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Abstract

This study is motivated by the need to restore part of the Nepal water distribution network that

was destroyed by the Gorkha and Dolakha earthquakes in April and May 2015. The problem

consists of two hierarchical subproblems: locating water taps to ensure a good coverage of the

population, and connecting these water taps to water sources by means of a pipe distribution

network. Both subproblems are subject to a variety of accessibility and technical constraints that

make the problem unique and highly complex. Namely, because Nepal is highly mountainous,

elevations must be taken into account in the distance calculations, and the distribution network

is gravity-fed, meaning that pumps are not used. The problem is solved by means of a two-

phase matheuristic: the first subproblem is a constrained location-allocation problem which

is solved exactly by integer linear programming, while the second subproblem is tackled by

means of a cluster-first, tree-second heuristic. Several variants of the heuristic are developed

and compared. The network design problem is of very large scale, being solved on a graph with

as many as 29,900 vertices and 75,200 arcs. Tests are performed on real-world data, obtained

by satellite imagery, from the Suspa Kshemawati and Lapilang communities in the Dolakha

district. Extensive computational results confirm the effectiveness of the proposed methodology

1Corresponding author: jessica.rodriguez@upf.edu
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and enable an identification of the best parameter settings and algorithmic tactical choices.

Keywords: Water distribution network design, humanitarian logistics, location-allocation,

Steiner forest, gravity-fed system, Dolakha district

1. Introduction

The lack of access to drinking water is one of the most important humanitarian and de-

velopment problems in remote areas of developing countries. The efforts made to improve the

distribution of clean water, and to provide better sanitation and hygiene help protect vulnera-

ble populations from waterborne diseases, such as intestinal worms, typhoid fever, and cholera,

which is one of the leading causes of death in the world. A report from WHO2 and UNICEF

(2019) states that in 2017 the poor and rural communities were the most at risk and it was esti-

mated that only 71 percent of the world population could benefit from a safely managed drinking

water service, i.e., drinking water from an improved water source that is located on premises,

available when needed, free from faecal and priority chemical contamination, and within a col-

lection time that is no more than 30 minutes for a round trip, including queueing. Ensuring

global access to clean water figures among the 17 Sustainable Development Goals (SDG) es-

tablished by the United Nations General Assembly (2015) in the 2030 Agenda for Sustainable

Development. In particular, the SDG 6, called “Clean water and sanitation”, seeks to achieve

universal and equitable access to safe and affordable drinking water for all. For a developing

country such as Nepal, which is the focus of this study, it is challenging to achieve this goal

given its poor infrastructure and high population growth (Udmale et al., 2016).

Improving the resilience of water, sanitation and hygiene systems is key to the security issue

of sustainable development of Nepal (Shrestha and Dahal, 2020), as failure to make water services

resilient to disasters can have negative impacts on human health and well-being, as well as on

the economy, productivity, and development (Aihara et al., 2018). This goal is promoted by

WASH United, a non-profit organization that operates in several countries. The present study is

motivated by the case of the two earthquakes that hit the Gorkha and Dolakha districts of Nepal

on 25 April and 12 May, 2015 (see Figure 1), and greatly impaired the provision of health-care

and water, sanitation and hygiene services (Bagcchi, 2015). These earthquakes destroyed over

half a million houses, and severely damaged services and infrastructures, making an innumerable

number of Nepalis homeless (National Planning Commission, Kathmandu, Nepal 2015; Nepal

2Appendix A contains a glossary of the abbreviations used in this paper.
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Figure 1: Epicentres of the Gorkha and Dolakha earthquakes. Source: Goldberg (2015).

Red Cross Society, 2017). Prior to the earthquakes, it was already difficult for the Government

of Nepal to fulfil potable water supply needs, and the damages of the existing infrastructure

have made this task even more challenging (Mishra and Acharya, 2018). Many of the most

affected areas were rural, and some of them were difficult to reach. More than 1.1 million people

were left without access to a protected water source, as the water supply systems across 14

districts were destroyed (Office for the Coordination of Humanitarian Affairs, 2015). After an

initial emergency response phase, an Earthquake Response Operation was established in the

affected districts. Part of its program embraced the rehabilitation of 18 damaged community

water supply systems in the Dolakha district (Figure 2), which is our region of interest (RoI),

where the main sources to drinking water were gravity-fed systems with community tap stands

(Riedler et al., 2017).

In this context, with the collaboration of the Interfaculty Department of Geoinformatics

(Z-GIS) of the University of Salzburg, and of the Austrian Red Cross Society (AutRC), which

cooperated with the National Red Cross Societies of Nepal and Switzerland, a proposal was made

to develop an optimization tool to support the rehabilitation of the community water supply

systems and provide a database for future situations. Data collection during a disaster poses
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many challenges, including secure access to the affected area, preparing resources for the data

collection, obtaining informed consent from the affected population, fragmenting data collection,

and reporting among different relief teams (Kubo et al., 2019). Because the lack of adequate

and accurate data may hinder the rehabilitation work, it is crucial to gather and extract the

relevant information from raw data from all available sources into a structured dataset that can

be later exploited to tackle the rehabilitation and design of water supply systems. As noted by

Nomura et al. (2021), the use of geographic information systems for operational research can

help develop location analysis and obtain more accurate data on spatial elements, such as road

networks and geographic obstacles.

Figure 2: Topographic map of Nepal showing the Dolakha district.3

3This map and all subsequent ones were generated with QGIS 3.18 in the WGS84 reference system and

represented in the UTM (Zone 45, Northern hemisphere) projection, with coordinates expressed in meters.

These maps were produced by Joel Grau Bellet, a professional cartographer, and the authors.
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1.1. Problem definition

The goal of this work is to model and solve a Water Supply System Design Problem (WSSDP)

based on a gravity-fed system (see Section 2) which consists of two subproblems. The first is

called the Water Tap Location-Allocation Problem (WTLAP) whose aim is to determine the

number and the locations of community water taps (WTs) and the assignment of households to

WTs under certain accessibility standards. The second subproblem is called the Water Distribu-

tion Network Design Problem (WDNDP) whose aim is to identify a low-cost network connection

from the water sources (WSs) to the WTs identified in the first subproblem, while respecting the

technical specifications of a gravity-fed water system. In this paper we develop a methodology

capable of solving the WSSDP from scratch, but in practice this may not be necessary since the

planners may wish to make use of parts of the infrastructure that are still functional. After an

earthquake, determining which parts of the network can be reused falls under the responsibility

of civil engineers. In our application we were told that it would be preferable to design a full

network. However, our methodology can easily be adapted to the case of a partial network

reconstruction, as we explain at the beginning of Section 3.

The primary objective of the humanitarian organizations handling the aftermath of the

earthquakes is to maximize the population’s access to a safe water point respecting the WASH

standars, which translates into solving the WTLAP. According to National Red Cross Societies

of Nepal, Austria and Switzerland involved in the rehabilitation program of our RoI, connecting

the WTs identified by the WTLAP is only a secondary objective since the cost of installing

water pipes is not nearly as important as ensuring the health and welfare of the population. For

this reason, the WTLAP and the WDNDP must be solved hierarchically, which also has the

advantage of simplifying the solution process.

Defined on a directed graph, a feasible solution for the WSSDP is a Steiner forest, i.e., a

collection of Steiner trees4 (Gilbert and Pollak, 1968), each rooted in a WS which together span

all WTs and assign households to WTs. Like a minimum spanning tree (MST), a Steiner tree

spans all vertices of a graph, but there is a key difference between the two problems. In an MST,

only the links that directly connect vertices of the graph may be used, whereas in a Steiner tree

extra vertices, called Steiner vertices, may be added to the graph in order to reduce the cost

of the solution. From a computational point of view the MST is an easy problem that can be

4Strictly speaking, these are arborescences, i.e., directed trees in which every vertex can be reached from a

root vertex, here a WS (Gross et al., 2013). However, for simplicity of writing, and since no confusion can arise,

we use the word tree.
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solved in polynomial time by means of a greedy algorithm (Prim, 1957), whereas the Steiner

tree problem is NP-hard and very difficult to solve in practice. Figure 3 depicts two feasible

solutions for the WSSDP, with four trees if there is no Steiner vertex, or three trees if a Steiner

vertex is used. On the left, each of the two WSs serves two trees from different access points,

while on the right two of the trees are merged into one through the Steiner vertex, resulting in

a shorter network.

Water source Steiner vertex Assignment arcNetwork arcHousehold Water tap

Figure 3: Examples of solutions for the WSSDP without and with a Steiner vertex.

1.2. Positioning of this study within several streams of literature

The WSSDP belongs to the class of General Network Design Problems (Contreras and Fer-

nández, 2012) which combines two important research areas in network optimization: location

analysis and network design. In our context these two components are the WTLAP and the

WDNDP. The WSSDP is related to the Connected Facility Location Problem (ConFLP) which

aims to identify a minimum cost assignment of each user to exactly one opened facility and

to interconnect the opened facilities via a Steiner tree. However, there are several important

structural differences between the WSSDP treated in this paper and the classical ConFLP:

1) any feasible solution of the WSSDP has to respect some technical requirements of a water

supply system based on a gravity flow, a constraint not considered in the ConFLP; 2) unlike

the ConFLP, a feasible WSSDP solution is represented by a Steiner forest, where some WSs

are root vertices of the Steiner trees, but not all of them are necessarily used; 3) the WSSDP

considers capacity constraints for the WSs and the WTs; and 4) in the WSSDP the households

assignments have to respect specific foot travel restrictions (see Section 2.1).

Several approaches have been proposed to solve network design problems arising in the con-

texts of disaster relief and development programs, in which location decisions are an important

component (see the reviews of Dönmez et al. (2021) and Trivedi and Singh (2018)). However,
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to the best of our knowledge only one article describes the use of spanning trees in this context

(Karsu et al., 2021). Regarding the literature on locational decisions in humanitarian logistics,

there are two main streams: the location of warehouses and that of service points. International

and national warehouse location decisions are often considered for prepositioning equipment and

relief items, (e.g., Balcik and Beamon, 2008; Jahre et al., 2016; Acimovic and Goentzel, 2016; Ar-

nette and Zobel, 2019). Maharjan and Hanaoka (2017) determine an optimal set of warehouses

for humanitarian relief by solving a covering location problem adapted to the case of Nepal. We

refer the reader to Balcik et al. (2016), Kara and Rancourt (2019) and Sabbaghtorkan et al.

(2020) for reviews of prepositioning problems. Here we aim to locate WTs in rural and remote

areas, which could be considered as distribution or dispensing points in a humanitarian setting,

i.e., locations where beneficiaries are served. In line with this objective, Rancourt et al. (2015)

determined a set of food aid distribution points in Kenya by considering the joint welfare of the

humanitarian agencies and of the beneficiaries. As in our study, spatial data were processed to

determine the parameters of the last-mile distribution network, optimized by solving classical

location models, where the welfare of the beneficiaries was modeled as a function of their walking

distance. VonAchen et al. (2016) and Cherkesly et al. (2019) solved a location-routing covering

problem arising in a community healthcare program, whose aim was to cover underserved areas

of Liberia. Other applications combining coverage and routing problems for relief distribution

and healthcare delivery considered walking distances. For example, Nolz et al. (2010) and Naji-

Azimi et al. (2012) adapted classical coverage-routing problems to optimize relief distribution

in disaster-affected areas, while Doerner et al. (2007) and Hodgson et al. (1998) adapted them

to locate mobile clinics in developing countries. Tatham et al. (2010) presented a bi-objective

location-routing model to plan water distribution tours by considering features such as trans-

portation modes, road categories, and a coverage constraint. However, these problems aim to

plan service delivery tours as opposed to designing a distribution network, as we do. Moreover,

in our case, the location decisions related to WTs are prioritized as a primary objective, which

makes the location and network design problems separable.

In parallel, there exists a rich literature on the urban water network design problem, where

physical features such as the length and diameter of the pipelines and a coverage radius must be

determined (see D’Ambrosio et al. (2015) for a survey on drinking water distribution network

optimization problems). In these studies, the methodologies are mostly designed for cities where

the locations of both the demand nodes and pipes are already known, whereas in our case these

decisions have to be made. Karsu et al. (2021) studied a water network design problem quite
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similar to ours, to distribute water in refugee camps. They proposed a bi-objective integer

programming model to determine the locations of WTs and the design of the network. Their

first objective was to minimize the total length of the network, while the second objective was to

maximize accessibility by reducing the walking distance to the WTs. Their problem was solved

by means of exact and heuristic algorithms to identify Pareto-optimal solutions. Unlike these

authors, we consider complex technical constraints brought by the need to consider of a gravity-

fed system, and there is no limitations on the number of WTs to open. The network topology

proposed in Karsu et al. (2021) is a tree that does not use Steiner vertices to help reduce the

length of the network. Moreover, while their instances are also based on real data, they contain

only 38 or 73 vertices, whereas our instances are larger by three orders of magnitude.

1.3. Scientific contributions and organization of this paper

Our main scientific contribution is to introduce, model and solve a complex network de-

sign problem arising in the distribution of drinking water in remote mountainous areas, with

an emphasis on Nepal. The problem is new and highly relevant in the context of humanitar-

ian development projects. It is also difficult to solve because of its continuous nature and its

very large scale. For example, in our test instances, the underlying graph contains as many as

29,900 vertices and 75,200 arcs. In addition, the need to respect some WASH national acces-

sibility standards and to satisfy some technical constraints associated with the feasibility of a

gravity-fed system results in several modeling and algorithmic difficulties. Taken together, these

features make our problem very different from those studied in the network design literature,

and considerably more difficult to solve than most.

The first critical step in solving the problem lies in data collection which by itself poses several

challenges in a humanitarian context. We obtained data from satellite imagery, technical reports

and the AutRC. The raw data had to be processed in order to create the graph that constitutes

the basis of our mathematical model. While distance computations pose no major challenges

in most network design problems, here we had to adapt the classical Dijkstra (1959) shortest

path algorithm to account for three different distance types that can occur in the context of the

WSSDP, namely some tridimensional distances due to the topography of the RoI.

Because our problem is of very large scale and high complexity, it is impractical to solve

it exactly. We have therefore developed an efficient matheuristic that exploits the separable

nature of the WSSDP into the WTLAP and the WDNDP. The first subproblem is solved exactly

through integer linear programming, while the second subproblem is solved heuristically through
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simulated annealing (SA). The SA phase performs a neighbourhood search over a set of potential

Steiner vertices and solves GMSTs, exactly for the given selections of Steiner vertices, i.e., MSTs

constrained by the technical requirements of a gravity-fed water distribution system. The overall

procedure is obviously heuristic since the output of the WTLAP influences the solution of the

WDNDP, and the SA heuristic employed for the solution of the WDNDP performs a limited

search.

We solved two real instances of the problem on two Village Development Committees (VDCs)

data sets in the Dolakha district. We performed extensive numerical analyses to assess the

impact of several algorithmic variants, and to generate managerial insights.

The remainder of this paper is organized as follows. Section 2 presents the main features of

the WSSDP. Section 3 describes the proposed matheuristic. Section 4 reports the computational

results. Conclusions follow in Section 5.

2. The Water Supply System Design Problem

The main sources of drinking water in remote mountainous areas of Nepal are gravity-fed

community systems where people have to walk daily to fetch water at community WTs. The

use of gravity-fed systems is often advocated for water distribution in developing countries since

these systems do not rely on pumps which are costly. They also require a source of energy as well

as maintenance, which entail extra expenditures and expertise. Indeed, pump-operated systems

often make use of foreign equipment that is unfamiliar to the local populations (Oxfam, 2019;

GC et al., 2021; Ambuehl et al., 2021). Moreover, due to the terrain which is usually rough

and mountainous in Nepal, people are often required to walk over large distances in a steep

landscape to reach a WT. The goal of the WSSDP is to design a community gravity-fed system

whose emphasis is the location of the community WTs in such a way that walking distances

for the assigned households meet the WASH national standards. Additionally, the network cost

incurred to connect WSs to WTs should be minimized. We now describe the WTLAP and the

WDNDP which are the two components of the WSSDP.

2.1. The Water Tap Location-Allocation Problem

The WTLAP consists of identifying optimal locations of WTs, and assigning households to

these locations in such a way that the users do not have to walk more than a preset distance to

reach a WT, based on the WASH standards. An optimal solution of the WTLAP must provide

a good trade-off between the minimization of the walking distances and the number of opened
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WTs. To limit the walking distances we apply a standard which determines the maximum

horizontal and vertical distances between the households and the WTs. In some exceptional

cases these standards can be relaxed. We denote by (∆,Σ) the preferred maximum horizontal

and vertical distances, and by (∆̄, Σ̄) the longer walking distances allowed in exceptional cases.

Furthermore, two additional constraints are imposed on the solution: 1) a maximum number of

households that can be assigned to the same WT, and 2) some points of interest (PoIs) which

represent facilities such as hospitals or schools requiring a dedicated WT.

It is worth noting that distances alone do not fully capture the effort expended by users

to fetch their water since these do not take into account the weights that are transported. In

this context, an alternative to distance is the work, measured in joules, which is a function of

distance, weight, and angle of displacement (see Young and Freedman, 2020). Thus, a user

equidistant from a WT called A (downhill) and a WT called B (uphill) will likely prefer to fetch

his water from B since it is easier to bring back a container full of water from B than from A.

Using work measures instead of distances in our model and algorithms is straightforward.

2.2. The Water Distribution Network Design Problem

The WDNDP consists of determining a minimum cost water supply network. Once the

locations of the WTs have been identified, and the total daily demand of water per WT has

been computed based on the assigned households, water has to be channeled from WSs to WTs

while ensuring that the capacity of each WS is respected and that the connections from WSs

to WTs satisfy some technical requirements for a gravity-fed system: 1) A WS cannot provide

water to a WT if the WT location or any part of the pipes connecting them is on a higher

elevation than the WS. This is a necessary but not sufficient condition to ensure that a WT can

receive water. 2) Let eWS and ev denote the elevation of a WS and of a generic point v, such

that eWS − ev ≥ 0, and let dWS,v be the distance in the three-dimensional space from the WS

to v, along a path such that none of the points in it has a higher elevation than eWS . Vertex v

can receive water from the WS only if

eWS − ev − γdWS,v ≥ 0 (1)

for some positive coefficient γ. This formula is based on the Hazen-Williams equation (Williams

and Hazen, 1933), which is an empirical relationship relating the flow of water in a pipe with its

physical properties, and is used to calculate the pressure drops of the system. The coefficient

γ depends on the pipe attributes, such as its diameter, the discharge rate and the roughness
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coefficient of the material of which it is made. We used γ = 0.1 in our implementation (see

Appendix B).

Distance from WS to WT

𝑑 ൌ 2,300 m

𝑒ௐௌ = 1,950 m

Water tap potential 
location (WT)

Water source (WS) Elevation of WS Elevation of WT

𝑒ௐ் = 850 m

𝑑 𝑒ௐௌ 𝑒ௐ்

Figure 4: Infeasible and feasible connections from a WS to WTs.

Figure 4 depicts two examples of a connection from a WS to a WT. The connection to the

two WTs in the example on the left does not satisfy the first technical requirement since there

is a point with a higher elevation than the WS. The example on the right provides a possible

connection from a WS to a WT since both requirements are respected. There is no point on

the connection path with a higher elevation than the WS. In addition, considering the elevation

values, the distance from WS to the potential WT location, and a value of γ = 0.1, constraint

(1) is respected.

As outlined above, capacity constraints are considered. This means that the daily capacity

associated to a WS must satisfy the demand from all the WTs connected to it. Since each

household and each PoI is assigned to exactly one WT, each WT will have a total daily demand

of water, given by the sum of the daily demands assigned to it.

The constraints imposed on the locations of WTs and the rules regarding the accessibility

of households to WTs yield some simplifications. First, any potential WT location that cannot

be connected to a WS due to the technical requirements cannot be used to locate a WT and is

therefore eliminated. Second, every household that cannot reach any remaining WT potential

location under the exceptional walking distance is eliminated. Third, a WT potential location

that cannot be reached by any household is also eliminated.

3. Solution methodology

We now describe the hierarchical matheuristic we have designed for the WSSDP. Figure 5

provides an overview of the proposed solution methodology. As mentioned in Section 1.1, the
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WSSDP consists of two subproblems which are solved hierarchically: the WTLAP and the WD-

NDP.

Phase 2: Tree-second

WNDNP: Cluster-first, tree-second heuristic
Goal: Design a Steiner forest network

Phase 1: Cluster-first

WTLAP: Optimization model solved exactly
Goal: Identify WT locations and household assignments

Step 1a: Clustering
Goal: Assign WTs to WSs

Step 1b: Generation of Steiner vertex candidates
Goal: Obtain a reduced set of Steiner vertices

Step 2a: Gravity MST optimization model 
Goal: Generate an initial solution

Step 2b: Gravity Steiner MST simulated annealing
Goal: Construct a Steiner tree for each cluster

Figure 5: Structure of the matheuristic for the WSSDP.

The first subproblem consists of determining the number and the locations of WTs to install,

and the allocation of the households to the WTs by assigning weights to the number of WTs

and to the total user walking distances. This problem is modeled as a Fixed-Charge Facility

Location Problem (Fernández and Landete, 2019) which can be solved exactly for the instance

sizes considered in this paper.

The second subproblem is solved heuristically. It takes as an input the locations of WTs

provided by the WTLAP solution and connects them by means of a Steiner forest subject to

gravity constraints. This problem is very hard to solve, even for small-scale instances. Our

computational experiments indicate that the gravity constraints are a major source of difficulty,

and even relatively small instances of the GMST cannot be solved to optimality. For this reason,

we cannot assess the quality of our heuristic by making comparisons with optimal solution values,

as is often done.

We have developed a cluster-first, tree-second heuristic for the WDNDP. In the first phase

we cluster the WTs by assigning each WT to a WS, and we identify the potential Steiner vertices
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associated with each cluster. Next, in the tree phase, we design the network by heuristically

computing a minimum Steiner tree for each cluster, subject to the technical requirements for

a gravity-fed system. This is achieved by first optimally computing a GMST on each cluster,

and then performing a local search heuristic in order to include Steiner vertices in the tree and

iteratively computing an MST for each selection of Steiner vertices by means of a variation of

the Prim (1957) greedy algorithm, which is easy to implement and very fast. This way of pro-

ceeding means that the local search can be performed efficiently through a single neighbourhood

local search scheme consisting of the selection of Steiner vertices. There is therefore no justi-

fication to develop a sophisticated multi-operator search metaheuristic such as adaptive large

neighbourhood search (Pisinger and Ropke, 2007). We have used SA which is a simple local

search scheme well suited to our context. As we will show in Section 3.2.4, it uses only four

parameters and is very fast.

As mentioned in Section 1.1, our methodology can easily be adapted to handle the case

where only a partial network is designed. Fixing the locations of existing WTs is easily done

in the WTLAP model by assigning a value of one to the corresponding decision variables. In

the computation of the GMSTs, the costs of the existing pipes can be set to zero in order to

promote, but not force, their inclusion in the solution.

3.1. WTLAP optimization model

The WTLAP is defined on a directed graph G = (V,A), where V is the vertex set and A is

the arc set. This graph is obtained by partitioning the RoI using a grid of equal-size cells and

associating the centroid of each cell to a vertex of the graph. We also define the following sets,

parameters, and variables:

L ⊆ V : set of potential WT locations;

H ⊆ V : set of vertices representing the cells that contain households;

H ′ ⊆ L: set of cells containing a PoI that requires a dedicated WT, H ′ ∩H = ∅;

P ⊂ A: set of arcs representing possible assignment of households to WTs, (h, l) ∈ P ;

Pp ⊆ P : set of assignment arcs where arc (h, l) is within preferred distance limit;

Pe ⊆ P : set of assignment arcs where arc (h, l) is within exceptional distance limit;

gh: number of households at vertex h, h ∈ H;

η: maximum number of households that can be served from the same WT;
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d̂hl: contribution that assignment (h, l) makes to the average distance. It is computed by

dividing the total walking distance from h to l by the total number of households in the

RoI;

αw: weight assigned to the number of WTs installed;

αp: weight assigned to the average walking distance in preferred cases;

αe: weight assigned to the average walking distance in exceptional cases;

sl: binary variable equal to one if and only if a WT is located in l ∈ L;

thl: binary variable equal to one if and only if households in h ∈ H are assigned to the WT in

l ∈ L.

The problem can then be formulated as follows:

(WTLAP ) minimize αw
∑
l∈L

sl + αp
∑

(h,l)∈Pp

d̂hlthl + αe
∑

(h,l)∈Pe

d̂hlthl (2)

subject to ∑
(h,l)∈P

thl = 1 h ∈ H (3)

∑
h|(h,l)∈P

ghthl ≤ ηsl l ∈ L \H ′ (4)

sl = 1 l ∈ H ′ (5)

sl ∈ {0, 1} l ∈ L \H ′ (6)

thl ∈ {0, 1} (h, l) ∈ P. (7)

The first term of the objective function (2) minimizes the number of installed WTs. The sec-

ond and third terms represent the average walking distance associated with the WASH preferred

and exceptional walking distances, respectively. Equalities (3) mean that each cell containing

households is served by one WT. Constraints (4) guarantee that an opened WT in l covers at

most the maximum allowed number of households assigned to that vertex, and also ensure that

households cannot be assigned to a potential WT location if no WT is located in it. Equalities

(5) ensure that PoIs are assigned to a dedicated WT in the same cell. In particular, constraints

(5) state that a WT has to be installed at that particular vertex. Finally, constraints (6) and (7)

define the domains of the variables. Note that the walking accessibility standards are implicitly

satisfied since the variables thl are only defined for those pairs that fulfil the WASH standards.
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3.2. WDNDP cluster-first, tree-second heuristic

The WDNDP is also defined on the directed graph G = (V,A), where the following sets,

parameters and variables are defined:

L ⊆ V : set of WTs locations defined in the (WTLAP);

F ⊆ V : set of WSs with associated daily capacity cf , f ∈ F ;

Lf ⊆ L: set of WTs assigned to WS f in the solution of the clustering process;

Rf ⊆ V : set of vertices representing cells that contain an access point to WS, f ∈ F ;

S ⊆ V : set of Steiner vertices;

0: a supersource feeding all the WSs;

O ⊂ A: set of arcs (i, j) representing possible connections in the water supply network with

associated distance dij ;

ORfL ⊂ O: set of arcs representing possible connections between WS access points of WS f ,

f ∈ F , and WTs;

ORfS ⊂ O: set of arcs representing possible connections between WS access points of WS f ,

f ∈ F , and Steiner vertices;

OLS ⊂ O: set of arcs representing possible connections between WTs and Steiner vertices;

OSL ⊂ O: set of arcs representing possible connections between Steiner vertices and WTs;

OLL ⊂ O: set of arcs representing possible connections between WTs;

OSS ⊂ O: set of arcs representing possible connections between Steiner vertices;

O0Rf : set of arcs (0, r) representing the connections from the supersource to an access point

r ∈ Rf , f ∈ F with associated distance d0r = 0;

q: average daily demand for a household;

ql: aggregation of the daily water demand of the households or PoIs assigned to WT, l ∈ L\H ′,

i.e., ql =
∑
h∈H qghthl;

q′l: average daily demand of a PoI located in l ∈ H ′;

ei: elevation of a vertex i;

D: sum of all distances;

zfl: binary variable equal to one if and only if WT l ∈ L is assigned to WS f ∈ F ;

xij : binary variable equal to one if and only if arc (i, j) ∈ ORfL ∪OLL ∪O0Rf is selected;

vij : amount of water flow through arc (i, j) ∈ ORfL ∪OLL ∪O0Rf ;

yrj : binary variable equal to one if and only if the WT located at j ∈ Rf ∪ Lf receives water

from a path coming from r ∈ Rf ;

wj : elevation of the source point that serves j ∈ Rf ∪ Lf ;
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uj : length of the path from the source point to j ∈ Rf ∪ Lf .

In order to solve real-size instances of the WDNDP, we have developed a cluster-first, tree-

second heuristic. In the cluster phase, an integer linear programming model is solved to group

the WTs and assign them to an available WS. Then, in order to narrow down the set of Steiner

vertices, three procedures are presented to determine the candidate set of Steiner vertices. Fi-

nally, in the tree phase, for each of the clusters of WTs an initial solution is obtained by solving

an MST optimization model that includes the two technical requirements for a gravity-fed sys-

tem (Section 2.2). Then, four variants of an SA local search heuristic, that differ from each

other in the procedure developed to build the new neighbour solution, are applied to improve

the initial solution. In the following subsections, we describe the proposed heuristic in detail.

Section 3.2.1 presents the model implemented for grouping the WTs. Section 3.2.2 describes

three procedures for identifying the Steiner vertices. Section 3.2.3 provides the mathematical

programming formulation for the gravity-fed system used as an initial solution. Finally, Section

3.2.4 describes the neighbourhood search mechanism, i.e., the procedures applied to build the

neighbouring solution in the SA heuristic.

3.2.1. Clustering

The assigment of WTs to WSs can be formulated and solved as the Generalized Assignment

Problem (GAP). This problem computes a minimum distance assignment of WTs to capacitated

WSs and can be formulated as the following integer linear program:

(GAP ) Minimize
∑
f∈F

∑
l∈L

dflzfl (8)

subject to ∑
f∈F

zfl = 1 l ∈ L (9)

∑
l∈L

qlzfl ≤ cf f ∈ F (10)

zfl ∈ {0, 1} f ∈ F, l ∈ L. (11)

Equalities (9) guarantee that each WT is assigned to exactly one WS. Constraints (10) limit

the WTs assigned to a WS by ensuring that the daily capacity is not exceeded. Finally, the

binary conditions on the decision variables are imposed through constraints (11). Note that
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the variables zfl are only defined for those pairs that verify the technical requirements for a

gravity-fed system, meaning that WT l can be reached from WS f . With this model, we can

identify |F | clusters of WTs, each of which associated with one WS.

3.2.2. Generation of sets of promising Steiner vertex candidates

Referring to network trees, Steiner vertices are extra intermediate vertices that may be

included in the network solution in order to connect all leaf vertices (WTs). The purpose of

adding Steiner vertices is to create a shorter-length network. In our problem, all reachable

cells in the RoI may become a potential Steiner vertex. We reduce the cardinality of the

set S of Steiner vertices from a very large set, already discretized from a continuous space

into cells and cell centroids (see Section 4.1.2), to a heuristically constructed finite set of much

smaller cardinality containing promising Steiner vertex candidates. We suggest three alternative

procedures to determine which cells to keep as potential Steiner vertices considering the WTs

coordinates. These procedures will be compared in Section 4.3.3 and are separately applied to

each of the clusters obtained during the clustering process:

1) The first procedure, called SK , is to apply the K-means algorithm to the WT coordinates

for different values of K. The K-means algorithm is a common clustering method used,

for example, in data mining to partition a set of observations into K clusters in which

each observation belongs to the closest midpoint. At this point, we are not interested in

the partitioning result but only in the midpoints identified to become potential Steiner

vertices. The steps of the algorithm are provided in Algorithm 1. The stopping criterion is

set to 100 iterations, and the algorithm is iteratively applied forK = 1, ..., |Lf |/2, resulting

in at most [|Lf |/2(1 + |Lf |/2)]/2 potential Steiner vertices.

Algorithm 1 Pseudocode for the K-Means algorithm.
Require: L set of data points (WTs) and number of desired partitions |K| ≥ 2

Ensure: K set of partitions associated to a midpoint m1,m2, ...,m|K|

iter = 0

repeat

for all data points l ∈ L do

Assign l to the closest mj 1 ≤ j ≤ |K|

end for

Recompute the partition midpoints according to the assigned data points

iter++

until iter = itermax
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2) The second procedure, called S3, identifies one potential Steiner vertex for each subset of

three WTs by finding the midpoint of the subset. The coordinates of the midpoint are

computed as the mean of the WTs coordinates and replaced with its cell centroid. The

number of potential Steiner vertices is then
(|Lf |

3

)
= |Lf |!/[3!(|Lf | − 3)!].

3) The third procedure, called SF , is to use Fermat points, also called Toricelli points, as

potential Steiner vertices. The Fermat point of a triangle is the point that minimizes the

sum of distances between it and the three vertices of the triangle. Hence, similarly to

the second procedure, for each subset of three WTs we identify the Fermat point as a

potential Steiner vertex. However, if the three WTs form a triangle with an angle greater

than 120◦, then the Fermat point is located at one of the WTs (the obtuse-angle vertex),

and therefore it does not become a potential Steiner vertex. The number of potential

Steiner vertices cannot exceed
(|Lf |

3

)
. The coordinates (x, y) of the Fermat point can be

computed in closed form by using calculus, as proposed by Palacios-Vélez et al. (2015)

(see Appendix C), and the Fermat point is replaced with its cell centroid.

3.2.3. Gravity MST optimization model

The first step in the tree phase is to solve the GMST optimization model to obtain an initial

solution which will later be improved by SA. The GMST adds the technical requirements of

a gravity-fed system to a classical MST model (Magnanti and Wolsey, 1995). Based on the

clusters obtained during the clustering process, the gravity MST is solved separately for each

WS f ∈ F and the set Lf of its assigned WTs.

The gravity MST for a WS f can then be formulated as follows:

(GMST (f)) Minimize
∑

(i,j)∈ORRfL∪OLL

dijxij (12)
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subject to ∑
(i,j)∈O0Rf

xij = |Rf | (13)

∑
i|(i,j)∈ORL∪OLL

xij = 1 j ∈ Lf (14)

xij + xji ≤ 1 (i, j) ∈ OLL (15)

vij ≤ cfxij (i, j) ∈ ORfL ∪OLL ∪O0Rf (16)∑
(0,j)∈O0Rf

v0j ≤ cf (17)

∑
i|(i,j)∈ORfL∪OLL

vij −
∑
∈OLL

vji = qj j ∈ Lf (18)

v0r =
∑
i|(r,i)

∈ ORfLvri r ∈ Rf (19)

∑
r∈Rf

yrj = 1 ∀j ∈ Rf ∪ Lf (20)

yrr = 1 ∀r ∈ Rf (21)

wj =
∑
r∈Rf

yrjer j ∈ Rf ∪ Lf (22)

ui = 0 i ∈ Rf (23)

uj ≥ ui + dij −D(1− xij) i, j ∈ Rf ∪ Lf (24)

wi − ei − 0.1ui ≥ 0 i ∈ Lf (25)

xij ∈ {0, 1} (i, j) ∈ ORfL ∪OLL ∪O0Rf (26)

vij ∈ R+ (i, j) ∈ ORfL ∪OLL ∪O0Rf (27)

yrj ∈ {0, 1} r ∈ Rf , j ∈ L (28)

wj ∈ R+ j ∈ Rf ∪ Lf (29)

uj ∈ R+ j ∈ Rf ∪ Lf . (30)

The objective (12) minimizes the total length of the arcs needed to connect the WTs to

the WS f . Constraints (13) and (14) limit the number of arcs to be selected. The number

of arcs that form a tree is n − 1, where n is the number of vertices. Note that the vertices

in the gravity MST include the access points, the assigned WTs, and the supersource, i.e.,

n = |Rf | + |Lf | + 1. Hence, |Rf | + |Lf | arcs have to be selected. Equality (13) forces the
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use of all connections between the suppersource and the WS access points of WS f , while the

combination of constraints (14), that guarantee an incoming arc for all WTs, forces the use

of the remaining |Lf | arcs. Constraints (15) ensure that at most one arc between (i, j) and

(j, i) belongs to a feasible solution. Constraints (16) link the x and v variables, ensuring that

there exists a flow only through the selected arcs. At the same time, for the selected arcs,

constraints (16) bound the flow with the capacity of the WS f . Constraint (17) guarantees

that the flow sent from WS f does not exceed its capacity. Constraints (18) and (19) are flow

conservation constraints for WTs and access points, respectively, and prevent the formation of

circuits. Constraints (20) mean that each vertex receives water from a unique access point. In

particular, by (21) each access point receives water from itself. Constraints (22)–(25) ensure the

respect of the gravity system technical requirements. Constraints (22) assign to each vertex the

elevation of the access point from where it receives water. Constraints (23) and (24) assign to

each vertex the distance to its access point. Note that for the access point (constraints (23)), the

distance is set to zero. For WTs, constraints (24) state that if arc (i, j) is used, then the length

uj from the source to j, is the length ui from the source to i, plus the distance dij between i and

j; if arc (i, j) is not used, then the constraints are trivially satisfied. Constraints (25) impose

the second technical condition (1). Finally, the domains of the decision variables are imposed

through constraints (26)–(30).

3.2.4. Gravity Steiner MST simulated annealing

The second step in the tree-phase heuristic is to improve the initial solution obtained from

the gravity MST model by using Steiner vertices through an SA heuristic procedure. Starting

from an initial solution, at each iteration a new solution is obtained from the neighbourhood

of the current solution, and the objective function value of the new solution is compared with

that of the current best solution. If the new solution is better, it then becomes the current

solution and the algorithm proceeds to the next iteration. If the new solution is worse, then the

new solution may become the current solution with a small probability in order to avoid being

trapped in a local optimum. This process is reiterated until reaching the maximum number of

iterations.

We use a neighbourhood structure that consists of randomly choosing a single Steiner vertex.

If the chosen Steiner vertex belongs to the current solution, we remove it from the new solution

which will only consider the remaining vertices. Otherwise, we add it to the new solution. Note

that the new neighbourhood solution has to be generated again to ensure its feasibility, yielding
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a tree network that satisfies the gravity-fed system technical requirements. We present four

procedures, which will be compared in Section 4.3.4, to rebuild the new neighbourhood solution

based on Prim’s algorithm for undirected MSTs (Prim, 1957). This algorithm is a greedy

construction process, where from an initial vertex at each iteration the minimum cost edge that

connects the vertices in the tree to those not yet in the tree is added. The MST is complete

when all vertices are connected. All rebuilding procedures select the fictional supersource as an

initial vertex from which all arcs to access points, (0, r) ∈ O0Rf , are selected. From this point

they follow different directions:

1) Procedure P1: The added arc corresponds to the shortest arc that satisfies the gravity

technical requirements and ensures connectivity, i.e., it connects the vertices in the tree to

those not yet in the tree.

2) Procedure P2: The added arc also satisfies the gravity technical requirements and the

connectivity condition, but we distinguish whether the arc is incident or not to an access

point. If so, we add the longest arc to the tree. In contrast, if the arc is not incident to

an access point, we add the shortest arc.

3) Procedure P3: This procedure always adds the shortest arc, as in the Prim algorithm.

Once the tree is completed, a feasibility check is performed to ensure that the gravity

technical requirements are satisfied. If feasibility is not achieved, then a new iteration is

performed where the inclusion of the arc that breaks feasibility is forbidden for several

iterations. The iterative process ends when a feasible solution has been identified or when

the maximum number of iterations has been reached.

4) Procedure P4: Apply at each iteration each of the first three procedures and select the

best solution.
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Algorithm 2 Pseudocode for the gravity Steiner MST simulated annealing heuristic.
Require: T0, Tt, Niter, β and ISol

Ensure: Network tree

Let T := T0, CSol := ISol, CObj := IObj, BSol := ISol, BObj := IObj

repeat

iter := 0

repeat

Generate a new neighbour solution

if (NObj < CObj) then

CSol := NSol, CObj := NObj

if (NObj < BObj) then

BSol := NSol, BObj := NObj

end if

else

rand := random[0, 1], α := e(NObj−CObj)/T

if α > rand then

CSol := NSol, CObj := NObj

end if

end if

iter++

until (iter ≥ Niter)

T := βT

until (T ≤ Tt)

The SA heuristic, detailed in Algorithm 2, uses four parameters: T0, Tt, Niter and β: T0

denotes the initial temperature, Tt is the final temperature, Niter represents the total number

of iterations for which the neighbourhood search is applied for a given temperature, and β ∈

[0, 1] is the control coefficient of the temperature reduction. At the first iteration, the current

temperature T takes the value of the initial temperature T0. The initial solution ISol obtained

from the gravity MST model is set as the current solution CSol and the best solution BSol;

its objective function value is set as the current objective value CObj and the best objective

value BObj. At each subsequent iteration a new neighbourhood solution NSol is generated

by using one of the four rebuilding procedures just described. The objective function values

of the new neighbourhood solution NObj and the current solution are compared. If the new

objective function value is smaller, then the new solution replaces the current solution. If the

objective function value of the new neighbourhood solution is also smaller than the best known

objective value, then the best solution is updated with the new solution. If the value of the

new objective function value is not smaller than that of the current solution, then the new
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neighbourhood solution is accepted if e(NObj−CObj)/T exceeds a randomly generated number

rand ∈ [0, 1], and the candidate solution replaces the current solution. After Niter iterations for

a given temperature T , the temperature decreases according to the cooling schedule T = βT .

The algorithm terminates when the current temperature T reaches the final temperature Tt.

4. Computational study

We now present the results of the computational study we have performed to analyze the

proposed solution method. In Section 4.1, we describe the Nepal data set. In Section 4.2 we

provide the implementation details of our approach. In Section 4.3, we present our numerical

results and analyses. A discussion and the presentation of managerial insights follow in Section

4.4.

4.1. The Nepal data set

The RoI considered in this study consists of the two VDCs of Dolakha: Suspa Kshemawati

and Lapilang. Dolakha (see Figure 2) was one of the districts most affected by the May 2015

earthquake. To support the rehabilitation of the community water supply systems through

the design of a gravity-fed system that optimizes the access to drinking water, we gathered

information on the characteristics of the desired system and on the geography of the RoI. Due

to the fact that input data are obtained from several sources and in different formats, it was

necessary to process and unify the available data. The Nepal dataset we used is detailed below.

4.1.1. Parameters

The information on the requirements that the water supply system has to respect was ob-

tained from the AutRC which provided us with the identification of the available WSs and

their capacity as well as the WASH accessibility and quantity standards. The assumptions

made about the water supply coverage were also developed with the AutRC, based on national

standards and statistics. In this context, for a basic service level, the maximum number of

households that can be assigned to a WT is fixed at 21 households of five residents each. The

daily amount of water required by person is 45 litres according to the Nepal WASH standards

(The Government of Nepal and Republic of Finland, 2010), while for the PoIs, the daily need

per person is estimated to be 15 litres, with 50 people to accommodate, translating into a daily

demand of 750 litres. The AutRC aimed to build a water supply system in which people can

have access to WTs in accordance to the WASH preferred horizontal and vertical walking dis-

tances between a household and a WT, fixed at 150 and 50 meters, respectively. In exceptional
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cases, these standards can be widened to 250 and 80 meters. These numbers are similar to those

provided in other case studies related to gravity-fed systems. For example, in their technical

paper about public standpipe design for rural South Africa, Haarhoff and Rietveld (2009) state

that WTs should be located at a maximum walking distance of 200 meters from a household.

A more general study (Faiia, 1982) describes the basic principles of gravity flow systems and

provides guidelines for design parameters which require that no more than 20% of the users

walk more than 100 meters to obtain water.

A further step was to process some of these data to determine the parameter γ in (1). We

set γ = 0.1 in order to be able to serve 5,000 users from a single source with a daily demand

of 45 liters of water concentrated during morning hours. To this end, we considered steel pipes

with an eight cm diameter (see Appendix B).

It was also necessary to identify the number of households and WSs and their coordinates

(elevation and position). The elevation is crucial to ensure that the technical requirements of

the gravity-fed system are satisfied. The position also plays an essential role since it provides

the information needed for the distance computations. These data were extracted from satellite

imagery and digital surface models by the Interfaculty Department of Geoinformatics Z-GIS of

the University of Salzburg. In particular, by combining input data from satellite imagery where

households and WSs were identified and with digital surface models, it is possible to obtain

an attribute table of base points where the coordinates and characteristics of each element

(household or WS) are recorded.

4.1.2. Grid generation

We divided the RoI using a grid of equal-size cells (Figure 6). Considering that on average

the households cover an area of about 5 m × 5 m, we chose to use square cells of side 25 m.

The satellite image shown in Figure 6 depicts a small area from Lapilang with the grid used to

discretize the RoI. The highlighted cells are those containing at least one household or one PoI,

and therefore their centroids belong to the subset H ∪ H ′ ⊆ V . Analogously, the centroids of

the cells crossed by the WS belong to Rf ⊆ V . A priori, the centroid of any cell of the grid

can be a Steiner vertex or a potential WT location. We obtain graphs with 29,900 vertices and

75,200 arcs for Suspa Kshemawati and 28,500 vertices and 68,300 arcs for Lapilang.

4.1.3. Distance calculations

Note that the horizontal and vertical distances both play an important role in the graph

generation. Since Nepal is a mountainous country with significant denivellations we will provide
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Figure 6: Satellite image partitioned into a 25 m × 25 m grid used to define the cells.

a description of how the three-dimensional distances are calculated. We have developed slightly

different algorithms according to the type of distances we aim to calculate, i.e., 1) distances

from WS cells, 2) distances between cells that are WT potential locations or Steiner vertices,

as well as 3) distances to household cells. These algorithms are based on the classical Dijkstra’s

shortest path algorithm (Dijkstra, 1959).

1) Algorithm 3 summarizes the distance calculation from aWS access point r ∈ R to v ∈ L∪S

denoted by dR3D(r, v), where R indicates that the first cell for these distances is always a

WS access point. Line 10 ensures that no cell with an elevation higher than the elevation

of the WS cell belongs to the path, while line 12 ensures that formula (1) is respected.

2) Algorithm 4 summarizes the calculation of the shortest distances from v ∈ (L ∪ S) to all

cells u ∈ (L∪S)\{v} when considering source f ∈ F , from which v and u can be reached.

If a cell v can receive water from a source f but the cell u cannot, then no arc from v to u

is defined since it is not possible to send water from the source f to v and then from v to

u. For this reason these distances also depend on the sources; we denote by W f the set of
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Algorithm 3 3D shortest path algorithm from a source cell r ∈ R to all cells in L ∪ S.
1: Input: G = (V,A), a WS access point r ∈ R, set Ur = ∅ of cells that are not reachable from r

2: Output: shortest distances from r ∈ R to all cells in L ∪ S

3: dR3D(r, v)←infinity, v ∈ L ∪ S

4: father[v] ← undefined, v ∈ L ∪ S

5: dR3D(r, r)← 0

6: add r to list Q

7: while Q is not empty do

8: v ← vertex in Q with the min dR3D(r, v) and remove v from Q

9: for all u neighbour of v do

10: if er ≥ eu then

11: if dR3D(r, u) > dR3D(r, v) + d(v, u) then

12: if er − eu − 0.1(dR3D(r, v) + d(v, u)) ≥ 0 then

13: dR3D(r, u) = dR3D(r, v) + d(v, u) and add u to Q

14: father[u] ← v

15: end if

16: end if

17: end if

18: end for

19: end while

20: return dR3D(r, v) r ∈ R, v ∈ L ∪ S

vertices unreachable from source f . Moreover, if both v and u are reachable from f ∈ F ,

all the cells that have to be crossed in the path from v to u must be reachable from f .

Let dL∪S3D (v, u)f denote the corresponding distance. Line 10 ensures that all the cells that

are considered can be reached directly from the source f . If not, in line 16 these cells are

added to the set T fv of cells that cannot be reached from v when considering source f . For

all cells u ∈ L∪ S \ {v} such that u /∈ T fv , if there exists r ∈ Rf with f ∈ F from which it

is possible to reach both v and u, and (1) is satisfied, then a new arc (v, u) belonging to

the set N is defined. Note that the first condition is also satisfied since u does not belong

to Tv.

3) Finally, Algorithm 5 summarizes the steps followed to calculate horizontal and vertical

distances, from h ∈ H to v ∈ L. From now on we will denote the horizontal distances

by δH3D(h, v) and the vertical distances by σH3D(h, v), where H indicates that the origin

node is always a household cell and therefore belongs to H. Since the walking distances

have both horizontal and vertical limits, in line 11 we define a weighted distance Wd that

depends on both the horizontal and the vertical distance between two neighbour cells.
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Algorithm 4 3D shortest path algorithm from v ∈ {L ∪ S} to u ∈ {L ∪ S} \ {v}, for f ∈ F .
1: Input: G = (V,A), v ∈ {L∪S}, f ∈ F , set T f

v = ∅ of cells that are not reachable from v, when considering

source f

2: Output: shortest distances from v ∈ {L ∪ S} to all cells in {L ∪ S} \ {v} such that u can also be reached

from f , set T f
v of cells that are not reachable from v, when considering source f

3: dL∪S3D (v, u)f ←infinity, u ∈ {L ∪ S} \ {v}

4: father[v] ← undefined, v ∈ {L ∪ S} \ {v}

5: dL∪S3D (v, v)f ← 0

6: add v to list Q

7: while Q is not empty do

8: u← vertex in Q with the min dL∪S3D (v, u)f and remove u from Q

9: for all w neighbour of u do

10: if u /∈W f then

11: if dL∪S3D (v, w)f > dL∪S3D (v, u)f + d(u,w) then

12: dL∪S3D (v, w)f = dL∪S3D (v, u)f + d(u,w) and add w to Q

13: father[w] ← u

14: end if

15: else

16: add u to T f
v

17: end if

18: end for

19: end while

20: return dL∪S3D (v, u)f and T f
v v ∈ {L ∪ S}, f ∈ F

More precisely we use a parameter λ as coefficient of the vertical distance σ(v, u) between

neighbour cells v an u, which allows us to estimate how much it costs to walk one meter

vertically, compared with one meter horizontally. This parameter is determined as the

ratio of the preferred horizontal over vertical distances of the WASH standards. Then,

dH3D(h, v) represents the distance from h to v calculated using the weighted distances. Line

12 ensures that a distance is updated if the previous weighted distance from h to u was

larger than the distance obtained by reaching u going through cell v. In lines 14 and 15 the

horizontal and vertical distances are updated whenever the weighted distance is updated.

4.2. Model implementation

The algorithm was implemented in C++ and experiments were run on a Linux Server with

two 2.5 gigahertz Intel Xeon CPU’s and 32 gigabytes of memory. We used IBM CPLEX 12.7

Concert Technology with default parameters and a maximum computing time of one hour for
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Algorithm 5 3D shortest path algorithm from a household cell h ∈ H to v ∈ L.
1: Input: G = (V,A), household cell h ∈ H

2: Output: horizontal and vertical distances from h ∈ H to v ∈ L

3: dH3D(h, v)← infinity, v ∈ L

4: father[v] ← undefined, v ∈ L

5: dH3D(h, h)← 0

6: δH3D(h, h)← 0, σH
3D(h, h)← 0

7: add h to list Q

8: while Q is not empty do

9: v ← vertex in Q with the min dH3D(h, v) and remove v from Q

10: for all u neighbour of v do

11: Wd← δ(v, u) + λ σ(v, u)

12: if dH3D(h, u) > dH3D(h, v) +Wd then

13: dH3D(h, u) = dH3D(h, v) +Wd and add u to Q

14: δH3D(h, u) = δH3D(h, v) + δ(v, u)

15: σH
3D(h, u) = σH

3D(h, v) + σ(v, u)

16: father[u] ← v

17: end if

18: end for

19: end while

20: return δH3D(h, v), σH
3D(h, v) and dH3D(h, v) h ∈ H, v ∈ L

each instance to solve the models (WTLAP), (GAP) and (GMST(f)).

4.3. Results and analyses

Here we present and discuss the results of our numerical analyses under four headings: 4.3.1

Analysis of the weights given to the number of WTs and to the walking distances in the WTLAP;

4.3.2 Clustering analysis; 4.3.3 Analysis of three generation procedures for the Steiner vertex

candidates; 4.3.4 Rebuilding the solution in the SA heuristic for the gravity Steiner MST.

4.3.1. Analysis of the weights given to the number of WTs and to the walking distances in the

WTLAP

We first analyzed the optimal solution of the WTLAP. The values given to αw, αp, and

αe influence the number of WTs installed and the average distance users need to walk to fetch

their drinking water. The values of these weights should reflect the priorities of the decision

makers, and they should be determined after assessing their effect on several tentative solutions.

Hence, to reach a well-balanced solution, it is important to evaluate the impact of the weights

on the elements involved in the trade-off: the number of required WTs and the user walking
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distance under the preferred and exceptional upper limits. In the following, we analyze in more

detail the impacts of the weights αw, αp, and αe. To this end, we solved the two instances of

Suspa Kshemawati and Lapilang with 20 combinations of weight settings. Note that in some

settings the exceptional distances are penalized with a largeM value, the weight associated with

exceptional distances is always greater than the weight associated with preferred distances.

Table 1 gives the number of WTs to open (# WT), the percentage of households covered

within preferred distances (% preferred), and the average horizontal (δ) and vertical (σ) distances

in meters traveled by the users for the two studied VDC. We observe that the number of WTs

increases considerably when all the weight is assigned to the walking distances. For all parameter

settings, the percentage of households covered within the preferred distance is always above 80%,

and in most cases above 95%. However, while the number of users served within the preferred

distance is more or less constant, the average distance traveled varies. As expected, the average

distance traveled is lower for those settings in which more WTs are opened, and conversely the

average distance traveled is higher when fewer WTs are opened.

Table 2 provides, for each VDC and distinguishing between preferred (δp, σp) and exceptional

(δe, σe) cases, the maximum, minimum and average values of the average walking distance in

meters computed over all settings. We recall that the preferred upper limits for the horizontal

and vertical distances are (∆,Σ) = (150, 50) and the exceptional upper limits for the horizontal

and vertical exceptional distances are (∆̄, Σ̄) = (250, 80). We can observe that in general,

exceptional values δe and σe are more likely to be close to the upper limits.

In the remaining analysis we consider only some of the settings of Table 1, namely the four

settings (αw, αp, αe) = (1, 0, M), (0.5, 0.2, 0.3), (0.25, 0.75, M), and (0.25, 0.30, 0.45). Recall

that the main objective of the AutRC is to minimize the number of WTs while ensuring that users

are mostly covered within the preferred distance, which corresponds to the setting (1, 0,M). The

minimum number of WTs is obtained for the setting (0.5, 0.2, 0.3), where exceptional distances

are not penalized, and the weights associated with the number of WTs (αw) and the walking

distances (αp + αe) are equal. It is also interesting to analyze the setting providing the minimum

average walking distance, but without exceeding 400 WTs, corresponding to (0.25, 0.75, M).

Finally, we will also consider the setting (0.25, 0.30, 0.45) which gives us an intermediate result

in terms of the number of WTs and of the average walking distance.
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Table 1: WTLAP results for 20 weight settings.

Weight setting Suspa Kshemawati Lapilang

(αw, αp, αe) # WT % preferred δ (m) σ (m) # WT % preferred δ (m) σ (m)

(1.00, 0.00, M) 88 98.6 94 19 117 97.7 99 20

(0.75, 0.25, M) 94 98.6 73 14 125 97.7 67 13

(0.50, 0.50, M) 123 98.6 54 10 163 97.7 52 9

(0.25, 0.75, M) 204 98.6 32 6 253 97.7 35 6

(0.00, 1.00, M) 702 98.6 4 1 980 97.7 5 2

(0.50, 0.00, 0.50) 76 95.7 95 20 113 96.3 100 21

(0.50, 0.10, 0.40) 74 93.4 84 16 114 94.3 72 14

(0.50, 0.20, 0.30) 76 80.8 85 16 109 80.8 78 14

(0.25, 0.00, 0.75) 83 97.9 95 20 117 97.4 98 20

(0.25, 0.10, 0.65) 93 97.8 70 14 127 97.7 67 12

(0.25, 0.20, 0.55) 101 96.1 62 12 140 95.0 59 11

(0.25, 0.25, 0.50) 111 94.0 58 11 152 94.1 55 10

(0.25, 0.30, 0.45) 113 90.5 59 10 153 89.7 57 10

(0.25, 0.35, 0.40) 111 84.0 65 11 151 82.2 62 10

(0.00, 0.00, 1.00) 403 98.6 70 14 465 97.7 77 15

(0.00, 0.10, 0.90) 702 98.6 4 1 980 97.7 5 2

(0.00, 0.20, 0.80) 702 98.6 4 1 980 97.7 5 2

(0.00, 0.25, 0.75) 702 98.6 4 1 979 97.5 6 2

(0.00, 0.30, 0.70) 702 98.5 4 1 980 97.4 6 2

(0.00, 0.40, 0.60) 702 98.3 4 1 983 97.0 6 2
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Table 2: Summary of the WTLAP results showing preferred and exceptional horizontal and vertical distances.

Suspa Kshemawati Lapilang

Upper limit (m) 150 50 250 80 150 50 250 80

δp σp δe σe δp σp δe σe

Maximum 94 19 207 65 97 20 214 61

Minimum 2 1 185 35 2 1 191 35

Average 49 9 192 53 48 9 206 54

4.3.2. Clustering analysis

From the location of WTs previously obtained, and considering the WSs available, the WTs

are clustered and assigned to a WS using the GAP model. The partition and assignment of WTs

to WSs affect the length of the water distribution network. Although, the percentage of WTs

assigned to each WS remains pretty much the same for the different weight settings, the weight

setting has an impact on the partition. For example in Suspa Kshemawati, if we compare the

partitions obtained, only the settings (0.25, 0.75, M) and (0.25, 0.3, 0.45) assign WTs to WS0.

Figure 7: Cluster partitions for the Suspa Kshemawati instance (0.5, 0.2, 0.3) according to the GAP model.

Figures 7 depicts the cluster partitions obtained through the GAP model in the Suspa
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Table 3: Length in meters of the water distribution network obtained by using the GAP partition.

Weight setting

(αw, αp, αe)
Suspa Kshemawati Lapilang

(1, 0, M) 34298 32616

(0.5, 0.2, 0.3) 29080 30995

(0.25, 0.75, M) 41924 45987

(0.25, 0.30, 0.45) 34268 34740

Kshemawati VDC for the weight setting (0.5, 0.2, 0.3). There we see which WTs are assigned

to each WS and we get an idea of the location of each of the 11 clusters. We can see how due

to capacity constraints on the WSs, some WTs that are located nearby are assigned to different

WSs. Consider for example the particular case of the three WTs located around the coordinates

(406000, 3063500), two of them are assigned to WS1, while the third is assigned to WS6 and

none is assigned to WS10 which is relatively close to these WTs.

Table 3 shows the total length of the arcs needed to connect the WTs to the WSs in the

best-known solution. Note that since the GMST is solved for each WS, this table provides the

sum of the tree lengths associated with each WS. It can be observed that the weight settings

have the same effect on the length network in both VDC.

As mentioned before, to solve the GMST, we set a one-hour limit for each of the 72 instances

(11 WSs from Suspa Kshemawati, plus seven WSs from Lapilang, multiplied by the four weight

settings). We see that 87% of the instances were solved to optimality within this limit. Difficul-

ties arose from the technical conditions of the gravity-fed system. This can be seen by analyzing

the average computational time and the average gap for the nine instances not optimally solved,

which are 415 seconds and 15.7%, respectively. The difficulty of our problem becomes even

more apparent if we consider that the number of WTs per WS is relatively low (see Table 4).

These instances would be easily solvable for the classic MST. Actually, for each of the intervals

of Table 4 there are zero, one, two, three, one, and two instances not solved to optimality within

the one-hour computing time limit, respectively.

4.3.3. Analysis of three generation procedures for the Steiner vertex candidates

We performed tests to analyze the three proposed procedures used to generate sets of promis-

ing Steiner vertices (Section 3.2.2). Table 5 summarizes the differences in the Steiner sets. For
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Table 4: Number of instances as a function of the number of WTs per WS.

Number of WTs per WS [0, 10] (10, 20] (20, 30] (30, 40] (40, 50] (50, 60]

Number of instances 37 12 14 4 2 3

each VDC and each procedure, the total number of Steiner vertices found under the columns

SK , S3 and SF , corresponding to the K-means algorithm, every subset of three, and the Fermat

point, respectively. The last three rows depicts the average, minimum, and maximum number

of Steiner vertices associated with a WS. The cardinality of the Steiner sets for SK is in the

hundreds, while for S3 and SF it increases to thousands. To facilitate the resolution of the

gravity Steiner MST, we have defined three reduced Steiner sets for S3 and SF by grouping

them until obtaining one, three or five Steiner vertices for the WTs, denoted by S3.1, S3.3 and

S3.5 or SF.1, SF.3 and SF.5, respectively.

Table 5: Number of Steiner vertices for three discretization methods (top) and number of WSs (bottom)

VDC
Weight setting

(αw, αp, αe)
SK S3 SF

Suspa

Kshemawati

(1, 0, M) 143 2081 965

(0.5, 0.2, 0.3) 103 1612 787

(0.25, 0.75, M) 428 6289 3594

(0.25, 0.30, 0.45) 202 3078 1780

Lapilang

(1, 0, M) 254 6012 1927

(0.5, 0.2, 0.3) 209 4385 1601

(0.25, 0.75, M) 716 8346 5001

(0.25, 0.30, 0.45) 344 5898 2649

Average per WS 33 524 254

Minimum per WS 0 0 0

Maximum per WS 200 2917 2026

To assess the performance of the different Steiner sets, we compared them in terms of the

length of the network, the computational time and the percentage of increase with respect to the
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best average solution among the four rebuilding procedures of the gravity Steiner MST and with

respect to the best solution. This analysis shows that SF.1 provides more best solutions that

any other Steiner set, four over 16. SF.1 also requires a lower computing time, with exception

of the S3.1 which is in the same range, the average computing times of SF.1 are are one tenth

with respect the remaining sets. Furthermore, SF.1 has the smallest increase percentage, 0.63.

In contrast, SK and S3.1 have the highest increase, 1.43 and 1.36, respectively (see Table D1 in

Appendix D).

4.3.4. Rebuilding the solution in the SA heuristic for the gravity Steiner MST

We also analyze the performance of the four proposed procedures applied to rebuild the

solution during the SA heuristic in the tree-second phase (Section 3.2.4). Similarly to the

previous section, the behavior of the procedures can be measured in terms of the length of the

network, the computation time and the percentage of increase with respect to the average best

solution or the best solution (see Table D2 in Appendix D). In terms of the length network, P4

yields the best results (eight out of 16), being the one with the smallest percentages of increase,

but requires longer computing times, 15 minutes on average. In contrast, P3 provides the worst

results in terms of the network length (zero out of 16), but is the fastest one, two minutes on

average. P2 outperforms P1 in terms of solution quality and computing time. Finally, P4 also

outperforms the other rebuilding procedures when considering only the best Steiner set SF.1 and

the reduction obtained with respect the GMST solution (see Table D3 in Appendix D). While

we can see that the best solution for some instances can be obtained from different rebuilding

procedures, P4 is capable of finding the best solution in seven out of the eight instances.

4.4. Discussion and managerial insights

The results of this computational study show that our proposed matheuristic based on the

decomposition of the problem into two hierarchical parts is effective for two main reasons. The

first reason is that it can compute good-quality solutions rather quickly, despite the very large

size of the instances involved. The second reason lies in its flexibility since one can prioritize the

number of WTs or the walking distance in the objective function. This is one of the advantages of

solving the WT location-allocation and the water distribution network problems hierarchically.

Moreover, other limiting factors can be easily added in the location of WTs or the household

assignment without affecting the difficulty of the network design problem, which is already hard

to solve due to the technical conditions of the gravity-fed system.
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Table 6: Summary of the main decision variables.

VDC
Weight setting WTLAP WDNDP

(αw, αp, αe) # WT δ (m) σ (m) Network length (m)

Suspa

Kshemawati

(1, 0, M) 88 94 19 33343

(0.5, 0.2, 0.3) 76 85 16 28923

(0.25, 0.75, M) 204 32 6 41148

(0.25, 0.30, 0.45) 113 59 10 33930

Lapilang

(1, 0, M) 117 99 20 32503

(0.5, 0.2, 0.3) 109 78 14 30671

(0.25, 0.75, M) 253 35 6 45822

(0.25, 0.30, 0.45) 153 57 10 33830

By varying the weight settings, the matheuristic yields a diversity of WTLAP solutions

among which the decision maker can choose. For the Steiner set and the rebuilding procedure

that performs best, Table 6 summarizes the values of the main decision variables: the number of

WTs to install, the average horizontal and vertical walking distances in meters, and the length

of the network in meters. We suggest implementing the solution given by the setting (0.25, 0.30,

0.45), which provides a good compromise between the network cost and the walking distance.

This setting dominates the solution given by the setting (0.25, 0.75, M), and yields shorter

distances than the solution given by the settings (1, 0, M) and (0.50, 0.20, 0.30) without overly

increasing the length of the network. Figure 8 depicts the network obtained for Lapilang under

these settings. We can observe that despite having seven potential WSs, the forest consists of

12 trees, created from different access points of the same WS. We can also see the utility of

the Steiner vertices for reducing the length of the network (see the detail map at the top in

Figure 8). Moreover, we can appreciate the effect that the gravity technical condition has on

the topology of the network. In this sense, in the bottommost detail map we can see how the

tree from the top WS access point serves some WTs that are closer to the other access point.

The fact that both access points belong to the same WS indicates that these assignments are

not due to the capacity constraint on the WS, but to the differences of elevations and horizontal

distances.
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Figure 8: Network solution for instance Lapilang (0.25, 0.30, 0.45).

5. Conclusions

We have solved a network design problem motivated by the need to reconstruct the water

distribution network after the 2015 earthquakes in Nepal. Gravity-fed systems with community

taps are the most practical means of providing access to drinking water to populations in remote

mountainous areas. It is therefore crucial to ensure access to water taps within the WASH

standards, which fix the maximum horizontal and vertical walking distances to the closest water

tap. We have developed a matheuristic capable of computing quickly a solution that satisfies

several technical requirements. We took advantage on the hierarchical nature of the problem

specified by the planners, and we solved the two subproblems sequentially. To this end, we

proposed an integer linear programming model to locate the water taps and assign the households

to them. We then developed a cluster-first, tree-second heuristic to design the network, with

some algorithmic alternatives.

We have implemented and tested our methodology on realistic and very large-scale data

sets from two Village Development Committees of Dolakha in Nepal. Despite the scarcity

of data in the humanitarian sector, we succeeded in gathering data from various sources. In

particular, satellite images constituted an important source of data collection. The extraction

and agglomeration of all the relevant information is a difficult process that requires expertise
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but leads to rich data sets. To ensure that the proposed solution adequately accounts for the

mountainous character of Nepal, we have worked with distances that incorporate elevations. We

have conducted extensive numerical analyses, and we have derived managerial insights that can

be exploited to support implementation. Our results show the superior performance of some of

the algorithmic implementation alternatives. While we have focused on a particular district of

Nepal, the proposed methodology is of general applicability and can be adapted to other regions

of the world.
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Appendix A. Glossary of the abbreviations

AutRC: National Red Cross Society of Austria.

ConFLP: Connected Facility Location Problem.

GAP: Generalized Assignment Problem.

GMST: gravity minimum spanning tree.

MST: minimum spanning tree.

PoI: point of interest.

RoI: region of interest.

SA: simulated annealing.

SDG: Sustainable Development Goal.

UNICEF: United Nations Children’s Emergency Fund.

VDC: Village Development Committee.

WASH: WAter, Sanitation and Hygiene.

WDNDP: Water Distribution Network Design Problem.

WHO: World Health Organization.

WS: water source.

WSSDP: Water Supply System Design Problem.

WT: water tap.

WTLAP: Water Tap Location-Allocation Problem.

43



Appendix B. Computation of gamma

As mentioned in Section 2.2, in order to build a gravity-fed system, some technical require-

ments derived from technical requirements must be satisfied. In particular, the second condition

(1), based on the Hazen-Williams equation (31), relates the flow of water in a pipe with the

physical properties of the pipe and the pressure loss caused by friction:

γ = 10.67
1

φ4.871

(
ξ

ζ

)1.852

, (31)

where ξ is the pipe flow in cubic meters per second, φ is the pipe nominal diameter in meters,

and ζ is the Hazen-Williams friction factor based on the roughness of the pipe material.

We aim to serve from a single source about 5,000 people, each with a maximum daily demand

of 45 liters of water. This represents a volume of 225 m3. We considered that the water collection

is concentrated during morning time (4.5 hours). Hence, the flow computed as volume divided

by time is equal to ξ = 0.014 m3/s. We also considered that the diameter of the pipes is

φ = 0.08 m, and they are made from steel. Therefore, their friction factor is ζ = 130 (Williams

and Hazen, 1933), and hence γ = 0.1.

Appendix C. Computation of the Fermat point of a triangle

Consider a triangle (with no angle greater than 120o) with vertices Pa = (xa, ya), Pb =

(xb, yb) and Pc = (xc, yc) (Figure C1). In our problem these three vertices correspond to WTs.

Denote by a, b and c the lengths of the sides opposite Pa, Pb and Pc, respectively. Let also A be

the triangle area. Then, as in Palacios-Vélez et al. (2015), the coordinates (x, y) of the Fermat

point can be computed as

x = B[a, b, c]xa + B[b, c, a]xb + B[c, a, b]xc, (32)

y = B[a, b, c]ya + B[b, c, a]yb + B[c, a, b]yc, (33)

where the coefficients B[a, b, c], B[b, c, a] and B[c, a, b] correspond to the normalized barycentric

coordinates and are computed as

B[i, j, k] =
(4A +

√
3(i2 + j2 − k2))(4A +

√
3(i2 − j2 + k2))

8A(12A +
√

3(i2 + j2 + k2))
. (34)
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Figure C1: Fermat point for a triangle with no angle greater than 120o.

Appendix D. Steiner vertex candidates and rebuilding procedures table analysis

Tables D1 and D2 provide the length of the network, the computational time and the per-

centage increase with respect to the best solution. For the network length, the best solution is

highlighted in bold, and for the percentage increase, we also highlight in bold the second best.

Table D3 provides the network length considering only for the best Steiner set SF.1 and the

reduction obtained with respect the GMST solution.
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Table D1: Comparison of Steiner sets according to the best solution.

VDC
Weight setting Network length (m) Computational time (seconds) % increase wrt best solution

(αw , αp, αe) SK S3.1 SF.1 S3.3 SF.3 S3.5 SF.5 SK S3.1 SF.1 S3.3 SF.3 S3.5 SF.5 SK S3.1 SF.1 S3.3 SF.3 S3.5 SF.5

Suspa

Kshemawati

(1, 0, M) 34106 33751 33343 32972 33939 32708 33975 9 3 4 43 22 53 67 4.28 3.19 1.94 0.81 3.76 0.00 3.88

(0.5, 0.2, 0.3) 28999 29050 28923 28910 28806 28980 28772 4 4 3 12 11 74 34 0.79 0.97 0.52 0.48 0.12 0.72 0.00

(0.25, 0.75, M) 41612 41092 41146 41460 41825 41880 41594 1161 38 114 414 547 1201 3770 1.27 0.00 0.14 0.90 1.78 1.92 1.22

(0.25, 0.30, 0.45) 34084 33919 33930 33968 33622 34111 33991 30 7 8 62 168 425 104 1.37 0.88 0.92 1.03 0.00 1.46 1.10

Lapilang

(1, 0, M) 32220 32495 32503 32254 32489 32256 32435 24 48 5 48 35 170 445 0.00 0.85 0.88 0.11 0.83 0.11 0.66

(0.5, 0.2, 0.3) 30634 30933 30671 30626 30850 30915 30841 41 4 5 41 38 131 117 0.02 1.00 0.14 0.00 0.73 0.94 0.70

(0.25, 0.75, M) 45953 45885 45822 45981 45624 45936 45586 783 83 80 930 909 2971 6699 0.81 0.66 0.52 0.87 0.08 0.77 0.00

(0.25, 0.30, 0.45) 34580 34740 33620 34567 34386 34657 34388 88 12 14 149 347 417 419 2.86 3.33 0.00 2.82 2.28 3.08 2.29

Average 268 25 29 212 260 680 1457 1.43 1.36 0.63 0.88 1.20 1.13 1.23

Table D2: Comparison of the four rebuilding procedures according to the best solution.

VDC
Weight setting Network length (m) Computational time (seconds) % increase wrt best solution

(αw , αp, αe) P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

Suspa

Kshemawati

(1, 0, M) 33250 32708 34049 32724 53 53 3 132 1.66 0.00 4.10 0.05

(0.5, 0.2, 0.3) 28772 28851 28996 28776 34 13 24 83 0.00 0.27 0.78 0.01

(0.25, 0.75, M) 41747 41092 41914 41148 383 38 30 114 1.59 0.00 2.00 0.14

(0.25, 0.30, 0.45) 33919 33891 33991 33622 7 71 104 168 0.88 0.80 1.10 0.00

Lapilang

(1, 0, M) 32220 32288 32346 32254 24 50 126 126 0.00 0.21 0.39 0.11

(0.5, 0.2, 0.3) 30626 30704 30700 30626 41 41 4 106 0.00 0.25 0.24 0.00

(0.25, 0.75, M) 45722 45624 45980 45586 2655 909 624 6699 0.30 0.08 0.86 0.00

(0.25, 0.30, 0.45) 34388 33620 34467 33830 127 14 225 36 2.28 0.00 2.52 0.63

Average 415 149 143 933 0.84 0.20 1.50 0.12
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Table D3: Comparison of the four rebuilding procedures for the Steiner set SF.1.

VDC
Weight setting Network length (m) % reduction wrt GMST solution

(αw, αp, αe) P1 P2 P3 P4 P1 P2 P3 P4

Suspa

Kshemawati

(1, 0, M) 33990 33343 34049 33343 0.89 2.78 0.72 2.78

(0.5, 0.2, 0.3) 28923 28980 29027 28923 0.54 0.34 0.18 0.54

(0.25, 0.75, M) 41914 41843 41914 41148 0.03 0.20 0.03 1.85

(0.25, 0.30, 0.45) 34553 33930 34141 33930 0.70 0.99 0.37 0.99

Lapilang

(1, 0, M) 32503 32537 32515 32503 0.35 0.24 0.31 0.35

(0.5, 0.2, 0.3) 30671 30745 30700 30671 1.05 0.81 0.95 1.05

(0.25, 0.75, M) 45822 45822 45987 45822 0.36 0.36 0.00 0.36

(0.25, 0.30, 0.45) 34553 33620 34596 33830 0.54 3.22 0.42 2.62

Average 0.56 1.12 0.37 1.32
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