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ABSTRACT

Emergence of properties at the system level, where these properties are not observed

at the individual entity level, is an important feature of complex systems. Biological system

emergent properties have critical roles in the functioning of organisms and the disruptions

to normal functioning, and are relevant to the treatment of diseases like cancer. Complex

biological systems can be modeled by abstractions in the form of molecular networks like

gene regulatory networks (GRNs) and signaling networks with nodes representing molecules

like genes and edges representing molecular interactions. The thesis aims at exploring the

use of the architecture of these networks to predict emergence of system properties.

First, to better infer the network architecture with aspects that can be useful in pre-

dicting emergence, we propose a novel algorithm Polynomial Lasso Bagging or PoLoBag for

signed GRN inference from gene expression data. The GRN edge signs represent the nature

of the regulatory relationships, activating or inhibitory. Our algorithm gives more accurate

signed inference compared to state-of-the-art algorithms, and overcomes their weaknesses

by also inferring edge directions and cycles. We also show how combining signed GRN ar-

chitecture with dynamical information in our proposed dynamical K-core method predicts

emergent states of the gene regulatory system effectively.

Second, we investigate the existence of the bow-tie architectural organization in the

GRNs of species of widely varying complexity. Prior work has shown the existence of this

bow-tie feature in the GRNs of only some eukaryotes. Our investigation covers GRNs of

i



prokaryotes to unicellular and multicellular eukaryotes. We find that the observed bow-tie

architecture is a characteristic feature of GRNs. Based on differences that we observe in the

bow-tie architectures across species, we predict a trend in the emergence of the dynamical

gene regulatory system property of controllability with varying species complexity.

Third, from input genotype data we predict an emergent phenotype at the organism

level – the cancer-specific survival risk. We propose a novel Mutated Pathway Visible Neural

Network or MPVNN, designed using prior knowledge of signaling network architecture and

additional mutation data-based edge randomization. This randomization models how known

signaling network architecture changes for a particular cancer type, which is not modeled by

state-of-the-art visible neural networks. We suggest that MPVNN performs cancer-specific

risk prediction better than other similar sized NN and non-NN survival analysis methods,

while also providing reliable interpretations of the predictions.

These three research contributions taken together make significant advances towards

our goal of using molecular network architecture for better prediction of emergence, which

can inform treatment decisions and lead to novel therapeutic approaches and is of value to

computational biologists and clinicians.
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Chapter One

Introduction

1.1 Background

Our world is filled with complex systems, where simple entities interact to produce higher-

level behaviors. The ubiquitous phenomenon of emergence is considered to be a characteristic

feature of complex systems (Boschetti et al., 2005). A system property can be defined as

emergent if it is observed at the level of the system and not at the level of lower-level enti-

ties (Baas and Emmeche, 1997). One major area of analysis of emergence is in the field of

biological systems. Study of biological systems helps us comprehend how living organisms

work. These systems exist at different levels of biological hierarchy, for example genes, cells,

tissues and organisms. Prediction of emergence can tell us the fate of a cell or ultimately the

overall organism. One of the main objectives of systems biology is to understand emergence

(Tavassoly, Goldfarb, and Iyengar, 2018). Despite significant advances in the study of func-

tionalities related to many biological systems, there are still considerable gaps in fully and

reliably understanding and predicting how system-level behavior emerges. The ability to

better predict emergent properties associated with the functioning of these critical biological

systems can improve our knowledge of these systems and guide development of therapeutic

1



Introduction

approaches leveraging such properties.

One primary tool in the very challenging task of understanding emergence is un-

derstanding information processing (C. R. Shalizi, K. L. Shalizi, and Crutchfield, 2002).

Emergence of biological system behavior could be understood by analyzing how informa-

tion is processed within the system (Nurse, 2008). This term processing here encompasses

gathering, modifying, transmitting, using or storing the information. To understand how

information is processed in a complex system, abstractions of the system can be used, ab-

stractions which can accurately model the system and are naturally designed for analysis

of information processing. An example of such an abstraction is complex networks, which

are defined as graphs consisting of individual nodes connected by edges, having topological

features that are not completely regular nor completely random. Many real-world systems

in major fields like social sciences, electrical engineering, and in this context biology can

be modeled using complex networks (J. Kim and Wilhelm, 2008; Barabási, Gulbahce, and

Loscalzo, 2011).

Biological information processing is accomplished by the molecular networks repre-

senting interactions between molecules like genes, proteins, metabolites, etc. Gene regulatory

networks (GRNs) (Karlebach and Shamir, 2008) are networks that represent interactions of

gene regulation between regulators like transcription factors and their target genes. GRNs

are considered to be the downstream parts of signaling networks, which are molecular net-

works representing interactions involved in cellular signaling. Signaling networks are made

up of individual signaling pathways (Weng, Bhalla, and Iyengar, 1999). Emergence of cellular

behavior being controlled by information processing in these molecular networks is depicted

in Figure 1.1.

The network architecture refers to the arrangement of nodes in a network. The archi-

tecture captures all the structural information in the network, like existence of edges between

2



Introduction

Figure 1.1: Information processing in molecular networks for cellular decision-making. (a)

Information processing through signaling and gene regulatory networks, (b) Cellular decision-

making is based on information processing in these networks, where different combinations

of activated signaling and gene regulatory networks lead to different behaviors. Reprinted

figure with permission from Ferreira, Nakaya, and Fontoura Costa, 2018. Copyright (2018)

by the American Physical Society.
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nodes, and directions and signs of those edges. Biological systems are dynamical systems,

therefore their state changes over time under different conditions. Network dynamics refers

to how a network’s state changes. Information is processed through the change of network

states, and this change or network dynamics is governed by how the molecules in the network

are arranged, that is the network architecture. How the molecules interact with each other

is also important, which is denoted by dynamical information like interaction functions and

associated parameters. The architecture and the dynamical information need to be consid-

ered together in the model to have a complete picture of emergence (Tavassoly, Goldfarb,

and Iyengar, 2018). This important relationship between network architecture and dynamics

has been explored (Tyson, K. C. Chen, and Novak, 2003; Alon, 2007; J.-R. Kim, Yoon, and

K.-H. Cho, 2008). However, this is done usually at small network sizes, since there are too

many unknowns to model for large networks.

One way of obtaining architectures of GRNs is using curated databases (Santos-

Zavaleta et al., 2019; Z.-P. Liu et al., 2015). However the architecture information is not

always complete. Network edges might be missing, and additionally information like edge

signs representing the activating or inhibitory nature of regulatory relationships is missing.

Another way of deriving GRN architectures is GRN inference, as with the availability of high

quality gene expression data from experiments, the network architecture can be accurately

reverse engineered from the data (Gardner and Faith, 2005). An important concept in

network reverse engineering is identifiability denoting whether a network can be uniquely

determined from the available data (Zak et al., 2003). In GRN inference, there are usually

lesser measurement samples than the number of genes in the network, and also there is

noise in gene expression data. For an inference algorithm, these limitations in the data

must be balanced with the inferred GRN complexity, where important architectural aspects

should be considered to accurately represent the regulatory system. However, many popular

GRN inference algorithms (Margolin et al., 2006; Huynh-Thu, Irrthum, et al., 2010) do not
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produce edge signs. Algorithms for signed inference suffer from some key limitations such as

not producing edge directions (Khosravi et al., 2015) or network cycles (J. Yu et al., 2004),

both of which along with edge signs are aspects of the architecture which can be useful in

prediction of emergence.

Emergent properties are associated with network architectural features denoting how

the nodes fit in an organization within a network. Example of such an architectural feature is

the bow-tie architecture (R. Yang, Zhuhadar, and Nasraoui, 2011). This feature is associated

with emergent properties like controllability, and understanding how these properties emerge

would be helpful in understanding how diseases develop and therapeutic methods can be

designed (Kitano, 2004a). Prior work has shown the existence of a bow-tie architecture in

GRNs of some eukaryotes (Rodriguez-Caso, Corominas-Murtra, and Solé, 2009; S. Luo et al.,

2018). However, a more complete investigation of the existence of the bow-tie architecture

across GRNs in species of a wide range of biological complexity has not yet been performed.

In such an investigation, quantification of the characteristics of the bow-tie architecture with

varying species complexity can predict a trend of change in emergence of the important gene

regulatory system property of controllability.

Improved prediction of emergence involves not just predicting general trends but pre-

dicting more specific values of emergent properties. One practical application of predicting

an emergent phenotype is to predict cancer-specific survival risk of a patient from genotypic

measures. Cancer survival risk prediction using gene expression has been studied as a ma-

chine learning task. Neural networks (NNs) are a well-known category of machine learning

methods, and they have been used for prediction of cancer risk (Katzman et al., 2018; Z.

Huang et al., 2019). However, a major challenge of standard fully connected NNs is that

they are used as black boxes, with lack of interpretability or understanding of their internal

operations in biological terms. This lack of interpretability leads to lack of user trust in the

model. To increase the model interpretability, there are visible NNs or VNNs where neurons
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represent biological entities like genes, proteins, pathways, cell subsystems, etc. and connec-

tions between the neurons represent biological relationships. Biological pathway knowledge

is used in the design of VNNs (Elmarakeby et al., 2021; Hilten et al., 2020; J. Ma et al.,

2018; Fortelny and Bock, 2020). However, the state-of-the-art VNNs do not model how

known biological pathway architecture can change for particular types of cancer. Flow of

information through pathways can be disrupted in a particular way for a particular cancer.

Cancer survival risk is also affected by gene mutations, for instance BRCA1/2 mutations in

breast and ovarian cancer (Kurian, Sigal, and Plevritis, 2010). Gene mutation data can be

used to simulate the disruption of information flow. Since the design of VNNs is based on

biological relationships, consideration of this disruption in the VNN model can be useful in

the prediction of cancer-specific survival risk.

1.2 Research Questions

Based on the identified research gaps in the background work, our aim is to better predict

emergence in biological systems using molecular network architecture. We work towards that

aim by addressing three key research questions outlined below.

1. How to better infer GRN architecture from data?

The first research question is how to more accurately infer the signed GRN architecture

from gene expression data. A general form of expression data is considered, that is

without any prior time course or gene knock-out assumptions or availability of reference

wild-type measurements. The question also covers how to simultaneously infer other

architectural aspects like edge directions and cycles which along with edge signs can

play important roles in predicting emergence in the gene regulatory system.

2. Can trends in emergence be predicted using a characteristic feature of GRN
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architectures?

The second research question is if there exists an architectural feature – the bow-tie

architecture in the GRNs of species of widely varying biological complexity. The next

part of the question is if there are quantitative traits of the bow-tie architecture that

can be analyzed for understanding differences in the emergence of the dynamical gene

regulatory system property of controllability with species biological complexity.

3. How to better predict organism-level emergence using signaling network

architecture?

The third research question is how an organism-level emergent phenotype of the cancer-

specific survival risk can be effectively predicted from genotype using knowledge of

signaling network architecture and modeling of how the architecture can change for

particular cancer types. This also covers if the predictions can be reliably interpreted

to provide insights which correspond to the actual emergence of risk.

1.3 Research Contributions

The contributions of the thesis are summarized in this section. We answer the three proposed

research questions as follows.

First, we propose an algorithm Polynomial Lasso Bagging or PoLoBag for signed gene

regulatory network (GRN) inference from a general form of gene expression data without

any prior time course or gene knock-out assumptions or availability of reference wild-type

measurements. We demonstrate that our algorithm consistently performs more accurate

signed inference compared to state-of-the-art algorithms on simulated and real-world ex-

pression datasets. Our algorithm also overcomes the key shortcomings of other algorithms

as it infers signed networks with both edge directions and network cycles. Additionally, we
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combine signed GRN architecture and dynamical information to propose a dynamical K-core

decomposition method for finding top regulators in the GRN and suggest that the top regu-

lators identified by our method predict emergent states of the gene regulatory system under

different measurement conditions better than those identified from the K-core decomposition

method.

Second, we find the existence of a bow-tie architectural feature in the GRNs of species

of widely varying complexity from prokaryotes to unicellular and multicellular eukaryotes

including human. We show that this is a characteristic feature of these GRNs, which can

not be explained just by chance. Based on the observed quantitative differences of the GRN

bow-tie architectures, we hypothesize how the dynamical gene regulatory system property

of controllability has emerged differently with species complexity.

Third, we propose a novel Mutated Pathway Visible Neural Network or MPVNN for

predicting emergent phenotypic property at the organism level – cancer-specific survival risk

from genotype gene expression data. The proposed neural network is designed using prior

knowledge of signaling network architecture and mutation data-based edge randomization

simulating how the known signaling network architecture changes for a particular cancer type.

We show that our MPVNN can give better overall cancer-specific survival risk prediction

mean performance than similar sized NN and other standard non-NN methods. Importantly,

this visible neural network can be interpreted to provide insights about sets of genes linked

by flow of signal that are important in cancer-specific risk prediction, and from literature

validation we argue that these insights are reliable corroborating with risk emergence.

From our work, we are able to accurately infer signed GRN architecture that is found

to be useful in predicting emergence in the gene regulatory system. Our work on the bow-tie

architecture in GRNs of species of widely varying biological complexity enables us to predict

a trend in the emergence of the dynamical gene regulatory system property of controllabil-
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ity with varying species complexity. Lastly, our work on the visible neural network using

signaling network architecture and modeling how the known architecture changes for partic-

ular cancer types allows us to effectively predict the emergent phenotype of cancer-specific

survival risk in an interpretable manner. Therefore, putting forward these three contribu-

tions, we make significant advances towards our central thesis objective of using network

architecture for predicting emergence in complex biological systems.

1.4 Thesis Outline

The outline of the overall thesis is given in this section. In Chapter 1 we have introduced the

research gaps in the background work, the proposed research questions and our contributions.

For the remaining chapters, Chapter 2 presents a high-level literature review, followed by

details of three individual studies. In Chapter 3, we first present our signed GRN inference

algorithm PoLoBag, and then describe our dynamical K-core method combining signed GRN

architecture and dynamical information for emergent state prediction. Chapter 4 describes

our work on investigation of the bow-tie architecture in GRNs of species of widely varying

complexity to predict a trend in the emergence of the dynamical gene regulatory system

property of controllability. The work on MPVNN neural network for predicting the emergent

phenotype of cancer-specific survival risk is presented in Chapter 5. Chapter 6 summarizes

what we learn from the overall work done in the thesis and discusses some examples of future

work.
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Literature Review

In this chapter we present a literature review of the prior work and concepts relevant to

our central objective of using network architecture for predicting emergence in complex

biological systems. First we review the definitions of emergent properties and biological

networks which form the basis of our work. We present reviews of network architecture

knowledge, architecture inference from data and network architectural features. Next we

present some popular machine learning methods used for the task of prediction. Finally we

review prediction of emergence using network architecture. Here we refer the reader to the

sections in respective chapters for very specific details of prior work and concepts, as those

details are useful in illustrating how each of the individual studies is motivated by and still

very novel relative to the relevant prior work.

2.1 Emergent Properties

Much effort has been devoted to formally defining the concept of emergence (Kubí, 2003). In

this thesis, we use the simple and elegant definition where a system property is defined as an

emergent property if it is displayed at the level of the system and not displayed by lower-level
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entities within the system (Baas and Emmeche, 1997). More formally, let the overall system

be modeled by a network N2, made up of individual nodes Ni
1. Here superscripts 1 and 2

represent the two levels of this simple hierarchy. We consider an observational mechanism

Obsj where j ∈ {1,2}. Now a property P is defined to be an emergent property iff

P ∈ Obs2(N2), P ∉ Obs2(Ni
1) for all i. (2.1)

Here we refer to emergent behavior under one particular condition as an emergent state, and

an emergent property usually encapsulates behavior under multiple conditions.

A biological system emergent property is associated with the hierarchical level of the

system. Here we consider emergent properties at the level of the gene regulatory system and

at the level of the entire organism. The gene regulatory system emergent property of interest

in this thesis is controllability. A non-linear dynamical system is defined to be controllable

when there is a control path from an undesired attractor state to a desired attractor state

under finite perturbations, where attractor states are stable equilibrium states in the phase

space (L.-Z. Wang et al., 2016). Controllability is universally present in the gene regulatory

system and can be utilized in therapy since cancer cells are trapped in abnormal attractor

states (S. Huang, Ernberg, and S. Kauffman, 2009).

One particular property which is very clinically significant and emergent at the or-

ganism level is the cancer survival risk of a patient. This property, indicative of the survival

time of a patient (J. Liu et al., 2018), can be expressed as a risk score (Katzman et al., 2018;

Z. Huang et al., 2019). Being able to effectively predict this phenotype helps in making

informed decisions about patient treatment. For cancer-specific survival, an event refers to

death specifically from the diagnosed cancer type (J. Liu et al., 2018). We further discuss

the property of cancer-specific survival risk in Section 5.2.1. This emergent property can

inform patient treatment by guiding the suitability of a treatment method or by assessing

the effectiveness of an applied method.
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2.2 Biological Networks

One common representation used to model biological systems is that of biological networks.

A network here is defined as G = (V,E), where V denotes the set of nodes representing

biological entities, and E denotes a set of edges or connections representing biological rela-

tionships between those entities. Edges can have attributes like direction, sign, weight, etc.

This is illustrated in Figure 2.1. For a network, the architecture refers to the arrangement of

nodes and the dynamics refers to how the states change over time under varying conditions.

In this thesis we are studying two particular molecular networks – gene regulatory

networks (GRNs) and signaling networks. GRNs represent interactions between regulators

like transcription factors and target genes. Through binding, a transcription factor controls

the rate of transcription of its target gene, either activating or repressing the transcription.

The expression of genes are controlled by these GRNs. For example, the transcription fac-

tor MYC upregulating CDK4 (Hermeking et al., 2000) is represented by the GRN edge

MYC→CDK4. The process of transcription is also affected by regulators like prokaryotic

sigma factors and chromatin remodeling factors. Apart from transcriptional relationships,

GRN edges can also represent post-transcriptional relationships between regulators like bac-

terial small RNAs or microRNAs and their target genes. Signaling networks are made up of

individual signaling pathways representing molecular interactions involved in cellular signal-

ing. Analysis of these networks is useful in understanding normal functioning and disease

development in organisms.
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Figure 2.1: The PI3K-Akt signaling pathway (Kanehisa and Goto, 2000).
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2.3 Network Architecture Knowledge

Owing to the substantial amount of research that has been done in the study of molecular

networks, it has been possible to construct databases for GRNs and signaling networks.

For GRNs, there are different databases which focus on individual species or groups of

species. Examples of such GRN databases include RegulonDB (Santos-Zavaleta et al., 2019),

YTRP (T.-H. Yang et al., 2014), AtRegNet (Yilmaz et al., 2010), DroID (Murali et al.,

2011), etc. for non-human species. Human GRNs can be obtained from data sources like

RegNetwork (Z.-P. Liu et al., 2015), TRRUST (H. Han et al., 2018), ORTI (Vafaee et al.,

2016), etc. Further details of databases are given in Section 4.2.1. These contain regulator

and target gene interactions collected using different methodologies, where some interactions

are experimentally verified and some are predicted from computational techniques. Examples

of regulators are transcription factors, microRNAs, etc. The interactions are ranked based

on the reliability of the associated evidence. Different data sources use their own set of

criteria for defining the interaction ranks, and in some cases the information is not available.

Completeness in terms of coverage of genes is also a major issue. The architecture of signaling

networks can be obtained from the KEGG Pathway database (Kanehisa, Furumichi, et al.,

2021), the Reactome Pathway database (Griss et al., 2020), etc. These discussed databases

can be used as data sources for subsequent architecture analysis of GRNs and signaling

networks.

2.4 Network Architecture Inference

In the architectures of GRNs that are obtained from databases, some vital information can

be missing, for example in the form of missing edges or unavailability of edge signs. GRN

inference is the reverse-engineering of the GRN from gene expression data (Gardner and
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Faith, 2005). Gene expression data, collected from real biological experiments or simulated

from GRN models, can be of several types (Schaffter, Marbach, and Floreano, 2011). Ex-

pression data can be steady-state or time course. It can be categorized as single or double

gene knockout or knockdown, referring to genes being inoperative fully or partially, or mul-

tifactorial data where basal levels of all genes are perturbed. The steady-state multifactorial

data is a more commonly available form of gene expression data.

Several categories of GRN inference methods exist, and each category, based on its

strengths and weaknesses, is useful in different settings. One type of methods are based on

the Boolean network model (S. A. Kauffman, 1969). These simple Boolean network models

represent genes as Boolean variables whose values are updated in time steps. Another cate-

gory of methods are based on Bayesian networks, which are used to represent the probabilistic

relationships between variables or genes. An example is Bayesian Network Inference with

Java Objects (Banjo) (J. Yu et al., 2004). As these Bayesian networks are acyclic graphs,

static version of the Banjo cannot have cycles in the inferred GRN. Information theoretic

inference methods aim to uncover statistical dependencies between the expression profiles of

genes. One such algorithm using the measure of mutual information (MI) is the Algorithm

for the Reconstruction of Accurate Cellular Networks (ARACNe) (Margolin et al., 2006).

Information theoretic algorithms do not infer network edge directions.

A popular category of inference methods are the ones based on regression. In contrast

to simpler Boolean models, the continuous expression values of a target gene are considered

a function of the continuous expression values of the regulator genes. For classification-based

methods, the target gene expression can be categorized into up or down states (Middendorf

et al., 2004). An example of a regression-based inference method is Gene Network Inference

with Ensemble of trees (GENIE3) (Huynh-Thu, Irrthum, et al., 2010) which uses tree-based

ensemble approaches. Another type of methods use biologically more realistic ordinary

differential equations (ODE) models. These complex models relate the rate of change of
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expression of a target gene to its own expression and the expression of regulator genes,

and can be simplified to regression models for steady-state expression data. An example is

Inferelator (Bonneau et al., 2006).

Many popular inference algorithms do not give edge signs denoting the activating or

inhibitory nature of the regulatory relationships. We are interested in signed GRN inference

algorithms which can infer from a general form of expression data, that is without any time

course or gene knockout assumptions or availability of reference measurements. Example of

such an algorithm is Banjo. Static Banjo produces edge signs, but cannot have cycles in

the inferred GRN. A signed inference algorithm from the category of information theoretic

methods is Signing of Regulatory Networks (SIREN) (Khosravi et al., 2015). But this

algorithm does not give edge directions. Some signed inference algorithms apply the Least

absolute shrinkage and selection operator (Lasso) (Tibshirani, 1996). Lasso is a variable

selector which selects input variables or features that can best explain the output variable.

However, as pointed out in Zou and T. Hastie, 2005, in Lasso on its own the variable

selection is firstly constrained by the sample size and secondly is not accurate when there

are highly correlated input variables as is the case with GRNs where many regulators in

synergy can regulate a target gene. We present further details of signed GRN inference

algorithms in Section 3.1. From the literature review it is observed that state-of-the-art

inference algorithms suffer from some major limitations which need to be addressed:

– not inferring edge signs,

– not inferring edge directions or network cycles simultaneously when inferring edge signs,

– Lasso for inferring edge signs not being accurate on its own.
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2.5 Network Architectural Features

Different nodes in the GRN architecture play different roles in controlling the behavior of

the network. An approach of simplifying the analysis of the GRN architecture is to find

out which of the nodes play more critical roles. However, identification of important nodes

is not an easy task, and the GRN of a human has been compared with a tangled hairball

(Narang et al., 2015). Different measures of importance can be used to rank nodes in the

architecture, like those based on node degree denoting its number of connections or node

centrality denoting its relative position compared to other nodes in the network (Borgatti,

2005).

A well-known node ranking method is the K-core method. The K-core of a network is a

maximum subnetwork where the degree of every node is greater than or equal to K (Seidman,

1983). Figure 2.2 shows the cores of a network. The K-core network decomposition method

(Batagelj and Zaversnik, 2003) can identify a hierarchical organization of nodes as done

for GRNs of bacteria (Malkoç, Balcan, and Erzan, 2010), yeast Saccharomyces cerevisiae

(Balcan et al., 2007), human (Narang et al., 2015). Section 3.5.1 elaborates further on this.

The inner cores identified by K-core decomposition points to which regulator nodes are most

important.

An architectural feature denotes how the nodes fit into a particular organization in

the network. In the core-periphery architectural feature, some nodes form a central densely

connected core (Csermely et al., 2013). The bow-tie architecture is a particular case of

core-periphery architecture. A bow-tie architecture in a directed network is defined with

a strongly connected core layer which lies between the in layer and the out layer (R.

Yang, Zhuhadar, and Nasraoui, 2011). A strong component is a subnetwork where every

node is connected to every other node, and the largest of these components is defined to

be the core layer (Broder et al., 2011). An example of a network bow-tie architecture is
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Figure 2.2: Network K-core – 0, 1 and 2 core of a network. The circles represent nodes and

the arrows represent edges. The node degree is in-degree + out-degree. The different cores

are denoted by dashed circles.

given in Figure 2.3. Further details of the bow-tie architectural feature is given in Sections

4.1 and 4.2.3. A bow-tie architecture has been previously observed in the GRNs of two

eukaryotic species – Yeast (Saccharomyces cerevisiae) (Rodriguez-Caso, Corominas-Murtra,

and Solé, 2009) and Arabidopsis (Arabidopsis thaliana) (S. Luo et al., 2018). However no

study has yet investigated the existence of the bow-tie architecture and the quantification

of its characteristics across GRNs in species of a wide range of biological complexity from
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bacteria to human.

Figure 2.3: An example of a bow-tie architecture with the largest strong component (LSC)

core layer. The circles represent nodes and the arrows represent edges. The bow-tie layers

core, in and out are denoted by dashed boxes.

2.6 Prediction

There are different categories of machine learning methods that are used for the task of pre-

diction. One such popular method is support vector machine (Cortes and V. Vapnik, 1995).

In a binary classification setting, support vector machine (SVM) works by constructing a

hyperplane that can separate the data into two classes with maximum separation between

the classes. SVM is a linear classifier, however for cases when the data is not linearly separa-

ble, the kernel approach (Boser, Guyon, and V. N. Vapnik, 1992) constructs the hyperplane

in a transformed space. An extension of the SVM method referred to as support vector

regression is used in a regression setting (Drucker et al., 1996).

Another category of machine learning methods for prediction is that of neural net-

works (McCulloch and Pitts, 1943). The basic unit of a neural network is a neuron, which
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is connected to other such neurons. These neurons are arranged in layers. The output of

a neuron in layer l is given as xout = f(w ∗ xin + b), where xin represents the values of the

neurons in layer l − 1 which are connected to the neuron in consideration, w represents the

weights of those connections, b is the bias and f is the activation function. In this way,

the features in the input layer are mapped via hidden layers to the prediction in the output

layer. A fully connected artificial neural network with one hidden layer is shown in Figure

2.4. There are many other varieties of neural networks as well.

2.7 Network Architecture for Emergence Prediction

Network architecture plays an important role in how information is processed and system

behavior emerges (Csermely et al., 2013). The top regulators within the GRN architecture

identified by K-core decomposition method can be used to effectively predict the emergent

state of the regulatory system (Narang et al., 2015). The bow-tie architectural feature

has been associated with emergent properties like controllability (Csete and Doyle, 2004).

Increase in the bow-tie core size is linked with decrease in controllability. This points to

the bow-tie architectural feature being a useful basis for predicting a general trend in the

emergence of this property.

Emergence of system properties can be predicted by molecular network dynamical

models which combine architecture and dynamical information (Tavassoly, Goldfarb, and

Iyengar, 2018). Several studies have shown how network architecture and dynamics together

can be used to study emergent behavior at different levels (Tyson, K. C. Chen, and Novak,

2003; Alon, 2007; J.-R. Kim, Yoon, and K.-H. Cho, 2008; Long, Brady, and Benfey, 2008;

Muhammad et al., 2017; Zanudo and Albert, 2015). Aspects of the architecture like edge

signs and directions and feedback loops are used in dynamical modeling. The modeling
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Figure 2.4: A fully connected artificial neural network with one hidden layer. The circles

represent the neurons.

becomes very complicated with many parameters as the size of the network increases. When

the behavior at the level of the molecular system needs to be mapped to that at higher

biological levels, the number of associated parameters in the model would further increase.

The task of mapping genotype to phenotype, that is lower-level network state mea-

surements to higher-level emergent properties, can be addressed as a learning task. An
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example of organism-level phenotype is patient cancer survival risk. Machine learning mod-

els are used for the prediction of cancer survival risk using gene expression data (W.-Y.

Cheng, T.-H. O. Yang, and Anastassiou, 2013), including neural networks or NNs (Katzman

et al., 2018; Z. Huang et al., 2019). However one major limitation of some machine learn-

ing models including standard neural networks is lack of interpretability, as they are used

as black boxes. Model interpretability refers to the degree to which the model’s internal

operations can be understood by a human (Biran and Cotton, 2017). A more interpretable

model would inherently increase a user’s trust on the model. The emergent phenotype of

cancer-specific survival risk is clinically very relevant as its prediction can inform patient

treatment, and user’s trust is important in such a high-stakes prediction.

To increase model interpretability compared to standard black box NNs, there are

visible NNs or VNNs where biological meanings are attached to intermediate neurons and

connections between the neurons represent biological relationships (M. K. Yu et al., 2018).

VNNs are designed using biological pathway knowledge (Elmarakeby et al., 2021; Hilten

et al., 2020; J. Ma et al., 2018; Fortelny and Bock, 2020). More details of VNNs are

provided in Section 5.1. However, none of the state-of-the-art VNNs model how a known

pathway architecture can change for a particular disease or type of cancer. The design of

VNNs is based on biological relationships, so modeling how known pathway architectures

change under a type of cancer can be useful in the prediction of the emergent phenotype of

cancer-specific survival risk.

2.8 Chapter Summary

In this chapter we present a literature review of the prior work and concepts which are

relevant to the central objective of the thesis. We review emergent properties of biological
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systems and how they can be useful in understanding of disease characteristics and develop-

ment of therapeutic strategies. We review the concept of biological networks like GRNs and

signaling networks, and how their architectures can be obtained from data sources. However,

vital information in GRN data sources can be missing, information like that of edge signs

which can be useful for the prediction of emergence. We review GRN inference algorithms

and their major limitations like not predicting edge signs, or predicting signs with no edge

directions or with no cycles, pointing to the need for better GRN inference from expression

data. In the context of network architectural features, we review the K-core network de-

composition which can denote which regulators in a GRN are most important. We review

the bow-tie architectural feature, and show that prior work has investigated the existence

of this feature in only some eukaryotic GRNs. We explore how the bow-tie architecture is

associated with quantitative changes in emergent properties like controllability, suggesting

the need of an investigation into GRNs of widely varying species complexity to predict a

trend in emergence. We review the prediction of organism-level emergent phenotype from

genotype as a learning task. We see that biological pathway knowledge is used in prediction

with VNNs which provide increased interpretability compared to standard NNs, and that

none of the VNNs model how known pathway architecture can change for particular diseases.

23



Chapter Three

Inference of Signed Gene Regulatory

Network Architecture

In this chapter we focus on the aspect of GRN architecture that is useful in the prediction

of emergence. Inferring gene regulatory networks (GRNs) from gene expression data is a

significant systems biology problem. A useful inference algorithm should not only unveil the

global structure of the regulatory mechanisms but also the details of regulatory interactions

like edge signs denoting activation or inhibition. Many popular GRN inference algorithms

cannot infer edge signs, and those that can infer signed GRNs cannot simultaneously infer

edge directions or network cycles.

To address these limitations of existing algorithms we propose a novel algorithm Poly-

nomial Lasso Bagging (PoLoBag) for signed GRN inference with both edge directions and

network cycles. PoLoBag is an ensemble regression algorithm in a bagging framework where

Lasso weights estimated on bootstrap samples are averaged. The bootstrap samples incor-

porate polynomial features to capture higher order interactions. We evaluate the signed

inference performance of our algorithm against state-of-the-art algorithms on simulated and

real-world expression datasets. Next we aim to validate the role of signed GRN architecture
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in the prediction of emergence. We use a combination of signed GRN architecture and dy-

namical information in our proposed dynamical K-core method for emergent state prediction

of the gene regulatory system.

The organization of this chapter is as follows. Section 3.1 introduces the concept

of signed gene regulatory network inference and presents related work. We describe our

proposed PoLoBag algorithm and further experimental details in Section 3.2. The signed

inference results are presented in Section 3.3 with future directions discussed in Section

3.4. In Section 3.5 we present our work on the dynamical K-core decomposition method for

finding top regulators and predicting emergent gene regulatory system states. A summary

of this chapter is given in Section 3.6.

3.1 Background and related work

Reverse-engineering the gene regulatory network from high-throughput expression data, or

network inference, is a challenging and important research area (Gardner and Faith, 2005;

W.-P. Lee and Tzou, 2009). Gene regulatory networks (GRNs) are networks that represent

regulatory interactions between regulators such as transcription factors, kinases, etc. and

target genes. Study of these networks is key to understanding several system-level responses

in the organism crucial to its development and pathology. This in turn helps in developing

effective therapeutic approaches for critical diseases like cancer. Many widely used GRN

inference algorithms cannot infer the nature of regulation, where activating and inhibitory

interactions are represented by positive and negative signs respectively. State-of-the-art

inference algorithms capable of predicting edge signs suffer from limitations like inferred

networks either not having edge directions or not allowing cycles.

Edge signs are very important in regulatory network analysis. The effects in the
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overall system caused by perturbations to regulators can be determined using these signs.

Feedforward and feedback loops found in regulatory networks exhibit different dynamics

based on the signs of the involved edges (Alon, 2007). Comprehensive understanding of

GRNs includes knowing the activating/inhibitory nature of the regulatory interactions and

such understanding can have biological and clinical applications. One such major application

is in the area of drug development using network-based approaches (Barabási, Gulbahce, and

Loscalzo, 2011). Other applications of edge signs include identification of pluripotency and

differentiation related genes in murine embryonic stem cells (M. J. Mason et al., 2009).

A number of algorithms have been proposed for signed inference from expression data

obtained under different experimental settings. Network identification by multiple regres-

sion (NIR) (Gardner, Di Bernardo, et al., 2003) is based on ordinary differential equations

(ODEs) and requires knowledge of perturbed genes. The algorithm (Bansal, Gatta, and

Di Bernardo, 2006) performs signed inference from time course gene expression data. Net-

work Inference with Multi Objective Optimization (NIMOO) (Gupta et al., 2011) utilizes

multi-objective optimization to integrate multiple inference methods and experimental data

sources. Transitive Reduction and Closure Ensemble (TRaCe+) (Ud-Dean et al., 2016)

constructs an ensemble of signed directed networks from gene knock-out expression data.

However, we are interested in signed inference from a general form of gene expression data,

like the more common and easily available multifactorial data.

Among the algorithms that can perform signed inference from expression datasets

of interest, the algorithm (Veber et al., 2008) infers the role of regulators by checking for

consistency of regulatory networks with signs of variation obtained from expression data.

However, it needs wild-type or reference gene measurements to obtain these signs of variation.

Petri Nets with Fuzzy Logic (PNFL) (Küffner et al., 2010) performs signed inference from

diverse datasets by modeling GRNs as PNFL. This algorithm also requires wild-type gene

measurements before PNFL simulation. Two readily available state-of-the-art algorithms
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without the requirement of reference measurements are Bayesian Network Inference with

Java Objects (Banjo) (J. Yu et al., 2004) and Signing of Regulatory Networks (SIREN)

(Khosravi et al., 2015).

Banjo belongs to the category of probabilistic graphical model based algorithms. In

Banjo the probabilistic relationships between variables are represented using Bayesian net-

works. The best network in terms of fitting the observed data is found by a search. An

influence score is computed for network edges denoting the magnitudes and signs of inter-

actions. Banjo can capture many forms of relationships between variables and handle noisy

data because of its probabilistic nature. However, the algorithm requires a lot of data for

accurate inference. In addition static Bayesian networks in Banjo cannot represent cycles

like feedback loops which are often observed in regulatory networks. Version 2 of Banjo

software can create a consensus graph from the best fit networks, which can have cycles, but

signed edge scores are not available for this consensus graph.

SIREN algorithm is from the category of information theoretic algorithms. Signed

weighted gene co-expression network analysis (WCGNA) (M. J. Mason et al., 2009) uses

an information theoretic similarity metric based on Pearson correlation coefficient (PCC) to

generate signed networks. Nonlinear relationships between variables cannot be captured by

correlation measures, so mutual information is used for network inference. However, mutual

information is a non-negative quantity. SIREN overcomes this limitation by using a mutual

information-based measure with a rescaling matrix to produce signed scores. The rescaling

matrix is used to differentiate the expression distribution pattern of a pair of positively

correlated genes from the pattern of a pair of negatively correlated genes. Working in a

complementary way with other inference algorithms that can produce an unsigned GRN,

SIREN can deduce the edge signs. It is fast and quite accurate with reasonable amounts of

data and is shown to be better than PCC on real-world datasets. But the major disadvantage

of this algorithm used on its own is that inferred signed interactions are not directional.
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There are some algorithms for signed inference from expression data of our interest

which use Least absolute shrinkage and selection operator (Lasso) (Tibshirani, 1996). Infere-

lator (Bonneau et al., 2006) uses an ODE model and applies Lasso for variable selection, and

also considers nonlinear interactions involving more than one regulator. As a pre-processing

step, genes and conditions are first grouped into biclusters using a biclustering algorithm.

Lasso regression has been used for the task of finding signed edge weights for some target

genes in a gene network (Licausi et al., 2011). However, Lasso on its own suffers from limita-

tions where the variable selection is firstly constrained by the sample size and secondly is not

accurate when there are highly correlated input variables (Zou and T. Hastie, 2005). The

algorithm (Gustafsson et al., 2009) uses an ODE model with Lasso for variable selection. A

bootstrap procedure of data sampling is used for obtaining edge scores. The bootstrapping

framework in (Morgan et al., 2019) can be used with Lasso to perform signed inference.

However, feature bagging which can address the second aforementioned limitation of Lasso

(Sijian Wang et al., 2011) is not used in these two algorithms.

3.2 Methods

We propose Polynomial Lasso Bagging (PoLoBag), an ensemble regression algorithm for

signed GRN inference from gene expression data. By utilising a regression setting with input

and output variables, network edges have direction (from input to output) unlike SIREN.

Separate regression problems for each target gene in this setting allows for cycles or loops

unlike Banjo. A bagging ensemble framework (Breiman, 1996) is used in this algorithm.

Each model in the ensemble is a Lasso model which works as a simple variable selector

estimating the connection weights between input and output variables. Most importantly

in the Lasso model these weights are signed. Signed weights from each Lasso model trained

on a separate bootstrap sample are aggregated to produce the signed edge weights. Unlike
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Inferelator, PoLoBag does not use a separate ranking method to initially select a smaller

number of highest confidence regulators for every target gene, and the bagging framework

in PoLoBag incorporates both data sampling and feature bagging. This bagging framework

was inspired by the Random Lasso method (Sijian Wang et al., 2011) to address critical

limitations of Lasso. However, unlike Random Lasso, in PoLoBag each bootstrap sample

uses polynomial features. These can capture higher order interactions which are expected

to be observed more frequently in GRNs of more complex organisms.

The PoLoBag algorithm is presented in Figure 3.1. Let D ∈ Rn×m denote the input

gene expression data for n genes and m measurement conditions. With nR potential network

regulators, the objective of signed inference is to find the vector w ∈ RnR(n−1)×1 comprised of

signed edge weights between the regulators and target genes in the underlying network with

no autoregulation. These weights represent the strength and nature (activating/inhibitory)

of regulatory interactions. With no prior knowledge of regulators, we will consider all genes

to be potential network regulators with nR = n. PoLoBag is an ensemble regression algo-

rithm where the network inference problem is divided into a separate regression task for

each target gene. Each regression task is performed using an ensemble of Lasso models in a

bagging framework. Each Lasso model is trained on a bootstrap sample created by selecting

measurement conditions randomly with replacement. The term sample (measurement sam-

ple) could also refer to each individual measurement condition, here we use the term sample

to refer to a set of such measurement conditions. Each bootstrap sample incorporates a

random set of polynomial features. The Lasso coefficients estimated from each bootstrap

sample are averaged to produce the corresponding signed weights in w.
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Figure 3.1: Overview of PoLoBag. (A) The input gene expression data D ∈ Rn×m where n is

the number of genes and m is the number of measurement conditions is separated into input

and output variables for each target gene t, t = 1,2,⋯, n. (B) For each input-output pair

(yt,X t), bootstrap samples are generated. Each sample consists of nt
RB random polynomial

features with mB random measurements conditions. (C) Lasso weights are estimated from

each bootstrap sample. (D) These weights are averaged over all samples in the bagging

framework and this process is repeated for all target genes to produce the signed weights for

nR(n − 1) possible network edges, where nR is the number of potential network regulators.
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3.2.1 Pre-processing

In this algorithm we want the Lasso regression coefficients to have positive signs for activating

interactions and negative signs for inhibitory interactions between input and output variables.

This can be enabled by representing high expression values as positive and low expression

values as negative numbers. Additionally we want the edge weights estimated for each target

gene separately to be comparable across all the genes even if the expression values for different

genes are in different ranges. So as a pre-processing step, we convert the expression profile

for every gene to Z-scores computed across all measurement conditions. Initial exploration

of the expression data after setting the mean to zero with Z-score normalization additionally

revealed that the distribution of values was skewed. Expression values equally separated

into positive and negative numbers in a neighborhood of zero can help in better deducing

the sign of the underlying interactions. This sign separation should capture the maximum

number of expression values, close in value to each other. So we shift the data by τ times

its median (line 6 in Algorithm 1) before regression.

3.2.2 Lasso

Lasso acts as a variable selector by selecting input variables or features that can best explain

the output variable. The corresponding input-output weights that are estimated can have

signs. For a sample dataset b let vector ytb ∈ RmB×1 represent the expression of target gene

t in mB measurement conditions. Let the matrix X tb ∈ RmB×n
t
RB denote the corresponding

nt
RB input features. The relationship between input-output variables in this model is given

by

ytb =X tbwtb + ϵb, (3.1)
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Algorithm 1 PoLoBag algorithm.
1: Input: Gene expression data D, Output: Signed edge weights w

2: Convert D to Z-scores;

3: w ← Initialize to empty;

4: foreach target gene t ∈ {1,⋯, n} do

5: yt,Xt
← Expression profiles of target gene, potential regulators;

6: Subtract τmedian([yt,Xt
]) from yt and Xt;

7: wt
M ,wt

S ,s
t
w ← Initialize to zero vectors;

8: nt
F ← Put nk

d

√

nt
R∀k ∈ {1,⋯, d}

9: foreach b ∈ {1,⋯, nB} do

10: ytb,Xtb, idtb
← BOOTSTRAPSAMPLE (yt,Xt,nM ,nt

F );

11: Fit a Lasso model on ytb,Xtb and obtain wtb;

12: Update wt
M ,wt

S ,s
t
w using Eq. 3.8;

13: end foreach

14: Compute wt using Eq. 3.4 and put in w;

15: end foreach

16: function BOOTSTRAPSAMPLE(yt,Xt,nM ,nt
F )

17: ytb,Xtb
F ← Select nMm random rows from yt,Xt;

18: Xtb, idtb
← Initialize to empty;

19: foreach k ∈ {1,⋯,Length of nt
F } do

20: Select ntk
F random unique new Xtb

F cols in each of Xtbk1
F ,⋯,Xtbkk

F ;

21: foreach c ∈ {1,⋯,2(k−1)} do

22: Compute F tbkc using Eq. 3.6;

23: Append cth set of ntk
F

2(k−1)
cols from F tbkc to Xtb;

24: For each appended F tbkc col put Xtb
F col indices,c in idtb;

25: end foreach

26: end foreach

27: return ytb,Xtb, idtb;

28: end function
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where wtb is the vector of signed connection weights between input and output variables

and ϵb represents random noise. No intercept term is used here. Lasso regression is a linear

model with L1 sparsity prior as the regularizer. The vector wtb is obtained by minimizing

1

2mB

∣∣ytb −X tbwtb∣∣(2)2 + α∣∣wtb∣∣1, (3.2)

where α is the Lasso regularization parameter that controls sparsity.

3.2.3 Bagging

Lasso can obtain signed coefficients but suffers from some limitations in practice (Zou and

T. Hastie, 2005). First, the number of selected variables is limited by the number of data

points. Second, when there are several highly correlated input variables related to the output

variable, Lasso tends to select only a few of these input variables. The latter limitation

can become a problem for regulatory networks where many regulator genes in synergy can

control a target gene. The expression profiles of these regulators would probably have higher

correlation than those of any two randomly selected genes in the network, and Lasso might

select only a few of these regulator genes. A bagging framework with data sampling and

feature bagging similar to the first step of the two step Random Lasso algorithm is able to

circumvent these limitations.

Data sampling

Each individual Lasso in this framework trains on a bootstrap sample dataset with the

measurement conditions chosen via random sampling with replacement. The size of each of

the nB bootstrap samples is given by

mB = nMm, (3.3)
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where nM selects a fraction of the total number of measurements.

Feature bagging and polynomial features

The features used in the bootstrap sample are selected randomly without replacement. All

the relevant input features for the output variable might not be there in a sample. Different

samples additionally have different sets of measurement conditions. As such it is possible that

Lasso selects the same relevant input feature with high weight magnitudes but with different

signs from different samples. In such a case using the average of these Lasso weights would

produce a reduced magnitude. So this algorithm uses a scheme where the weight magnitude

and sign are separated in column vectors wt
M ∈ Rnt

R×1 and wt
S ∈ Rnt

R×1 for target gene t with

nt
R potential regulators. With no autoregulation, for a target gene, nt

R = nR − 1 if it itself

is a potential network regulator or nt
R = nR otherwise. The vector stw ∈ Rnt

R×1 stores the

total number of times each regulator expression profile is used in features across all samples.

These vectors are updated by each Lasso model and combined at the end to produce edge

weights wt for target gene t by

wt = sign(wt
S)wt

M

stw
. (3.4)

This is done for every target gene t to obtain w.

The PoLoBag algorithm incorporates polynomial features which represent not only

first order interactions (linear features) but also higher order multiplicative interactions (non-

linear features). It is important to consider these multiplicative interactions in regulatory

networks where regulators in synergy control the expression of the target gene. We can

create such nonlinear features in a sample by multiplying individual input features, however

this poses some issues. For Lasso weights comparable across all used features in a bootstrap

sample, first we want the nonlinear features to have values in the same range as linear ones.

Second, from the estimated sign of a nonlinear feature weight, the signs corresponding to the
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individual input features involved need to be deduced. Keeping these issues in considera-

tion, the polynomial features comprised of both linear and nonlinear features in a bootstrap

sample are constructed in the BOOTSTRAPSAMPLE function in Algorithm 1.

In PoLoBag algorithm with a defined polynomial degree d, we create polynomial fea-

tures by combining k unique individual input features, where k ∈ {1,⋯, d}. Let nk
d represent d

user defined values to control the number of polynomial features for every k. To create these

features for a given k, we select nk
d

√
nt
R random unique individual input feature columns

to be put in each of X tbk1
F ,⋯,X tbkk

F ∈ RnMm×nk
d

√

nt
R . Here we do not reuse an individual

feature that has been already used in the bootstrap sample, however it can be used in other

bootstrap samples. For easy deduction of individual signs from Lasso weights, the idea is to

have different feature categories each of which would only represent polynomial interactions

of a particular form. This form is defined in terms of the sign of one fixed individual feature,

for instance the one in X tbk1
F and whether the signs of all other k−1 individual features each

taken from the same column position of X tbk2
F ,⋯,X tbkk

F are same or different in comparison

in the represented interaction. Accordingly we define a matrix S ∈ {−1,+1}2(k−1)×k where the

first column consists of all 1s and the remaining k − 1 columns are all possible distinct ±1

variations.

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 ⋯ 1

1 −1 1 ⋯ 1

1 1 −1 ⋯ 1

⋮

1 −1 −1 ⋯ −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.5)

Polynomial features for a given k in categories c ∈ {1,⋯,2(k−1)} are created as
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Atbk = 1

2(k−1)
∣X tbk1

F ⋯X tbkk
F ∣( 1k ),

F tbkc = sgn(X tbk1
F ) [

k

∏
i=2

[1 +Scisgn(X tbk1
F X tbki

F )]]Atbk,
(3.6)

where sgn represents the mathematical sign function. In each bootstrap sample, polynomial

features for a given k are selected in equal number from each of the c categories. For a

given category, we select 1
2(k−1)

fraction of all nk
d

√
nt
R feature columns from F tbkc, where the

selected column indices are unique for every category c (line 23 in Algorithm 1). Overall the

total number of features in a bootstrap sample is

nt
RB =

d

∑
k=1

nk
d

√
nt
R. (3.7)

To update weight magnitude and sign vectors, the individual input feature indices

and the category for every feature selected in a bootstrap sample is stored in idtb. For an

estimated Lasso weight wtbl in wtb where l ∈ {1,⋯, nt
RB}, let the corresponding idtbl give

k individual feature indices combined to create the polynomial feature and the category c.

The weight magnitude and sign vectors are updated ∀i ∈ {1,⋯, k}

f = idtbli,

wtf
M =w

tf
M + ∣wtbl∣( 1k ),

wtf
S =w

tf
S +Scisgn(wtbl)∣wtbl∣( 1k ),

stfw = stfw + 1.

(3.8)

This polynomial feature creation framework in PoLoBag is generalized here for all k ∈

{1,⋯, d} for any d. So both linear and nonlinear polynomial features can be created. Though

higher values of d could capture higher order network interactions, we use a value of d = 2

considering the associated complexity.
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3.2.4 Parameters

In the PoLoBag algorithm with degree d = 2 there are five parameters.

• n1
2 and n2

2 - These are the two user defined parameters in Equation 3.7 for k = 1 and

k = 2. These control the number of linear and nonlinear polynomial features selected in

each bootstrap sample respectively. For ease of user selection these values are fractions

that get scaled by the square root of the number of potential regulators of the target

gene.

• nM - This controls the bootstrap sample size. In equation 3.3 this parameter value as

a fraction gets multiplied by the total number of measurement conditions to give the

size of each bootstrap sample.

• nB - This denotes the total number of bootstrap samples in the ensemble.

• α - The regularization parameter balances sparsity with data fit in each Lasso model.

The value of τ can be tuned to control data shift, here we set a value of τ = 3. The

default values of other standard Lasso parameters are used. Depending on the nature of

the underlying regulatory mechanisms and data, these five parameters influence PoLoBag’s

inference performance differently (Section 3.3). However, with the same set of experimentally

chosen values, PoLoBag achieves accurate results across nine diverse test datasets.

3.2.5 Experiments

Datasets

The experimental datasets are listed in Table 3.1. The in silico data used is multifactorial

data, which are steady-state measurements obtained from applying multifactorial perturba-
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Dataset Type Organism Genes Directed Positive edges Negative edges Unknown sign edges Measurements/gene

A Simulated Yeast 200 Yes 238 237 0 200

B Simulated Yeast 400 Yes 532 539 0 400

C Simulated Yeast 500 Yes 872 950 0 500

D Simulated E. coli 500 Yes 812 568 0 500

E Simulated E. coli 650 Yes 886 637 0 650

F Real E. coli 1419 No 1408 1279 0 907

G Real Human 522 No 175 102 1155 171

H Real E. coli 99 Yes 144 80 0 24

I Real Human 408 Yes 1283 762 0 200

Table 3.1: Experimental datasets for signed inference.

tions to the underlying network. These perturbations are simulated by slightly increasing

or decreasing the basal activation of all network nodes by random amounts. These were

generated using the tool GeneNetWeaver or GNW (Schaffter, Marbach, and Floreano, 2011;

Marbach, Schaffter, Mattiussi, et al., 2009). The GNW data generation settings were those

used in DREAM4 In Silico Multifactorial subchallenge – coefficient of the molecular noise

in the stochastic simulation = 0.05, the measurement noise as a mix of normal (standard

deviation = 0.025) and lognormal (standard deviation = 0.075) noise, and normalization

after adding the measurement noise.

We used two real datasets previously used by the authors of SIREN (Khosravi et

al., 2015), where the interaction directions are not considered. One is for the subnetwork

extracted from the E. coli GRN in RegulonDB database (Gama-Castro et al., 2008). The

gene expression data was from the Many Microbe Microarray Database M3D (Faith et al.,

2007). The other dataset is for a prostate cancer GRN extracted by SIREN authors from the

STRING functional interaction database (Snel et al., 2000). The data was collected from

the GEO database with accession number GDS2545. The measurement samples correspond

to gene expression measurements in four cell states - normal prostate tissue, normal prostate

tissue adjacent to tumor, primary prostate tumor tissue and metastatic prostate cancer tissue

(Chandran et al., 2007). In our experiments, we used the 526 genes of SIREN authors for

38



Inference of Signed Gene Regulatory Network Architecture

which this expression data was found available, resulting in a slightly smaller subnetwork

consisting of 522 genes.

We have another two real test datasets for directed networks. One is for a subnetwork

extracted from E. coli GRN obtained from RegulonDB database (Santos-Zavaleta et al.,

2019). The expression data was obtained from the GEO database with accession number

GSE135516. E. coli evolution was performed to study adaptation to iron toxicity (Anand et

al., 2020). The second dataset is for a subnetwork extracted from human GRN in TRRUST

v2 database (H. Han et al., 2018). The expression data, obtained from the GEO database

with accession number GDS3795, is from bone marrow CD34+ cells of myelodysplastic

syndrome patients and healthy controls (Pellagatti et al., 2010). In both cases, considering

primarily ground truth edges having positive or negative signs defined with high confidence,

we extracted subnetworks of interest consisting of high degree nodes connected with each

other as a weakly connected component. The datasets and the PoLoBag code are available

at https://github.com/gourabghoshroy/PoLoBag.

3.2.6 Performance evaluation

The signed inference performance was assessed by building on the metrics used in SIREN

paper. Let the total number of true network edges be E. Some of these might not have

known signs in the ground truth. Retrieval denotes the fraction of true edges signed by the

inference algorithm. The metric recall is defined as the fraction of relevant instances that are

retrieved. So here recall is the same as the retrieval when the relevant instances are signed

true edges. Let SE represent the number of true edges that are signed by the algorithm,

then the fraction recall is defined as

Recall = SE

E
. (3.9)
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In signed inference we want to know how accurate the inferred signs are. Hence in

addition we use the metric of accuracy which denotes the fraction of the known sign true

edges that are signed correctly by the algorithm. Let PTP and NTN represent the number

of positive and negative true edges whose signs are correctly inferred to be positive and

negative respectively. Here P and N mean the positive and negative signs of the edges. Let

NFP be the true edges whose signs are negative but are inferred incorrectly to be positive

by the algorithm. PFN similarly denotes the number of positive edges where the algorithm

incorrectly predicts the signs to be negative. Accuracy is defined as

Accuracy = PTP +NTN

PTP +NTN +NFP + PFN
. (3.10)

The accuracy is plotted against the recall values to generate the accuracy-recall curve. We

consider the point (0,0) to be part of the curve. In this work we used the area under the

accuracy-recall curve (AUAR). It is a value in [0,1) where a higher value denotes better

signed inference performance. For unsigned inference where positive/negative refers to the

presence/absence of an edge, the area under the precision-recall curve would be appropriate.

For this signed inference setting, the accuracy of the signs of the inferred edges also needs

to be considered, making this AUAR metric a better choice.

The output edge lists obtained from inference algorithms are first sorted in the de-

creasing order of their absolute weights. Then this list is traversed one edge at a time

to compute the accuracy and recall values. There can be cases where the accuracy-recall

curve is incomplete as maximum recall obtained from traversing the full output list is less

than 1. After plotting the values for the edges with non-zero weights in the sorted output

list, the evaluation process assigns a random sign independently to every remaining edge

in the ground truth that is not in the output list or has a zero weight in the list, to com-

plete the rest of the curve. The area under the complete accuracy-recall curve is computed.

This random assignment is repeated 50 times and the average AUAR value is considered to
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be the representative metric of signed inference average accuracy. This area-based perfor-

mance assessment with random assignment for missing edges is motivated by the assessment

methodology for unsigned network inference in DREAM challenges (Prill et al., 2010).

Our evaluation methodology considers the directions of edges while comparing against

ground truth for directed networks. For SIREN algorithm, we consider all possible directed

edges and infer their signed weights. For undirected networks the evaluation methodology

computes recall and accuracy values as given in Equation 3.9, 3.10 but from undirected

interactions. Incomplete curves are also completed similarly. The inference algorithm output

list here will have edges with defined directions, so there can be edges in both directions for

a pair of genes. For an undirected interaction between the pair of genes in the ground truth,

the sign of the directed edge which ranks higher in the sorted algorithm output edge list is

considered while plotting the accuracy-recall curve.

3.3 Results

3.3.1 Performance Assessment

In this section we present the summarized performance assessment of our PoLoBag algo-

rithm. Inference performance of PoLoBag depends on the algorithm’s parameter values. For

parameter optimization, we used the datasets G, A, H and I. The performance variation

with parameter settings is presented in the Section 3.3.2. In each experiment one of the 5

important parameter values discussed in Section 3.2.4 was varied. The parameters n1
2 and

n2
2 were varied together to also show the impact of the ratio of linear and nonlinear features.

In Section 3.3.3 we also demonstrate that PoLoBag performs better overall, specially for real

datasets, when there is pre-processing data shift and no intercept in the model. We use these
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experiments to find optimal parameter values.

Our parameter settings experiments reveal that when the number of nonlinear features

is larger than that of linear features, better performance is obtained for regulatory networks

of more complex organisms like humans. A higher percentage of multiplicative interactions

might exist in these networks and n2
2 > n1

2 is a better choice. With n2
2 < n1

2 better results

are produced for networks of less complex organisms, where these multiplicative interactions

might not be as frequent, which can also be affected by network size. The parameter settings

experiments suggest that setting the bootstrap sample size to half of the total number of

measurement conditions with nM is a reasonable choice. Though a higher nM value gives

better performance especially when the number of measurements per gene is lower than the

number of genes, a lower value leads to lower computational cost. With a low nB a larger

variation in the results is observed. A sufficiently large number makes the performance more

stable. A low α value always gives poor results. A value in the test range was chosen to be

optimal, though in some cases a higher α gives better results.

For fairness in performance comparison, we finally used in all the 9 test datasets the

same set of PoLoBag parameter values selected from these parameter settings experiments

- n1
2 = 0.5, n2

2 = 3.5, nM = 0.5, nB = 500, α = 0.1. These values led to reasonably high accuracy

results across all datasets. It is possible to obtain better results by varying the algorithm

parameters for each of the datasets separately. For Banjo algorithm many of the same default

parameter values as provided in the example settings file of the available Java code were used

across all experimental datasets. Four parameters controlling run time and memory usage

were modified based on the dataset size and type and available resources. The default

parameters in the SIREN Cytoscape plugin (Montojo et al., 2015) were used for all the

datasets. These parameter settings are listed in Section 3.3.4.

Table 3.2 shows the AUAR metric values on the benchmark datasets for PoLoBag
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compared against Banjo and SIREN. The non-deterministic PoLoBag and Banjo algorithms

were run 30 times and the mean and standard deviation from those independent runs are

presented. PoLoBag average metric values are higher by about 0.3 − 0.4 than Banjo and

about 0.01 − 0.06 than SIREN across all the simulated datasets. For the real datasets, the

metric values are lower. This is partly due to the number of measurements per gene being

lower than the number of genes, as shown in Section 3.3.5 by reducing the percentage of

measurement conditions in simulated dataset C. This is also because of factors involving

incompleteness and noise in the real-world expression data and the ground truth and that

real regulatory mechanisms are more complex than simulation models. Still the difference

in metric values between PoLoBag and the other two algorithms is significant, as detailed

in Section 3.3.6. Banjo can perform better when the number of measurements per gene is

much larger than the number of genes. SIREN has much higher AUAR values compared

to Banjo, however PoLoBag produces the best results for all the simulated and real-world

datasets across GRNs of different sizes and organisms.

In Section 3.3.7 we present the unsigned directed performance comparison between

PoLoBag and GENIE3 (Huynh-Thu, Irrthum, et al., 2010), which uses a similar bagging

approach with regression trees and can deal with nonlinear interactions but does not predict

edge signs. Though GENIE3 performs much better on simulated datasets, PoLoBag out-

performs GENIE3 on the two real datasets H and I. To illustrate how PoLoBag overcomes

limitations of existing signed inference algorithms, we present the average inference on a

selected subnetwork of five genes from the dataset E network (Figure 3.2). Selecting an op-

timal threshold for inferring the network from algorithm output is an important problem on

its own. We used a set of thresholds (described in Section 3.3.8) and each algorithm’s best

inferred subnetwork is displayed here. PoLoBag correctly infers the positive edge between

genes flhC and fliM with its direction, and the cycle between genes ihfA and ihfB.
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Dataset Banjo SIREN PoLoBag

A 0.5284±0.0077 0.8927 0.9498±0.0015

B 0.5525±0.0062 0.9035 0.9283±0.0028

C 0.5676±0.0057 0.8996 0.9200±0.0026

D 0.5561±0.0046 0.8433 0.8612±0.0021

E 0.5443±0.0055 0.9105 0.9201±0.0024

F 0.5008±0.0037 0.5365 0.5418±0.0020

G 0.5002±0.0122 0.6593 0.6755±0.0088

H 0.5010±0.0134 0.5842 0.5929±0.0073

I 0.5006±0.0030 0.5925 0.6251±0.0023

Table 3.2: Signed inference AUAR (Area under the accuracy-recall curve) metric values. For

PoLoBag and Banjo the mean and standard deviation from 30 independent runs are given.

The PoLoBag parameters were selected from parameter settings experiments on datasets

G, A, H and I. Default parameter values were used for SIREN and Banjo. Four Banjo

parameters controlling run time and memory usage were modified based on the dataset size

and type and available resources, presented in Section 3.3.4.

3.3.2 Parameter Settings Experiments for PoLoBag Algorithm

We present the variation in performance of the PoLoBag algorithm with change in parameter

values on four of the test datasets. The AUAR values from 30 independent runs for each

setting are presented in box plots.
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Figure 3.2: PoLoBag compared to Banjo and SIREN on part of the E. coli network for

dataset E. (a) Ground truth. Optimal subnetworks inferred by (b) Banjo (c) SIREN (d)

PoLoBag. Threshold selection is presented in the Section 3.3.8.

45



Inference of Signed Gene Regulatory Network Architecture

Parameter Settings

A
U

A
R

(a) Effect of parameters n1
2 and n2

2 on

PoLoBag performance for dataset G.

Parameter Settings

A
U

A
R

(b) Effect of parameter nM on

PoLoBag performance for dataset G.

Parameter Settings

A
U

A
R

(c) Effect of parameter nB on

PoLoBag performance for dataset G.

Parameter Settings

A
U

A
R

(d) Effect of parameter α on

PoLoBag performance for dataset G.

Figure 3.3: Effect of parameters on PoLoBag performance for dataset G.
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Figure 3.4: Effect of parameters on PoLoBag performance for dataset A.
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Figure 3.5: Effect of parameters on PoLoBag performance for dataset H.
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Figure 3.6: Effect of parameters on PoLoBag performance for dataset I.
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3.3.3 Use of Data Shift and No Intercept Model

In this section we compare the performance of PoLoBag algorithm with the version of the

PoLoBag algorithm where no pre-processing data shift was performed (τ = 0) and instead

there was an intercept term in the Lasso model. The parameter settings are same in both

cases, where n1
2 = 0.5, n2

2 = 3.5, nM = 0.5, nB = 500, α = 0.1. The results of 30 independent

runs for four test datasets are shown in box plots.
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dataset I.

Figure 3.7: Effect of data shift and no intercept on PoLoBag performance
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3.3.4 Parameter Settings for Banjo and SIREN Algorithms

In this section we present the parameter values used in Banjo and SIREN algorithms.

Parameter A B C D E F G H I

searcherChoice SimAnneal " " " " " " " "

proposerChoice RandomLocalMove " " " " " " " "

evaluatorChoice default " " " " " " " "

deciderChoice default " " " " " " " "

discretizationPolicy q4 q4 q4 q4 q4 q3 q4 q4 q4

minMarkovLag 0 " " " " " " " "

maxMarkovLag 0 " " " " " " " "

equivalentSampleSize 1.0 " " " " " " " "

maxParentCount 8 8 8 8 8 10 10 10 10

defaultMaxParentCount 10 " " " " " " " "

maxTime 30 m 45 m 60 m 60 m 80 m 180 m 60 m 15 m 45 m

maxRestarts 10000 " " " " " " " "

minNetworksBeforeChecking 1000 " " " " " " " "

nBestNetworks 1 " " " " " " " "

screenReportingInterval 20 s " " " " " " " "

fileReportingInterval 10 m " " " " " " " "

initialTemperature 10000 " " " " " " " "

coolingFactor 0.7 " " " " " " " "

reannealingTemperature 800 " " " " " " " "

maxAcceptedNetworksBeforeCooling 2500 " " " " " " " "

maxProposedNetworksBeforeCooling 10000 " " " " " " " "

minAcceptedNetworksBeforeReannealing 500 " " " " " " " "

precomputeLogGamma yes " " " " " " " "

useCache fL2 fL2 fL2 fL2 fL2 fL1 fL2 fL2 fL2

cycleCheckingMethod dfs " " " " " " " "

Table 3.3: Banjo parameters used for experimental datasets. fL1 - fastLevel1, fl2 - fastLevel2.
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Parameter A B C D E F G H I

Number of bins 10 " " " " " " " "

Spline order 2 " " " " " " " "

Scoring function S1 " " " " " " " "

Rescaling matrix M3 " " " " " " " "

Table 3.4: SIREN parameters used for experimental datasets.
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3.3.5 Effect of Dimensionality on PoLoBag Performance

The inference accuracy of PoLoBag is dependent on the number of measurement conditions

in the expression dataset. This is demonstrated here by comparing PoLoBag’s performance

on simulated dataset C consisting of 500 measurement conditions, with those on the same

dataset using 25%, 50% and 75% of the measurement conditions. For each set of conditions,

the AUAR values from 30 independent PoLoBag runs are presented in box plots.

% of Measurement Conditions

A
U

A
R

Figure 3.8: Effect of dimensionality on

performance of PoLoBag for dataset C.
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3.3.6 Statistical Performance Comparison of PoLoBag with Banjo

and SIREN

The results of PoLoBag are compared with that of Banjo and SIREN in all the test datasets.

A Wilcoxon signed rank test (Wilcoxon, 1992) with the AUAR values from 30 independent

runs of PoLoBag and Banjo gave a p-value of 1.7344 × 10−06 in all the test datasets. So we

are able to reject the null hypothesis at 5% significance level and conclude that the difference

in the results obtained from both algorithms is significant. The AUAR values from the 30

independent runs for PoLoBag are presented in a box plot along with just the AUAR value

obtained from the single SIREN run for each dataset. These experiments demonstrate the

significance of the difference between signed inference performance of PoLoBag and those of

Banjo and SIREN.
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Figure 3.9: Performance comparison of PoLoBag with SIREN for datasets A-D.
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Figure 3.10: Performance comparison of PoLoBag with SIREN for datasets E-I.
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3.3.7 Unsigned Performance Comparison

In this section the performance of PoLoBag is compared with that of GENIE3 algorithm.

Since GENIE3 can not predict edge signs, here the unsigned directed performance compar-

ison is done on the test datasets with directed networks. For the real datasets H and I,

the networks consist primarily of edges having positive or negative signs defined with high

confidence in the ground truth. The default parameter values in the R/bioconductor package

GENIE3 (Huynh-Thu, Irrthum, et al., 2010; Aibar et al., 2017) were used. GeneNetWeaver

evaluation was performed where the area under the ROC curve (AUROC) and the area un-

der the precision-recall curve (AUPR) were computed, as in the DREAM4 challenge. Both

PoLoBag and GENIE3 are non-deterministic, so the mean and standard deviation from 30

independent runs are presented.

Dataset GENIE3 AUPR PoLoBag AUPR GENIE3 AUROC PoLoBag AUROC

A 0.1332±0.0023 0.0715±0.0015 0.7971±0.0016 0.6971±0.0044

B 0.1091±0.0008 0.0846±0.0006 0.7710±0.0018 0.6987±0.0053

C 0.1272±0.0005 0.0955±0.0006 0.7644±0.0017 0.6831±0.0031

D 0.1066±0.0007 0.0788±0.0005 0.7866±0.0014 0.7174±0.0037

E 0.0876±0.0005 0.0662±0.0003 0.8112±0.0017 0.7004±0.0034

H 0.0259±0.0005 0.0315±0.0007 0.5151±0.0034 0.5871±0.0055

I 0.0135±0.0001 0.0140±0.0001 0.5134±0.0029 0.5167±0.0028

Table 3.5: Unsigned directed performance comparison between PoLoBag and GENIE3. The

mean and standard deviation from 30 independent runs are given.
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3.3.8 Comparison of Inferred Networks

We present selected small subnetworks from the networks inferred by Banjo, SIREN and

PoLoBag for two test datasets. Threshold values were used to infer networks from the

algorithm output. For Banjo, we chose the threshold to be a cut-off such that out of the

30 Banjo runs, an edge has to be inferred, even with a zero influence score, in more than

those many number of runs. The sign of the edge is obtained from the average score over

30 runs. For SIREN, the threshold is applied to the absolute value of the SIREN scores

from the single run. One threshold value used was the best one suggested by the authors

of SIREN. For PoLoBag, the edge weights are first normalized with respect to the highest

absolute weight value in each run and the average absolute edge weights from 30 runs are

computed. The cut-off threshold as an average relative fraction of the highest magnitude

weight is applied. For each algorithm, the inferred subnetworks for a set of three threshold

values are shown.
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(a) Banjo inferred subnetworks for

dataset E. (a) Ground truth. (b)

Threshold = 1. (c) Threshold = 3.

(d) Threshold = 4.

(b) SIREN inferred subnetworks for

dataset E. (a) Ground truth. (b)

Threshold = 0.05. (c) Threshold =

0.1. (d) Threshold = 0.158.

(c) PoLoBag inferred subnetworks

for dataset E. (a) Ground truth. (b)

Threshold = 0.05. (c) Threshold =

0.1. (d) Threshold = 0.15.

Figure 3.11: Inferred subnetworks for dataset E.
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(a) Banjo inferred subnetworks

for dataset I. (a) Ground truth.

(b) Threshold = 1. (c) Thresh-

old = 3. (d) Threshold = 4.

(b) SIREN inferred subnet-

works for dataset I. (a) Ground

truth. (b) Threshold = 0.05.

(c) Threshold = 0.1. (d)

Threshold = 0.158.

(c) PoLoBag inferred subnet-

works for dataset I. (a) Ground

truth. (b) Threshold = 0.05.

(c) Threshold = 0.1. (d)

Threshold = 0.15.

Figure 3.12: Inferred subnetworks for dataset I.
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3.4 Discussion

In this work we have proposed the PoLoBag algorithm for signed gene regulatory network in-

ference. It is an ensemble regression technique where the Lasso weight estimates from many

bootstrap samples with polynomial features are combined in a bagging framework. Experi-

ments on simulated and real-world datasets show that our algorithm infers the network signs

more accurately than existing signed inference algorithms. It overcomes the drawbacks of

Banjo and SIREN algorithms as the inferred networks have edge directions and can have

cycles. Inferring the edge signs more accurately helps in enhanced analysis of the network

dynamics, which is key to understanding the cellular decision-making in several important

biological processes. An improved knowledge of regulatory network edge signs can provide

improved understanding of the role of these networks in disease progression. This can sub-

sequently lead to better identification of drug targets and more informed analysis of drug

mode of action, with significant overall impacts on drug design or repurposing.

Future work implementing a parallel version of PoLoBag algorithm could effectively

reduce run time. For dataset G, PoLoBag’s total execution time was approximately 15

minutes on an i5-4590 3.30 GHz CPU with 8 GB of RAM. SIREN on Cytoscape including

input-output needed around half of a minute. However, the scope of parallelization that

already exists in the PoLoBag algorithm has not yet been utilized. There is a separate

regression problem for each target gene, which can be run in parallel. Also in the ensemble

each Lasso works on a different bootstrap sample. Another direction of possible future

work can be modifying PoLoBag to additionally handle dynamic data. Currently, we do

not consider any relationship in time between measurement points. Even if there are some

time point measurements like in dataset F, PoLoBag considers them as separate steady-

state measurements. Ablity to infer from both steady-state and time-series data can provide

further insights into regulatory networks.
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3.5 Combining signed architecture and dynamical infor-

mation for emergent state prediction

Next we aim to investigate the role of signed GRN architecture and dynamical information

in predicting the emergent states of the gene regulatory system under different conditions.

Here our objective is finding top regulators which can be more important than other nodes

in how they control the network emergent behavior.

3.5.1 Background and related work

In this section we discuss the study in Narang et al., 2015, which we build our work on.

In Narang et al., 2015 the general human network is first constructed from transcription

factor and microRNA target data collected from public databases. The general network is

not complete, but based on the analysis of evolution of network properties with addition of

new information the authors argue that the observed trends with this partial network can be

extrapolated to the whole network. Next, the subnetwork of genes from the general network

that responds to treatment with estrogen in the MCF-7 breast cancer cell line is the focus of

their study. Different network analysis algorithms have been subsequently used to rank this

MCF-7 estrogen response subnetwork’s regulatory genes – transcription factors with at least

one target in the subnetwork and microRNAs. The ranking methods used are as follows:

1. Most differentially expressed regulators – The regulators which are most differentially

expressed in the MCF-7 cell line on treatment with estrogen are ranked at the top.

2. Maximum out-degree – The regulators are ranked based on the number of outgoing

edges in the MCF-7 ER subnetwork.
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3. Maximum target fold enrichment – First the ratio of the number of target genes of

a regulator and the total number of genes are computed separately for the MCF-7

subnetwork and the general network. The regulators are ranked on the basis of the

ratio of these two values.

4. Maximum in-degree – The regulators are ranked based on the number of incoming

edges in the MCF-7 ER subnetwork.

5. Maximum closeness centrality – Closeness centrality (Freeman, Roeder, and Mulhol-

land, 1979) of a regulator is the reciprocal of the sum of the shortest path distances

from the regulator to every other node in the MCF-7 ER subnetwork.

6. Maximum betweenness centrality – Betweenness centrality (Brandes, 2001; Brandes,

2008) of a regulator is the sum of the fraction of all shortest paths between two nodes

in the MCF-7 ER subnetwork that pass through the regulator.

7. Maximum pagerank – PageRank is an algorithm proposed to rank web pages (Page

et al., 1999). The regulators are ranked on the basis of the structure of the incoming

edges.

8. Innermost K-core

The K-core of a network is a maximum subnetwork where the degree of every node

is greater than or equal to K (Seidman, 1983). The degree of a node here is the sum of in-

degree and out-degree, which measure the number of edges coming in and going out of the

node respectively. The core number of a node is the highest order K of the core that node

is a part of. The K-core decomposition algorithm (Batagelj and Zaversnik, 2003) works by

iteratively removing nodes that have degree less than K, along with associated edges, until a

final irreducible innermost core is left. For innermost K-core ranking, the authors use nodes
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in the inner cores of the network. The inner cores contain nodes that have the greatest

potential for information spread within a complex network (Kitsak et al., 2010).

The regulator rankings from the methods mentioned above are validated in three

ways:

1. Randomization test - This is to test if the top regulators are selected because of char-

acteristics of the general human network or the specific MCF-7 estrogen response sub-

network. These ranking methods are applied to 10,000 randomly sampled subnetworks

with similar proportion of node types as in the MCF-7 ER subnetwork. The coef-

ficient of determination between the average regulator rank in a randomly sampled

subnetwork and the regulator rank in the MCF-7 ER subnetwork is used as a measure.

2. Literature validation - The biological relevance of the top regulatory genes identified

by the ranking methods is assessed based on Google Scholar citations.

3. Gene expression modeling - The top regulatory genes are used to predict the expression

levels of other genes in the network. The gene expression levels are categorized into

binary states of up or down as done in Middendorf et al., 2004; Natarajan et al., 2012.

These states are the output variable in the classification problem.

The results show that ranking strategies of most differentially expressed and maxi-

mum in-degree criteria have poor literature validation i.e. lowest relevance of the top ranked

regulators based on the number of associated publications, and have poor gene expression

modeling i.e. lowest state classification accuracy, while those of maximum out-degree and

closeness centrality have poor randomization metrices i.e. ranking very similar in MCF-7 ER

subnetwork and randomly sampled subnetworks. The methods of betweenness centrality,

pagerank and innermost K-core fare well in all 3 evaluation criteria. Out of these three

ranking methods, the best literature evidence scores are obtained by betweenness centrality
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and pagerank, whereas the top ranked regulators identified by innermost K-core best model

the gene expression of other genes.

The K-core algorithm is used to arrange the regulatory nodes in a layered hierarchy.

Similar work has been done for Yeast and E. coli in (Balcan et al., 2007; Malkoç, Balcan, and

Erzan, 2010). The nodes in the inner cores are found to be more predictive of gene expression

and more biologically relevant based on the validation techniques discussed above.

3.5.2 Datasets and networks

In this work we use already available GRN architecture knowledge. The signed GRN archi-

tectures and gene expression datasets used in our experiments are presented in Table 3.6. The

simulated data used is multifactorial data, which are steady-state measurements obtained

from applying multifactorial perturbations to the underlying network. These perturbations

are simulated by slightly increasing or decreasing the basal activation of all network nodes by

random amounts. These were generated using the tool GeneNetWeaver or GNW (Schaffter,

Marbach, and Floreano, 2011; Marbach, Schaffter, Mattiussi, et al., 2009). In this tool

network structures are obtained by extracting modules from known biological networks of

organisms like Yeast (S. cerevisiae) and E. coli. Then these network topologies are given

dynamical models of gene regulation. Both independent and synergistic regulatory interac-

tions are taken into account. Molecular noise and measurement noise are modeled into the

system. The GNW data generation settings were those used in DREAM4 In Silico Mul-

tifactorial subchallenge – coefficient of the molecular noise in the stochastic simulation =

0.05, the measurement noise as a mix of normal (standard deviation = 0.025) and lognormal

(standard deviation = 0.075) noise, and normalization after adding the measurement noise.

In our experiments we also used real biological data. The first real dataset is the ex-
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Dataset Organism Type Total Nodes Regulators Edges

Ecoli E. coli Simulated 1565 176 3648

Yeast Yeast Simulated 2500 153 10528

Ecoli-1 E. coli Real 1409 161 2310

Ecoli-2 E. coli Real 1456 172 2424

Human Human Real 1665 519 3954

Table 3.6: Experimental datasets for emergent state prediction. The regulators are nodes

with outgoing edges in these networks.

pression for E. coli genes obtained from the Many Microbe Microarray Database M3D (Faith

et al., 2007). The second real dataset was collected from the GEO database with accession

number GSE135516, which was obtained from growth of E. coli with various supplements

(Anand et al., 2020). The underlying ground truth regulatory network for both datasets was

obtained from the RegulonDB database (Gama-Castro et al., 2008). The third real dataset

used in our experiments is for human genes collected from the GEO database with accession

number GDS2545. The measurement samples correspond to gene expression measurements

in four states - normal prostate tissue, normal prostate tissue adjacent to tumor, primary

prostate tumor tissue and metastatic prostate cancer tissue (Chandran et al., 2007). The

human gene regulatory network was obtained from the manually curated TRRUST database

(H. Han et al., 2018).

3.5.3 Algorithm

The objective of this work is to demonstrate that combination of signed architecture and

dynamical information leads to better identification of top regulators in a GRN and hence

improved prediction of network emergent states. For each measurement sample referring to

67



Inference of Signed Gene Regulatory Network Architecture

a measurement condition, we consider a part of the overall network given in Table 3.6 to be

active, consisting of nodes which are either up or down regulated. This can be determined

based on the wild type measurement values of the genes, and a fold expression change above

or below a certain threshold can signify the gene to be an up or down state respectively.

However the wild type measurements are not always available. So we first compute the

z-scores of the genes expression values over all available measurement samples. For each

measurement sample, these z-score values are sorted. The genes with the highest 200 values

are considered to be in the up state, and those with the lowest 200 values are considered to

be in the down state. This is similar to the approach used for gene state classification in

different cell lines (Natarajan et al., 2012).

Now for each active 400 node subnetwork for a measurement sample, we identify the

top regulators using these three methods.

1. K-core - We use K-core decomposition on the active subnetwork. All the regulator

nodes in the innermost core, that is with the highest core number, are considered to

be the top regulators. If there are disconnected components with the highest core

number, we consider the nodes in all the components. One key difference with the

work in Narang et al., 2015 is that the authors apply K-core decomposition on the

subnetwork of regulators within the active subnetwork, however here we apply this

decomposition on the entire active subnetwork for improved subsequent top regulator

selection. Another important difference is that we use regulator nodes only from the

innermost core, and not from multiple inner cores.

2. Dynamical K-core - This proposed method combines signed architecture and dynamical

information, before application of K-core decomposition method. Top regulator nodes

would be potentially central to the information flow, and with this motivation we

want to consider the information flow between the regulator nodes under a particular
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measurement condition.

Let the state of a node i in measurement sample k be denoted by xi
k where xi

k ∈ {−1,+1},

as we consider the active subnetwork to be comprised of nodes only in up or down

state. For an edge eij between regulator nodes i and j we consider a successful flow of

information in measurement condition k when the following criterion is met, given by

xi
k ∗ sgn(eij) = xj

k. (3.11)

The sgn is the sign function which denotes the sign of the edge, either +1 or −1

(the value of 0 denotes a non existent edge). We delete the edges in the subnetwork

where this criterion is not met and then apply the k-core decomposition to identify the

innermost core nodes or top nodes. We refer to this as the dynamical K-core method.

A point to note is that as we apply this to the network target node state classification

problem as described in the following section, where the states of the regulators are

assumed to be known and the states of the target genes are to be predicted, and

therefore this edge deletion is done only for edges between regulators .

3. Random - Top regulators are selected randomly from the set of regulators in the active

subnetwork.

3.5.4 Validation

For validation we use the gene expression modeling used in Narang et al., 2015. The idea is

that top regulator nodes which are more important would be able to better predict the states

of the target nodes in the network. Let there be m top regulators identified by a ranking

method. The total number of target genes (which are not regulators themselves) is n. A

target gene j ∈ {1,⋯, n} is represented as (Xj
k, y

j
k) for measurement condition k. The label

yjk = x
j
k denotes the state of the node j, either +1 or −1 in the active subnetwork. The feature
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vector Xj
k is a m dimensional vector, where each element is of the form xi

k ∗ sgn(eij) if an

edge eij exists between top regulator i ∈ {1,⋯,m} in state xi
k and target node j, otherwise

is 0. This is slightly different from the representation used in Narang et al., 2015, where for

an existing edge between top regulator i and target gene j, the corresponding element of

Xj
k would be 1. With the modified target gene representation as in this work, we obtained

better performance.

We solve this state prediction problem using support vector machine algorithm, which

gives the highest classification performance in the experiments in Narang et al., 2015. The

optimal set of algorithm parameters were obtained using a grid search over a range of values,

which was the kept the same as the previous work. The average AUROC obtained from 5-fold

cross validation is used as the performance metric here. However in the previous work, the

state prediction is done only for one measurement condition, that is for MCF-7 treatment

with estrogen. Here we looked at state prediction problems in each of the measurement

samples separately, and the mean and the standard deviation of the AUROC metrics over

the samples are presented. This can provide an understanding of how well a method identifies

top regulators over many measurement conditions.

3.5.5 Results

In this section we present the results of comparison of K-core and dynamical K-core on

different test datasets. Firstly the number of top or innermost core regulators identified by

both methods are presented in Table 3.7. The values shown in the table are averaged over

all the measurement samples. As mentioned, here the K-core decomposition is applied to

the entire 400 node network.

In this work we are primarily interested in the performance difference between K-core
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Dataset Total Measure-

ment Samples

Average number of inner-

most core regulators from

K-core

Average number of inner-

most core regulators from

dynamical K-core

Ecoli 200 7.88 8.53

Yeast 200 11.13 10.83

Ecoli-1 179 7.13 7.43

Ecoli-2 24 7.58 7.75

Human 171 13.68 13.67

Table 3.7: Number of regulators in the innermost core obtained from K-core and dynamical

K-core methods averaged over all measurement samples.

and dynamical K-core. So going forward the results are presented for relevant measurement

samples, which are the ones out of the total measurement samples in which the innermost

core regulators identified by K-core and dynamical K-core are different. The results are

presented in Table 3.8 where we show the mean and the standard deviation obtained from four

methods. Apart from K-core and dynamical K-core, we also have the random method. For

random selection of top nodes, the selection for one measurement sample would be repeated

many number of times to obtain an average metric. However, here for one measurement

sample we did the selection only once, and since the mean is shown over many samples

where random regulators are selected independently, the overall performance of the random

selection method is depicted.

In Table 3.8 we also present the performance of maximum out-degree regulator rank-

ing. For maximum out-degree, the number of top regulators used was the same as the number

of innermost core regulators in dynamical K-core. In Narang et al., 2015 the performance

of maximum out-degree and maximum closeness centrality rankings in terms of the gene

expression modeling is found to be close to that of innermost K-core. In this work we select
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Dataset Relevant

Measurement

Samples

Random K-core Dynamical

K-core

Maximum

out-degree

Ecoli 78 0.5567±

0.0562

0.6283±

0.0806

0.6438±

0.0766

0.6661±

0.0783

Yeast 94 0.6139±

0.0583

0.6589±

0.0582

0.6575±

0.0574

0.6714±

0.0583

Ecoli-1 78 0.5392±

0.0444

0.5718±

0.0548

0.5976±

0.0609

0.6424±

0.0653

Ecoli-2 12 0.5257±

0.0171

0.5778±

0.0333

0.5827±

0.0218

0.5866±

0.0320

Human 164 0.5152±

0.0177

0.5510±

0.0327

0.5513±

0.0315

0.5522±

0.0326

Table 3.8: Performance comparison in terms of mean and standard deviation of AUROC

metrics over relevant measurement samples. Relevant measurement samples are those in

which the innermost core regulators are different between K-core and dynamical K-core

methods. The mean best, or the one with the highest mean, is marked in boldface.

maximum out-degree as a comparison reference.

The results show that in 4 out of the 5 test datasets, the mean classification perfor-

mance of dynamical K-core is better than that of K-core. Individually in some measurement

samples, K-core gives better performance than dynamical K-core, however the mean over a

number of relevant measurement samples points to the usefulness of the top nodes identified

by dynamical K-core in predicting emergent network state. Though dynamical K-core gives

better AUROC metrics than maximum out-degree in some measurement samples, the mean

metrics of maximum out-degree ranking are better than those of dynamical K-core in all the
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datasets.

The higher mean emergent state prediction performance of dynamical K-core com-

pared to K-core can not be attributed only to the larger number of nodes in the innermost

core. Firstly a higher number of nodes in the innermost core does not always lead to better

performance, as for the Human dataset. Secondly the difference in the average number of

nodes in the innermost core for dataset Ecoli-1 is not high enough to alone account for the

large observed difference in the mean performance. We observed in our experiments that

increasing the number of top regulators for a measurement sample does not always lead

to better performance, so the top nodes themselves rather than just the number of nodes

appears to be a decisive factor.

3.5.6 Discussion

An extension of the K-core decomposition for signed architectures has been previously pro-

posed (Giatsidis et al., 2014), where the node degrees are separately defined for positive and

negative edges. Here we consider one overall degree value for a node. Also, the decomposi-

tion in Giatsidis et al., 2014 does not use the criterion of the flow of information as in our

proposed dynamical K-core method.

Our results suggest that there is a trend towards dynamical K-core being better than

K-core in the identification of important regulator nodes leading to better emergent state

prediction. In most of our test datasets, dynamical K-core mean performance is better

than that of K-core, however, in some individual measurement samples, K-core performance

is better. This can potentially be the result of two factors. Firstly, for real datasets in

our experiments, the networks obtained from databases might have missing or false edges.

Secondly, the choice of a threshold for determining which part of the network is active in a
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measurement condition is critical.

Our results also point to a trend towards maximum out-degree ranking being better

than both dynamical K-core and K-core in emergent state prediction. We tried incorporating

dynamical information to maximum out-degree ranking, in the form of the information flow

criterion as in dynamical K-core, however with no substantial performance change. The

better mean performance of the out-degree ranking method suggests the usefulness of a more

complete picture of how an individual node is connected in the network in its representation.

We must acknowledge that in all the tested methods, we are inherently adding dynamical

information when we select the top regulators from only the active subnetworks within the

networks. Still we can see the benefit in combining signed architecture with additional

dynamical information in identifying top regulators and predicting emergent behavior, as

suggested by the improved mean performance metrics of dynamical K-core compared to

those of K-core. The effectiveness of our proposed method using signed GRN architecture in

emergent state prediction can be explored in cases when a measurement condition refers to

a type of cancer for example, with an active subnetwork for the cancer type obtained from

prior knowledge or experiments, and the unknown emergent state needs to be predicted for

a patient with that type of cancer and a particular subtype or stage.

3.6 Chapter Summary

In this chapter we first present the work in our paper (Ghosh Roy, Geard, et al., 2020),

where a novel and more accurate signed GRN inference algorithm PoLoBag is proposed.

The objective is to infer the architecture of the gene regulatory network from a general

form of gene expression data, and the inferred architecture must have edge signs denoting

activating or inhibitory regulatory relationships. Many standard GRN inference algorithms
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do not produce edge signs, and algorithms which can perform such signed inference suffer

from limitations like no feedback loops (Banjo), no edge directions (SIREN) and variable

selection not being accurate in the presence of synergistic regulation (Lasso-based methods).

In our proposed PoLoBag algorithm, we combine individual Lasso models in a bagging

ensemble approach, with both data sampling and feature bagging, and each Lasso model

consists of both linear and nonlinear polynomial features. We demonstrate how PoLoBag

consistently gives more accurate signed inference than Banjo and SIREN algorithms on

simulated and real-world datasets in Table 3.2, and how it overcomes their shortcomings by

having cycles and edge directions in the inferred networks in Figure 3.2.

Second, we further use signed GRN architecture combining it with dynamical infor-

mation in our proposed dynamical K-core method. We use dynamical K-core to find top

regulators in the GRN, and then predict the emergent states of the network, that is the

states of the target nodes when the states of the regulator nodes are known, under different

measurement conditions. From Table 3.8, we observe a trend towards dynamical K-core

identifying top regulators which can predict the network emergent states better than ran-

dom selection and K-core methods. However, the best mean prediction performance metrics

are obtained by maximum out-degree ranking. This points to the importance of analyzing

where a node lies in the network, in terms of its connectivity to its neighbors and in the

global architectural organization of the network.
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Chapter Four

Bow-tie Architecture of Gene Regulatory

Networks in Species of Varying

Complexity

In this chapter we aim to investigate the existence of a global architectural feature in GRNs

to understand species differences in terms of a universally present emergent property of their

gene regulatory systems. A network architectural feature associated with controlling system-

level dynamical properties is the bow-tie, identified by a strongly connected subnetwork, the

core layer, between two sets of nodes, the in and the out layers. Though a bow-tie

architecture has been observed in many networks, its existence has not been extensively

investigated in GRNs of species of widely varying biological complexity. We analyze publicly

available GRNs of several well-studied species from prokaryotes to unicellular eukaryotes to

multicellular organisms, and based on the results of our analysis, we aim to predict trends

in the emergence of a dynamical gene regulatory system property with varying biological

complexity.

The chapter is organized in the following order. Section 4.1 introduces the background

76



Bow-tie Architecture of Gene Regulatory Networks in Species of Varying Complexity

and presents related studies. Section 4.2 discusses how the GRNs are extracted and arranged

in order of complexity and describes the bow-tie architecture decomposition method. Section

4.3 presents the observations of our study. In Section 4.4 we summarize our observations

and from these observations deduce their biological implications. Lastly, the strengths,

weaknesses and future directions of this work are discussed in Section 4.5. A brief summary

of the entire chapter is provided in Section 4.6.

4.1 Background and related work

A key objective of comparative biology is explaining biological differences between species.

Gene regulation plays a critical role in explaining such organismal differences (King and

Wilson, 1975). Gene regulatory networks (GRNs) (Bolouri, 2008) are networks where edges

connect regulator nodes, such as transcription factors (TFs), to target nodes. A GRN is a

model of the gene regulatory system that controls the development, function and pathology

of organisms, and hence its analysis is extremely important. Study of GRN structure and

how it varies between species can provide insights into how changes in gene expression, un-

derlying divergence in phenotypes, occur between species (Wittkopp, 2007). Differences in

GRN architectural organization are considered the reason for differential dynamic regula-

tory behavior between eukaryotic Yeast (Saccharomyces cerevisiae) and prokaryotic bacteria

(Rodriguez-Caso, Corominas-Murtra, and Solé, 2009). Comparison across multiple eukary-

otes reveals a common architectural feature of the GRN – a scale-free topology, but with

species-specific characteristics likely to produce species-specific phenotypes (Ouma, Pogacar,

and Grotewold, 2018). So it is vital to analyze the differences in GRN architecture to un-

derstand differences between species.

Differences between species are exhibited at various levels like anatomy, physiology
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and behavior. One approach of understanding differences between species is looking at

differences in universally present dynamical regulatory system properties. Complex biolog-

ical systems display some inherent system-level dynamical properties. Understanding the

emergence of these properties is important for understanding the functioning and pathology

of organisms. We want to investigate how the dynamical system property of controllability,

ubiquitous in the context of gene regulation, has evolved differently between different species.

For this purpose, analysing the architecture of their GRNs becomes crucial.

A network architecture associated with important dynamical properties like robust-

ness, flexibility, evolvability and controllability (Csete and Doyle, 2004) is the bow-tie. The

bow-tie architecture has been observed in various network types, including information net-

works (Broder et al., 2011), internet protocol networks (Akhshabi and Dovrolis, 2011), neural

networks (Hinton and Salakhutdinov, 2006) and biological networks like metabolic (H.-W.

Ma and Zeng, 2003) and signaling networks (Supper et al., 2009). The formal definition

of the bow-tie architecture in a directed graph is given in terms of a strongly connected

component (SCC) (R. Yang, Zhuhadar, and Nasraoui, 2011). A SCC is a subnetwork in

which every node is connected to every other node. The largest of these, the largest strong

component (LSC) in the network is defined to be the bow-tie core layer (Broder et al.,

2011; H.-W. Ma and Zeng, 2003). The LSC core lies between the in layer and the out

layer. As presented in Figure 4.1, the rest of the nodes in the network are categorized into

remaining layers of the bow-tie – intendrils, outtendrils, tubes and others.

In literature, the bow-tie architecture is also associated with an hourglass shape where

the core is smaller than the in and the out layers (Tieri et al., 2010; Friedlander et al.,

2015). In this study, we use the definition of the bow-tie architecture in terms of a strongly

connected component core between the in layer and the out layer, where the hourglass

shape is not compulsory. Researchers have previously shown the existence of a bow-tie

architecture in GRNs of some eukaryotes, with the LSC core being the only non-trivial
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Figure 4.1: An example of a bow-tie architecture with the largest strong component (LSC)

core layer. The circles represent nodes and the arrows represent edges. The different

bow-tie layers are denoted by dashed boxes.

(consisting of more than one node) strong component. For example, the work in (Rodriguez-

Caso, Corominas-Murtra, and Solé, 2009) demonstrates that a bow-tie architecture with one

large strongly connected core is observed in the Yeast (Saccharomyces cerevisiae) GRN’s

dynamical backbone, defined as a subgraph of computationally relevant dependencies. How-

ever, the authors observed a top-down hierarchy but not a bow-tie structure in the dynamical

backbones of bacteria B. subtilis and E. coli GRNs. The other example is that condition-

specific TF-TF regulatory networks of the plant Arabidopsis (Arabidopsis thaliana) in six

tested experimental conditions exhibit a bow-tie architecture with one non-trivial distinct

LSC core (S. Luo et al., 2018). The authors in (S. Luo et al., 2018) additionally speculate
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that such an architecture might be prevalent in other eukaryotic species. However, the exis-

tence of bow-tie architectures and the quantification of their characteristics across GRNs in

species of a wide range of biological complexity have not yet been addressed.

The bow-tie core size, both absolute (number of nodes or regulators) and relative

(number of nodes or regulators relative to the corresponding total number in the network),

is considered to be a vital aspect of the network architecture (Csermely et al., 2013), as it is

related to important dynamical system properties including controllability (Csete and Doyle,

2004).

4.2 Materials and methods

4.2.1 GRN extraction

In our study we have selected some species covering a wide range of biological complexity,

for which the GRNs are readily available from public data sources. These different sources

for GRNs have been created and managed by curators using methodologies differing slightly

or even widely. However, in our analysis we need a common ground for GRN comparison.

Our objective has been to use the GRN extraction criteria that provide, for subsequent

comparative analysis, the optimal ground in terms of completeness and similarity.

GRNs can capture several forms of regulatory interactions. In the extracted networks

of our analysis the regulators are TF genes, where TFs can also refer to factors classified

as TFs in the data, like sigma factors in prokaryotes or co-factors or chromatin remodeling

factors in eukaryotes. The target genes can represent TF, microRNA, small RNA or other

genes whose transcription is controlled by these regulators. Like in (Kumar et al., 2015),

we have excluded the regulatory interactions where the source genes represent non-coding
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RNAs like bacterial small RNAs or microRNAs. However unlike (Kumar et al., 2015), we

have incorporated the interactions where the regulators are TF genes which regulate the

transcription of non-coding RNA target genes. We have aimed to use the most unique gene

identifiers present in the data source and extract only the regulatory interactions with valid

identifiers. Where possible, a complex/operon/heteromer is to be included in the network as

its individual genes. For ease of use, we have selected only the TF-target gene interactions

available in the data sources, when in some sources there can be additional related informa-

tion like that of TF binding sites, promoters or gene expression correlation. The GRNs in our

study are assumed to be general, and not specific to any particular experimental condition

or cell type.

One important aspect in extracting the GRNs is the type and reliability of evidence

associated with the interactions. An interaction can be experimentally validated or com-

putationally predicted, and the interaction can be ranked based on the reliability of the

evidence. All these different data sources use their own set of criteria for defining these

interaction properties, and in some cases that information is not available. Choosing the

strictest possible threshold on these interaction properties could lead to incomplete informa-

tion for some species, which is not suitable for a reliable analysis. In our study, for a data

source we extract all interactions with any evidence irrespective of its type and reliability.

Although extracting interactions without a threshold might lead to false positive edges, it

eliminates the variability of analysis caused by different selections of threshold. We have

excluded interactions which are categorized as indirect in the data source.

Completeness of the data is an important factor while extracting GRNs. We have

addressed the issue of incompleteness of the data sources by only considering extracted GRNs

with coverage of more than 50% of the species total genes. These total gene (protein+RNA)

numbers for all species were obtained from the Kyoto Encyclopedia of Genes and Genomes

(KEGG) Genome database (Kanehisa, Furumichi, et al., 2021). For some species there are
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Species Data source Extraction criteria % total genes

E. coli RegulonDB All TF-target gene and sigma factor-target

gene interactions

54

Yeast YTRP All direct TF-target gene interactions with

binding evidence in the shortest pathway con-

necting a TF-target gene pair with expression

evidence

80

Arabidopsis AtRegNet All direct TF-target gene interactions with

TF and target gene name and locus specified

57

Drosophila DROID All TF-target gene interactions 81

Mouse RegNetwork All TF-target gene interactions 73

Human RegNetwork All TF-target gene interactions 99

Table 4.1: GRN data sources selected for bow-tie architecture decomposition. The percent-

age of species total genes (protein+RNA) in the extracted GRN, rounded to a whole number,

is shown.)

multiple different data sources. To finally have one data source per species in our analysis,

we have used the one with the highest percentage of the total genes in the species. The data

sources and the corresponding extraction criteria for GRNs of well-studied species selected

for our architecture analysis are listed in Table 4.1. The extraction criteria specific to each

data source are given with the percentage of species total genes (protein+RNA) in the

extracted GRN (denoted as % total genes, rounded to whole numbers). We believe that

these network extraction criteria give us the most optimally complete and fair ground of

comparison possible across GRNs of several species from different sources.

Among the selected GRNs, Escherichia coli K-12 GRN was extracted from the Reg-

ulonDB database (Santos-Zavaleta et al., 2019). The GRN contains TF-target gene and

sigma factor-target gene interactions curated from literature with different ranks of experi-
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mental evidence, including some which are predicted. For Yeast (Saccharomyces cerevisiae),

the Yeast Transcriptional Regulatory Pathway (YTRP) database (T.-H. Yang et al., 2014)

was used, which consists of curated interactions with evidence of either TF-target gene

binding or target gene expression variation on perturbation of TF, or both. We extracted

the TF-target gene direct pairs with experimental binding evidence in the shortest regula-

tory pathway connecting a TF and a target gene with expression evidence. The Arabidop-

sis thaliana GRN consists of different ranks of direct TF-target gene interactions obtained

from the Arabidopsis thaliana regulatory network (AtRegNet) database available on Ara-

bidopsis Gene Regulatory Information Server (AGRIS) (Yilmaz et al., 2010). The GRN of

Drosophila melanogaster consists of TF-target gene interactions with experimental evidence

of the TF binding to the gene and regulating its transcription, or only binding evidence,

obtained from the Drosophila Interactions Database (DroID) (Murali et al., 2011). The

data source used for Mouse (Mus musculus) and Human (Homo sapiens) GRNs is Reg-

Network (Z.-P. Liu et al., 2015). These extracted GRNs have TF-target gene interactions

with different ranks of experimental or predicted evidence. These GRNs have observed

percentages of the species total genes higher than the GRNs from other data sources for

these two species. The source files, extraction scripts and extracted GRNs are available at

https://github.com/gourabghoshroy/Bow-tieGRN.

The data sources presented in Table 4.2 were not selected because they do not have

more than 50% of total genes or there is another data source for the same species with a

larger % total genes. The GRNs for prokaryotes Bacillus subtilis 168 and Corynebacterium

glutamicum ATCC 13032 were obtained from the database CoryneRegNet 7.0 (Parise et al.,

2020) containing regulatory interactions with either experimental or predicted evidence, or

both. The GRN for Rat (Rattus norvegicus) was collected from Open-access Repository of

Transcriptional Interactions (ORTI) (Vafaee et al., 2016). The GRN consists of retrieved

TF-target gene interactions with different ranks of evidence. ORTI consists primarily of in-
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Species Data source Extraction criteria % total genes

B. subtilis CoryneRegNet All TF-target gene interactions (sigma

factor-target gene interactions included)

15

C. glutamicum CoryneRegNet All TF-target gene interactions (sigma

factor-target gene interactions included)

30

Rat ORTI All TF-target gene interactions with TF and

target gene id specified

4

Mouse

ORTI All TF-target gene interactions with TF and

target gene id specified

13

TRRUST2 All TF-target gene interactions 9

Human

ORTI All TF-target gene interactions with TF and

target gene id specified

78

TRRUST2 All TF-target gene interactions 13

ENCODE All TF-target gene interactions 46

Table 4.2: GRN data sources not selected for bow-tie architecture decomposition. The

percentage of species total genes (protein+RNA) in the extracted GRN, rounded to a whole

number, is shown. These data sources were not selected because they do not have more than

50% of total genes or there is another data source for the same species with a larger % total

genes.

teractions also for Mouse (Mus musculus) and Human (Homo sapiens). For the two species

Mouse and Human, GRNs were also constructed from the database Transcriptional Regula-

tory Relationships Unraveled by Sentence-based Text mining (TRRUST) version 2 (H. Han

et al., 2018). Another source for Human GRN was obtained from the ENCODE project

(M. B. Gerstein et al., 2012).
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4.2.2 Characterization of species complexity

In this section we describe how we have characterized the notion of biological complexity

in our analysis. The complexity of an organism can be defined in many ways, like genomic

complexity (Adami, Ofria, and Collier, 2000) and phenotypic complexity (Marion, Fordyce,

and Fitzpatrick, 2015). In our study, the six species for which GRNs are selected are arranged

in an order of complexity defined on the basis of their number of cell types (Hedges et al.,

2004). A widely accepted precise definition of a cell type is not available, and researchers have

used mostly morphological characteristics to differentiate between types (Bell and Mooers,

1997). More recently, cell types form a controlled vocabulary in the Cell Ontology (Diehl

et al., 2016), and cells can be classified into these types using the OnClass algorithm (Sheng

Wang et al., 2021). Rather than being based on phenotypic similarity, an evolutionary

definition of cell types is also available now (Arendt et al., 2016). The stable equilibrium

states or gene expression patterns of GRNs are viewed to be corresponding to gene expression

profiles associated with each cell type (S. Kauffman, 1969). So we believe that this definition

of biological complexity is relevant in our study where we analyze GRNs of different species.

As mentioned previously, the studied general GRNs are not specific to any particular cell

type.

We have used the knowledge about the number of cell types of different species from

literature (Hedges et al., 2004; Bell and Mooers, 1997). When the data for a particular

species was not available in the used sources, we have utilized the maximum number of cell

types observed in the major group the species belongs to. E. coli is the simplest organism in

our study as it is a prokaryotic eubacteria, which have a maximum of 2 cell types. Unicellular

eukaryote Yeast is ranked next in complexity with maximum 3 cell types in Saccharomyces

genus. For the phyla of Arabidopsis and Drosophila, the number of maximum observed cell

types are 44 and 69 respectively and hence they are arranged in that order. The next more
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complex species is Mouse with 102 cell types. Finally we have the species Human with 411

cell types including 145 types of neurons (Vickaryous and Hall, 2006). We have used this

order of complexity in presenting all our results.

4.2.3 Bow-tie architecture decomposition

To analyze the architecture of GRNs, we have used the strongly connected component based

bow-tie architecture decomposition (R. Yang, Zhuhadar, and Nasraoui, 2011). In some other

definitions, the bow-tie network structure needs to resemble an hourglass, with the interme-

diate core smaller than the input and output layers (Friedlander et al., 2015). However,

this bow-tie definition, as used in our work, does not have this particular requirement. The

details of the decomposition are given as follows. Let a directed network G be represented

with a set V of vertices and a set E of edges. A destination node is defined to be reachable

from a source node if there is a directed path from the source to the destination node. This

definition of reachability (to or from) is extended to sets of nodes if there is a path to or

from at least one node in that set. A strongly connected component is a set of nodes where

every node is reachable from every other node in the set. By definition, every single node is a

trivial strongly connected component. The bow-tie decomposition of the network G = (V,E)

with the largest strong component (LSC) defined to be the core decomposes the network

(see Figure 4.1) into these seven different layers or sets of nodes:

1. CORE = LSC

2. IN = { v ∈ V −CORE ∣ CORE is reachable from v }

3. OUT = { v ∈ V −CORE ∣ v is reachable from CORE }

4. INTENDRILS = { v ∈ V − CORE ∣ v is reachable from IN and OUT

is not reachable from v }
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5. OUTTENDRILS = { v ∈ V − CORE ∣ v is not reachable from IN and

OUT is reachable from v }

6. TUBES = { v ∈ V − CORE − IN − OUT ∣ v is reachable from IN

and OUT is reachable from v }

7. OTHERS = V − CORE − IN − OUT − INTENDRILS

−OUTTENDRILS −TUBES.

The bow-tie decomposition is performed using Algorithm 2. DFSG(v) represents the

set of nodes obtained from a depth-first search starting at vertex v in network G. GT refers

to the network that is obtained by reversing the direction of every edge in G.

4.2.4 Null model construction

We compared the GRNs of different species with their randomized counterparts in which

the number of nodes and the degree at each node are preserved. Similar to the approach in

(Rodriguez-Caso, Corominas-Murtra, and Solé, 2009), we generate these random networks.

The autoregulatory edges of the original GRN are preserved separately because they do not

affect the bow-tie layer definitions. This random generation process starts with the other

non-autoregulatory edges in the original GRN forming the initial edge list. A pair is selected

randomly from this list and their end nodes are swapped. If any of these new edges lead to

self loops or multiple edges, this swap operation is not performed for that pair. After trying

the swap operation on every distinct pair in the edge list for an iteration, the algorithm

in the next iteration repeats the process on the new edge list, consisting of edges from the

pairs which could not be swapped. To make the process efficient on one hand and to have

enough iterations for many swap operations to possibly occur on the other, we chose the

number of iterations to be 10. There can be some edges whose end nodes are not swapped
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Algorithm 2 Bow-tie network decomposition algorithm (R. Yang, Zhuhadar, and Nasraoui,

2011) based on the largest strong component (LSC) as core layer.
1: Set CORE = LSC.

2: Select a v ∈ CORE. IN =DFSGT (v) −CORE.

3: Select a v ∈ CORE. OUT =DFSG(v) −CORE.

4: foreach v ∈ V −CORE − IN −OUT do

5: IRV = (IN ∩DFSGT (v) ≠ ϕ).

6: V RO = (OUT ∩DFSG(v) ≠ ϕ).

7: if IRV and not V RO then

8: v ∈ INTENDRILS.

9: else if not IRV and V RO then

10: v ∈OUTTENDRILS.

11: else if IRV and V RO then

12: v ∈ TUBES.

13: else

14: v ∈OTHERS.

15: end if

16: end foreach
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with another edge even after the 10 iterations. There are other ways of generating these null

model networks, here we have used this simple and fast method for our analysis. 1000 such

random networks were generated independently for each GRN.

4.3 Results

In this section we present the results of applying the bow-tie architecture decomposition (R.

Yang, Zhuhadar, and Nasraoui, 2011) (described in Section 4.2.3) on the selected GRNs of

six species of varying complexity. Table 4.3 shows the number of nodes and regulators in each

of the bow-tie layers in these GRNs, where regulators are nodes with at least one outgoing

edge in the extracted GRN. We present the relative sizes of these layers with respect to all

nodes and all regulators in the network in Figure 4.2A and Figure 4.2B respectively.

From Table 4.3 we observe that for all these GRNs there is a non-trivial LSC sub-

stantially larger than the 2nd LSC. For example in E. coli GRN, the LSC consists of 54

nodes compared to a 3-node 2nd LSC, and the difference between the two are larger for other

species. In all these GRNs, this LSC is the distinct core of the bow-tie, located between a

smaller in layer and a larger out layer. As evident from Figure 4.2B, the non-trivial core

which consists only of regulators by definition, consists of a substantial percentage of all

regulator nodes, specially for eukaryotes (> 40%). We can therefore conclude that a bow-tie

architecture with one distinct LSC core exists in the GRNs of all these species of varying

complexity.

The GRN bow-tie architecture observed in our results has some important differences

between species. Through the arrangement of species in an increasing order of biological

complexity from E. coli to Human, in Table 4.3 and Figure 4.2, we observe the relationship

of the bow-tie core size with this biological complexity. Since we are comparing differently
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Layer E. coli Yeast Arabidopsis Drosophila Mouse Human

All

Edges 7348 16032 670771 157462 120579 171946

Nodes 2381 5124 16427 12323 18916 22121

Regs 220 159 573 149 1328 1456

Core
Nodes 54 83 422 86 1203 1187

Regs 54 83 422 86 1203 1187

2nd LSC
Nodes 3 2 1 2 3 3

Regs 3 2 1 2 3 3

In
Nodes 8 11 43 1 3 3

Regs 8 11 43 1 3 3

Out
Nodes 2257 5003 15943 12236 17670 20901

Regs 119 63 92 62 108 249

Intendrils
Nodes 7 25 2 0 23 13

Regs 0 0 0 0 0 0

Outtendrils
Nodes 35 1 15 0 14 15

Regs 35 1 15 0 14 15

Tubes
Nodes 1 1 0 0 0 0

Regs 1 1 0 0 0 0

Others
Nodes 19 0 2 0 3 2

Regs 3 0 1 0 0 2

Table 4.3: Bow-tie decomposition of GRNs in different species. The regulators (denoted as

Regs) are the nodes which have at least one outgoing edge in the extracted GRN. The 2nd

LSC refers to the next largest strong component separate from the LSC core.

sized GRNs, we have examined the variation of relative core size. This variation is clear

in Figure 4.2A and especially in Figure 4.2B. The relative core size roughly increases as

species complexity increases. This increase in percentage of network regulators in the bow-
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Figure 4.2: Bow-tie decomposition of GRNs. (A) Distribution of nodes in different bow-tie

layers of GRNs in different species. (B) Distribution of regulators (nodes with at least one

outgoing edge in the extracted GRN) in different bow-tie layers of GRNs in different species.

A bow-tie architecture exists in all the GRNs. The core consists of a substantial percentage

of all regulators. The relative core size generally increases with species complexity.

tie core in more complex organisms comes at the cost of a roughly decreasing percentage

of regulators in the in and the out layers, as can be observed in Figure 4.2B. Based on our

observations, we can conclude that structurally the core size is a key differentiating factor

in the bow-tie GRN architecture of different species, with a relatively larger core observed

in more complex organisms.

To assess the effects of false positive and missing edges in the extracted GRNs on our

observations, we perform sensitivity analysis experiments. In Figure 4.3 and Figure 4.4, we

present the average distribution of nodes and regulators in the different layers from bow-

tie decomposition of 1000 GRNs after random addition and deletion of 10% of the original
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GRN edges respectively. On addition of edges, the size of the core increases. For Drosophila

GRN with just 1 node in the in layer, random edge addition leads to an incomplete bow-tie

architecture, with the average number of in nodes, rounded to an integer, being 0. Between

species, the generally increasing trend in core size with complexity is still observed. The

increase in the core size at the cost of the sizes of layers like the out would depend on factors

like the network density and the original layer sizes, governing how a regulator node can now

become part of the LSC, which can explain why we observe larger changes for some species

in Figure 4.3. On deletion of edges, the core decreases in size, but is still substantially large

and the roughly increasing trend in core size with complexity is preserved. There is an

increase observed in the size of the others layer. The sensitivity analysis for much larger

percentages (25% and 50%) of edge addition and deletion are also presented. Overall, these

experiments suggest that, even with variations in the quality of the GRN data, analyzing

these GRN architectures with the perspective of a bow-tie architecture with a LSC core

makes sense, and there is a trend of increasing core size with species complexity.

Further, to quantify the extent to which the GRN bow-tie architectures are different

than what would be expected simply by chance, we compared the bow-tie architectures

observed in the empirical GRNs with their randomized counterparts. We looked at the LSC

core size in these GRNs and the corresponding sizes in random networks having the same

number and degree of nodes (Section 4.2.4). Figure 4.9 shows the LSC core layer sizes of

1000 random networks for every species, along with core size in the original GRNs. We

observe that for E. coli and Yeast, the size of the core is smaller than that expected in similar

random networks. As the species complexity increases in eukaryotes beyond Yeast, the size

of the GRN bow-tie core is larger than expected in random networks. For Drosophila, most

of the similar random networks do not have a full bow-tie architecture, with 0 nodes in the

in layer.

We present the sizes of the bow-tie LSC core as Z-scores with corresponding p-values
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Figure 4.3: Bow-tie decomposition of GRNs after random addition of 10% edges. (A) Average

distribution of nodes in different bow-tie layers. (B) Average distribution of regulators in

different bow-tie layers. The original distribution of nodes and regulators are shown as black

bars. The trend of increasing core size with species complexity is still observed.

in Table 4.4. For false discovery adjustment, we used the Benjamini-Hochberg procedure

Benjamini and Hochberg, 1995. Using a false discovery rate of Q = 0.15, we can say that

the GRN bow-tie LSC core size is significantly different from the LSC core size in similar

random networks. Using a stricter false discovery rate of Q = 0.05, we find that the null

hypothesis can be rejected for all species except E. coli. These comparisons show that the

observed bow-tie architectures are characteristic features of these GRNs differentiating them

from random networks of similar size and degree.
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Figure 4.4: Bow-tie decomposition of GRNs after random deletion of 10% edges. (A) Average

distribution of nodes in different bow-tie layers. (B) Average distribution of regulators in

different bow-tie layers. The original distribution of nodes and regulators are shown as black

bars. The core sizes are still substantial.

94



Bow-tie Architecture of Gene Regulatory Networks in Species of Varying Complexity

Figure 4.5: Bow-tie decomposition of GRNs after random addition of 25% edges. (A) Average

distribution of nodes in different bow-tie layers (B) Average distribution of regulators in

different bow-tie layers. The original distribution of nodes and regulators are shown as

black bars. The trend of increasing core size with species complexity is not as clear as in

the original distribution. The average number of in layer nodes is 0 for Arabidopsis and

Drosophila.
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Figure 4.6: Bow-tie decomposition of GRNs after random deletion of 25% edges. (A) Average

distribution of nodes in different bow-tie layers (B) Average distribution of regulators in

different bow-tie layers. The original distribution of nodes and regulators are shown as black

bars. The core size decreases for all species, but is still substantial. The others layer is

larger.
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Figure 4.7: Bow-tie decomposition of GRNs after random addition of 50% edges. (A) Average

distribution of nodes in different bow-tie layers (B) Average distribution of regulators in

different bow-tie layers. The original distribution of nodes and regulators are shown as black

bars. The trend of increasing core size with species complexity compared to the original

distribution is more unclear. The average number of in layer nodes is 0 for Arabidopsis,

Drosophila and Human.
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Figure 4.8: Bow-tie decomposition of GRNs after random deletion of 50% edges. (A) Average

distribution of nodes in different bow-tie layers (B) Average distribution of regulators in

different bow-tie layers. The original distribution of nodes and regulators are shown as black

bars. The core is much smaller for all species but still mostly of substantial size. The

others layer is much larger.
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Figure 4.9: Bow-tie core sizes of similar random networks. Number of nodes in GRN core

layer (circle) are compared to those in similar random networks (box plot) for different

species. For E. coli and Yeast, the size of the core is smaller than expected in random

networks. For species more complex than Yeast, the size of the core is larger than expected

in random networks.
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Species Z-score p-value False discovery rate

adjusted p-value

E. coli -1.5560 0.1197 0.1197

Yeast -4.7089 0.000002491 0.000003736

Arabidopsis 18.1863 0 0

Drosophila 3.6323 0.0002809 0.00033708

Mouse 20.6405 0 0

Human 19.7332 0 0

Table 4.4: Bow-tie core size comparison against similar random networks. Very small p-

values are shown as 0. For false discovery rate adjustment we used the Benjamini-Hochberg

procedure.

4.4 Discussion

4.4.1 Summary of observations

From our results in Table 4.3 and Figure 4.2, we find that a bow-tie architecture with a

distinct LSC bow-tie core exists in the GRNs of all six species of varying complexity. There

can be other perspectives of looking at these GRN architectures. Modularity and hierarchy

are characteristics of GRNs (Hatleberg and Hinman, 2021), and a perspective would be to

consider the hierarchy between these individual layers or modules. A small in layer followed

by a larger core and the out layer with the largest number of nodes resembles a pyramid

shape. Prior work has shown the existence of a pyramidal hierarchical architecture in the

GRNs of E. coli and Yeast (H. Yu and M. Gerstein, 2006). However, in contrast to H. Yu

and M. Gerstein, 2006, in our study we find that the bottom or the out layer has TFs which

regulate other TFs. Additionally, the strongly connected core between the in and the out

layers justifies the perspective of the bow-tie architectural feature in these GRNs. In the
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bow-tie architectures, we observe a very small in layer in some GRNs. Our analyzed general

GRNs are not specific to any context, and for a species only a part of the general GRN is

active for a single cell type. As such, and with a very small in layer, it is possible that the

GRN for particular cell types might not have the bow-tie architecture. In this study, we

aim to look for the global architectural bow-tie feature in these general GRNs and how they

differ between species, to be able to predict a trend in the emergence of a regulatory system

property with varying biological complexity, and the predicted trend can be useful in those

cell type-specific systems as well.

From our results, we observe that there is a general increase in bow-tie core size,

relative to all nodes and all regulators in the GRN, with the complexity of the species. Our

sensitivity analysis in Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7 and Figure

4.8 and comparison with similar random networks in Figure 4.9 and Table 4.4 show that

the bow-tie architectures in these GRNs are characteristic features and can not be explained

just by chance.

Our observations build on and add to the GRN architecture analysis results obtained

from prior research. A bow-tie architecture with a distinct LSC core has been previously

observed in the dynamical backbone of Yeast GRN (Rodriguez-Caso, Corominas-Murtra, and

Solé, 2009) and in Arabidopsis TF-TF networks (S. Luo et al., 2018). However, the authors

of (Rodriguez-Caso, Corominas-Murtra, and Solé, 2009) did not find a bow-tie architecture

in the dynamical backbone of the analyzed E. coli GRN, with the LSC not much larger than

the 2nd LSC. The GRN consisted of 1607 nodes or about 36% of the species total genes. In

contrast, with the use of a more complete GRN with greater than 50% of the total genes of

the species, we observe a distinct LSC core between in and out layers for the prokaryote

E. coli and for other more complex eukaryotic species.

We observe an increase in bow-tie relative core size with the complexity of the
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species, but this increase is not monotonic (Figure 4.2). A possible explanation for these

slight variations from the trend of relative core size increase with complexity is variation

in the GRN data quality from different data sources. Specifically in Figure 4.2A, a larger

core size relative to all nodes is observed in E. coli than for more complex Yeast. There

is also a subsequent drop for more complex species Drosophila. We believe that the likely

cause of this is the incompleteness of the available GRN information in terms of the number

of regulators in the extracted GRN. The percentage of regulator nodes out of all network

nodes in the extracted GRN, where the corresponding absolute numbers are presented in

Table 4.3, is highest for E. coli and lowest for Drosophila. This might contribute to the

observed relatively high and low core sizes with respect to all nodes respectively for these

two species. Therefore we validate the observation that the core becomes larger with

complexity by also examining the size relative to all regulators in the GRN in Figure 4.2B.

Here a clearer increase of core size with complexity is observed. The reason behind the

slight drop observed here for Drosophila is probably that one of the two sources used by the

curators of the Drosophila database (Section 4.2.1) has a stricter criterion of both binding and

transcriptional regulation evidence for interactions. Our sensitivity analysis demonstrates

that our results are quite robust to factors related to GRN data quality like incorrect or

missing information.

4.4.2 Variation of controllability with complexity

Next, with our observations about the differences in GRN architectures between species, we

aim to understand their biological implications. For that purpose, here we use previously

proposed association of the dynamical system property of controllability with the bow-tie

architecture and specifically its core layer size. This enables us to suggest hypotheses about

how controllability may have emerged differently with biological complexity.
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It has been proposed that a larger bow-tie core reduces controllability (Csete and

Doyle, 2004). More complex organisms with more cell types should have more attractor

states, as these attractor states of GRNs are considered to correspond to gene expression

profiles associated with each cell type (S. Kauffman, 1969). We hypothesize that in such

cases, perturbing the regulatory system to move from an undesired attractor to a desired

attractor might be more difficult. This reduces the system controllability with complexity,

that comes with a larger GRN bow-tie core, as observed for more complex species. Tighter

control of the regulatory system may be related to more extreme conditions and less resources

(Csermely et al., 2013), which might explain why less complex organisms including bacteria

in our analysis have a smaller bow-tie core allowing more rigid control and support our

hypothesis.

Additionally, we are able to suggest a complexity based division between species

in terms of controllability. Comparison with random networks similar in size and degree

distribution in Figure 4.9 reveals that the LSC core is smaller than expected by chance

in E. coli and Yeast GRNs. Similar results for LSC size were previously observed in GRNs

of B. subtilis and E. coli (Kumar et al., 2015), and Yeast (Jothi et al., 2009). For more

complex eukaryotic GRNs, we observe that the bow-tie core size is larger than expected in

similar random networks. So it is reasonable to speculate that for prokaryotic bacteria and

unicellular eukaryotes living in comparatively more extreme conditions, greater regulatory

system controllability is a key requirement. Our work has focused on how the GRN bow-tie

architectures in these species have evolved to possibly support these requirements.
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4.5 Strengths, limitations and directions

In this study we investigate the GRNs of several species and demonstrate the existence of

a bow-tie architecture with a distinct LSC core in them. We show that the bow-tie is a

characteristic GRN architectural feature. Among the strengths of our work, to our knowl-

edge this is a novel comprehensive bow-tie architecture analysis of GRNs in several species

of widely varying complexity. We further observe an increasing trend in relative core size

with species complexity and hypothesize how the dynamical gene regulatory system property

of controllability has emerged differently with complexity. The controllability of the gene

regulatory system is very relevant in therapy, as cancer cells are considered to be trapped

in abnormal attractor states (S. Huang, Ernberg, and S. Kauffman, 2009). Understand-

ing how controllability emerges differently between species can lead to novel systems-based

therapy approaches for diseases like cancer. Our work has provided valuable insights into

the structural basis of this difference. For instance, the larger bow-tie core size for more

complex organisms like Human needs to be taken into account in coming up with potential

approaches for controlling the regulatory system state. Another possible benefit of our work

is that the observed trends from the analysis of GRNs in several well-studied species can

provide guiding directions for studies on less-studied or non-model species whose regulatory

interaction information is largely incomplete at present.

A limitation of this work is that using other GRN data sources or a different set of

GRN extraction criteria could affect our observations. For our analysis we depend on the

information available in existing state of the art biological data sources, with GRN extraction

criteria aimed at an optimal ground of comparison. Supported by our sensitivity analysis

experiments, we believe our results are quite robust to data quality factors and hence the

corresponding possible biological explanations hold merit. As new experimental methods for

collecting data on regulatory interactions are developed, more complete and accurate data
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on regulatory networks for more species should become available. We anticipate that the

methods and results presented here will enable more detailed analysis of this data.

Future directions could aim at testing the hypotheses proposed in this work. It can

be possible to quantify controllability in dynamical models, however, obtaining accurate dy-

namical models of these general GRNs of different species is a challenging problem on its

own (Daniels et al., 2018; Cao and Grima, 2018). Metric definitions on real systems should

be standardized. Our hypothesis of how controllability emerges differently with species com-

plexity could then be verified, and the role of the bow-tie architecture core size difference

can be assessed by possible in vitro GRN modification experiments. We need to consider

other factors, including connectivity within and between different bow-tie layers, that might

also govern controllability. However, for verifying the impact of the GRN bow-tie architec-

ture in the proposed relationship, understanding how this architecture governs the network

dynamics is of prime importance.

In our work we only look at the structural relationship of the GRN architecture with

controllability, but in future we want to investigate the details of how the network archi-

tecture governs the network dynamics. For this we need to understand how an individual

bow-tie layer governs the dynamics associated with that layer, and then possibly extend this

to how the global bow-tie architecture controls the global network dynamics, within and

between species. Determining how dynamical behavior associated with specific biological

functions or pathways is controlled by the individual layers and the overall bow-tie architec-

ture would provide new and valuable understanding of the functionality of GRNs. In our

study we consider a general trend in one direction of the emergent property with increase of

bow-tie core size in more complex species. However, detailed analysis of dynamics could

reveal and explain the more complicated nature of this variation. The insights we provide

here in our work can be useful for such future dynamical analysis.
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4.6 Chapter Summary

In this chapter we present the work in our paper (Ghosh Roy, S. He, et al., 2021). We in-

vestigate the existence of an architectural feature – the bow-tie architecture in the GRNs of

species of widely varying complexity, from prokaryotes to unicellular eukaryotes to multicel-

lular eukaryotes. We obtain general GRNs not specific to any context from public databases

and arrange them in an order of complexity defined on the basis of the number of cell types.

From Table 4.3 and Figure 4.2, we find the existence of a bow-tie architecture with a distinct

LSC core layer in all six analyzed GRNs. Sensitivity analysis in Figures 4.3, 4.4, 4.5, 4.6,

4.7 and 4.8 and comparison with random networks in Figure 4.9 and Table 4.4 demonstrates

that the observed bow-tie architecture is a characteristic feature of GRNs and can not be

explained just by chance. Additionally, we find a generally increasing trend of the relative

core size with species complexity.

Based on these observations and using previously studied relationship of the bow-tie

core size with the system property of controllability, we hypothesize how controllability

has emerged differently with species complexity. We argue how a larger core size in more

complex species comes with decreased controllability. We also discuss how prokaryotes and

unicellular eukaryotes which survive in more extreme conditions require higher controllability,

and these requirements are supported by their respective GRN bow-tie architectures. In this

study we focus on the structural relationship between the bow-tie GRN architecture and

the emergent property of controllability. However, to predict not just a trend but more

specific values of this emergent property, we would need to understand how exactly the bow-

tie architecture governs the network dynamics. For a large sized network, such modeling

is an immensely complicated task with several parameters. When lower biological level

measurements are to be mapped to emergent properties at higher levels, the number of

associated parameters increases further making the modeling more complex.
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Chapter Five

Visible Neural Network for Interpretable

Prediction of Cancer-specific Survival

Risk

In this chapter we aim to learn the mapping function that maps genotype to phenotype, that

is lower-level network state measurements to higher organism-level emergent property of the

survival risk, using the signaling network structure and how the known structure changes

for a particular disease. Survival risk prediction using gene expression data is important

in making treatment decisions in cancer. Standard neural network (NN) risk prediction

models are black boxes with lack of interpretability. Interpretability denoting the degree

to which a model’s internal operations can be understood by a human, here in biological

terms, makes the model more suitable for use in high-stakes clinical applications. In this

chapter we will use the term architecture to refer to how the neurons in a neural network are

connected with each other. More interpretable visible neural network (VNN) architectures

are designed using biological pathway knowledge. But they do not model how pathway

structure can change for particular cancer types. We propose a novel Mutated Pathway

VNN or MPVNN architecture, designed using prior signaling pathway knowledge and gene
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mutation data-based edge randomization simulating signal flow disruption. We assess the

cancer-specific survival risk prediction performance of our MPVNN architecture compared to

standard non-NN and similar sized NN survival analysis methods. We also interpret trained

MPVNN architecture to obtain insights, and assess the reliability of some such insights using

evidence in literature.

The organization of this chapter is as follows. Section 5.1 presents the background of

our work. In Section 5.2 we present the risk prediction problem and our proposed MPVNN

architecture and its interpretation methodology. Sections 5.3 and 5.4 present our experimen-

tal datasets and results respectively. We assess the reliability of MPVNN interpreted insights

and discuss future directions in Section 5.5. The summary of this chapter is presented in

Section 5.6.

5.1 Background and related work

Cancer is a leading cause of death worldwide, and a substantial amount of medical research

is focused on survival analysis of cancer patients. The suitability of a particular treatment

method could be guided by the predicted survival risk of the patient. The effectiveness of a

treatment method could also be measured using the predicted risk. Gene expression data has

been extensively used for cancer risk prediction, and different machine learning methods have

been applied for this survival analysis task by learning from survival data (W.-Y. Cheng,

T.-H. O. Yang, and Anastassiou, 2013). Neural networks (NNs) are an effective category

of machine learning methods which have been used for gene expression-based cancer risk

prediction (Katzman et al., 2018; Z. Huang et al., 2019).

One major challenge of some machine learning models including standard NNs is lack

of interpretability. Model interpretability refers to the degree to which the model’s internal

108



Visible Neural Network for Interpretable Prediction of Cancer-specific Survival Risk

operations can be understood by a human (Biran and Cotton, 2017), which here denotes

being understood in biological terms. This understanding would point to how particular

biological entities and relationships are used internally by the model in mapping the input

to the output. A more interpretable model would inherently increase a user’s trust on the

model, and hence be considered more suitable for use in high-stakes clinical applications

(Rudin, 2019).

There are methods which can explain standard black box NNs. Examples of such

methods are Layerwise Relevance Propagation (Bach et al., 2015), Integrated gradients (Sun-

dararajan, Taly, and Q. Yan, 2016) and DeepLIFT (Shrikumar, Greenside, and Kundaje,

2017). DeepLIFT (Deep Learning Important FeaTures) method assigns importance scores

to each input feature for a given output, by backpropagating the contribution of all neu-

rons in the NN. As discussed in Rudin, 2019, for high-stakes applications, instead of trying

to explain black box NNs, we should be coming up with NNs which are interpretable by

design and hence after learning can be interpreted using straightforward approaches. Such

interpretable NNs is the focus of our work.

Visible NNs or VNNs are neural networks where biological meanings are attached to

intermediate neurons, and these VNNs provide increased model interpretability compared

to standard black box NNs (M. K. Yu et al., 2018). Under a visible architecture, neurons

represent biological entities like genes, proteins, pathways, cell subsystems, etc. and connec-

tions between the neurons represent biological relationships. Here we refer to those NNs as

VNNs where neurons in each intermediate layer are associated with some explicit biological

meaning.

An important source of biological knowledge for use in the design of VNNs is that

of biological pathways. VNNs whose design uses pathway knowledge with neurons repre-

senting pathways include P-NET (Elmarakeby et al., 2021), GenNet (Hilten et al., 2020)
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and DCell (J. Ma et al., 2018). These VNNs are designed from hierarchical knowledge

and have multiple intermediate layers. Another VNN designed using pathway knowledge

is knowledge-primed NN or KPNN (Fortelny and Bock, 2020), which is a NN architecture

analogous to the structure of signaling pathways and also has multiple intermediate layers.

A VNN with one intermediate layer, designed using protein–protein (PPI) and protein–DNA

(PDI) interactions data, for predicting cell type from single cell expression values has been

explored (Lin et al., 2017). However, none of these VNNs model how a known biological

pathway structure can change for a particular disease.

5.2 Methods

5.2.1 Problem

We address the survival analysis task as a ranking problem of predicting the survival risk

score. There are other approaches of addressing survival analysis. For example, in a classifi-

cation setting, the patients can be stratified into risk categories (Y.-C. Chen, Ke, and Chiu,

2014). However, such a stratification based on a threshold like the median survival time

might not be accurate in a patient population with a mix of cancer stages corresponding to

widely varying medians. In another analysis approach, time-to-event distributions can be

estimated (Chapfuwa et al., 2018). Here our aim is to predict risk scores indicative of the

survival times so that ordering is correct. A clinician might be interested only in knowing

if a particular treatment causes an increase in survival time without the need to know the

exact value of the said time.

The survival data comprises two major components : the ith patient survival time to

event of interest ti, and the censoring indicator li where a value of 1 denotes that the event
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was observed and a value of 0 denotes censoring. In our risk prediction task, the objective is

to predict a relative risk score f(xi) as output given the expression profile xi ∈ RN consisting

of expression values of N genes as input, where a larger survival time can be associated with

a larger risk score for cases that can be ordered.

Here we have used a standard survival analysis performance assessment metric of the

Concordance Index (CI) or c-index (Harrell Jr, K. L. Lee, and Mark, 1996). It is a measure

of agreement between the predicted survival risk and the observed survival. The CI is defined

as follows

CI = 1

∣ϵ∣ ∑
(i,j)∈ϵ

1f(xi)<f(xj)
, (5.1)

where ϵ = {(i, j) ∣ li = 1 and tj > ti}. The CI metric is a value between 0 and 1, where a value

of 0.5 denotes random prediction. The objective here is to maximize the CI value. Since

the CI itself is not differentiable, we consider the following differentiable exponential lower

bound on the CI (Steck et al., 2008):

1

∣ϵ∣ ∑
(i,j)∈ϵ

1 − ef(xi)−f(xj). (5.2)

We use the negative of this lower bound as the loss function for minimization. As in Wulczyn

et al., 2020, during optimization we ignore the denominator of Eq. 5.2, and evaluate the loss

over training batches.

The patient cancer survival outcome endpoint used in these experiments is also the

disease-specific survival (DSS) endpoint (J. Liu et al., 2018). A DSS event denotes death

specifically from the diagnosed cancer type, and the event time is measured from the date

of initial diagnosis until that of event. The censored time denotes the time from the date of

initial diagnosis until the date of death due to another cause or the date of last contact. This

DSS endpoint is difficult to derive and is an approximation of the true DSS (J. Liu et al.,
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2018). However, we want to be able to predict the cancer-specific survival risk, which has

a more direct relationship with the cancer modeling. So we have selected DSS over a more

commonly used endpoint – the overall survival (OS), and used the TCGA datasets for our

experiments which provide this DSS data for multiple cancer types.

5.2.2 Proposed Architecture

To solve this problem of risk prediction from gene expression profiles, we propose a simple

VNN architecture with one intermediate layer connecting the input genotype layer and the

output phenotype layer. The input and the intermediate layers have N neurons each, and

the output layer has one. The proposed MPVNN architecture is presented in Figure 5.1.

In the architecture, an intermediate layer neuron is assigned to represent the pertur-

bation at one gene, where a gene is considered to be perturbed if it is in the path of actual

flow of signal. Our usage of the term perturbation is in the context of signal flow, which

is different from the notion of a gene being perturbed when mutated. Each intermediate

layer neuron is connected to the input layer neuron representing the expression of the same

gene. When using just pathway knowledge and no mutation data, each intermediate layer

gene perturbation neuron is additionally connected to other input layer neurons representing

the expression of genes which are its known neighbors in a signaling pathway. So a gene

perturbation is derived from its own expression and the expression of its pathway neighbors,

which are the genes with edges to or from the gene in consideration. This VNN design is

unchanged by autoregulatory edges, or by cases where an edge is shared by two or more

pathways or edges exist between two genes in both directions within or across pathways.

This is the PVNN architecture, which is the version of the MPVNN architecture without

the mutation data-based edge randomization.
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Figure 5.1: Proposed MPVNN architecture. Each input layer neuron represents the expres-

sion of a gene, and the output layer neuron represents cancer-specific survival risk. Each

intermediate layer neuron is assigned to represent perturbation at a gene, where a gene is

considered to be perturbed if it is in the path of actual flow of signal. A gene perturbation

is derived from the expression of the same gene, and the expression of genes which are con-

nected to the gene in consideration by either a known pathway edge or a randomly connected

edge. For example, a known pathway edge or a randomly connected edge G1→ G2 leads to

two NN connections, one from input layer G1 expression neuron to intermediate layer G2

perturbation neuron, and a second from G2 expression neuron to G1 perturbation neuron.

The randomly connected edges are obtained by replacing a fraction of known pathway edges

using mutation data.

113



Visible Neural Network for Interpretable Prediction of Cancer-specific Survival Risk

The MPVNN architecture is an extension of the PVNN architecture using another

type of data, non-silent gene mutation data. The signal flow through the known pathway

edges can be disrupted in cancer. Simulating the change in pathway structure for a particular

cancer type, we use the additional gene mutation data for that cancer to replace a certain

fraction of known pathway edges with random gene connections. These new connections are

aimed at capturing signaling interactions not present in the used prior knowledge, which can

be important in survival risk prediction for that particular cancer type. So the connections

between the input layer and the intermediate layer neurons are used to represent the signaling

edges, either obtained from prior knowledge or from the randomization using mutation data.

The design algorithm in Algorithm 3 guides the connections between the input and the

intermediate layers.

For a cancer type, we compute a mutation fraction per signaling pathway, which

is a rough estimate of how much the signal flow in the pathway is disrupted. With the

mutation fraction, we randomly replace this same fraction of the known pathway edges with

new edges and connect the neurons accordingly. In this case, the intermediate layer neurons

derive perturbations at a gene from:

• the expression of the same gene;

• the expression of some neighbor genes, as per known pathway knowledge;

• the expression of genes that it is randomly connected with, based on the mutation

data.

For the MPVNN architecture design, the input is the list of all N genes and P

pathways, the gene and the edge lists for every individual pathway and the mutation data for

the N genes. We assume that over all the pathway edge lists, no autoregulatory edge exists,

an edge and its reversed edge together do not exist, and an edge belongs to only one pathway.
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Algorithm 3 MPVNN design algorithm.
1: Input: List of all N genes Nall; List of all P pathways Pall, Gene list Np & Edge list Ep for every pathway p ∈ Pall; Mutation data

M ∈ {0,1}K×N ;

2: Output: Connection matrix W ∈ {0,1}N×N denoting connections between input and intermediate layers

3: foreach gene Gn ∈Nall do

4: Number of mutated samples Msum
Gn ← ∑K

k=1 Mk,n

5: end foreach

6: Most mutated genes Mmut ← {Gm ∀ Msum
Gm ≥ 0.99 quantile of all non-zero Msum

Gn }

7: foreach pathway p ∈ Pall do

8: fracp ←
∣Np ∣
N

, thrp ←
∣Np∩Mmut ∣
∣Mmut ∣

9: end foreach

10: Connection matrix W ← createW(Nall, Np, Ep, thrp, fracp for p ∈ Pall)

11: function createW(Nall, Np, Ep, thrp, fracp for p ∈ Pall)

12: W ← IN

13: Enew ← ∅

14: foreach pathway p ∈ Pall do

15: foreach edge a→ b ∈ Ep do

16: rnum1 ← random()

17: if rnum1 < thrp then

18: do

19: rnum2 ← random()

20: if rnum2 ≥ thrp then

21: a, b← Select 2 unique genes randomly from Np

22: else if rnum2 < thrp
frac1≠p
1−fracp

then

23: if random() ≥ thr1≠p then

24: a, b← 2 unique genes randomly from N1≠p
25: else

26: a, b← 2 unique genes randomly from Nall −N1≠p
27: end if

28: ⋮

29: else if rnum2 < thrp
frac1≠p+⋯+fracP≠p

1−fracp
then

30: if random() ≥ thrP≠p then

31: a, b← 2 unique genes randomly from NP≠p
32: else

33: a, b← 2 unique genes randomly from Nall −NP≠p
34: end if

35: else

36: a, b← 2 unique genes randomly from Nall −∑p∈Pall
Np

37: end if

38: while (a→ b ∈ ∪p∈Pall
Ep) ∨ (a→ b ∈ Enew) ∨ (b→ a ∈ ∪p∈Pall

Ep) ∨ (b→ a ∈ Enew)

39: Add a→ b in Enew

40: end if

41: Wab = 1

42: Wba = 1

43: end foreach

44: end foreach

45: return W

46: end function
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This keeps the number of connections in PVNN and MPVNN same for fair performance

comparison. The design algorithm output is the matrix W ∈ {0,1}N×N denoting which

connections exist between the N input layer gene expression neurons and the N intermediate

layer gene perturbation neurons. From the mutation data, we compute the number of samples

in which each gene Gn is mutated – M sum
Gn . Then we obtain Mmut consisting of most mutated

genes, each of whose above number is greater than or equal to the 0.99 quantile of all non-

zero M sum
Gn . For each pathway p with fracp fraction of total N genes, we compute a mutation

fraction thrp equal to the fraction of genes from this pathway in Mmut. Here we assume that

the input gene expression profile does not consist only of genes all belonging to one single

pathway, or we would use the PVNN architecture instead. For each known pathway edge,

if a generated random number rnum1 ∈ [0,1) is ≥ thrp, we select the known edge, otherwise

the edge is replaced and a new edge is selected.

For replacing a known edge with a new edge, another random number rnum2 ∈ [0,1)

is generated. If this number is ≥ thrp, we select two pathway p genes randomly for a new

edge. Otherwise, based on the value of the random number rnum2, each remaining pathway

q ≠ p is selected for consideration thrp
fracq

1−fracp
fraction of times. If the pathway q is selected

for consideration, based on whether another new random number is ≥ thrq, two pathway q

genes are selected randomly for a replacing edge, otherwise two genes are selected randomly

from all genes not in pathway q. This is motivated by the design goal that pathways that

have a high fraction of genes in most mutated genes and probably have greater disruption

of signal flow, should contribute less to the genes of replacing edges. When no such pathway

is selected dictated by the value of rnum2, two genes, not belonging to any pathway in the

list of pathways used in the design, are selected randomly for a replacing edge.

While obtaining a replacing edge in the MPVNN design, we only select two unique

genes, and ensure that the selected replacing edge or its reversed edge do not belong either

to the list of all known pathway edges or to the list of all already selected replacing edges.
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This keeps the number of connections of MPVNN same with that of PVNN, and also can

help in finding important signaling connections novel to what is present in the used prior

knowledge. The connection matrix W is initially an identity matrix, and two entries where

the row and column interchangeably denote the two genes of every selected edge, are made

1.

Though MPVNN architecture is generalized to use prior knowledge and mutation

data for multiple pathways, here as a case study, we use one well-known cancer related

pathway–phosphatidylinositol 3’ -kinase (PI3K)-Akt signaling pathway in its design. It is a

key regulator of processes involved in cell growth, proliferation, survival and apoptosis. These

processes are tightly linked to the hallmarks of cancer (Hanahan and Weinberg, 2011). This

pathway has been observed to play critical roles in various cancers (Jiang et al., 2020). As

an example in this case study, we have assessed the effectiveness of our proposed architecture

designed with the PI3K-Akt pathway obtained from the KEGG Pathway database (Kanehisa

and Goto, 2000), in terms of predicting risk and interpreting which parts of the pathway are

important in the prediction for different cancers.

5.2.3 Interpretation

Compared to standard black box NN survival analysis methods, a major benefit of our

proposed VNN architecture is increased interpretability. Both the trained VNN architectures

– PVNN and MPVNN can be interpreted to obtain top gene sets. These sets of genes within

the larger signaling pathway are linked by flow of signal that is important in the prediction

of survival risk for a particular cancer type, and are ranked in order of the importance

associated with a set. The benefit of MPVNN over PVNN is that from interpretation we can

obtain important signaling connections which are not present in the used prior knowledge.
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Here we describe a straightforward mean weight amplitude-based VNN interpretation

method, which fits with the signaling edge-based design of our VNNs. We first obtain the

top gene perturbations in the intermediate layer, from the absolute weights connecting the

intermediate layer gene perturbation neurons to the output neuron, averaged over the VNN

runs. From each top gene perturbation, we find the top gene set connected by flow of signal

associated with the gene perturbations.

The first candidate gene is the one with the top gene perturbation, and then the

following process is repeated for every new gene added to the top gene set. For every

candidate gene, we evaluate which of the gene expression neurons in the input layer, apart

from the candidate gene itself and the last gene added to the top gene set in consideration,

has the highest mean absolute weight connecting to the candidate gene perturbation neuron

in the intermediate layer. We check whether the highest weight is ≥ 0.85 quantile of all the

non-zero weights between the input layer and the intermediate layer neurons. If this new

gene already belongs to the top gene set in consideration, we stop the process. Otherwise,

we check whether the weight connecting the expression neuron for the newly selected gene

to its perturbation neuron in the intermediate layer satisfies the weight threshold above. We

additionally check if the perturbation neuron for the newly selected gene to the output layer

phenotype neuron is ≥ 0.85 quantile of all the non-zero weights between the intermediate

layer and the output layer neurons. Then this new gene is added to the top gene set. This

whole process is done twice starting from the top gene perturbation to be able to possibly

capture the important signal flow into and out of the gene.

The thresholds used are applied to ensure that genes with low connection weights

and hence lower importance are not included in the top gene sets. We used a value of 0.85

quantile, which for the intermediate layer neurons, roughly translates to that out of the 1440

gene perturbations, around 200 can play some role of importance in risk prediction for a

cancer type. The top gene sets obtained from the interpretation would depend on the values
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of the thresholds used.

5.3 Experiments

Our experimental TCGA data for 10 cancer types is obtained from the UCSC Xena browser

(Goldman et al., 2020). The data includes gene expression RNAseq data, binary gene-level

non-silent mutation data and disease-specific survival data. We consider cancer samples,

one per patient, which do not fall under the normal category in TCGA. For the expression

profile, apart from the genes in the PI3K-Akt pathway, we also consider 1285 genes found

to have systematic expression change in cancer (Torrente et al., 2016). Finally our patient

expression profile consists of 1440 genes, for which both expression and mutation data are

available.

The cancer types used in our experiments are presented in detail in Table 5.1. For

each cancer type, the input-output data is split after a random shuffle into training (80%)

and test (20%) sets with stratification on the censoring indicator/ event observed values. For

the MPVNN architecture design, the available mutation data is used as a whole. For every

machine learning method in our experiments, the input data features are standardized by

mean subtraction and scaling to unit variance, based on those metrics computed from the

training data.

We evaluated the performance of MPVNN against other comparable NN architec-

tures. First there is the PVNN architecture which is designed using pathway knowledge and

no mutation data-based randomization. In RaNN which is another randomized version of

PVNN, the connections between the hidden layer and the input layer neurons are randomly

shuffled. This represents a same sized NN with the same number of connections but designed

without using prior knowledge or additional mutation data. We evaluated the performance
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Cancer Description Number of

samples

Events

observed

Censored

BLCA Bladder urothelial carcinoma 390 119 271

BRCA Breast invasive carcinoma 1070 83 987

COADREAD Colon and rectum adenocarci-

noma

354 41 313

GBM Glioblastoma multiforme 147 113 34

HNSC Head and neck squamous cell car-

cinoma

493 130 363

KIRC Kidney renal clear cell carcinoma 522 109 413

LIHC Liver hepatocellular carcinoma 361 79 282

LUNG Lung squamous cell carcinoma

and adenocarcinoma

914 199 715

OV Ovarian serous cystadenocarci-

noma

272 150 122

STAD Stomach adenocarcinoma 386 95 291

Table 5.1: Our experimental datasets for cancer-specific survival risk prediction.

of the fully connected artificial neural network or ANN with the same number of neurons. We

have also compared the performance of these NN methods with a standard survival analysis

method – the semi-parametric Cox Proportional Hazards (Cox-PH) model (Cox, 1972). We

drop the expression values of those genes which give an initial warning of having very low

variance in the Cox PH regression fitter.

We used a 4-fold cross-validation on the training set to identify the optimal hyper-

parameters, which is different from the approach followed in our classification experiments.

The optimal hyperparameter setting for a particular method for a particular cancer type
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is selected from a certain number of random searches on the list of given hyperparameter

values. For this number, we used around 10% of the total number of possible combinations.

Hence, the number of random searches was set to be 300 for NNs and 10 for Cox-PH model.

The list of values to choose from for NNs is given as follows :

1. Activation function : tanh, sigmoid, ReLU

2. Optimizer : Adam, SGD

3. Learning Rate : 0.1, 0.01, 0.001

4. Batch Size : 16, 32, 64, 128

5. Epoch : 10, 25, 50, 100

6. Regularizer : L1, L2

7. Regularizer parameter : 0.0, 1e-5, 1e-3, 1e-2, 1e-1, 1.0.

For every NN, we used the same list of allowed epoch values. However, a larger number of

epochs could improve performance for ANN with larger number of connections, and this is

a limitation in our experiments. The hyperparameters for the Cox-PH model to select from

are penalizer values in the set

{0.0,0.0001,0.0005,0.001,0.005,0.01,0.05,0.1,0.5,1.0}

and the L1 ratio values between 0 and 1 in intervals of 0.1. For randomized architectures

MPVNN and RaNN, the optimal connection matrix is also selected from the same 300

random searches.

The performance metric used is the CI value on the hold-out test set. We present

the mean and the standard deviation from 20 runs. The data and code are available at

https://github.com/gourabghoshroy/MPVNN.
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Cancer Cox-PH ANN RaNN PVNN MPVNN

BLCA 0.6919±0.0000 0.7455±0.0107 0.7463±0.0046 0.7130±0.0089 0.7214±0.0029

BRCA 0.4810±0.0142 0.6507±0.0174 0.5434±0.0082 0.6367±0.0151 0.6298±0.0040

COADREAD 0.5868±0.0000 0.7731±0.0673 0.7658±0.0474 0.6085±0.0230 0.7804±0.0267

GBM 0.5822±0.0041 0.5153±0.0521 0.5762±0.0421 0.4991±0.0168 0.5763±0.0115

HNSC 0.4912±0.0006 0.5864±0.0092 0.5920±0.0091 0.6498±0.0025 0.5827±0.0081

KIRC 0.7747±0.1159 0.8374±0.0257 0.8474±0.0063 0.7955±0.0049 0.8082±0.0063

LIHC 0.5549±0.0042 0.7527±0.0292 0.7600±0.0060 0.7918±0.0052 0.7878±0.0050

LUNG 0.6644±0.0000 0.5837±0.0124 0.5649±0.0035 0.6248±0.0031 0.6160±0.0057

OV 0.5895±0.0305 0.5886±0.0334 0.5869±0.0130 0.6102±0.0068 0.6248±0.0050

STAD 0.7429±0.0000 0.6207±0.0516 0.6699±0.0087 0.5502±0.0395 0.6800±0.0062

MACRO-AVERAGE 0.6160±0.0170 0.6654±0.0309 0.6653±0.0149 0.6480±0.0126 0.6807±0.0081

MACRO-AVERAGE WEIGHTED RANK 0.0921 0.0427 0.0428 0.0601 0.0273

Table 5.2: Cancer-specific survival risk prediction performance evaluation of MPVNN. The

mean and standard deviation of the CI metric from 20 runs are shown for each cancer type,

and then these values are macro-averaged over all cancer types. The macro-average weighted

ranks are also presented, where the weighted rank is calculated as the difference between

the maximum of mean CI metric values for all methods and the mean CI metric value for

a particular method in a cancer type. The mean best, that is the method with the highest

mean value, individually and macro-averaged, and the one with the lowest macro-average

weighted rank, are all marked in boldface.

5.4 Results

In Table 5.2 we present the results of our MPVNN architecture for cancer-specific survival risk

prediction for each cancer type, and finally these values macro-averaged over all cancers. We

also show each method’s macro-average weighted rank, where the weighted rank is calculated

as the difference between the maximum of mean CI metric values for all methods and the

mean CI metric value for a particular method in a cancer type. The lower the macro-average

weighted rank, the closer to the best mean performance a method’s mean performance is on

an average across cancer types.

Our results show that MPVNN has better overall mean cancer-specific risk prediction
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performance compared to the other methods that were tested. Firstly, its mean performance

is better than that of the standard Cox-PH survival analysis model macro-averaged across all

cancer types. Second, its overall mean performance is better than those of other comparable

NN architectures – PVNN, RaNN and ANN. Compared to the next best method, MPVNN

on macro-average has a mean CI metric higher by 0.015. Even though MPVNN is not the

best in all of the 10 cancer types, its macro-averaged metrics suggest that the incorporation

of signaling pathway knowledge and gene mutation data-based edge randomization in the

VNN design can improve the overall mean prediction performance.

We compare the results of MPVNN with the overall second best ANN using Wilcoxon

rank sum test (Mann and Whitney, 1947) p-values given in Table 5.3. For false discovery ad-

justment, we used the Benjamini-Hochberg procedure Benjamini and Hochberg, 1995. Using

a false discovery rate of Q = 0.05, we can say that the performance of MPVNN is significantly

different from that of ANN for 8 of the 10 cancer types. This might not be evident from the

macro-averaged metric values as ANN is better than MPVNN in some cancers and worse

in some. The significant difference with the higher overall mean performance points to the

benefit of using MPVNN in terms of risk prediction.
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Cancer p-value False discovery rate

adjusted p-value

BLCA 6.3761e-08 6.3761e-07

BRCA 0.0003 0.0004

COADREAD 1 1

GBM 0.0002 0.0003

HNSC 0.2443 0.2714

KIRC 0.0001 0.0002

LIHC 0.0002 0.0003

LUNG 8.4416e-08 4.2208e-07

OV 1.5735e-05 5.2451e-05

STAD 0.0001 0.0003

Table 5.3: Performance comparison of MPVNN with fully connected ANN. The p-values

are obtained from Wilcoxon rank sum test. For false discovery rate adjustment we used the

Benjamini-Hochberg procedure.

To demonstrate the interpretability of our proposed MPVNN architecture, we have

shown two top gene sets obtained from MPVNN interpretation in Figure 5.2. The top gene

sets are given for 2 cancer types, ovarian and liver, in which the VNNs outperform other

methods (MPVNN performs the best and the second best). We have selected the top gene

set which has the first occurrence of any signaling connection that is not present in the

used PI3K-Akt pathway edge list. For ovarian cancer, the top gene set consists of these

genes : GNB3–PPP2R1B–FGF2→NGFR–PPP2R2B→AKT1→CHUK, where the top gene

perturbation is marked in bold. The pathway edges are marked by arrows and the novel

signaling interactions are marked by dashes. The shown top gene set for liver cancer com-

prises ANGPT2→FLT3–FLT4←ANGPT2. An important novel connection between genes

FLT4 and FLT3 in the same gene group RTK is interpreted from the MPVNN architecture,
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however these 2 genes are not connected by any given PI3K-Akt signaling path.

Figure 5.2: Top gene set from MPVNN interpretation for Ovarian (OV) and Liver

(LIHC) cancers shown in red and blue respectively. The top gene set with

the first occurrence of any signaling connection that is not present in the PI3K-

Akt pathway edge list is selected for each cancer. With the PI3K-Akt pathway

edges as arrows and the novel connections as dashes, the genes (and their groups)

are as follows — Ovarian : GNB3(Gβγ)–PPP2R1B(PP2A)–FGF2(GF)→NGFR(RTK)–

PPP2R2B(PP2A)→AKT1(AKT)→CHUK(IKK), Liver : ANGPT2(GF)→FLT3(RTK)–

FLT4(RTK)←ANGPT2(GF). In the PI3K-Akt pathway diagram (Kanehisa and Goto, 2000),

the gene groups are bordered by colored rectangles and the novel connections are shown by

colored curved lines for each top gene set.
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5.5 Discussion

From our results, we find that our proposed MPVNN architecture has better overall cancer-

specific survival risk prediction mean performance than other survival analysis methods.

However, the mean performance of MPVNN is not the best in every single cancer type,

given the corresponding data. The Cox-PH model is found to be a better risk prediction

model than the NNs in some cancer types, though MPVNN is observed to be better on

macro-averaged metrics. The high importance of the PI3K-Akt pathway in risk prediction

is highlighted for those particular cancer types where PVNN performs the best. We also

observe that for some cancers, the randomized RaNN or the fully connected ANN gives the

best mean CI metrics. Since these two architectures lack interpretability, it is more difficult

to understand in biological terms how they work. When RaNN is the best, one possibility

is that there are other pathways involving the input genes, which are more effective in

risk prediction. Incorporating knowledge and mutation data for multiple pathways in the

architecture design might be helpful for performance. As described previously, our VNN

architectures can be applied to use multiple pathways. For the cancer where ANN is the

best, one possibility is that pathways which can play significant roles in risk prediction are

not well represented in the input dataset genes, and a larger set of input genes, along with

multiple pathway knowledge and mutation data in the architecture design, might improve

the performance.

A major benefit of our MPVNN architecture is increased interpretability compared

to black box NN methods, making it more reliable for use in clinical survival analysis.

To validate some of the insights we obtained from MPVNN interpretation, we looked for

literature evidence. In the top gene set for ovarian cancer, we observed important signaling

interactions within the PI3K-Akt pathway between parts of the growth factor, the chemokine,

the Akt and the NFκB signaling pathways. Some of these interactions are novel to what
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exists in the used prior knowledge. Signal flow involving these four pathways together being

important in the context of higher mortality in ovarian cancer has been previously indicated

(Dong et al., 2013; Son et al., 2013).

In the top gene set in liver cancer, we observed important pathway edges ANGPT2→FLT3

and ANGPT2→FLT4 and a novel interaction between RTK genes FLT3 and FLT4. Connec-

tion to ANGPT2 from a RTK gene via calcineurin-NFAT has been studied in lung metastasis

(Minami et al., 2013). So such a signaling path from any of the RTK genes FLT3 or FLT4

back to ANGPT2 can correspond to the interpreted novel interaction. Among the targets

of the popular drug Sorafenib, which has been used effectively in the treatment of advanced

liver cancer for over a decade, are both the FLT3 and FLT4 genes (Marisi et al., 2018).

Interestingly, in an extensive Sorafenib trial (Llovet et al., 2012), ANGPT2 was found to

be an independent survival predictor in the overall and the drug treated population, but

not related with drug induced survival benefit. Compared to the baseline concentration,

ANGPT2 concentration after 12 weeks of treatment was observed to increase in the placebo

group, however it remained almost unchanged for treatment with the drug. So it is possible

that the signal flow in the MPVNN interpreted top gene set is disrupted during treatment

with Sorafenib by targeting both FLT3 and FLT4 genes, as a result of which the ANGPT2

concentration remains almost constant. Later the signal flow involving these genes probably

again comes into effect.

Based on the above literature validation, we argue that MPVNN interpreted insights

are reliable, pointing to signal flow that have critical roles in controlling cancer-specific sur-

vival risk. Further validation of these insights would require experimental verification, which

is outside the scope of this study. These insights are flexible enough to include important

signaling connections that are not present in the used prior knowledge. MPVNN interpreted

insights can have correspondence with the mode of action of existing drugs like for Sorafenib

in liver cancer above, and with further experimental studies in future can provide directions
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for novel and more effective single or combinatorial drug therapy.

Edge randomization based on additional mutation data, which models how a pathway

structure can change for a particular cancer type and replaces known edges with new con-

nections, is a novelty of our MPVNN architecture. Heteroscedastic dropout with privileged

or additional information is used in Lambert, Sener, and Savarese, 2018, although this dif-

fers substantially from MPVNN. Dropout for a NN architecture is used only during learning

and not in prediction, whereas the edges in the MPVNN architecture are randomized at

the beginning, before learning and subsequent prediction. Also in MPVNN, the use of the

additional mutation data in the supervised prediction setting is unsupervised, without the

requirement of being related to the input-output training data. This makes the architecture

more robust to bias that may arise in supervised machine learning when some population

groups are not well represented in the training set, for instance due to lack of survival data

here, but mutation data is available for those groups and can be incorporated in the model.

As only the PI3K-Akt pathway used in our work is not sufficient in fully demonstrating

MPVNN predictive power, future directions would focus on conducting larger scale experi-

ments with larger gene expression profiles using knowledge and data for multiple pathways in

the MPVNN architecture design to further evaluate cancer-specific survival risk prediction

performance. In future, we would also like to experimentally investigate the roles of the

important signal flow identified from MPVNN interpretation for different cancer types, and

importantly explore their relevance to cancer drug target identification.

5.6 Chapter Summary

In this chapter we present the work in our paper (Roy et al., 2022), where we propose a novel

Mutated Pathway Visible Neural Network or MPVNN architecture for predicting emergent
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cancer-specific survival risk from patient gene expression data. For this prediction task, this

MPVNN architecture uses knowledge of signaling network structure and models how the

structure changes for a particular cancer type. In this visible neural network architecture,

each neuron in the single intermediate layer between the input gene expression layer and the

output risk phenotype layer is assigned to represent a gene perturbation. The connection

between the input layer and the intermediate layer neurons represent known edges of a

signaling pathway or random gene connections based on additional gene mutation data.

In our case study we use the PI3K-Akt signaling pathway with important roles in

cancer to design the visible architecture. Our experimental results addressing survival risk

prediction as a ranking task in Table 5.2 suggest that the MPVNN architecture can per-

form better than other similar sized NN and non-NN survival analysis methods. Our visible

MPVNN architecture is more interpretable than standard black box NNs, and hence is more

reliable for use in clinical survival analysis. Interpretation of the trained MPVNN archi-

tecture can provide insights about gene sets linked by flow of signal which are important

in cancer-specific risk prediction, as shown in Figure 5.2. We assess the reliability of such

insights for some cancer types using literature evidence, and argue that these insights corre-

spond to the actual emergence of risk and can provide directions for drug target identification

with further studies.
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Chapter Six

Conclusions

This chapter summarizes what we learn from the overall work done in the thesis, and discusses

some examples of future work. We have discussed some strengths, limitations and future

directions of individual studies in respective chapters. Here we put forward these aspects of

our work in the context of the central thesis objective.

6.1 Summary

The central objective of this thesis is to predict emergence in biological systems using archi-

tecture of the molecular networks used to model such systems. We make advances towards

this objective through our research contributions addressing each of the three research ques-

tions.

In Chapter 3 we learn how to better infer GRN architecture with its aspects that can

be useful in the prediction of emergence. Many popular GRN inference methods do not infer

edge signs. Our proposed algorithm PoLoBag can infer the signed architecture of GRNs

from a general form of gene expression data without any prior time course or gene knock-out

assumptions or availability of reference wild-type measurements. Signed inference methods
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based on only Lasso method suffer from some limitations, and we address them in our novel

algorithm that combines Lasso models in a bagging setting and also uses polynomial features.

PoLoBag algorithm gives more accurate signed inference than state-of-the-art methods Banjo

and SIREN. Also unlike these other algorithms, PoLoBag infers edge directions and cycles,

which along with edge signs are GRN architectural aspects useful in predicting emergence. A

limitation of our algorithm is that we do not consider any time relationships in the expression

data. However, dynamical time series data can help in better inferring causality in the form

of GRN edge directions.

In Chapter 3 we next see the usefulness of signed GRN architecture in predicting

emergent states of the gene regulatory system. Combining signed GRN architecture with

dynamical information in our proposed dynamical K-core method, we find a trend towards

our method better identifying top regulators in GRNs which can better predict emergent

states of the regulatory system, compared to the standard K-core and random selection

methods. We observe that the best mean prediction performance metrics are obtained by

maximum out-degree regulator ranking. This points to that in predicting emergence, it

is very important to consider how a node fits in the network, with regards to its local

connectivity to other nodes and to the global architectural organization in the network.

In Chapter 4 we learn that the GRNs of prokaryotic bacteria to unicellular Yeast to

multicellular human have a bow-tie architecture with a distinct largest strongly connected

core layer. A bow-tie architecture has been previously observed in some eukaryotes. How-

ever, an investigation of this feature in GRNs of species of such widely varying complexity

has not been performed prior to our work. We find that the observed bow-tie architectural

feature is a characteristic feature of GRNs and can not be explained just by chance. Addi-

tionally, we observe a generally increasing trend in the core size with species complexity,

and using previously studied relationship of the bow-tie core size with the system property

of controllability, we predict a trend in the emergence of controllability with varying species
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complexity.

We hypothesize how a larger CORE size observed in the GRNs of more complex

species comes at the cost of reduced controllability. We argue that for less complex bacteria

and Yeast which survive in more extreme conditions with less resources, higher controllability

is needed, and these respective requirements are supported by the respective GRN bow-

tie architectures. A limitation of this work is that we consider the structural relationship

between the bow-tie architecture and the dynamical emergent property of controllability. To

predict not just general trends but more specific values of controllability, we would need to

model how the bow-tie architecture governs the dynamics, which for these large networks is

a very complex task with many parameters.

In Chapter 5 we see how our proposed visible neural network MPVNN, which uses

knowledge of signaling network architecture and additional mutation data-based edge ran-

domization that models how known signaling network architecture can change for particular

cancer types, predicts organism-level emergent phenotype of the cancer-specific survival risk

from gene expression profiles of patients. We address the problem as a ranking task of pre-

dicting a risk score indicative of the survival time and suggest that overall MPVNN has

improved mean prediction performance compared to similar sized NN and standard non-NN

survival analysis methods.

Our proposed MPVNN has increased interpretability compared to standard black

box NNs, and hence is more reliable for use in clinical risk prediction. We find out how

interpretation of the trained MPVNN points to sets of genes connected by flow of signal,

that are important in cancer-specific survival risk prediction. Using evidence from literature

we argue that these insights are reliable, corresponding to the actual emergence of the risk

phenotype. A limitation of our work is that only the PI3K-Akt signaling pathway was

used in our experiments as a case study and this is not sufficient in fully demonstrating the
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predictive power of MPVNN.

To summarize what we achieve through our work in this thesis, we first fulfill the

objective of better inferring the GRN architecture with its aspects like the edge signs that

are found to be useful in predicting emergence in the gene regulatory system. Next we are

able to predict a trend in the emergent property of controllability of the gene regulatory

system based on observed quantitative differences in the bow-tie architectural feature in the

GRNs of species of widely varying biological complexity. Finally we achieve our goal of

effectively predicting an organism-level emergent phenotype of cancer-specific survival risk

from gene expression data in an interpretable way using signaling network architecture and

modeling how the known architecture changes for particular cancer types. Overall, this is

how we have worked towards the central objective of our thesis.

6.2 Future Work

In our PoLoBag algorithm we are able to infer signed GRNs from a general form of gene

expression data without any time course assumptions. If some time series measurements

are available, we do not assume any time relationships in the data, considering every time

point as a separate steady-state measurement condition. Though our PoLoBag can provide

edge directions along with edge signs, dynamical time series data can help in better inferring

causality. It is possible to adapt ensemble regression-based methods like GENIE3 to infer

unsigned networks from steady-state and dynamical data, considering the time dependence

in the latter (Huynh-Thu and Geurts, 2018). So a very promising area of future work is

coming up with an extension of our ensemble regression-based PoLoBag algorithm that can

infer signed GRN from both steady-state and dynamical data. This will preserve the ability

of our algorithm to infer GRN architecture from a general form of expression data, in the
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absence of dynamical data, and impart the ability to better infer edge directions that can

be useful in improved prediction of emergence, in the presence of dynamical data.

In our study we focus on the structural relationship between the bow-tie architecture

and the dynamical emergent property of controllability to predict a general trend in the

emergence of the latter. Future work based on our study should look at modeling how exactly

the bow-tie GRN architecture controls the network dynamics to predict more specific values

of this property. Dynamical modeling of large-scale GRNs is a very complicated task. We

can possibly look at simplified approaches where we analyze how an individual bow-tie layer

governs the dynamics associated with that layer, and then possibly extend this to how the

global bow-tie architecture controls the global network dynamics. A suitable choice would

be the core layer of the bow-tie. We could start with less complex organisms like E. coli

and Yeast, though the dynamical modeling for 50 or 80 node layers would still be a very

challenging task. An approach we can use is hierarchical decomposition of the bow-tie core

into further internal layers using K-core decomposition method like in our work in Section

3.5, and look at hierarchically modeling the dynamics associated with the bow-tie core by

starting with the dynamics associated with the innermost layer.

In future we could look at cancer-specific survival risk prediction by conducting larger

scale experiments with larger gene expression profiles using architecture knowledge and mu-

tation data for multiple pathways in the MPVNN neural network design. Future work can

also focus on an extension of MPVNN for prediction of another important emergent pheno-

type of drug response in cancer cells. Effectively predicting drug response can address the

issue of high failure rate of new drug candidates in clinical trials. An example of a drug

response prediction model is DrugCell, which is a combination of a VNN for the input geno-

type data and an ANN for the input drug chemical structure data in two separate branches

(Kuenzi et al., 2020). We can possibly look at how an interpretable VNN as an extension

of our MPVNN maps both genotype and drug structure data together in one branch and
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predicts response of the drug in the output. The data required for training and testing such

a model is available in public data sources. An interpretable prediction model improves reli-

ability and can lead to further insights on the mechanisms of drug response. A challenge in

making such a neural network more interpretable is the need for prior knowledge regarding

genes that can potentially be affected based on individual elements of chemical structure

representation or fingerprint.
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Appendix One

Useful Resources

Source Code and Data in Thesis

• PoLoBag in Chapter 3: https://github.com/gourabghoshroy/PoLoBag

• Bow-tie GRN architecture in Chapter 4:

https://github.com/gourabghoshroy/Bow-tieGRN

• MPVNN in Chapter 5: https://github.com/gourabghoshroy/MPVNN
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