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Abstract: Battery is one of the most important and costly devices in electric vehicles 
(EVs). Developing an efficient battery management method is of great significance to 
enhancing vehicle safety and economy. Recently developed big-data and cloud 
platform computing technologies bring a bright perspective for efficient utilization 
and protection of vehicle batteries. However, a reliable data transmission network and 
a high-quality cloud battery dataset are indispensable to enable this benefit.  

This paper makes the first effort to systematically solve data quality problems in 
cloud-based vehicle battery monitoring and management by developing a novel 
integrated battery data cleaning framework. In the first stage, the outlier samples are 
detected by analyzing the temporal features in the battery data time series. The outlier 
data in the dataset can be accurately detected to avoid their impacts on battery 
monitoring and management. Then, the abnormal samples, including the noise 
polluted data and missing value, are restored by a novel future fusion data restoring 
model. The real electric bus operation data collected by a cloud-based battery 
monitoring and management platform are used to verify the performance of the 
developed data cleaning method. More than 93.3% of outlier samples can be detected, 
and the data restoring error can be limited to 2.11%, which validates the effectiveness 
of the developed methods. The proposed data cleaning method provides an effective 
data quality assessment tool in cloud-based vehicle battery management, which can 
further boost the practical application of the vehicle big data platform and Internet of 
vehicle. 

Keywords: Big data, Internet of vehicle, electric vehicles, data cleaning, battery 
management system, battery state estimation. 

 

1. Introduction 
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Along with the increasingly severe energy depletion and environmental pollution 
problems, the demand for transportation electrification has grown rapidly within the 
past few decades [1, 2]. According to a strategy carried out by the United Kingdom 
government in 2018, the sales of traditional diesel and hybrid vehicles will be fully 
banned after 2040 [3]. China also attaches great importance to the promotion of electric 
vehicles (EVs), and by 2020, more than 60% of the public electric buses have been 
successfully electrified [4]. However, the concerns about the security and cost of the 
battery pack still make the consumers worried [5, 6].  

In recent years, the development of big data and data transmission technologies bring 
a bright perspective for efficient utilization and protection of vehicle batteries. By 
uploading their operation data to a cloud platform or data center, the EV batteries can 
be better monitored and managed by using advanced algorithms [7-9]. A cloud-based 
battery management framework is established in [10] based on end-edge cloud 
technology. With the developed cloud computing platform, the performance of battery 
state-of-X estimation and thermal management systems can be significantly improved. 
In [11], the Internet of Things technology is employed to upload the measured battery 
operation data to the data center. A cloud-based digital twin management system is 
established to estimate the state of charge (SoC) and state of health of lithium-ion and 
lead-acid batteries. The data-driven machine learning and deep learning algorithm are 
further employed in [12] and [13] to estimate battery SoC values of EVs. Experimental 
results highlight the effectiveness of artificial intelligence algorithms in improving the 
accuracy, adaptability, and robustness of battery state estimation. Big-data platforms 
and artificial intelligence algorithms provide a new solution for efficient vehicle battery 
monitoring and management. However, data quality greatly impacts the performance 
of cloud battery management and monitoring systems [14, 15]. Different from 
conventional data collection and transmission systems, bad data frequently appears in 
cloud-based battery management platforms due to the mobility of EVs and the harsh 
working condition of onboard sensors. Therefore, a reliable data transmission network 
and a high-quality cloud battery dataset are indispensable to enable this benefit [16]. 
To the best of the author's knowledge, no work has been carried out to systematically 
solve data quality problems in cloud-based vehicle battery monitoring and management 
by developing a novel integrated battery data cleaning framework. 

This paper aims to bridge the aforementioned research gap and proposes a novel data 
cleaning method for improving the quality of the vehicle battery data in cloud-based 
battery management systems. A novel integrated battery data cleaning framework is 
designed, which is able to comprehensively assess the quality of the battery data and 
restore the bad samples. In the first stage, the outlier samples are detected by analyzing 
the temporal features in the battery data time series. Then, the abnormal samples, 
including the noise polluted data and missing value, are restored by a novel future 
fusion data restoring model. The real electric bus operation data collected by a cloud-
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based battery monitoring and management platform are used to verify the performance 
of the developed data cleaning method. Experimental results revealed that the 
established data quality assessment and restoring models are able to detect and 
reconstruct the dirty data accurately.  

1.1. Literature review 

Time-series analysis and regression analysis are the most commonly used data 
cleaning methods in engineering applications, and their characteristics are summarized 
in Table I. Data cleaning is realized by analyzing temporal dependence in the dataset in 
time-series analysis methods [17-19]. The autoregressive moving average algorithm is 
used in [20] to analyze and correct the error and noise in high-frequency velocity data 
in measuring devices, and experimental results on several industrial datasets showed 
that the developed moving average method could effectively assess the quality and fix 
the errors in the collected data. In a further study, a time series analysis-based data 
cleaning and repairing framework is carried out in [21] for improving the quality of 
probe vehicle data. The exponential smoothing method is used in their work to detect 
and restore the errors in the collected vehicle speed dataset, and simulation results 
revealed that the data quality could be significantly improved for meeting the traffic-
state measure requirement. Time-series analysis method has been proved effective for 
repairing mistakes in single-property data by utilizing the temporal dependence 
information in it. However, unlike conventional data cleaning issues, the battery 
operation dataset consists of four time series: terminal voltage sequence, current 
sequence, SoC sequence, and temperature sequence [22, 23]. Each of them can be 
regarded as an independent time series but with low autocorrelation, and thus 
conventional time-series analysis method can hardly capture the temporal dependence 
relationship [24]. 
Table I. Summarization of data cleaning methods in the existing literature. 

Data cleaning method Literature Model 
dependence 

Temporal 
dependence 

Deep 
features 

Time-series analysis [17], [18], [19], [20], [21]     

Regression analysis [25], [26], [27], [28], [29]    

Feature-fusion method     

Although autocorrelation information in battery operation data can hardly be utilized 
in data cleaning issues directly, the model dependence information provided by the 
battery mathematical model provides a new solution for data cleaning [30-32]. The 
regression analysis has been recognized as one of the most effective ways to analyze 
the model dependence relationship between different variables in data cleaning. Paper 
[25] developed a data cleaning method for improving the quality of power equipment 
condition monitoring dataset based on the random forest regression algorithm. The 
missing data restoration is modeled as a multiple regression problem, and simulation 
results indicate that it can correctly identify the abnormal data and accurately fill the 
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missing data. In [26] and [27], the backpropagation algorithm and support vector 
machine are further used to improve the quality of wind power data and power grid 
monitoring data, where the data cleaning task are both resolved by the regression 
analysis method.  

Regression analysis methods can detect and fix the bad data by utilizing the model 
dependence information [28, 29]. However, compared to mechanical and electrical 
systems, the battery is an integrated electrochemical system with complex external 
characteristics [33, 34]. Conventional regression analysis methods cannot deeply 
excavate the model features in the battery dataset, and thus the data restoring accuracy 
and stability is usually unsatisfactory. Recent developed artificial intelligence brings a 
bright perspective to the battery data cleaning issue [35, 36]. In [37], the deep neural 
network is used to excavate battery model features in the dataset to enhance battery 
management systems' performance. Further, Deep-long-short-term-memory (Deep-
LSTM) algorithm [38], which is specially designed for excavating the temporal features 
in time series; and Denoising Autoencoder (DAE) algorithm [39], which specializes in 
deeply excavating the model dependence relationship between different series, have 
been proved effective in complex system state estimation and prediction issues. 
However, to the best of the author's knowledge, no published works have studied the 
use of deep learning methods in vehicle battery data cleaning. 

1.2. Contribution and innovation 

This paper aims to get around the above difficulties and proposes a novel data 
cleaning method for improving the quality of the collected vehicle battery operation 
data in cloud-based battery management systems. The main contribution of this paper 
can be summarized as follows: 
1) To the best of the authors' knowledge, this paper is the first effort to systematically 

analyze and solve data quality problems in cloud-based vehicle battery monitoring 
and management  

2) A novel integrated battery data cleaning framework is designed, which is able to 
comprehensively assess the quality of the battery data and restore the bad samples. 
With the developed framework, data quality in cloud-based vehicle battery 
management can be significantly ensured and improved. Compared to 
conventional data cleaning methods, deep features in the dataset can be better 
utilized to improve the sensitivity and accuracy of the established model. 

3) A novel data quality assessment model is established by analyzing the temporal 
features in the battery dataset. Compared to conventional time series analysis 
methods, not only the autocorrelation but also the cross-correlation in the battery 
dataset can be utilized to boost model sensitivity. With the developed method, the 
outlier data in the dataset can be accurately detected to avoid their impacts on 
battery monitoring and management. 
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4) It further develops a novel data restoring model for improving the integrity of the 
collected battery dataset. By using both the temporal and model dependence 
features, the abnormal data, including the noise polluted and missing data, can be 
accurately reconstructed. 

Furthermore, the theoretical and practical significance of the developed methodology 
can be summarized as follows: 
1) The proposed data cleaning method provides an effective data quality assessment 

tool in cloud-based vehicle battery management, which can further perfect the 
design theory and boost the practical application of the vehicle big data platform 
and Internet of vehicle technology. 

2) The established data restoring model brings a bright perspective for improving the 
accuracy and stability of the cloud-based battery model and further promotes the 
efficient utilization and protection of vehicle batteries. 

1.3. Organization of the paper 

The rest of the paper is organized as follows: The developed integrated battery data 
cleaning framework is described in Section 2. Section 3 and 4 present the developed 
future-oriented data quality assessment and data restoring models, respectively. The 
performance of the developed battery data cleaning method is illustrated in Section 5, 
followed by concluding remarks in Section 6. 

2. Integrated battery data cleaning framework 
The data transmission process in a cloud-based vehicle battery monitoring and 

management platform is shown in Fig. 1. Firstly, the battery operation state of road EVs 
is real-time estimated by onboard battery management systems (BMS). Then the 
collected battery operation data, including terminal voltage, current, SoC, and 
temperature, are uploaded to the cloud platform through a data transmission network 
for further analysis. However, the collected data may be polluted by the errors and 
noises in the following sectors:  

1) Data collection sector: On the one hand, the collected data may be impacted by 
the abnormal operation state of the battery pack. The data collected under the fault 
operation state of the electrochemical system negatively influences battery 
modeling. On the other hand, error and noise occur in BMS data collection and 
state estimation processes also greatly impact the quality of the collected dataset. 

2) Data transmission sector: The link between the cloud and vehicle is performed by 
the communication network: EVs' real-time battery operation data is uploaded to 
the cloud through the Internet of vehicle and cellular network technologies. The 
data transmission error, noise, and missing also poison the quality of collected 
battery data.  
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Fig. 1. Data collection and transmission in cloud-based vehicle battery monitoring and 
management platform. 

Therefore, it is necessary to detect and clean the bad data from the battery operation 
dataset before data mining. Data cleaning in battery data mining will achieve two 
objectives. Firstly, when bad data occurs, the data cleaning scheme should detect outlier 
samples to avoid their influence on the data mining process. Meanwhile, it is also 
necessary to restore the bad data as much as possible to guarantee the integrity of the 
dataset. This section proposes an integrated data cleaning framework for vehicle battery 
big data platforms. As shown in Fig. 1, the developed battery data cleaning framework 
consists of two stages: data quality assessment and data restoring. 

In the first stage, a data quality assessment model is established to detect the bad data 
in the database by analyzing temporal features in battery data time series. As shown in 
Fig. 1, the temporal dependence information in battery current, SoC, and temperature 
time series are analyzed and extracted by the LSTM unit for further analysis. Compared 
to original data in the time domain, the extracted deep features can better reflect the 
time dependence information in battery operation data time series. Then, the residual 
analysis method is used to assess the quality of the battery data. The battery terminal 
voltage series owns more stable characteristics compared to the current series, which 
can improve the stability of the data quality assessment model; while compared to 
battery SoC, the terminal voltage sequence better reflect battery external characteristics, 
which can boost the sensitivity of the model. Therefore, the terminal voltage is selected 
as the observation (output) variable, and a sequence-to-sequence regression model is 
established based on the extracted temporal features from battery current, SoC, and 
temperature time series. The outlier data is detected by analyzing the residual error of 
the built sequence-to-sequence regression model.  



Applied Energy, FOR PEER REVIEW    7 of 19 

 

Fig. 2. Integrated battery data quality assessment and restoring framework. 

In the second stage, the outlier samples are restored by comprehensively analyzing 
both temporal and model features in the battery database. As shown in Fig. 1, an 
encoder is designed to process the real-time battery data, with which the model features 
that reflect battery external characteristics can be extracted for data restoring. 
Furthermore, the temporal dependence characteristics extracted in the first stage are 
also used to fix the bad data in the developed data restoring model. Battery external 
characteristics change in various working conditions, such as under different 
temperatures and discharging current scenarios. The introduction of temporal features 
provides the learning model with additional battery historical state information, which 
can further boost the adaptability of the established data restoring model. With the 
extracted temporal and model features from the battery real-time and historical 
operation dataset, the data restoration is modeled as a sample generation and 
reconstruction process by a decoder network. 

With above data cleaning framework, the bad data can be detected and restored timely, 
and thus the quality of the collected battery data can be significantly improved. In the 
rest part of the paper, the detailed mathematical principle when establishing the data 
quality assessment model and data restoring model will be introduced. 

3. Data quality assessment by analyzing temporal features 
In our work, the deep recurrent neural network (Deep-RNN) is used to assess the 

quality of the collected battery data by analyzing the temporal features in time series. 
The three most important battery external characteristic variables, including the 
temperature, current, and SoC, are extracted from the dataset and used as the input 
vectors of the Deep-RNN model, and the training input matrix ,t L  can be presented 
as: 
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Where: I , S , and T  are battery current, SoC, and temperature state sequence; L  
is the length of the input variable. ,t L  is used as the input of the Deep-RNN network 
shown in Fig. 2.  

 
Fig. 3. Structure and topology of the deep recurrent neural network. 

The temporal features in the above three time series are captured and mapped to the 
feature domain by the following equations: 

1
, 1 1

t sc t c t
i i i i i i iH b W H W H−

− −= + +                     (2) 

( )t t
i act if H=                            (3) 

Where: sc
iW  is self-connection weight, which is used to reflect the temporal 

dependence within the time-series; , 1
c

i iW −  the connection weight between the neurons 
in different layers, which is used to transmit the extracted temporal features in the deep 
network. t

iH  is the extracted features from the input data, with which the multi-time 
step temporal dependence information in time-series can be reflected by numerical 
results. t

i  is the standardized output after processed by the neuron activation 
function actf . The long short-term memory (LSTM) unit [40] is further employed in 
this study to boost the performance of the established temporal feature extraction model. 
Three different gates are further deployed to control the information flow in the RNN 
network, as shown in Fig. 4. 

 
Fig. 4. Information flow in the long short-term memory unit. 

To further improve the performance of the data cleaning model, we set several hidden 
layers in Deep-LSTM network. With the feature extraction process between multi-
network layers, the temporal dependence in the battery operation data sequence ,t L  
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can be transferred and presented more clearly in the feature domain. The extracted 
battery current, SoC, and temperature features on the top layer are labeled as OC , 
OS , and OT , respectively. To simplify the subsequent processing, the above three 
vectors are merged together to generate a feature matrix t

h , which can be represented 
as: 

1 1 1
t t t t t t t

h L L LOC OC OS OS OT OT =            (4) 
The battery terminal voltage sequence is selected as the output of the network to 

predict correct battery voltage states based on the extracted temporal information. A 
fully connected regression layer is set on the top of the Deep-LSTM network, and the 
whole network is trained as a sequence-to-sequence regression model. The model 
training target is defined to better regress the battery terminal voltage time-series 

,t L : 

[ ], ( ) ( ) ( )t L U t L U n U t= −                  (5) 

Where: U  is the observed battery terminal voltage value at t.  
After the Deep-LSTM model is fully trained, its sequence-to-sequence regression 

error is used to assess the battery data quality in real-time: 

1
, ,

ˆ( 1) ( 1)
ˆ

max{ } min{ }t
t L t L

U t U t
e +

+ − +
=

− 
                (6) 

L  samples in the historical battery operation data sequence are used as the model input 
to estimate battery terminal voltage ˆ ( 1)U t + , and its difference with the observed value 

( 1)U t +  is used to assess data quality. If the calculated relative estimation error is large, 
the corresponding sample is judged as bad data; while if it is within the threshold, the 
corresponding sample is recognized as normal data.  

4. Feature-fusion based data restoring model 
The established Deep-LSTM model can extract and analyze the temporal information 

in battery data time series, but it is not enough for data restoring. This section further 
establishes a novel battery data restoring model based on the feature fusion method. As 
shown in Fig. 3, both the temporal and model features in the battery data are utilized in 
the developed data restoring model, and the fixing of the battery data is carried out by 
a data reconstruction process. 
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Fig. 5. Battery data restoring model based on the feature-fusion method. 

The model-dependent relationship between battery real-time current, SoC, 
temperature, and terminal voltage states should be extracted and utilized to restore the 
damaged samples. DAE algorithm is one of the most commonly used methods for 
extracting the hidden features in the dataset and restoring the corrupted data from noise 
and fault. In this study, the DAE algorithm is employed to fix the bad data in the battery 
database. As shown in Fig. 3, the battery model features are firstly extracted from 
battery external characteristic (BEC) data by an encoder, and the training model input 
X  and output Y  can be depicted by the following equation: 

[ ]( ) ( ) ( ) ( ) kX I t U t S t T t w= +                (7) 

[ ]( ) ( ) ( ) ( )Y I t U t S t T t=                  (8) 

~ (0, )k kw Q                         (9) 

Where: kw  is the white gaussian noise (WGN) added in the model input, which is 
used to enhance the data reconstruction capability of DAE model. The intensity of 
WGN is assigned as kQ . A three-layer DAE is employed in this paper to extract the 
battery model features from the dataset, including an input layer, a hidden layer, and an 
output layer. The training target of DAE is to reconstruct the input data while filtering 
the noise information, which can be described by the following equations: 

ˆ ( ) ( )e eY f X s W X bθ= = +                     (10) 

1ˆ( || ) log (1 ) logˆ ˆ1
Y YKL Y Y Y Y
Y Y

−
= + −

−
               (11) 

Equation (15) gives the forward propagation process of the network, eW  and eb  are 
the DAE parameters. The training target is to minimize the difference between the 
model reconstruction result Ŷ  and the original sample Y . As described in equation 
(16), the relative entropy method is used as the loss function of the established DAE. 
The front part of the network, including all the weights and biases between the input 
layer and hidden layer, is further separated from the trained DAE to generate an encoder 
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to extract the battery model features from the battery dataset. The output of the encoder 
MF  can be represented as:  

1 2 n
m m m =                        (12) 

Where: ( )mF n  is the output of the neuron n. With the established DAE, the 
corresponding battery model feature can be extracted. However, battery external 
characteristics also relate to its previous discharging behaviors. For example, battery 
terminal voltage drops transiently after experiencing a high current discharging 
scenario, making the data restoring process difficult. Therefore, in our work, the 
temporal features are also used in the established data restoring model to improve its 
accuracy and stability further. The trained Deep-LSTM based data quality assessment 
model is directly used as the temporal feature extractor. Combining with model-based 
features in (17) and temporal features in (4), the training input TRAIN  of data 
reconstruction model can be depicted as: 

1 2

1 2

n
h h h

TRAIN n
m m m

 
=  
 





  
 

  
                  (13) 

A fully connected layer is used as the decoder to reconstruct and fix the bad samples, 
and the normal battery data without noise in (13) is used as the output to train the data 
restoring model.  

5. Results and discussion 
 The cloud-based vehicle battery monitoring and management platform established 

in our previous work [41] is used in this study to collect battery operation data. As 
shown in Fig. 5, the operation data of battery packs in EVs are uploaded to the cloud 
platform to generate a cloud battery database and realize cloud-based battery 
management. In this study, we mainly focus on detecting and restoring the dirty data 
that is polluted by noise and missing, and battery operation data of a 10 m electric bus 
designed by Yutong bus Co., Ltd is used to verify the effectiveness of the proposed data 
cleaning method. The rated voltage and capacity of the studied Lithium iron phosphate 
battery pack are 480V and 199.4kWh. In this section, the performance of the established 
data quality assessment model will be firstly evaluated, then the data restoring 
experiments are carried out to fix the bad data. 
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Fig. 6. The cloud-based vehicle battery monitoring and management platform. 

5.1. Data quality assessment results 

Five different data pollution conditions are considered in our simulation, including 
voltage anomaly, current anomaly, SoC anomaly, temperature anomaly, and data 
missing. Two noise intensity levels: 3% and 7%, are added to normal samples to 
simulate the noise and interference situation in the data collection and transmission 
process.  

The performance of the developed battery data quality assessment model is evaluated 
under data missing and noisy pollution scenarios. As shown in Table I, four different 
outlier data detection methods: cluster analysis [42], support vector machine (SVM) 
[43], RNN, and the developed feature-fusion method, are compared by their sensitivity 
under different preset noise intensities. The threshold of all detectors is set as 5% in 5 
experiments; therefore, samples should be judged as normal data when noise intensity 
is lower than 5%, while as bad data when noise intensity is higher than 5%.  
TABLE II. Performance comparison of different data quality assessment models 

Fault types 
Noise 

intensity  

Cluster 

analysis 
SVM RNN 

Feature-

fusion  

Voltage fault 
3% 13.81% 9.47% 4.90% 2.58% 

7% 86.12% 90.70% 93.91% 97.34% 

Current fault 
3% 12.62% 7.24% 5.09% 3.75% 

7% 87.27% 88.85% 91.54% 96.69% 

SoC fault 
3% 14.95% 8.75% 5.46% 3.49% 

7% 84.96% 86.49% 91.76% 96.15% 

Temperature 

fault 

3% 19.51% 14.33% 9.64% 7.85% 

7% 61.44% 69.81% 76.25% 83.07% 

Data missing  98.75% 100% 100% 100% 

The cluster analysis model and SVM model are not able to clearly differentiate the 
bad data and normal data. As shown in Table I, when the added noise is only 3%, nearly 
15% and 10% of samples are wrongly judged as bad data. The misdiagnosis 
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phenomenon in data cleaning process could result in serious information loss in the 
battery database because some valuable normal battery data are wrongly abandoned. 
Therefore, it is necessary to improve the accuracy of the quality assessment model to 
detect the bad data more clearly. Compared to cluster analysis and SVM methods, the 
bad data can be better filtered by RNN and feature-fusion methods; the reason is the 
temporal-dependent information in battery operation data series can be better utilized. 
With RNN and Deep-LSTM methods, the rate of detection mistakes can be limited to 
6.3% and 4.4%, indicating that the established data quality assessment model can 
clearly differentiate the bad and normal data. 

In bad data detection experiments, noise with higher intensity (7%) is added to normal 
samples. As shown in Table I, classification-based data cleaning methods, including 
cluster analysis and SVM methods, achieve a similar accuracy when detecting the bad 
data. However, only 79.9% and 83.9% of polluted data can be filtered from the dataset 
because of lucking temporal information. Compared with classification-based methods, 
the RNN method can better differentiate the bad data, and the detection accuracy is 
improved to 88.4% on average in voltage anomaly, current anomaly, SoC, and 
temperature anomaly scenarios. The developed feature-fusion method is further 
employed to further improve the sensitivity of the established data quality assessment 
model. Compared to the RNN method, the temporal information can be better 
excavated, and the bad data detection accuracy is further improved to 93.3% in four 
different data pollution experiments, which validates the effectiveness of the developed 
data cleaning method.  

It should be figured out that the established model can better detect voltage anomaly 
compared to SoC and current. The reason is that the voltage is selected as the 
observation variable while the SoC and current are input variables in the built data 
quality assessment model. The noise in the observation variable is reflected in 
regression error directly, so the built model is more sensitive when detecting the noise 
in battery terminal voltage. Further, the established model shows an inferior 
performance when detecting temperature anomalies; the reason is that the temperature 
shows a limited and indirect influence on battery external characteristics. The detection 
accuracy only reaches 83.07%. Four methods show similar performance when detecting 
missing data in the battery database. In voltage missing, SoC missing, current missing, 
and temperature missing scenarios, nearly 100% of bad samples can be successfully 
filtered from battery operation data. 

5.2. Performance evaluation of data restoring model 

The performance of the developed data restoring model is evaluated under six 
different data cleaning cases: voltage missing (Case 1), current missing (Case 2), SoC 
missing (Case 3), voltage noise (Case 4), current noise (Case 5), and SoC noise (Case 
6). The performance of the developed feature-fusion method is compared with 
conventional regression analysis and time-series analysis methods. 
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In data reconstruction experiments (Case 1 to 3), it is assumed that one of the battery 
external characteristic parameters is polluted by noise with 7% intensity. As shown in 
Fig. 7, the data reconstruction can be realized by both the conventional and developed 
feature-fusion methods. In the regression analysis method, data construction errors 
reach 3.32%, 4.71%, and 3.42% in cases 1 to 3, respectively. The reason is that the 
battery's complex external characteristics can hardly be accurately simulated through 
conventional regression analysis. Model accuracy can be improved by analyzing 
temporal features in the dataset with the time-series analysis method. Compared with 
the regression analysis method, data reconstruction error can be reduced by 19.7% on 
average. In noise polluted data reconstruction experiment, both the model and temporal 
features in the battery dataset can be deeply excavated by the developed feature-fusion 
method. As a result, the data imputation accuracy can be further improved. The voltage, 
current, and SoC data reconstruction error can be limited to 0.97%, 1.42%, and 0.62%, 
which validates the effectiveness of the developed method. 

 
Fig. 6. Performance comparison between different data restoring methods in missing data 
imputation and noise polluted data reconstruction experiments. (a). Regression analysis method; 
(b) time-series analysis method; (c) the developed feature-fusion method. 

In this study, data imputation experiments are carried out under SoC, current, and 
voltage missing scenarios, as shown in Cases 4 to 6 in Fig. 7. Similar to noise-polluted 
data reconstruction experiments, both the regression analysis and time-series analysis 
methods realize data imputation. However, the data imputation errors reach 3.95% and 
3.22% on average in the above two methods. Compared to regression analysis and time-
series analysis methods, data restoring accuracy can be significantly improved with the 
developed method by better-utilizing model and temporal features in the dataset. Data 
imputation errors are limited to 1.84%, 2.63%, and 1.86% in three cases, which validate 
the effectiveness of the developed method. With conventional regression analysis and 
time-series analysis method, model performance in Cases 1, 3, 4, and 6 is generally 
better than that of Cases 2 and 5. The reason is that battery dynamic characteristics 
reflected in the current sequence are much stronger than SoC and voltage sequences. 
The developed feature-fusion method can better excavate the deep features in the 
dataset. Therefore, the uneven performance phenomenon in different scenarios can be 
significantly avoided. Meanwhile, it should be figured out the developed feature-fusion 
method performs better in data reconstruction experiments than in data imputation 
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experiments. The reason is that more model dependence features are available in noise-
polluted data compared with data missing situations. 

Table III. Model accuracy and stability comparison of different data cleaning methods. 

Methods 
Data reconstruction Data imputation 

MAPE (%) STD MAPE (%) STD 

Regression analysis method 3.91 0.0536 3.89 0.0521 
Time-series analysis method 3.17 0.0324 3.22 0.0355 

Feature-fusion method 1.03 0.0131 2.11 0.0317 

Performances of the developed battery data restoring method are further quantitatively 
compared with conventional regression analysis and time-series analysis methods in Table III. 
The regression analysis method achieves similar performance in data reconstruction and 
imputation scenarios. Model MAPE and standard deviation (STD) reach 3.9% and 0.053 on 
average, indicating the regression method's limited capability when dealing with vehicle battery 
data cleaning issues. Time-series analysis method shows better accuracy and stability compared 
with the regression analysis method. Model MAPE and STD are reduced by 18.1% and 35.9% 
on average by utilizing the temporal information in battery operation data. The performance of 
the developed feature-fusion method is further improved by better utilizing both the model and 
temporal features in the dataset. In data reconstruction scenarios, model accuracy is improved 
by 73.7% and 67.5% while stability is improved by 75.6% and 59.6% compared to regression 
analysis and time-series analysis methods. Further, in data imputation scenarios, model MAPE 
and STD can also be limited to 2.11% and 0.032, which validates the effectiveness of the 
developed feature-fusion method. 

6. Conclusion 
The deep learning algorithms and feature fusion method are employed in the paper 

to address the challenge of detecting and restoring dirty samples in the battery operation 
database. The real electric bus operation data collected by a cloud-based battery 
monitoring and management system is used to verify the performance of the developed 
data cleaning method. Through extensive simulations, the key findings are as follows:  
(1) The established data quality assessment model can accurately detect the outlier 

samples by analyzing the temporal features in the battery data dataset. Compared 
to conventional cluster analysis, SVM, and RNN methods, the misdiagnosis 
phenomenon in the data cleaning process can be significantly avoided. Meanwhile, 
nearly 93.3% of noise-polluted samples and 100% of missing values can be 
successfully filtered from the database. With the developed method, the outlier data 
in the dataset can be accurately detected to avoid their impacts on battery 
monitoring and management. 

(2) Both temporal and model features play an important role in restoring damaged 
battery operation data. With the developed feature fusion method, data 
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reconstruction accuracy is improved by 73.7% and 67.5% compared to regression 
analysis and time-series analysis methods. The average restoring error can be 
limited to 1.03% and 2.11% in noise-polluted data reconstruction and missing data 
imputation scenarios. With the developed integrated quality assessment and 
restoring framework, the quality of the collected battery operation data can be 
significantly improved to benefit cloud-based vehicle battery monitoring and 
management.  

The proposed data cleaning method in this paper provides an effective data quality 
assessment tool in cloud-based vehicle battery management, which can further boost 
the practical application of the vehicle battery big data platform and Internet of vehicle 
technology. 
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