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ABSTRACT

Over the past few decades, an ageing population combined with a shift towards a
Western lifestyle has predisposed many individuals towards inter-connected gastrointestinal
(Gl) diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), gastric
cancer (GC) and Clostridioides difficile (C. difficile) infection (CDI). anti-TNF-a treatment for
IBD patients has a high unresponsive rate, by using bioinformatics approaches, | identified
neutrophil chemotaxis may contribute to the treatment resistance and IL13RA2 is the best
predictor to identify treatment unresponsive patients. On the other hand, in the intestinal tract,
colonocytes consistently exfoliate and shed into the lumen, affecting gut microbiota
composition. These molecular/microbial changes involved in disease pathogenesis can be
detected in faeces. By using Tagman probe-based real-time polymerase chain reaction (RT-
gPCR) assay, several non-coding microRNAs (such as miR-18a, miR-20a, miR-221 and miR-
135b) and gut microbes (including Fusobacterium nucleatum, Parvimonas micra, Gemella
morbillorum, Peptostreptococcus anaerobius, Clostridium hathewayi and Lachnoclostrium sp.)
are highly expressed/enriched in faeces in CRC individuals compared to control subjects. The
use of a faecal immunological test (FIT) in combination with these biomarkers may improve
the non-invasive CRC screening accuracy. Furthermore, Epstein-Barr virus (EBV) is an
oncogenic virus and EBV-driven GC accounts for roughly 10% of total GC cases. GC cells
infected with EBV alter the molecular aspect at whole-genome, transcriptome, and epigenome
levels. For instance, AKT2 activated by mutation in EBV,esiive GC cells affecting downstream
MAPK and focal adhesion signalling pathways; AKT2 mutation associates with poor patient
survival in EBV-positive GC. Furthermore, once patients have received Gl treatments, it may
suppress/interfere with the patients’ immune system, disrupt the gut flora homeostasis and
trigger CDI. Faecal microbiota transplantation (FMT) has been demonstrated as an effective
and alternative treatment strategy for CDI patients. However, it is still in clinical trials due to
safety concerns. My study revealed that serum miRNAs such as miR-23a-3p, miR-150-5p,
miR-26b-5p and miR-28-5p could be used to monitor FMT treatment in CDI patients, and these
markers inversely correlate with IL-12B, IL-18, FGF21 and TNFSRF9 at serum protein and
mRNA levels, respectively. Furthermore, miR-23a and miR-150 showed cytoprotective effects
against C. difficile Toxin B (TcdB).
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. INTRODUCTION

Over the past few decades, an ageing population combined with dramatic
modifications in lifestyle and obesity has predisposed many individuals towards inter-
connected gastrointestinal (Gl) diseases, such as non-alcoholic fatty liver disease (NAFLD),
inflammatory bowel disease (IBD), colorectal cancer (CRC), gastric cancer (GC) and
Clostridioides difficile (C. diff) infection (CDI). It characterises one of the major global health
issues, causing around 8 million deaths per year worldwide (Kim et al. 2014). In Europe, Gl
cancer is the leading cause of cancer death, with the most and the second-most common
cancer in men and women, respectively (Farthing et al. 2014). GC and CRC are the major
malignancy in Gl cancer and account for the second and fourth most cancer-related deaths

worldwide.

Benefiting from bowel cancer screening programmes (Publication 1, page 79) (Tepus,
Yau 2020) and advanced therapeutic strategies (Publication 2, page 92) (Yau 2019), the
population-based mortality for CRC has been falling for the past half-century, especially in
Central, Western and Northern European countries, and particularly in men (Bray et al. 2018).
However, the use of low-cost haemoglobin-based CRC screening such as the faecal
immunological test (FIT) is limited by haemoglobin degradation and intermittent bleeding
patterns in large intestines, so that a large number of individuals cannot be identified until the
late stages, leading to poor treatment responses and prognosis (Tepus, Yau 2020). Thus,
finding reliable non-invasive biomarkers is still ongoing; and the understanding of CRC
pathogenesis on microRNA (miRNA) and gut microbes is critical in helping with biomarker
discovery.

On the other hand, due to poor disease management of long-standing chronic colonic
inflammation, a certain percentage of CRC cases are induced by IBD. One of the critical issues
is the unresponsive treatment of anti-tumour necrosis factor a (TNFa) agents, which has a
rate of up to 30% of initial unresponsive treatment and up to 50% of diminishing response over
time (Ben-Horin et al. 2014). (1) Thus, finding biomarkers to predict treatment outcome and
the mechanisms of unresponsive anti-TNFa are required. Here, microRNA is involved in the
progression of colitis-associated CRC (CAC) (Publication 3, page 102) (Bocchetti et al. 2021)
and the use of (2) faecal-based miRNA and (3) gut microbes could be useful for non-invasive
CRC screening. Besides, (4) study of gut-host interactions is critically important for gaining
new insight into gastrointestinal diseases. IBD patients also have a greater risk of CDI, and
IBD patients with CDI have disproportionately higher morbidity and mortality (Balram et al.

2019). Faecal microbiota transplantation (FMT) is an effective alternative treatment strategy
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for CDI, however, the molecular mechanisms of how the host responds to FMT remain unclear.
Moreover, changes in stomach microbiota composition also increase the incidence of Epstein-
Barr virus (EBV)-induced GC, which leads to significantly increased healthcare costs
(publication 4, page 119) (Yau, Tang, et al. 2014), unravelling the differences between EBV
infected and non-infected GCs through the use of whole genome, transcriptome and
epigenome sequence analysis may improve our understanding of the disease, leading to

precision medicine.

Il. COLORECTAL CANCER

Approximately 70-90% of total CRC cases are sporadic, thus about 10-30% of CRC
cases are familial (Monahan et al. 2020). Around 5% of CRC subjects are linked with
hereditary cancer predisposition, the majority (1-3% of total CRC cases) being Lynch
syndrome (also called hereditary nonpolyposis CRC, HNPCC); hamartomatous polyposis
syndromes (HPS) and familial adenomatous polyposis (FAP) are relatively low, with < 0.1%
and < 1% of total CRC cases, respectively (Nguyen, Duong 2018; Monahan et al. 2020). Long-
term IBD is also the main risk factor of CRC oncogenesis (Nadeem et al. 2020), with an
estimated proportion of fewer than 2% of all CRC cases (Eluri et al. 2017) (Figure 1).

~60% ~30%
~5%
Hereditary
i —
<2% <1%
IBD associated Others

Figure 1. Distribution of colorectal cancer subtypes.

i. SPORADIC COLORECTAL CANCER

The pathogenesis of CRC follows a stepwise progression from aberrant crypt formation
in colonic mucosa to benign adenomas and malignant adenocarcinomas. Without early
intervention, it gradually evolves into invasive and metastatic tumours (Toyota, Suzuki 2010;
You, Jones 2012; Migliore et al. 2011). There are two major distinct clinicopathologic routes
in sporadic CRCs based on genetic classifications: the classical adenoma-carcinoma pathway

and serrated pathways (De Palma et al. 2019; Jass 2001).
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(1). Classical adenoma-carcinoma sequence pathway

CRC induced by adenoma-carcinoma sequence is histologically homogeneous and
begins with tubulovillous or tubular adenoma precursor lesions (Nguyen, Duong 2018). The
histological alterations are the consequence of molecular dysregulation (Armaghany et al.
2012). Broadly, the inactivation of adenomatous polyposis coli (APC) is the initial event in
adenoma CRC formation, followed by KRAS mutation at the early neoplasm development.
Then, the deletion and/or inactivation of the SMAD family member (SMADZ2 and SMAD4) on
chromosome arm 18q and tumour-suppressor gene TP53 on chromosome arm 17p occur
during the transition to malignancy (Figure 2) (Diep et al. 2006; Jasmine et al. 2012; Zarzour
et al. 2015). This proposed adenoma-carcinoma sequence pathway is a combination of the
three tumorigenesis mechanisms of CRC, including (A) chromosomal instability (CIN); (B)
microsatellite instability (MSI); and (C) DNA hyper-methylation (Gupta et al. 2018; Pino, Chung
2010). Any of the mechanisms may also involve in other types of CRC pathogenesis.

Sporadic colorectal cancer

MSI
KRAS
mutation
APC DCC/
COX-2
inactiiation ¢ 5MAD4
Normal Early Intermediate Late c
Mucosa Adenoma Adenoma Adenoma cinoma
Aneuploidy
Methylation

Microsatellite Instability (MSI), MMR inactivation,
CIMP hypermethylation,

Figure 2. Classical sporadic colorectal cancer pathway. APC, Adenomatous Polyposis Coli; MSI,
microsatellite instability; KRAS, KRAS Proto-Oncogene, GTPase; COX-2, Prostaglandin-endoperoxide
synthase 2; DCC, Deleted in Colorectal Cancer; SMAD4, SMAD Family Member 4; p53, Tumour protein
P53; LOH, loss of heterozygosity. Adopted and modified from (Cerrito, Grassilli 2021).

A. chromosomal instability
CIN is the most prevalent form of genomic instability that comprises deletion and/or

duplication of either whole or parts of chromosomes. Roughly, 85% of sporadic CRCs are CIN
and commonly found in the distal colon (Gupta et al. 2018; Pino, Chung 2010). CIN is usually
associated with tumour suppressor genes inactivation, such as APC, TP53 and/or KRAS

mutation (Geigl et al. 2008; Pino, Chung 2010). Allelic deletion(s) and/or somatic mutation(s)
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of APC are a critical factor for sporadic CRC (Kapitanovi¢ et al. 2004; Kinzler, Vogelstein
1996). Silencing of APC triggers canonical Wnt signalling cascade from the accumulation and
stabilisation of B-catenin in the cytoplasm and is further translocated into the nucleus with T-
cell factor/lymphoid enhancer factor (Tcf/Lef) complexes (Figure 3) (Cadigan, Waterman 2012;
Pai et al. 2017). Then, it activates the transcription of CCND1, AXIN2 and MYC (Shang et al.
2017; MacDonald et al. 2009; Coppede et al. 2014), and promotes cell proliferation, invasion,
migration and cancer metastasis (Stanczak et al. 2011).
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Figure 3. Canonical Wnt/B-catenin signalling pathway. OFF state: The presence of WNT binds to
a frizzled receptor and its co-receptor LRP5/6 activates 3-catenin phosphorylation and interacts with
the destruction complex (CK1a, GSK-38, Axin and APC), and subsequent degradation. ON state: The
absence of WNT protein activates glycogen synthase kinase-3f (GSK-3B). Here, the tumour
suppressor of ZNRF3 induces degradation of WNT receptor. It prevents [-catenin
phosphorylation/degradation and thus accumulates 3-catenin in the cytoplasm and further translocated
into the nucleus with Tcf/Lef complexes, subsequently inducing cell proliferation. P, phosphate; APC,
adenomatous polyposis coli; GSK-3p, glycogen synthase kinase 3(3; LRP, lipoprotein receptor-related
protein; Tcf/Lef, T-cell factor/lymphoid enhancer factor, CK, Casein kinase. Adopted and modified from
(Silva-Garcia et al. 2019; Zhang, Wang 2020).
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B. microsatellite instability
MSI consists of an accumulation of deletions and/or insertions of short nucleotide

repeats (microsatellite) in DNA mismatch repair (MMR)-related genes without affecting
chromosomal integrity (Boland, Goel 2010; Gupta et al. 2018). The DNA MMR system is there
to identify and repair mistaken misincorporation, deletion and/or insertion of DNA base(s)
during replication repair, and recombination (Figure 4). MSI occurs in about 15% of CRC
cases; and over 80% of sporadic CRC with MSI are mainly associated with MLH1 inactivation
— one of the key regulating genes in MMR — via CpG island methylator phenotype (CIMP)-
driven methylation (Weisenberger et al. 2006; Popat et al. 2005; Boland, Goel 2010). MSI can
be classified and determined as stable (MSS), low (MSI-°¥) and high (MSI"9") by using PCR
based on the Bethesda panel assay (BAT25, BAT26, D2S123, D5S346, and D175250) (Losso
et al. 2012; Hegde et al. 2014). The MSI status can also be identified from whole-genome
sequencing data using some bioinformatics tools (Hempelmann et al. 2015; Salipante et al.
2014; Niu et al. 2014). MSIHeh CRC often has BRAF mutations (Cancer Genome Atlas
Network 2012) and has high frequent frameshift mutations on the genes that contain
nucleotide repeats in exon coding regions, including MSH6, MSH3, CASP5, E2F4, TGFBR2
and IGF2R (Souza et al. 1996; Saeki et al. 2001; Yoshitaka et al. 1996; Schwartz et al. 1999).
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Figure 4. Schematic diagram of DNA mismatch repair. Recognition of a mismatch starts with MutS
(MutSa: MSH2-MSHS6 for single base-pair mismatch or MutSp: MSH2-MSHS for over 1 base pair of
insertion/deletion mispair) and MutL (MutLa: MLH1-PMS2) forming a ternary complex. The DNA-
protein and protein-protein interactions need ATP/ADP cofactor to bind MutL and MutS (MutSa or
MutSB). PCNA and RFC are DNA replication factors that target the excision step to the newly
synthesised strand. Then, Exo1 indicates the excision of one side of the DNA duplex having
mismatched nucleotide(s) and coated with RPA on the single-strand gap. Resynthesis by the replicative
DNA polymerase repairs the integrity of the duplex. MSH, mutS homolog; Exo1, excision by
exonuclease 1; PCNA, proliferating cell nuclear antigen; RFC, replication factor C; DNA pol, DNA
polymerase; ATP, adenosine triphosphate; ADP, adenosine diphosphate; RPA, replication protein A.
Adopted and modified from (Pe¢ina-Slaus et al. 2020).

C. DNA hyper-methylation
DNA methylation is an epigenetics process by which a methyl (CH3) group is added

to a carbon-5 (C5) position of cytosine to form a 5-methyl-cytosine. This process precedes a
CpG site by DNA methyltransferase(s) (DNMTs) without changing the DNA sequence (Figure
5A). Hyper-methylation of CpG islands in gene promoter regions presents a conformational
change of chromatins, avoiding RNA polymerase and/or other regulatory protein(s) from
accessing the promoter region, and thus suppressing gene transcription (Figure 5B) (Jin et
al. 2011; Moore et al. 2013). The degree of DNA methylation can be utilised for CRC
classification based on the CpG island methylator phenotype (CIMP), showing diverse
molecular features, precursor lesions and histology (Issa 2004; Ang et al. 2010; Shen et al.
2007). The degree of CIMP can be sub-classified into high (CIMPH<") Jow (CIMP-%) and
negative (CIMPNesave) (Drew et al. 2017; Ogino et al. 2006).
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Figure 5. The molecular mechanism linking DNA methylation and inactive transcription. (A)
Cytosine converts to 5-methyl-cytosine via DNA methyltransferase (DNMT). (B) The CpG islands
methylated sites at promoter regions preventing the binding transcription factors via methyl CpG-
binding protein, suppressing the down-stream transcription. DNMT, DNA methyltransferase; SAH, S-
adenosylhomocysteine; SAM, S-adenosylmethionine.

(2). Serrated colorectal cancer pathway

Based on the 5" edition of the World Health Organisation (WHO) classification of
tumours of the digestive system, serrated colorectal lesions are classified into traditional
serrated adenomas (TSAs), sessile serrated lesions (SSLs), hyperplastic polyps (HPs) and
unclassified serrated adenomas (Nagtegaal et al. 2020). Two variants of HPs are
microvesicular (MVHP) and goblet cell (GCHP) (Kim, Kang 2020). The prevalence of serrated
class polyps is 20-40% in average-risk individuals; approximately 75% of serrated polyps
detected are HPs (Crockett, Nagtegaal 2019). SSLs are the most common premalignant
serrated subtype and are found in up to 15% of average-risk patients (Table 1). Approximately
70-80% of TSAs are located in the distal colon (Gui et al. 2020; Chetty 2016; Bettington et al.
2015). Based on clinical histopathology, TSA has three variants, including filiform, flat and
mucin-rich (Childs et al. 2014; Bettington et al. 2015), and are often admixed with HP or SSL
(Tsai et al. 2014; Kim et al. 2013; Bettington et al. 2015).

Table 1. Clinical features of common serrated polyps.

Histological Classification CRC Serrated Location Size Malignant
Frequency polyps Progression
(%) Frequency
Hyperplastic Polyps (HPs)* 20%-30% ~75% 70~80% <5mm No
Distal

Sessile Serrated Lesions? 5%-15% ~25% 75%-90% 5mm- Yes
(SSLs) Proximal 7mm

Traditional serrated polyp <1% 1%-7% Mostly Usually Yes
(TSAs)* Distal > 5mm

*Hyperplastic polyp includes microvesicular hyperplastic polyp (MVHP) and goblet cell hyperplastic
polyp (GCHP). *Previously version called sessile serrated adenomas/polyps. #Three variants of TSA
are filiform, flat and mucin-rich. Adopted from (Crockett, Nagtegaal 2019).

7|Page



In most serrated polyps, the first critical step is the acquisition of a gene mutation that
regulates the mitogen-activated protein kinase (MAPK) pathway and DNA methylation (Pino,
Chung 2010). The activation of MAPK signalling induces cell proliferation from normal
epithelium cells to serrated aberrant hyperplastic crypt foci, which are considered at the
earliest histological lesions (Rosenberg et al. 2007). TSA has been considered a genetically
heterogeneous polyp and mainly recognised as a precursor lesion for MSS or MSI-°" (Leggett,
Whitehall 2010; Saito et al. 2015), and can be CIMP"9" or CIMP*" (Rex et al. 2012; Bettington
et al. 2013; Tsai, Cheng, et al. 2016). It has been hypothesised that GCHP is the precursor to
TSA, although no clear evidence has been put forward (Yang et al. 2004). Pooled data showed
that KRAS or BRAF mutations are present in the majority of TSAs, with an incidence of
approximately 32%, and 56%, respectively (Gui et al. 2020). Based on the molecular features,
TSA could broadly be divided into KRAS- or BRAF-driven pathways, while KRAS and BRAF
wide type TSAs are still unknown (McCarthy et al. 2019) (Figure 6).
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Figure 6. Serrated colorectal cancer pathways. Serrated colorectal cancer (CRC) can be broadly
divided by BRAF and KRAS molecular pathways. In the sessile serrated pathway, normal mucosa
transformation begins with BRAF mutations, potentially from MVHP, followed by p16 and IGFBP7
promoter hyper-methylation toward serrated adenocarcinoma, mainly through MLH1 epigenetic
alterations. In contrast, the traditional serrated pathway (TSA) involves KRAS or BRAF mutations in
normal colon cells, following MGMT methylation towards high-grade dysplasia and serrated
adenocarcinoma (SAC). RNF43-ZNRF3 mutation may be the key regulator by transforming from SSL
to TSA. CIMP, CpG island methylator phenotype; SSL, Sessile Serrated Lesions; KRAS, KRAS proto-
oncogene GTPase; BRAF, B-Raf proto-oncogene serine/threonine kinase; APC, adenomatous
polyposis; TP53, tumour protein 53; TGFBR, transforming growth factor-B receptor; BAX, BCL2
associated X apoptosis regulator; IGF2R, insulin-like growth factor 2 receptor Adopted and modified
from (McCarthy et al. 2019).
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BRAF mutation (especially V600OE mutation sites) accounts for approximately 10% of
CRC cases (Kambara et al. 2004). It is relatively less in conventional adenomas/Lynch
syndrome CRC but common in SSLs/TSAs CRC tumours (Kakar et al. 2008; Spring et al.
2006; Leggett, Whitehall 2010). Most of the BRAF-mutated TSA-induced tumours are serrated
with MVHP or SSL precursor at proximal colon (Kim et al. 2010; Lash et al. 2010; Sekine et
al. 2020). It has been hypothesised that MLH71 hyper-methylation (especially 93G>A
polymorphism) leads the tumour progression from BRAF-mutated SSL, SSL with dysplasia
(SSL-D) to MSIMs" CRC sequence (Nourbakhsh, Minoo 2020). CIMPH9" with MLH1 hyper-
methylation is also one of the critical factors from SSL to SSL-D or even serrated CRC
transformation (Nourbakhsh, Minoo 2020). Due to the high mutation rate and oncogenic
burden, SSL-D is speedily transformed into CRC (Amemori et al. 2019). Around three-quarters
of SSL-D cases are loss of MLH1 gene expression (Fennell et al. 2018); and BRAF-mutated
SSL without MLH1 methylation could be transformed into TSA and become MSS (Yan et al.
2017; Nourbakhsh, Minoo 2020). BRAF mutation also leads to a high frequency of
RNF43 mutations, up-regulation of p16™42 and induces IGFBP?7 secretion at aberrant crypt
foci (Hashimoto et al. 2019; Sekine et al. 2017; Tsai, Liau, et al. 2016). Moreover, BRAF
mutation might promote global CpG island methylation by increasing the promoter binding of
the transcriptional repressor gene MAFG (Fang et al. 2014; Fang et al. 2016). A
BRAF mutation-induced oncogenesis in mouse colon-derived organoid focuses on ageing-
related hyper-methylation, which suggests that BRAF mutation is not a prerequisite for CIMP
development in SSLs (Tao et al. 2019).

KRAS is a membrane-bound GTP/GDP-binding protein (Ogino et al. 2009) and its
gene mutations are common in codon 12 (G12D, G12V) and codon 13 (G13D). KRAS
mutation appears in the early stages of CRC tumorigenesis (Fearon 2011; Fernandez-
Medarde, Santos 2011; Kosmidou et al. 2014) and impairs intrinsic GTPase activity from
active GDP-binding stage to GTP-binding stage, resulting in KRAS accumulation and
downstream proliferative signalling pathways (Schubbert et al. 2007). KRAS mutation with
CIMP™" and MSS TSAs is frequently located in the distal colon (descending and sigmoid
colon) and rectum. The epigenetic silencing of MGMT instead of MLH1 induces the mutations'
accumulation and may lead to TSA formation (Huang et al. 2011; Whitehall et al. 2001). KRAS-
mutated TSA has a higher frequency with PTPRK-RSPO3 gene fusions (RSPO fusions),
resulting in down-regulation of RNF43 and R-spondin over-expression (de Lau et al. 2014;
McCarthy et al. 2019).
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ii. COLITIS-ASSOCIATED COLORECTAL CANCER

Inflammatory bowel disease (IBD) is a group of idiopathic and relapsing-remitting
chronic inflammatory disorders defined by a wide range of criteria, based on clinical,
endoscopic, laboratory, radiological and histological outcomes. Crohn's disease (CD) and
ulcerative colitis (UC) are the two major subtypes of IBD, accounting for approximately 30%
and 60% respectively, and up to 10% of IBD patients are grouped as IBD unclassified (IBDU)
due to lacking specific UC or CD features (Thurgate et al. 2019) (Figure 7).

Figure 7. Distribution of inflammatory bowel disease subtypes.

Chronic inflammation appeared in one-fifth of all types of cancers, and CRC has the
highest correlation between tumorigenesis and long-standing inflammation (De Marzo et al.
2007). This long-standing chronic inflammation is characterised by a susceptible genetic
background, underlying immunological deregulation and dysbiosis, inducing intestinal barrier
injury, permeability and destruction of tight junctions, leading to intestinal mucosa damage
(Turner 2006; Abraham, Cho 2009). The degree of colonic inflammation and the duration of
the disease is related to the development of neoplasia, with approximately 300-500% higher
risk of CRC (Choi et al. 2019; Samadder et al. 2019). Studies reported that UC-associated
CRC has a more unfavourable survival rate than sporadic CRC, accounting for one-sixth of
UC-related deaths (Jensen et al. 2006; Watanabe et al. 2011; Jess et al. 2006).

(1). Pathogenesis of colitis-driven colorectal cancer

In terms of clinical histopathology, CAC tissues are more often likely to have a
background of chronic inflammation, a substantial portion of mucinous, and a higher number
of signet ring cells and multifocal dysplasia (Kulaylat, Dayton 2010; Ullman, ltzkowitz 2011).
More frequently, CAC develops initially from non-polypoid and flat dysplasia in the area of
abnormal epithelial hyperplasia and progresses to invasive adenocarcinoma (Xie, ltzkowitz
2008; Jensen et al. 2006; Watanabe et al. 2011). At the molecular level, CIN and MSI

incidences in CAC are similar to sporadic CRC, while the occurrence time and frequency differ
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(Lakatos, Lakatos 2008; Triantafillidis et al. 2009; Ullman, ltzkowitz 2011). CAC has a lower
APC dysfunction rate and appears at the late stage of carcinogenesis; the loss of TP53
function occurs at the early stage of carcinogenesis compared to sporadic (Dyson, Rutter 2012;
Pilley et al. 2021; Bieging et al. 2014) (Figure 8). Approximately 50% - 85% of CACs
have TP53 mutations and it seems more likely for neoplasia initiation in IBD patients (Du et al.
2017).

Colitis-associated colorectal cancer

MSI
Methylation
Aneuploidy
COX-2
DCC/ KRAS .A_PC_
SMAD4 mutation inactivation
oy indefinite ¥, Lowcrade v, (SR, @GR

Figure 8. Colitis-associated colorectal cancer in classical pathways. MSI, microsatellite instability;
COX-2, Prostaglandin-endoperoxide synthase 2; p53, Tumour protein P53; LOH, loss of heterozygosity;
DCC, Deleted in Colorectal Cancer; SMAD4, SMAD Family Member 4; KRAS, KRAS Proto-Oncogene,
GTPase; APC, Adenomatous Polyposis Coli. Adopted and modified from (Kobayashi et al. 2017).

Once individuals have been diagnosed with IBD, drugs treatment may be given
depending on the disease type, severity, responsiveness to treatment and potential side
effects, in order to obtain remission and mucosal healing, thereby lowering the need for
surgery, disease progression and potential CRC development. Different classes of approved
pharmacological drugs have diverse anti-inflammatory mechanisms of action and the potential
side effects for IBD patients (McQuaid 2018) (Figure 9).
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Figure 9. Therapeutic pyramid for the step-up treatment of inflammatory bowel disease. Step-up
approach: from mild to stronger and more toxic therapies. ABT, Abatacept; RTX, Rituximab; TCZ,
Tocilizumab; VDZ, vedolizumab; IFX, Infliximab; ADM, Adalimumab; CTZ, Certolizumab Pegol; GLM,
Golimumab.

(2). The role of tumour necrosis factor a in colitis-associated colorectal cancer

Cytokines are small proteins (< 40 kDa) secreted in response to infection and
inflammation, influencing disease progression including IBD, CAC and CRC (Kany et al. 2019).
It is believed that IL6, IL1B and TNFa are the key cytokines in IBD (Ahluwalia et al. 2018).
Among them, therapeutic agents targeting TNFa have altered the treatment strategy in IBD
patients with moderate-to-severe disease (D’Haens, van Deventer 2021). TNFa is induced by
mononuclear cells through activation of cellular receptors and pattern recognition receptors,
such as toll-like receptor 4 (TLR4) (Sansonetti, Medzhitov 2009).

The biologically active homotrimer TNFa originally derived from the precursor
transmembrane TNFa (tmTNF-a, 26 kDa), and is proteolysed by TNF-converting enzyme
(TACE) to form soluble TNFa (17 kDa) (Kalliolias, lvashkiv 2016). The canonical TNFa
pathway is activity-mediated via binding to the TNF receptors | and Il (TNFRI and TNFRII),
and further activates MAPKs and NF-kB pathways, inducing cell proliferation, differentiation
and up-regulation of several pro-inflammatory cytokines (McDaniel et al. 2016; Yeung et al.
2018; Ruiz et al. 2021). To be specific, TNFa binds to TNFR1, inducing the recruitment of
death domain (DD) incorporated with TNFR-associated DD (TRADD) protein (Hsu et al. 1995)
and, further, the recruitment of fas-associated protein with death domain (FADD), activating
caspase-8, -10 and -3, (Hsu et al. 1996). TNFa can also trigger mitochondria signalling,
release cytochrome C and Bax, thereby activating caspases, leading to apoptosis (Vringer,
Tait 2019). TNFR2 contains a TRAF-interacting (TIM) motif domain and enables binding
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TRAF2 via the activation of TNFa. This pathway also leads to association with multiple
signalling pathways, including ERK (extracellular signal-related kinase), JNK (c-Jun N-
terminal kinase), pI3K (phosphoinositide 3-kinase) MAPK, NF-kB and AKT, and share a similar
path to TNFR1 (Figure 10) (Wajant, Siegmund 2019).

Apoptosis

Figure 10. TNFa signalling pathway. TNFa binds to the membrane receptors TNFR1 or TNFR2,
leading to downstream apoptosis and inflammatory signalling. The activation of TNFR1 induces the
formation of a death-inducing signalling complex such as TRADD, and further activates FADD and
caspase, eventually inducing apoptosis. Pro-inflammatory signalling pathways can be activated via
TNFR1 or TNFR2, then, through the adaptor protein TRAF2 to activate RIPK1, ASK1 or MEKS, resulting
in the activation of MAPK and canonical NF-kB activation. TNFR1, tumour necrosis factor receptor 1;
TNFR2, tumour necrosis factor receptor 2; TRADD, tumour necrosis factor receptor type 1-associated
DEATH domain protein; FADD, Fas-associated protein with death domain; TRAF2, TNF receptor-
associated factor 2; RIPK1, Receptor-interacting serine/threonine-protein kinase 1; ASK1, Apoptosis
signal-regulating kinase 1; MEK, Mitogen-Activated Protein Kinase Kinase; NF-kB, (nuclear factor-
kappa B); IKK, IkB kinase; BID, BH3 interacting-domain death agonist; BAX, Bcl-2-associated X protein;
Cyto C, Cytochrome c; Casp, Caspases; JNK1, Jun N-terminal Kinase 1. Adopted from (Wajant,
Siegmund 2019).
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lll. microRNA

MicroRNAs (miRNA) belong to a class of highly-conserved short single-stranded non-
coding RNA segments (18-24 nucleotides), which regulate gene expression at the
transcriptional level after their nuclear hybridisation and reimportation (Place et al. 2008).
miRNAs are commonly located within introns of host genes and potentially have a co-
regulation of transcription which has an independent transcriptional start site and regulatory
elements. It can also be controlled by a different promoter and/or other regulatory sequences.
Thus, miRNA expression does not necessarily correlate with the levels of their host gene
(Bartel 2004).

Biogenesis of miRNA has both canonical and non-canonical pathways
i. CANONICAL PATHWAY OF microRNA BIOGENESIS

The canonical miRNA pathway is the dominant approach for miRNA biogenesis
(Figure 11B). A mature miRNA is first transcribed by RNA polymerase Il (POL Il) as a primary
miRNA (pri-miRNA) (>1 kb). It contains a 5'-cap with a poly-A tail (Lee et al. 2004) and can be
recognised by a DiGeorge Syndrome Critical Region 8 (DGCR8) - an RNase Ill enzyme
Drosha complex in the nucleus (Denli et al. 2004; Han 2004). The Drosha cleaves the pri-
miRNA into precursor miRNA (pre-miRNA, an approximately 70 nucleotides stem-loop
precursor) by recognising the N6-methyladenylated GGAC and other motif(s) such as CNNC
and UG motifs (Lee et al. 2003). The pri-miRNA to pre-miRNA process needs a ~35
nucleotides hairpin stem or a 3—23 nucleotides apical loop (Roden et al. 2017; Adams 2017).
Then, the pre-miRNA is exported to the cytoplasm via the small Ran GTPase and exportin 5
(XPO-5) complex (Bohnsack et al. 2004; Yi et al. 2003) and is therefore cleaved by the
endonuclease DICER/trans-activation-responsive RNA binding protein (TRBP) into a duplex
miRNA (Hutvagner et al. 2001; Bartel 2018). This duplex is bound by the Argonaute (AGO) in
an RNA-induced silencing complex (RISC), which eliminates one strand of the duplex to
conserve the guide strand corresponding to the mature miRNA (Kobayashi, Tomari 2016).
This mature miRNA at the 5' region (corresponding 2 to 7 nucleotides) enables recognition
and binding of the mRNA target transcript(s), mostly in their 3'-untranslated regions (3'UTRs).
If the pairing is perfect, AGO produces an endonucleolytic cleavage leading to mRNA
degradation; if mismatch(es) are present, the mRNA could first be deadenylated and then
degraded or translational repression may occur (Jonas, lzaurralde 2015; Pasquinelli 2012).
Rarely, miRNA could be localised in the open reading frame (ORF) or 5'UTR of mRNA (Bartel
2009; Helwak et al. 2013), or up-regulate the expression of target genes (Mortensen et al.
2011; Oldenburg et al. 2017; Vasudevan et al. 2007). In certain circumstances, miRNAs can
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also control the translation activation and even regulate transcription rates (Vasudevan 2012),
as they can shuttle between different subcellular compartments (Makarova et al. 2016).

ii. NON-CANONICAL PATHWAYS OF microRNA BIOGENESIS

Non-canonical miRNA pathways are composed mainly of proteins involved in the
canonical pathway by bypassing one or more steps, while Dicer is still required. It is broadly
considered as (1) Drosha/DGCRS8-independent and (2) Dicer-independent pathways
(Abdelfattah et al. 2014). miRNA is processed by Drosha via Dicer-independent pathway
typically from the endogenous short transcripts, such as short-hairpin RNA (shRNA) and a
short length of pre-miRNA product (Yang et al. 2010). For instance, the maturation process of
miR-451 requires AGO2 within the cytoplasm, due to the relatively short length of the pre-miR-
451 stem-loop structure to be a Dicer substrate (Cheloufi et al. 2010; Yang et al. 2010) (Figure
11A). On the Drosha/DGCR8-independent pathway (Figure 11C), mirtron- (a class of miRNAs
produced by spliced or debranched mRNA) derived pri-miRNA has a stable hairpin with a
shorter stem-loop, which is suitable for Dicer cleavage and enables bypassing the
microprocessor (Berezikov et al. 2007; Westholm, Lai 2011). Another example is 7-
methylguanosine (m’G)-capped pre-miRNA (Figure 11D), which is transferred to the
cytoplasm via exportin 1 without Drosha cleavage. Noted that the end miRNA product is mainly
from the 3p strand, this is due to the m’G cap preventing 5p strand loading into an AGO (Xie
et al. 2013).
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Figure 11. Canonical and non-canonical pathways of microRNA biogenesis. (B) The colonial
miRNA biogenesis starts with RNA polymerase II-driven transcription and produces the primary miRNA
(pri-miRNA) in the nucleus, with the sequence ends polyadenylated and capped. Then, the DGCR8 and
Drosha microprocessor complex cleaves the pri-miRNA into pre-miRNA — a short hairpin-like structure
with 60-90 nucleotides — and delivers it to the cytoplasm by Ran/exportin-5 in a GTP-dependent
approach. The pre-miRNA will further be modified by Dicer — an RNase Il nuclease — to form a double-
stranded duplex miRNA. The duplex miRNA will be bound by the Argonaute proteins (AGO2) in an
RNA-induced silencing complex (RISC) for a strand selection process. Within the RISC, the mature
single-strand miRNA at the 5' region (corresponding 2 to 8 nucleotides) enables recognition and binding
of the complementary mRNA target transcript(s), mostly in their 3'-untranslated regions (3'UTRs). In
non-canonical pathways, (A) small hairpin RNA (shRNA) is initially cleaved by the DGCR8 and Drosha
microprocessor complex and exported to the cytoplasm via Exportin5/RanGTP, and further processed
via AGO2 directly without Dicer; (C) Mirtrons and (D) 7-methylguanine capped (m7G)-pre-miRNA
require Exportin5/RanGTP and Exportin1 respectively, to export the nucleus; both require Dicer to
complete the maturation in the cytoplasm. Moreover, mirtrons require spliceosome sizing from a pre-
miRNA. All pathways ultimately lead to a functional miRISC complex like canonical miRNA biogenesis.
This interaction then triggers the repression of translation and degradation of the target mRNA. Adopted
and modified from (O’Brien et al. 2018).
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iii. NOMENCLATURE OF microRNA

Based on the miRNA naming system, a typical miRNA name is composed of a
minimum of two components (e.g., miR-221 or miR-21) and applied in only one specific
species study in a research article. For studies involving more than one species, a three-letter
specific prefix is required to separate the origin of mMiRNAs. For instance, "hsa" refers to human
(Homo sapiens), "rmo" refers to common rat (Rattus norvegicus) and "ebv" refers to Epstein-
Barr virus (e.g. hsa-miR-221, rno-miR-221 and ebv-miR-BART3) (AMBROS 2003; Meyers et
al. 2008; Liang et al. 2014).

The majuscule "miR-" refers to the mature form of the miRNA and minuscule "mir-"
refers to the corresponding pre- or pri-miRNA stem-loop form. A suffix number often suggests
the order of naming, so that miR-21 is likely discovered before miR-221. A minuscule letter
after the number is used to distinguish among multiple members of the same family (e.g., miR-
20a and miR-20b) and normally starts from the letter "a". 3p or 5p names after a mature miRNA
sequence indicate a position from the pre-miRNA hairpin cleaved by the RNase Ill enzyme
Dicer: the -3p strand is positioned in the reverse (3'-5") position while the -5p located in the
forward (5'-3") position (e.g., miR-21-5p from the 5' arm of the precursor and miR-21-3p from
the 3' arm of the precursor). If two diverse loci produce identical mature products, an additional
number will be given after the name. For instance, hsa-mir-92a-1 (from chromosome 13) and
hsa-mir-92a-2 (from chromosome X) form the same final -3p miRNA product (hsa-miR-92a-
3p) while each locus can generate two separate -5p (hsa-miR-92a-1-5p and hsa-miR-92a-2-
5p) end mature products (Figure 12) (Kozomara et al. 2019; Kozomara, Griffiths-Jones 2014;
Kozomara, Griffiths-dones 2011; Griffiths-dJones et al. 2007; Griffiths-dJones 2006; Griffiths-
Jones 2004).

Additionally, a miRNA with * (star symbol, an abandoned identification system)
indicates the mature miRNA from the same hairpin precursor, but less predominant from the
opposite arm (e.g., miR-21* is the former name of miR-21-3p). Noted that the name of a
miRNA may be changed or abandoned (e.g., hsa-mir-923, false discovery due to the fragment
originally from 28S ribosomal RNA (rRNA)) (miRBase 2020). The latest miRNA identifiers can
be found from the miRbase database (http://www.mirbase.org/) for published (and dead entry)

miRNA (Kozomara et al. 2019; Kozomara, Griffiths-Jones 2014; Kozomara, Griffiths-Jones
2011; Griffiths-dones et al. 2007; Griffiths-Jones 2006; Griffiths-Jones 2004).
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Figure 12. The hsa-miR-92 Family and its nomenclature. Based on the miRbase database dated
10-03-2021. Brackets indicate the previous miRNA identifier(s).

iv. PROBE-BASED REAL-TIME POLYMERASE CHAIN REACTION

SYBR® Green is the most commonly used reagent for Real-Time quantitative
polymerase chain reaction (QPCR). In traditional real-time qPCR, it only requires a pair of
18~22 based-pair primers targeting the specific target sequence of interest. However, SYBR
Green is able to bind to any double-stranded DNA, including non-specific amplification
products. Thus, using a specific complement sequence probe with a pair of primers can
minimise the chance of RT-qPCR non-specific amplification product(s). This approach can
also increase the detection specificity and prefer to use it in a complex environment, such as
DNA/RNA samples from faeces. Noted that the probe-based RT-qPCR approach has been
extensively used in SARS-COV-2 screening during the COVID-19 pandemic (Bustin, Nolan
2020; Vogels et al. 2020). A hydrolysis fluorescent-labelling probe enhances the detection of
specificity and adjusts the melting temperature (7Tm). A probe conjugate with a minor groove
binder (MGB) can minimise the length of its oligonucleotide to approach the target sequence
as well as stabilising the quantification of PCR products via a reporter dye (Table 2) (Chen
2005; Afonina et al. 2002). The use of probe-based gPCR can be utilised in multiple targets
in one single reaction (Liang et al. 2019). It is based on the use of different probes by selecting
different wavelength reporters and the corresponding relative intensities. Probe design,
fluorescent-label selection, and the number of RT-qPCR targets in one single reaction are
varied and rely on the gPCR instrument itself. FAM is the most common qPCR probe while
other types, such as VIC™ and NFQ™ are available (Mark D. et al. 2005).
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Table 2. Comparison between TagMan® probe-based and SYBR® Green for Real-Time
quantitative polymerase chain reaction.

TaqMan® Probe-based SYBR® Green

Chemistry

Fluorogenic probe(s) in detection of Bind to double-stranded DNA
target sequence(s)

Advantage / Disadvantage

High specificity High sensitivity

Low signal to background High signal to background

Require fluorescent-labelled probe(s)  No fluorescent-labelled probe
Relatively High cost Relatively low cost

Available for multiplexing Only one single target per reaction
Accurate quantitation May have non-specific amplification(s)

TagMan® is a registered trademark of Roche Molecular Systems, Inc.; SYBR® s a registered trademark
of Molecular Probes, Inc.

Compared to a typical protein-coding gene expression qPCR assay, small RNAs,
including mature miRNAs, are too short to accommodate for “traditional” PCR amplification.
In order to overcome these issues, using a one-strand cDNA synthesis with a highly stable
miRNA-specific stem-loop structure primer can lengthen the original target small RNA based
on the 6 base-pair binding regions and forms the 3' end RT primer/mature miRNA chimaera
for the specific mature miRNA (Figure 13, Step one). These extended cDNA products also
optimised for the Tm for a standard TagMan® probe-based Real-Time PCR (Figure 13, Step
two). To apply this stem-loop primer structure for SYBR® Green qPCR, an 11 base pair (bp)
extended binding region was designed to bring down the cost per single reaction (Tong et al.
2015).
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Figure 13. microRNA detection and quantification by TagMan® probe-based RT-qPCR. (Step 1)
miRNA templates are reverse transcribed using a stem-loop specific primer. (Step 2) The reverse
transcribed product is amplified using the miRNA specific primers and the hydrolysable probes. The
process of hydrolysis displaces the probes and Taq polymerase, resulting in the fluorophore's
separation and quencher. Accumulation of reporter dye (the fluorescence signal intensity) can
determine the amplification efficiency based on a cut-off cycle. microRNA, miRNA.
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IV. MICROBIOTA

There are ftrillions of microbes colonised in the human intestinal flora, of which there
are about 100-1,000 bacterial species that interact closely with host cells, affecting the
immune and metabolome in the gastrointestinal tract, and shaping the homeostasis of the
intestine (Qin et al. 2010). Dysbiosis of gut microbiota has been linked to various Gl diseases,
including IBD, CRC and Clostridioides difficile (also formerly called Clostridium difficile, C.
difficile) infection (CDI) (Lee et al. 2016). In the stomach, the presence of Helicobacter pylori
(H. pylori) and/or Epstein-Barrvirus (EBV) have been reported in association with the induction
of GC (Yau, Tang, et al. 2014). Recently, an increasing number of studies indicated that
miRNAs from the host, or microbes such as EBV, play an important role in influencing the

stomach microenvironment to maintain intestinal homeostasis and/or disease(s) progression.

i. EPSTEIN-BARR VIRUS-INDUCED GASTRIC CANCER

Helicobacter pylori (H. pylori) and EBV are the oncogenic microbes that induce GC;
among them, EBV-associated GC (EBVaGC) accounts for nearly 10% of GC cases (Tavakoli
et al. 2020). Compared to the other GCs, EBVaGC is recognised for its unique
clinicopathological characteristics (Chen et al. 2015). EBVaGC is a latency | EBV infection, in
which EBER, EBNA1 and LMPs viral genes are expressed in the host cells, affecting the host
cells' molecular mechanisms, including their epigenetics. The mechanism of EBV infection
and the epigenetic changes in EBVaGC have been previously discussed (publication 4, page
119) (Yau, Tang, et al. 2014). For example, EBV latent membrane protein 2A (LMP2A)
induces DNMT1 transcription via the phosphorylation of STAT3 (Hino et al. 2009). Virally-
encoded miRNAs such as ebv-miR-BART1-5p, ebv-miR-BARTS, and ebv-miR-BART6 target
host DICER1 to regulate host miRNA expression (Wang et al. 2017). Host cell DNA
methylation can be activated to suppress tumour suppressor gene expression by EBV
infection in EBVaGC (Wang et al. 2017).

(1). Identification of Epstein—Barr virus-associated gastric cancer

The detection of EBV genes in host GC cells was first described by using PCR (Burke
et al. 1990) while in situ hybridisation (ISH) targeting EBV-encoded small RNA (EBER-ISH) is
considered the gold standard for EBVaGC identification (Fukayama et al. 2020). This
identification can also be applied to genome sequencing (Camargo et al. 2016). Serology-
based EBV detection, such as enzyme-linked immunosorbent assay (ELISA) and
immunofluorescence against one or more viral antigens such as nuclear EBNA, capsid VCA,
and early EA-D/EA-R antigens, are available; however, it is less likely for GC patients (Koh et
al. 2019).
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PCR amplification for EBV genes usually targets BamHI-W and/or Epstein—Barr
nuclear antigen 1 (EBNA-1) (Shukla et al. 2011). In general, the outcome from PCR-based
detection is commonly higher in EBVaGC (Rymbai et al. 2015; Shukla et al. 2011); and the
prevalence of positive cases is about 80% compared with EBER-ISH (Shukla et al. 2012;
Shukla et al. 2011). Recently, using droplet digital PCR (ddPCR), it has become possible for
the EBV-DNA load from GC patients to be calculated according to the copy number of BamH1-
W fragments (Shuto et al. 2019). However, due to heterogeneity and a high false-positive rate,
PCR methods cannot determine the source of virus fragments. This is firstly because of viral
DNA potentially from EBV-induced inflammation caused by infiltrating lymphocytes, instead of
tumour cells; secondly, nine out of ten people have a latent stage of EBV infection from
lymphocytes (Kim et al. 2009). These drawbacks also applied in serology-based EBV
detection. The gold standard of EBER-ISH requires detection of both EBER-1 and EBER-2
viral genes from resected GC specimens fixed by formaldehyde and embedded in paraffin
(FFPE), as positive cases have high copies of EBV (10% per cell) in the nucleus (Tokunaga
et al. 1993; Lee et al. 2009). However, there are shortcomings, including a complex
experimental process, the expense and time-consumption. If poor fixation appeared, nucleic
acids in the tissue may be diffused and/or denatured, reducing the binding efficiency and
potentially appearing as false positive/negative results (Chen et al. 2015).

ii. CLOSTRIDIOIDES DIFFICILE INFECTION

C. difficile is an anaerobic gram-positive spore-forming bacillus and typically harmless
in a balanced gut flora microenvironment. Once patients have been diagnosed with digestive
diseases, gastrointestinal treatments, such as gastric-acid suppressing agents (e.g. H2-
receptor antagonists and proton pump inhibitors), broad-spectrum antibiotics, chemotherapy
and/or Gl tract surgery may be required to overcome their diseases (Janarthanan et al. 2012;
Roughead et al. 2016). Such treatments could suppress or interfere with the patients’ immune
system and disrupt gut flora homeostasis, creating a suitable micro-ecosystem for overgrowth
of C. difficile (Rineh et al. 2014).

The life cycle of C. difficile includes spore formation, germination, and growth. At the
spore stage, when C. difficile is in the dormant phase, it can resist oxygen, heat, and many
other environmental insults, including ethanol-based disinfectants (Wilcox 2003). Once stable,
spores germinate rapidly and produce two major toxins — toxin A and toxin B encode by TcdA
and TcdB respectively, and locate at the 19.6 kbp long pathogenicity locus (PalLoc) region
(Figure 14). The other coding genes (tcdC, tcdE and tcdR) are also located at PaLoc. Toxin

A and toxin B trigger cytosol translocation of target host cells and inactive small GTP-binding
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proteins (such as CDC42, Rho and Rac) through monoglucosylation, leading to actin
condensation, disintegration of cytoskeleton, cell rounding and apoptosis (Voth, Ballard 2005).
tcdR is an RNA polymerase sigma factor that initiates translation of tcdA and tcdB, activated
by its two tandem promoters (Mani, Dupuy 2001; Mani et al. 2002).

i > e .

Figure 14. Pathogenicity loci of toxicogenic Clostridioides difficile. The 19.6kbp long pathogenicity
loci (PaLoc) in toxicogenic Clostridioides difficile, including tcdC, tcdA, tcdE, tcdB, and tcdR coding
genes. Adopted and modified from (Isidro et al. 2017).
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(1). Clostridioides difficile infection and microRNA dysregulation

Study of the relationship between CDI and host miRNA is limited. To the best of my
knowledge, the first reported study indicated the C57BL/6J wild-type mice with CDI induced
mmu-miR-146b, mmu-miR-1940, and mmu-miR-1298 expressions, and up-regulated the pro-
inflammatory cytokine expressions, such as MCP-1, IL-6, IL-17 and IL-18 in colonic tissues
(Viladomiu et al. 2012). The miR-146b potential target NCOA4, CD36 and GLUT4 mRNA
expression levels were down-regulated. in silico simulation predicts up-regulation of mmu-
miR-146b and /L-17 down-regulated NCOA4 and PPARYy in mice after CDI. Null mice silencing
PPARYy in T cells following CDI presents severe colonic disease activity, inflammatory lesions
and inflammatory cytokine expressions (Viladomiu et al. 2012). A higher level of faecal hsa-
miR-1246 was found in human CDI patients, compared to the control group in a small-scale
study (Verdier et al. 2020).

Faecal microbiota transplantation (FMT) has been proven in the treatment of recurrent
CDI (Drekonja et al. 2015; Hensley-McBain et al. 2016). It is intended to restore colonic
microbiota through the introduction of "healthy" bacteria via colonoscopy, enema or oral
capsules that contain powder-form substance. However, the safety concerns of FMT, such as
volunteers who found SARS-COV-2 in their faeces, could be an obstacle to extending the
application as a regular treatment strategy (Y. Xu et al. 2020; Alang, Kelly 2015). To monitor
treatment conditions, detecting a panel of miRNA markers in circulations could help physicians
make a clinical decision (Tanya M. Monaghan, Seekatz, et al. 2021). A study shows 71
circulating miRNAs were identified at 4 and 12 weeks following FMT from 126 sera from 42
patients at the screening. gRT-PCR and 3'UTR reporter assays validating the top miRNA
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candidates showed that hsa-miR-23a-3p, hsa-miR-150-5p, hsa-miR-26b-5p and miR-28-5p
expression levels target and inversely correlate with the sera protein and mRNA levels of IL-
12B, IL-18, FGF21 and TNFRSF9 respectively. In a mouse model of relapsing-CDI, RT-qPCR
analyses of caecal and sera RNA extracts showed inhibition of these miRNAs, and the
inhibitory effect can be recovered by FMT. An additional study showed TcdB mediated the
suppressive effects of CDI on miRs in human colonoids and mouse colon models. miR-23a
and miR-150 demonstrated cytoprotective effects against TcdB (Tanya M. Monaghan,
Seekatz, et al. 2021).

iii. GUT MICROBES IN COLORECTAL CANCER

Gut microbiota imbalance (also called dysbiosis) and the corresponding microbial by-
product changes have been recognised as playing crucial roles in both CRC and CAC
pathogenesis. These alterations further affect the form of bacterial biofilm and the interaction
of host immunity and inflammation (Keku et al. 2015; Flemer et al. 2017). The disruption of
bacterial biofilm may lose the front line of defence protecting the host epithelial cells, inducing
intestinal inflammation from direct bacteria attacks and genotoxic metabolites derived from the
gut bacteria (Wu, Wu 2012; Belkaid, Hand 2014). It subsequently damages the mucous
membrane, promotes colonic inflammation and neoplastic lesions (Wu, Wu 2012; Belkaid,
Hand 2014). For instance, a number of in vivo studies demonstrated that faeces from human
CRC patients transplanted into AOM-induced CRC mice and Apc™"+ mice models further
promote colon neoplasia, compared to the corresponding controls (Wong et al. 2017; Li et al.
2019). The composition of the various microbes has been investigated and several overgrowth
bacteria have been identified (Table 3), these pathogenic microorganisms induced intestinal
inflammation through several immune pathways, including endocytosis via invasion, toxin,
secretion and/or adherence (Sansonetti, Medzhitov 2009). In addition, there is an increasing
evidence suggesting that gut microbes can inter-react with host miRNAs and demonstrated in
several mice models (Table 4).
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Table 3. The major reported gut microbes in colorectal cancer.

Genus/Species Change Sample Type Reference

Anaerotruncus Up Faeces (N. Wu et al. 2013; Li et al. 2019)

Actinomyces Up Faeces (Kasai et al. 2016; Mizutani et al. 2020; Yachida et al.

odontolyticus 2019)

(Enterotoxigenic) Up Faeces/Mucosa (Zhou et al. 2016; Hwang et al. 2018; Sobhani et al.

Bacteroides fragilis 2011; Wei et al. 2016; Kasai et al. 2016)

Bifidobacterium Down Mucosa (Chen et al. 2012; Masanobu et al. 2011; Fanning et al.
2012)

Blautia Down Mucosa (Yuan et al. 2018; Ocvirk et al. 2020; Chen et al. 2012)

Clostridioides difficile Up Faeces (Zheng et al. 2017; Fukugaiti et al. 2015)

Campylobacter Up Faeces (Warren et al. 2013; N. Wu et al. 2013)

Collinsella Up Faeces (Sheng et al. 2019; N. Wu et al. 2013)

Enterococcus Up Faeces (Balamurugan et al. 2008; Zorron Cheng Tao Pu et al.
2020; Gaines et al. 2020)

Enterococcaceae Up Faeces (Wang, Huycke 2007; N. Wu et al. 2013)

Erysipelotrichaceae Up Faeces (Turnbaugh et al. 2009; N. Wu et al. 2013)

Faecalibacterium Down Faeces/Mucosa (N. Wu et al. 2013; Chen et al. 2012)

Fusobacterium Up Faeces/Mucosa (Castellarin et al. 2012; Chen et al. 2012; N. Wu et al.
2013)

Mogibacterium Up Mucosa (Hale et al. 2017; Chen et al. 2012)

Parvimonas micra Up Faeces (Léwenmark et al. 2020; J. Xu et al. 2020; Flemer et al.
2018; Zhao et al. 2022)

Peptostreptococcus Up Faeces/Mucosa (N. Wu et al. 2013; Chen et al. 2012)

Porphyromonas Up Mucosa (Chen et al. 2012; Zorron Cheng Tao Pu et al. 2020)

Roseburia Down Faeces (N. Wu et al. 2013; Chen et al. 2012)

Prevotella Up Stool/Mucosa (Flemer et al. 2017; Kasai et al. 2016; Sobhani et al.
2011)

Streptococcus Up Faeces (Nijjer, Dubrey 2010; Fass et al. 1995; Rawla et al.

sanguinis 2017; Chen et al. 2017)

Table 4. MicroRNA-microbiota interaction in mice models.

Bacteria

E. coli
(Nissle 1917)

E. coli
Saccharomyces
boulardii

L. fermentum

L. salivarius
Listeria

monocytogenes
F. nucleatum

B. bifidum

L. acidophilus

B. longum

L. rhamnosus

Model
» C57BL/6J w/ DSS

- C57BL/6J

* Germ-free

« Dicer12/E¢

* C57BL/6J w/ DSS or
probiotics

* C57BL/6J w/ DSS or
probiotics

* C57BL/6J w/ DSS or
probiotics

* Germfree

« Listeria infected C57BL/6J
* BALB/C nude

» C57BL miR21a”

« C57BL APC™"* (w/., w/out
AOM/DSS)

« C57BL/6J

* Germ-free

« Dicer14'E¢

* BALB/c w/ AOM, L.
acidophilus or B. bifidum

* BALB/c w/ AOM, L.
acidophilus or B. bifidum

» DSS-induced colitis

» Swiss CD-1 w/ AOM/DSS

- C57BL/6
« IL-22 knockout
* Germ-free

Target

miR-223, miR-155,
miR-150, miR-143, miR-375

miR-1226-5p

miR-155, miR-223

miR-150, miR-155, miR-223,
miR-143
miR-155, miR-223

miR-143, miR-148a
miR-200b, miR-200c
miR-21

miR-515-5p

miR-135b, miR-155
miR-26b, miR-18a
miR-135b, miR-155
miR-26b, miR-18a,
miR-107, miR-146, miR-223
miR-145, miR-15a
miR-146a

gma-miR396e
mdo-miR-7267-3p

DSS, dextran sulphate sodium; AOM, azoxymethane

Reference

(Rodriguez-Nogales, Algieri, Garrido-
Mesa, Vezza, Maria P. Utrilla, et al.
2018)

(Liu et al. 2016)

(Rodriguez-Nogales, Algieri, Garrido-
Mesa, Vezza, M. Pilar Utrilla, et al.
2018)

(Rodriguez-Nogales et al. 2017)
(Rodriguez-Nogales et al. 2017)
(Archambaud et al. 2013)

(Yongzhi Yang et al. 2017)

(Liu et al. 2016)

(Heydari et al. 2019)

(Heydari et al. 2019)

(Fahmy et al. 2019)

(Teng et al. 2018)
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(1). Gut microbes affect host microRNAs in colorectal cancer carcinogenesis

F. nucleatum was shown to increase CRC cell proliferation and tumour growth in mice
by up-regulating miR-21 in the tumour cells by activating the TLR4-MyD88 signalling cascade
(Yongzhi Yang et al. 2017). The loss of miR-21 reduces susceptibility in the experimental
murine colitis model (Johnston et al. 2018). TLR4 (with the recruitment of MD2 accessory
proteins) can be activated by lipopolysaccharides (LPS), bacterial metabolites or derivates
from Gram-negative bacteria (Liu et al. 2007; Wu et al. 2019). The activation of TLR4
dimerises and recruits downstream adaptor molecules MyD88/TIRAP (MyD88 dependent) or
TRIF/TRAM (MyD88 independent) to mount an inflammatory response. The initiation of
MyD88 dependent pathway activates IRAK4, IRAK1, TRAF6 and TAK1, forming an IKK
complex and promoting NF-kB expression. Next, NF-kB translocates to the nucleus and
furthers the transcription of proinflammatory cytokine-related genes (such as TNFa, IL-6, IL-
1a/B and IL-18) (Walsh et al. 2015). The stimulation of NF-kB can be archived via PI3K-AKT
signalling (Walsh et al. 2015). On the other hand, MyD88 independent pathway relies on TRIF,
activates TRAF3 and IRF3 through TBK1, inducing transcription of type | interferons (IFNs)
and IFN-inducible genes (Figure 15). This LPS-TLR4 signalling pathway promotes TNFa
production in intestinal immune cells, which further act on epithelial cells via TNFR1 (Ruder et
al. 2019). The activation of TNFa induce immune response and pro-inflammatory cytokine and
chemokine productions, which can also be found other colonic diseases including IBD
(Bocchetti et al. 2021) and C. difficile infection (Tanya M. Monaghan, Seekatz, et al. 2021).
Studies indicate that rs11536898 single-nucleotide polymorphism (SNP) in TLR4 is
significantly associated with CRC compared to healthy individuals (Slattery et al. 2012); and
TLR4 polymorphism (Thr399lle and/or Asp299Gly) is significantly associated with CRC
and KRAS gene mutations (Messaritakis et al. 2018).
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Figure 15. TLR4 signalling pathway. TLR4, Toll-like receptor 4; MD2, lymphocyte antigen 96; MAPKs,
mitogen-activated protein kinases; IRF3, interferon regulatory factor 3; TIRAP, Toll/interleukin-1
receptor domain-containing adapter protein; MyD88, myeloid differentiation primary response; TRAM,
Translocation Associated Membrane Protein; TRIF, TIR-domain-containing adapter-inducing
interferon-B; IRAK1, IL-1 receptor-associated kinase 1; IRAK4, IL-1 receptor-associated kinase 4; RIP1,
receptor-interacting serine/threonine-protein kinase 1; TRAF 3, TNF receptor-associated factor 3; TRAF
6, TNF receptor-associated factor 6; TAK1, Transforming growth factor (3-activated kinase1; IKK, kB
kinase; TBK1, TANK-binding Kinase 1, MEK, mitogen-activated protein kinase; JNK, c-Jun N-terminal
kinase; ERK, extracellular signal-regulated kinase; AP-1, activator protein 1; p38, p38 mitogen-
activated protein kinases; AKT, Protein kinase B; NF-«kB, Nuclear factor-kappa B.
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Colibactin is a genotoxic compound that encodes from E. coli and harbours pks
genomic island (pks* E. coli) (Nougayrede 2006; Chagneau et al. 2019). Colibactin can
stimulate host cells’ inflammation and alkylate DNA on adenine residues to induce double-
strand breaks, causing chromosomal instability and mutations, and promoting cancer
development (Wilson et al. 2019; Xue et al. 2019; Nougayrede 2006). Colibactin in CRC cells
can also induce c-Myc expression, resulting in the up-regulation of miR-20a-5p, and suppress
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SENP1 gene expression. The lower expression of SENP1 negatively regulates cell
senescence via p53 small ubiquitin-like modification (SUMQylation); drives a senescence-
associated secretory phenotype (SASP); and secretes the growth factors that stimulate
tumour growth (Dalmasso et al. 2014; Tjalsma et al. 2012; Cougnoux et al. 2014).

In addition to F. nucleatum and pks* E. coli, enterotoxigenic B. fragilis (ETBF) that
encode a 20 kDa metalloprotease called — B. fragilis toxin (BFT) (DeStefano Shields et al.
2016; Vetizou et al. 2015) have been linked to diarrheal disorders, IBD and CRC pathogenesis
(Chung et al. 2018; Zamani et al. 2020; Purcell et al. 2017). BFT-treated cells cause persistent
cellular proliferation, target the epithelial cell tight junctions and enhance barrier permeability
(Wu et al. 2006). BFT also induces IL-8 secretion, triggers E-cadherin cleavage and c-myc
translation, initiates the nuclear localisation of B-catenin and actuates NF-kB signalling
(Hwang et al. 2013; Wu et al. 2007; Sears 2009; Jeon et al. 2019). The expression of B-catenin
can return to its original level relatively late after stimulation (Jeon et al. 2019). The toxin can
also induce B. fragilis-associated IncRNA1 (BFAL1) expression via the Ras homolog - the
MTORC1 binding target of rapamycin (RHEB/mTOR) signalling pathway. BFAL1 modulates
RHEB expression by competitively sponging miR-200a-3p and miR-155-5p (Bao et al. 2019).

(2). Gut flora influenced by host microRNA

It is reported that intestinal microbiota negatively regulates host miR-107 in
macrophages and dendritic cells in NF-kB- and MyD88-dependent manner to maintain
intestinal homeostasis (Xue et al. 2014). A study reported that hsa-miR-515-5p targets
16S/23S rRNAs of F. nucleatum, while hsa-miRNA-1226-5p modifies yegH gene expression
of E. coli (Liu et al. 2016). The authors first used a prediction tool for miRNA candidates and
cultured the bacteria separately with the target miRNA mimics and observed the promotion of
bacteria growth. Then, knockout of DICER at the intestinal epithelial cells in experiential mice
resulted in a significant reduction in the total miRNA level in faeces, transformed the gut
microenvironment and exacerbated colitis. Faeces transplanted from the wild-type mice into
the Dicer knockout mice ameliorated damage and inflammation from colitis (Liu et al. 2016).
Here, the delivery of host-derived miRNAs may be transferred via extracellular vesicles,
affecting the gut microbiome composition, and regulating bacterial growth. For instance, the
gain of function p53 mutant CRC cells selectively abandons exosomal transcriptome with hsa-
miR-1246-5p (Cooks et al. 2018). Uptake of exosomal hsa-miR-1246-5p by tumour-
associated macrophages stimulates the reprogramming into an anti-inflammatory condition,

increases activity of TGF- and supports cancer growth (Cooks et al. 2018).
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V. RESEARCH METHODOLOGY

To improve IBD management and prevent neoplasia development in colon and rectum,
identifying molecular pathways and finding reliable diagnostic biomarkers for patient response
to anti-TNF-a treatment are necessary. In the beginning, a total of 449 freely available
Affymetrix transcriptomic data from five eligible datasets were systemically retrieved from
Gene Expression Omnibus (GEO) database, including control, baseline, and after primary
anti-TNF-a therapy in IBD patients or placebo. Then, two immune microenvironments
algorithms and five in silico flow cytometry programs were used to evaluate immune cell
populations and Metascape — a pathway analysis tool for gene enrichment analysis. The
outcome from the pathway analysis was validated on neutrophils isolated from choriodecidua
cells with LPS-induced inflammation treated with or without adalimumab (Yau et al. 2022)
(Figure 16). The AUC curve analysis was applied to all the genes to identify the best prediction
biomarkers (Publication 5, page 129) (Yau et al. 2022).

NCBI GEO database
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¥

5 eligable transcripomic datasets

¥

Data normalisation,
Batch effects Correction

1 ]

Immune Environment Scores Evalusation
(ESTIMATE, XxCELL)

2 L
5 In silico flow cytometry
(CIBERSRT, xCELL, EPIC,
MCP-Counter, DTEIC)

¥
Pathways analysis
(MetaScape)

3

|
|
GSE145918 I
' I
I
I

Normalisation & log2+1 I

Raw RNA-Seq Data, ‘

transformation
v A

Mean expression level (across samples)
of genes matching indicated GO term

Figure 16. The analysis workflow on anti-TNF-a treatment resistance IBD patients.

Other than improving disease management for IBD patients, CRC development from
neoplasia can be prevented by using non-invasive stool-based screening approaches such as
FIT. However, there are a number of limitations in FIT and thus new non-invasive biomarkers
to improve the screening accuracy are required. In the study, miRNA and gut microbes have

the potential to archive the goal. Initially, we focus on faecal-based miRNA. Briefly, reverse
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transcription for miRNA array carries out using Human Pools A and B v2.1 Kit (Applied
Biosystems) — a megaplex primer pools in the 5 paired CRC-adjunct normal tissues to identify
high express miRNAs (Wu et al. 2014). Then, some of the target miRNAs will further be
validated in 40 paired CRC-para normal tissues and CRC cell lines. Next, total RNA from the
faecal samples (n = 595, containing 198 CRCs, 199 adenomas and 198 healthy subjects)
were isolated from the TRIzol-chloroform mixture using the miRNeasy Mini Kit (Qiagen) and
gRT-PCR of individual miRNA was performed using TagMan miRNA Reverse Transcription
Kit and TagMan Human MIiRNA Assay (Applied Biosystems) (Publication 6-8, from page
141)(Yau, Wu, et al. 2014; Yau et al. 2016).

To further investigate the use of faecal-based miRNA potential for CRC screening, the
Cochrane Handbook for Diagnostic Test Accuracy Review protocol was followed to perform
the meta-analysis to evaluate the utility of faecal miRNAs as a non-invasive tool in CRC
screening. A systematic literature search in five databases (PubMed, Ovid Embase, The
Cochrane Library, Scopus and Web of Science) identified 17 research articles including 6475,
783 and 5569 faecal-based miRNA tests in CRC, adenoma patients and healthy individuals,
respectively (Figure 17)(Publication 9, page 171)(Yau et al. 2019).
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Figure 17. Flowchart diagram of faecal-based miRNAs study selections based on the inclusion
and exclusion criteria. Adopted from (Yau et al. 2019).
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In addition to faecal-based miRNA, gut dysbiosis in CRC has been investigated and
some of them have been reported as potential biomarkers for non-invasive CRC screening.
To search for the candidate targets, at first, the metagenome-wide association studies on
faecal samples from 74 patients with CRC and 54 controls from the East Asian cohort, and
validated the early outcomes in 16 patients and 24 controls from Denmark. Additional
confirmation on the selected biomarkers for the two reported European cohorts. Finally, we
applied targeted gPCR assays to evaluate the diagnostic potential of selected biomarkers in
an independent Chinese cohort of 47 patients and 109 controls and identified 20 bacterial
gene marker candidates that may serve as non-invasive biomarkers for CRC (Publication 10,
page 185)(J. Yu et al. 2017). These findings further confirmed that faecal bacteria may be
able to serve as non-invasive targets for CRC screening by using target gPCR. These
biomarkers, by combination with F. nucleatum, undefined ‘m7, Bacteroides clarus (B. clarus)
and Clostridium hathewayi (C. hathewayi) could improve the CRC diagnostic performance but
the diagnostic performance for adenoma is not satisfactory (Liang et al. 2017). Thus, a
new Lachnoclostridium gene marker (labelled as ‘m3) was identified and further evaluated
the utility for the diagnosis of colorectal adenoma. The diagnostic accuracy of m3, compared
with and/or in combination with FIT and other bacterial gene markers, was tested in 1012
subjects (274 CRC, 353 adenoma and 385 controls) from two separated East Asian cohorts
(Publication 11, page 196)(Liang et al. 2020).

Furthermore, to demonstrate and validate gut microbiome varies to factors including,
but not limited geographic locations, lifestyles, diets, disease types and statuses widely
between people, an in-depth phenotypic prospective study was conducted based on 218
adults from rural (n = 94) and urban (n = 124) areas of central India by using multi-omics
analysis to determine the relationship between disease risk, circulating biomarkers and
microbial taxa (Figure 18). High-throughput experiments, including multiplex assays for serum
diabetic proteins, cytokines, chemokines and polyisotypic antibodies, quantification of serum
short-chain fatty acids by gas chromatography-mass spectrometry (GC-MS) and analysis of
faecal microbiota by 16s ribosomal RNA gene amplicon sequencing were used. Sera were
also analysed for N-glycans and immunoglobulin G Fc N-glycopeptides (Publication 12, page
208)(Tanya M. Monaghan, Biswas, et al. 2021).
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Figure 18. Schematic diagram of the overall study design on rural and urban areas of central
India. n; number of urban/rural samples. Adopted from (Tanya M. Monaghan, Biswas, et al. 2021).

C. difficile is a type of bacteria that can cause colitis, it is sometimes life-threatening.
Infections from C. difficile often start with taking antibiotics and FMT is an unconventional
treatment strategy for CDI patients. Although the growing evidence to support the use of FMT
in CDI, the multifactorial mechanisms that underpin the efficacy of FMT remain unclear. Thus,
a deep phenomics study on four adults (three responders and one non-responder) receiving
sequential FMT for severe or fulminant CDI (SFCDI), in which we performed a longitudinal,
integrative analysis of multiple host factors and intestinal microbiome changes. Faecal
samples were profiled in a variety of assays for changes in gut microbiota and metabolites,
and blood samples for alterations in targeted epigenomic (including miRNAs), metabonomic,
glycomic, immune proteomic, immunophenotyping, immune functional assays, and T-cell
receptor (TCR) repertoires, respectively (Figure 19)(Publication 13, page 232)(Tanya M.
Monaghan, Duggal, et al. 2021).
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Figure 19. Schematic diagram of the study workflow on severe or fulminant Clostridioides
difficile infection patients on three faecal microbiota transplantation (FMT) responders and one
FMT non-responder). (A) Multidimensional, longitudinal assays applied in patients receiving
sequential FMT either by colonoscopy or enema with severe or fulminant Clostridioides difficile infection;
(B) FMT Delivery route for each participant; (C) Methodologies applied; (D) Treatment timelines and
sampling strategy. Adopted from (Tanya M Monaghan, Duggal, et al. 2021).

Based on the investigative study, next, an in-depth study concentrates on the
molecular mechanisms of miRNA alterations underlying successful FMT for recurrent CDI
(rCDI) patients. To be more specific, sera samples from 2 prospective multicentre randomised
controlled trials were used for miRNA profiling on the Nanostring nCounter platform and
revealed dysregulation circulating miRNAs 4 and 12 weeks after FMT compared with pre-
treatment screening, of which the top miRNAs were validated in the discovery cohort by means
of RT-qPCR. In a murine model of rCDI, RT-qPCR analyses of sera and caecal RNA extracts
demonstrated suppression of these miRs, an effect reversed by FMT (Publication 14, page
258)(Tanya M. Monaghan, Seekatz, et al. 2021).

In addition to colorectum, a relatively stable microbiota microenvironment is also
important in stomach. Helicobacter pylori and EBV are the key oncogenic bacteria, GC
patients present stomach dysbiosis and form a genotoxic microbial community by reduced
microbial diversity and the abundance of Helicobacter, with over-population of new bacterial
genera (Ferreira et al. 2018). Thus, we worked on whole-genome, transcriptome, and
epigenome sequence analyses of a gastric adenocarcinoma cell line (AGS cells) before and
after EBV infection. Gastric tumour samples with (n = 34) or without (n = 100) EBV infection
were also applied to look for the alteration (Publication 15, page 277)(Liang et al. 2014).
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VI. RESULTS

i. INCREASE ANTI-TNF-a TREATMENT RESPONSIVENESS IN PATIENTS WITH
INFLAMMATORY BOWEL DISEASE
(1). Introduction

Currently, anti-TNFa compounds such as full monoclonal IgG1 antibodies (infliximab
and adalimumab), pegylated anti-TNFa F[ab'l2 fragment (certolizumab), and I1gG1k
monoclonal antibody - derived from immunising genetically engineered mice with human
TNFa (golimumab) have been approved for IBD patients (Table 5) (Berns, Hommes 2016;
Levin et al. 2016; Moroi et al. 2013). Although the retrospective study indicated that TNFa
blockers lower the risk of CRC in IBD patients (Alkhayyat et al. 2020), approximately 30% of
patients do not respond to anti-TNF induction therapy (primary non-response), and up to 50%
of the patients lose response to treatment over time, after initially experiencing clinical
improvement (secondary loss of response). More importantly, anti-TNF treatment could
induce the risk of serious infection (Gerriets et al. 2020; Poullenot et al. 2016). Thus, improving
the anti-TNFa treatment responsiveness in IBD is needed to improve the disease

management.

Table 5. Anti-tumour necrosis factor (TNF) therapeutic agents for moderate-to-severe IBD patients.

Anti-TNFa Abbv.  Structure Administration Adverse effects Indication
(Unique)
Adalimumab ADM Human monoclonal * Subcutaneous * Injection site reactions  CD: induction (include IFX
antibody failure, maintenance)
UC: induction, maintenance
Certolizumab CTZ Recombinant antigen * Subcutaneous * Injection site reactions CD: maintenance
Pegol binding Fab fragment
conjugated to
polyethylene glycol
Golimumab GLM Human monoclonal » Subcutaneous * Injection site reactions UC: induction (include
antibody corticosteroid-dependent),
maintenance
Infliximab IFX 75% human * Intravenous * Infusion reactions CD: induction, maintenance
monoclonal antibody +  * Subcutaneous » Serum sickness UC: induction, maintenance,
25% chimeric mouse * Risk of heart failure corticosteroid elimination

Abbv., Abbreviation; CD, Crohn's disease; UC, ulcerative colitis.

(2). Summary of the outcomes

To find out the reason behind the treatment irresponsiveness, optimise the disease
management and minimise the chance to develop colonic neoplasms in IBD patients, in the
beginning, a total of 449 publicly available transcriptomic data from five eligible datasets were
systemically retrieved, including control, baseline, and after primary anti-TNF-a therapy in IBD
patients or placebo. Then, based on the outcomes from in silico flow cytometry algorithms
analysis, neutrophil, endothelial cell, and B-cell populations were higher in baseline
nonresponders (Figure 20) and revealed that neutrophil chemotaxis pathways — identified

from Metascape — may contribute to the treatment resistance. Genes identified within the
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neutrophil chemotaxis enrichment pathways were validated in LPS-induced inflammation on
neutrophils in a previously published RNA-sequencing dataset from the anti-TNF-a-treated
animal model. The AUC analysis was applied to all the genes to identify the best prediction
biomarkers. Interleukin 13 receptor subunit alpha 2 (IL13RA2) is the best predictor (AUC:
80.7%, 95% confidence interval: 73.8%—-87.5%), with a specificity of 84.93% and sensitivity of
68.13%, and significantly higher in nonresponders compared with responders (P < 0.0001)
(Publication 5, page 129)(Yau et al. 2022).
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Figure 20. Neutrophils, endothelial cells, and B cells are significantly higher on the baseline anti-
TNF-a treatment IBD nonresponders compared with responders patients. Immune cell population
evaluated in five in silico flow cytometry, and (a—c) neutrophils, (d—f) endothelial cells, and (g—i) B cells
can be recognized in three out of five algorithms. B-cell, endothelial cell, and neutrophil populations are
higher on baseline anti-TNF-a nonresponders compared with responders. P-value determined by
Mann—Whitney U-test. Asterisks denote statistically significant differences (*P < 0.05, **P < 0.01, ***P
< 0.001, and ****P < 0.0001). Adopted from (Yau et al. 2022).

(3). Discussions and Conclusions

In a typical inflammatory response, immune cells such as T lymphocytes, dendritic
cells, macrophages, and natural killer cells release pro-inflammatory cytokine TNF-a, leading
to the activation of neutrophils and endothelial cells (Balamayooran et al. 2010). The activation
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of endothelial cells in colonic mucosa enhances vascular permeability, induces the recruitment
of immune cells, and thus activates chemotaxis. At the same time, the activation of neutrophils
follows the tethering, rolling, crawling, and transmigration process from the blood vessel into
the inflamed colonic tissues (Wéra et al. 2016). When neutrophils engulf invasive gut
microbiome, they release granule proteins and chromatin to form neutrophil extracellular traps
and secrete antimicrobial peptides to mediate extracellular killing of microbial pathogens
(Schmidt et al. 2011). Nevertheless, hyperactive neutrophils trigger an unrestrained activity of
the positive feedback amplification loops, leading to endothelial cells and the surrounding
tissues damage, inducing resolution delay (IL-6, TNF-a, and IFN-y) and chemokines (IL-8,
CCLS3, and CCL4), which further the recruitment of neutrophils, monocytes, and macrophages
to the inflamed sites (Mortaz et al. 2018).

The use of anti-TNF-a blockers significantly suppresses the infiltration of neutrophil
and B-cell population in the inflamed mucosa, and suppresses pro-inflammatory mediators,
such as calprotectin (S100A8/A9), IL-8, IL-6, and TNF-a production,(C. Zhang et al. 2018;
Timmermans et al. 2016) and matched with our finding only in responders. However, the
unwanted immunogenicity has a high level of B cells due to the presence of anti-drug
antibodies (Vaisman-Mentesh et al. 2019), including anti-TNF-a monotonical antibodies (De
Groot, Scott 2007) which is matched with our findings. In addition, the study also identified
that IL13RA2 is stand-alone in the volcano plot with the highest fold change and the lowest p-
value, suggesting IL13RA2 is a potential biomarker to predict anti-TNF-a treatment response.

In summary, nonresponders presented higher populations of neutrophils, endothelial
cells, and B cells compared to responders at baseline level. IL13RA2 is a potential biomarker
to predict anti-TNF-a treatment response. These findings may help us to further investigate

the drug resistance in anti-TNF-a monotonical antibodies against inflammation.

ii. STOOL-BASED MICRORNA AS NON-INVASIVE BIOMARKERS FOR COLORECTAL
CANCER SCREENING
(1). Introduction

Implementation of CRC screening programs in communities allows early detection of
colonic neoplasm(s) to lower the treatment need, morbidity, and mortality (Zauber et al. 2012).
However, the use of low-cost haemoglobin-based CRC screening such as FIT is limited by
haemoglobin degradation and intermittent bleeding patterns in large intestines, so that there
is still a large number of individuals cannot be identified until the late stages, leading to poor
treatment responses and prognosis (Publication 2, page 92)(Tepus, Yau 2020). The search
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for reliable non-invasive biomarkers is therefore still ongoing, and faecal-based miRNAs and
gut microbes are crucial tools in helping to discover new biomarkers. The expression of
several miRNAs differs significantly between normal colonic tissues and CRC, including IBD
and colitis-induced CRC (Publication 3, page 102)(Bocchetti et al. 2021). These abnormal
colonocytes consistently exfoliate and shed into the lumen. miRNAs are highly stable and
detectable within samples throughout a 72-hour incubation period at room temperature, due
to protection from ribonuclease degradation by exosomes (Hunter et al. 2008; Mitchell et al.
2008). Thus, miRNA levels can be detected in faecal specimens.

(2). Summary of the outcomes

To begin with, a total of 10 RNA samples from 5 paired CRC-adjacent normal tissues
were applied for miRNA profiling, and identified 10 highly expressed miRNAs (Figure 21A,
replotted the figure based on the supplementary data from Publication 6, page 141) (Wu
et al. 2014). Next, five of the target miRNAs were validated in 40 pairs of CRC tissues (Table
6, data reorganised from Publication 6-8, from page 141) (Wu et al. 2014; Yau, Wu, et al.
2014; Yau et al. 2016) and CRC cell lines (Figure 21B-F, previously unpublished data).
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Figure 21. Identification of upregulated microRNAs in colorectal cancer by qPCR profiling. (A)
667 microRNAs in five paired colorectal cancer (CRC) patients were evaluated. Fold change below 0.8
on each analyte in each paired CRC sample was eliminated. Adapted from (Wu et al. 2014). Levels of
(B) miR-18a-5p, (C) miR-20a-5p, (D) miR-31-5p, (E) miR-135b-5p, (F) miR-221-5p in CRC epithelial
cell lines Colo-205, DLD-1, HT-29, and 4 colon biopsies from patients of normal colonoscopy findings.
Levels of microRNA are normalised to internal control RNU6B.
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Table 6. microRNA differentially expressed in tumours compared with adjacent
normal tissues. Adopted from (Wu et al. 2014; Yau, Wu, et al. 2014; Yau et al. 2016).

miRNA Chromosomal % of samples with elevated Fold change P-value*
location expression in tumour (Interquartile range)

miR-135b 1932.1 92.5% (37/40) 13.73 (5.532-45.66) < 0.0001
miR-31 9p21.3 87.5% (35/40) 10.45 (2.443-99.31) < 0.0001
miR-221 Xp11.3 77.5% (31/40) 1.96 (1.025-3.319) < 0.0001
miR-18a 13031.3 77.5% (31/40) 2.65 (1.078-6.828) 0.0003
miR-20a 13931.3 70.0% (28/40) 2.063 (0.910-5.418) 0.0065

Combined - 97.5% (39/40) - -

*P values were analysed by Wilcoxon matched-pairs test.

Then, a total of 595 faeces samples from healthy subjects (n = 198), polyps (n = 199)
and CRC patients with different cancer stagings (n = 198) were extracted for miRNA-specific
reverse transcription and Tagman probe-based real-time polymerase chain reaction (RT-
gPCR) for the specific miRNAs. Our experimental findings confirmed that miR-18a, miR-20a,
miR-221 and miR-135b are potential non-invasive biomarkers (Publication 6-8, from page
141) (Wu et al. 2014; Yau, Wu, et al. 2014; Yau et al. 2016). The combination of miR-221,
miR-18a and miR-135b, for example, is the best faecal-based miRNAs combination in our
study and showed an improvement in screening accuracy for CRC patients (AUC: 0.79, 95%
Cl1 0.75 — 0.83)(Publication 7, page 152)(Yau, Wu, et al. 2014).
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Figure 22. The combination of miR-221, miR-18a and miR-135b has an AUC of 0.79. Adopted from
(Yau, Wu, et al. 2014).

Afterwards, a meta-analysis approach was applied to assess different faecal-based
miRNA studies for CRC and colonic adenoma screening from the published research articles
in any language up to November 17, 2017. The study identified 21 miRNAs and estimated that

miR-21 may be the most reliable miRNA marker. miR-21 has an AUC of 0.84 with a sensitivity
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of 59.3% and a specificity of 85.6% for CRC patients based on the 5 studies; and has an AUC
of 0.78 with a sensitivity of 59.6% and a specificity of 83.0% for colonic adenoma according to
the 3 published outcomes (Figure 23)(Publication 9, page 171)(Yau et al. 2019).
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Figure 23. Diagnostic accuracy in pooled stool-based miR-21 for colorectal cancer screening.
SROC for pooled miR-21 in the detection of CRC (n = 5) and colonic adenoma (n = 3). The number next
to the dot/triangle corresponding to the study ID in Table 1 (Blue dots: CRC) or Table 2 (Red triangles:
colonic adenoma) in the publication (Yau et al. 2019). Sen, sensitivity; Spe, specificity; SOP, summary
operating point. The circular regions (95% confidence contour) contain likely combinations of the mean
value of sensitivity and specificity. Adopted from (Yau et al. 2019).

(3). Discussions and Conclusions
Unlike FIT, which is currently used for CRC screening, faecal-based miRNA tests do

not require troublesome drug and dietary restrictions. Therefore, the uptake of faecal-based
miRNA tests may be higher than that of FIT. As a result, quantitation of miRNA biomarkers in
human faeces by qRT-PCR is a promising non-invasive approach for screening CRC patients.
We have investigated the expression profile of 667 mRNAs, and reported that miR-18a and
miR-20a from microRNA-17-92 cluster, and miR-221 as candidate biomarkers (Wu et al. 2014;
Yau, Wu, et al. 2014; Yau et al. 2016). Also, the meta-analysis summarised 21 miRNAs from
17 different publications and miR-21 could be the best miRNA biomarker for CRC screening
(Yau et al. 2019). In conclusion, faecal-based microRNA could be a useful target for CRC, in
combination with other biological markers along with FIT could improve the detection accuracy.

The biological functions of these miRNAs were also discussed below.
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A. microRNA-20a and miR-18a in microRNA-17-92 Cluster in Colorectal Cancer
miR-17-92 is one of the most extensively investigated miRNA clusters and located in

chromosome 13g31.3. It comprises six mature miRNAs, including miR-17, miR-18a, miR-19a,
miR-20a, miR-19b-1 and miR-92a-1 (Figure 24)(Ventura et al. 2008). Each of the individual
miRNAs in the miR-17-92 cluster expresses varies in cancers compared to normal controls
(G. Yu et al. 2012; Diosdado et al. 2009; Humphreys et al. 2014).

miR-1-92 Cluster
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Figure 24. microRNA-17-92 cluster at chromosome 13q31.3.

miR-20a is an oncomiR and has been suggested as a diagnostic biomarker in Gl
cancers (Table 7)(Moody et al. 2019; Stojanovic et al. 2019). In CRC, over-expression of miR-
20a promotes cell cancer proliferation, migration, and invasion, and inversely correlates with
Smad4 expression. The abolition of Smad4 induces epithelial-mesenchymal transition (EMT),
mediated by miR-20a (Zhang et al. 2014) and confirmed by dual-luciferase reporter assays
(Cheng et al. 2016). The presence of miR-20a modulates the expression of tissue inhibitor of
metalloproteinases-2 ( TIMP2) and matrix metalloproteinase 9 (MMP9) to promote EMT; aids
the detachment of CRC cells from the tissue parenchyma; and goes into systemic circulation
during cancer metastasis (Xu et al. 2015). miR-20a is also involved in the cell cycle by
regulating FOXJ2 to control cell cycle arrest at G1 stage (Qiang et al. 2020), and Myc/p21
(CDKN1A) expression via TGF-B by preventing its delay of G1/S transition (Sokolova et al.
2015). Silencing of miR-20a in SW480 CRC cell lines increases the anti-tumour effect of
TRAIL through the caspase-8 dependent pathway (Huang et al. 2017), and inhibits
translocation of truncated BID (tBID) to induce the mitochondrial pathway of apoptosis (Li et
al. 1998; Orzechowska et al. 2015). By controlling MICA and CXCL8, miR-20a respectively
modulates NK cells and influences tumour latency from IBD (Tang et al. 2019; Signs et al.
2018).
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Table 7. The reported microRNA-20a studies with the corresponding

gastrointestinal diseases.

Target Gene Name

Gene

Apoptosis

BID BH3 Interacting Domain Death Agonist

SENP1 SUMO Specific Peptidase 1

PDCD4 programmed cell death factor 4

Cell Cycle

CDKN1A Cyclin Dependent Kinase Inhibitor 1A
(p21)

FOXJ2 Forkhead Box J2

Drug Resistance

ASK1 Apoptosis signal-regulating kinase 1
BNIP2 BCL2 Interacting Protein 2

HAND2- heart and neural crest derivatives

AS1 expressed 2-antisense RNA 1 - IncRNA

Extracellular Growth Factors
SMAD4 Mothers against decapentaplegic
homolog 4

G-protein coupled receptor

GABBR1 Gamma-Aminobutyric Acid Type B
Receptor Subunit 1

Immune Response

MICA Major Histocompatibility Complex (MHC)
class I-related chain genes A
CXCL8 Chemokine (C-X-C motif) ligand 8

Main Biological roles

Induce mitochondrial pathway of
apoptosis

Proliferation, apoptosis, invasion,
migration & chemo-resistance

Cell proliferation, migration & invasion;
promote cell apoptosis & 5-FU resistance

Interfere colonic epithelium homeostasis
by disrupting the regulation of Myc/p21 by
TGF-B

Proliferation, migration, invasion& cell
cycle arrest at G1 stage

Enhance sensitivity to cisplatin

5-FU, oxaliplatin & teniposide resistance
5-FU resistance, cell proliferation,
migration & invasion & promoted cell

apoptosis

EMT signalling

Promote proliferation & invasion

Regulate the sensitivity of CRC cells to
NK cells
Influence tumour latency from IBD

direct target genes in

Gl Disease [Reference]

CRC (Huang et al. 2017)

CRC (Huang et al. 2017;
Xu et al. 2015)
CRC (Jiang et al. 2020)

CRC (Sokolova et al.
2015)

CRC (Qiang et al. 2020)

CRC (L. Zhang et al.
2018)

CRC (Chai et al. 2011)
CRC (Jiang et al. 2020)

CRC (Cheng et al. 2016;
Zhang et al. 2014; Xu et
al. 2015)

CRC (Longgqiu et al.
2016)

CRC (Tang et al. 2019)

IBD induced CRC
(Signs et al. 2018)

Gl, Gastrointestinal, CRC, colorectal cancer; IBD, inflammatory bowel disease; GC, gastric cancer;
HCC, Hepatocellular carcinoma; 5-FU, Fluorouracil; EMT, Epithelial-mesenchymal transition, TRAIL,
TNF-related apoptosis-inducing ligand; IncRNA, long non-coding RNA.

miR-18a has a dual-functional role in either promoting or inhibiting oncogenesis in
different human cancers and presents as an oncomiR in CRC (Table 8). The up-regulation of
miR-18a was shown to inhibit the malignant progression of CRC by inhibiting GTPase cell
division control protein 42 (CDC42), a mediator of PI3K pathway (Humphreys et al. 2014). The
suppression of miR-18a restores CDC42 mRNA expression and cell growth (Humphreys et al.
2014). The activation of CDC42 promotes adhesion and invasion of CRC cells (Gao et al.
2013), and the malignant progression through silencing of /D4 and CACNA2D2 (Sakamori et
al. 2014; Gémez Del Pulgar et al. 2008). On the other hand, the long non-coding RNA (IncRNA)
UCA1 was identified and up-regulates in CRC, promoting cell proliferation and tumorigenicity
(NIl et al. 2015). UCAT can be a "sponge" to reduce the regulatory effect on miR-18a and thus
increase CDC42 expression to enhance the sensitivity to oncolytic vaccinia virus cell-to-cell
spread by activating filopodia formation (Horita et al. 2019). Furthermore, the presence of

IncRNA FENDRR can also act as a "sponge" to restrain the aggressiveness of CRC cells
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through the regulation of miR-18a-5p/ING4 axis (Yin et al. 2019). Additionally, studies
indicated that the expression of miR-18a attenuates DNA damage repair via suppressing ATM
and induces CRC cell apoptosis via the autophagolysosomal degradation of HNRNPA1 (C.-
W. Wu et al. 2013; Fujiya et al. 2014). miR-18a can be a treatment target by encapsulation in
grapefruit-derived nano-vectors (GNV) to induce M1 macrophage interferon gamma (IFN-y)
by targeting interferon regulatory factor 2 (IRF2) to induce IL12, and to activate NKT cells and
NK cells suppressing cell metastasis to the liver (Teng et al. 2016). In colitis-associated
colorectal cancer (CAC), up-regulation of miR-18a inhibits PIAS3 expression and activates
NF-kB and STATS3 in the colon of both CAC and CRC patients (Ma et al. 2018). This PIAS3-
mediated autoregulatory feedback loop (PIAS3/NF-kB or STAT3/miR-18a) is verified in an
AOM-DSS-induced mice model. Modulation of the feedback loops through suppression of
miR-18a or over-expression of PIAS3 significantly repressed cell proliferation in a mouse CRC
xenograft model. By contrast, up-regulation of PIAS3 by intra-colonic administration of PIAS3
or anti-miR-18a lentivirus in AOM-DSS-induced mice reduces both tumour sizes and numbers
(Ma et al. 2018).

Table 8. Reported microRNA-18a studies with the corresponding direct target genes in
gastrointestinal diseases.

Target Gene Gene Name Main Biological roles Gl Disease [Reference]

Apoptosis

HNRNPA1 heterogeneous nuclear Induces apoptosis via CRC (Fujiya et al. 2014)

ribonucleoprotein A1 autophagolysosomal degradation

IRF2 Interferon regulatory factor 2 Promote apoptosis, inhibit cell CRC (Teng et al. 2016);
proliferation & migration; Induction of GC (Chen et al. 2016);
macrophage IFNy & activates NK & NK  HCC (Yongyu et al.
T cells in CRC 2018)

Cell Cycle

ATM Ataxia telangiectasia mutated Attenuate DNA damage repair CRC (C.-W. Wu et al.

2013)

cDcCc42 Cell division control protein 42 Acts as a GTPase in the PIBK/AKT CRC (Humphreys et al.
pathway 2014)

UCA1 Urothelial Cancer Associated 1 Sponging miR-18a, promoting Cdc42 CRC (Horita et al. 2019)

(IncRNA)

Transcription Factor

activation, regulate oncolytic vaccinia
virus cell-to-cell spread & filopodia
formation

TBPL1 TATA-Box Binding Protein Like 1 Regulate tumour proliferation & CRC (Liu et al. 2015)
invasion
PIAS3 Protein inhibitor of activated STAT3 Inhibit STAT3 activity, downstream of Colitis-associated CRC
the Wnt/B-catenin pathway (Ma et al. 2018); GC (W.
Wu et al. 2013)
FENDRR FOXF1 Adjacent Non-Coding Exert an inhibitory role by interacting CRC (Yin et al. 2019)

Developmental Regulatory RNA
(IncRNA)

with miR-18a-5p & increase ING4
expression

CRC, colorectal cancer; GC, gastric cancer; HCC, Hepatocellular carcinoma; 5-FU, Fluorouracil; EMT,
Epithelial-mesenchymal transition; NK, natural killer; IncRNA, long non-conding RNA.

42 |Page



B. microRNA-21 in Colorectal Cancer
miR-21 is one of the most highly-expressed miRNAs in CRC, IBD and colitis-

associated CRC and could also be utilised to distinguish these diseases for patient diagnosis
and prognosis (Svrcek et al. 2013; Shi et al. 2013; Ando et al. 2016). The up-regulation of
miR-21 in CRC correlates to cell migration, invasion and proliferation, as well as promoting
miR-21-mediated transformation in somatic cells (lliopoulos et al. 2010; Shi et al. 2016). The
expression of miR-21 regulates a plethora of genes in Gl cancer (Table 9), including
programmed cell death 4 (PDCD4) (Asangani et al. 2008; Peacock et al. 2014; Lu et al. 2008),
Sprouty 1 and 2 (SPRY1 and SPRY2) (Sayed et al. 2008; Thum et al. 2008; Feng et al. 2012),
E-cadherin (Kang et al. 2015), and SEC23A (Li et al. 2016). miR-21 is also involved in cancer
stem cells (CSCs) stemness and cell cycle. For instance, FOLFOX (a combination of 5-FU,
leucovorin and oxaliplatin)-resistant HT-29 and HCT-116 CSCs show suppression of PDCD4
and has an up to 7-fold increase of pre or mature miR-21 (Yingjie Yu et al. 2012). The stable
over-expression of miR-21 in the HCT-116 cell line down-regulates PDCD4 and TGFBR2 by
binding to 3'UTR sequences, suppresses c-Myc and Cyclin D1, and increases stemness via
the Wnt/B-catenin signalling pathway (Yingjie Yu et al. 2012). The presence of circular RNA -
circRNA-ACAP2 acts as an miRNA sponge to regulate TIAM1 expression by removing the
inhibitory effect of miR-21-5p, affecting cell proliferation, migration and invasion (He et al.
2018). An integrative combination meta-analysis and bioinformatics analysis indicated that
ABCB1, HPGD, BCL2, TIAM1 and PDCD4 are the most common targets of miR-21 in CRC
patients and are potentially biomarkers for diagnosis and prognosis (Saheb Sharif-Askari et
al. 2020).
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Table 9. The reported microRNA-21 studies with the corresponding direct target genes in

gastrointestinal diseases.

Target Gene Gene Name

Apoptosis

CDH1 Cadherin 1 (E-cadherin)

ROHB Ras homolog gene family, member
B

PDCD4 Programmed cell death 4

Cell Cycle

CDC25A Cell Division Cycle 25A

TGFBR2 Transforming growth factor, beta
receptor 2

PTEN Phosphatase and tensin homolog

Cytoplasmic vesicle

SEC23A Sec23 Homolog A, COPII Coat
Complex Component

Growth Factor

SPRY2 Sprouty RTK Signalling Antagonist

2

Immune Response

Main Biological roles

An independent predictor of early tumour
relapse
Proliferation, invasion & apoptosis

ROS promotes gastric carcinogenesis
inflammation

Negatively regulates G(1)-S transition,
involve in DNA damage-induced G(2)-M
checkpoint

Induce stemness

Regulate cell cycle, induces resistance
of interferon-a/5-FU & metformin

Proliferation, migration, & invasion

Enhance the cytotoxic effect of 5-FU &
metformin

Gl Disease [Reference]

CRC (Kang et al. 2015)
CRC (Liu et al. 2011)

CRC (Asangani et al. 2008;
Peacock et al. 2014; Lu et
al. 2008)

CRC (Wang et al. 2009)

CRC (Y. Yu et al. 2012)

CRC(Feng et al. 2012)

CRC (Li et al. 2016)

CRC (Feng et al. 2012)

BCL2 B-cell lymphoma 2 Increases beta cell death CRC (Sims et al. 2017)

TIAM1 T-cell ymphoma invasion and CircRNA-ACAP2/miR-21-5p/TIAM1 CRC (Cottonham et al.
metastasis 1 feedback circuit affects proliferation, 2010; He et al. 2018)

migration & invasion

Metabolism

HPGD 15-Hydroxyprostaglandin COX-2-dependent mechanism CRC (Monteleone et al.
Dehydrogenase 2019)

DUSPS8 Dual Specificity Phosphatase 8 Repress cell growth & metastasis; alter CRC (Ding et al. 2018)

AKT & ERK signalling
CRC, colorectal cancer; NASH, non-alcoholic steatohepatitis, NAFLD, non-alcoholic fatty liver disease;

GC, gastric cancer; HCC, Hepatocellular carcinoma; NK, natural killer; 5-FU, Fluorouracil.

C.microRNA-221 in Colorectal Cancer
miR-221 is also one of the highly-expressed miRNAs in CRC tissues compared to the

para-tumour tissues (Di Martino et al. 2016). The level of miR-221 positively correlates to local
invasion, advanced tumour node metastasis and shorter patient survival. The depletion of
miR-221 diminishes colony formation, cell migration, invasion and proliferation in both in vivo
and in vitro CRC models (Table 10)(Tao et al. 2014; Liu et al. 2014; Qin, Luo 2014; Liao et al.
2018; Liu et al. 2018). miR-221 could directly bind to reversion-inducing-cysteine-rich protein
with Kazal motifs (RECK) 3'UTR to promote CRC cell invasion and metastasis (Qin, Luo 2014).
Silencing of miR-221 enables induction of apoptosis and autophagy via Cyclin-Dependent
Kinase Inhibitor 1C (CDKN1C) and tumour protein 53-induced nuclear protein 1 (TP53INP1)
respectively, and suppresses the S-phase and overexpresses the Go/G1 population (Sun et al.
2011; Liao et al. 2018). A dose-dependent X-radiation affects the expression of miR-221 in
Caco2 CRC cells and suppresses the PTEN expression. Inhibition of miR-221 sensitises
radiosensitivity (Xue et al. 2013). In addition, the use of microcystin-LR promotes DLD-1 CRC
cell migration through the miR-221/PTEN, as well as STAT3 signalling with the accumulation
of B-catenin in nuclei (Ren et al. 2019).
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miR-221 and miR-222 are encoded from a tandem gene cluster located on
chromosome Xp11.3, and thus co-expression of both miRNAs has been well studied. A three-
dimensional (3D) cell culture study indicated KRAS mutation induces the expression of miR-
221/222 and suppresses PTEN protein expression (Tsunoda et al. 2011). Over-expression of
miR-221/222 by using miRNA mimics activates NF-kB and STAT3 and binds to the 3' UTR of
PDLIM2 — a nuclear ubiquitin E3 ligase for RelA and STATS3. Injection of lentivirus-
expressing miR-221/222 sponges suppresses CRC tumour formations in AOM/DSS-induced
CRC mice, with fewer Ki67-positive cells compared with the control group (Ebert et al. 2007;
Liu et al. 2014).

Table 10. Reported microRNA-221 studies with the corresponding direct target genes in
gastrointestinal diseases.

Target Gene Gene Name Main Biological roles Gl Disease [Reference]
Apoptosis
GAS5 IncRNA Induces GO/G1 arrest & apoptosis CRC (Yang Yang et al. 2017; Liu
et al. 2018)
Autophagy
TP53INP1 Tumour protein p53- Inhibit autophagy CRC (Liao et al. 2018)
inducible nuclear protein 1
Cell Cycle
PTEN Phosphatase and Tensin Cell proliferation, invasion & sphere CRC (Xue et al. 2013; Ren et al.

Homolog formation to increase radio- 2019; Tsunoda et al. 2011)
sensitivity; down-regulate by
microcystin-LR, radiation & Oroxin B
Immune Response

PDLIM2 PDZ And LIM Domain 2 Degrade RelA & STAT3 CRC & IBD (Liu et al. 2014)
Metalloendopeptidase Activity
RECK Reversion Inducing Promote cancer cell invasion & CRC (Qin, Luo 2014)
Cysteine Rich Protein with metastasis
Kazal Motifs

HBV; Hepatitis B virus, CRC, colorectal cancer; GC, gastric cancer; HCC, Hepatocellular carcinoma;
5-FU, Fluorouracil; EMT, Epithelial-mesenchymal transition; NK, natural killer.

iii. GUT MICROBES AS NON-INVASIVE BIOMARKERS FOR COLORECTAL CANCER
SCREENING
(1). Introduction

Besides faecal-based miRNAs, gut microbiota dysbiosis and the corresponding
microbial composition changes have been recognised in a variety of diseases including the
pathogenesis of CRC. These patterns could be used as microbial diagnostic biomarkers for
potential CRC screening tool development.

(2). Summary of the outcomes
At the beginning of the study, our early shotgun metagenomics analysis from CRC
patients firstly identified 20 bacteria abundant markers in CRC patients compared to controls,
these are including Fusobacterium nucleatum (F. nucleatum), Parvimonas micra (P. micra,
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formerly Peptostreptococcus micros), Gemella morbillorum, Peptostreptococcus anaerobius
and Solobacterium moorei. The selected markers were trans-continental validated in the
Danish cohort. Further validation of the four gene markers in published metagenomes CRC
cohorts from the French and Austrian have the AUC of 0.72 and 0.77, respectively. gPCR
abundance of two gene markers (combined butyryl-CoA dehydrogenase from F. nucleatum
and RNA polymerase subunit 3, rpoB, from P. micra) separates CRC microbiomes from
controls in an independent cohort consisting of 47 cases and 109 healthy controls, with the
odds ratio of 23 and AUC of 0.84 (Figure 25)(Publication 10, page 185)(J. Yu et al. 2017).
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Figure 25. Validating robust gene markers associated with colorectal cancer in quantitative PCR
(qPCR). The abundance of two gene markers (butyryl-CoA dehydrogenase from Fusarium nucleatum
and RNA polymerase subunit beta, rpoB, from Parvimonas micra) were further evaluated in 47 CRC
cases and 109 healthy controls. (A) The combined logio abundance of the two genes enable to
distinguish the CRC patients from the control group, and (B) classification of the CRC microbiomes with
an area under the receiver operating characteristic curve of 0.84. (C-D) The two markers presented
relatively high abundance in stage Il and Ill CRC compared to the control and stage |. Zero abundance
is plotted on a log1o scale as -8. FPR, false positive rate; TPR, true positive rate AUC; area under the
receiver operating curve. Adopted from (J. Yu et al. 2017).
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Then, further additional metagenomic analysis identified Clostridium hathewayi (C.
hathewayi) F. nucleatum, and “m3” from a Lachnoclostridium sp. significantly enriched in
adenoma. Faecal m3 and F. nucleatum were significantly increased from normal to adenoma
to CRC (linear trend by one-way ANOVA: p < 0.0001, in group | (n = 698) and group Il (n =
313) cohorts). F. nucleatum showed better in detecting CRC (AUC: F. nucleatum = 0.862 vs
m3 = 0.741, p < 0.0001), while 'm3' may performed better than F. nucleatum in categorising
adenomas in the control group (AUC: m3 = 0.675 vs F. nucleatum = 0.620, p = 0.09) (Liang
et al. 2020). By setting a specificity threshold of 78.5%, F. nucleatum and m3 had sensitivities
of 77.8% and 62.1% for CRC and 33.8% and 48.3% for adenoma, respectively. In a subgroup
Hong Kong cohort comparison with FIT (n = 642), m3 performed better in detecting adenomas
and advanced adenomas, with sensitivities of 44.2% and 50.8% at 79.6% specificity,
compared to 0% and 16.1% for FIT, at 98.5% specificity. Combining m3 with FIT increased
the sensitivity of advanced adenomas to 56.8% (Figure 26A). Finally, the combination of m3
with F. nucleatum, C. hathewayi, B. clarus and FIT performed best in the diagnosis of CRC
with a specificity of 81.2% and a sensitivity of 93.8% (Figure 26B)(Publication 11, page 196)
(Liang et al. 2020).
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Figure 26. Comparison and combination of bacterial markers with faecal immunochemical test
(FIT). (A) Comparison of the sensitivities of FIT, m3 and their combination in detecting non-advanced
and advanced adenomas. (B) Comparison of sensitivity and specificity of FIT, m3, the combination of
four makers (LR4: m3 + F. nucleatum + C. hathewayi + B. clarus) and combination of bacterial markers
with FIT in a subgroup from Hong Kong. LR4 combined with FIT performed best for colorectal cancer
(CRC) detection, while m3 combined with FIT performed best for detecting adenoma. All comparison
of sensitivities was conducted by X2 tests. A, non-advanced adenoma; AA, advanced adenoma.
Adopted from (Liang et al. 2020).

(3). Discussions and Conclusions
In addition to faecal miRNA, other investigative targets, including gut microbes are one
of the potential markers that could be used to improve CRC screening accuracy. Here, we
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showed several faecal bacterial markers that can be used to distinguish between healthy
subjects and CRC patients and m3 could be able for adenoma. In the meantime, a new panel
of faecal bacterial markers (m3 + F. nucleatum + C. hathewayi + B. clarus) enhanced
diagnostic power for CRC compared to the microbial markers reported in our studies in the
past. The carcinogenicity of some overgrown bacteria identified in our studies, such as P.
micra and F. nucleatum has been studied (Publication 11, page 196)(Liang et al. 2020).

P. micrais a Gram-positive anaerobic cocci species known as a commensal bacterium
in the human oral cavity (Garcia Carretero et al. 2016). The overgrowth P. micra has been
studied in several CRC cohorts in both faeces and tissues and has been reported as a
potential non-invasive screening biomarker (Léwenmark et al. 2020; J. Xu et al. 2020; Flemer
et al. 2018). Functional studies showed that P. micra induces cell proliferation in CRC cell
lines and germ-free mice; it also increases Ki-67positve Cells and PCNA protein expression, and
pro-inflammatory cytokines (TNFa, IL17a, IL6 and CXCR1) in the germ-free mice model (Zhao
et al. 2022). Flow cytometry analyses identified Th2 and Th17 immune cell populations are
higher, while Th1 cells were reduced in the lamina propria in P. micra mice. In the Apc™"+
mice model, P. micra-driven CRC is significantly higher in tumour burden and tumour load
compared to mice gavage with non-pathogenic E. coli or non-bacterial control (Zhao et al.
2022). F. nucleatum can be found in approximately 70% of CRC patients (J. Yu et al. 2017).
It adheres and invades colonic epithelial cells, binds to E-cadherin via FadA to activate (3-
catenin signalling and regulates the inflammatory and oncogenic responses (Rubinstein et al.
2013). A higher abundance of F. nucleatum induces tumour multiplicity through the recruitment
of tumour-infiltrating myeloid cells to generate a pro-inflammatory microenvironment (Kostic
et al. 2012). Virulence factors such as FadA and Fap2 proteins from F. nucleatum, Bacteroides
fragilis (B. fragilis)-produced toxins and the bacteria wall extracts, have also been identified
and play as influential modulators in the evolution of normal colonic epithelial cells to tumour
cells (Gholizadeh et al. 2017; Boleij et al. 2015; Mima et al. 2016; Abed et al. 2016).

In addition to the known and/or culturable microbes, there are a number of
“‘unculturable” microbes and other identified gut bacteria that may need to be further
investigated for their functions and the correlations in the role (s) of CRC and/or other colonic
diseases.

iv. GUT-HOST INTERACTION
(1). Introduction
Whilst communicable diseases caused by infectious microbes continue, non-

communicable diseases (NCDs) have become a major cause of morbidity and mortality in
48 |Page



many countries (India State-Level Disease Burden Initiative Collaborators 2017; Arokiasamy
2018; Mohan et al. 2019). Perturbation of host-microbiome interactions may be a key
mechanism by which lifestyle-related risk factors, for example, alcohol consumption, tobacco
use, and physical inactivity influence metabolism caused by metainflammation (Furman et al.
2019; Lumeng, Saltiel 2011). Metainflammation contributes to the development of many NCDs,
such as diabetes, which has increased rapidly in India over the past 25 years, rising to 65
million prevalent cases in 2016 from 26 million in 1990 (India State-Level Disease Burden
Initiative Diabetes Collaborators 2018). Therefore, there is clearly an urgent need to identify
relevant metabolic disorder traits to predict the risk of metabolic disorders and their associated
diseases (Anjana et al. 2017).

Furthermore, once patients have been diagnosed with digestive diseases,
gastrointestinal treatments may be required (Janarthanan et al. 2012; Roughead et al. 2016)
and thus could suppress or interfere with the patients’ immune system and disrupt gut flora
homeostasis, creating a suitable micro-ecosystem for overgrowth of C. difficile (Rineh et al.
2014). In addition to antibiotics, FMT is an alternative treatment strategy for CDI patients with
increasing evidence to support the use of FMT in SFCDI. However, the multifactorial
mechanisms that underpin the efficacy of FMT are not fully understood. Other than CDI in
colorectum, EBV infection in stomach should not be negated and thus functional studies are
required to have a better understanding of the mechanisms including the epigenetic changes
of the oncogenic viral infection (Publication 4, page 119)(Yau, Tang, et al. 2014).

(2). Summary of the outcomes
A. Host-microbe and Metabolic Interactions are Differentially Shaped by Geographic
location and Body Weight

In comparison between countryside and municipal areas of central India, the study
revealed metabolic and host-microbe interactions are differentially shaped by body weight and
geographical location, multiple hallmarks of dysmetabolism were identified in urbanites and
young overweight adults, the majority of whom did not have a known diagnosis of diabetes
(Publication 12, page 208)(Tanya M. Monaghan, Biswas, et al. 2021). To be more specific,
the faecal taxonomic composition profile revealed a number of overrepresented genera
belonging to the Firmicutes phylum in the rural population, including Faecalibacterium,
Roseburia, Ruminococcaceae and unclassified Lachnospiraceae by using Linear discriminant
analysis Effect Size (LEfSe). Prevotella and Alloprevotella are dominant in the rural microbiota
while Bacteroides and Parabacteroides are overrepresented in the urban microbiota (Figure
27).
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Figure 27. The microbiota is structurally distinct in participants from rural vs. urban areas. Log-
transformed relative abundance of significantly differential genera between participants from rural or
urban areas, as determined by Linear discriminant analysis Effect Size (LEfSe). Adopted from (Tanya

M. Monaghan, Biswas, et al. 2021).

The specific variation in serum short-chain fatty acids (SCFAs) - 2-hydroxybutyrate

levels were positively correlated with IgG4 levels in the rural group (p < 0.05), and 1gG4 was

strongly positively associated with Campylobacter,

Gemella, Leptotrichia, Neisseria,

Porphyromonas and Streptoccocus (p < 0.0001). Tetrasialylated and tetragalactosylated

serum glycans (pathogenic complex glycans) were positively associated with serum caproate

in the urban residents as well as Holdemania and Klebsiella in the rural residents, showing a
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potentially diabetogenic role for the serum metabolite and genera. Also, glycated serum
protein (GSP) levels were assessed (n = 135) and significantly higher in pre-obese (BMI 25—
29.9) and overweight (BMI 23-24.9) individuals compared to normal (BMI 18.5-22.9), and in
urban participants compared to rural subjects (p < 0.001). Across all the subjects, high GSP
levels were associated with significantly lower circulating 19G2, IgM, caproate, and valerate
levels, and lower relative abundance of Roseburiaand Dorea (p < 0.05) (Publication 13, page
232)(Tanya M. Monaghan, Biswas, et al. 2021).

B. Faecal Microbial Transplantation is an effective treatment strategy for Clostridioides
difficile infection

FMT is highly effective for recurrent CDI and there is growing evidence to support FMT
for SFCDI. in this early exploratory longitudinal analysis study using a small sample size (3
responders and 1 non-responder for sequential FMT), a total of 562 characteristics were used
for analysis, 78 of which were significantly different at all time points (p<0.05). This is including
Acidaminococcaceae, Phascolarctobacterium, Enterobacteriaceae, Pseudocitrobacter,
Enterococcaceae and Enterococcus, which are higher in the FMT non-responder compared
to the responders (Table 11)(Tanya M Monaghan, Duggal, et al. 2021). This multi-omics study
highlights initial novel features of dynamic phenotypic changes in FMT non-responders under
different expectations, which prompted an in-depth study focusing on the molecular and
immunological mechanisms of miRNA alterations in successful FMT in patients with recurrent
CDl.

Table 11. Statistically significant threshold difference between responders and non-responder on four
severe or fulminant Clostridioides difficile infection patients (three responders and one non-responder)
in the taxonomy analysis (average across all time points). Adopted from (Tanya M Monaghan, Duggal,

et al. 2021 i

Acidaminococcaceae Family 0.0212 -3.6351 0.1625 2.0193
Phascolarctobacterium Genus 0.0212 -3.6351 0.1625 2.0193
Enterobacteriaceae_unclassified Genus 0.0013 -2.2113 1.0058 4.6577
Pseudocitrobacter Genus 0.0080 -2.2079 0.7009 3.2383
Enterococcaceae Family 0.0035 -1.8467 1.4509 5.2185
Enterococcus Genus 0.0035 -1.8467 1.4509 5.2185

For the in-depth study, sera from two prospective multicentre randomised controlled
trials (NCT02254811 and NCT01398969) for miRNA profiling on the Nanostring nCounter
platform uncovered 64 upregulated circulating miRNAs at 4 and 12 weeks after FMT
compared with screening (pre-treatment phase), of which the top 6 miRNAs were validated in
the discovery cohort by means of RT-qPCR. In a murine model of rCDI, RT-gPCR analyses
of cecal and sera RNA extracts proved repression of these miRs, an effect reversed by FMT.
In mouse colons and human colonoids, C. difficile TcdB mediated the suppressive effects of
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CDI on miRNAs. CDI dysregulated DROSHA, but not Ago2 or Dicer1, and its effect can be
reversed by FMT. Correlation analyses, gqPCR, and 3'UTR reporter assays revealed that miR-
26b, miR-28, miR-23a and miR-150, target directly the 3'UTRs of FGF21, TNFRSF9, IL12B
and IL18, respectively. miR-23a and miR-150 demonstrated cytoprotective effects against
TcdB on colonic epithelial cells. These results provide novel and provocative evidence that
modulation of the gut microbiome via FMT induces alterations in circulating and intestinal
tissue miRs and identify new potential targets for therapeutic intervention in rCDI (Figure 28)
(Publication 14, page 258)(Tanya M. Monaghan, Seekatz, et al. 2021).
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Figure 28. Summary of findings on miRNA changes in patients with Clostridium difficile infection after
receiving faecal microbial transplants. rCDI; recurrent Clostridioides difficile, FMT, Faecal microbiota
transplantation. Adopted from (Tanya M. Monaghan, Seekatz, et al. 2021).

C. Genome-wide, Transcriptomic and Epigenomic level changes in Epstein-Barr virus-
associated gastric cancer

In the EBV-driven GC study, a number of sequencing approaches including whole-
genome, transcriptome, and epigenome sequencing were applied on EBV infected vs control
AGS GC cell line. Integrated epigenome and transcriptome analyses identified 216 genes
transcriptionally down-regulated by EBV-associated hypermethylation; methylation of ACSSH1,
FAM3B, IHH, and TRABD increased significantly in EBVaGC. Overexpression of Indian
hedgehog (IHH) and TraB domain containing (TRABD) increased proliferation and colony
formation of GC cells, whereas knockdown of these genes reduced these activities. Genomic
analyses spotted AKT2 from the 44 mutation genes as it has 2 nonsynonymous point
mutations in AGS—EBV cells and is linked with poorer patient survival in EBVaGC. AKT2 and
phosphate-AKT2 also have a higher expression in EBVaGC cell lines and up-regulate the
down-stream MAPK signalling of ERK and activator protein 1 (AP-1), eventually inducing GC
cell proliferation. AKT2 mutation associates with poor patient survival in EBVaGC. AKT2 is a
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putative oncoprotein that participates in important cancer pathways; our study uncovered
EBVaGC, mainly involved in focal adhesion and MAPK signalling (Liang et al. 2014). In
addition to the well-documented EBV viral gene markers, such as EBNA1, EBER1 and EBER2
found in EBVaGC patients, we reported 10 different EBV genes expressed in EBVaGC
patients (Figure 29)(Publication 15, page 277)(Liang et al. 2014).
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Figure 29. Summary of the study outcomes in Epstein-Barr virus associated gastric cancer. EBV
gene expression profile, EBVpositive host genomic and epigenomic alterations were identified in a cell
model and validated further in primary EBV(+) gastric cancers. Adopted from (Liang et al. 2014).

(3). Discussions and Conclusions

There is substantial evidence that the gut microbiome is associated with interrelated
physiological parameters of different gastrointestinal diseases such as CDI and EBVaGC, as
well as metabolic diseases including diabetes. Currently, a relatively few deep phenomic
studies have been undertaken and thus a better understanding of the biological processes
associated with healthy individuals and those potentially at risk of diabetes.

By using the Central-Indian study cohort, the serum N-glycan profiles showed a more
complex glyco-phenotype in urban population, which may be associated with a higher risk of
developing T2DM and poorer blood glucose regulation (Rudman et al. 2019). The findings of
SCFAs in our study were previously observed in the non-industrial microbiome, with more
SCFAs present in human faeces and greater diversity of genes engaged in complex
carbohydrate metabolism compared to the industrial microbiome (Ou et al. 2013; Obregon-
Tito et al. 2015). Multi-hallmarks of dysmetabolism were identified in urbanites and young
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overweight adults from a higher burden of diabetic-related proteins and a complex
glycophenotype in the circulation, the majority of whom did not have a known diagnosis of
diabetes. It is important to identify people at high risk of diabetes as early intervention may
delay or even prevent overt diabetes. By unravelling the immunometabolic interactions
between gut microbiome and host, personalised therapeutic approaches, including prebiotics,
probiotics, postbiotics and synbiotics could be utilised and investigated to prevent or even treat
cardiometabolic-related diseases (Vallianou et al. 2019; Barengolts 2016).

In the context of rCDI studies, our findings demonstrate the synergistic regulation of
miRNA expression by FMT, confirming several significant alterations in circulating miRNAs
following successful FMT treatment in two independent cohorts of rCDI patients. The miRNA
signature was further validated in rCDlI mouse models and human colonoids. miRNA
processing in colonic epithelial cells was directly altered by C. difficile toxin and may be
affected by C. difficile-associated dysbiosis. Conditional knockdown of the miRNA processing
enzyme Dicer in murine intestinal epithelial cells has been shown to regulate the intestinal
microbiota and exacerbate colitis. From this observation, we found that FMT-regulated
miRNAs can control cellular properties and target TNFRSF9, FGF21, IL12B and IL18, all of
which are integral to pathways associated with cancer, inflammation and autoimmunity, and
that CDI-induced colitis can suppress circulating miRNAs, which can be restored by FMT.
These findings may be further explored to investigate the potential of rCDI as a therapeutic
target.

Regarding the study on EBVaGC, gene expressions in EBVaGC cell was shown by
transcriptome analysis and confirmed in EBVaGC primary gastric tumours. Whole-genome
sequencing showed EBV-associated host mutations in genes including AKT2, CCNAT1,
MAP3K4, and TGFBR1. AKT2 mutations are associated with reduced survival times of
patients with EBVaGC. Epigenome analysis uncovered hypermethylation of genes including
ACSS1, IHH, FAM3B, and TRABD through the infection. Five core pathways were shown to
be dysregulated by EBV-associated host genomic and epigenomic aberrations in GC. These
findings provide a systematic view of EBV-associated host genomic and epigenomic
abnormalities and signalling networks that may govern the pathogenesis of EBVaGC.

VII. OVERALL DISCUSSION AND FUTURE DIRECTIONS

Over the past century, an ageing population coupled with a shift to a Western lifestyle
has left many people vulnerable to interrelated digestive disorders and there is an urgent need
to understand the pathogenesis and mechanisms of disease in order to improve diagnostic
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accuracy and treatment outcomes. First, by integrating publicly available datasets with
bioinformatics analysis, | identified hyperactive neutrophil chemotaxis could be the major
factor for anti-TNF-a treatment resistance in IBD patients. Then, utilising faecal miRNA and
gut microbes, several upregulated miRNA and over-abundance of gut microbes in CRC were
identified. In addition, studies regarding FMT confirmed the alternation of host-miRNA
expression and relief of the infection symptoms in rCDI patients; EBVosiive GC has clear

molecular changes at whole-genome, transcriptome, and epigenome levels.

Currently, in non-invasive CRC screening studies, our faecal-based miRNA and gut
microbe biomarker discoveries focus on the general population in the prevention of cancer
development, however, the strategy for other diseases and/or other conditions in clinical
applications should not be neglected, such as chemotherapy. For instance, miR-20a
dysregulation has been reported in several chemo-resistance studies, including CRC. miR-
20a directly targets apoptosis signal-regulating kinase 1 (ASKT) in cisplatin resistance CRC
cells (L. Zhang et al. 2018) and BCL2 Interacting Protein 2 (BNIP2) in 5-Fluorouracil (5-FU),
oxaliplatin and teniposide resistance CRC cells (Chai et al. 2011). Long non-coding RNA
(IncRNA) HAND2-AS1 acts as a miR-20a sponge to control the expression of miR-20a target
genes in 5-FU chemotherapy-resistance CRC cells (Jiang et al. 2020). In addition, a recent
study indicated that the enrichment of F. nucleatum regulates the autophagy signalling
pathway through ATG7 and ULK1 to increase chemo-resistance to CRC (T. Yu et al. 2017).
ATG7 and ULKT can be targeted by hsa-miR-4802 and hsa-miR-18a-3p, respectively, through
initiating TLR4-—MyD88 activation and thus avoiding undergoing chemotherapy-caused
apoptosis (T. Yu et al. 2017). Hence, our findings on miR-18a and F. nucleatum could also be
further expanded to investigate the prediction potential for chemotherapeutic treatment
response in CRC patients, and additional studies are thus required.

More recently, loop-mediated isothermal amplification (LAMP) also offers extensive
research, and detection opportunities for target-specific amplification under isothermal
conditions, especially samples from a complicated environment such as soil and faeces.
LAMP typically requires recognising 6-8 various regions by using 4-6 primers to target a
specific DNA or cDNA for an amplification reaction. This requires a DNA polymerase with
strand-displacing ability to begin synthesis and two specially designed primers to form 'loop’
structures that facilitate subsequent rounds of amplification by extension on the loop and
additional annealing of the primers. The endpoint LAMP DNA products can exceed 20kb and
are formed by many repeats of short target sequences (typically between 80-250bp) linked to
single-stranded loop regions. LAMP could be applied to real-time fluorescence assays using

intercalators or probes, and both agarose gel and lateral flow assays are directly compatible
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with LAMP reactions (Panno et al. 2020). The use of LAMP may present better accuracy
compared to probe-based gPCR techniques, however, this may not apply well to faecal-based
miRNAs due to the relatively short sequences.

In addition to increasing non-invasive CRC screening and the treatment accuracy for
IBD patients to prevent colonic polyps development, studies on diet-microRNAs-microbiome
interactions may also be able for us to investigate disease prevention strategies including CRC.
For instance, high-fat diets have been considered a risk factor for CRC. Studies have shown
that high-fat diets stimulate the production of hepatic primary bile acids and transfer them into
the colon, which is then metabolised by gut microbes into genotoxic bile acids such as
deoxycholic acid (DCA) (Ajouz et al. 2014). An increased level of 7a-dehydroxylating intestinal
bacterium has also been reported in high-fat diet studies (Ocvirk, O’Keefe 2017). DCA was
shown to promote CRC through down-regulation of miR-199a-5p (Kong et al. 2012). The
expression of miR-199a-5p in CRC cells may lead to the inhibition of tumour-cell growth and
metastasis, and regulate EMT signalling by targeting ROCK1 and DDR1 (Zhu et al. 2018; Hu
et al. 2014), restore therapeutic sensitivity through CAC1 (Kong et al. 2012), and control cell
apoptosis through HIF-1a and VEGF (Ye et al. 2015).

On the other hand, SCFAs such as acetate, propionate, and butyrate are the end
metabolite products of dietary fibres via saccharolytic fermentation in the gut.
Faecalibacterium prausnitzii is one of the abundant bacterial species in the gut producing
butyrate. Butyrate is a source of colonocytes and has a potential protective role against colonic
diseases, such as IBD and CRC (Martin et al. 2017), by reducing mucosa inflammation
through upregulating PPARYy (Schwab et al. 2007) and inhibiting NF-kB transcription factor
activation (Inan et al. 2000) and IFN-y (Klampfer et al. 2003). Butyrate is also a histone
deacetylase (HDAC) inhibitor that regulates PTEN, BCL2L11 and CDKN1A at post-
transcriptional level, presenting anti-tumour effects (Wawruszak et al. 2019; Hu et al. 2011).
A number of dysregulated miRNAs in butyrate-treated cells have been reported. For instance,
in CRC cells, butyrate can inhibit miR-92a in a cMyc-dependent manner, allowing p57 — a
CDK inhibitor — to exert control over cell cycle progression (Hu et al. 2015); suppression of
miR-106b by butyrate promotes the expression of tumour suppressor p21 (p21 acts on
proliferating cell nuclear antigen (PCNA) to inhibit DNA replication and intermediate cell cycle
arrest triggered by p53 (Huang et al. 2000; Schlérmann et al. 2015; Hu et al. 2011)); miR-203
was identified by butyrate in several CRC cell lines and down-regulate NEDD9 — a scaffolding
protein belonging to the Cas family — resulting in reduced cancer cell migration and invasion
(Han et al. 2016; Shagisultanova et al. 2015).
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In addition, diets themselves could regulate intestinal microbes and affect homeostasis.
For instance, miRNAs are abundant in raw milk, which is resistant to RNase digestion; stable
in normal storage and acidic conditions and freeze-thaw cycles (Kosaka et al. 2010; Weber et
al. 2010; lzumi et al. 2012); and ~40% of miRNAs remain after pasteurisation and
homogenisation processes (Howard et al. 2015). Milk miRNAs can tolerate the upper digestive
tract and are attained by absorption in the intestine via exosome (Munagala et al. 2016). Also,
plant miR-159 is rich in broccoli and stable under storage, processing and cooking conditions
(Chin et al. 2016; Philip et al. 2015). A DSS-induced mouse colitis model showed that ginger
exosome-like nanoparticle (GELN)-carried mdo-miR-7267-3p can target Lactobacillus
rhamnosus monooxygenase coding gene ycnE; boost up the expression of indole-3-
carboxaldehyde — a ligand for the aryl hydrocarbon receptor; and stimulate host IL-22
production, eventually relieving colitis symptoms through improving barrier function (Teng et
al. 2018). By using Lactobacillus acidophilus and Bifidobacterium bifidum as probiotics in
AOM-induced CRC mouse model, the researchers identified miR-135b, miR-155 and KRAS
expression are increased; while miR-18a, miR-26b, APC, PU.1, and PTEN expressions are
reduced (Heydari et al. 2019).

Currently, various studies have been focused on therapies that control gut microbiota
composition; and antibiotics treating gut-related diseases is one of the most remarkable
achievements. For instance, both vancomycin and metronidazole are commonly used in CDI
and fidaxomicin may apply for recurrence or relapse CDI; vancomycin is also frequently used
for IBD flares associated with C. difficile colitis. Rifaximin, ciprofloxacin and metronidazole can
be applied in IBD, especially Crohn’s disease (Ledder 2019; Czepiel et al. 2019). However,
the extensive use of antibiotics has led to the global challenge of antibiotic resistance; thus,
alternative treatment strategies, such as pro-/pre-biotics, bacteriophage, FMT, as well as
miRNA, are under investigation. Bacteriophage (also called phages) therapy relies on the use
of naturally-occurring and/or bio-engineered phages to infect and lyse target bacteria at the
affected infection site(s). Its therapeutic efficiency relies on a particular setting and remains at
an exploratory stage, due to its complex microbial communities and ethical challenges
(Anomaly 2020). Phages may also translocate across the intestinal epithelium and
subsequently circulate within the blood (Goérski et al. 2006). The so-called “cocktail phage
therapy” was first applied in the United Kingdom for a 15-year-old patient with cystic fibrosis
with drug-resistant Mycobacterium abscessus infection (Dedrick et al. 2019); and the US FDA
recently approved a phase one bacteriophage clinical trial for Pseudomonas aeruginosa
infections (Voelker 2019).
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On the other hand, gut dysbiosis could be changed by taking prebiotics — specialised
dietary fibres that stimulate “friendly” bacteria growth, or probiotics — living "good" bacteria in
food. In prebiotics, for example, the intake of lactose will break down the lactose in milk (-
containing) products to alleviate the symptoms of lactose intolerance and maintain the balance
of gut microbiota (Dastar et al. 2016). Lactose itself may contribute to the growth of
Bifidobacterium and other lactic acid bacteria (Romero-Velarde et al. 2019); consuming milk
in patients with lactose intolerance may decrease Megamonas and increase Bifidobacterium,
Anaerostipe and Blautia (Li et al. 2018). On the other hand, there is some evidence that
probiotics may ease some symptoms of irritable bowel syndrome (IBS) (Cristofori et al. 2021)
and prevent diarrhoea when taking antibiotics (Stavropoulou, Bezirtzoglou 2020); while
developing probiotic strains for treatment/prevention purposes requires intensive studies to
ensure the possible treatment effect and safety. Moreover, there is increasing evidence that
miRNAs regulate gut homeostasis; modulating gut microbiota via miRNAs is an unexplored
therapeutic strategy. Studies to understand host-miRNA-microbiota communication are
essential for the development of miRNA-based therapies. For example, a recent study
identified a synthetic miRNA that can specifically modulate the microbiome and ameliorate an
inflammatory autoimmune disease (Liu et al. 2019). Other hypotheses include using milk or
plant as delivering vectors to transfer miRNAs that target specific gut bacteria (Rome 2019;
Munagala et al. 2016).

VIIl. CONCLUSION

In conclusion, inter-connected Gl diseases are the major global public health issues
affecting almost the entire human population. The complex interactions among host epithelial
cells, immunity, epigenetics and gut microbiota have been suggested as major factors in the
maintenance of a healthy Gl environment. The molecular changes, such as miRNA from
disease(s) or infection, can be found in blood/faeces and modulate the distribution and
composition of the gut flora microenvironment. These changes can potentially be a non-
invasive tool to improve the detection accuracy of the current use of FIT for CRC screening or
for recurrent CDI patients.
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Abstract

Background: Colorectal cancer (CRC) follows a protracted stepwise progression, from benign
adenomas to malignant adenocarcinomas. If detected early, 90% of deaths are preventable.
However, CRC is asymptomatic in its early-stage and arises sporadically within the population.
Therefore, CRC screening is a public health priority. Summary: Faecal imnmunochemical test
(FIT) is gradually replacing guaiac faecal occult blood test and is now the most commonly used
screening tool for CRC screening program globally. However, FIT is still limited by the haemo-
globin degradation and the intermittent bleeding patterns, so that one in four CRC cases are
still diagnosed in a late stage, leading to poor prognosis. A multi-target stool DNA test (Co-
loguard, a combination of NDRG4 and BMP3 DNA methylation, KRAS mutations, and haemo-
globin) and a plasma SEPT9 DNA methylation test (Epi proColon) are non-invasive tools also
approved by the US FDA, but those screening approaches are not cost-effective, and the de-
tection accuracies remain unsatisfactory. In addition to the approved tests, faecal-/blood-
based microRNA and CRC-related gut microbiome screening markers are under development,
with work ongoing to find the best combination of molecular biomarkers which maximise the
screening sensitivity and specificity. Key Message: Maximising the detection accuracy with a
cost-effective approach for non-invasive CRC screening is urgently needed to further reduce

the incidence of CRC and associated mortality rates. © 2020 The Author(s)
Published by S. Karger AG, Basel
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Introduction

Colorectal cancer (CRC) is the third most common cancer and the second leading cause
of cancer-related death worldwide, with over 1.8 million new cases and causing approxi-
mately 900,000 deaths in 2018 [1]. The incidence rate varies among countries, with a rate
about 3-times higher in developed versus developing countries, while the mortality rate has
lessvariation [1]. The improvementin cancer treatmentand the introduction of CRC screening
programs have further reduced mortality arising from CRC in developed countries [2-4].
However, the pathogenesis of CRC follows a stepwise progression from benign adenomas to
malignant adenocarcinomas, often over a course of 10 years. It is often asymptomatic in its
early stages and remains undiagnosed until late stages, where prognosis becomes unfa-
vourable [2]. If detected early, up to 90% of deaths can be prevented [5]. As a result, a well-
planned public health policy with the development of effective and non-invasive biomarkers
could overcome the problem.

Colorectal Cancer Screening Program

Implementation of CRC screening programs in communities allows early detection of
colonic neoplasm(s) to lower the treatment need, morbidity, and mortality [6]. However,
CRC screening programs in different countries differ in their approach [7]. These programs
can be broadly divided by structured opportunistic and population-based organised (pilot)
screening programs (Table 1) [4]. Population-based organised programs have been intro-
duced into the United Kingdom (UK), Croatia, and Hong Kong, with the governments
providing a well-organised systematic process of inviting a specific group of individuals for
testing. By contrast, structured opportunistic screening programs are implemented on an ad
hoc basis, usually through fee-for-service reimbursement of physicians, such as the United
States (US) (Table 2).

The United Kingdom

The UK is a typical example of a population-based organised screening program, where
the National Health Service (NHS) has been providing a free-for-charge nationwide Bowel
Cancer Screening Program (BCSP) for UK residents since 2006. The BCSP was originally
intended for the population between 60 to 69 years of age and recently extended the age
range to between age 50 to 74 for their biannual tests. To increase detection accuracy, the
screening guidelines have shifted from guaiac faecal occult blood test (gFOBT) to faecal
immunochemical test (FIT) since April 2018. Moreover, the NHS also offers a one-off flexible
sigmoidoscopy at the age of 55 [8].

Croatia

The early CRC screening program in Croatia was established in 2007 following recom-
mendations by the European Council in 2003. The program provides a non-invasive gFOBT
for the population aged 50 to 74 every 2 years. Positive cases of gFOBT may further be referred
for a colonoscopy to confirm the finding [9]. However, the participation rate was below 20%
for 5 years (2007 to 2011), the lowest rate in the European Union [4].

Hong Kong

The Hong Kong government has a CRC screening program for citizens in the age range of
50 to 74, which is considered an average risk age group. Eligible citizens should receive a FIT
every 2 years in this screening program. The guideline from the Department of Health in Hong
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Table 1. Global status of structured and organised colorectal cancer screening by continent in 2018

Continent Population-based Population-based Structured
organised organised pilot opportunistic
Europe 1. Belgium 1. Austria 1. Austria
2. Croatia 2. Cyprus 2. Germany
3. Czech Republic 3. Georgia 3. Greece
4. Denmark 4. Hungary 4. Latvia
5. Estonia 5. Portugal
6. France 6. Serbia
7. Ireland 7.Sweden
8. Italy 8. Switzerland
9. Lithuania
10. Luxembourg
11. Malta
12. Montenegro
13. The Netherlands
14. Norway
15. Poland
16. Slovenia
17. Spain
18. United Kingdom
North and Latin America 1. Canada 1. Argentina 1. USA
2. Uruguay 2. Brazil 2. Colombia
3. Chile
Africa - - 1. Morocco
Central, West, South Asia 1. Israel 1. Bahrain 1.Iran
2. UAE 2. Kuwait
3. Kazakhstan
4. Lebanon
5. Qatar
6. Saudi Arabia
Far East Asia and Oceania 1. Taiwan 1. PR China 1. Japan
2. Korea 2. Thailand 2. Malaysia
3. Hong Kong

4. Singapore
5. Australia
6. New Zealand

Kong also recommended self-funded invasive screening, such as sigmoidoscopy every 5 years
or colonoscopy every 10 years [10]. A similar screening program can also be found in Macau

and Taiwan [11, 12].

The United States

In the US, the CRC screening program is largely opportunistic, and the guidelines are
relying on both government institutions as well as national independent bodies, such as
the US Preventive Services Task Force and the American Cancer Society (ACS). These
organisations provide their professional guidelines for the choice of CRC screening tests
according to the latest prevention and evidence-based medicine [4]. Currently, CRC
screening is indicated for the patients aged 50 to 75, although the 2018 ACS guideline
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Table 2. Colorectal cancer screening programs in the selected countries

65

United States United Kingdom Hong Kong/
Macau/Taiwan
Screening program Opportunistic Population-based Population-based Population-based
Age 45t0 75 60 to 75 50to 75
76 to 85: consult
Non-invasive Annual gFOBT Biennial FIT Biennial FIT Biennial gFOBT
Annual FIT

Triennial mt-sDNA

Invasive

CT colonography (every 5 years)
Flexible sigmoidoscopy (every 5 years)
Colonoscopy (every 10 years)

One-off flexible
sigmoidoscopy

for age 55

Sigmoidoscopy
(every 5 years)*
Colonoscopy
(every 10 years)*

(when gFOBT

gFOBT, guaiac faecal occult blood test; FIT, faecal immunochemical test; mt-sDNA, multi-target faecal-based DNA screening test.
* Fee-of-charge service.

Table 3. Clinically available non-invasive CRC screening tools

Screening Sample  Detection target Specificity, % Sensitivity, % Advanced adenoma Cost, USD
tool (95% CI) (95% CI) sensitivity, %
[Ref.] [Ref.] (95% CI) [Ref.]
mSEPT9 Serum SEPT9 DNA 92 (89-94) 71 (67-75) 11.2 (7.2-15.7) 273-445
(Epi proColon) methylation [70] [70] [71]
mt-sDNA Faeces NDRG4 and BMP3 89.8 (88.9-90.7) 92.3 (83-97.5) 42.4 (38.9-46) 492.72
(Cologuard) DNA methylation, [72] [72] [72]
KRAS mutations and
haemoglobin
FIT Faeces Haemoglobin 90* 78* 39* 20-21.65
[74] [74] [74] [73,75]
gFOBT Faeces Haemoglobin 90.0 (84.2-93.8) 62.6 (34.9-83.9) - 3.31-5
[76] [76] [71, 75]

*No 95% CI reported from the meta-analysis. 95% CI, 95% confidence interval; gFOBT, guaiac faecal occult blood test; FIT, faecal
immunochemical test; mt-sDNA, multi-target stool DNA test; mSEPTO, plasma SEPT9 DNA methylation test.

recommended that screening should begin at the age of 45 and does not recommend CRC
screening for anyone over 85. People in the age range between 76 and 85 should consult
their medical providers. The ACS guideline also recommended a regular faecal-based non-
invasive examination, such as FIT (every year) and mt-sDNA (every 3 years) [13]. gFOBT
is no longer recommended due to the high false-positive rate as well as the dietary and
pharmaceutical restrictions [14, 15]. The ACS guideline also proposed visual invasive
examinations, such as CT colonography (every 5 years), flexible sigmoidoscopy (every 5
years) or colonoscopy (every 10 years) [16]. Although opportunistic screening is effective
in reducing CRC-related mortality in the US [17], access to CRC screening is not equal [4].
Residents who are in poverty, uninsured, or underinsured are less likely to undergo regular

CRC screening [18, 19].
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Approved Colorectal Cancer Screening Tools

Faecal Occult Blood Test and Faecal Inmunochemical Test

Currently, the most common and low-cost non-invasive faecal tests for CRC screening are
gFOBT and FIT (Table 3). Both gFOBT and FIT enable detection of a tiny amount of blood by
targeting haemoglobin [20]. Individuals with a positive gFOBT or FIT result may receive a
gold-standard, invasive colonoscopy to confirm the results and/or removal of polyp(s). A
meta-analysis of four randomised controlled trials revealed that annual or biennial gFOBT
screening caused roughly a 16% reduction in CRC-related mortality with no significant effect
on CRCincidence [21]. However, gFOBT is limited by its relatively poor sensitivity in advanced
colonic adenoma and also requires repeat screening and dietary restrictions [22]. Thus, it is
gradually being replaced by FIT [23, 24]. FIT has a relatively better detection accuracy and
can be quantified, providing a tailored screening approach by optimising the cut-off level [25,
26]. A low cut-off reduces the specificity and requires more follow-up with colonoscopy, but
increases the sensitivity to identify more individuals with precancerous polyp(s) [23, 27].
Further optimisation for FIT to improve detection accuracy is still ongoing, including the
formulation of a FIT buffer for haemoglobin stabilisation [28, 29], the best haemoglobin
detection concentration for automated FIT systems, as well as a single-sample (1-FIT) and
two-sample (2-FIT) faecal sample protocol per one specimen [30]. Although improvement in
FIT detection is still ongoing, a more accurate non-invasive testis urgently needed. At present,
the Food and Drug Administration (FDA) in the US approved two other commercially available
CRC tests in clinical use, including the multi-target stool DNA (mt-sDNA) test (Cologuard) and
plasma SEPT9 DNA methylation test (Epi proColon) (Table 3).

Multi-Target Stool DNA Test (Cologuard)

Since colonocytes consistently exfoliate and shed into the lumen of the gastrointestinal
tract, molecular alterations in faeces, such as DNA methylations, have been widely investi-
gated [31]. The mt-sDNA screening test (also called Cologuard) is an FDA-approved non-
invasive CRC screening tool in 2014, developed by EXACT Sciences Corporation (NASDAQ:
EXAS) and Mayo Clinic [32]. The test is Clinical Laboratory Improvement Amendments
(CLIA) certified and accredited by the College of American Pathologists [33]. It is designed
to detect faeces-based DNA biomarkers with occult haemoglobin. The initial development
utilised a pre-commercial 23-marker assay, with subsequent findings that there were 3
broadly informative markers for colorectal neoplasia [34]. Based on the findings, the
preliminary version of mt-sDNA utilised NDRG4, BMP3, VIM, and TFP12 genes as DNA
methylation targets, with mutant KRAS and faecal haemoglobin. At the threshold of 90%
specificity from the 293 healthy controls, the sensitivities for CRC (n = 252) and adenomas
>1 cm (n = 133) were 85 and 54%, respectively [35]. The size of the tumour correlated to
the detection sensitivity, increasing from 54% in 1 cm to 92% in >4 ¢cm adenomas [35].
Afterwards, the commercially available, FDA-approved mt-sDNA version 2.0 by the
“DeeP-C” study utilised NDRG4 and BMP3 DNA as methylation markers with KRAS muta-
tions plus FIT. The “DeeP-C” prospective study recruited almost ten thousand participants
in an average-risk community asymptomatic of CRC [36]. The sensitivity for CRC and pre-
cancerous lesions was 92.3 and 42.4%, respectively, and presented a higher sensitivity
compared to only one FIT kit at one cut-off (CRC: 73.8%, p = 0.002; pre-cancerous lesions:
23.8%, p < 0.001) [36].

Following the approval, further clinical trials were continued. In the Alaska native cohort
(n = 661) [37], the test presented a sensitivity of 49% for advanced colorectal neoplasms
(n =92) versus 28% for FIT (p < 0.001). The specificity of mt-sDNA was 93%, which is 3%
lower than FIT (p = 0.034) in the subjects in whom no adenomas were detected [37]. Later,
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the mt-sDNA test was applied in frozen samples (n =1,047) from the Netherlands prospective
COCOS study for further FIT comparison in advanced colorectal neoplasia (n = 102). The
mt-sDNA had a sensitivity of 49% and specificity of 89%, showing better accuracy than FIT,
which had a sensitivity of 25% and specificity of 96% [38, 39]. An additional clinical trial at
the Netherlands cancer institute is still ongoing [40]. It should be taken into account that a
positive test result with no findings on colonoscopy may be due to other causes as NDRG4
and BMP3 methylation can be found from other gastrointestinal diseases such as gastric and
pancreatic cancers, although it is rare [41-43].

Plasma SEPT9 DNA Methylation Test (Epi proColon)

In addition to faeces, DNA methylation can also be determined from blood. The SEPT9
methylation detection in plasma has been evaluated in multiple studies. Epigenomics AG
(ECX: FRA) in Germany first implemented the SEPT9 methylation biomarker in Europe in
2008 [44]. Two years later, the commercialised Epi proColon qPCR kit version 1.0 was
launched in Europe and later upgraded to version 2.0 [45]. The Chinese Food and Drug Admin-
istration and the US FDA approved the Epi proColon kitin 2015 and 2016, respectively. In the
prospective “PRESEPT” study, the methylated SEPT9 assay demonstrated a sensitivity of 48%
for CRC (from stages I-1V, 35, 63, 46, and 77%, respectively) with a specificity of 92%;
however, merely 11% ofadvanced adenomas were identified [46]. The commercially available
kit provides 2 different algorithms, the 2/3 algorithm test has a relatively high true negative
rate, while the sensitivity is higher in the 1/3 algorithm [47]. A meta-analysis study published
in 2017 including 25 research articles found that the SEPT9 assay is only superior to the FIT
in the symptomatic population [48]. Due to its relatively poor sensitivity, the US Preventive
Services Task Force and the ACS currently do not include the Epi proColon test in their CRC
screening guidelines [49].

Screening Tools under Development

One of the biggest challenges in early cancer diagnosis and/or prognosis is the lack of
reliable biomarkers, leading to several screening tools, such as PreGen-Plus™ (KRAS, APC, and
p53 mutations) [50], ColoSure™ (VIM methylation), and COLVERA™ (BCAT1 and IKZF1 meth-
ylation) [51], being withdrawn from the market [50, 52]. Therefore, developing alow-invasive
biomarker that can be easily performed with a clear clinical outcome is necessary. Apart from
DNA methylation tests in both faeces and blood samples, other molecular biomarkers are
being developed for CRC screening, such as circulating tumour DNA (ctDNA) [53], tumour-
derived circulating cell (CTC) [54], circular RNA (circRNA) [55], PIWI-interacting RNA
(piRNA) [56], microRNA (miRNA) [57-60], and gut microbes (Table 4). Studies relating to
miRNA and gut bacteria will further be discussed.

microRNAs Detection in Blood and Faeces

miRNAs are a class of conserved endogenous, non-coding RNAs with approximately
18-24 nucleotides and play an important role in post-transcriptional regulation of protein-
coding gene expression(s) through binding primarily to the 3’-untranslated region of the
target mRNA(s), resulting in mRNA degradation and/or translational repression [61]. Thus,
aberrant miRNA expression leads to disease progression and thus can be useful as diagnostic
and/or prognostic predictors to human diseases. Until now, numerous research articles have
reported that both blood- and faecal-based miRNAs can be utilised as biomarkers for CRC
screening. Among them, miR-21 and miR-92a are the highly reported miRNAs for CRC
screening [62].
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Table 4. Selected developing molecular biomarkers for colorectal cancer screening

68

Types Sample Molecular AUC Sensitivity, % Specificity, % Ref.
biomarker(s) (95% CI) (95% CI) (95% CI)
DNA Plasma APC, MGMT, RASSF2A, 0.927 86.5(81.7-90.8)  92.1 (88.2-95.0) [81]
methylation WIF1
Plasma BCAT1, IKZF1 NA 66 94 [82]
Serum SDC2 NA 87 95.2 [83]
Plasma cfDNA LINE-1 0.81 65.8 90 [84]
Faeces NDRG4 T:0.77 T: 61 (43-79) T: 93 (90-97) [85]
V: NA V: 53 (39-67) V: 100 (86-100)
Faeces TFPI2 NA 76 (60-88) 93 (77-99) [86]
Circulating Serum cfDNA ALU115 0.8458 69.23 99.09 [87]
tumour DNA
ALU247/115 0.8551 73.08 97.27
Circular RNA Plasma 91H, PVT1, MEG3 0.877 82.76 78.57 [88]
(circRNA)
Serum L0C285194, RP11- 0.79 (0.71-0.86) 68.33 86.89 [89]
462C24.1,Nbla12061
Whole-blood NEAT1_v1 0.73 (0.60-0.83) 56.7 83.3 [90]
Whole-blood NEAT1_v2 0.85 (0.73-0.93) 86.6 83.3 [90]
PIWI-interacting  Serum piR-5937 T: 0.8060 71.8 72.5 [56]
RNA (piRNA)
V:0.7673 73.6 65.3
piR-28876 T: 0.8065 75.3 70.0 [56]
V:0.7074 66.0 65.3
microRNA Plasma miR-92a 0.885 89 70 [91]
(miRNA) :
Serum miR-210 0.82 74.6 73.5 [92]
Plasma miR-24 8.84 (0.79-0.89) 78.4 83.9 [93]
Faeces miR-221 0.73 (0.68-0.78) 62 (55-68) 74 (67-80) [60]
Faeces miR-20a 0.73 (0.68-0.78) 55 (47-62) 82 (76-87) [57]
Faeces miR-135b 0.79 78 (69-85) 68 (58-77) [59]
Faeces miR-92a, miR-21, 0.849 81 80 [94]
miR-135b, miR-145,
miR-133a
Saliva miR-21 NA 97 91 [95]
Exosomal Plasma miR-27a 0.87 (0.77-0.96) 81.82 90.91 [96]
microRNA .
Plasma miR-130a 0.82(0.73-0.90) 69.32 100
Tumour-derived ~ Whole-blood Circulating endothelial ~ 0.92 (0.84-1.00) NA NA [54]
circulating cell cell clusters
Gut microbes Faeces F. nucleatum, 0.84 NA NA [76]
Parvimonas micra
Faeces F. nucleatum, NA 93.8 81.2 [80]
Clostridium hathewayi,

Lachnoclostridium sp.,
Bacteroides clarus, and FIT

95% CI, 95% confidence interval; NA, not available; T, training; V, validation; cfDNA, cell-free DNA.
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In a meta-analysis of the blood-based miRNA study, the overall sensitivity and specificity
of blood-based miRNAs for CRC is 76% (95% CI, 72-80%) and 76% (95% CI, 72-80%),
respectively [63]. The most predictive miRNA was miR-92a, ranging from a sensitivity of
65.5% to 89%, and from a specificity of 70% to 82.5%, with the area under the receiver-oper-
ating characteristics (AUC) between 0.786 and 0.890 [63]. However, the major shortcoming
of using blood-based miRNA for CRC screening is the detection specificity. This is because
miRNAs might arise from other cancer(s) [64, 65], depression [66], and virus infection(s) [67,
68]. Therefore, faecal-based miRNA detection may be an alternative option [57, 59, 60, 69]. It
has been demonstrated that miRNAs are highly stable short sequences which remain
detectable within samples throughout a 72-hour incubation period due to protection from
ribonuclease degradation by exosomes [70, 71]. A meta-analysis showed that miR-21 is the
mostreliable miRNA [72]. However, as faeces contain abundant amounts of proteins and DNA
from gut microbes, the purity of RNA samples from faeces may determine the result outcomes.
As aresult, faecal-miRNA detection in combination with FIT is a reliable approach to enhance
the detection accuracy. Previous studies indicated that the combination of miR-21 and
miR-92a with FIT had a specificity of 96.8% and sensitivity of 78.4%, while FIT alone only had
a specificity of 98.4% and sensitivity of 66.7% [73].

Faecal-Based Microbe Detection

The gut flora habitat has a vast amount of microbes and plays an important role in main-
taining our health. Changes in microbiome composition have been linked to multiple diseases
including cancer. The study of biomarkers from the gut microbiome has a particular focus on
CRC, where clinical use is already on the horizon [74]. It is known that dysbacteriosis alters
metabolic activities and induces inflammatory stimuli to the gastrointestinal tract, and even-
tually induces mutations to colonic cells, thus contributing to the development of the CRC.
Among multiple microbial taxonomic markers, intensive research showed that Fusobac-
terium nucleatum is enriched in tumour neoplasms as well as in faeces from CRC patients [75,
76]. F. nucleatum belongs to the class of asaccharolytic bacteria. Enrichment of F. nucleatum
in the gut does not only recruit tumour-infiltrating immune cells and induces a pro-inflam-
matory microenvironment, but also contributes to CRC tumorigenesis through its strong
adhesive abilities and invasive effects on epithelial cells [77]. Furthermore, F. nucleatum
survives and divides in the hypoxic tumour microenvironment, contributing to the cell prolif-
eration and angiogenesis. Ameta-analysis indicated that the use of F. nucleatum as abiomarker
for CRC screening has a sensitivity of 71% (95% CI, 61-79%) and a specificity of 76% (95%
Cl, 66-84%), with the AUC of 0.80 (95% CI, 0.76-0.83); the sensitivity and specificity for
advanced colorectal neoplasiais 36% (95% CI, 27-46%) and 73% (95% CI, 65-79%), respec-
tively, with the AUC of 0.60 (95% CI, 0.56-0.65) [78]. The use of F. nucleatum together with
FIT may improve the detection accuracy for advanced colorectal neoplasia [79]. A most recent
report indicated that the combination of F. nucleatum, Clostridium hathewayi, Lachnoclos-
tridium sp., Bacteroides clarus, and FIT presented a high detection accuracy, with a specificity
of 81.2% and sensitivity of 93.8% [80].

Conclusion

CRC is the third most aggressive cancer worldwide with a high mortality rate due to the
lack of robust biomarkers. Current CRC screening programs are mostly only available to those
above age 50 or 55, despite the latest guidelines recommending that screening should begin
from the age of 45. Although colonoscopy is the gold standard for CRC, it being labour-
intensive and invasive means that it cannot be applied for everyone. Thus, there is a great
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need for a cost-effective and non-invasive CRC screening test to improve the screening
accuracy and acceptability. The use of circulating and/or faecal-based miRNAs, as well as gut
bacteria, could be the next generation CRC screening biomarkers.
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Abstract

Until recently, a one-drug-fits-all model was applied to every patient diagnosed with
the same condition. But not every condition is the same, and this has led to many
cases of ineffective treatment. Pharmacogenetics is increasingly used to stratify
patients for precision medicine treatments, for instance, the UGT1A1%*28 polymor-
phism as a dosage indicator for the use of irinotecan as well as epidermal growth fac-
tor receptor (EGFR) immunohistochemistry and KRAS Proto-Oncogene (KRAS) exon
2 mutation tests for determining the likelihood of treatment response to cetuximab or
panitumumab treatment in metastatic colorectal cancer (CRC). The other molecular
subtypes, such as KRAS exon 3/4, B-Raf Proto-Oncogene, NRAF, PIK3CA, and
PETN, were also reported as potential new pharmacogenetic targets for the current
and the newly discovered anticancer drugs. In addition to next-generation sequencing
(NGS), primary tumor cells for in vivo and in vitro drug screening, imaging biomarker
3’-Deoxy-3'-18F-fluorothymidine positron emission tomography, and circulating
tumor DNA (ctDNA) detection methods are being developed and may represent the
future direction of precision medicine. This review will discuss the current environ-
ment of precision medicine, including clinically approved targeted therapies, the latest
potential therapeutic agents, and the ongoing pharmacogenetic trials for CRC patients.

INTRODUCTION

Colorectal cancer (CRC) is the second most common cancer and
cause of death across European countries. In 2012, approxi-
mately 447 000 Europeans were diagnosed, and 215 000 died
from the disease.! Over the past few decades, patients with CRC
were treated homogenously and provided with the same “stan-
dard” care. In addition to the standard colorectal surgery, the rec-
ommendation of standard drug treatment based on the tumor
staging has successfully improved the treatment efficacy for
CRC patients in both overall survival (OS) and disease-free sur-
vival (DFS).> However, not every patient’s condition is the same,
and decisions on treatment options made by relying solely on
CRC staging is simplistic. This has likely led to many cases of
ineffective treatment, adverse drug reactions, and multiple side
effects.

Precision cancer treatment could be one of the possible
ways to tackle this problem. Precision medicine, also known as
personalized medicine, goes beyond a conventional one-drug-
fits-all model to match therapy by using particular environmental,
lifestyle, cancer staging, and biological characteristics to identify
which approach will be most effective for a particular individual.
This thereby increases his or her likelihood of response to treat-
ment and reduces the number of adverse drug effects.

Currently, there are several drugs that have been approved
for CRC treatment, and a variety of pharmacogenetic tests
involving biomarkers have been accepted to aid the patient

selection process (Table 1). The aim of this review is to discuss
the current state of precision drug treatments, including clinically
approved chemotherapy drugs, molecularly targeted therapies
such as anti-VEGF (vascular endothelial growth factor) and anti-
EGFR (epidermal growth factor receptor) treatments, and the lat-
est ongoing clinical trials for CRC patients.

Precision treatment and implications for
early-stage CRC

There are several methods for staging CRC, including the
tumour, node, and metastases (TNM) system, Dukes classifica-
tion, and Astler-Coller classification. Using the most common
TNM staging system, CRC can be broadly subdivided into five
phases (Table 2).* This staging system is important because it
forms the basis for decisions regarding treatment options for
CRC. For example, patients with stage I CRC normally receive
colonoscopic polypectomy, endoscopic mucosal resection, or
endoscopic submucosal dissection as their main form of treat-
ment, whereas those with more advanced stages require surgical
resection with or without (neo)adjuvant chemotherapy.’

More recent research has, however, suggested that a subset
of patients with stage I CRC have lymph node metastasis (LNM)
and requires additional surgery.® Unfortunately, current best
practice lacks relevant risk assessment tools, and there is no clear
definition of LNM for patients classified with T1 histopathology.
This results in several patients being under- or overtreated,
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Clinically approved drugs and its approved pharmacogenetic targets in colorectal cancer patients

U.S. FDA-approved testing kit for CRC (detection

Class of agent Name Biological target Detection target” method)
Cytotoxic 5-FU TS DYPD —
chemotherapy Irinotecan TOP1 UGT1A1*28 —
Oxaliplatin — — —
Raltitrexed? TS — —
Lonsurf TS — —
(trifluridine/tipiracil)
VEGF Bevacizumab VEGF-A — —
Ziv-aflibercept VEGF-A — —
Ramucirumab VEGFR-2 — —
Regorafenib Series of protein — —
kinases®
EGFR Cetuximab EGFR 1. EGFR 1. DAKO EGFR PharmDx Kit (IHC)
Panitumumab EGFR 2. KRAS exon 2. cobas® KRAS Test (qPCR)
23&4

3. therascreen KRAS Test (qPCR)

fU.S. FDA-approved pharmacogenomic biomarkers on drug labeling.
*NICE UK-approved drug.

YRegorafenib targeted proteins are VEGF receptors 1-3, TIE2, KIT, RET, RAF1, BRAF V600E, PDGFR, and FGFR.
DYPD, Dihydropyrimidine Dehydrogenase [NADP(+)]; EGFR, epidermal growth factor receptor; IHC, immunohistochemistry; qPCR, quantitative
reverse transcription polymerase chain reaction; TOP1, Topoisomerase 1; TS, thymidylate synthase; VEGF, vascular endothelial growth factor.

causing unnecessary treatment side effects and excess morbidity.”
The use of biomarkers may aid in the further subclassification of
this set of patients. One study has shown that EZR is a potential
biomarker for LNM and that this may guide decisions about the
need for further surgery.® A panel of five biomarkers—BMI,
ETV6, H3F3B, RPS10, and VEGFA—was also shown to outper-
form clinicopathological prognostic factors for node-negative
CRC.

Current best practice recommends adjuvant chemotherapy
for patients with stage II CRC and high-risk clinicopathological
features, but there is also no consensus on how to define the
high-risk characteristics.'® Several molecular assays, such as
ColoPrint and Oncotype DX, offer additional means for analyz-
ing patients’ risk of recurrence. In the Prospective Analysis of
Risk  Stratification by  ColoPrint  (PARSC)  study
(NCTO00903565), relapse rates in stage II CRC were evaluated,
and it was demonstrated that ColoPrint may improve the prog-
nostic accuracy beyond the clinical variables and microsatellite
instability (MSI) status.' The Oncotype DX Colon Cancer assay,
which utilizes quantitative polymerase chain reaction (qPCR) to
measure 12 biomarkers (seven cancer-related—BGN, C-MYC,
FAP, GADD45B, INHBA, Ki-67, MYBL2; 5 reference genes—
ATPSE, GPX1, PGK1, UBB, VDAC?2), produces a score from
0 to 100, which represents the predicted recurrence risk to
inform decisions regarding adjuvant chemotherapy for CRC
patients.'>'® Tt has been shown to predict recurrence risk more
accurately than when using T-stage and mismatch repair status
alone (NCT01479894).'* Studies have also shown that other bio-
markers, such as a lack of CDX2 expression, may offer further
insight into the subgroup of patients with high-risk stage II CRC
who benefit from receiving adjuvant chemotherapy (5-year DFS:
91% vs 56%; P = 0.006)."*

Chemotherapy drugs for precision
treatment

Cytotoxic agents such as S-fluorouracil (5-FU), irinotecan, and
oxaliplatin are commonly used as chemotherapy agents for CRC
treatment. However, a proportion of CRC patients does not
respond to this chemotherapy regimen and/or suffer from severe
drug toxicities. 5-FU is a widely used thymidylate synthase
(TS) inhibitor that acts as an antimetabolite to block the pyrimi-
dine thymidine synthesis required for DNA replication.'® In the
early years, studies demonstrated that high-frequency microsatel-
lite instability (MSI-H), due to loss of DNA mismatch repair
function, is correlated with poor response to 5-FU-based treat-
ment compared to CRC patients with stable microsatellites.'®!”
Controversially, negative results were also reported by the other
researchers.'® The latest systematic review with meta-analysis
summarized fourteen 5-FU-based trials and concluded that MSI
status has a limited effect on both DFS and OS and is therefore
not valuable in guiding 5-FU-based treatment selection.'® Dihy-
dropyrimidine dehydrogenase ((NADP*], DYPD)—a pyrimidine
catabolic enzyme that metabolizes thymine (T) and uracil
(U) nucleotides—was later discovered and enables the identifica-
tion of the 3% of CRC patients who cannot sufficiently metabo-
lize 5-FU. Patients with DYPD deficiency could experience
severe 5-FU-related toxicities.”® Further research found that the
DPYD variants DPYD*2A (relative risk: 2.9, P < 0.0001),
c.1679 T > G (relative risk: 4.4, P <0.0001), c.1236G >
A/HapB3 (relative risk: 1.6, P < 0.0001), and c.2846A > T (rel-
ative risk: 3.0, P < 0.0001) are clinically relevant as predictors of
fluoropyrimidine-associated intolerance.”! A prospective trail
proved that DPYD*2A-guided 5-FU dosing has significantly
reduced the incidence of severe toxicity in DPYD*2A carriers,
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Table 2 TNM staging system of colorectal cancer (AJCC 8th edition)

T (primary N (regional lymph M (distant

Stage tumour) nodes) metastasis)
0 Tis NO MO
| T1-T2 NO MO
1A T3 NO MO
1IB T4a NO MO
IIC T4b NO MO
A T1-T2 N1 orNic MO
T N2a MO
1B T3-T4a N1 or N1c MO
T2-T3 N2a MO
T1-T2 N2b MO
nec T4a N2a MO
T3-T4a N2b MO
T4b N1-N2 MO
IVA Any T Any N M1a
VB Any T Any N M1b
IVC Any T Any N M1c

Primary tumour (T): Tx, primary tumour of unknown; T0, no evidence of
primary tumour; Tis, carcinoma in situ; T1, tumour invades submucosa;
T2, tumour invades muscularis propria; T3, tumour invades through the
muscularis propria into the peri colorectal tissues; T4a, tumour invades
through the visceral peritoneum; T4b: tumour directly invades or
adheres to other adjacent organs or structures.

Regional lymph nodes (N): Nx, lymph nodes cannot be assessed; NO,
no lymph node metastases; N1, 1-3 lymph node involvement; N1a,
1 lymph node; N1b, 2-3 lymph nodes; N1c, non-nodal tumour deposits
without identified lymph node metastases; N2, 4 or more lymph node
involvement; N2a: 4-6 lymph nodes; N2b: 7 or more lymph nodes.
Distant metastasis (M): Mx, distant metastasis cannot be assessed; MO,
no distant metastasis by imaging; M1, distant metastasis; M1a, metas-
tasis to one organ or site without peritoneal metastasis; M1b, metasta-
sis to two or more organs or sites without peritoneal metastasis; M1c,
peritoneal involvement regardless of other organ involvement.

from 73 to 28% (P < 0.001).*> Although DPYD pretreatment
screening has been proven to improve drug safety for DPYD*2A
carriers by the Food and Drug Administration (FDA) in the
United States, the current European Society for Medical Oncol-
ogy (ESMO) guidelines do not “routinely recommend” upfront
genotyping of DPYD*2A before the administration of 5-FU in
metastatic CRC (mCRC) patients.23 This recommendation is now
being reviewed.**

Irinotecan is a topoisomerase 1 (TOP1) inhibitor that has a
specific pharmacodiagnostic test.”> Clinical studies demonstrated
that the inhibition of TOP1 by irinotecan blocks the DNA liga-
tion process during the cell cycle. However, CRC patients with
uridine diphosphate glucuronosyltransferase 1A1 (UGT1Al)
deficiency cannot sufficiently excrete the active metabolite SN-
38, which primarily undergoes glucuronidation in their livers.?
As a result, a high dose of irinotecan in UGT1A1-deficient CRC
patients is associated with severe adverse drug responses such as
neutropenia and diarrhea.?” This has been confirmed by other
studies and verified by a meta-analysis.”® Therefore, the
U.S. FDA has recommended a dose reduction of irinotecan for
patients with homozygous UGT1A1*28 based on A(TA-6)TAA

Precision treatment in colorectal cancer

and A(TA-7)TAA genotyping.?® Clinical trials focusing on the
other UGT1A1l gene polymorphisms, such as UGTIA1*1
(ClinicalTrials.gov Identifier: NCT01639326 and NCT02138617)
and UGT1A1%6 (NCT02497157), are still ongoing.

Similar to 5-FU and irinotecan, oxaliplatin is another com-
mon antineoplastic agent to which there are varying levels of
chemo resistance in CRC patients.®® The treatment efficacy of
this platinum-based regimen can be modulated by excision repair
cross-complementing group 1 (ERCCl)—one of the
ERCCI1-XPF enzyme complexes that play a crucial role in the
nucleotide excision and repair (NER) pathway for DNA recombi-
nation and DNA repair.®' In particular, ERCC1-C118T (T/T or
T/C) polymorphism®* or a lower expression of ERCC1** has
been reported as being associated with unfavorable prognosis in
patients undergoing treatment with oxaliplatin. It has therefore
been proposed as a surrogate biomarker for oxaliplatin resistance.
However, clinical trials have not demonstrated the predictive
ability of ERCC1 in oxaliplatin-based treatment.** Thus, EMSO
has not recommended ERCCI1 testing prior to the use of oxalipla-
tin in routine practice.’

More recently, a new cytotoxic drug, lonsurf, was
approved by the U.S. FDA, National Institute of Health and Care
Excellence (NICE) in England, and the European Medicines
Agency (EMA) for refractory mCRC patients. Lonsurf is a com-
bination of trifluridine (thymidine-based nucleoside analogue)
and tipiracil (a potent thymidine phosphorylase inhibitor) that
suppresses cancer cell proliferation by interfering with DNA syn-
thesis.*® Based on the RECOURSE group’s phase Il randomized
trial, which included nearly 800 participants from three different
geographical areas, lonsurf results in a 1.8-month improvement
in median OS compared with the placebo group.® Methods for
optimizing lonsurf treatment are currently under investigation,
including the development of a CRC xenograft experimental
model that predicts treatment outcome;>’ the use of 3'-Deoxy-3'-
18F-fluorothymidine positron emission tomography (['®F]FLT-
PET) as a noninvasive radio-traceable substitute for thymidine;
and using the MSI status as an indicator for the use of lonsurf in
combination with nivolumab, a PD-1 inhibitor, in refractory
mCRC patients (NCT02860546).

EGFR therapies

EGFR is a transmembrane tyrosine kinase receptor that regulates
the serine/threonine-specific protein kinase (AKT), JNK, and
mitogen-activated protein kinase (MAPK)/ERK signaling path-
ways responsible for DNA synthesis, cell proliferation, apoptosis,
and motility (Fig. 1). Overexpression of EGFR is associated with
tumor progression in various cancer types, including CRC.*®
Blocking the EGFR by using monoclonal antibodies such as
cetuximab or panitumumab®**° with a chemotherapy formula
combination with 5-FU, leucovorin plus oxaliplatin (FOLFOX)
or a chemotherapy formula combination with 5-FU, leucovorin
plus irinotecan (FOLFIRI) results in a better treatment response
in mCRC patients.*'**> Those treatments can be tailored using
one of the FDA-approved pharmacogenetic tools that measure a
patient’s EGFR expression level*® or detect KRAS Proto-
Oncogene (KRAS) exon 2 (codon 12/13) mutations** (Table 1).
However, the effectiveness of these pharmacogenetic tests in
detecting and improving treatment response is uncertain. For
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Figure 1 The approved EGFR and VEGF targeted drugs and its recep-
tors in colorectal cancer. AKT, protein kinase B; EGFR, epidermal
growth factor receptor; ERK, extracellular-regulated kinase; MEK,
mitogen-activated protein/extracellular signal-regulated kinase; PI3K,
phosphatadylinositol 3-kinase; PIGF, placental growth factor; RAF, rap-
idly accelerated fibrosarcoma; RAS, retrovirus-associated DNA
sequences; VEGFR, vascular endothelial growth factor receptor

example, many pathologists have expressed concern about the
EGFR detection criteria in the PharmDx™ immunohistochemis-
try (IHC) test.*>*® Many clinicians also doubt the benefits of
anti-EGFR treatment in EGFR-positive CRC patients.*>**” The
alternative option of KRAS exon 2 mutation screening is also
problematic because testing is limited to one KRAS exon region,
and studies have shown that CRC patients with other KRAS
mutations will still benefit from anti-EGFR treatment.*® Tn fact,
up to 35% of KRAS exon 2 wild-type* and approximately 25%
of EGFR-negative patients responded to EGFR inhibitor treat-
ments.>® Therefore, other RAS signaling biomarkers, such as
KRAS exon 3 (codons 59/61) and 4 (codons 117/146), as well as
NRAS proto-oncogene (NRAS) exon 2 (codon 12/13), 3 (codons
59/61) and 4 (codons 117/146) mutations, are being investigated
for further pharmacodiagnostic development.®'™?

In a retrospective analysis of the CRYSTAL study,
authors assessed the status of other RAS mutations (KRAS exons
3 and 4; NRAS exons 2, 3 and 4). Of the 367 RAS wild-type
CRC patients, treatment with FOLFIRI plus cetuximab was bet-
ter than FOLFIRI alone in both PES (11.4 vs 8.4 months, HR:
0.56 P <0.001) and OS (28.4 vs 20.2 months, HR: 0.69
P = 0.0024). There was no difference in the other RAS mutant
populations (n = 63).>* Similar results were also reported in
another phase III trial for a second-line therapy based on RAS
mutation status (KRAS exons 3, 4; NRAS exons 2, 3, 4; and

TO Yau

BRAF exon 15). The use of FOLFIRI with or without panitumu-
mab in the wild-type RAS population improved survival in
mCRC patients (PFS: 6.4 vs 4.6 months, HR: 0.70, P = 0.007)
compared with the KRAS exon 2 wild-type individuals (PFS: 5.9
vs 3.9 months, HR: 0.73, P = 0.004).”> Based on the published
results of the RAS mutation combination analysis, the ESMO,56
European Society of Pathology (ESP), and Association of Clini-
cal Pathologists Molecular Pathology and Diagnostics Group in
the United Kingdom recommended the KRAS/NRAS mutation
test for mCRC patients.”’

In addition to the RAS mutation, other potential bio-
markers have been uncovered and may help in the selection of
CRC patients suitable for anti-EGFR treatment. These bio-
markers include PIK3CA, PTEN, Human Epidermal Growth Fac-
tor Receptor 2 (HER2), HER3, and the EGFR ligands EREG and
AREG.*%%¢! Although these biomarkers are not yet available
for clinical use, the combination of multiple biomarkers may
have a stronger predictive power than using one alone.>® Further
prospective studies are needed to substantiate predictive bio-
marker combinations for EGFR-targeted treatment (Table 3).

VEGF receptor therapies

The VEGEF receptor is a transmembrane protein containing a split
tyrosine—kinase domain at the intracellular level and seven
immunoglobulin-like domains at extracellular levels for angio-
genesis and vasculogenesis.®> Overexpression of VEGF results in
tumor progression and metastasis as well as lower patient sur-
vival rates.%>** Today, three approved biological agents targeting
VEGF are available for CRC patients. Ramucirumab targets the
VEGF-A receptor activation by modulating VEGFR-2; ziv-
aflibercept inhibits placental growth factor (PIGF), VEGF-A, and
VEGEF-B by using its IgG1 Fc-VEGFR; and bevacizumab blocks
VEGF-A to cause ligand sequestering (Fig. 1).° Interestingly,
the use of FOLFIRI in combination with ziv-aflibercept
(VELOUR trial),®® bevacizumab (ML18147 trial),®” or ramuciru-
mab (PRAISE trial)® in mCRC patients presented similar treat-
ment benefits in median OS (1.4, 1.4, and 1.6 months) and PFS
(2.2, 1.6 and 1.2 months). All three antiangiogenic regimens also
present with similar types of adverse drug events
(e.g. proteinuria, hemorrhage, and hypertension).®® However, the
differences in tolerability and the study design in those clinical
trials vary.”®

Although no obvious difference was found between the
approved VEGF-targeted treatments, they also do not directly
replace each other due to the different VEGF subtype targets
(Fig. 1) and the treatment effectiveness in patient-derived xeno-
graft mouse models.”' Hence, an ongoing PERMAD phase II
trial (NCT02331927) is investigating potential cytokine and/or
angiogenic factor(s) as biomarker(s) for a treatment shift from
bevacizumab to ziv-aflibercept to increase the treatment effec-
tiveness and limit drug resistance. Furthermore, studies also
found that the continuous administration of bevacizumab leads to
better OS®”"? as planned treatment breaks or discontinuation in
antiangiogenic therapy could lead to rapid tumor regrowth.”>”*
To monitor the tumor growth and treatment response, the CIR-
CUS research team 1is prospectively evaluating circulating
VEGFR-2 levels as a predictor of the continuation of bevacizu-
mab treatment in mCRC patients (NCT02623621). Several
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Table 3 Ongoing clinical trials for molecular biomarkers in approved CRC drugs

Drug Biomarker ClinicalTrials.gov identifier:
Bevacizumab + chemotherapy VEGFR-2 NCT02623621
Bevacizumab/cetuximab + FOLFIRI BRAF & PIK3K in RAS wild-type mCRC NCT01640444
Bevacizumab, cetuximab + irinotecan KRAS wild-type, Irinotecan refractory NCT02292758
Cetuximab + FOLFIRI/mFOLFOX6 ERCC1 NCT01703390
Cetuximab or panitumumab EGFR domain Il region NCT01726309
Panitumumab + FOLFIRI RAS & BRAF wild-type mCRC NCT02508077
Regorafenib [18F] FLT-PET NCT02175095
Regorafenib RAS-mutant advanced CRC NCT02619435
Ziv-aflibercept Cytokines & angiogenic factors NCT02331927

[18F] FLT-PET, 3'-deoxy-3’-18F-fluorothymidine positron emission tomography; mCRC, metastatic colorectal cancer.

potential new biomarkers have also been reported for VEGF
inhibitors, including KRAS (codons 12 and 13),”> VEGF(165)b:
VEGF(total)  expression ratio,76 VEGF-D,77 rniR-126,78
EGFL7,”° Ang-2,%° NRP-1,*' IL-8,%* and G12V and GI2A
KRAS mutations.®> However, prospective studies are necessary to
verify the results.

In addition to the VEGF single-targeting agents, regorafe-
nib is a dual-targeted VEGFR2-TIE2 tyrosine kinase inhibitor that
suppresses a set of protein kinases involved in oncogenesis (B-Raf
Proto-Oncogene [BRAF], RAF1, RET and KIT) and angiogenesis
(tyrosine receptor kinase-2 [TIE2], VEGFR 1-3, fibroblast growth
factor receptor [FGFR] and platelet-derived growth factor receptor
[PDGER]).23* mCRC patients who received regorafenib treatment
demonstrated a statistically significant improvement in survival
rate when compared with placebo in the CORRECT (OS: 6.4 vs
5.0 months, HR = 0.77, P = 0.0052; PFS: 1.9 vs 1.7 months,
HR = 0.49, P < 0.0001)® and CONCUR (OS: 8.8 vs 6.3 months,
HR =055, P =0.0016) trials.** Several clinical studies on
regorafenib are ongoing to find suitable biomarkers to stratify
CRC patients.*>®” This includes identifying RAS subtypes
(NCT02619435), as well as using imaging biomarkers such as
['*F] FLT-PET (NCT02175095) (Table 3). Several clinical trials
investigating biomarkers for regorafenib in mCRC patients who
failed one prior anticancer treatment are ongoing (NCT01949194,
NCT01996969, and NCT02402036).

The development of new molecular
targeted therapy in CRC

The development of new molecular targeted therapy in CRC and
investigations into their use in combination are ongoing. For
instance, selumetinib, a MEK1 and MEK2 inhibitor,88 in combi-
nation with afatinib, an approved EGFR inhibitor for non-small
cell lung carcinoma,®® is currently being tested in an early-stage
randomized clinical trial for KRAS mutant and PIK3CA wild-type
CRC patients (NCT02450656) (Table 4). Dual anti-EGFR and
anti-VEGF treatments for CRC are also being studied. For exam-
ple, the use of cetuximab plus regorafenib inhibited AKT and
MAPK signaling pathways in BRAF-mutated, KRAS-mutated,
and cetuximab-resistant CRC cell lines and presented a synergis-
tic apoptotic as well as antiproliferative effect in an in vivo
model.* This combination was proven and well tolerated in the
phase I clinical trial, and the antitumor effect may greatly benefit
MSI-H CRC patients.”® The next phase of the trial may be con-
ducted in the near future.

More recently, monoclonal antibodies against programed
cell death-1 (PD-1) receptor or its ligand PD-L1 have shown
promising results in several types of cancers. PD-1 is an immune
checkpoint protein expressed on the surface of T-cells and plays
a key role in promoting self-tolerance by suppressing T-cell cyto-
kine production. PD-L1 is frequently upregulated in tumor cells

Table 4 Ongoing clinical trials for new CRC drugs and their respective biomarkers

Target molecule Drug name Biomarker Trial phase ClinicalTrials.gov identifier

AKT Trametinib BRAF mutant I/ NCT01902173
GSK2141795 BRAF mutant I/ NCT01902173
BRAF Dabrafenib BRAF mutant /11 NCT01902173
cMET Tivantinib KRAS wild-type Il NCT01892527
PF-02341066 RAS mutant & over-active MET /11 NCT02510001
Glutaminase CB-839 Fluoropyrimidine Resistant & PIK3CA mutant I/ NCT02861300
HER2 Ado-Trastuzumab Emtansine HER2 I/ NCT02465060
PD-1 Pembrolizumab KRAS, BRAF & NRAS wild-type It NCT02318901

MSI status 1 NCT01876511, NCT02563002

Nivolumab MSI status Il NCT02860546, NCT03104439

MEK Selumetinib KRAS mutant & PIK3CA wild-type Il NCT02450656, NCT02586987
PD-0325901 RAS mutant & over-active MET /11 NCT02510001
Tyrosine Kinase Entrectinib NTRK1/2/3, ROS1, & ALK gene fusion Il NCT02568267

PI3K BKM120 RAS wild-type I/ NCT01304602, NCT01591421

BRAF, B-Raf proto-oncogene; HER2, human epidermal growth factor receptor 2; NRAS, NRAS proto-oncogene.
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and deactivates antitumor activity in cytotoxic T-cells.”"*?

Research has shown that CRC with MSI highly expresses
immune checkpoint molecules, including PD-L1.% Thus, in a
phase II clinical trial, pembrolizumab, a U.S. FDA-approved PD-
1 targeted therapy, was utilized to treat both MSI-H and
microsatellite-stable (MSS) CRC patients. The response rate and
the 12-week PFS to pembrolizumab in MSI-H mCRC patients
(n = 10) were 40 and 78% compared to 0 and 11% in MSS
mCRC patients (n = 18), respectively.”* Combination treatment
with pembrolizumab and itacitinib, a JAK1 inhibitor, is also
under investigation for use in any patient with MSI instability
(NCT02646748). In addition to the clinical trials stratifying treat-
ment based on MSI status (NCT01876511 and NCT02563002),
treatment for different molecular subtypes such as pembrolizu-
mab plus trastuzumab treatment for mCRC patients with KRAS,
BRAF, and NRAS wild-types (NCT02318901) are under investi-
gation (Table 3).

Future directions and conclusions

Patients with the “same” cancer often respond differently to
treatment—this challenge has baffled medical oncologists for
decades. Pharmacodiagnostic testing is now becoming an essen-
tial tool for selecting the right medication for the right patient.
Since the U.S. FDA approved next-generation sequencing (NGS)
devices for clinical diagnosis in November 2013,” the use of
NGS has become a popular tool for the investigation of diseases.
For example, NGS was used by Hagemann et al. in patients with
non-small cell lung cancer to match 11% of their patients with a
targeted therapy.”® NGS can also be applied to noninvasively
detect circulating tumor DNA (ctDNA) in CRC patients for real-
time monitoring of the disease, facilitating early identification of
disease progression.”’ For instance, KRAS mutant alleles can be
detected in blood plasma from the acquired tumor-resistant
patients 10 months before cancer progression is otherwise
detected.”® This is because genetic aberrations coding treatment
resistance accumulate during tumor progression and are released
from tumor cells into the blood circulation.”® Another effective
method to improve treatment selection was demonstrated by
Pauli ef al.,'"® where tumor tissue collected from a patient was
subjected to four separate experiments: (i) NGS for molecular
subtype analysis, (ii) primary cell culture, (iii) patient-derived
xenograft (PDX) models, and (iv) patient-derived tumor orga-
noids. This cutting-edge screening strategy facilitated precision
treatment, but the process itself is costly and therefore may not
currently be affordable to the wider public.

In conclusion, the aim of precision medicine is to develop
a tailored treatment for each individual and his or her unique
condition to maximize potential treatment response and minimize
adverse drug reactions. The stratification of patients through the
use of biomarkers is thus key. As the use of newer therapeutic
agents connected with specific genetic sup-type(s) will increase,
ultimately increasing patients’ quality of life and life expectancy.
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Abstract: Colorectal cancer (CRC) is the third most deadly cancer worldwide, and inflammatory
bowel disease (IBD) is one of the critical factors in CRC carcinogenesis. IBD is responsible for

ot al. The Role of microRNAs in an unphysiological and sustained chronic inflammation environment favoring the transforma-
Development of Colitis-Associated tion. MicroRNAs (miRNAs) belong to a class of highly conserved short single-stranded segments
Colorectal Cancer. Int. ]. Mol. Sci. (18-25 nucleotides) non-coding RNA and have been extensively discussed in both CRC and IBD.
2021, 22,3967. https:/ /doi.org/ However, the role of miRNAs in the development of colitis-associated CRC (CAC) is less clear. The
10.3390/ijms22083967 aim of this review is to summarize the major upregulated (miR-18a, miR-19a, miR-21, miR-31, miR-

155 and miR-214) and downregulated (miR-124, miR-193a-3p and miR-139-5p) miRNAs in CAC, and
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1. Introduction

Inflammatory bowel disease (IBD) is a group of idiopathic and relapsing-remitting
chronic inflammatory disorders comprising the two major subtypes: Crohn’s disease (CD)
and ulcerative colitis (UC). IBDs are characterized by a susceptible genetic background,
underlying immunological deregulation and intestinal microbiome dysbiosis leading to
intestinal mucosa damage [1]. It is well recognized that the long-standing chronic in-
distributed under the terms and  flammation in intestinal mucosa induces intestinal barrier injury: resulting in increased
conditions of the Creative Commons  Pe€rmeability and destruction of the tight junctions [2], and eventually colorectal cancer
Attribution (CC BY) license (https://  (CRC) onset [3,4]. The degree of colonic inflammation together with the disorder duration

Copyright: © 2021 by the authors.
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creativecommons.org/licenses /by / is correlated with the development of colonic neoplasia [5,6]. The influence of UC on CRC
40/). risk is approximately 2%, 8% and 18% after one, two and three decades of the disease,
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respectively [7]. The cumulative risk for CRC in CD is approximately 3% after 10 years,
6% after 20 years and 8% after 30 years of the disease duration [8]. Several studies have
reported that UC-associated CRC has an unfavorable survival compared to sporadic CRC
and is responsible for one-sixth of UC-related deaths [9-11].

Colitis-associated carcinogenesis is a multi-stage process starting with chronic inflam-
mation and affected by environmental, genetic and immunologic factors, as well [12,13],
eventually presenting differences when compared with sporadic CRC. In addition, drug
trials in prodromal phases of IBD and/or colitis-associated CRC (CAC) appeared not
completely adequate. Animal-based colitis models could improve the science capability
to address exact research questions, potentially giving better disease prevention, control,
and supervision. The most common CAC model is the use of dextran sulfate sodium
(DSS) plus azoxymethane (AOM), other viable options are summarized in Table 1. It is
important to take into account that mouse string may play a significant role in the severity
and variability of the disease model and response to the same treatment.

Table 1. The most commonly used animal models in colitis and colitis-associated colorectal tumorigenesis.

Type Method Prevalent of Response Limitations
Colitis Models
. . Does not require T and/or B cell
Dss Epithelial damage responses [14], high severity variability [15]
Chemically Induced TNBS/DNBS Epithelial damage, Immune-driven Aetiopathogenesis not clear [16]
Oxazolone Epithelial damage, Inmune-driven  International administration required [15]

Affect small intestine only [17], low

SAMP1/Yit Immune-driven breed; 15
Spontaneous Mutation reeding rate [15]
C3H/HeJBir Immune-driven Greatly influenced by caging conditions [15]
Adoptive T Cell Transfer ~ CD4*CD45RBM Immune-driven Lack of a full overview of C(,)htls
development [18], expensive
Genetically Engineered IL-10~/~ Immune-driven Lack of focal granulomatous inflammation

and Transmural inflammation [17]

Colitis-Associated Colorectal Tumorigenesis Models

DSS Epithelial damage Low cancer incidents [19].
Chemically Induced
AOM/DSS Epithelial damage The most common CAC model [20]
Genetically Engineered IL-10/~ Immune-driven ~60% of cancer Incidence [21]

AOM, Azoxymethane; DSS, dextran sulfate sodium; TNBS, 2,4,6-trinitrobenzene sulfonic acid; DNBS, dinitrobenzene sulfonic acid.

During the cancer development, sporadic CRC (or spontaneous, unrelated to the ge-
netics of family and CRC history) typically present a stepwise “normal mucosa-adenoma-
dysplasia-carcinoma” sequence, while CAC arises as an “inflamed mucosa-dysplasia-
carcinoma” sequence. Moreover, there are also unique histological and genetic alter-
ations [22]. In clinical histopathology, CAC tissues often have a background of chronic
inflammation, a higher number of signet ring cells, and a substantial portion of muci-
nous. Frequently, it invokes a cascade within the abnormal epithelial proliferative region,
progressing to invasive adenocarcinoma from flat and non-polypoid dysplasia [9,10,12].
The difference between sporadic and CAC can also be found at the molecular level [23].
This mainly involves pro-inflammatory signaling pathways and immune responses, pro-
moting tumorigenesis by inducing the production of inflammatory mediators, induce the
expression of the anti-apoptotic genes, and stimulating cells proliferation and angiogenesis.

These processes can be regulated by microRNA (miRNA). miRNA belongs to a class
of highly conserved short single-stranded segments (18-25 nucleotides) non-coding RNA,
which post-transcriptionally regulate protein expression inducing messenger RNA (mRNA)
degradation and/or inhibit translation of target genes binding to the 3’-untranslated regions
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(3’-UTR) to regulate gene expression [24,25]. During the occurrence of IBD, miRNAs
play important roles either inhibiting or enhancing immune and inflammation signals by
regulating the expression of the positive or negative components of immune signaling
pathways associated with IBD and CRC progression. Several miRNAs studies are focusing
on the CAC (Table 2); hence, the aim of this review is to discuss the major finding on this

topic, and the roles of miRNAs in the progression of IBD and the CAC development.

Table 2. Major microRNA studies in colitis-associated colorectal cancer.

miRNA Target Gene(s) Function Reference(s)
Upregulation
miR-18a PIAS3 Proliferation, cell apoptosis [26]
miR-19a TNFAIP3 Activate NF-«B signaling [27]
miR-21 PDCD4, PTEN Invasion, intravasation, metastasis, apoptosis [28-30]
miR-26b CCNDBP1 Tumorigenesis and development of digestive diseases [31]
miR-31 HIF1, WDRS5, IL13RAT Activate RAS signaling, s.timulating tumorigenesis and correlates [32-36]
with serrated CRC
miR-146b TRAF6, IRAK1 [34]
miR-155 IL13RA1 Negative feedback loop controlling IL-1( [34,37,38]
miR-181b-1 CYLD Cellular transformation [30,34]
miR-214 PDLIM?2, PTEN Malignant transformation [39]
miR-221 PDLIM?2 [34]
miR-223 RASA1 Cell proliferation [40]
miR-301a BTG1 Promote intestinal inflammation [41]
Downregulation
miR-34a IL6/EMT/EGR1 Suppresses migration and invasion [34,42]
miR-124 STAT3/ROCK1 Inhibits neoplastic transformation [43,44]
miR-139-5p IGF-1R Maintain intestinal homeostasis [45,46]
miR-185-3p MLCK Regulate via IncRNA CCAT1 [47]
miR-193a-3p SLC15A1 Suppress NF-«B signaling [48,49]

CRC, colorectal cancer; IncRNA, long non-coding RNA.

2. MicroRNAs Overexpression Induces Colitis-Associated Colorectal Carcinogenesis
2.1. MiR-17-92 Cluster

Both miR-19a and miR-18a belong to miRNA17-92 cluster. MiR-19a has been proven
to be an oncomiR, which regulate cell proliferation, differentiation, apoptosis and angiogen-
esis during the cancer development. In CRC, miR-19a enhances cells invasion, progression
and lymph node metastasis by mediating the inhibition of Transglutaminase-2 (TG-2) [50],
T-cell intracellular antigen 1 (TIA1) [51] and the inflammatory cytokine tumor necrosis
factor o« (TNFu) [52]. Overexpression of miR-19a induces epithelial-mesenchymal transi-
tion (EMT) signaling in CRC cells, confirmed by N-cadherin, Vimentin, and Fibronectin
levels [52]. In DSS-induced colitis mice treated with miR-19a mimic, colon tumor num-
bers, sizes and tumor loads are higher compared to the control group; pro-inflammatory
cytokines, including IL-1§3, IL-6, IL-17a, IFN-y and TNF-« are also upregulated [27,53].
MiR-19a mimic was also administered in the AOM/DSS-induced CRC mice and induced
pro-inflammatory cytokines (IL-6, TNF-c, IL-13 and IL-17a), tumor proliferation marker
(Ki-67) and NF-kB signaling markers (p-P65 and COX-2) via targeting TNF-a-induced
protein 3 (TNFAIP3) [27]. The stimulation of TNF-« induces miR-19a expression in CAC
and its overexpression activates NF-«B signaling and increases TNFAIP3. The regulatory
effects of miR-19a on TNFAIP3 and NF-kB were also found in clinical tissue samples [27].

MiR-18a belongs to miRNA17-92 cluster, as well. Upregulation of miR-18a down-
regulates Protein Inhibitor Of Activated STAT 3 (PIAS3) expression and activates NF-«B
and STAT3 in both CAC/CRC patients and AOM/DSS-induced mice. To be more specific,
in vitro studies demonstrated that PIAS3 significantly repressed the activation of NF-«B
and STAT3, while the activation of NF-kB and STAT3 transcriptionally regulate miR-18a
expression level. The PIAS3/NF-«kB and STAT3/miR-18a autoregulatory feedback loops
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are involved in cell proliferation regulation [26,54]. PIAS3 overexpression or miR-18a
knockdown significantly inhibited cell proliferation in the mouse CRC xenograft model.
Intracolonic administration of PIAS3 lentivirus or anti-miR-18a lentivirus in AOM/DSS-
induced mice led to dramatically reduced tumor sizes/numbers, whereas knockdown
of PIAS3 in CAC mice significantly promoted tumor growth [26]. Higher expression of
miR-18a can be detected in feces from CRC patients [55].

2.2. MiR-21

MiR-21 is one of the most overexpressed and well-studied miRNA in both cancers and
inflammatory-related diseases. miR-21 expression patterns can be distinguished in between
IBD, CRC, CAC and normal controls and appear related to CRC patients’ survival [56-59].
The upregulation of miR-21 in cancer correlates to cell migration, invasion and proliferation,
and promotes miR-21-mediated transformation in somatic cells [29,30]. In IBD, the deletion
of miR-21 in C57BL/6 mice results in the exacerbation in both T-cells transfer and TNBS-
induced colitis models, CD4*CD45RM8" T-cells from miR-21~/~ mice were disposed to Th1
polarization [60]. MiR-21 knockout mice which received AOM/DSS presented a reduction
of neoplasms size and numbers and induced inflammatory and carcinogenic cytokines
such as IL-6, IL-17A, IL-21, and IL-23 [29]. This process further reduces BCL2 and STAT3
activation, attenuated cancer cells proliferation, simultaneously increase E-cadherin and
decrease 3-catenin, SOX9 and Ki-67 expressions [29]. Moreover, miR-21 expression in
IBD significantly upregulates CD3* T-cells and negatively correlates to PDCD4 expression
in UC remission patients [59]. The abovementioned miR-21 and PDCD4 correlation can
be found in CAC, as well, increasing the apoptosis, and subsequently activating NF-
kB [29]. Using a non-transformed mammary epithelial cell MCF-10A overexpressing v-Src,
Hiopoulos et al. [30] indicated that the transient activation of v-Src is sufficient to induce
transformation. The activation of STAT3 via v-Src enhances the transcription of MIR21,
leading to increase NF-«B and IL-6 production and inhibit PTEN.

2.3. MiR-31-5p

MiR-31 has both oncogenic and suppressive roles in different types of cancers. The
phenotype caused by aberrant miR-31 expression seems to be strongly dependent on
the endogenous expression levels. In CRC, high level of miR-31 correlates with serrated
CRC [61], KRAS [62] and BRAF [61,63] mutations. MiR-31-5p activates RAS signaling
pathway via inhibition of RASA1 translation, increasing CRC cell growth, stimulating
tumorigenesis [64]. The expression of EZH2 reported as a prognostic biomarker candidate
for anti-EGFR treatment [65] correlates with miR-31 serrated pathway [66,67]. Thereby, in
addition to RAS signaling related genes [68], miR-31-5p could potentially be an additional
predictor for precision anti-EGFR therapy [61-63,69]. The transcription of MIR31 can also be
activated by NF-«kB and STAT3 confirmed by using LoVo CRC cells and organoids derived
from mouse colon cells in response to TNF and IL-6 [36]. Moreover, miR-31 negatively
correlated with HIFIAN expression in CRC tissue samples and cell lines compared with
the corresponding adjacent normal tissue [70], and directly regulate HIFIAN expression
in CRC confirmed by luciferase reporter assay. The presents of HIFIAN inhibits hypoxia-
inducible factor 1oc (HIF1cr), and downregulation of HI