et al. 2019). 

• Increase features used for classification (Ray 2015) by choosing more features 

or deriving new features through the mathematical combination of original 

features. More features can help improve the model by recognising more 

patterns between features and improving the classification accuracy.  

• Increase the number of training examples. Having more examples would help 

the model learn better, thereby improving classification accuracy. 
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Figure 5.12:Confusion matrix for all three classifiers 

KNN classifiers do not learn from the training data. Instead, training data is used to 

classify test data. Although the KNN classifier has a high classification accuracy, increasing 

training examples and/or features would increase the time required for new data to be classified. 

Also, finding the optimal k-value can be time-consuming and considering that the optimal k-

value will be based on input features, the process would have to be repeated every time training 

data is updated (Lorena et al. 2011). The BP neural network has an advantage over the KNN 

classifier as it is unnecessary to learn the details of functions used in hidden layers. It is 

relatively simple to train with new data. Also, since the neural network learns from the training 

data, it is acceptable for training time to be high since test time is unlikely to be high (Crivelli, 

Guagliano, and Monici 2014). The ever-changing nature of AE signals would require a 
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classification model that is simple and easy to manipulate, making the neural network classifier 

the best choice. 

5.4. Conclusions 

In this chapter, pattern recognition techniques have been used to classify AE signals 

from tribological tests acquired under simulated artificial joint articulation and the following 

conclusions were reached. 

• K-means clustering can be used to group AE hits detected during a tribo-

acoustic test based on different tribological processes. This can be used to 

diagnose different stages of tribo-acoustic tests based on similarities and 

differences between AE features. 

• Discrete features of AE signals acquired under controlled joint conditions have 

hidden relationships that can be identified using classification models such as 

KNN and BP neural networks. 

A limitation of using traditional ANNs like the BP neural network is the complex feature 

engineering required to build a robust model. The next chapter will show how this limitation 

can be eliminated by using deep transfer learning of continuous wavelet transforms of AE 

signals for the classification of AE signals from a simulated joint articulating surface. 
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6.1 Introduction 

The previous chapter has shown that using machine learning techniques, AE signals 

from biotribological contacts can be differentiated according to the wear mechanism involved. 

The BP neural network, a type of artificial neural network (ANN), emerged as the most 

intuitive machine learning technique.  

One of the limitations of traditional machine learning techniques is the complex feature 

engineering required to build a classification model that will be robust to different conditions 

which can be computationally expensive and time-consuming. This is more significant in AE 

signal analysis, where the hits generated can be in the order of 1000s and potential features can 

be in the order of 100s depending on the duration and type of test. However, recent studies on 

the use of AE for damage recognition in civil engineering applications have shown that deep 

transfer learning and wavelet analysis can be used to classify AE signals from fracture 

processes and for wear monitoring in sliding bearing systems  (Xin et al. 2020; Ren and Chen 

2021; König et al. 2021). 

This chapter focuses on the use of deep transfer learning and wavelet transforms to 

classify AE signals from a simulated artificial knee joint articulation based on two damage 

modes: burnishing (adhesive) and scratching (abrasive) wear. These two damage modes have 

been identified in several retrieved polyethylene (PE) inserts of failed knee implants as the 

cause of wear of the PE insert (Puloski et al. 2001; Engh et al. 2009; Grecu et al. 2016). 

6.2 Materials and Methods 

6.2.1. Experimental Parameters 

AE signals were acquired using the tribo-acoustic test set-up described in Chapter 3. 

Tests were performed using ultra-high-molecular-weight polyethylene (UHMWPE) discs 

(supplied by PCS Instruments Ltd, London, UK) as the reciprocating specimen and medical 
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grade cobalt chromium molybdenum alloy (CoCrMo) (supplied by Phoenix Tribology, 

Newbury, UK and machined to a surface finish of less than 0.02 µm Ra) as the fixed specimen. 

The UHMWPE discs were of diameter 10 mm and 3 mm thickness and machined to a surface 

finish of 0.65 ± 0.17 µm Ra (measured with the Alicona InfiniteFocusG5 Optical 3D 

Measurement System from Alicona Imaging Gmbh), respectively.  

Test conditions representing the linear motions of hinged knees were determined using 

the loading conditions stated in annex A1 of  ASTM F732-17, the test method for linear 

reciprocating wear motion applications (ASTM International 2017). The recommended contact 

pressure of 3.54 MPa was doubled in order to simulate severe wear damage. The final test 

parameters, including AE acquisition parameters, are summarised in Table 6.1.  

A burnishing wear mechanism was simulated simply by having a smooth UHMWPE 

sliding on a CoCrMo plate. To simulate the scratching wear mechanism, 45 mg of 80 grit size 

Silicon Carbide grinding grit was added to the contacting surface between the UHMWPE disc 

and the CoCrMo plate before testing. Five tests were carried out for each damage mechanism 

to test the reproducibility of the results. It is expected that damage mechanisms in vivo would 

be a combination of 2 or more identified mechanisms with overlap between characteristics of 

the damage processes and to represent this, a third set of tests were carried out to simulate 

progression from burnishing to scratching wear. After 20 minutes under burnishing test 

conditions, the test was paused and silicon carbide grinding grit was added to simulate 

scratching wear. The tests then ran for another 10 minutes before ending. 
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Table 6.1: TE 77 and AE Acquisition Parameters 

 PARAMETERS VALUE 

TE77 TEST PARAMETERS Load 556 N 

Frequency 5 Hz 

Stroke 12.4 mm 

Duration Burnishing – 30 mins 

Scratching – 15 mins 

 

Lubricant Ringer’s Solution 

AE ACQUISITION 

PARAMETERS 

Threshold 35 dB 

Pre-amplifier Gain 60 dB 

Waveform streaming capture 

interval 

Every 300 secs for 5 secs 

Sampling Rate 2 MHz 

Band Pass Filter 100 – 600 kHz 

 

 

6.2.2. Analysis of Variance (ANOVA) 

To check for any significant differences between discrete AE feature means of hits from 

tests under both damage mechanisms, a one-way analysis of variance was performed. Two 

thousand AE hits during the period after running-in were extracted for all tests and then 

averaged for each damage mechanism. The discrete features compared have been identified 

from previous tests (see Chapter 5) as significant AE features.  A 95% confidence interval (CI) 

was employed and it was assumed that all variances were equal. This was used to find out 

which discrete AE feature is sensitive to different damage mechanisms.  

6.2.3. Convolutional Neural Network and Wavelet Analysis 

AE waveforms were classified using pretrained convolutional neural networks (CNN) 

and continuous wavelet transform (CWT) images. The proposed approach is outlined in Figure 

6.1. 
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Figure 6.1: Illustration of classification of AE signals using a pre-trained CNN and CWT 

images 

Extraction of Data for Training and Testing 

The raw time series AE waveforms captured during testing were used for the purpose 

of classifying AE data based on the simulated damage mechanisms. For the individual 

simulated damage mechanism tests, 2 raw waveforms of 5 seconds duration each were selected 
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from each test repeat for both burnishing and scratching. Considering how damage evolves 

during testing, the waveforms were chosen from two different test stages- after running-in 

(after 1200 s for burnishing and 600 s for scratching tests) and just before the test ended (after 

1800 s for burnishing tests and after 900 s for scratching tests). Each 5 second waveform was 

further subdivided into waveforms of 200 ms duration, each representing the time taken for 

one complete cycle during testing. 

To make the classification models robust and generalisable to differing damage 

conditions and levels of damage, raw AE waveforms from the damage progression tests were 

also added to the data for training and testing. Just as for the individual damage tests, 10 s 

duration waveforms were selected from each damage stage (burnishing – after 480 s and 1020 

s; scratching – after 1500 s and 1800 s), making a total of 20 s waveform from each test. The 

waveforms were also subdivided into smaller waveforms of 200 ms duration each.  

All extracted waveforms were collated, labelled accordingly and then split into training 

and testing data at a ratio of 70:30. This resulted in a training data matrix of 672 by 400,000 

and a test data matrix of dimension 288 by 400,000. Training and test data were then denoised 

and converted to CWT images before classification as outlined in the following sections.   

Pre-processing of AE signals 

Raw AE signals were denoised before the continuous wavelet transform process to 

ensure that features learnt during classification are not contaminated by the presence of noise 

using wavelet denoising. Wavelets are functions that are used to divide a signal into different 

frequency components for more in-depth analysis of the original signal (Polat and Siraç 2018). 

The denoising process is summarised as follows (Polat and Siraç 2018; Ai et al. 2018): 

➢ Wavelet decomposition of a signal into different components. 
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➢ Calculation of thresholds. The thresholds were selected based on a mixture of 

Stein’s Unbiased Risk Estimate (SURE) principle and the Fixed Form 

threshold. 

➢ Reconstruction of signal with the coefficients after denoising. 

To determine the best wavelet to use for the denoising process, different wavelets (at 3 

decomposition levels) were used to denoise a sample raw AE signal, and their performance 

was evaluated using the signal-to-noise ratio (SNR) (Equation 6.1) and  the mean square error 

(MSE) (Equation 6.2) of the variance between the original signal and the denoised signal (Ai 

et al. 2018). The best performing denoising process would maximise SNR whilst minimising 

the MSE value. This was found to be the sym6 wavelet with 4 decomposition levels (See Table 

6.2) 

𝑆𝑁𝑅 = 10 𝑙𝑜𝑔 (
∑ 𝑓(𝑛)2𝑁

𝑛=1

∑ [𝑓(𝑛) − 𝑓(𝑛)]
2𝑁

𝑛=1

) 

Equation 6.1: Formula for computing SNR where 𝑓(𝑛) is the original signal, 𝑓(𝑛) is the 

denoised signal and N is the length of the signal. 

𝑀𝑆𝐸 =  √∑ [𝑓(𝑛) − 𝑓(𝑛)]
2𝑁

𝑛=1

𝑁
 

Equation 6.2: Formula for computing MSE where f(n) is the original signal, f ̂(n) is the 

denoised signal and N is the length of the signal. 

Table 6.2: The signal-to-noise ratio and mean square error of different wavelets. The wavelet 

with the best denoising effect is shown in the red font. 

Wavelet/ 

Decomposition 

Levels 

4 6 8 

 SNR MSE SNR MSE SNR MSE 

db6 9.5140 0.2313 9.5129 0.2314 9.5129 0.2314 

db8 9.7912 0.2241 9.7909 0.2241 9.7909 0.2241 

db10 9.1730 0.2406 9.1729 0.2406 9.1729 0.2406 

bior2.6 9.1631 0.2409 9.1591 0.2410 9.1591 0.2410 

coif4 9.4683 0.2326 9.4681 0.2326 9.4681 0.2326 

coif5 9.4725 0.2324 9.4724 0.2324 9.4724 0.2324 

sym6 9.8435 0.2227 9.8425 0.2228 9.8425 0.2228 

sym7 9.3565 0.2356 9.3561 0.2356 9.3561 0.2356 

sym8 9.7514 0.2251 9.7512 0.2251 9.7512 0.2251 
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Continuous Wavelet Transform of denoised signals 

Continuous wavelet transforms (CWT) have proven useful for in-depth analysis of raw 

AE signals by decomposing them into their frequency components whilst keeping the time 

localisation (Asamene and Sundaresan 2012). CWT’s integral is shown in Equation 6.3 (Polat 

and Siraç 2018). By changing the scale parameter and the position parameter, CWT allows us 

to shift and stretch/compress the mother wavelet thereby providing us with the frequency and 

time information simultaneously (Polat and Siraç 2018). 

𝐶𝑊𝑇 =  ∫ [𝑥(𝑡)
1

𝑎
𝜓∗ (

𝑡 − 𝑏

𝑎
)] 𝑑𝑡

∞

−∞

 

Equation 6.3: CWT Integral where x(t) is the original signal, 𝜓(𝑡) is the analysing function 

(wavelet), a is a scale parameter and b is a position in time. 

The Morlet wavelet (EQ) was chosen as the analysing wavelet due to its capability of 

extracting features with equal variance in time and frequency. This makes the time-frequency 

resolution adaptable to different signals thereby guaranteeing the extraction of temporal 

features (Zhao et al. 2019). The extracted time-frequency features are represented as 

scalograms, in the form of RGB images, which are then used for training and testing the CNN 

models. The time-frequency representations were created using the Signal Processing toolbox 

in MATLAB version 2021a. The script can be found in the appendix. 

𝜓(𝑡) =  𝑒−
𝑡2

2  cos (5𝑡) 

Equation 6.4: Mathematical representation of the Morlet wavelet 

Transfer Learning using Convolutional Neural Network  

A CNN is a deep learning technique that is an extension of artificial neural networks 

(ANNs) which are computational architectures modelled after the brain’s architecture (Curry 

and Rumelhart 1990). Just like ANNs, CNNs have an input layer, hidden layer and an output 

layer. The difference is that CNNs can be used for image classification unlike ANNs. 
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CNN consists of several hidden layers which includes convolutional (CONV) layers 

with activation function (ReLu) and pooling (POOL) layers followed by an optional fully 

connected (FC) layer (Xin et al. 2020). CNNs can have hundreds of layers, making them very 

accurate, more robust and adaptable (Xin et al. 2020). Training a new CNN can be very 

computationally expensive and time-consuming, hence, transfer learning was employed in this 

study. Deep transfer learning is when a pre-trained CNN is modified and used to train new 

images thereby saving time and computing power. The pre-trained network chosen for this 

study is GoogLeNet. GoogLeNet is a 22-layer deep network that has been trained on images 

in the ImageNet database and classified into 1000 categories (Szegedy et al. 2015).  

The images fed into the modified GoogLeNet for retraining are the RGB cwt 

scalograms of the denoised AE waveforms. Before training on the RGB scalograms, the last 4 

layers of the network were modified to fit the new training and response data (Figure 6.2). The 

RGB scalograms were also resized to [224 224], the required size for inputs into the network. 

All training and test images were stored in an image datastore on MATLAB. The training data 

was further split at a ratio of 80:20 to create the network training and validation datasets. The 

full training options are presented in Table 6.3. The MATLAB script used for CNN training 

and testing can be found in the appendix. 
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Table 6.3: Transfer Learning Training Options 

Training Options Value 

Solver Stochastic Gradient Descent with Momentum (sgdm) 

Mini Batch Size 28 

Maximum Epochs 30 

Initial Learning Rate 0.0001 

Validation frequency 20 

 

Figure 6.2: GoogLeNet Framework. The expanded view shows the layers that are 

finetuned before retraining on new dataset (Image recreated from MATLAB).        
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 Combining Convolutional Neural Network and Support Vector Machine  

For comparison purposes, a combined CNN-SVM classifier was also used to classify 

the raw AE waveforms. This approach has been found to be as good as and, in some cases, 

having higher classification accuracy than ordinary CNN models (Tang 2013; Niu and Suen 

2012; Agarap 2017).  

The main purpose of Support Vector Machines (SVMs) is to find the optimal 

hyperplane that can be used to separate two classes in a dataset (Agarap 2017). This is done 

using different kernel functions to transform the non-linearly separable data into a linearly 

separable form by projecting the data into the feature space (Niu and Suen 2012).    

 

Figure 6.3: Illustration of the Support Vector Machine 

Using CNN in combination with SVM can be advantageous because there is no need 

to retrain the network since the images just need to be passed over the network once thereby 

saving some time. This is particularly helpful in situations when there is no access to a GPU to 

speed up training.  The features were extracted by running activations over the last global 

pooling layer. This is the first layer with no more learnable parameters and it is also robust to 

spatial translations of the input data. Extracting features from the deeper layers also provides 

higher-level features. Features for training and testing were extracted in this way, and the 
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features were then trained on a SVM network using the classification learner app in MATLAB. 

Two forms of CNN-SVM classifications were compared for this study. In the first one, features 

were extracted from the last global pooling layer of the un-trained network and then fed into 

the SVM model as the input. In the second form, features were extracted from the modified 

and retrained CNN network and then fed into the SVM for training and testing. The MATLAB 

script used for feature extraction can be found in the appendix. 

Kernel functions in SVMs aren’t always linear, they can be quadratic, polynomial or 

gaussian with different hyperparameters. The trained SVM’s accuracy will depend on how the 

different hyperparameters relate to each other making, hyperparameter optimisation a necessity 

when training SVMs. The optimisable SVM was first trained to find the best hyperparameter 

values with the least classification error. These were then used to train and test the SVM 

network using the features extracted from the GoogLeNet CNN. The same training examples 

used for the modified GoogLeNet network were used for the two CNN-SVM models. Training 

was carried out using 6-fold cross validation.   

  

6.3. Results and Discussion 

6.3.1.  Damage Mode Validation 

Table 6.4 shows that the burnishing tests have lower coefficient of friction (CoF) and 

frictional work done (FWd) in comparison to the scratching tests. Both CoF and FWd are 

dependent on the friction force generated between the contacting surfaces and it is expected 

that scratching tests would generate higher friction force. In addition to the surface asperities 

coming into contact, the presence of the silicon grinding grit in the scratching tests provides 

more resistance to sliding hence the frictional force required to break the asperities would be 

higher, leading to the higher CoF and FWd values. In his pin-on-disk wear test of UHMWPE 
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sliding against a steel counterface, Vesa Saikko also obtained average CoF values of about 0.03 

(Saikko 1998). The study by Fisher et al has shown that increased counterface roughness can 

lead to an increase in the CoF value (Fisher et al. 1994) further validating the friction values 

obtained for the scratching tests where the presence of the silicon particles would have caused 

an increase in the surface roughness of the counterface and this would have contributed to the 

increase in CoF value.  

Table 6.4: Average Coefficient of Friction and Frictional Work Done 

Damage Mechanism Average CoF (±std) Average FWd (±std), J 

Burnishing  0.031 (±0.007) 3,801.4 (±876.23) 

Scratching 0.171 (±0.055) 10,692 (±3,447) 

 

Wear Scar Analysis 

After each test, the images of the wear surface were taken and analysed using the 

Alicona InfiniteFocusG5 Optical 3D Measurement System. Image field captures of the 

UHMWPE wear surface was taken at a magnification of 50X (Figure 6.4 and Figure 6.5).  

There is evidence of displaced wear particles adhering back on to the UHMWPE 

surface (See region A in Figure 6.4) confirming burnishing wear mode since burnishing wear 

is a form of adhesive wear (Puloski et al. 2001). Burnishing wear is also known to lead to a 

smooth and shiny surface, and this is visible in the wear scar image. Comparison between the 

pre-test and post-test surface roughness measurements (pre-test: 0.835 ± 0.046 µm and post-

test: 0.486 ± 0.062 µm) also shows that the UHMWPE surface is smoother post-test thereby 

confirming burnishing wear mode has occurred.  

Inspection of the UHMWPE surfaces post-scratching tests show the presence of 

grooves indicative of scratching having taken place during sliding (See Figure 6.5). Further 
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analysis of the CoCrMo counterface (See Figure 6.6) also shows evidence of scratching in the 

presence of the silicon carbide grinding grit between the two contacting surfaces. It is expected 

that the scratching process would make the surfaces, rougher and the comparison of the pre-

test and post-test surface roughness values of the UHMWPE supports this (pre-test: 0.863 ± 

0.027 µm and post-test: 1.194 ± 0.067 µm) further confirming that scratching has taken place.    

 

 

 

Figure 6.4:Image field capture of UHMWPE wear scar for burnishing tests. Region labelled 

A shows adhesion of displaced wear particles back unto the UHMWPE surface. 
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Figure 6.5:Image field capture of UHMWPE wear scar for scratching tests. There are 

grooves on the surface caused by the scratching of the grinding grits on the surface during 

sliding. 

 

 

  

Figure 6.6: Image field capture of the CoCrMo counterface post-scratching tests. The 

grooves indicate scratching wear having taken place. 
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6.3.2. Relationship between AE hit features and damage mechanism  

Coefficient of Friction (CoF) and AE Root Mean Square (RMS) value 

The average CoF and average AE root mean square (RMS) values for the two simulated 

damage modes exhibit the similar transient response as shown in Figure 6.7 and Figure 6.8. 

This is in line with the result obtained from the proof-of-concept tests in chapter 4 where it was 

shown that the coefficient of friction curve can be predicted using time-dependent AE features 

of which AE RMS value is one of them.   

Since CoF values are based on the friction force generated during sliding and the 

friction force is a representation of the energy required to break contacting surface asperities 

during sliding, it is expected that time-dependent AE features such as AE RMS values will 

mirror the CoF values obtained as well. A high friction force for example implies a high amount 

of energy is required to break surface asperities which would in turn generate high CoF values 

as well as AE signals with high energy and thus a high RMS value. This is reflected in the 

scratching tests where the presence of the silicon carbide grinding grit would cause an increase 

in the friction force generated hence why the CoF and AE RMS values are higher than those 

observed in the burnishing tests. In their work on how AE can be used for the early detection 

of failure modes in total hip replacements, Lee et al also found that CoF and AE energy show 

a similar transient response (Lee et al. 2021). 

In contrast to the single simulated damage tests, the CoF and AE RMS values of the 

damage progression tests do not have the same transient response from start to finish. Upon 

transitioning from burnishing to scratching wear mode (due to the addition of the silicon 

carbide grinding grit), the CoF reduced whilst the AE RMS value increased and was the case 

for all the repeat tests (See Figure 6.9). This contrasts with the initial hypothesis where it was 

expected that the presence of the grinding grit would cause an increase in both CoF and AE 
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RMS values. There are two possible reasons for the reduced CoF after grinding grit was 

introduced to the test bath. First, since the UHMWPE discs and the CoCrMo were already in 

contact, it was difficult to ensure the grinding grit added made its way between the contacting 

surfaces. The alternative was to stop the test entirely and remove the UHMWPE disc before 

adding the grinding grit on to the CoCrMo counterface to ensure it stayed within the contact 

area but this would cause the tribofilm to break which would change the test and comparison 

between the two test regions would not be possible. Second, it is suspected that after pausing 

to add the grinding grit, the tribofilm between the contacting surfaces creates a smooth barrier 

leading to a decrease in friction force hence reduced CoF values.  

On the other hand, there was an increase in the AE RMS value after the grinding grit 

was added. Despite not being perfectly within the contact face, the sliding motion would cause 

a dispersal of the grinding grit on the CoCrMo counterface. As sliding progresses upon test re-

start, the scratching of the grinding grit on the surfaces would produce strain energy that is 

picked up by the AE sensors in addition to the ones due to the UHMWPE sliding on the 

CoCrMo hence the increase in the AE RMS value. This highlights the advantage of the AE 

technology over conventional monitoring techniques and shows the potential of AE testing 

being highly sensitive to changes that might not be picked up by other conventional monitoring 

systems. In their study on the relationship between AE and the wear phenomena in severe-mild 

wear transition, Alan Hase et al also found that using the AE mean value was more reliable 

than CoF in distinguishing the differences between the wear mode of different sliding 

conditions (Hase, Wada, and Mishina 2008).   
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Figure 6.7: Mean CoF and Mean AE RMS plots for burnishing test 

 

Figure 6.8: Mean CoF and Mean AE RMS for scratching tests 
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Figure 6.9: Mean CoF and Mean AE RMS plots for wear mode progression tests 

 

 

One-way Analysis of Variance 

The one-way ANOVA test showed that there are significant differences between 

discrete AE features of the burnishing and scratching tests with the p-value being less than 0.05 

for all tests (See Table 6.5). For all features tested, scratching tests have higher values than 

burnishing tests apart from the average frequency value. Considering the more severe wear 

mechanisms associated with the scratching tests, it is expected that AE hits from scratching 

tests would have higher intensities than those from the burnishing tests.  

Further analysis of the ANOVA test result shows absolute energy, amplitude, duration 

and peak frequency as features with the least p-values. Of these, peak frequency and amplitude 

emerge as the best features to distinguish between burnishing and scratching as reflected in the 

box plots of the feature data shown in Figure 6.10. In the context of using AE to differentiate 

between damage mechanisms, this finding implies that peak frequency and amplitude are two 
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significant discrete AE features to be considered during analysis. This finding also aligns with 

what has been reported in literature regarding the correlation of AE features and wear 

mechanisms. Hase et al found that amplitude and peak frequency can be used to differentiate 

between adhesive and abrasive wear mechanisms (Hase, Mishina, and Wada 2012) in pin-on-

block metal contacts. In addition to this, they also created a correlation map showing that 

amplitude and AE frequency (peak frequency in particular) is significant for identifying wear 

mechanisms involving deformation and fracture. Amplitude was also found to be significant in 

classifying between damage mechanisms found in laminated material (Masmoudi, El Mahi, 

and Turki 2015).  

Observing a similar relationship between AE discrete features and damage mode 

identification to those reported in literature gives further credence to the assumption that AE 

can be advantageous in the monitoring and identification of tribological mechanisms of 

artificial joint materials with the potential to be extended to the diagnosis of failed artificial 

joints.  

Table 6.5: Summary of ANOVA test results. StDev is standard deviation and CI is confidence 

interval. 

Features Burnishing Tests Scratching Tests P value 

 Mean StDev 95% CI Mean StDev 95% CI  

Absolute Energy, 

aJ 

13.43 8.54 -63.30, 90.16 1418.9 2475.7 1342.2, 1495.6 9.57e-132 

Amplitude, dB 37.52 0.85 37.42, 37.62 45.97 3.17 45.87, 46.07 0 

Average 

Frequency, kHz 

223.10 167.08 217.14, 229.05 185.09 95 179.13, 191.04 1.43e-18 

Duration, µs 527.70 291.74 513.64, 541.76 762.71 347.34 748.65, 776.77 1.16e-111 

Peak Frequency, 

kHz 

210.58 13.23 209.79, 211.37 232.81 21.73 232.02, 233.60 4.05e-283 

RA Value, µs/dB 7.48 5.37 7.25, 7.72 8.74 5.30 8.51, 8.98 1.10e-13 
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Figure 6.10: Box Plots of Average AE Features showing result of ANOVA test. 
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6.3.3. Classification of AE signals based on damage mode 

Raw AE waves of 10 seconds length each from the burnished, scratched and the 

progression tests were acquired for the CNN classification. Before denoising, the waveforms 

were split into smaller waveforms of 200 ms duration, which is equivalent to one cycle on the 

TE77, resulting in a total of 960 waveforms. These were then denoised and split for training 

and testing at a ratio of 70:30 resulting in 672 images for training and 288 for testing. The 

denoised AE waveforms were then transformed into CWT images (Figure 6.11 and Figure 

6.12) for classification using the three convolutional neural network models stated in section 

6.2.3 – GoogLeNet transfer learning, CNN-SVM using features from un-trained GoogLeNet 

and CNN-SVM using features from the trained GoogLeNet.  

 

Figure 6.11: Denoised waveform (top) and the corresponding CWT Image (bottom) of a 

sample signal for Burnishing Wear tests. 
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Figure 6.12:Denoised waveform (top) and the corresponding CWT Image (bottom) of a 

sample signal for Scratching Wear tests. 

The training progress for the GoogLeNet transfer learning model (See Figure 6.13) 

shows that as the number of iterations increases, the training & validation accuracy increases 

whilst the loss value decreases. With each new iteration, the network finds new relationship 

between the features of the CWT images thereby making better predictions. 

 As previously mentioned in section 6.2.3, minimum classification error plots were used 

to find the best hyperparameters to use for the CNN-SVM models. This turned out to be linear 

SVM for the model using features from the un-trained GoogLeNet network (See Figure 6.14) 

and Gaussian SVM for the model using features from the trained GoogLeNet network (See 

Figure 6.15).  Feature extraction from the last global pooling layer of the GoogLeNet network 

resulted in 1024 features. Hence, there were 672 by 1024 training data matrix and 288 by 1024 

test data matrix.  



112 
 

 

F
ig

u
re

 6
.1

3
: 

C
N

N
 T

ra
n
sf

er
 L

ea
rn

in
g

 (
b
a
se

d
 o

n
 G

o
o
g
L

eN
et

) 
T

ra
in

in
g
 P

ro
g
re

ss
. 
T

h
e 

to
p
 i

m
a
g
e 

is
 

th
e 

a
cc

u
ra

cy
 p

lo
t 

a
n
d
 t

h
e 

b
o
tt

o
m

 i
m

a
g
e 

is
 t

h
e 

co
rr

es
p
o
n
d
in

g
 l

o
ss

 p
lo

t.
 



113 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14:Minimum classification error output for CNN-SVM using un-trained GoogLeNet 

features 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15: Minimum Classification Error Plot for CNN-SVM using trained GoogLeNet 

features.  
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After training, all three models were tested using the test data. The training and test 

results are presented in Table 6.6. All three deep learning models achieved a test accuracy of 

above 90% with the CNN-SVM model with features from the trained GoogLeNet network 

performing the best with a test accuracy of 99.3%. Quite unsurprisingly, the CNN-SVM model 

using untrained GoogLeNet features has the worst training and test accuracy of 93.5% and 

95.1%, respectively. As shown in Figure 6.13, the training examples must be passed over the 

deep network for several iterations for the network to fully learn the relationship between the 

features for improved predictive capability. When extracting features from the last global 

pooling layer of the unmodified and untrained network, the CWT images are only passed over 

the network once and the network is yet to fully learn and extract all the important features of 

the CWT images. On the other hand, features extracted from the trained network would have 

better predictive capabilities because the network has been able to fully learn how the training 

examples of each class are related to each other thereby producing features that are more 

representative of the class they belong to. 

 

Table 6.6: Training and Test accuracy of all three CNN models. 

CNN Models Training Validation Accuracy Test Accuracy 

GoogLeNet Transfer Learning 0.9482 0.9653 

CNN-SVM (using un-trained 

GoogLeNet features) 

0.9345 0.9514 

CNN-SVM (using trained 

GoogLeNet features) 

0.9688 0.9931 

 

Of the three deep learning models tested, the two models with the higher classification 

accuracy both perform better at predicting burnishing wear modes as opposed to scratching 

wear modes. The confusion matrix plots (Figure 6.16 to Figure 6.18) confirm this.  There are 

some wear processes, e.g., sliding friction, that are common to both burnishing and scratching 
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damage modes and the CWT images of the signals are likely to have similar feature 

characteristics thereby causing the small number of misclassifications observed to occur. 

Although the misclassification errors could possibly be further minimised by undertaking more 

signal pre-processing steps before wavelet transforms and by building a new deep learning 

model from scratch. As only a small percentage of the examples are misclassified, it is not 

beneficial to spend the extra computing power required for building a deep learning from 

scratch which can take hours to days before a fully optimised network is built. The above 95% 

classification accuracy achieved with deep transfer learning and wavelet transforms shows that 

there is huge potential for using AE testing to identify and possibly diagnose natural and 

artificial joint pathologies. 

 

Figure 6.16: GoogLeNet Transfer Learning Test Confusion Matrix.  
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Figure 6.17: Test confusion matrix for CNN-SVM using un-trained GoogLeNet features 

 

 

Figure 6.18: Test confusion matrix for CNN-SVM using trained GoogLeNet features 
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The classification accuracy achieved here is comparable with other studies where AE 

signals are classified using wavelet analysis and deep transfer learning. In their study on 

classifying AE signals from a broken wire based on damage modes – fracture and friction, Ren 

and Chen obtained a classification accuracy of 92.35% using a VGG-Net deep transfer learning 

of the wavelet images (Ren and Chen 2021). Xin et al. used the same process to identify fracture 

within stay-cables using GoogLeNet based transfer learning and obtained an accuracy of 

99.53% (Xin et al. 2020). It is expected that in stay cables for bridge applications, the AE 

signals due to noise would be very distinct from those due to fracture, whereas as stated 

previously, there are feature characteristics that are present in both burnishing and scratching 

damage modes. This could explain why they obtained a higher classification accuracy than the 

one obtained in this study. König et al also used CNN for multi-class classification of AE events 

from sliding bearing systems and obtained an accuracy of 82.5% (König et al. 2021).     

With the CNN-SVM model where features are obtained from the trained GoogLeNet-

based CNN, a classification accuracy of 99.3% is obtained. This is also comparable with the 

study by Niu and Suen, where they developed a novel CNN-SVM classifier to classify 

handwritten digits (Niu and Suen 2012). Using CNN-SVM the way it has been utilised here, 

they obtained a classification accuracy of 99.81%. Although the application is different from 

the one used here, the similar accuracy obtained shows the potential for using deep transfer 

learning of CWT images to classify AE signals from biotribological contacts. In his study on 

combining CNN and SVM for image classification, Agarap proposed a new CNN-SVM 

architecture where instead of using them as two separate models, the softmax classification 

function which is usually the last layer of a CNN is replaced with a L2-SVM for an integrated 

CNN-SVM architecture (Agarap 2017). Although when compared with normal CNN, CNN-

SVM had a slightly lower classification accuracy (99.23% for CNN-Softmax and 99.04% for 

CNN-SVM), the difference is not much and the base CNN model was a basic one. He 
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concluded that better pre-processing and a more sophisticated base CNN can improve the 

results. By denoising the acquired raw AE signals and using a highly sophisticated base CNN 

model like GoogLeNet, there is potential for achieving even higher classification accuracy 

through the use of an integrated CNN-SVM architecture.  

Despite the novelty of using deep transfer learning to classify AE signals from 

orthopaedic applications, deep learning has been succesfully used in medical diagnosis (Wong, 

Fortino, and Abbott 2020; Lundervold and Lundervold 2019; Aggarwal et al. 2021) showing 

there is potential for using it to classify AE signals for the purpose of diagnosing natural and 

artificial joint pathologies. 

6.4. Conclusion 

This chapter has shown how AE testing can be used to classify AE signals from 

simulated artificial knee joint articulations based on two damage modes – burnishing and 

scratching. The following conclusions were reached. 

• One way analysis of variance of discrete AE features show that amplitude and 

frequency (peak frequency) data are significant for distinguishing between 

damage modes. 

• Raw AE signals can be transformed into wavelet images and then classified 

using deep transfer learning with GoogLeNet as the base CNN model.  

• A higher classification accuracy is obtained with a CNN-SVM model when 

compared to a standard CNN (99.3% and 96.5% respectively).  

Coming up in chapter 7 will be the overall discussion, potential further studies and conclusions. 
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7.1 Introduction  

Having discussed the results of the experimental work carried out for this project in 

chapters 4 to 6, this chapter presents the overall conclusions reached and potential further work. 

7.2 Overall Conclusions 

This thesis aimed to investigate the potential of acoustic emission testing as a tool for 

diagnosing tribological phenomena in artificial joints. This was achieved by undertaking four 

main objectives through a combination of tribo-acoustic testing and machine learning and deep 

learning techniques for classifying AE signals based on simulated damage modes. 

The proof-of-concept test showed that time-dependent AE features could be used with 

NARX neural networks (Training R2 values of 99.95% for PEEK and 98.58% for UHMWPE) 

to predict the shape of the coefficient of friction profile of a simulated joint articulation surface. 

This achievement is particularly significant for the clinical usability of the technique. It shows 

the potential of using AE to evaluate the frictional behaviour of an artificial joint in vivo, which 

is not currently achievable. The proof-of-concept test also satisfied this thesis’s second 

objective, which was to use AE to observe the progression of damage in a simulated artificial 

joint articulating surface. It was found that this can be achieved by clustering AE signals based 

on the emission type, with the continuous emissions emerging as the best emission type for 

identifying test stages and observing the evolution of surface damage. This shows that AE 

testing could be used for the condition monitoring of an artificial joint in vivo from implantation 

through the life of the device. 

Having shown the capability of AE testing as a tool for understanding the tribological 

behaviour of an artificial joint in vivo, the second experimental work presented in this thesis 

showed how machine learning techniques can be used to classify AE signals based on wear 
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mechanisms simulated under controlled joint conditions. This is required to achieve AE 

testing’s full potential as a tool for diagnosing tribological phenomena in artificial joints. K-

means clustering was successfully used to group AE hits based on the different tribological 

processes present. This shows that different stages of a tribo-acoustic test can be diagnosed 

using AE testing. Before the classification process, PCA was used to extract significant AE 

features first. Of the three classification models tested, the BP neural network emerged as the 

one with the highest classification accuracy (96%). In addition to having a high classification 

accuracy, the BP neural network is also the simplest and most dynamic of the classification 

models making it the optimum choice of pattern recognition technique for classifying AE 

signals. The high classification accuracy obtained also shows that AE hits from tribo-acoustic 

tests carried out under controlled joint conditions have hidden relationships that can be 

identified using pattern recognition techniques. This is clinically significant because being able 

to differentiate between AE signals based on wear mechanisms takes us one step closer to 

achieving the potential of AE as a tool for diagnosing natural and artificial joint pathologies. 

Having shown that machine learning techniques can be used to classify AE signals 

based on wear mechanisms, the final experimental work explored the use of deep learning (a 

more advanced version of machine learning) for classifying AE signals from simulated 

artificial knee articulating joint surface based on two damage modes – scratching and 

burnishing. The advantage of the deep learning technique over traditional machine learning 

techniques is that complex feature engineering is not required in deep learning, making it a 

faster and more intuitive classification process. On a statistical basis, a one-way ANOVA 

analysis showed that amplitude and peak frequency are the two most significant AE features 

for differentiating between damage modes. Continuous wavelet transform images of denoised 

AE signals were then trained using deep transfer learning models with GoogLeNet as the base 

CNN model in two forms – (i) A simple GoogLeNet transfer learning model and (ii) a 
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combination of GoogLeNet and support vector machine model. The GoogLeNet-SVM (with 

trained features) emerged as the best model with a 99.3% classification accuracy. The 

classification accuracy achieved here is comparable with that obtained in other applications 

where transfer learning was used to classify AE signals proving the technique’s effectiveness.  

Overall, the research presented in this thesis has shown that AE testing can be used to 

interpret the biotribological phenomena in artificial joint materials. In addition, machine 

learning and deep learning techniques were used to build models with high sensitivity, 

specificity, and accuracy to classify AE signals according to simulated damage modes. This 

has proven the initial hypothesis that with AE testing, a more dynamic, highly specific, and 

highly sensitive process of identifying and diagnosing artificial joint pathologies can be 

developed thereby reducing patient discomfort and NHS expenditure.  

7.3 Potential Further Work 

The research presented in this thesis suggests an enormous potential for using AE as a 

tool for monitoring artificial joint tribological behaviour with the possibility to be extended to 

the monitoring of natural joint pathologies. Still, it is not without its limitations.  

The tribo-acoustic test parameters were simplified to align them with the operating 

envelope of the TE77 test rig and for ease of analysis. Linear reciprocating sliding motion and 

a flat-on-flat contact surface was chosen for all tests for ease of interpretability of the AE 

signals acquired. Further developmental work will need to be carried out to better replicate the 

complex kinematics of actual joint prostheses using bench test geometries and motions that are 

closer to those of the actual devices.  

Traditionally, in vitro biotribological tests are carried out using bovine serum to 

represent the synovial fluid present in the joints. Bovine serum contains some chemical 

reagents, and there is a chance these could also be a source of AE signals which is why tests 

presented in this thesis were carried out using Ringer’s solution instead to make sure that the 
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AE signals acquired are solely due to the tribological interactions in the contacting surface 

alone. Further work using bovine serum would have to be carried out to investigate whether 

the bovine serum affects the AE signals acquired. This would also indicate how the presence 

of synovial fluid around the joints might affect the quality of the AE signals acquired during in 

vivo application of the technology. 

The machine learning techniques used for the classification could be further developed 

to build more intuitive and robust classification models. Discrete features used were chosen 

based on what has been reported in literature and it is worth noting that there are limited 

biotribological applications of AE signal analysis using machine learning. A more developed 

feature engineering process could be used to derive more significant and higher-order features, 

which could further improve the classification models’ accuracy. 

For the AE testing method to be transferable to clinical settings, there is considerable 

work still to be done.  

Since tests presented in this thesis are bench tests, further developmental work using 

the actual devices is required to build a profile of the AE signature of different artificial joints 

as a reference for the interpretation of signals acquired in vivo. Exploration of the effects of 

wear throughout the device’s lifetime would also be a further step toward a condition 

monitoring system.  

Tests presented in this thesis were carried out under simplified conditions, but that is 

not the case for an actual artificial joint where there will be more than one source of AE signals. 

To this end, building a machine learning model that will be robust to differing conditions is 

important. This could be done by simulating different test conditions reminiscent of what is 

expected in an actual artificial joint to acquire AE signals that can be used to train more 

machine learning models. 
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The deep transfer learning models presented in this thesis were built using wavelet 

transforms of the AE signals. More training data can be acquired by also creating spectrograms 

of the signals and stitching them together with the wavelet transforms thereby creating a deep 

learning model that is more robust to differing conditions. This is particularly useful for the 

CNN-SVM model where more significant features can be extracted from the CNN model for 

training and testing using SVM.   

To summarise, further development of machine learning techniques and higher-order 

analysis to observe the relationship between AE features and simulated damages will reveal 

additional insights. Ultimately, the transition of the proposed method from in vitro to in vivo 

will require refinement of signal acquisition techniques, data processing and analysis. 
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Appendix A1. Test Geometry Determination  

At a maximum possible load of 2000 N (BS ISO 18192-1, 2011), the maximum contact 

pressure of a ball and socket Charite Lumbar Spinal Implant (with ball radius of 14 mm and 

clearance of 0.35 mm (P. M. Moghadas et al., 2012)) was calculated to be 9.7 MPa and a 

contact area radius of 9.91 mm using Hertzian contact mechanics (Johnson, 1985). The load 

and corresponding contact area radius required to achieve an equivalent contact pressure on the 

TE77 for a sphere-on-plane configuration can be found in Table A1.1. A 20 mm diameter (and 

above) sphere is required to simulate a close enough maximum contact pressure on the TE77 

and this is more than the 6 mm & 10 mm diameter ball the TE77 is configured for. Also, the 

resulting contact area radius simulated is much lower than that of the Charite Lumbar Spinal 

Implant bearing surface. Moreover, such a low load could make the friction calculation 

unstable. For these reasons, a disc-on-plate configuration was decided upon. 

 

Table A1.1: Load and Contact Mechanics for a TE77 sphere-on-plane configuration 

Sphere Diameter, mm Force, N Maximum Contact 

Pressure, MPa 

Contact Area Radius, mm 

6 1 25.6 0.137 

10 1 18.2 0.162 

20 1 11.5 0.204 
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Appendix A2. MATLAB Codes 

A2.1 PCA Code 
 

load test1; 

W=A(:,:); % Each row is a sample 

CRate=0.95; %Contribution rate 

  

X = normalize(W); 

C=cov(X); %Calculate covariance matrix 

 

[V, D] =eig(C); %Calculate eigenvector V, eigenvalue D 

[dummy, order] =sort(diag(D),'descend'); %Sort feature vectors in descending order 

V=V(:,order); %Arrange feature vectors in descending order according to the size of feature 

values 

d=diag(D); %Take out the eigenvalues to form a column vector 

newd=d(order); %Arrange the column vectors of eigenvalues in descending order 

  

%Take the first n eigenvectors to form the transformation matrix 

sumd=sum(newd); %Sum of eigenvalues 

for j=1: length(newd) 

    i=sum(newd(1:j,1))/sumd;%Calculate contribution rate, contribution rate = sum of the first n 

eigenvalues / sum of the total eigenvalues 

    if i>CRate; %When the contribution rate is greater than 95%, the cycle ends and how many 

eigenvalues are taken 

        cols=j; 

        break; 

   end 

end 

T=V(:,1:cols); %Take the first 'cols' eigenvectors to form the transformation matrix T 

newX=X*T;  %Dimension reduction of X by transformation matrix T 

  

figure; 

percent_explained = 100*newd/sum(newd); %cumsum(latent)./sum(latent) 

bar(percent_explained); 

xlabel('Principal Component'); 

ylabel('Variance Explained (%)'); 

save newX1   %Save the dimension reduced data of PCA to 'newX.mat'. 
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A2.2 BP Neural Network Code 

 

tic %start of timing 

load newX1.mat; % Import feature data after dimension reduction by PCA 

load label.mat; % Import label 

% Generating test data 

X=newX(:,:); 

label=labels(:,:); 

 

C_O=randperm(24075); % Randomly scramble data 

% 85% is the training set 

train_wine = X(C_O(1:20460),:); 

% The label of the corresponding training set is also separated 

train_wine_labels = label(C_O(1:20460),:); 

% 15% is the test set 

test_wine = X(C_O(20461:24075),:); 

 % The label of the corresponding test set is also separated 

test_wine_labels = label(C_O(20461:24075),:); 

X=train_wine';  % Give the train set to X  

Y=train_wine_labels'; % Give the labels of train set to Y 

Xt=test_wine'; % Give the test set to Xt 

Yt=test_wine_labels'; % Give the label of test set to Yt 

%Create neural network 

net = newff( minmax(X) , [10 1] , { 'logsig' 'purelin' } , 'trainrp' )  ;  %The number of nodes in 

the hidden layer is 10, and the number of nodes in the output layer is 1. 

BP network training 

% Setting up training parameters 

net.trainparam.show = 50 ;%Display frequency, set here to display once every 50 trainings 

net.trainparam.epochs = 1000 ; % 1000 training times 

net.trainparam.goal = 0.01 ; % Minimum error of training target is set to 0.01 

net.trainParam.lr = 0.01 ;% The learning rate is set to 0.01 

net.divideFcn = 'dividerand' 

 

 

% starts training 

net = train( net,X,Y ) ; %Train BP Neural Network with the Features and Labels of Training 

Sets 

%simulation 

Yd2 = sim( net , X );  

Yd1=round(Yd2); 

% Print training set classification accuracy 

 total = length(Y);% The total number of train set which need to classify 

 right = sum( Yd1== Y);% Calculate the sum of the correct number of train set classifications 

 shang=right/total*100; % Calculate the accuracy of classification for train set 

 disp('Print training set classification accuracy'); 

 str = sprintf( 'Accuracy =%g%%(%d/%d)', shang,right,total); 

 disp(str); 
  
%simulation 
Yd0 = sim(net, Xt);  
Yd=round(Yd0); 
% Print test set classification accuracy 
 total = length(Yt); % The total number of test set which need to classify 
 right = sum(Yd== Yt); % Calculate the sum of the correct number of test set 
classifications 
 shang=right/total*100; % Calculate the accuracy of classification for test 
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%simulation 

Yd0 = sim(net, Xt); 

Yd=round(Yd0); 

% Print test set classification accuracy 

total = length(Yt);% The total number of test set which need to classify 

right = sum(Yd== Yt); % Calculate the sum of the correct number of test set classifications 

shang=right/total*100; % Calculate the accuracy of classification for test set 

disp('Print test set classification accuracy'); 

str = sprintf(‘Accuracy =%g%%(%d/%d)', shang, right, total); 

disp(str); 

 

[x1,y1,t2,AUC] = perfcurve(Yt,Yd,1); 

AUC 

plot(x1,y1) 

figure(1) 

plotconfusion(Yt,Yd) 

figure(2) 

plotroc(Yt,Yd) 

figure(3) 

plotconfusion(Y,Yd1) 

figure; 

hold on; 

plot(Yt,'+');%The actual label of test set 

plot(Yd,'square'); %The predicted label of test set 

xlabel('Testing set sample','FontSize',12); 

ylabel('Category label','FontSize',12); 

legend('The actual classification','The prediction classification'); 

title('The actual and prediction classification of the testing set','FontSize',12); 

grid on; 

toc 

t=toc 
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A2.3 CNN Deep Transfer Learning Code 

 

create data files and view signals 

parentFolder = '../DeepLearningClassification' 

dataFolder = 'data' 

helperCreateAEDirectories(AEData,parentFolder,dataFolder) 

create rgb scalogram 

helperCreateRGBfromTF(AEData,parentFolder,dataFolder) % function for creating rgb forms of wavelet 

transforms 

 

divide into training and testing data set 

allImages = imageDatastore(fullfile(parentFolder,dataFolder),... 

    'IncludeSubfolders',true,... 

    'LabelSource','foldernames'); 

rng default 

[imgsTrain,imgsValidation] = splitEachLabel(allImages,0.8,'randomized'); 

disp(['Number of training images: ',num2str(numel(imgsTrain.Files))]); 

disp(['Number of validation images: ',num2str(numel(imgsValidation.Files))]); 

 

GoogLeNet 

net = googlenet; 

lgraph = layerGraph(net); 

numberOfLayers = numel(lgraph.Layers); 

figure('Units','normalized','Position',[0.1 0.1 0.8 0.8]); 

plot(lgraph) 

title(['GoogLeNet Layer Graph: ',num2str(numberOfLayers),' Layers']); 

net.Layers(1) 

 

Edit Network layers 

lgraph = removeLayers(lgraph,{'pool5-drop_7x7_s1','loss3-classifier','prob','output'}); 

numClasses = numel(categories(imgsTrain.Labels)); 

newLayers = [ 

    dropoutLayer(0.6,'Name','newDropout')         

 fullyConnectedLayer(numClasses,'Name','fc','WeightLearnRateFactor',10,'BiasLearnRateFactor',

10) 

    softmaxLayer('Name','softmax') 

    classificationLayer('Name','classoutput')]; 

lgraph = addLayers(lgraph,newLayers); 

lgraph = connectLayers(lgraph,'pool5-7x7_s1','newDropout'); 

inputSize = net.Layers(1).InputSize; 

 

 

Training Options 
options = trainingOptions('sgdm',... 
    'MiniBatchSize',28,... 
    'MaxEpochs',30,... 
    'InitialLearnRate',1e-4,... 
    'Shuffle','every-epoch',... 
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Training Options 

options = trainingOptions('sgdm',... 

    'MiniBatchSize',28,... 

    'MaxEpochs',30,... 

    'InitialLearnRate',1e-4,... 

    'Shuffle','every-epoch',... 

    'ValidationData', imgsValidation,... 

    'ValidationFrequency',20,... 

    'Verbose',1,... 

    'ExecutionEnvironment','cpu',... 

    'Plots','training-progress'); 

 

% train network 

rng default 

trainedGN = trainNetwork(imgsTrain,lgraph,options); 

 

inspect network 

trainedGN.Layers(end-2:end) 

cNames = trainedGN.Layers(end).ClassNames 

 

% accuracy 

[YPred,probs] = classify(trainedGN,imgsValidation); 

accuracy = mean(YPred==imgsValidation.Labels); 

display(['GoogLeNet Accuracy: ',num2str(accuracy)]) 
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A2.4 Code for extracting features from GoogLeNet for training on SVM 
 

 

 

 

 

layer = 'pool5-7x7_s1'; 

featuresTrain2 = activations(trainedGN,allImages,layer,'OutputAs','rows'); % extract 

feature representation of training images 

featuresTest2 = activations(trainedGN,testImages,layer,'OutputAs','rows'); % extract 

feature representation of test images 

 

YTrain = allImages.Labels; 

YTest = testImages.Labels; 

 

train SVM with generated function 

[trainedClassifier, validationAccuracy] = 

trainGaussianSVMClassifier(featuresTrain,YTrain) 

 

predict test images using trained SVM 

yfit = trainedGaussSVMModel.predictFcn(featuresTest); 

accuracy = mean(yfit==YTest); 

display(['Test Accuracy: ',num2str(accuracy)]) 

 

confusion matrix 

plotconfusion(YTest,yfit) 
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