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ABSTRACT
Recent results on the passivity analysis and control of physical systems, based on the
balance of dissipated and internally generated energy, are generalized to nonlinear
systems represented by bond graphs. For linear systems, the internally generated
energy associated with modulated sources can be coupled with the dissipative field,
so that if external energy sources are excluded, then the system is passive (or dissi-
pative) if the resulting composite multiport field is passive. Such a result for linear
systems was previously conveniently expressed in terms of a characteristic matrix
being positive semi-definite. Parasitic elements of previous works are no longer re-
quired, which allows working on the original bond graph of lower dimension than
the augmented bond graph and for no-linear systems avoid inverting the dissipative
non-linear constitutive relations. For nonlinear systems, passivity is now considered
through the explicit difference between the dissipated and the internally generated
energy. If this energy difference is positive the system is passive. For control systems,
the current work proposes that the controller is designed to have a structure simi-
lar to the plant (linear or nonlinear) and its parameters are chosen to assure that
in closed-loop the difference between the dissipated and the internally generated
energy is positive. In particular, the control parameters can be chosen to assign a
desired dissipated energy or to cancel by feedback the internally generated energy
and to add damping, therefore achieving sufficient condition for the passivity of the
closed-loop system.

KEYWORDS
Bond Graph; Junction structure; Feedback; Passivity analysis; Physical and
Passivity-Based Control; Three-tank system

1. Introduction

The passivity property is of great interest in systems analysis and control as it achieves
robust stability (see (Triverio, Grivet-Talocia, Nakhala, Canavero, & Achar, 2007) and
(Brogliato, Lozano, Maschke, & Egeland, 2007)) and also ensures a level of safety by
guaranteeing that the balance between the energy extracted and energy supplied to
the system never exceeds the initial energy at any time. As stated in the work of
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(J. C. Gil & Sira-Ramirez, 1997), “the determination of passivity using the available
energy function can result in a complex process disregarding the case studied. For this
reason, an alternate way was thought that allows to determine passivity using a bond
graph”. In this early work, the scattering matrix of scalar linear systems was used
that is closely related to passivity, i.e., the real positiveness of the transfer function.
In Bond Graph (BG) representation, active bonds are used to manipulate only one
variable. These active bonds are widely used in mechatronic and control systems for
the interconnection of sub-systems through internal modulated sources of energy that
are interpreted as power scaling transformers and gyrators (Li & Ngwompo, 2005).
Such interconnected sub-systems can lead to an overall non-dissipated system.

There is a wide literature about energy-based analysis and design, energy-based
analysis and control design and analysis and control of Port-Hamiltonian systems(see
for instance (Meigooni & Mollaioli, 2021), (Guerrero et al., 2019) and (Karimi &
Binazadeh, 2019), respectively). The present work focus on BG analysis and control
design, due to BG allows to analyze the structure of the system, obtain symbolic
equations and analyze the energy interactions.

BG representation has been used to propose a generic framework for the design of
controllers in the physical domain, where the controller and the plant were all repre-
sented by their BG models (P. J. Gawthrop, 1995). This physical model-based control
has found several applications such as in nano-scale positioning (P. J. Gawthrop,
Wagg, & Nield, 2007) or substructuring (P. J. Gawthrop, Bhikkaji, & Moheimani,
2010) for example. The present article follows the same idea of controllers design in
the physical (bond graph) domain but to achieve passivity and a focus on dynamic
feedback rather than the observer-based approach adopted by (P. J. Gawthrop, 1995)
and (Gonzalez-A, 2016). Another approach to deal with the problem under consider-
ation is based on port-Hamiltonian systems (see (Ortega & Garćıa, 2004) and (Van
der Schaft, 2006)). Standard bond graphs generate a class of port-Hamiltonian sys-
tems (see (Golo, der Schaft, Breedveld, & Maschke, 2003)). This was exploited for the
disturbance decoupling and model matching control problems in the work of (Vink,
Ballance, & Gawthrop, 2006).

A method for the passification of mechatronic systems is proposed by (Li & Ng-
wompo, 2005) using power scaling transformers and gyrators with the condition that
those power scaling elements are not part of any causal loops. Their approach does
not, therefore, cover many control systems in a closed-loop configuration. For lin-
ear systems with internal modulated sources in an open or closed-loop configuration,
(Galindo & Ngwompo, 2017) and (Ngwompo & Galindo, 2017) proposed a method
to decompose the system into a passive field that consists of storage elements and
a multiport composite field that encompasses modulated sources and dissipative el-
ements. Such systems can also be represented by a bond graph that has a passive
storage field connected to a pseudo-junction structure consisting of an inner power-
conservative junction sub-structure and an outer junction sub-structure that contains
power scaling elements connected to the dissipative field augmented with parasitic ele-
ments if necessary. The outer power scaling junction sub-structure and dissipative field
implicitly implement the net balance between the energy internally generated by the
modulated sources and the dissipated energy by the resistive elements. Its associated
multiport composite field determines the overall passivity of the system through the
semi-positive definiteness of its characteristics matrix.

The present work does not require pseudo-junction structures or parasitic elements
as proposed in (Galindo & Ngwompo, 2017) and (Ngwompo & Galindo, 2017). This is
an important contribution that allows working on the original BG of lower dimensions
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than the augmented BG. So, the causality assignment of the dissipative elements
does not change and for no-linear systems avoid inverting the dissipative non-linear
constitutive relations. First, the problem statement is given in section 2. Passivity
analysis and control are realized in sections 3 and 4 based on the balance of the
dissipated and internally generated energy. These energies are joined up into a multi-
port coupled dissipated field. Cascade and feedback interconnections of subsystems
without loading effect, are considered. Assuming that the storage field is passive and
only power external sources are applied, then the overall system is passive if the multi-
port coupled dissipative field is passive (see the work of (Beaman & Rosenberg, 1988)).
Passivity analysis and control of Linear Time-Invariant (LTI) systems are tackled in
section 5. The cases of less or more dissipative than storage elements are covered. For
LTI systems the dissipated and internally generated energies have quadratic forms.
Hence, the overall system is passive if the associated matrix is positive semidefinite,
leading to the same results of (Galindo & Ngwompo, 2017) and (Ngwompo & Galindo,
2017), when the dissipative elements are equal to the storage elements or parasitic
elements are added.

The results are illustrated through examples and the non-linear results are applied
to a three-tank system example in section 4.
Notation.- Ip and 0p are the identity and zero matrices of dimensions p× p, respec-
tively; diag {a1, a2, . . . , an} is a diagonal matrix of dimension n × n whose elements
are a1, a2, . . . , an; and a real matrix M is positive semidefinite if and only if the
symmetric part 1

2

(
M +MT

)
is positive semidefinite, where MT is the transpose of

M .

2. Problem statement

A Bond Graph (BG) model of a system in integral causality is described by the junction
structure of Fig. 1 where C and I are storage elements in integral causality, R is the
dissipative field, De and Df are detectors (sensors) of effort and flow. The junction
structure S(0, 1, TF , GY , MSe, MSf ), linking these elements, is an assemblage of
0−junctions, 1−junctions, transformers, TF , gyrators, GY , and modulated sources of
effort and flow, MSe and MSf . Let m, n, p and q be the input, the state, the output
and the dissipative space dimensions, respectively. The state vector x(t) ∈ <n×1 is
associated with the energy variables of the storage elements in integral causality;
z(t) ∈ <n×1 is the co-energy vector; Do(t) ∈ <q×1 and Di(t) ∈ <q×1 are vectors of
variables associated with R; u(t) ∈ <m×1 is the system input; y(t) ∈ <m×1 is the
conjugated system output, i.e., yT (t)u(t) is power; and ym(t) ∈ <p×1 is the measured
system output. In general ym(t) 6= y(t) in control or mechatronics applications.

The system energy at time t, E(t), is,

E(t) = E(t0) + Esu + Eg − Est − Ed (1)

where E(t0) is the initial energy, Esu :=
∫
yT (t)u(t)dt is the supply energy, Eg :=∫

yTg (t)ug(t)dt is the internally generated energy, Est :=
∫
ẋT (t)z(t)dt is the stored

energy and Ed :=
∫
DT
i (t)Do(t)dt is the dissipated energy, with yg(t) and ug(t) being

the conjugated output and input of the internal sources MSe and MSf , respectively.
A dissipative or passive system satisfies,

Esu + Eg ≤ Est + Ed (2)
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Figure 1. Junction structure associated with a bond graph in integral causality

that from Eq. (1) implies E(t) ≤ E(t0), ∀t. BG that use active bonds does not neces-
sarily satisfy Eq. (2). These non-dissipative systems may arise in the system intercon-
nection of subsystems or in systems that include internal modulated sources. This is
the case of BG including power-scaling elements (Li & Ngwompo, 2005).

In the work of (Galindo & Ngwompo, 2017) and (Ngwompo & Galindo, 2017),
the internal sources are combined with the dissipative field while the storage field,
assumed to be passive, remains unchanged. This process is equivalent to creating a
composite field that implements the difference between Eg and Ed resulting in either a
net dissipative or net source of the energy field. From the formal definition of passivity
in terms of the energy that can be extracted from a system being finite, it is clear
that excluding the external supply of energy, a system is passive if each element of the
system is passive (Beaman & Rosenberg, 1988). Therefore, if all R, C and I elements
are passive in a multiport bond graph model containing internal modulated sources,
the overall passivity of the system can be investigated through the above mentioned
composite field or the net balance between the energy internally generated Eg and the
dissipated energy Ed and passivity is guaranteed if,

0 ≤ Ed − Eg (3)

The condition (3) was used as an alternative way to express and to check that the
characteristic matrix of the composite field was positive semidefinite (see Appendix 2
of (Ngwompo & Galindo, 2017)). This approach is generalized here for a wider class
of systems. In particular, a conservative condition is Eg = 0 that assures passivity if
0 ≤ Ed. Also, a well-known technique to achieve passivity is to add damping (see for
instance the works of (Garcia, Rimaux, & Delgado, 2006) and (P. Gawthrop, Neild,
& Wagg, 2015)), i.e., to increase Ed such that inequality (3) is satisfied.

In order to simplify passivity analysis and control the following assumptions are
made:
Assumption 1. yg(t) = f (z(t)) and ug(t) = g (z(t)), and
Assumption 2. Di(t) is neither a function of Do(t) or u(t).

Assumption 1 implies that the internal modulated sources are related through the
junction structure to the storage elements and Assumption 2 states that there are no
causal loops between R-elements or direct causal paths linking sources to R-elements.
A way to assure that this assumption is satisfied is to add parasitic elements as in
(Galindo & Ngwompo, 2017) and (Ngwompo & Galindo, 2017). Under Assumption
2 the relationships for the junction structure S(0, 1, TF , GY , MSe, MSf ) are given
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by:  ẋ(t)
Di(t)
y(t)

 =

 S11 S12 S13

S21 0q 0q×m
S31 S32 S33

 z(t)
Do(t)
u(t)

 (4)

where the block partition of S(0, 1, TF , GY , MSe, MSf ) is according to the dimen-
sions of z(t), Do(t) and u(t).

Under Assumptions 1 and 2, the problems under consideration are the following:
Problem 1: Passivity analysis of systems with internal modulated sources, that is, to
determine if such systems are passive using inequality (3).
Problem 2: Passivity-Based Control (PBC) of systems, that is, given a system rep-
resented by its bond graph model, to design a control such that the whole system
satisfies inequality (3).

3. Non-linear systems

A solution to Problem 1, i.e., the proposed approach for the passivity analysis is
summarized in the following result,

Lemma 3.1. Let z(t) ∈ <n×1 and Di(t) ∈ <q×1. Under Assumptions 1 and 2, the
non-linear system modelled by bond graph is passive if,

0 ≤
∫ t

0

[
DT
i (τ)φ(Di(τ))− fT (z(τ)) g (z(τ))

]
dτ (5)

where all the elements of Di(t) are directly related to the ones of z(t) for q ≤ n, and
all the elements of z(t) are directly related to the elements of Di(t) for q > n.

Proof. Since Do(t) = φ (Di(t)) then Ed =
∫ t

0 D
T
i (τ)φ(Di(τ))dτ . Under Assumption

1, Eg =
∫ t

0 f
T (z(τ)) g (z(τ)) dτ . Assumption 2 assures that Di(t) = S21z(t) and hence

the result follows from inequality (3), applying the result of (Beaman & Rosenberg,
1988).

The case q = n can be obtained by adding parasitic elements as in (Galindo & Ng-
wompo, 2017) and (Ngwompo & Galindo, 2017). However, for non-linear systems it is
difficult in general to invert the non-linear constitutive relation of the dissipative field,
so, the parasitic elements must not change the causality assignment of the dissipative
field. The parasitic elements increase the complexity of the augmented BG. Instead,
passivity can be analysed through inequality (5), including the case q = n.

Since Ed > 0, a solution to Problem 2 is to design a control such that Eg = 0. It is
proposed that the controller has a structure similar to the plant, as realized for linear
systems by (Galindo & Ngwompo, 2017). In the following result, the control parameters
are selected such that Eg = 0 and Ed becomes a desired positive semidefinite quadratic
function. So, a solution of Problem 2 is proposed by,

Lemma 3.2. Suppose that the non-linear sub-systems modelled by bond graph are
interconnected in feedback with no loading effect as shown in Fig. 2, and under As-
sumptions 1 and 2. Let za(t) ∈ <na×1 and zb(t) ∈ <nb×1 be the coenergy vectors of
the controller and the plant, respectively, and Da

i (t) ∈ <qa×1 and Db
i (t) ∈ <qb×1 be the
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Figure 2. Feedback interconnection of bond graph models

inputs of the dissipative field of the controller and the plant, respectively. If the control
parameters are selected such that,

fTb (zb(t))ub(t) = −fTa (za(t))ua(t)(
Db
i (t)
)T
φ(Db

i (t)) =
(
Dd
i (t)

)T
LDd

i (t)− (Da
i )T (t)φ(Da

i (t))
(6)

where Dd
i (t) ∈ <qd×1 is the input of the desired dissipative field of the feedback system

and L = LT ≥ 0. Then, the feedback system modelled by BG is passive.

Proof. From Eq. (6), Eg =
∫ t

0

[
fTa (za(τ))ua(t) + fTb (zb(τ))ub(t)

]
dτ = 0 and

Ed =
∫ t

0

[
(Da

i (τ))T φ(Da
i (τ)) +

(
Db
i (τ)

)T
φ(Db

i (τ))
]
dτ =

∫ t
0

(
Dd
i (τ)

)T
LDd

i (τ)dτ .

Hence, since L = LT ≥ 0 then Ed ≥ 0 and from Lemma 3.1, the feedback system
is passive.

A common case is when the constitutive relations of the plant sensor and actuator
are affine functions of the coenergy vector of the plant and the controller output. In the
following result, the control parameters are selected such that the plant and controller
inputs be linear functions of the coenergy vectors of the controller and of the plant,
respectively,

Lemma 3.3. Suppose that the sub-systems modelled by bond graph are interconnected
in feedback with no loading effect as shown in Fig. 2 and under Assumptions 1 and 2.
Let ma and pa be the input and output dimensions of the controller, respectively, mb

and pb be the input and output dimensions of the plant. The plant output and input
ybm(t) ∈ <pb×1 and ub(t) ∈ <mb×1, respectively, satisfy,

ybm(t) = K1zb(t) +K2 and
ub(t) = K3y

a
m(t) +K4

(7)

where zb(t) ∈ Renb×1 and yam(t) ∈ <pa×1 are the coenergy vector of the plant and the
controller output, respectively, K1 to K4 are real matrices of appropriate dimensions,
and K3 is a non-singular matrix. The control parameters are selected such that,

yam(t) = K1za(t)−K−1
3 K4

ua(t) = K3

(
−ybm(t) +K2

) (8)
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Figure 3. A tank system.
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Figure 4. BG of two R− C subsystems interconnected in feedback.

Then,

ub(t) = K3K1za(t),
ua(t) = −K3K1zb(t) and

Eg =
∫ t

0

[
−fTa (za(τ))K3K1zb(t) + fTb (zb(τ))K3K1za(t)

]
dτ

(9)

Proof. The result follows directly from equations (7) and (8) substituting yam(t) and
ybm(t) into ua(t) and ub(t).

The proposed control strategy and the results of the above Lemmas are illustrated
by the following example, where the design of a controller for a non-linear system is
considered so that the overall system is passive. In this example, yam(t) = za(t) and
ybm(t) = zb(t) and from Lemma 3.3, the controller can be designed such that Eg has

a quadratic form, i.e., Eg =
∫ t

0 z
T (τ)Gz(τ)dτ , where G ∈ <n×n is a skew-symmetric

matrix, then Eg vanishes and inequality (5) is accomplished. Also, it is possible to add
damping increasing Ed or to assign a desired dissipated energy.

Example 3.4. The example presented in (Galindo & Ngwompo, 2016) is considered.
The level of liquid in a tank is to be controlled and for this, a controller having the
same structure as the plant is chosen. The tank system is shown in Fig. 3 where Q(t) is
the supply flow rate in m3/s, h(t) is the liquid level in meters and Ao the cross-section
of the flow leak in m2. Let A be the cross-section of the tank in m2, γ = ρg be the
specific weight, g be the earth gravity, ρ be the flow density, and θ1, . . . , θ4 be real
constant sensor parameters. This tank is modelled by the R2 − C2 system in Fig. 4
where the liquid level h(t), the plant control signal ub(t) = f4 = ψ (yam(t)) and the
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constitutive relationship of the R-element Db
o(t) = φb

(
Db
i (t)
)

are given by,

h(t) = e6
γ = −θ3y

b
m(t) + θ4,

f4 = Q(t) = θ3A (θ1α2y
a
m(t) + θ2) and

f5 = Q0(t) = α0Ao

√
2e6
ρ

(10)

respectively, with ybm(t) being the output in volts of a liquid level meter, yam(t) being
the input in volts of the pump that modulates the flow source in Fig. 4, α2 being
the gain of the modulated source of flow, Q0(t) being the liquid leakage flow and
0 ≤ α0 ≤ 1 the proportion of leakage. So, the plant output ybm(t) and input ub(t) = f4

satisfy Eq. (7) where zb(t) = e6, ub(t) = f4,

K1 = −1
θ3γ

, K2 = θ4
θ3

,

K3 = θ3Aθ1α2 and K4 = θ3Aθ2
(11)

Let R1 − C1 in Fig. 4 be a proposed model for the non-linear controller that has the
same structure as the plant. Applying Lemma 3.3, the control parameters are selected
from Eq. (8),

yam(t) = −1
θ3γ
e3 − θ2

θ1α2
,

f1 = θ1Aα2

(
−θ3y

b
m(t) + θ4

)
and

f2 = α1Ao

√
2e3
ρ

(12)

where za(t) = e3, ua(t) = f1, α1 is a control parameter, yam(t) is in volts and negative
feedback is selected of the measured ybm(t) signal. These two R − C systems have a
feedback interconnection as shown in Fig. 4. Then, from Lemma 3.3 the non-linear
controller leads to ub(t) and ua(t) be linear functions of e3(t) and e6(t), respectively,
i.e.,

f4 = −θ1Aα2

γ e3 and

f1 = θ1Aα2

γ e6
(13)

Also, since yam(t) = za(t) and ybm(t) = zb(t), then Eg = 0 and has a quadratic form.
In the BG of Fig. 4, q = n and from the third rows of equations (10) and (12) and
inequality (5) the system is passive if

Ed = Ao
√

2
ρ

∫ t
0

(
α1e2
√
e2 + α0e5

√
e5

)
dτ ≥ 0 (14)

The above result is the same as in (Galindo & Ngwompo, 2016) but without using
junction or pseudo-junction structures. The left-hand term of inequality (14) is the
total dissipated energy of the controller and the plant. With α0 being a fixed parameter
of the plant (proportion of leakage), the closed-loop system is passive for all α1 so that
0 ≤ α1 ≤ 1 and the designer can tune α1 to change the energy dissipation rate to
achieve the desired performance, with α1 = 0 being analogous to a completely closed
and α1 = 1 to a completely open leak valve, respectively. Alternatively, applying
Lemma 3.2 the control parameters can be selected such that Ed be a desired positive
semidefinite quadratic function.

8



Table 1. Simulation parameters.

Earth gravity g = 9.81 m/s2

Fluid density ρ = 1000 kg/m3

Tank cross-section area A = 0.0154 m2

Leakage cross-section area A0 = 0.05× 10−3 m2

Proportion of leakage α0 = 0.5
Level sensor parameters θ1 = 0.0103 s−1

θ2 = 0.1022 V/s
θ3 = 0.0338143 m/V
θ4 = 0.3115872 m

Initial height of liquid h = 0.4 m

Figure 5. Energy dissipated for proportion of leakage α1 = 0.4, 0.6 and 0.8

For the physical interpretation of the above results, a simulation of the tank system
in Fig. 3 in closed-loop configuration is done to assess the overall system passivity
with the parameters in Table 1. The model in Fig. 4 has two modulated sources with
the controller parameters chosen so that the net energy generated by both sources
is zero, i.e., Eg = 0, that is, the energy consumed by the plant modulated source is
compensated by the energy supplied by the controller modulated source, and the net
energy is zero at all instants. The system is passive according to Eq. (3). The condition
Eg = 0 is sufficient but not necessary for the system to be passive. However, if this
condition is satisfied, only the dissipative R-elements in Fig. 4 and not the modulated
sources control the rate at which the initial energy in the system (stored in C-elements)
is dissipated. The initial potential energy, E(t0) in the tank is Ah2ρg/2 = 12.1J . Since
Eg = 0 and the energy is dissipated, then Est and E(t) tend to zero and from Eq. (1),
Ed tends to E(t0) as shown in Fig. 5. Also, Fig 5 shows that as the parameter α1 of
the controller R1-element (i.e. the proportion of leakage) increases, the initial energy
stored in the tank is dissipated at a faster rate. �

Now the cascade and feedback interconnections of power-conservative systems mod-
elled by BG and satisfying Assumptions 1 and 2, are considered. These configurations
are common in control and mechatronics systems. Besides, for Linear Time-Invariant
(LTI) systems, using the parametrisation of all stabilizing controllers the closed-loop
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Figure 6. Bond graph model of systems interconnected in cascade (with no loading effect)

transfer functions are affine functions of the free control parameters (see (Vidyasagar,
1985)). In particular, in a one-degree of freedom feedback configuration the transfer
function from the output reference, yd(t) to the plant output y(t) is To(s) = N(s)ÑK(s)
(see (Vidyasagar, 1985)), where N(s) and ÑK(s) are the numerators of the coprime
factorizations of the plant and the controller, respectively, while in a two-degrees of
freedom feedback configuration, To(s) = N(s)Q(s) (see (Vidyasagar, 1985)), where
Q(s) is a free control parameter. So, in both cases, the feedback system can be regarded
as a cascade interconnection of N(s) and ÑK(s) or of N(s) and Q(s), respectively.

The junction structures associated with the BG of the controller K and the BG of
the plant P are denoted by Sa and Sb, respectively, and are shown in the cascade
and feedback configurations of figures 2 and 6. It is assumed that the sub-systems are
interconnected with no loading effect, that is, these sub-systems are interconnected
through active (signal) bonds that modulate sources of effort or flow. Due to this
connection, the overall system may not conserve energy.

When the constitutive relations of the plant sensor and actuator are affine functions
of the coenergy vector of the plant and the controller output, applying Lemma 3.3,
ua(t) and ub(t) become linear functions of zb(t) and za(t), respectively, i.e., the con-
troller is designed such that these linear relations are satisfied. If yam(t) = za(t) and
ybm(t) = zb(t), then Problem 2 is solved by,

Theorem 3.5. Suppose that the sub-systems modelled by bond graph are intercon-
nected in cascade and feedback with no loading effect as shown in figures 2 and 6,
respectively, and under Assumptions 1 and 2. Let ma, na and pa be the input, state
and output space dimensions of the controller, respectively, mb, nb and pb be the input,
state and output space dimensions of the plant,

ub(t) = Kby
a
m(t) and

ua(t) = −Kay
b
m(t)

(15)

where Kb ∈ <mb×pa and Ka ∈ <ma×pb are non-singular matrices composed of the
control gains, and two junction structures Sa(0, 1, TF , GY ) and Sb(0, 1, TF , GY )
of bond graphs modelling the controller and the plant, respectively, ẋa(t)

Da
i (t)

yam(t)

 =

 Sa11 Sa12 Sa13

Sa21 0qa 0qa×ma

Sa31 Sa32 Sa33

 za(t)
Da
o(t)

ua(t)

 , (16)
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and  ẋb(t)
Db
i (t)

ybm(t)

 =

 Sb11 Sb12 Sb13

Sb21 0qb 0qb×mb

Sb31 Sb32 Sb33

 zb(t)
Db
o(t)

ub(t)

 (17)

where xa(t) ∈ <na×1, za(t) ∈ <na×1, Da
i (t) ∈ <qa×1, Da

o(t) = φa (Da
i (t)) ∈ <qa×1,

ya(t) ∈ <pa×1, ua(t) ∈ <ma×1, xb(t) ∈ <nb×1, zb(t) ∈ <nb×1, Db
i (t) ∈ <qb×1, Db

o(t) =
φb
(
Db
i (t)
)
∈ <qb×1, yb(t) ∈ <pb×1 and ub(t) ∈ <mb×1.

Then, the cascade interconnection is passive if

0 ≤ Ed −
∫ t

0 f
T
b (zb(τ))Sb13Kbηa(τ)dτ (18)

where

Ed :=
∫ t

0

[
(Da

i (τ))T φa(D
a
i (τ)) +

(
Db
i (τ)

)T
φb(D

b
i (τ))

]
dτ and

ηa(t) := Sa31za(t) + Sa32φa (Da
i (t))

(19)

and the feedback interconnection is passive if,

0 ≤ Ed +
∫ t

0 f
T
a (za(τ))Sa13∆̄−1Kaηc(τ)dτ

−
∫ t

0 f
T
b (zb(τ))Sb13∆−1Kbηd(τ)dτ

(20)

where

ηb(t) := Sb31zb(t) + Sb32φb
(
Db
i (t)
)
,

ηc(t) := ηb(t) + Sb33Kbηa(t) and
ηd(t) := ηa(t)− Sa33Kaηb(t)

(21)

and the Schur complements are,

∆ := Imb
+KbS

a
33KaS

b
33

∆̄ := Ima
+KaS

b
33KbS

a
33

(22)

Proof. Under Assumption 1, (yam(t))T ua(t) is power, and then, as stated in the work
of (Beaman & Rosenberg, 1988), whether each element of a model is passive then the
system is passive. Hence, ua(t) = 0 is considered for the passivity analysis. Then, from
the cascade interconnection of Fig. 6,

ub(t) = Kbηa(t) (23)

Since the effective input to the system is Sb13ub(t), under Assumption 2, Eg =∫ t
0 f

T
b (zb(τ))Sb13ub(τ)dτ , then, the result of inequality (18) follows applying Lemma

3.1. From the feedback interconnection of Fig. 2,[
Ima

KaS
b
33

−KbS
a
33 Imb

] [
ua
ub

]
=

[
−Kaηb(t)
Kbηa(t)

]
(24)

11



Let ∆̄ := Ima
−A12A21, using (see (Zhou, Doyle, & Glover, 1996)),

[
I A12

A21 I

]−1

=[
∆̄−1 −∆̄−1A12

−A21∆̄−1 I +A21∆̄−1A12

]
, then ∆̄ is given by Eq. (22) and,

I +A21∆̄−1A12 = Imb
−KbS

a
33∆̄−1KaS

b
33

= ∆−1 (25)

where ∆ is given by Eq. (22). Hence,[
uTa uTb

]T
=[

∆̄−1 −∆̄−1KaS
b
33

KbS
a
33∆̄−1 ∆−1

] [
−Kaηb(t)
Kbηa(t)

]
(26)

Since the effective inputs to the system are Sa13ua(t) and Sb13ub(t), under Assumption
2,

Eg =
∫ t

0

[
fTa (za(τ))Sa13ua(τ) + fTb (zb(τ))Sb13ub(τ)

]
dτ (27)

So, the result of inequality (20) follows applying Lemma 3.1.

Remark 1. If fa(za(t)) = za(t), fb(zb(t)) = zb(t) and the outputs are directly related
to the storage elements,i.e., Sa33 = Sb33 = 0 and Sa32 = Sb32 = 0, then from Theorem 3.5,
∆ = ∆̄ = I, ηd = ηa = Sa31za and ηc = ηb = Sb31zb. Hence, the feedback interconnection
is passive if,

0 ≤ Ed +
∫ t

0 z
T
a (τ)Sa13KaS

b
31zb(τ)dτ

−
∫ t

0 z
T
b (τ)Sb13KbS

a
31za(τ)dτ

(28)

Moreover, if the controller and the plant have junction structures that satisfy Sb13 =(
Sb31

)T
and Sa13 = (Sa31)T that are widely assumed in Port-Hamiltonian systems (see

(Castaños, Ortega, Van der Schaft, & Astolfi, 2009)), then the feedback interconnection
is passive if Ka = KT

b . Moreover, since z(t) = ∂H
∂x where H is the Hamiltonian function

and if φ (Di(t)) = φ (S21z(t)) = ψ (x(t)) z(t), then, from equations (16) and (17), the
plant and the controller have the structure of port-Hamiltonian systems,

ẋ(t) = [S11 + ψ (x(t))] ∂H∂x
y(t) = S31

∂H
∂x

(29)

where the dissipated function ψ (x(t)) ≥ 0 and their interconnection will be passive
(see (Brogliato et al., 2007)). �

In Example 3.4, the junction structures for the controller and the plant are, f3

e2

yam(t)

 =

 0 −1 1
1 0 0
1 0 0

 e3

f2

ua(t)

 , (30)

12



Figure 7. A tank system.

Figure 8. BG of a controller and three tank systems interconnected in feedback.

and  f6

e5

ybm(t)

 =

 0 −1 1
1 0 0
1 0 0

 e6

f5

ub(t)

 (31)

respectively. So, from Theorem 3.5 and from Eq. (13), Kb = −Aθ1α2

γ , Ka = −θ1Aα2

γ ,

ηa(t) = ηd(t) = za(t), ηb(t) = ηc(t) = zb(t) and ∆ = ∆̄ = I. The dissipated energy Ed
is given in Example 3.4 and from inequality (20) the system is passive, that is, 0 ≤ Ed.

Theorem 3.5 is applied to a three-tank system example in the next section.

13



4. Three-tank system

Example 4.1. A Three-tank system scheme is shown in Fig. 7 and its modelled by
bond graph in Fig. 8. The following is a non-linear model of a Three-Tank-System,

dh (t)

dt
=

1

A

 Q1(t)−Q13(t)−Q10(t)
Q2(t) +Q32(t)−Q20(t)
Q13(t)−Q32(t)−Q30(t)


ybm(t) =

[
e1

e2

]
=

[
h1(t)
h2 (t)

]
Q13(t) = α13Aosign (h13(t))

√
2g |h13(t)|

Q32(t) = α32Aosign (h32(t))
√

2g |h32(t)|
Qi0(t) = αi0Ao

√
2ghi (t), i = 1, . . . , 3

(32)

where h13(t) := h1(t)− h3(t), h32(t) := h3(t)− h2(t), the states hi(t), i = 1, . . . , 3 are
the liquid levels in meters, Qi(t), i = 1, 2 are the supplying flow rates in m3/ sec .,
Qi0(t) being the liquid leakage flow and 0 ≤ αi0 ≤ 1 the proportion of leakage, A is
the cross section of tank in m2, α13 and α32 are the outflow coefficients, Ao is the
cross-section of flow leak and connection pipes in m2, γ = ρg is the specific weight,
g is the earth gravity and ρ be the flow density. The liquid leakage is modelled in
Fig. 8 by R1 to R3 that have the non-linear constitutive relations, Db

o(t) = φb
(
Db
i (t)
)
,

given by Eq. (32). In the work of (Galindo, 2005) an identification procedure is used

to get the relations for the pumps and sensors, that is, ybm(t) =
[
e6 e7

]T
, ub(t) =[

Q1 Q2

]T
=
[
f4 f5

]T
= ψ (yam(t)) and Db

o(t) = φb
(
Db
i (t)
)

are,

Q1 (t) = f4 = c13A (c11αb1y
a
m1 (t) + c12)

Q2 (t) = f5 = c23A (c21αb2y
a
m2 (t) + c22)

hi (t) = ei
γ = −ci3ybmi (t) + ci4, i = 1, . . . , 3

(33)

where ybmi (t), i = 1, . . . , 3 are the liquid levels in volts, αbiy
a
mi (t), i = 1, 2 are the

supplying flow rates in volts of the pumps that modulates the flow sources in Fig. 8, αb1
and αb2 are control gains, and cij , i = 1, . . . , 3, j = 1, . . . , 4 are constant parameters.

Also, from Fig. 8, Db
i =

[
e6 e7 e8 e9 e10

]T
, Da

i =
[
e16 e17 e18 e19 e20

]T
,

zb =
[
e1 e2 e3

]T
and za =

[
e11 e12 e13

]T
. So, since e1 = e6, e2 = e7, e3 = e8,

e11 = e16, e12 = e17 and e13 = e18 then, the elements of zb and za are directly related
to the ones of Db

i and Da
i , respectively, that is, qa > na, qb > nb and Sb22 = Sb23 = 0.

So, Ed =
∫ t

0

(
Da
i (τ)Da

o(τ) +Db
i (τ)Db

o(τ)
)
dτ is,

Ed = Ao
√

2
ρ

∫ t
0

[∑8
i=6

(
αiei
√
ei + α1ie1i

√
e1i

)
+

α13e9

√
|e9|sign

(
e9
γ

)
+ α32e10

√
|e10|sign

(
e10
γ

)]
dτ+

+Ao
√

2
ρ

∫ t
0

[
α46e19

√
|e19|sign

(
e19
γ

)
+

α65e20

√
|e20|sign

(
e20
γ

)]
dτ

(34)

So, the plant output ybm(t) =
[
e1 e2

]T
and input ub(t) =

[
f4 f5

]T
satisfy Eq.
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(7) where,

K1 =

[
−1
c13γ

0 0

0 −1
c23γ

0

]
, K2 =

[ c14
c13
c24
c23

]
,

K3 =

[
c13Ac11αb1 0

0 c23Ac21αb2

]
and K4 =

[
c13Ac12

c23Ac22

] (35)

An analogous structure to the plant is proposed for the controller where, yam(t) =[
e11 e12

]T
, ua(t) =

[
f14 f15

]T
and Da

o(t) = φa (Da
i (t)). Applying Lemma 3.3,

the control parameters are selected from Eq. (8),

yam1(t) = −1
c13γ

e11 − c12
c11αb1

,

yam2(t) = −1
c23γ

e12 − c22
c21αb2

,

f14 = c11Aαb1
(
−c13y

b
m1(t) + c14

)
,

f15 = c21Aαb2
(
−c23y

b
m2(t) + c24

)
and

f1i = α1iAo

√
2e1i
ρ , i = 6, . . . , 8

(36)

where α1i, i = 6, . . . , 8 are control parameters, and uai(t) and yami(t), i = 1, 2 are in
volts. Negative feedback is considered and the interconnection of the plant and the
controller is shown in Fig. 8. Then, the non-linear controller leads to ua(t) = −Kay

b
m(t)

and ub(t) = Kby
a
m(t) be linear functions of ybm(t) and yam(t), respectively, where,

Kb = −A
γ

[
c11αb1 0

0 c21αb2

]
and

Ka = −A
γ

[
c11αb1 0

0 c21αb2

] (37)

Since, Sa33 = Sb33 = Sa32 = Sb32 = 0 then from Theorem 3.5, ∆ = ∆̄ = I, ηc(t) = ηb(t),
ηd(t) = ηa(t),

ηa(t) = Sa31za(t) =

[
e11

e12

]
, ηb(t) = Sb31zb(t) =

[
e1

e2

]
(38)

where Sa31 = Sb31 =

[
1 0 0
0 1 0

]
. Also, f (za(t)) = za(t) and f (zb(t)) = zb(t), so,

fTa (za(t))S
a
13 =

[
e11 e12

]
,

fTb (zb(t))S
b
13 =

[
e1 e2

] (39)

where Sa13 = Sb13 =

 1 0
0 1
0 0

. Hence, applying Theorem 3.5, from inequality (20), the

overall system is passive, that is, 0 ≤ Ed, since Eg is a quadratic form with a skew
symmetric matrix, i.e., Eg = 0. So, the feedback system is passive for all 0 ≤ α1i ≤ 1,
i = 6, . . . , 8, the designer can tune α1i adding damping and achieving the desired
performance. �

Theorem 3.5 is applied to linear time-invariant systems in the following section.

15



5. Linear time-invariant systems

For Linear Time-Invariant (LTI) systems Eg can be described by a quadratic form of
z(t) or Di(t), that is,

Eg =

∫ t

0
zT (τ)Gz(τ)dτ or Eg =

∫ t

0
(Di(τ))T GDi(τ)dτ (40)

where G ∈ <n×n. Moreover, if G is a skew-symmetric matrix or the controller assures
that, then Eg vanish. Also, Eg ≥ 0 ⇐⇒ G ≥ 0. For LTI systems, three cases are
considered in the following result,

Lemma 5.1. Let z(t) ∈ <n×1 and Di(t) ∈ <q×1. Under Assumptions 1 and 2 an LTI
system modelled by bond graph is passive if,

(1) when Eg =
∫ t

0 z
T (τ)Gz(τ)dτ ,

0 ≤ diag{L, 0n−q} −G, q < n,
0 ≤ L− diag{G, 0q−n}, q > n and
0 ≤ L−G, q = n

(41)

(2) when Eg =
∫ t

0 (Di(τ))T GDi(τ)dτ

0 ≤ L−G, q ≥ n (42)

�

Proof. Under Assumption 2 the relationships for the junction structure
S(0, 1, TF , GY , MSe, MSf ) are given by Eq. (4). Then,

(1) For q < n, all the elements of Di(t) are directly related to the ones of z(t) and

let these relationships be the first q rows of z(t) then S12 =
[
−Iq 0q×(n−q)

]T
and S21 =

[
Iq 0q×(n−q)

]
,

(2) For q > n, all the elements of z(t) are directly related to the ones of Di(t) and
let these relationships be the first q rows of Di(t) then S12 =

[
−In 0n×(q−n)

]
and S21 =

[
In 0n×(q−n)

]T
, and

(3) For q = n, all the elements of Di(t) are directly related to all the ones of z(t),
then S12 = −In and S21 = In.

The constitutive relations of the dissipative field of LTI systems modelled by bond
graphs is Do(t) = LDi(t) where L ∈ <q×q is a matrix composed of 1/R, R and
multiport R elements. Hence, from inequality (3) and Eq. (40), the system is passive
if,

0 ≤
∫ t

0

[
zT (t) (diag{L, 0n−q} −G) z(t)

]
dτ , q < n,

0 ≤
∫ t

0

[
DT
i (t) (L− diag{G, 0q−n})Di(t)

]
dτ , q > n and

0 ≤
∫ t

0

[
zT (t) (L−G) z(t)

]
dτ , q = n

(43)

arriving at the result.

Clearly, in Lemma 5.1 if q < n then all the elements of z(t) are directly related
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Figure 9. A two-port mechanical system
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Figure 10. Closed loop configuration of the mechanical system.

to the ones of Di(t) and Ed is a quadratic form of z(t), while if q > n then all the
elements of Di(t) are directly related to the ones of z(t) and Ed is a quadratic form of
Di(t). Hence, in both cases, Ed − Eg is described by a quadratic form.

The results of Lemma 5.1 are applied in the following example, to the PBC of a
mechanical system.

Example 5.2.
The example of the work of (Ngwompo & Galindo, 2017) of the mechanical system

shown in Fig. 9 and modelled by BG in Fig. 10, is considered, where m1, b1, and ki, i =
1, 2, are the mass, the damping coefficient and the stiffness parameters, respectively.
Force e1 (t) and velocity f8 (t) are inputs applied to the system and the outputs are
the velocity y1 (t) of the mass and the spring force y2 (t) as indicated. This mechanical
system is considered in the closed-loop configuration of Fig. 10, so that u = K(yd± y)
with the modulating gain matrix given by,

K =

[
K11 K12

K21 K22

]
(44)

Different from the work of (Ngwompo & Galindo, 2017), an augmented bond graph
model is not required. From Fig. 10, Di(t) = f2 = f3 and f3 is an element of z(t) =[
f3 e4 e6

]T
, Do(t) = e2, so, L = b1. Under Assumption 1, yT (t)u(t) = yTd (t)ud(t)

is power, hence yd(t) = 0 is considered for the passivity analysis. So, from Fig. 10,
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Eg =
∫ t

0 (e1f1 + e8f8) dτ is the quadratic form,

Eg =

∫ t

0
[(±K11f3 ±K12e6) f3 − e6 (±K21f3 ±K22e6)] dτ (45)

Applying Lemma 5.1, since q < n, then, the closed loop system is passive if 0 ≤ Lcl =
diag {L, 0} −G where,

Lcl :=

 b1 ∓K11 0 ∓K12

0 0 0
±K21 0 ±K22

 (46)

The positive semi-definiteness of Lcl determines the passivity of the closed-loop system.
For this, Sylvester’s criterion is applied to the symmetric part of this matrix, i.e.,

1
2(Lcl + LTcl) =

 b1 ∓K11 0 1
2(∓K12 ±K21)

0 0 0
1
2(∓K12 ±K21) 0 ±K22

 (47)

that is the same result as the work of (Ngwompo & Galindo, 2017), without the
skew-symmetric matrix S11, and as the parasitic elements R2 and R3 tend to infin-
ity. So, for positive feedback, the passivity conditions are K11 ≤ b1, |K21 −K12| ≤
2
√

(b1 −K11)K22 and K22 ≥ 0, while for negative feedback, the passivity conditions
are any K11 ≥ 0, K21 = K12 and K22 = 0. �

The following Corollary applies Theorem 3.5 to the cascade and feedback inter-
connections of power-conservative LTI systems satisfying Assumptions 1 and 2. It is
assumed that the sub-systems are interconnected with no loading effect, that is, these
sub-systems are interconnected through active (signal) bonds that modulate sources
of effort or flow. Due to this connection, the overall system may not conserve energy.

Corollary 5.3. Suppose that the junction structures associated to the bond graph of
the LTI controller K and LTI plant P are given by equations (16) and (17), respectively,
and are interconnected in cascade and feedback with no loading effect as shown in
figures 6 and 2, respectively, and under Assumptions 1 and 2, fa (za(t)) = za(t) and
fb (zb(t)) = zb(t). Then, the cascade interconnection is passive if,

0 ≤ diag{L, 0na−qa} −Gc1, qa < na
0 ≤ L− diag{Gc2, 0qa−na

}, qa > na and
0 ≤ L−Gc3, qa = na

(48)

where

Gc1 :=

[
0na

0na×nb

Sb13KbΘa 0nb

]
, L := diag{La, Lb},

Gc2 :=

[
0na

0na×nb

Sb13KbΓa 0nb

]
, Gc3 :=

[
0na

0na×nb

Sb13KbΥa 0nb

] (49)

being Θa := Sa31 +
[
Sa32La 0

]
, Γa := Sa31 +

[
Sa32La

0

]
, Υa := Sa31 + Sa32La, La ∈

<qa×qa and Lb ∈ <qb×qb matrices composed of 1/R, R and multiport R elements of the
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constitutive relations of the dissipative field of K and P modelled by bond graphs, that
is, Da

o(t) = LaD
a
i (t) and Db

o(t) = LbD
b
i (t), respectively. The feedback interconnection

is passive if,

0 ≤ diag{L, 0na−qa+nb−qb} −Gf1, qa < na, qb < nb,
0 ≤ L− diag{Gf2, 0qa−na+qb−nb

}, qa > na, qb > nb and
0 ≤ L−Gf3, qa = na, qb = nb

(50)

where

Gf1 :=[
−Sa13∆̄−1KaS

b
33KbΘa −Sa13∆̄−1KaΘb

Sb13∆−1KbΘa −Sb13∆−1KbS
a
33KaΘb

]
,

Gf2 :=[
−Sa13∆̄−1KaS

b
33KbΓa −Sa13∆̄−1KaΓb

Sb13∆−1KbΓa −Sb13∆−1KbS
a
33KaΓb

]
and

Gf3 :=[
−Sa13∆̄−1KaS

b
33KbΥa −Sa13∆̄−1KaΥb

Sb13∆−1KbΥa −Sb13∆−1KbS
a
33KaΥb

]
(51)

being Υb := Sb31 + Sb32Lb, Ψ :=
(
I +KaS

b
33Kb

)−1
, Φ := I − Sa33ΨKaS

b
33Kb, Θb :=

Sb31 +
[
Sb32Lb 0

]
, Γb := Sb31 +

[
Sb32Lb

0

]
, ∆ := Imb

+KbS
a
33KaS

b
33 and ∆̄ := Ima

+

KaS
b
33KbS

a
33.

Proof. Using Da
o(t) = LaD

a
i (t) and Db

o(t) = LbD
b
i (t), equations (19) and (21) become,

ηa(t) = Sa31za(t) + Sa32LaD
a
i (t) and

ηb(t) = Sb31zb(t) + Sb32LbD
b
i (t)

(52)

Then, since fb (zb(t)) = zb(t), from Theorem 3.5 the cascade interconnection is passive
if,

0 ≤ Ed −
∫ t

0 z
T
b (τ)Sb13Kbηa(τ)dτ (53)

where,

Ed :=
∫ t

0

[
(Da

i (τ))T LaD
a
i (τ) +

(
Db
i (τ)

)T
LbD

b
i (τ)

]
dτ (54)

For qa ≤ na, all the elements of Da
i (t) are directly related to the ones of za(t) and

let these relationships be the first qa rows of za(t) then Sa12 =
[
−Iqa 0qa×(na−qa)

]T
and Sa21 =

[
Iqa 0qa×(na−qa)

]
. For qa > na, all the elements of za(t) are directly

related to the ones of Da
i (t) and let these relationships be the first qa rows of Da

i (t)

then Sa12 =
[
−Ina

0na×(qa−na)

]
and Sa21 =

[
Ina

0na×(qa−na)

]T
. Hence, since

Da
i (t) = Sa21za(t), from inequality (18),

0 ≤ Ed −
∫ t

0 z
T
b (τ)Sb13KbΘaza(τ)dτ , qa ≤ na,

0 ≤ Ed −
∫ t

0 z
T
b (τ)Sb13KbΓaza(τ)dτ , qa > na

(55)
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So, the result of inequalities (48) follows applying Lemma 5.1 with z(t) :=[
zTa (t) zTb (t)

]T
and Di(t) :=

[
(Da

i (τ))T
(
Db
i (τ)

)T ]T . Also, from Eq. (21), for

qa ≤ na and qb ≤ nb

ηc(t) := Θbzb(t) + Sb33KbΘaza(t) and
ηd(t) := Θaza(t)− Sb33KbΘbzb(t)

(56)

and for qa > na and qb > nb,

ηc(t) = Γbzb(t) + Sb33KbΓaza(t) and
ηd(t) = Γaza(t)− Sb33KbΓbzb(t)

(57)

Hence, applying Theorem 3.5, since fa (za(t)) = za(t) and fb (zb(t)) = zb(t), for qa ≤ na
and qb ≤ nb, the feedback interconnection is passive if,

0 ≤ Ed +
∫ t

0 z
T
a (τ)Sa13∆̄−1Ka

[
Θbzb(τ) + Sb33KbΘaza(τ)

]
dτ+

−
∫ t

0 z
T
b (τ)Sb13∆−1Kb

[
Θaza(τ)− Sb33KbΘbzb(τ)

]
dτ

(58)

and for qa > na and qb > nb,

0 ≤ Ed +
∫ t

0 z
T
a (τ)Sa13ΨKa

[
ΓbD

b
i (τ) + Sb33KbΓaD

a
i (τ)

]
dτ+

−
∫ t

0 z
T
b (τ)Sb13Kb

[
ΦΓaD

a
i (τ)− Sa33ΨKaΓbD

b
i (τ)

]
dτ

(59)

Hence, the result of inequalities (50) follows applying Lemma 5.1.

Remark 2. If qa = na and qb = nb, removing the skew-symmetric matrices Sa11 and
Sb11, Corollary 1 includes the result of Theorem 3.5 about the cascade interconnection of
the work of (Ngwompo & Galindo, 2017). Also, if the plant and the controller are de-
scribed by state-space realizations, a useful result is the one given by the work of (Gon-
zalez & Galindo, 2009) with the change of sign of the storage field proposed by (Galindo

& Ngwompo, 2017), that is, if

 ẋa(t)
Da
i (t)
ya(t)

 =

 0 −I Ba
I 0 0

CaF
−1
a 0 Da

 za(t)
Da
o(t)

ua(t)

 , ẋb(t)
Db
i (t)
yb(t)

 =

 0 −I Bb
I 0 0

CbF
−1
b 0 Db

 zb(t)
Db
o(t)

ub(t)

 , La = −AaF−1
a and Lb = −AbF−1

b

then,

Gc :=

[
0 0

BbKbCaF
−1
a 0

]
(60)

and L = diag{−AaF−1
a , − AbF−1

b }, that is the result of the cascade interconnection
of (Galindo & Ngwompo, 2017). Using Eq. (25), Gf3 can be rewritten as,

Gf3 :=

[
−Sa13

−Sb13KbS
a
33

]
∆̄−1Ka

[
Sb33KbΥa Υb

]
+[

0 0
Sb13KbΥa 0

] (61)
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Then, Corollary 1 also includes the result of Theorem 4.1 about the feedback intercon-
nection of the work of (Galindo & Ngwompo, 2017). �

If p = n, in the work of (Galindo & Ngwompo, 2017) it is proposed an approximation
of the derivative to control position outputs when the controller is designed for speed
control. So, the tracking control problem is solved. Also, the problem of pole placement
for a particular class of systems is considered in the work of (Galindo & Ngwompo,
2017).

6. Conclusions

The proposed approach based on the dissipative and internally generated energies,
and on a controller with a similar structure to the plant, greatly simplify the passivity
analysis and control. The control parameters of the feedback system are selected such
that the difference between the dissipated and the internally generated energies be
positive. This can be accomplished by adding damping or assigning a desired dissipated
energy. Moreover, the dissipative analysis is simplified by the design of a controller
such that the internally generated energy vanishes. So, the control parameters and
variables have physical meaning and the implementation of the controller is facilitated.
The method provides a guide for the selection of the controller structure and the
assignment of relevant parameters. Further, for linear time-invariant systems with the
same dissipative and storage dimensions, the results reduce to results published in the
literature. Hence, the system is passive if the matrix associated with the quadratic
form of the energies is positive semidefinite. The results have potential applications in
control and mechatronics for analysis, design and optimization.
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