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Multi-tier GPU Virtualization for Deep Learning
in Cloud-Edge Systems

Jason Kennedy, Vishal Sharma, Blesson Varghese, and Carlos Reaño

Abstract—Accelerator virtualization offers several advantages in the context of cloud-edge computing. Relatively weak user devices
can enhance performance when running workloads by accessing virtualized accelerators available on other resources in the
cloud-edge continuum. However, cloud-edge systems are heterogeneous, often leading to compatibility issues arising from various
hardware and software stacks present in the system. One mechanism to alleviate this issue is using containers for deploying
workloads. Containers isolate applications and their dependencies and store them as images that can run on any device. In addition,
user devices may move during the course of application execution, and thus mechanisms such as container migration are required to
move running workloads from one resource to another in the network. Furthermore, an optimal destination will need to be determined
when migrating between virtual accelerators. Scheduling and placement strategies are incorporated to choose the best possible
location depending on the workload requirements. This paper presents AVEC, a framework for accelerator virtualization in cloud-edge
computing. The AVEC framework enables the offloading of deep learning workloads for inference from weak user devices to
computationally more powerful devices in a cloud-edge network. AVEC incorporates a mechanism that efficiently manages and
schedules the virtualization of accelerators. It also supports migration between accelerators to enable stateless container migration.
The experimental analysis highlights that AVEC can achieve up to 7x speedup by offloading applications to remote resources.
Furthermore, AVEC features a low migration downtime that is less than 5 seconds.

Index Terms—Edge Computing, Accelerators, Virtualization, Containers, Migration.
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1 INTRODUCTION

THE compute offerings at the edge of the network are
emerging to complement resources provided by the

cloud. While the cloud offers resources with significant com-
putational power, the edge offers multiple tiers of relatively
weaker resources. The edge is generally geographically
closer to end-user devices and ensures data processing is
carried out closer to where the data is generated. This in
turn reduces traffic to the cloud and the overall commu-
nication latency of applications. In this paper, we propose
our framework AVEC for enabling the virtualization of GPU
accelerators within these networks. The AVEC framework
incorporates mechanisms for edge virtualization, migration
and workload placement considered in this article.

Computing at data centres or remote clouds allows a
large number of users to access powerful resources for
computation and storage. These advantages have led to
large numbers of users accessing data centres for com-
puting, which in turn leads to a large amount of data
being generated and sent to the cloud. This computing
model is challenged when the user base expands and ap-
plication demands increase the scalability and resilience
of the centralized cloud [1]. An evaluation of cloud and
edge resources for completing latency-sensitive applications
underpinned by deep learning that this paper considers was
performed [2]. GPU tasks were offloaded to dedicated edge
servers with reasonable computing power. It was noted that
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the edge is able to lower overall latency by reducing prop-
agation delays between device and offloading, provided re-
quirements such as bandwidth speed are met. Furthermore,
existing literature shows that paradigms relying on cloud ar-
chitectures are inadequate in areas like IoT computing. That
is due to factors such as high bandwidth usage, unstable
connections or high latency [3].

The paradigm we seek to deploy AVEC within is cloud-
edge computing. In this paradigm, the network typically
consists of three tiers: user level, edge level and cloud
level. At each level in the network, devices with varying
hardware capabilities are employed. Most importantly for
AVEC, devices throughout the network will optionally have
GPU accelerators with different capabilities. With AVEC, we
seek to offload GPU-based computations from user devices
and deploy them on nodes located in the edge or the cloud.
To achieve this, we use docker containers, as this allows
AVEC to easily and quickly deploy the offloaded GPU
computations at any node in the network. To accommodate
mobile users and to improve the robustness and availability
of the edge, we enable stateless container migration of these
offloaded workloads, deployed in containers, around the
network.

It should be noted that remote accelerator virtualization
used in cloud data centres cannot be directly applied to
cloud-edge computing due to the differences with these
paradigms. For example, cloud-edge computing is a dis-
tributed network, whereas data centres are centralized.
This leads to differences in latency and bandwidth speeds,
meaning that some applications will not be satisfied by
the cloud [4]. As such, a method for appropriately placing
workloads in the continuum is needed. Furthermore, edge
nodes vary greatly in terms of computational power and
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are generally much more resource constrained than in the
cloud [5]. As such, a different method of virtualization is
required. Generally, virtual machines are used to achieve
this within frameworks designed for GPU virtualization in
data centres. With AVEC, we utilize container virtualization,
as this is a much more lightweight alternative. The aim is not
only lightweight deployment, but also faster start up times.

Achieving accelerator virtualisation in cloud-edge net-
works is a significant technical challenge since accelerators
are heterogeneous [6]; compatibility issues may arise from
different hardware and software stacks running on different
resources within the network. The two most common mech-
anisms used for achieving virtualisation and deployment
are containers and virtual machines. Containers offer a
more lightweight virtualisation solution because they do not
virtualize the kernel space of the host and instead share it
with the host [7]. This results in faster startup times as well
as an increase in the portability of the application within the
container. The most popular container virtualisation solu-
tion put forward is Docker [8]. Docker allows for software
solutions to be packaged together and easily deployed at
different locations, alongside its cache system allows for
faster deployment.

Cloud-edge networks are dynamic [9], their traffic pat-
terns and availability of resources change over time. If a re-
source is not available to service a user, then the workloads
originally intended to execute on the node will need to be
migrated elsewhere In the network. Therefore, a migration
mechanism is required [10]. Migration of containers, in
the context of accelerator virtualisation frameworks, is the
process of moving a running workload from one resource
to a destination resource. Container migration can be either
stateless or stateful. With stateless migration, the data or
state of the original container is not required to be moved
to the new container to resume execution. In stateful migra-
tion, however, it is necessary to store the data or state of
the original container, and it also needs to be moved to the
new destination resource. Stateless migration is preferred
as there is less data to transfer to the new resource and,
therefore, less downtime [11]. Finally, with all systems, there
is the possibility of failure at a particular node within the
network. These are some of the problems investigated in
this paper.

The nature of cloud-edge computing results in the poten-
tial for many devices with varying resources and capabilities
to be present. As such, when the process of virtualizing a
workload takes place, an appropriate remote node should
be chosen in which the workload will be placed on. For ex-
ample, certain workloads may require more computational
power, specific hardware or be latency-sensitive. Therefore,
these applications with particular requirements can only
be placed at specific edge nodes. The problem of placing
workloads at appropriate nodes is known as the workload
or application placement problem [12]. As such, we propose
to include in AVEC a solution to this problem when virtu-
alizing and migrating workloads between nodes. Where to
place the scheduler is another aspect to investigate. Other
frameworks, such as RTEF [13] or ORCH [14], place the
scheduler at the edge devices. In AVEC, we propose to place
it on the user devices, as this saves resources on the edge
devices.

This article makes the following contributions:
1. The development of an approach for adapting contain-

ers for accelerating workloads with virtual GPUs in cloud-
edge systems. The proposed approach is implemented
within the AVEC framework. Experimental results show
that the use of containers using the proposed approach
has low overheads and enable accelerator virtualization for
resource constrained nodes.

2. A suitable approach to combine containers and state-
less migration for inference-based deep learning workloads.
The deployment of this approach within AVEC in cloud-
edge environments provides live lightweight migration for
mobile workloads accelerated by virtual GPUs.

3. Definition of placement heuristics to determine where
to offload workloads in the cloud-edge when using frame-
works such as AVEC. In addition to general case heuristics,
we present a fine grained edge adaptive placement heuris-
tics. This enables a wide range of applications access to
capable edge nodes for the different applications specific
needs.

4. General guidelines are provided on how overall per-
formance is influenced by the proposed approach. This is
achieved by an experimental evaluation that is carried out
using AVEC across a range of applications with different
requirements.

The remainder of this paper is organised as follows.
Section 2 presents related work. Section 3 discusses the
research questions. Section 4 presents the AVEC framework.
Sections 5 and 6 discuss migration and scheduling within
AVEC, respectively. Section 7 presents experimental studies.
Finally, Section 8 concludes the paper.

2 RELATED WORK

This section presents related work on accelerator virtualiza-
tion, containerization, migration, and scheduling.

2.1 Accelerator Virtualization
There are four primary methods for virtualizing accelera-
tors, namely API interception, pass-through, mediated pass-
through and direct pass-through [15]. These methods are
used for virtualizing accelerators in a wide range of areas,
such as high-performance computing (HPC), edge comput-
ing or cloud computing.

Regarding HPC, general-purpose computing on graph-
ics processing units (GPGPU) is a popular topic. Remote
CUDA (rCUDA) [16] is one middleware-based solution
that virtualizes remote GPUs using API interception. The
middleware intercepts CUDA calls on a client node and
forwards them to a remote node where the physical GPU is
located. This allows for the GPU accelerator to be logically
decoupled from the physical node, thereby allowing for
other clients to access and share the same physical GPU
on the server. VOCL [17] is a similar framework that is
developed for OpenCL. vCUDA [18] is another CUDA
based accelerator virtualization solution for HPC clusters.
This solution incorporates remote procedure calls (RPC) as
opposed to the middleware approach.

In the context of cloud computing, GVirtuS [19] is an-
other accelerator virtualization solution. GVirtuS uses vir-
tual machines and the TCP/IP model to enable remote accel-
erator virtualization in the cloud. GVirtuS is able to run on
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any kind of hypervisor. However, the choice of hypervisor
affects the performance. GVirtuS employs API interception
through the use of a CUDA wrapper library. qCUDA [20]
is another cloud-focused accelerator virtualization solution.
This solution is, however, hypervisor dependent and is
designed for the QEMU-KVM hypervisor.

Although there is no related work that focuses specifi-
cally on edge computing, we find some works on accelerator
virtualization using edge devices. In this sense, ARM-based
single-board computers (SBC) are a promising avenue, as
these lower-powered devices would be suitable for edge en-
vironments. For instance, GVirtuS incorporated accelerator
virtualization for ARM (SBC) [21]. The framework offloads
workloads from the ARM-based SBCs to remote accelera-
tors. This work uses API interception to achieve accelerator
virtualization. qCUDA-ARM [22] is another work. It is an
extension of the qCUDA framework previously commented
on and incorporates SBCs. In order to apply qCUDA to
SBCs, the application source code has to be modified, as
certain functions within CUDA are not supported in ARM
devices. These works show that it would be feasible to
use low powered SBCs in cloud-edge environments for
accelerator virtualization.

In summary, we can conclude that existing accelerator
virtualization solutions do not take into consideration im-
portant aspects of cloud-edge environments. There is signif-
icant research on virtualizing GPUs for paradigms such as
high-performance computing (HPC) systems as discussed
above. However, there is a lack of research in the context
of cloud-edge computing. Remote accelerator virtualization
in HPC cannot be directly applied to cloud-edge computing
due to the differences in the natures of these paradigms. For
example, cloud-edge computing is a distributed network,
whereas HPC is centralized. This leads to differences in la-
tency and bandwidth speeds which need to be accounted for
in cloud-edge computing. Furthermore, the solutions dis-
cussed are designed for virtual machines, unlike lightweight
deployments employed in cloud-edge, such as containers.
Therefore, we propose to use as starting point our novel
framework AVEC, which we use to explore the potential
of introducing accelerator virtualisation within a cloud-
edge environment. More specifically, this paper focuses on
offloading deep learning kernels to perform the inference
required by applications in remote virtual accelerators.

2.2 Containerisation

The two most commonly deployed methods for virtualiza-
tion are containers and virtual machines. Existing literature
presents a multitude of scenarios involving virtualization
with containers, as well as comparisons between contain-
ers and virtual machines. Ramalho et al. [23] contribute a
performance comparison between these two technologies.
They observe that in all scenarios, Docker containers achieve
almost native performance, whereas noticeable overheads
are incurred when deploying KVMs. Xu et al. [24] examine
the overheads incurred when deploying Docker containers
to execute a variety of machine learning algorithms, as well
as study areas similar to previous work. They report similar
findings as to the previous work, and additionally, they
note that overheads from using machine learning algorithms

are also minimal (below 5%). Cloud-edge computing nodes
are commonly deployed using SBCs such as Raspberry Pi1.
These devices can be described as resource-constrained. Due
to this, containers are a desirable virtualization solution for
SBCs. Mendki [25] experiments with deploying containers
on Raspberry Pi for deep learning analytics and reports
that Docker containers do not provide additional overheads
on the SBC. Nvidia-Docker2 and Litener [26] are solutions
being put forward to ease developers with harnessing the
power of GPUs deployed in containers. The research in-
dicates that containers are an optimal virtualization and
deployment method for AVEC.

2.3 Migration
A key feature for containers in cloud-edge computing is
the ability to migrate containers as they are running. The
most common approach to implement this is through the
checkpoint and restore in userspace (CRIU)3. Voyager [27] is
one such framework that attempts to implement migration
using CRIU. Voyager is a file system agnostic approach that
leverages the data federation capabilities of union mounts
to minimize migration downtime.

Puliafito et al. [11] categorize migration mechanisms
into two groups: stateless and stateful. Stateful migration
requires data transfer from the old container to the new con-
tainer. Stateless migration means starting from scratch on
the new container and, in some circumstances, is preferred
as there will be less downtime because there will be fewer
data transfers. In their experimental evaluation, the authors
test both categories of migration and note that migration
leads to non-negligible benefits for the application. How-
ever, there is also unavoidable downtime that will occur
while the migration takes place. In addition, the potential for
a loss of data, such as image frames during the migration,
must be considered.

Due to the distributed nature of cloud-edge networks,
migration of containers should attempt to limit how much
data is transferred to lower bandwidth usage. One such
attempt to improve migration from this perspective is the
work produced by Ma et al. [28]. They leverage the layered
nature of the storage system in Docker containers to remove
redundant file transfers. Only the top layer of a Docker
container can be modified, which means that all underlying
layers remain constant. Dockers caching mechanism applies
a unique ID to each layer, but the repeated layers will have
different IDs, resulting in unnecessary transfers of layers.
The authors address this issue and remove the redundant
transfers. Additionally, they incorporate a mechanism for
transferring the base memory image ahead of the transfer.
Another approach for migrating containers is the work pro-
duced by Bellavista et al. [10]. They propose a solution that
is application and device-aware. Using predictive modelling
they are able to achieve migration speeds 50% faster with
only minimal overhead. Deshpande et al. [29] propose an
architecture for enabling container migration across embed-
ded platforms on edge. They propose migrating Docker
containers to prevent the clients’ workload from failing in

1. https://www.raspberrypi.org/
2. https://github.com/NVIDIA/nvidia-docker
3. https://www.criu.org
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the event of an edge node being unable to complete the
request. The challenges they aim to overcome consist of
eradicating downtime of containers, a fault-tolerant archi-
tecture, working in a dynamic environment like the edge
and dealing with unbalanced load clusters.

In summary, we conclude again that containers are a
potential solution for implementing the approach proposed
in this paper. As mentioned before, this is due in part
to the lightweight nature of containers and the tendency
for edge nodes to be resource-constrained. Furthermore, in
terms of migration, containers allow for stateless migration,
which minimizes the overheads in the environment under
analysis. Our approach combines containers and stateless
migration for inference-based deep learning workloads. The
deployment of this approach in cloud-edge environments
provides low overhead and live migration for mobile work-
loads accelerated by virtual GPUs.

2.4 Scheduling
The problem of workload placement has been considered in
the literature [12]. It is also referred to as the job dispatch-
ment problem, where latency and the resources required are
accounted for when scheduling a job [30]. Essentially, we
must figure out which destination node is the best for a
particular workload. Many works have investigated this in
relation to edge networks. For instance, works such as [31]
and [32] investigate application-aware task placement in
edge networks. This is important within edge networks
as applications may have particular requirements, such as
latency ones. Thus, it is important to gather metrics per-
taining to destination nodes, such as network bandwidth,
latency, etc. As these works do not focus on workloads
using accelerators, there are additional metrics pertaining
to accelerators that must be considered, such as accelerator
memory available.

In the context of scheduling or placement of workloads
in an edge network with regards to accelerators, there are
a few works that investigate this problem. Firstly, works
such as [33] and [34] investigate Field Programmable Gate
Arrays (FPGA). These works highlight the need for in-
corporating accelerators alongside CPU usage in order for
these resource-constrained edge nodes to be as powerful as
possible to meet user requirements. FPGAs are one possible
accelerator that can be used at the edge due to their high
energy efficiency. In this paper, however, we focus on GPU
accelerators. Regarding workload placement for GPU accel-
erators in cloud-edge environments, there are few works
available. Once such work provided by Zhang et al. [35]
presents a platform built on Apache Storm4 with a focus on
minimizing latency. As Apache Storm built-in scheduling
algorithms are not GPU aware, they propose their own
heuristic with three main components: (1) estimate perfor-
mance/requirements of task, (2) track available resources
in the cloud-edge, and (3) a latency aware task scheduling
algorithm. Regarding the latter, it is only based on the
CPU utilization and the bandwidth of a node; summing
these two values together gives the total latency value of
a node. This solution is bound to Apache Storm, as it
relies on using the topologies and bolts associated with

4. https://storm.apache.org/

Apache Storm. Bensalem et al. [36] investigate specifically
placing deep neural network (DNN) inference models in an
edge environment using a mathematical model. They also
provide three heuristics to solve this: a general heuristic
solution, a random placement algorithm and then an infer-
ence assignment algorithm. They focus on utilization cost
and latency between nodes within these heuristics. They
place emphasis on the benefits of sharing GPUs between
workloads.

Our approach proposed in this work with regard to
scheduling and placement of workloads advances this field
of research as follows. In the first place, it offers lightweight
virtual GPU scheduling. In addition, it takes into account
the potential mobility of end-user devices and the nature of
cloud-edge environments. This is achieved through locating
the scheduler on the user device itself, as well as by consid-
ering metrics such as GPU memory, latency or bandwidth
at the destination device.

3 RESEARCH QUESTIONS

This section describes the main motivations behind AVEC
by discussing the research questions we seek to answer.
Based on the above, the research reported in this paper in-
vestigates the use of containers, stateless migration and schedul-
ing to provide the flexibility required by applications accelerated
by virtual GPUs in cloud-edge environments. More specifically,
the following research questions are addressed:

Q1: How can accelerator virtualisation be offered at the edge
given its limited compute resources? To address this question,
in this paper we present AVEC (accelerator virtualisation in
cloud-edge computing). It is a framework that supports the
use of virtual GPU accelerators in the cloud-edge contin-
uum. AVEC provides transparent accelerator virtualisation
through the use of API interception.

Q2: Considering the heterogeneous nature of the edge, how can
we deploy GPU accelerator virtualisation? Containers offer OS
level virtualization, which along with the benefit of being
a more lightweight approach to alternative virtualization
techniques, allows for containers using a base OS image to
be run on hosts with different OS’s. Furthermore, Docker
has been shown to run on a wide range of CPU architec-
tures such as ARM or x86 [25]. By preparing a container
using images for x86 and also for ARM, we can choose
at runtime which container is to be loaded depending on
the host architecture. Nvidia container technology5 allows
for local physical GPUs on the host to be accessed by the
container running on the host. We investigate addressing
this challenge in the cloud-edge continuum to achieve the
virtualisation of remote GPUs. We also investigate addi-
tional overheads incurred using this as opposed to a native
domain.

Q3: Considering the dynamic nature of the edge, how can
we provide migration capabilities to applications accelerated by
virtual GPUs? To overcome some of the challenges associ-
ated with the edge, we explore stateless container migration.
This helps with user mobility, fault tolerance, availability of
network resources, etc. In addition, migration downtime is
reduced compared with stateful container migration.

5. https://developer.nvidia.com/nvidia-container-runtime
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Q4: Considering the requirements of different applications,
where do we place each workload? To answer this question,
we implement a scheduling mechanism within the AVEC
framework. It uses varying heuristics to place each applica-
tion based on metrics such as latency, GPU memory avail-
able or network speed. Furthermore, resource monitoring
of different nodes within the network allows for optimal
placement.

Q5: Can the AVEC approach be generalised across a range
of applications? We evaluate AVEC on three different ap-
plications with varying amounts of computational power
requirements. We observe that applications with high com-
putational power requirements benefit more from AVEC as
opposed to more lightweight applications.

Q6: What are the additional overheads incurred through de-
ployment, migration and scheduling of GPU accelerator virtuali-
sation in the edge? In our experimental evaluation, we test the
capabilities of the approach proposed and compare it with
previous versions of the AVEC framework not supporting
container migration. In this evaluation, we observe mini-
mal additional overheads due to the lightweight nature of
Docker alongside the implementation of stateless migration
as opposed to stateful migration.

4 AVEC: ACCELERATOR VIRTUALIZATION IN
CLOUD-EDGE COMPUTING

This section presents an overview of the AVEC framework.
It introduces the design considerations and discusses the
individual components that make up the framework. AVEC
aims to provide remote GPU acceleration to inference based
workloads. AVEC aims to reduce execution time of these
workloads by leveraging more powerful hardware accelera-
tors located in the cloud-edge network. The Caffe library
is open source and offers deep learning algorithms and
models for C++ and Python. These libraries usually make
use of frameworks to leverage GPUs, such as CUDA6. AVEC
executes Caffe kernels within cloud-edge computing using
an accelerator virtualization approach. Currently, AVEC
supports the Caffe library. It is expected that it will support
additional libraries in the future.

We briefly consider the terms used in this article. “User
device” (also referred to “host” and ”host device”) is the
device in which the application is being executed. The “edge
node” and the “cloud node” are the nodes in which the
deep learning tasks will be offloaded to. The edge node is
geographically closer to the user device than the cloud node,
but the cloud node is computationally more powerful than
the edge node. The terms “cloud-edge”, “cloud-edge node”,
“remote node” or “remote host” are used to refer to both the
“edge node” and the “cloud node”.

A GPU is normally accessed through calls to an API such
as the one provided by CUDA. As the CPU on the host
device attempts to access these APIs, it is possible to redirect
or hook these calls and forward them to another library.
While this technique may be used to access a GPU on the
same physical host, it can also be used to provide access to
GPUs installed in a remote host. Remote virtual GPUs use a
front-end/back-end model in which the front-end intercepts

6. https://developer.nvidia.com/cuda-zone

all API calls (and their data) and transfers them to a selected
back-end for execution [37]. The front-end data that has
been intercepted includes data such as input parameters for
CUDA functions. The output of these functions is returned
in the same manner as the input data was sent. With the
calculated output received from the remote GPU, the user
device can continue execution of the application normally.
This entire process, from the front-end intercepting data up
until the output is sent back to the host device, is called API
Interception.

With the creation of the programmable graphics
pipeline, graphics hardware was capable of rendering
graphics data from application data. Consequently, this
pipeline was eventually adapted to execute non-graphics
related data [38]. Using GPUs for tasks outside of graphics
visualization is known as General-Purpose Graphics Pro-
cessing Unit (GPGPU). GPUs, in contrast to CPUs, have
many more cores. This allows for a higher level of par-
allelism, which results in certain tasks executing faster.
GPGPU is seeing usage in areas such as machine learning,
computer vision, scientific computing and modeling [39].
For the purposes of this paper, we focus solely on deep
learning inference base workloads. In future our work will
extend to other types of workloads that make use of GPUs.

AVEC is a middle-ware that intercepts calls made to a
GPU-accelerated library (i.e. Caffe) and forwards the input
parameters to a remote GPU in the edge or cloud for
execution. The user device side instance of the middle-ware,
where the application is executing, is responsible for inter-
cepting and forwarding the library functions. AVEC features
a scheduler or placement mechanism that is responsible
for choosing which remote node to use. Additionally, this
scheduler manages migration between cloud-edge nodes
when required. Finally, the user device will, have its instance
of the middle-ware communication module to communicate
with remote nodes.

The destination side instance of the middle-ware, situ-
ated on the remote node receives the input parameters that
are sent by the user device to be used in the execution of the
inference function. The output of that execution is sent back
to the original user device, where execution can continue
using the received values. A server engine is running on
the physical device to receive requests from user devices
to facilitate this. This engine will then spawn and delete
containers as needed. An architecture diagram in Figure 1
shows an overview of the previously explained modules.
In order to aid with the deployment in the cloud-edge
environment, AVEC uses Docker7 containers. Docker has
a built-in cache system that saves recently used containers.
This cache system means that, as long as the container image
has not been altered, the container does not need to be
pulled again from the repository for each execution.

As mentioned, Figure 1 shows the primary components
that make up the AVEC framework. A more in depth
analysis of these components is as follows:

1: Interception Library. AVEC is designed to act as middle-
ware. Application calls to the Caffe library are intercepted
and redirected to the AVEC library. Within this library, the
original Caffe library functions are present but have been

7. https://www.docker.com/
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modified to include the additional functionality required to
send the necessary data for the Caffe function to the remote
node. Within AVEC, we seek to enable this virtualization
method in a transparent manner. Thus, the source code of
the application requires no modification and additionally,
the functionality takes place in the background, without
input from the application or user. To do this, we use
the Linux ‘LD PRELOAD’ technique, which allows for the
AVEC library to take precedence over the Caffe library at
run-time. A diagram displaying this is shown in Figure 2.

2: Communication Module. The framework employs a
communication module to transfer data between the host
and destination nodes. The original application on the host
continues executing using the output of the remote kernel.
The communication between the host and destination is
done via TCP/IP using Boost ASIO8. The host node in the
cloud-edge environment may be a device or an edge node
that does not have an accelerator or a sufficiently powerful
accelerator. Once the interception takes place on the host
node, the library creates a connection between the host and
destination nodes. This module uses both User Datagram

8. https://www.boost.org

Protocol (UDP) and TCP/IP connections. The destination
node hosts a physical GPU and the original Caffe library.
Once the destination node receives the forwarded requests,
it executes the kernels required by the host node on the
physical GPU of the destination node. The output of these
functions is sent back to the user node in the same manner
as they were received.

3: Server Engine. At each destination node, a system is
required to enable a connection between the user device
and the accelerator of the remote node. The server engine
runs on the physical machine and is initially placed in a
listening state, awaiting UDP messages. UDP is used in the
discovery phase to identify nodes on the network using the
UDP broadcast function. The server engine is responsible
for sharing its metrics with user devices via these UDP
messages. The scheduler will use the metrics to determine
the appropriate node to offload to. UDP messages are also
used to communicate to the server engine that a user device
has chosen its node. If this happens, the server engine will
spawn the container, which is saved in its cache. After that,
it will notify the user device that the container is ready
and the information needed to connect to the container.
After this, communication between the user device and the
container server is carried out over TCP/IP. At this point,
the container serves that user device while the sever engine
waits for other connections.

4: Container. In fulfilling these design considerations,
challenges had to be overcome. The heterogeneous nature
of the edge can potentially cause compatibility issues. Con-
tainers can help overcome these issues, given their operating
system independence. Due to the architectural differences of
devices, specific container images are required for each ar-
chitecture. For example, an image for arm64 and a separate
image for x86. Docker contains a registry where container
images can be saved, allowing either of these images to be
acquired. As the nodes at the edge are resource-constrained,
the images themselves should be as lightweight as possible.

5: Migration Module. The migration module is responsible
for monitoring application progress to determine if the user
device requires its execution to be offloaded to a different
node than the node it is currently being served by. For that
purpose, the migration mechanism is able to halt the current
progress of the execution of the application on the user
device and then send the signal to the scheduler to locate
a new remote node to offload. Given the nature of inference
workloads, all that is required is the algorithm as well as the
input data. More details on this mechanism are discussed in
Section 5.

6: Scheduling Module. There will be multiple nodes within
a cloud-edge network, with each node having differing
computational requirements and abilities. As such, it is
important that workloads be offloaded to nodes that are
suitable for the workload. This is the responsibility of the
scheduler. More details on the scheduler module are dis-
cussed in Section 6

To better illustrate the the different modules discussed,
an activity diagram has been added to show how these mod-
ules work together to execute a virtualization workload.
This is shown in Figure 3.

The activity diagram begins showing application exe-
cution on the host node. Upon a virtualization request, a
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Fig. 3: Activity diagram of workload execution with AVEC.

broadcast signal is sent to remote nodes in the network.
This signal is a template requesting metrics pertaining to
the remote node, e.g. GPU specifications. The remote nodes
fill this template and it is sent in response back to the host.
A placement heuristic is carried out using the responses and
the output of this heuristic is the chosen node. The chosen
remote node will start up its container and a connection is
established between the container in the chosen node and
the host. Data pertaining to the models needed will be sent
to check if the models are present on the remote node. If
they are not present, they must be sent across. At this point,
the inference can begin taking place with frame data being
sent across and output data being sent back to the host.
Migration checks are carried out after frames are completed.
If a migration is needed, the process restarts with a new
node being chosen. If the workload is finished, then the
connection ends and the container is destroyed.

5 CONTAINER MIGRATION

Live migration is the process of taking a running workload
being executed by one device and moving it to another
device seamlessly whilst continuing execution on the new
device from the point at which migration occurred. Live
migration has benefits such as improving fault tolerance

in the network as well as the quality of service for mobile
users [40].

For this reason, we propose employing stateless con-
tainer migration within AVEC. To achieve this, we keep the
state of the application execution stored locally on the user
device, which leaves the user device responsible for tracking
its own progress or execution state. By only virtualizing
the GPU aspects of the application, we can achieve this.
Furthermore, this has the added benefit of a lightweight
migration, as we do not need to transfer data between edge
nodes in the network.

The motivation for the migration of containers between
remote nodes in the cloud-edge continuum is two-fold.
Firstly, mobile users with latency sensitive applications. As
users move, latency increases. As such, migrating to a closer
edge node improves user experience, as it can reduce the
latency [41]. Secondly, the availability of edge nodes may
vary over time in a dynamic environment, as well as their
resource constrained nature, leading to more chances of
failure [42]. Therefore, a workload may require a new edge
server to meet its requirements. Here migration enables
moving the workload from one node to another, as it allows
for workloads to be moved to other nodes, whilst continuing
the applications execution.

The type of migration used with AVEC is stateless
container migration. Stateless container migration is to be
preferred when no state needs to be transferred from source
to destination. With stateless migration, a new container
is started from scratch on the destination node, and the
old container is deleted from the source node [43]. This
means that at the point of migration, we do not need
to send data from the container on the original node to
the container on the new migrated node. We are able to
achieve this due to the type of workloads being executed,
i.e. deep learning inference workloads. These workloads
only require the machine learning model (in the case of
Caffe, the prototxt file as well) and the associated frame
data after it has been processed by the user devices’ CPU.
Frame data is removed after every frame is processed, so
at migration time there will not be any frame data present.
With AVEC it is possible to store machine learning models
in the container itself, in cache memory of Docker. Due
to the resource constrained nature of edge nodes, it may
not always be desirable to save these files. If the machine
learning model and associated files, they will need to be
sent across at migration time, as presented in Figure 3. This
will of course add overhead. The time taken to transfer
these files depends on network speed. In our experiments,
the files used are the following: OpenPose application pro-
totxt (46.4KB) and model (210MB); MaskDetection applica-
tion prototxt (34.3KB) and model (99.5MB); and Classifi-
cation application prototxt (2.9KB) and model (243.9MB).
The time taken to transfer the files of each application
in our experimental setup was 1.814s, 0.861s and 2.103s,
respectively.

In the AVEC framework, the host client is responsible
for the decision to migrate when required (more details
available in next section). When that decision is made, it will
then terminate the connection with the current destination
node. At this point, the execution of the application has
paused on the client. The scheduling module, detailed in the
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next section, will be used for selecting a new node. The client
will attempt to connect with a new chosen remote node. If
this connection is successful, the container is then booted up,
and the host device connects directly to this new container.
Some initial data is sent to the new container to prepare it
to continue execution, such as the machine learning model
file name. From this point, the host device can continue with
the execution of the application from the point of execution
it was at when the migration was started.

By not sending data from the previous container to the
new container, we are able to reduce the time taken to
migrate as well, leading to a lightweight migration, as it
will be shown in the experimental studies in Section 7.

6 WORKLOAD SCHEDULING

User device applications that are seeking to be offloaded
through AVEC must be placed in a corresponding edge or
cloud device. This is achieved through the scheduling mod-
ule of AVEC. When a workload requests virtual accelerators
or when it is being migrated, the scheduler is invoked.

Usually, a centralized approach is adopted for the pur-
poses of scheduling or placement. Wherein, one node in
the edge is responsible for retrieving metrics or information
about other nodes present in the network and disseminating
this information to the nodes when requested. With AVEC,
we locate this mechanism on the user device so we can avoid
having a centralized node. The benefit of our method is
that all connections do not have to arrive at this centralized
node, but the downside is that the scheduling may not be
as accurate as it could be, i.e. the local device may not
be aware of every device in the network due to the quick
scheduling nature of UDP broadcast. Furthermore, edge
devices are not as reliable as the cloud ones. Therefore,
locating the scheduling mechanism on a singular edge node
can be problematic. Whilst offloading to a remote node,
there are a multitude of reasons why we would need to
migrate the workload to another node. User devices may be
mobile, as these devices move the latency requirements may
become unsuitable for the currently accessed remote node.
In situations like this, in which the workload being executed
needs to be moved to another node, then having the user
device responsible for scheduling has no detrimental effect.

Thus, in AVEC the scheduler is located on the user de-
vice itself, as opposed to being hosted in a node in the cloud-
edge continuum. It contains a list of possible destination
nodes as well as corresponding metrics pertaining to those
destination nodes. For the user device to discover possible
destination nodes, it uses UDP broadcasting. Thus, UDP
messages are sent to all nodes on the local network. These
messages are requests for information from each node.
A template is filled out by destination nodes. It contains
information on metrics such as available GPU memory, and
further information such as IP address. Some nodes may
not be on the local network, so an additional file manu-
ally populated with information about these nodes can be
provided. The scheduler uses these metrics to decide which
destination node is selected. To have updated data, every
time the scheduler is invoked, the process of discovering
devices is repeated.

Other works that explore application placement or
scheduling in edge environments bring focus to metrics
such as bandwidth capabilities at each node, or latency
between each node and user device [31; 44]. With the added
complexity of a GPU, additional metrics need to be consid-
ered, such as the type of GPU, platform capabilities of the
GPU, GPU computing power, and available GPU memory.
More specifically, the metrics we have chosen to focus on
are: GPU memory available, number of GPU cores, latency
between devices and bandwidth.

Based on these metrics, AVEC allows the following gen-
eral case scheduling policies.

Policy 1 - First in, first out. This policy assigns a workload
to the first available destination node. A user device will
loop through the list of possible nodes that the user device
has access to. For each destination node, it will first ensure
that the node has the required GPU platform. The policy
will then check if there is enough GPU memory available to
run the workload. It should be noted that this checking of
platform compatibility and GPU memory takes place across
all policies.

Policy 2 - Random Placement. This policy initiates by
generating a random number. This seed is used to then
generate a value representing an index of a stored node in
the list of destination nodes. That node will then have the
platform and GPU memory checks. If it passes the checks,
the node is selected. If not, a new random value (excluding
the previous one) is generated, and the process repeats.

Policy 3 - Best bandwidth. The goal of this policy is to
assign the workload to the node with the best possible
bandwidth speed. Initially, the policy assumes that the first
node in the list that meets the GPU memory and platform
requirements is the best. Then, the policy loops through the
rest of the nodes that meet the requirements by comparing
their bandwidths. In the end, the node meeting the require-
ments with the best bandwidth is selected.

Policy 4 - Best latency. This policy aims to assign the
workload to the node with the best possible latency. It is
similar to the previous policy best bandwidth. The difference
is that it checks for latency as opposed to bandwidth.

Policy 5 - Best Computing Power. This policy aims to assign
the workload to the node with the best possible computing
power. It is similar to the previous policies best bandwidth
and best latency but checks for the largest number of GPU
cores as opposed to bandwidth or latency.

Policy 6 - Spread. This policy focuses on spreading work
across all available devices. For that purpose, the policy
looks for the node with the highest amount of free GPU
memory to place the workload in.

In addition to the previous general scheduling policies,
we also provide an specific policy for edge computing called
GPU aware edge adaptive, which is detailed next in Section 6.1.

An investigation into the performance of these policies
was carried out. We timed them using the two actual testing
nodes from our experimental setup: the edge and the cloud
node, described in more detail in Section 7. In addition, we
included 20 “dummy” nodes to simulate a larger scenario.
Then, we measured the execution time for each policy.

All the policies performed similarly around 0.7 ms, ex-
cept for the random policy, which took 3.1 ms. The increased
time for this policy is likely due to the amount of “dummy”
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α latency weight β bandwidth weight
γ GPU memory weight δ GPU cores weight
N current node under analysis Nt total number of nodes
Nd current node disk space D disk space required
Np current node platform P required platform
Ng current node GPU memory G GPU memory required
Nl current node latency Nb current node bandwidth
Nc current node GPU cores Y best nodes so far list
Nws current node weight sum Yws best weight score sofar
Ngu GPU utilization current node Ygu best GPU utilization

TABLE 1: Notation used in scheduling policy Algorithm 1.

Algorithm 1 GPU aware Edge Adaptive Scheduling Policy

if type == heavyweight then
α = 1, β = 1, γ = 10, δ = 10

else if type == middleweight then
α = 5, β = 5, γ = 5, δ = 5

else type == lightweight
α = 10, β = 10, γ = 1, δ = 1

end if
let Y = Nt(0) ▷ We assume a least 1 node is capable

for ∀N ∈ Nt do
if Np == P & Ng ≥ G & Nd ≥ D then

Nws = (α×Nl) + (β ×Nb) + (γ ×Ng) + (δ ×Nc)
if Nws > Yws then ▷ n is now our best value

clear the list of values in Y
add n to the list of Y
Y = N

else if Nws == Yws then
add N to the list of Y

end if
end if

end for
if | Y | ≥ 2 then ▷ >1 best weight, load balance

for ∀N ∈ Y do
if Ygu > Ngu then

remove Ngu from Y
end if

end for
end if
return Y(0) ▷ will only be 1 value in Y

nodes that do not actually exist. This policy selects one
of these nodes, detects it does not work and then selects
a different one. That explains why its time is significantly
higher.

6.1 GPU Aware Edge Adaptive Scheduling

As commented, AVEC allows a more fine grained placement
heuristic called GPU aware edge adaptive algorithm. This pol-
icy is specifically designed to satisfy differing applications
and their requirements in the edge environment. It imple-
ments the algorithm shown in Algorithm 1 (the notation
used in that algorithm is defined in Table 1). This scheduling
policy takes into account the type of application that is being
run, and use appropriate weights on the input metrics to
reflect the needs of different applications.

Based on empirical experimentation, we divide our test
applications into three categories, namely heavy-weight,
middle-weight and light-weight. This categorisation is de-
termined by considering metrics such as GPU cores, GPU

memory, bandwidth and latency. Heavy-weight applica-
tions require more computing power, have high GPU mem-
ory usage, and are therefore less impacted by network
bandwidth and latency, because the additional time to move
data to the cloud-edge node will be offset by the large re-
duction in computation time. On the contrary, light-weight
applications require less computing power, have a lower
GPU memory usage, and are therefore more influenced by
network bandwidth and latency. Finally, the requirements
of a middle-weight application are positioned in between
those of heavy-weight and light-weight and as such these
applications are moderately affected by all metrics.

A weighting mechanism is used for the metrics consid-
ered: (i) GPU cores, (ii) GPU memory, (iii) bandwidth, and
(iv) latency. Weights are in the range 1 to 10, with 1 rep-
resenting the lowest workload impact, and 10 representing
the metric having a large impact upon the workload. In our
experiments, GPU cores and GPU memory are weighted
equally. We assume that heavy-weight applications require
more GPU cores and GPU memory than light- and medium-
weight applications. Note that as commented below, this
can be configured by the user. These weights are assigned
at run time. Currently, the weights are static for evaluation,
but can be altered as needed. The weight values themselves
are chosen to satisfy the three test applications that are used
in Section 7. We assume that the only workloads running on
the network are from AVEC. We also assume that at least
one node in the network has the capability of meeting the
requirements.

The algorithm firstly converts all metrics gathered into
appropriate integers, i.e. converting string values returned
from the remote node that represents free GPU memory.
Then, the weighting parameters α, β, γ and δ are config-
ured. Note that these parameters can be configured by the
user. They represent how important each metric is for the
user. The α parameter is used to weight the latency, β the
bandwidth, γ the GPU memory and δ the number of GPU
cores. The weights range from 1 to 10, where 1 indicates that
the metric has the lowest importance, and 10 the highest.
This allows the algorithm to be fine tuned depending on the
user’s needs. In this case, we have configured the parame-
ters based on the workload type. Thus, for the heavy-weight
application, GPU cores and GPU memory have the highest
weight. On the contrary, for the light-weight application,
bandwidth and latency have the highest weight. For the
medium-weight application, all the metrics have a medium
weight.

After configuring the weighting parameters, we begin
by choosing the first node in the list as the chosen node,
and adding it to the list of potential nodes. For every node
in the list of all nodes, we check if they meet the hardware
requirements (e.g. CUDA capable), that they have enough
GPU memory available, and that they have enough disk
space available. Every node that meets these requirements
will then have a calculated total weight sum. This will be the
total value of the latency metric, bandwidth metric, number
of GPU cores and GPU utilization metric multiplied by their
corresponding weights. The higher the weight sum value,
the better the node. After this calculation, the weight sum
of the node being tested is compared to the chosen node
weight sum. If it has a better value of weight sum, we
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User Device Edge Node Cloud Node
GPU Resource Jetson Nano RTX 2060 GTX 1080
Flops (GPU) 235 GFLOPS 6.5 TFLOPS 9 TFLOPS

GPU Memory
4 GB LPDDR4

6 GB 8 GB

(Shared)

GDDR6 GDDR5X

CPU Memory 16 GB 32 GB
DDR 4 DDR4

GPU Cores 128 1920 2560
CPU Cores 4 8 8

TABLE 2: Devices used in the experiments.

remove the previous chosen node from the list of potential
nodes, add the new node to the potential list, and set the
new node as the current chosen node. In the event that the
new node has the same weight sum as the previous chosen
node, we add both of them to the list of potential nodes.
After every node has been checked in this manner, we know
that the potential nodes list will contain either only the best
node, or a list of nodes that all have the same best weight
sum. In the event of this tie with multiple nodes with the
highest weight sum, we call the Spread policy previously
explained, which will result in balancing the load in the
different nodes.

7 EXPERIMENTAL STUDIES

This section presents experimental studies implementing
the proposed solution in the AVEC accelerator virtualization
framework.

7.1 Experimental Setup

For the experimental setup, we use a three-tier cloud-edge
network. At the edge and the cloud level, we use GPU
accelerators of similar capabilities. The user device is a
computationally much weaker embedded device. Details of
these devices can be found in Table 2. The edge device, a
desktop PC featuring an Nvidia RTX 2060 GPU, is connected
to the user device, a Jetson Nano9, through an Ethernet
1 Gbps connection. Access to the cloud device, fitted with
an Nvidia GTX 1080 GPU, is done through broadband. The
edge device is kept local with the user device in Carrick-
fergus, Northern Ireland. The cloud device is located 15
miles away at the university facilities in Belfast, Northern
Ireland. Both the edge node and the cloud node are similar
in compute capabilities, specifically with their GPU acceler-
ators. It is the connection speeds and types between these
devices and the user device what differs. Given the wireless
nature of this connection with the cloud device, there is a
level of variance due to factors such as bandwidth speeds
alternating. This variance is as high as 8%. Subsequent tests
that investigate the migration will alternate the user devices
connection between both devices, splitting the workload
accordingly. As the computation capabilities of both edge
and cloud are similar, we predict that the edge device will
perform substantially better due to the connection speed.

As commented, in our testing environment the user
device is computationally much weaker than the edge and
cloud devices. As such, in this scenario the user device

9. https://developer.nvidia.com/embedded/jetson-nano-developer-
kit
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Fig. 4: OpenPose execution time for different image batches
and video when using AVEC with both the edge device and
the cloud device, as well as the base time without AVEC on
the user device.

seeks to offload the inference workload to a remote node
with a much more powerful GPU accelerator. Both the edge
node and the cloud node are similar in compute capabilities,
specifically with their GPU accelerators. The difference be-
tween the edge node and the cloud node lies in the manner
of connection to the network. The user device will offload to
the edge device through a wired Ethernet connection with
1GBps connection speed, while it will offload to the cloud
device through a wireless connection of 40Mbps.

Tests are carried out using multiple test applications.
Firstly, OpenPose [45], which is used across all tests. This ap-
plication estimates the pose of a person in real-time. It works
with both images and videos. For the images, we use the
COCO data set [46]. The video is a sample video provided
with the OpenPose application. The second application used
is an image classification application provided with the
Caffe [47] library. It takes a picture as input and makes a
prediction of what is in the picture. In the experiments, we
use as input data a selection of pictures from an Animal
Dataset10. The last application is MaskDetection11. It takes
images as input and detects if everyone in the image is
wearing a face mask. This application uses images from a
Face Mask Detection Dataset12. In the three applications,
the images chosen from the data sets are randomly selected
and set into batches of 64, 128, and 256 images, respectively.
The same batches are reused in each test to keep results
comparable.

An experiment was carried out to test the effects of using
the VPN connection with the cloud device as opposed to
the local connection with the edge device. Figure 4 shows
the results of running the OpenPose application using the
different workloads in each test scenario (i.e. no using AVEC
on the user device, then offloading to either the edge of the
cloud). As expected, the connection with the edge device
performs substantially better than the connection with the
cloud device due to the better connection speed. The cloud
device performs slightly better than the user device.

10. https://www.kaggle.com/alessiocorrado99/animals10
11. https://github.com/didi/maskdetection
12. https://www.kaggle.com/andrewmvd/face-mask-detection
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Fig. 5: OpenPose execution time for different image batches
and video when using AVEC with and without containers,
offloading computations to the edge device.

7.2 Container Deployment

As mentioned before, one of the key factors why we chose
to use containers is faster startup times. To confirm it, we
carried out experiments to determine if using containers
brings any additional overhead to AVEC.

Two tests were carried out for each workload on each
device. In the first test, we use AVEC without containers.
In the second test, we deploy AVEC in a container in the
destination node. Notice that this is not necessary for the
host node, i.e. the user device, because the application will
always run on the host, and the only part of the application
which could potentially be migrated is the one offloaded to
the destination devices.

Figure 5 shows the results of this experimentation when
using the edge device as the destination node. Similar
conclusions were drawn when using the cloud device as the
destination node. As it can be seen, the startup time of the
container is low, averaging 1.425 seconds (less than 0.4%) in
these experiments.

7.3 Container Migration

The next set of tests is carried out to investigate the fea-
sibility of migrating the containers that are executing the
offloaded workloads between the cloud device and edge
device. During the execution of these tests, we split the
workloads into chunks depending on the number of mi-
grations being tested. For example:

• 1 migration: the workload is divided into two
chunks. The first workload chunk runs in the edge
device. Then it is migrated to the cloud device, where
the second workload chunk is executed.

• 3 migrations: the workload is divided into four
chunks. The first workload chunk runs in the edge
device. Then, it is migrated to the cloud device,
where the second workload is executed. Migration
then takes place back to the Edge device for the third
chunk to be executed. Finally, it is migrated again,
and the fourth workload chunk runs in the Cloud
device again.

• 5 migrations: the workload is divided into six
chunks. Migrations are carried out following a simi-
lar sequence as in previous examples.

As shown in the examples above, the offloading device
used at the start of the execution is always the edge device.
Then, the offloaded computation is migrated from the edge
device to the cloud device and vice versa, depending on the
number of migrations performed.

Across these tests, we chose to use an odd number of
migrations, which enables an even number of work chunks.
Therefore, the workload is split equally between the cloud
and edge devices. Figure 6 shows the results of these tests.
The figure also includes the downtime. It represents the
amount of time in which the test application is not being
executed because the workload is being migrated from the
edge device to the cloud device or vice versa. Thus, in
our case, downtime is the amount of time the migration
takes. In the previous section, we evaluated the additional
overhead of using containers with AVEC (1.425 seconds, on
average). In this section, in addition to using containers,
we are also migrating them. The downtime depends on the
device we migrate to. Migrating to the cloud device takes
approximately 3.8 seconds, whereas migrating to the edge
takes around 2.3 seconds.

7.4 Scheduling
In this section, the scheduler component of AVEC is eval-
uated. It was necessary to expand the experimentation
analysis to include two additional applications, bringing
the total to three, namely OpenPose, MaskDetection and
Classification. OpenPose will be carried out using the same
data as before with 64, 128 and 256 Images, as well as the
video. The Classification and MaskDetection applications
will be examined using only the batches of 64, 128 and 256
images, as these applications do not support videos. The
three applications require different computational power:
the Classification application is lightweight, OpenPose is
a compute-intensive or a heavy-weight application, and
MaskDetection is a middle-weight application. Experiments
were done considering the five scheduling policies dis-
cussed in Section 6. Due to lack of space, we only show
results for the “Random placement” scheduling policy, as it
is the worst-case scenario.

The first application to be tested is OpenPose. Results
are shown in Figure 7. As expected, as the number of
migrations increases, the total execution time also increases.
The majority of the time is spent executing the application,
as opposed to carrying out the migrations. If we compare
these results to the ones in Figure 6, we can see that the
downtime increases and thus the overall application execu-
tion time. This is because we have added a new component,
i.e. the scheduler, on top of the components introduced in
previous tests. More specifically, the amount of downtime
taken per migration increases by approximately 1 second,
which is the time that the scheduler requires to retrieve
the necessary data from local network devices. Thus, we
can conclude that the scheduler itself introduces minimal
overhead. However, the more components we add, and the
more migrations we do, results in a gradual increase in the
amount of downtime. For example, if we consider Figure 7c,
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Fig. 6: OpenPose execution time for different image batches and video when migrating AVEC containers. ‘Execution’ refers
to the amount of active time spent executing the OpenPose application. ‘Downtime’ refers to the amount of time spent in
each migration step, including the startup of the new container.
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Fig. 7: OpenPose execution time for different image batches and video when migrating AVEC containers, with the added
use of a scheduler dictating where to migrate. ‘Execution’ refers to the amount of active time spent executing the application.
‘Downtime’ refers to the amount of time spent in each migration step, including the startup of the new container.
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Fig. 8: Execution time of Classification application for different image batch sizes. Figure 8a displays base times without
migration or scheduling for comparison purposes. Figures 8b, 8c, and 8d show execution time when migrating AVEC
containers, with the added use of a scheduler dictating where to migrate. ‘Execution’ refers to the amount of active time
spent executing the application. ‘Downtime’ refers to the amount of time spent in each migration step including the startup
of the new container.

the total downtime for 9 migrations accounts for 11.9% of
the total time, whereas for 64 images, it accounts for 29.8%.
This is evidently quite detrimental to the performance of
more lightweight workloads.

Figure 8 shows the results of testing the computation-
ally lightest of the applications, Classification. In the first
place, Figure 8a shows the performance of running this
application on the user device, and then when computa-
tions are offloaded to the edge and cloud devices using
AVEC. We can see that the performance decreases when
we use AVEC. This is due to the lightweight nature of the
application. The total execution time is low, and the time
gained offloading computations to a more powerful device
does not compensate for the overhead introduced by AVEC.
This overhead accounts for factors such as container start-
up time, scheduling, copying the GPU model to the device
where computations are offloaded, etc. Considering the time
per frame, the edge device is faster, as we can see from
the device and edge execution times becoming closer with
each increase in the workload. Further workload increases
would result in the edge device eventually offering an
improvement. The cloud device, however, seems will never
offer an improvement for this application. The downtimes
are consistent with the results obtained from the OpenPose
experiment. This was expected because there are not much
data sent between devices for a migration; therefore there
is less room for variance. As the execution time for this
application is significantly lower, the impact of continuous
migrations and downtime is much more detrimental. For

example, in Figure 8b we can see that the downtime ac-
counts for over half of the total execution time when doing
9 migrations.

Results for the MaskDetection application are shown in
Figure 9. Similar to the Classification application, we can
see in Figure 9a that there is no performance improvement
from cloud offloading, but unlike the previous application,
there is an improvement when computations are offloaded
to the edge device. This improvement continues to increase
as more workload is added on. A similar trend is also seen
regarding downtime and its impact on overall performance.
However, in this case, this impact is not as great as for the
Classification application due to the longer overall execution
time of the MaskDetection application.

7.5 Detailed Overhead of the Proposed Framework

The graph in Figure 10 shows a breakdown of the overheads
incurred when using AVEC to execute a 1-frame workload
with the MaskDetection application, using the Jetson Nano
user device and the edge device hosting the RTX 2060. The
figure shows the best case scenario where container and
machine learning model are already present on device. All
values are rounded to one decimal place. The CPU aspect
represents the time spent in the Jetson Nano executing tasks
related to the application. Regardless of if AVEC is used
or not, this time will remain constant. The GPU time is
the most important aspect, this is what we focus on with
AVEC. The time shown in this graph is the time spent
executing the kernel for the frame on the GPU. The GPU
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(c) 128 images
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Fig. 9: Execution time of MaskDetection application for different image batch sizes. Figure 9a displays base times without
migration or scheduling for comparison purposes. Figures 9b, 9c, and 9d show execution time when migrating AVEC
containers, with the added use of a scheduler dictating where to migrate. ‘Execution’ refers to the amount of active time
spent executing the application. ‘Downtime’ refers to the amount of time spent in each migration step including the startup
of the new container.
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Fig. 10: Breakdown of the AVEC virtualization process com-
pared with native execution.

time without AVEC is how long the kernel takes to execute
locally on the Jetson Nano. GPU time with AVEC refers to
executing that kernel on the remote node. Communication
time represents the total amount of time spent sending data
back and forth between the nodes and the processing or
pre-processing that is required for it. There are a lot of
different variables needed to be sent across throughout the
application execution. The only time that is not accounted
for in the timing of this communication is the time spent
sending data back and forth in the placement recording,
as communications time for the placement is taken into
account within that reading. Placement timing represents
the process of locating an appropriate node to offload the
work to. The container represents the time taken to start the

process of loading and connecting to the container.
As shown in Figure 10, although there is a significant

speedup achieved with the GPU time going from 0.4 sec-
onds to 0.02 seconds, the additional overhead incurred
makes it a worse overall execution time. However, with
subsequent frames, there will be less overhead, i.e. it is not
necessary to start a new container, the placement has already
taken place and not as much data will need to be sent. Due
to this, the longer the workload goes on, the more overall
improvement there will be.

7.6 Model Based on the Number of Migrations
Before starting the experimental evaluation, we anticipated
the migration time to follow the model shown in Equation 1.

ET = (M ×MT ) +AT (1)

In this model, ET represents overall execution time,
M represents the number of migrations, MT represents
the time for a single migration and AT represents the
application execution time, i.e. the execution time for the
application without the migration time. This model is based
on the following assumptions: network connectivity speeds
are the same between host node and destination node(s),
each node contains the same hardware, with the same com-
putational capabilities, and the network is a homogeneous
environment.

However, after carrying out the experiments, we notice
that the anticipated model differs from the experiments



15

0 1 3 7 5 9
0
1
2
3
4
5
6
7 64 images

128 images
256 images
Video

Number of migrations

Sp
ee

d-
up

(a) OpenPose (heavy-weight app.)

0 1 3 7 5 9
0

0.5

1

1.5

2 64 images

128 images

256 images

Number of migrations

Sp
ee

d-
up

(b) Mask detection (middle-weight app.)

0 1 3 7 5 9
0

0.2

0.4

0.6

0.8

1

1.2 64 images

128 images

256 images

Number of migrations

Sp
ee

d-
up

(c) Classification (light-weight app.)

Fig. 11: Speed-up obtained by AVEC for the applications tested varying the number of migrations from 0 to 9.

presented due to the assumptions provided. We can still
conclude that the model is confirmed due to the following
reasons. Migration time is consistent for each device. We
have discussed in the findings that the amount of time
that a migration requires is dependent on the device, but
will be consistent, with a small amount of variance, for
each migration. The main difference in the model and the
experiments lies in the application execution time, as this is
where the most amount of variance is seen due to differing
bandwidth speeds, which our model assumes are equal.

7.7 Summary

The variances in these tests performed are minimal but exist.
The variances arise mostly due to the method of connection
between devices in the test scenario. The wireless connection
between the user device and the cloud (GTX 1080 GPU de-
vice) can vary due to slight changes in bandwidth speed be-
tween the devices. As such, we have calculated the relative
standard deviation (RSTDEV) in the proceeding tests. The
maximum RSTDEV observed were 6.7, 4.0 and 3.6 for the
Classification, MaskDetection and OpenPose applications,
respectively.

In general, we can conclude from the experimentation
analysis of these three applications that the more compute-
intensive an application is, the more likely it is to benefit
from AVEC. Certain applications may only benefit from us-
ing much more computationally powerful or higher-speed
bandwidth nodes. Improvements could be made in the
future to further improve the performance. However, there
is likely to be lightweight applications in which it will not
be feasible to use AVEC for performance improvement.

In particular, the key findings of the experimental evalu-
ation are the following ones.

Total downtime. Total downtime incurred due to container
virtualization, container migration and scheduling is consis-
tent for all applications and devices. It differs for each de-
vice due to varying bandwidth, latency, and computational
power. As highlighted in the experiments, the edge device
incurs approximately 5 seconds of downtime, whereas the
cloud is closer to 8 seconds.

Application speed-up. As shown in Figure 11, AVEC per-
forms better with compute-intensive workloads that require
more GPU usage. This is the case for the OpenPose appli-
cation (Figure 11a), where up to 7x speedup is noted. The

reason is that the longer time spent in the GPU outweighs
the additional overheads incurred by the framework. For
applications with moderate GPU usage, this speed-up is
reduced to up to 2x (for example, the mask detection ap-
plication, Figure 11b). For applications with low GPU usage,
there is no performance gain (for example, the Classification
application, Figure 11c).

Workloads placement and scheduling. The requirements for
the workloads are different, and therefore a scheduling
module is essential to ensure for efficient placement. The
resource characteristics of the nodes and availability must
be considered. Offloading the computations to nodes which
will not be available during the whole execution of work-
loads will require to be migrated to other nodes. Experi-
mental results (Figure 11) show that such migrations can
considerably reduce speed-up; for the OpenPose application
(Figure 11a), speed up may decline from 7x to 2x.

8 CONCLUSION

This paper presented new research in the cloud-edge con-
tinuum’s accelerator virtualisation context. We investigated
enabling the migration of containers for accelerator virtual-
ization frameworks. More specifically, we studied the fea-
sibility of deploying these frameworks through containers
and migrating these containers between cloud-edge nodes.
Furthermore, we investigated the use of scheduling policies
to place these containerized workloads in the appropriate
destination nodes. In particular, six research questions were
addressed. To answer these questions, we presented the
AVEC framework, an ongoing work regarding accelerator
virtualization in cloud-edge computing.

As a result of this research, we concluded that the
use of Docker containers in these frameworks allows for
complete package and operating system level isolation.
This enables accelerator virtualization frameworks to be
deployed rapidly at a variety of different devices within
a cloud-edge network. We highly recommend using the
cache system employed in Docker to reduce start-up times.
Although the use of this cache system will use up additional
resources (i.e. storage memory), it is worth the trade-off
to have substantially lower start-up times. Furthermore,
implementation of the migration mechanism allows for a
more complete and robust solution, as workloads can be
moved to more optimal nodes during live execution. We
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proposed a scheduling system based on what we consider
to be the most important metrics for GPUs in a cloud-edge
environment: GPU platform, GPU memory, bandwidth and
latency. An evaluation of these new mechanisms was carried
out, and it was observed that overhead was acceptable.

In our experimental evaluation, we determined that the
approach we have adopted within the AVEC framework is,
in general, feasible to enable an improved quality of service
for user devices. By evaluating three different applications,
we concluded that not every application will benefit from
this type of virtualization. Essentially, the speed-up gained
from using more computationally powerful GPUs must
compensate for the additional overheads incurred by the
virtualization framework. Furthermore, only certain nodes
will be able to meet the requirements of certain applica-
tions, which is why the inclusion of a scheduling system is
paramount.
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