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Abstract 26 

Several studies have analyzed heart rate variability (HRV) using nonlinear methods, such as approximate 27 

entropy, the largest Lyapunov exponent, and correlation dimension in patients with cardiovascular 28 

disorders. However, few studies have used nonlinear methods to analyze HRV in order to determine the 29 

level of physical fatigue experienced by construction workers. As a result, to identify and categorize 30 

physical fatigue in construction workers, the current study examined the linear and nonlinear approaches 31 

of HRV analysis. Fifteen healthy construction workers (mean age, 33.2 ± 6.9 years) were selected for this 32 

study. A textile-based wearable sensor monitored each participant's HRV after they completed 60 minutes 33 

of bar bending and fixing tasks. At baseline, 15, 30, 45, and 60 minutes into the task, participants were 34 
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given the Borg-20 to measure their subjective levels of physical fatigue. Nonlinear (e.g., RRI variability, 35 

entropy, detrended fluctuation analysis) and linear (e.g., time- and frequency-domain) HRV parameters 36 

were extracted. Five machine learning classifiers were used to identify and discern different physical 37 

fatigue levels. The accuracy and validity of the classifier models were evaluated using 10-fold cross-38 

validation. The classification models were developed by either combining or individualized HRV features 39 

derived from linear and nonlinear HRV analyses. In the individualized feature sets, time-domain features 40 

had the highest classification accuracy (92%) based on the Random Forest (RF) classifier. The combined 41 

features (i.e., the time-domain and nonlinear features) sets showed the highest classification accuracy 42 

(93.5%) using the RF classifier. In conclusion, this study showed that both linear and nonlinear HRV 43 

analyses could be used to detect and classify physical fatigue in construction workers. This research offers 44 

important contributions to the industry by analyzing the variations in linear and nonlinear HRV parameters 45 

in response to construction tasks. This study demonstrates that HRV values changed significantly in 46 

response to physical work, indicating a change in the relative activity of cardiac autonomic functions as a 47 

result of fatigue. Using the ways in which HRV parameters vary in response to increased workloads 48 

provides a sensitive marker for contrasting construction workers with and without cardiovascular disease. 49 

It also allows the site manager to track how quickly workers fatigue, so that they can switch up their 50 

workload to reduce the likelihood that any one worker would get severely exhausted, or to suggest that 51 

workers who are already severely fatigued take a break to prevent further injury. 52 

Keywords: Fatigue; Ergonomics; Construction safety; Wearable sensors; Heart rate variability; Machine 53 

learning  54 

1. Introduction 55 

Construction work is labor-intensive because it includes both repetitive and physically demanding tasks 56 

(NG and Tang, 2010; Darbandy et al., 2020). It is estimated that over 40% of construction workers in the 57 

United States have reported experiencing significant fatigue, which can have a negative influence on the 58 

employees' safety, physical wellbeing, and overall productivity (Ricci et al., 2007; Rosa, 2017). 59 
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Furthermore, the US Bureau of Labor Statistics reported 31 fatalities in 2013 due to outdoor 60 

environmental heat exposure, with the construction industry accounting for 45 percent of the fatalities 61 

(BLS, 2013). Between 2007 and 2011, newspapers in Hong Kong reported 43 incidents involving heat 62 

and stress on construction sites, including 11 fatalities (Chan, 2012). Furthermore, past studies have 63 

suggested that extended working hours, inhospitable working conditions, and excessive workloads can 64 

aggravate the harmful effects of fatigue (Sluiter, 2006; Hallowell, 2010), resulting in increasingly unsafe 65 

human actions and errors (Sluiter, 2006). In addition, construction workers who are too tired may be more 66 

likely to have work-related musculoskeletal disorders (Anwer et al., 2021a) and be absent from work 67 

(Umer et al., 2018; Anwer et al., 2021a; Yu et al., 2021). 68 

 Fatigue is defined as a person's reduced ability to perform at an optimal level of function (Edwards, 69 

1981). Fatigue can be classified as either mental or physical. Mental fatigue refers to a decrease in 70 

cognitive and behavioral performance due to prolonged cognitive workload (Boksem and Tops, 2008; 71 

Boksem et al., 2005), whereas physical fatigue refers to a reduced capacity and efficiency in performing 72 

physical work due to prolonged and intense physical workload (Gawron et al., 2001; Frone and Tidwell, 73 

2015). As a result of the extremely physically demanding nature of construction work, proper assessments, 74 

and classifications of fatigue levels in construction workers are essential steps to minimize their risk of 75 

physical fatigue. 76 

 Since occupational fatigue has a significant impact on wellness, safety, and efficiency in all sectors, 77 

including construction, it has consistently been rated as one of the top five health-related risk factors over 78 

the years (Lerman et al., 2012; Shortz et al., 2019). Workers in the construction industry are prone to 79 

developing fatigue because they often perform physically intensive manual tasks in hot and humid outdoor 80 

environments (Anwer et al., 2020, 2021a; Umer et al., 2020). However, it has been discovered that the 81 

changes of physical work settings, such as the lowering of noise, optimization of lighting, and working in 82 

an indoor environment, can mitigation the adverse effects of work-related fatigue (Kołodziej and Ligarski, 83 

2017). The perception of fatigue may also be lessened at indoor work sites due to less extreme temperature 84 



Anwer, S., Li, H., Umer, W., Antwi-Afari, M. F., Mehmood, I., Yu, Y., Haas, C., & Wong, A. Y. L. Identification and 
Classification of Physical Fatigue in Construction Workers Using Linear and Nonlinear Heart Rate Variability 
Measurements. Journal of Construction Engineering and Management. Accepted Version. 

4 
 

and humidity compared to outdoor settings (Umer et al., 2022). It is known that changes in high 85 

environmental temperature increase physiological responses (such as HR) during exercise (Galloway and 86 

Maughan 1997). Likewise, as high humidity is associated with increased heart rate (HR) during exercise 87 

(Maughan et al., 2012), lower indoor humidity levels may reduce physical stress to the body. Further, 88 

Hořínková (2021) suggested that most construction site accidents could have been avoided if work was 89 

performed at an off-site factory. Modular construction is believed to reduce accidents by as much as 80 90 

percent when compared to conventional construction practices (Hořínková, 2021). Becker et al. (2003) 91 

also found that half of respondents in their survey held the view that modularization was safer than 92 

conventional construction. However, no prior empirical study has quantified how off-site construction 93 

affects construction workers' fatigue. Fatigue in the workplace is a multifaceted issue that affects workers’ 94 

productivity (Maman et al., 2017; Shortz et al., 2019). With rising concerns about workers’ safety and 95 

health, it is more important than ever to keep track of unnecessary physical workloads to avoid worker 96 

fatigue, injuries, or accidents in physically challenging environments (Hwang et al., 2016). Therefore, 97 

assessments and early detection of physical fatigue are vital to minimize its adverse effects on construction 98 

workers (Umer et al., 2017).  99 

 There are a few different approaches that have been taken in order to evaluate the level of physical 100 

fatigue experienced by construction workers (Anwer et al., 2020, 2021b; Umer, 2022). They can be broken 101 

down into two major categories: subjective and objective evaluations. For subjective assessments, self-102 

reported measures (e.g., Fatigue Assessment Scale, Swedish Occupational Fatigue Inventory, etc.) are 103 

used to assess physical fatigue. While this approach is cost-effective, it is interruptive and may be subject 104 

to recall bias. As a result, many workers cannot recognize their level of exhaustion, as shown by fatigue-105 

related accidents (Gonzalez et al., 2017). Therefore, it is important to use non-invasive and non-106 

interruptive methods to measure fatigue in real time so that we can keep track of the presence or severity 107 

of fatigue.  108 

Wearable sensors offer objective assessments and remote monitoring of an extensive range of critical 109 
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signals, that can help give advanced warning for workers with significant health-related risks 110 

(Ananthanarayan and Siek, 2010; Shortz et al., 2019). Professional sports, transportation, and mining 111 

industries have been adopting wearable sensors to evaluate fatigue in athletes, drivers, and mining workers, 112 

respectively (Ananthanarayan and Siek, 2010; Mardonova and Choi, 2018; Seshadri et al., 2019). 113 

However, in the construction industry, the application of wearable sensors to assess fatigue is still in its 114 

infancy (Anwer et al., 2021a). Only a few studies have used wearable sensors to measure several 115 

physiological metrics, such as HR and heart rate variability (HRV) of workers to uninterruptedly evaluate 116 

physical fatigue during construction tasks (Aryal et al., 2017; Umer et al., 2020; Anwer et al., 2021b; 117 

Umer, 2022). In another approach, Zhang et al. (2019) attempted to monitor fatigue using wearable inertial 118 

motion units to process “jerk” signals related to masons’ body motions. 119 

The rate of heartbeat is the most often employed physiological indicator for evaluating fatigue 120 

(Kumar et al., 2007). Some researchers examined the association between physical or mental fatigue and 121 

HRV. For example, Richter et al. (1998) recruited drivers on rural routes to see if their heart rates reflected 122 

how much they experienced physical or mental fatigue. Their results demonstrated that HR and HRV 123 

accurately reflect the workload demands placed on individuals and could be used to assess their 124 

dependability. Similarly, Mulder et al. (1973) and Veltma et al. (2002) revealed that a higher fatigue level 125 

is associated with a higher HR and a lower HRV. Thus, HRV can be a helpful indicator of fatigue levels. 126 

It is possible to extract and analyze the HRV signal to use it as an index to evaluate the functioning of the 127 

autonomic nervous system (ANS) (Zhu et al., 2019). The HRV signal contains information regarding the 128 

regulation of the cardiovascular system. Analytical approaches for HRV indices can be divided into three 129 

major groups, namely the time-domain, the frequency-domain, and the nonlinear indices (Bhardwaj and 130 

Balasubramanian, 2019). Time-domain analysis and frequency-domain analysis are two linear analysis 131 

methods for analyzing the HRV (Chen et al., 2020). Because HRV is a non-stationary signal derived from 132 

an electrocardiogram (ECG) signal, it fluctuates in both the time and frequency domains (Elhaj et al., 133 

2016). These approaches can also be used to quantitatively examine the regulatory action of the 134 
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sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS). Fatigue and workload 135 

evaluation using HRV signals was performed by Isler et al. (2007), Xu et al. (2015), and Cinaz et al. 136 

(2013). All of these studies chose both time- and frequency-domain analysis indices. However, typical 137 

cardiac action has an unsteady dynamic law (Goldberger, 1992). It has been established that the HRV 138 

signal is nonlinear (Hao et al., 2022). Since HRV is nonlinear, it cannot be evaluated by time-domain or 139 

frequency-domain analyses. The heartbeat is governed by several factors and is prone to alterations. 140 

Therefore, a nonlinear approach, as opposed to a linear one, may more accurately portray the global impact 141 

of the heart's own autonomic nerve regulation (Karrakchou et al., 1996). 142 

As a result, nonlinear methods have been proposed as a potential solution to overcome the 143 

shortcomings of linear approaches. Recently, Chen et al. (2020) analyzed the HRV signals using linear 144 

and nonlinear dynamics to determine physical fatigue in miners. Based on their results, they suggested 145 

that both linear and nonlinear HRV indices can be used effectively and reliably to identify physical fatigue 146 

in mining workers. However, the application of nonlinear indices of HRV analysis for fatigue assessment 147 

in construction workers has not been studied. Therefore, the current study aimed to use both linear and 148 

nonlinear methods to analyze HRV to identify and classify physical fatigue in construction workers. It 149 

was expected that the incorporation of linear and nonlinear variables into HRV analysis would result in a 150 

more accurate prediction and classification of physical fatigue in construction workers. 151 

The remaining sections of this paper are structured as follows. Relevant literature on the linear and 152 

nonlinear HRV analyses is presented in section 2. Section 3 describes the research materials and 153 

methodology, which includes multiple subsections describing participants’ characteristics, experimental 154 

procedures, a description of the wearable sensing device utilized in the current investigation, an overview 155 

of the HRV parameters, an explanation of feature selection, application of machine learning classifiers, 156 

and evaluation of models. The findings of the suggested technique and algorithm are illustrated in section 157 

4. Section 5 discusses the findings about the use of linear and nonlinear HRV analysis to automatically 158 

identify and classify physical fatigue in construction workers, as well as its implications, practical 159 
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contributions, limitations, and future directions for research. Finally, conclusions of the study are 160 

elaborated in section 6.    161 

2. Related research background 162 

The analysis of HRV from ECG signals is considered a promising method to indirectly measure the ANS 163 

(Meeusen et al., 2013). The heart is mainly controlled by the vagal nerve, which is a part of the PNS. It is 164 

also controlled by the SNS. It is the interplay between these two systems that controls HRV at rest and 165 

during activity (Figure 1). The resting HR is primarily controlled by parasympathetic activity, and during 166 

exercise or stressful activities, the sympathetic system is activated in a reciprocal fashion to increase the 167 

HR to accommodate whatever need there may be (Balzarotti et al., 2017). Therefore, HRV can be a 168 

surrogate to evaluate whether someone is undergoing physical training or activity at the moment or 169 

whether they are recovering from vigorous activity. For example, previous research used HRV to assess 170 

physical fatigue or physical responses to training loads among athletes (Schmitt et al., 2015). A previous 171 

review indicated that HRV analysis showed promise in detecting both cognitive and physical fatigue 172 

(Gonzalez et al., 2017). HRV refers to the variability of the intervals between two heartbeats, which is 173 

known as the interbeat interval (IBI) (Shaffer et al., 2014). While an increased HR indicates higher levels 174 

of physical activity, a decreased HRV value suggests a higher intensity of physical activity (De Waard and 175 

Brookhuis, 1991; Mulder, 1992). Wearable optical heart rate monitors can be used to monitor the 176 

myoelectrical activity and HRV of the heart (Schmalfub et al., 2018). Analysis of HRV is regarded as a 177 

noninvasive and objective method for analyzing autonomic dysfunction in persons who have chronic 178 

fatigue syndrome (Escorihuela et al., 2020). Analysis of HRV can reveal the dynamic shifts in cardiac 179 

autonomic function that occur in a matter of minutes (Escorihuela et al., 2020). HRV can be measured 180 

using linear and nonlinear analysis. Time-domain recordings can last up to five minutes (short) or more 181 

than five minutes (long). Recordings lasting longer than 5 minutes can yield reliable HRV data (Shaffer 182 

and Ginsberg, 2017). In the current study, we estimated HRV based on 60 minutes of recording. When 183 

fatigue is present, the autonomic nervous system demonstrates sympathetic hyperactivity while the 184 
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parasympathetic system becomes less active. A shift in the central command pathomechanisms could be 185 

the cause of such an imbalance in the ANS (Escorihuela et al., 2020). 186 

2.1. HRV analysis 187 

HRV is a key indicator of neural cardiac function, with high HRV values indicating successful ANS 188 

adaptation and identifying a healthy individual, whereas low HRV values indicate abnormal ANS 189 

adaptation and are associated with an increased risk of cardiovascular disease (Appelhans and Luecken, 190 

2006; Karavirta et al., 2009). High HRV scores are associated with stress/fatigue management and the 191 

ability of a person to cope with stress/fatigue (Appelhans and Luecken, 2006).  192 

2.1.1. Linear analysis: time-domain component 193 

HRV can be analyzed by many methods. Of these, time-domain analysis is the simplest one. Specifically, 194 

the time-domain approaches are utilized in order to compute the HR at any given time or the gaps that 195 

exist between the occurrences of subsequent normal Q-, R-, and S-wave (often known as QRS complex) 196 

in an ECG waveform (Shaffer and Ginsberg, 2017). After the initial dip of the P wave, the first upward 197 

deflection of the S wave is the R wave. In physiology, the R wave indicates the beginning of ventricular 198 

depolarization. Each R-wave is identified on a continuous ECG record as shown in Figure 2. Calculations 199 

are made to determine either the instantaneous heart rate or the normal-to-normal (NN) intervals (Shaffer 200 

and Ginsberg, 2017). The beat-to-beat interval was expressed in seconds by noting the times of two 201 

consecutive peaks and then subtracting the second peak from the first one. Then the instantaneous heart 202 

rate in beats per minute was calculated by dividing this number by 60 (Shaffer and Ginsberg, 2017). The 203 

NN interval was determined by measuring the time difference between two successive QRS waves. After 204 

modifying the RR interval to eliminate outliers, the NN interval was determined. An additional exclusion 205 

was an RR interval that exceeded 150 ms different from the average of the 5 preceding intervals (Shaffer 206 

and Ginsberg, 2017). The mean HR, the mean NN interval, the difference between the shortest and longest 207 

NN interval, as well as other basic time-domain variables can be measured. More intricate analytical time-208 

domain components can be extracted from a series of instantaneous heartbeats, especially those observed 209 
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over longer periods, typically 24 hours, as shown in supplementary file Table S1.  210 

2.1.2. Linear analysis: Frequency-domain component 211 

HRV spectral analysis converts the ECG signal from the time-domain to the frequency-domain (Tarvainen 212 

et al., 2014) (supplementary file Table S1). The power range of heart rate is divided into three distinct 213 

bands. The power spectrum has three distinct peaks: one at very low frequency (VLF), which occurs below 214 

0.05 Hz; one at low frequency (LF), which occurs between 0.06 Hz and 0.15 Hz; and one at high frequency 215 

(HF), which occurs between 0.15 Hz and 0.4 Hz (Tarvainen et al., 2014). The VLF is associated with 216 

vasomotor and thermoregulatory functions (Kamath and Fallen, 1993). The LF is linked to HR regulation 217 

and reflects sympathetic behavior. A parasympathetic response is indicated by the presence of respiratory 218 

sinus arrhythmia, which is related with HF (Heathers, 2014). The LF, HF, and LF/HF ratio are three 219 

popular frequency-domain characteristics that are used to quantify levels of physical activity (Schmalfub 220 

et al., 2018). The LF band can show SNS activity in response to physical activity or stress (Schmalfub et 221 

al., 2018). The LF and HF bands indicate the levels of sympathetic and parasympathetic activity, 222 

respectively (Heathers, 2014; Quintana and Heathers, 2014). LF fluctuation is caused by both vagal and 223 

sympathetic activity, while HF variability is primarily caused by vagal (parasympathetic) activity. In 224 

addition, the LF/HF ratio could be a sign of sympathetic or parasympathetic activity, and it's a measure of 225 

how well the sympathetic and vagal systems are working together (Schmalfub et al., 2018). 226 

2.1.3. Nonlinear analysis 227 

The nonlinear dynamics properties that characterize complex systems are captured by nonlinear analysis 228 

techniques and metrics (Supplementary file Table S1). Nonlinear metrics were developed to characterize 229 

autosimilarity, fractal time behavior, and time series complexity (Delliaux et al., 2019). For example, RRI 230 

time series in HRV are made up of an autonomous mechanism that is part of the human body called the 231 

ANS and various environmental factors (Goldberger, 2002). Nonlinear analysis of HRV appears to be 232 

more sensitive and accurate than linear analysis in describing cardiac and clinical status and predicting 233 

the prognosis of various cardiovascular diseases (Huikuri et al., 2009). In past studies, the nonlinear 234 
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Poincaré plot analysis was found to be valid, responsive, and reliable (Mukherjee et al., 2011; Gergelyfi 235 

et al., 2015). The most commonly used nonlinear metrics are SD1 (the variance of the instantaneous beat-236 

to-beat RRI calculated as the standard deviation; this variable is the minor axis of the fitted ellipse), SD2 237 

(the principal axis of the fitted ellipse, which represents the standard deviation of the continuous long-238 

term RRI variability), SD1/SD2 ratio (the axis ratio), detrended fluctuation analysis (DFA) 𝑎1 and 𝑎2 239 

coefficients, Approximate Entropy (ApEn), and Sample Entropy (SampEn) (Hoshi et al., 2013; Delliaux 240 

et al., 2019).  241 

3. Materials and Methods 242 

3.1. Participants, Instrumentation, and Experiment 243 

A convenient sampling approach was used to recruit 15 healthy construction workers aged 18 years or 244 

older from a construction site. People who had a history of disorders affecting their musculoskeletal 245 

system, neurological system, or cardiovascular system were not included. The principles outlined in the 246 

Declaration of Helsinki were adhered to throughout the research, and the ethical committee at the 247 

institution gave its final approval to the protocol (Reference Number: HSEARS20190824004). Before the 248 

data collection, participants signed a written informed consent document. 249 

Figure 3 depicts the methodologic framework of the research process. After receiving written 250 

consent, participants were given a self-reported questionnaire to complete in order to collect information 251 

on their demographics and medical history. After that, participants were given the instruction to wear the 252 

EQ02 system (Equivital Lifemonitor system, Hidalgo, UK) to assess HRV parameters while doing a 253 

manual bar bending and fixing task for one hour. The EQ02 is a body-worn device made of textiles that 254 

has various sensors that gather and send physiological data (ECG, respiration frequency, and skin 255 

temperature). These data are used to display the user's cardiorespiratory and thermoregulatory condition. 256 

The EQ02 device is made up of three different parts: (a) a sensor electronic module that is housed inside 257 

of a specially constructed vest (four different sizes are available); (b) software called Equivital Manager 258 

that is used to manage the sensor electronic module; and (c) an application that is based on smartphones 259 
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(Figure 4). The sensor electronic module, which is coupled to the textile-based sensors, detects, records, 260 

and transmits data through Bluetooth to a laptop or smartphone for the Equivital manager software to be 261 

able to remotely monitor those physiological outcomes in real time. To ensure the conduction of 262 

bioelectric signals to the textile-embedded electrode, the ECG electrodes were moistened with water. It 263 

was recently discovered, through experimental studies, that a textile-based multi-sensor body-worn device 264 

(i.e., EQ02) is an accurate and valid tool for measuring physiological parameters while working on a 265 

construction site (Anwer et al., 2021b; Umer, 2022). 266 

The bar bending and fixing tasks were performed by participants on a construction site (Figure 5). 267 

These tasks were chosen because they represent one of the most strenuous activities in the construction 268 

industry in terms of physical exertion, number of hours spent working, and complexity (Wong et al., 2014). 269 

Bar bending entails adjusting the length and shape of reinforcement bars by cutting and bending them. 270 

Meanwhile, bar fixing entails precisely positioning and layering and spacing the reinforcement bars that 271 

have been individually designed for the project. When compared to other construction tasks such as form 272 

works, bar bending, and fixing are considerably more physically demanding jobs given the weight of the 273 

rebars. To stabilize participants’ physiological parameters prior to the data collection, they were asked to 274 

sit in a chair for 10 minutes. The baseline (T0) HRV data was measured by the EQ02 system, while the 275 

subjective fatigue level was documented by the Borg-20 scale (Borg, 1982). The Borg-20 is a widely used 276 

subjective scale to assess the rating of perceived exertion during and after physical activity. It is a 6-to-277 

20-point scale, where 6 indicates “No physical exertion at all” and 20 indicates “Maximal exertion”. After 278 

the initial assessments were completed (T0), it was requested that each participant carry out one hour of 279 

their usual bar bending and fixing tasks (Figure 5). Subjective levels of fatigue were assessed using the 280 

Borg-20 scale at 15, 30, 45, and 60 minutes of the construction task, and these intervals were designated 281 

as T1, T2, T3, and T4, respectively. For features selection, the HRV parameters of ECG signals during the 282 

last 5 minutes before each time point (i.e., 15, 30, 45, and 60 minutes of task) as measured by the EQ02 283 

system were used to evaluate fatigue at T1, T2, T3, and T4, respectively. The corresponding linear and 284 
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nonlinear HRV features of ECG signals were analyzed. The sampling frequency of the ECG signal in 285 

EQ02 was 256 Hz.   286 

 287 

3.2. Data Analysis and Signal Processing 288 

The raw HRV data was exported from the EQ02 system as a text file, and then it was imported into an 289 

HRV analysis software program (Kubios HRV, 2.1, Biosignal Analysis and Medical Imaging Group, 290 

Kuopio, Finland) for the purpose of analyzing several HRV parameters, including (1) time domain, (2) 291 

frequency domain, and (3) nonlinear dynamics. The HRV was analyzed using the standards that were 292 

determined to be acceptable by consensus (Rawenwaaij et al., 1993; Electrophysiology task force, 1996). 293 

The R-R intervals series was detrended using the smoothness prior approach with an alpha of 500, and 294 

the sampling frequency was set to 300 Hz. To perform an HRV analysis (Alcantara et al., 2020; Tarvainen 295 

et al., 2014), we ensured that the following conditions were met: (i) the R-R intervals and the HR 296 

distribution graphs were Gaussians; (ii) there were no substantial R-R interval outliers; and (iii) the R-R 297 

intervals were equally spaced. Further, we applied all the available Kubios threshold-based artefact 298 

correction levels (thereinafter called Kubios filters). Five different Kubios filters were used: a very low 299 

(0.45 s), a low (0.35 s), a medium (0.25 s), a strong (0.15 s), and a very strong (0.05 s) (Alcantara et al., 300 

2020; Tarvainen et al., 2014). Notably, HRV parameters were calculated with all the Kubios filters. For 301 

instance, the very low Kubios filter was used to obtain HRV values using the same threshold (0.45 s). This 302 

study used other Kubios filters (thresholds: low [0.35 s], medium [0.25 s], strong [0.15 s], and very strong 303 

[0.05 s]) followed the same logic. The final step was to fix the highlighted artifacts by interpolating 304 

between them with a cubic spline (Alcantara et al., 2020). If the R-R interval was not a multiple of 0.45 305 

(very low), 0.35 (low), 0.25 (medium), 0.15 (strong), or 0.05 (very strong) seconds, the Kubios program 306 

automatically interpolated it. The HRV was then automatically analyzed in both linear (frequency and 307 

time domains) and nonlinear parameters after the IBIs were imported into the Kubios computer program. 308 

3.2.1. Time-domain HRV analysis 309 
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Time-domain data were detrended with Smooth priors (lambda: 500), and the average of five beats was 310 

used to calculate the average of the Min/Max HR. The threshold for NNxx/pNNxx was set at 50 ms for 311 

NNxx/pNNxx. Many time-domain parameters were utilized in order to measure the overall variability, 312 

which was shown to originate from both regular and random sources. These include the mean RRI and 313 

the mean HR in addition to the standard deviation RRI and the standard deviation HR, the RMSSD, NN50, 314 

pNN50, the RRI triangular index, and TINN (details are available in supplementary file Table S1) 315 

(Billman, 2011).  316 

3.2.2. Frequency domain HRV analysis 317 

In order to determine the periodic oscillations of the examined time series, we used a number of different 318 

frequency domain metrics. These metrics were chosen based on the estimated power spectrum that was 319 

produced by the Fast Fourier transform and Welch's periodogram technique. These metrics contained the 320 

centroid frequency (expressed in Hz) and power (expressed in ms2) in three frequency bands that were of 321 

interest: low frequency (LF, 0.04 – 0.15 Hz) and high frequency (HF, 0.15 – 0.4 Hz). The interpolation 322 

rate, points in frequency domain, window width, and window overlap were 4 Hz, 300 points/Hz, 300 s, 323 

and 50%, respectively. In addition to this, the power of the LF/HF ratio as well as the total power (TP) 324 

were computed. The LF and HF powers were also reported as a percentage of TP (LFperc and HFperc, 325 

respectively), as well as in normalized units (LFnu and HFnu, respectively). This was done in order to 326 

more accurately depict the sympatho-vagal components of the HRV and were specified as  𝐿𝐹𝑛𝑢 =327 

 𝐿𝐹𝑝𝑤/(𝑇𝑃 − 𝑉𝐿𝐹𝑝𝑤) ∗  100 ; 𝐻𝐹𝑛𝑢 =  𝐻𝐹𝑝𝑤/(𝑇𝑃 − 𝑉𝐿𝐹𝑝𝑤)  ∗  100 . These factors have been 328 

used as a way to measure the total variability of the heart rate. These include the parasympathetic 329 

component of the ANS (HFnu), the sympathetic and parasympathetic components of the ANS (LFnu), 330 

temperature, and other hormonal influences on the heart rate (VLFpw), as well as the balance between the 331 

sympathetic and parasympathetic components of the ANS (LF/HF).  332 

3.2.3. Nonlinear HRV analysis 333 
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Four methods were used to examine the nonlinear properties of HRV: (1) Poincaré plot (Brennan et al., 334 

2001; Melillo et al., 2011); (2) Approximate entropy (ApEn) (Richman and Moorman, 2000); (3) Sample 335 

entropy (SampEn) (Richman and Moorman, 2000); and (4) Detrended fluctuation analysis (Peng et al., 336 

1995; Penzel et al., 2003). We calculated the SD1 (the variance of the instantaneous beat-to-beat RRI 337 

calculated as the standard deviation; this variable is the minor axis of the fitted ellipse), SD2 (the principal 338 

axis of the fitted ellipse, which represents the standard deviation of the continuous long-term RRI 339 

variability), and the SD1/SD2 of the RRI of rank n + 1 plotted as a function of the RRI of rank n in a lag 340 

1 Poincaré plot (Hoshi et al., 2013). We calculated the detrended fluctuation analysis coefficients 𝑎1 and 341 

𝑎2 with segment lengths of 𝑛€ (4,12) and 𝑛€(13,64), respectively. SampEn and ApEn estimates of 342 

each RRI time series were calculated with r (filtering level) and m (embedding dimension) set to 0.2 SD 343 

and 2 of the RRI time series, respectively. 344 

3.3. Features selection  345 

The filter method and the wrapper method are both utilized in the feature selection process. Wrapper 346 

methods evaluate the usefulness of a subset of features by training a model on those features, whereas 347 

filter methods evaluate the significance of features based on their correlation with the variable that is being 348 

evaluated (Chandrashekar and Sahin, 2014). Since filter methods do not need the models to be trained, 349 

they can complete the process much more quickly than wrapper techniques. Filter methods evaluate a 350 

subset of characteristics using statistical methods, whereas wrapper techniques employ cross validation 351 

(Preece et al., 2009). The filter approach that was employed in this study selected several cardiovascular 352 

features (i.e., time-domain, frequency-domain, and nonlinear-domain indices) that were significantly 353 

affected by the level of physical fatigue experienced among construction workers using repeated-measures 354 

analysis of variance (ANOVA). The wrapper technique used sequential selection algorithms (i.e., forward 355 

selection methods) that began with an empty set and gradually added features to the model, and the 356 

performance of the classifier is evaluated regarding each feature. The best performing feature is chosen 357 

from among all the features. 358 
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3.4. Classification of physical fatigue using Machine learning classifiers 359 

To enable accurate classification of physical fatigue based on the linear and nonlinear HRV analyses, five 360 

types of supervised machine learning classifiers are used: (1) K-Nearest Neighbor (KNN); (2) Decision 361 

Tree (DT); (3) Random Forest (RF); (4) Support Vector Machine (SVM); and (5) Artificial Neural 362 

Network (ANN). Details of these techniques are available elsewhere (Lai et al, 2010; Umer et al., 2020; 363 

Karvekar et al., 2021; Antwi-Afari et al., 2020).  Although a number of algorithms could be used for our 364 

purpose, we decided to utilize these five instead because previous research has proven that they are 365 

effective in monitoring physical fatigue. For example, Umer et al. (2022) used several supervised machine 366 

learning classifiers including KNN, RF, DT, and ANN for developing a model to monitor physical fatigue. 367 

Additionally, Hu and Min (2018) have compared a variety of machine learning classifiers, such as DT, 368 

KNN, SVM, and ANN for detecting driver’s fatigue. Therefore, in the current study, these supervised 369 

machine learning classifiers were chosen to identify the best model parameters to be used for training a 370 

specific dataset. 371 

For features selection, HRV parameters of ECG signals collected in the 5 minutes preceding each 372 

time point (i.e., baseline, 15, 30, 45, and 60 minutes of task) were used to evaluate fatigue at T0, T1, T2, 373 

T3, and T4, respectively. Further machine learning-based fatigue monitoring was performed using a 374 

sliding window segmentation approach with a window size of 30 s and 50% data overlap between adjacent 375 

windows. This method resulted in a dataset containing 1425 labelled examples for 15 participants. 376 

Measured subjective Borg-20 scores at baseline (T0) and at T1, T2, T3, and T4 were evaluated with the 377 

corresponding HRV data during 60 minutes of work. After that, the data were divided at random into three 378 

separate groups. To be more specific, 70% (999 datasets) of the data was set aside for training, 15% (213 379 
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datasets) was used for validation, and the remaining 15% (213 datasets) was used for testing. 380 

3.5. Model Assessments and Validation 381 

There were seven classification models developed using individualized and combined HRV features 382 

derived from linear and nonlinear analyses. Specifically, models 1, 2, and 3 used only time-domain, 383 

frequency-domain, and HRV parameters obtained from nonlinear analysis, respectively. Models 4 to 6 384 

used different combinations of HRV features obtained from linear and nonlinear HRV analysis. Model 7 385 

used all HRV features to identify and classify physical fatigue during the construction task. As a reference, 386 

Borg-20 scores were used to classify physical fatigue into four levels: no fatigue (score ≤ 6), mild fatigue 387 

(score 7 – 11), moderate fatigue (score 12 – 16), and severe fatigue (score 17 or higher) (Aryal et al, 2017; 388 

Karvekar et al, 2021). Additionally, the accuracy and validity of the classifier models were evaluated using 389 

10-fold cross-validation (Antwi-afari et al., 2018). Although there is no universal rule, 5 or 10 is a common 390 

choice for k when performing a cross-validation. The size gap between the training set and the resampling 391 

subsets decreases as the value of k increases (Esbensen and Geladi, 2010). The bias (the discrepancy 392 

between the predicted and observed results) of the method becomes smaller with decreasing difference 393 

(i.e., the bias is smaller for k = 10 than for k = 5). Therefore, a 10-fold cross-validation was used in the 394 

current study.  395 

This study used the Orange data mining tool (Version 3.27.1, Bioinformatics Lab, the University of 396 

Ljubljana, Slovenia), which is an open source data mining software based on Python programming to 397 

compare and evaluate the classification algorithms (Demsar et al., 2013; Kukasvadiya and Devecha, 2017). 398 

The process of data preprocessing and classification analysis was done using the Orange data mining tool 399 

(supplementary file Figure S1). The canvas interface of Orange software allows users to create data 400 
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analysis workflows by dragging and dropping widgets into place. Reading data, displaying a data table, 401 

choosing features, training predictors, contrasting learning methods, and visualizing data items are some 402 

of the fundamental functions of a widget. The user can interact with the programme to look at visuals and 403 

put parts of them into other widgets (Kukasvadiya and Devecha, 2017). 404 

4. Results 405 

Table 1 presents demographic details of the participants. The fifteen male construction workers (mean 406 

age, 33.2 ± 6.9 years) had an average sleep duration of 7.4 hours the prior night. Most of the participants 407 

had no physical fatigue at baseline as measured by the Borg-20 rating of perceived scale. Participants 408 

reported a gradual increase in their fatigue levels from baseline over the course of a 1-hour construction 409 

task. Average fatigue levels at T0, T1, T2, T3, and T4 were 6.1, 9.3, 11.9, 14.4, and 17.8, respectively. 410 

The outcomes of the analyses performed in the time domain, frequency domain, and nonlinear HRV 411 

are presented (supplementary file Figures S2, S3, and S4, respectively). RRI was significantly reduced 412 

from 0.89s at baseline to 0.61s at T4 (Figure S2). The ratio of LF and HF power was increased from 0.63 413 

at baseline to 5.99 at T4 (Figure S3). While short-term variability (SD1) significantly decreased from 414 

38.60 ms at baseline to 12.38 ms at T4, long-term variability (SD2) non-significantly decreased from 49.11 415 

ms at baseline to 35.91 ms at T4 (Figure S4). 416 

 A total of 34 linear (time-and frequency-domain) and nonlinear HRV features were extracted. Table 417 

2 details the effects of physical fatigue on HRV parameters during the construction task. Based on the 418 

repeated measure ANOVA results, 25 statistically significant linear and nonlinear HRV features were 419 

selected in the final classification model. Ten, 10, and five features were selected for the time domain, 420 

frequency domain, and nonlinear sets, respectively.  421 

For the classification assessments, three different feature sets and their combinations and five 422 

machine learning classifiers were used to identify the best feature set and classifier combination to 423 

accurately classify physical fatigue in construction workers. Table 3 presents the evaluation parameters 424 

of each model using different classifiers to classify physical fatigue in construction workers. For the 425 
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comparisons of machine learning classifiers’ accuracy, the RF classifier demonstrated the highest accuracy 426 

(93.5%) for time-domain and nonlinear features, followed by ANN (92.6%) for time and frequency-427 

domain features, and SVM for time-domain features (88.9%). In general, the RF classifier is the best 428 

machine learning model to classify physical fatigue using both individualized and combined feature sets. 429 

For the comparisons of the individualized feature sets, the time domain features had the highest accuracy 430 

(92%), followed by nonlinear (77.3%), and frequency domain features (74%). Similarly, for the 431 

comparisons of the combined feature sets, the time and nonlinear features set showed the highest accuracy 432 

(93.5%), followed by the time and frequency domain features set (92.6%), all linear and nonlinear feature 433 

sets (91.9%), and frequency and nonlinear features sets (75.8%). Figures 6 and 7 show the confusion 434 

matrices for the individualized and combined feature sets using the best classifier. When comparing the 435 

accuracy levels of individualized feature sets (i.e., Models 1, 2, and 3), model 1 that included time-domain 436 

features showed the highest classification accuracy (Figure 6). The comparison of the combined feature 437 

set showed that the highest accuracy was noted for model 5 (time-domain and nonlinear domain features), 438 

followed by model 4 (combined time-domain and frequency-domain features) (Figure 7). 439 

5. Discussion 440 

This study used linear and nonlinear HRV analysis to automatically identify and classify physical fatigue 441 

in construction workers. In addition, this study compared linear and nonlinear approaches in analyzing 442 

HRV among construction workers in order to detect and classify physical fatigue. The current study 443 

discovered that several time-domain HRV measures (including RRI, SDNN, RMSDD, NN50, pNN50, 444 

RR triangular index, and TINN) were significantly decreased during the 60-minute construction task. 445 

Similarly, various frequency-domain HRV parameters (such as peak, power, log, and percentage of HF 446 

band) were sharply reduced during the construction task, indicating that the presence of fatigue affected 447 

these features. Conversely, the peak of the LF band, the percentage of VLF and LF bands, and the ratio of 448 

LF/HF power all increased substantially during the construction task. 449 
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The current findings revealed that various HRV components were sensitive to physical exhaustion, 450 

suggesting that HRV measures could be used to predict physical fatigue in construction workers. The 451 

HR variations associated with the respiratory cycle are reflected in the HF band, which is also known as 452 

the respiratory band (Vuksanovic and Gal, 2007). The HF band is reflective of parasympathetic activity 453 

(Vuksanovic and Gal, 2007), and it is characterized by respiratory sinus arrhythmia (RSA) (Kamath and 454 

Fallen, 1993). This is most likely what occurred throughout the construction task. Due to the 455 

stooping/squatting postures and repeated lifting tasks, oxygen demands increase, which results in an 456 

increase in respiratory rate, which reduces the HF component during these tasks (Vuksanovic and Gal, 457 

2007). According to Kamath and Fallen (1993), changes in posture significantly increase the power of the 458 

LF band. Similarly, another study found that when physical effort increased, the power of LF bands also 459 

increased (Parotala, 2009). Likewise, research revealed that following high-intensity exercise, the LF/HF 460 

ratio increased from baseline ( Perini and Veicsteinas, 2003; Parotala, 2009; Collins et al., 2005). Collins 461 

et al., (2005) found that the LF/HF ratio (a measure of sympathetic activity) was greatly increased, but the 462 

HF power (a measure of parasympathetic activity) was significantly reduced during high workload 463 

physical activity. These findings supported our observations that the LF/HF ratio increased while the HF 464 

power decreased during the construction task. During activities of moderate to high intensity, some authors 465 

hypothesized that there was a shift in autonomic interaction toward sympathetic dominance. This was 466 

inferred from the observation that HF power decreased, while LF power increased during these activities. 467 

As a consequence of this, there was an increase in the ratio of LF to HF (Parotala, 2009). 468 

In the current study, nonlinear HRV parameters (e.g., short-term variability (SD1) and sample entropy) 469 

were reduced significantly from baseline, whereas the ratio of SD2/SD1, short-term fluctuations (𝑎1), and 470 

long-term fluctuations (𝑎2) steadily increased during the construction task. In contrast to SD1, which is a 471 

nonlinear measurement of parasympathetic sinus node control, SD2 is a nonlinear index of sinus node 472 

control that includes both sympathetic and parasympathetic control (De Vito et al., 2002; Mourot et al., 473 

2004; Delliaux et al., 2019). Although no previous studies have used nonlinear HRV analysis to assess 474 
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physical fatigue, some researchers have reported adequate sensitivity and reliability of nonlinear HRV 475 

analysis in assessing mental fatigue (Mukherjee et al., 2011; Trutschel et al., 2012; Gergelyfi et al., 2015; 476 

Delliaux et al., 2019). Therefore, future research is warranted to validate whether nonlinear HRV 477 

parameters can be used to evaluate physical fatigue-related cardiac changes. Previous research found that 478 

high SD1 and SD2 were reported at the start of the work, but these measurements dropped down during 479 

the computerised switching task (Delliaux et al., 2019). 480 

5.1. Classification performance  481 

 Because HRV components were found to be responsive to physical fatigue, it is possible that HRV 482 

assessments could be used to detect and classify physical fatigue using machine learning classifiers in 483 

construction workers. As a result, the linear and nonlinear HRV features were used in this study to identify 484 

and categorize the levels of physical fatigue experienced by construction workers. Research has recently 485 

used sensor informatics for proactive monitoring of physical exertion among construction workers. While 486 

previous research used diverse off-body and on-body sensors, the current study employed a novel and 487 

simple strategy to monitor exertion by analyzing HRV features collected from a single ECG sensor. To 488 

obtain the best classification performance, machine learning algorithms were adopted in two steps. First, 489 

the separate time, frequency, and nonlinear feature sets were used to find the best classifier and ideal 490 

selected features for detecting physical fatigue. Second, the combined time, frequency, and nonlinear 491 

feature sets were used to find the best classifier and the best features to use for detecting physical fatigue. 492 

 The RF classifier demonstrated the highest accuracy (93.5%) for time-domain and nonlinear features. 493 

The RF classifier is the best machine learning model to classify physical fatigue using both individualized 494 

and combined feature sets. In the current study, the accuracy of using both linear and nonlinear HRV 495 

features in classifying physical fatigue outperformed the accuracy of predicting fatigue based on the heart 496 

rate during physical exertion (Aryal et al., 2017; Umer et al., 2020). However, these prior investigations 497 

required multiple physiological assessments (e.g., skin temperature and breathing rate) in order to attain 498 

an accuracy of approximately 82 % (Aryal et al., 2017). The higher classification accuracy of our novel 499 
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method may be attributed to the choice of physiological features in training the machine learning models. 500 

Aryal et al. (2017) trained a model using a small number of features, mainly the time domain obtained 501 

from heart rate data and skin temperature. However, our study extracted both linear and nonlinear data 502 

from the HRV features. Further, the current study selected the most relevant data based on statistical tests 503 

before entering these data into the five machine learning models for training to identify the best model for 504 

classifying fatigue. 505 

 In the current study, the RF demonstrated the highest accuracy rate among all the tested classifiers 506 

for classifying physical fatigue. The results could be attributed to RF's ability to deal with computational 507 

complexity by tolerating certain classification errors on the training dataset (Ishaque et al., 2021). The RF 508 

is a bagging method that, like Adaboost, uses an ensemble of decision trees to carry out its functionality 509 

(Ishaque et al., 2021). Bagging algorithms reduce the amount of variation in a dataset, which both 510 

improves accuracy and reduces the amount of overfitting that occurs. This contrasts with many strong 511 

learners, which have a tendency to remember data and overfit the data. The performance of most models 512 

is significantly improved using features (i.e., time- and frequency-domain) that have linear patterns. On 513 

the other hand, the RF is a curve-based method that can adapt to nonlinear parameters in an effective 514 

manner (Ishaque et al., 2021). A longer training period is required, as well as a significant amount of 515 

computational power, to effectively manage the extensive use of decision trees (Ishaque et al., 2021). In 516 

contrast, KNN demonstrated the lowest accuracy rate among all tested classifiers in the current study. This 517 

could be ascribed to the inductive bias of KNN. The KNN inductive bias has a correlation with the 518 

fundamental assumption of the KNN technique, which categorizes each instance data point I as the class 519 

label of most of the other k surrounding instances by measuring the Euclidean distance. This fundamental 520 

assumption classifies each instance data point I as the class label of most of the other k surrounding 521 

instances. The KNN method determines the distance between two instances by considering all the 522 

characteristics of each instance and giving equal weight to each of those characteristics. Because only a 523 

very small portion of the entire feature set can be used for discrimination, this may pose a challenge for 524 
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certain data windows. In addition, the effectiveness of KNN is highly dependent on the characteristics of 525 

the noise. Even though we have removed a lot of signal artifacts, it was impossible to remove all of them 526 

from HR recordings and HR signals, which were always going to be noisy. 527 

5.2. Study implications and practical contributions 528 

HRV has been known to be a reliable indicator for detecting physiological and psychophysical illnesses. 529 

In recent years, HRV has been employed to improve heart rate diagnostics in the general population, 530 

including both working and nonworking people (Burns et al., 2016; Sessa et al., 2018). Assessing the 531 

impact of work-related physical fatigue on the heart can help predict cardiac illnesses. As such, evaluating 532 

HRV has become more important (Gamelin et al., 2006). In the past, accurate evaluations of HRV required 533 

high-quality ECG signals. However, the complexity and cost of ECG equipment makes HRV analysis 534 

very challenging, particularly in field studies (Kingsley et al., 2005). Wearable sensor development has 535 

advanced to the point where HRV parameters can be reliably assessed in field settings (Hinde et al., 2021). 536 

The current study adds novel contributions to the field by exploring how linear and nonlinear 537 

cardiovascular kinetics vary in response to construction tasks (i.e., bar-bending and fixing). The current 538 

study used the Borg-20 rating of perceived exertion scores to explore the relationship between changes in 539 

self-perceived fatigue and the HRV parameters. Our findings showed that linear and nonlinear analysis of 540 

HRV could quantify work-related changes in cardiac autonomic functions. We showed that physical 541 

exertion caused significant changes in HRV parameters, indicating a shift in the relative activities of PNS 542 

and SNS in response to physical fatigue. The potential changes in HRV parameters during heavy 543 

workloads can be employed as sensitive markers to compare construction workers with and without 544 

cardiovascular diseases (CVDs). Additionally, it enables the site manager to monitor how easily a person 545 

becomes fatigued and to request that people experiencing severe fatigue take a break to avoid injury or 546 

accident. Finally, this algorithm could be integrated into a computer system or a mobile app, allowing the 547 

site manager or even individual workers to monitor their level of fatigue and take appropriate breaks. It 548 

has the potential to be a vital occupational safety and health (OSH) tool. 549 
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5.3. Limitations and future research directions 550 

This study had a few limitations. The duration of the experiments in this study was not a typical half-day 551 

of work. Although it was originally planned to collect data continuously for a half or full day of 552 

construction work, workers’ reluctance to participate forced us to cut the project down to just a 1-hour 553 

recording. While the majority of participants mentioned a busy work schedules and data privacy issues 554 

(e.g., demographic data) as their reason for declining to participate, others provided no plausible reason. 555 

Despite this limitation, our findings demonstrated that the algorithm was sensitive enough to detect even 556 

one hour of work-related fatigue. It is a sensitive approach to detect even mild fatigue in workers on a 557 

construction site. Future studies should use HRV parameters to continuously monitor fatigue during a 558 

whole day construction task. Furthermore, although bar-bending is one of the most physically demanding 559 

jobs in construction, construction work involves a wide range of tasks or activities. It is necessary to do 560 

additional research to verify the applicability of our findings to other groups of construction workers, such 561 

as manual laborers and form workers. Future research should also compare fatigue between workers 562 

performing repetitive and non-repetitive tasks. Such large-scale prospective studies can provide 563 

appropriate training data for the development of a comprehensive fatigue monitoring system on 564 

construction sites. Moreover, although this study lacked objective validation of fatigue (e.g., blood lactate 565 

level measurement to support the presence of fatigue), the Borg scale, a common scale for subjective 566 

assessment of perceived exertion, was used to determine self-perceived exertion. Although no participants 567 

complained about allergic reactions to wearing the textile-based wearable sensor system, prior research 568 

reported that some individuals felt irritation and discomfort while wearing this system (Umer et al., 2017). 569 

Future research should investigate new textile materials to improve the comfort of wearable physiological 570 

monitoring systems. Despite these limitations, the current study developed a reliable classification system 571 

that could be applied in future field research to assess construction workers’ physical fatigue in real-time.  572 

6. Conclusions 573 

This is the first study to use linear and nonlinear analytic methods to extract various HRV parameters so 574 
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as to better categorize different extents of physical fatigue in bar-benders using various machine learning 575 

algorithms. We discovered that variations in linear and nonlinear HRV parameters caused by fatigue may 576 

be classified using supervised machine learning approaches. The study confirms that the random forest 577 

classifier can better predict fatigue in construction workers based on linear and nonlinear HRV parameters. 578 

Furthermore, the combined feature set of HRV measures is better than the individual HRV feature set in 579 

assessing physical fatigue. Future research is warranted to validate the use of nonlinear HRV measures as 580 

a biomarker for monitoring physical fatigue. This study makes unique contributions to the field by 581 

examining the possible changes in HRV parameters during excessive workloads, which can be used as 582 

sensitive indicators to distinguish construction workers both with and without cardiovascular disease. The 583 

proposed method has the potential to reduce work-related musculoskeletal injuries and other fatigue-584 

related risks through enabling continuous monitoring of physical fatigue. Our findings may also be used 585 

to develop a monitoring and warning system for severe physical fatigue and to help tailor-make optimal 586 

work rest schedules for individual workers. It could facilitate it as ideal occupational safety and health 587 

(OSH) technology. 588 
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 873 

Figure 1. Influence of autonomic nervous system on heart rate variability (HRV) during exercise and 874 

rest (Reproduced with permission (Virgile, 2023)) 875 

 876 

Figure 2. HRV analysis from electrocardiogram (ECG) signals 877 
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 878 

Figure 3. Methodological framework (Part of this figure is reproduced with permission (Anwer et al., 879 

2021b)) 880 

 881 

 882 

Figure 4. EQ02 Life monitor system 883 
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 884 
Figure 5. Bar bending and fixing tasks 885 

 886 

Figure 6. Comparisons of classification accuracy based on the individualized features datasets using the 887 

RF classifier. Note: Model 1 (Time-domain features); Model 2 (Frequency-domain features); Model 3 888 

(Nonlinear features) 889 

 890 
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 891 

Figure 7. Comparisons of classification accuracy based on the combined features datasets using the RF 892 

classifier. Note: Model 4 (Time-and frequency-domain features); Model 5 (time-domain and nonlinear 893 

features); Model 6 (frequency-domain and nonlinear features) 894 

Table 1. Descriptive statistics 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

Variables Mean SD 

Age (years) 33.2 6.9 

Weight (kg) 72.7 12.1 

Height (m) 1.7 0.1 

Sleep (h) 7.4 0.7 

Borg-20 (6 – 20)   

Baseline 6.1 0.4 

15-minute 9.3 1.4 

30-minute 11.9 1.6 

45-minute 14.4 1.4 

     60-minute 17.8 1.3 
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 908 

Table 2. Effects of physical fatigue on heart rate variability parameters during the construction task 909 

Variables  Baseline 15 min 30 min 45 min 60 min ANOVA 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) F *p Partial 

Eta 

Squared 

Time domain         

RRI (ms) 893.15 (80.73) 660.58 (124.86)† 586.14 (58.05)† 572.76 (60.61)† 596.20 (67.97)† 66.02 0.001* 0.86 

SDNN (ms) 43.90 (14.66) 30.33 (16.12) 27.72 (16.97) 26.91 (15.53)† 26.95 (16.58)† 9.33 0.002* 0.46 

HR (beats/min) 66.70 (10.36) 93.62 (16.34)† 103.33 (10.68)† 105.92 (12.06)† 101.85 (11.67)† 48.43 0.001* 0.82 

SD HR (beats/min) 3.80 (1.99) 4.04 (1.65) 4.61 (2.34) 4.72 (2.21) 4.57 (2.51) 1.09 0.351 0.09 

Minimum HR (beats/min) 61.14 (7.91) 77.42 (15.14)† 85.52 (14.51)† 85.51 (12.74)† 84.17 (13.95)† 18.65 0.001* 0.629 

Maximum HR (beats/min) 83.10 (9.62) 113.73 (13.81)† 121.93 (8.73)† 124.88 (15.49)† 121.84 (15.01)† 35.21 0.001* 0.762 

RMSSD (ms) 54.18 (15.16) 24.01 (15.92)† 18.67 (12.89)† 16.47 (10.34)† 17.48 (9.62)† 62.34 0.001* 0.850 

NN50 (count) 40.50 (16.99) 7.50 (5.87)† 6.25 (6.70)† 6.08 (7.06)† 3.75 (3.74)† 115.51 0.001* 0.913 

pNN50 (%) 44.22 (11.36) 7.83 (12.44)† 3.25 (4.75)† 2.91 (4.45)† 2.59 (3.61)† 146.39 0.001* 0.930 

RRI triangular index 12.53 (3.72) 7.43 (3.45)† 6.17 (2.93)† 5.96 (2.55)† 6.13 (2.82)† 34.76 0.001* 0.760 

TINN (ms) 214.58 (90.64) 174.83 (78.09) 155.08 (90.51) 158.00 (81.94) 155.17 (86.70) 3.772 0.010* 0.255 

Frequency domain         

VLF (Hz) 0.04 (0.01) 0.03 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 1.809 0.192 0.141 

LF (Hz) 0.05 (0.02) 0.06 (0.02) 0.06 (0.01) 0.06 (0.01) 0.07 (0.02) 2.729 0.041* 0.199 

HF (Hz) 0.38 (0.04) 0.21 (0.08)† 0.17 (0.03)† 0.16 (0.01)† 0.21 (0.06)† 36.739 0.001* 0.770 

VLFpw (ms2) 74.60 (65.02) 147.34 (153.10) 133.43 (222.44) 123.09 (106.32) 83.14 (91.29) 1.224 0.314 0.100 
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LFpw (ms2) 490.62 (221.05) 615.41 (817.97) 726.71 (945.19) 689.27 (983.91) 639.50 (1020.29) 0.340 0.850 0.030 

HFpw (ms2) 778.79 (390.07) 217.61 (298.38)† 184.39 (357.36)† 122.39 (169.82)† 117.08 (146.39)† 33.129 0.001* 0.751 

Total power (ms2) 1350.56 (228.57) 980.50 (1099.67) 1044.70 (1420.24) 935.04 (1198.39) 839.94 (1236.51) 0.985 0.394 0.082 

VLF (log) 4.31 (1.01) 4.41 (1.21) 4.18 (1.23) 4.41 (1.01) 3.83 (1.19) 1.044 0.395 0.087 

LF (log) 6.21 (2.03) 5.82 (1.16) 5.81 (1.36) 5.82 (1.26) 5.49 (1.48) 1.307 0.282 0.106 

HF (log) 6.66 (1.02) 4.42 (1.59)† 3.97 (1.57)† 3.86 (1.53)† 3.95 (1.47)† 24.344 0.001* 0.689 

VLFperc (%) 5.52 (3.11) 17.23 (10.73)† 16.79 (11.48) 19.49 (10.49)† 14.43 (7.23)† 6.727 0.001* 0.379 

LFperc (%) 36.33 (6.21) 63.69 (14.73)† 63.28 (7.55)† 68.90 (12.25)† 68.12 (9.02)† 27.007 0.001* 0.711 

HFperc (%) 57.67 (10.31) 19.05 (13.19)† 14.14 (7.93)† 11.58 (7.93)† 17.39 (10.52)† 81.822 0.001* 0.881 

LFnu (n.u.) 38.45 (8.05) 77.25 (15.33)† 84.14 (7.93)† 85.59 (9.69)† 80.02 (11.24)† 64.321 0.001* 0.854 

HFnu (n.u.) 61.04 (9.04) 22.72 (15.33)† 15.84 (7.93)† 14.37 (9.67)† 19.91 (11.18)† 63.172 0.001* 0.852 

LF/HF ratio 0.63 (0.05) 5.34 (3.61)† 9.28 (12.58) 8.91 (6.26)† 5.99 (4.44)† 3.941 0.046* 0.264 

Nonlinear dynamics         

SD1 (ms) 38.60 (0.01) 17.01 (11.28)† 13.22 (9.12)† 11.66 (7.32)† 12.38 (6.81)† 65.080 0.001* 0.855 

SD2 (ms) 49.11 (0.01) 39.11 (20.40) 36.79 (22.46) 36.08 (20.91) 35.91 (22.67) 3.079 0.073 0.219 

SD2/SD1 ratio 1.27 (0.01) 2.64 (0.82)† 3.03 (0.97)† 3.28 (0.92)† 2.99 (0.77)† 19.385 0.001* 0.638 

ApEn 1.19 (0.01) 1.14 (0.06) 1.12 (0.16) 1.09 (0.16) 1.11 (0.16) 1.766 0.153 0.138 

SampEn 1.84 (0.01) 1.40 (0.29)† 1.23 (0.31)† 1.19 (0.27)† 1.27 (0.33)† 15.550 0.001* 0.586 

alpha 1 0.70 (0.01) 1.34 (0.26)† 1.36 (0.17)† 1.46 (0.18)† 1.41 (0.24)† 40.325 0.001* 0.786 

alpha 2 0.31 (0.01) 0.68 (0.22) 0.73 (0.21) 0.74 (0.16) 0.69 (0.23) 21.958 0.001* 0.666 

Note: The linear and nonlinear dynamics of the cardiovascular parameters during the construction task are presented as the mean (SD) throughout 910 

the experiment, i.e., at the baseline and during the 5 min recording at the first, second, third, and fourth temporal quartiles (i.e., 15, 30, 45, and 60 911 

minutes, respectively). RRI: RR Intervals; SDNN: the standard deviation of NN intervals; HR: heart rate; SD HR: standard deviation of HR; 912 

RMSSD: root mean square of successive differences; NN50: number of successive RRI that differ more than 50 ms; pNN50: percentage of 913 
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successive RRI that differ more than 50 ms; TINN: triangular interpolation of RRI histogram; VLF: very low frequency; LF: low frequency; HF: 914 

high frequency; pw: power; perc: percentage; nu: normalized units; SD1: standard deviation of the instantaneous beat-to-beat inter-beat interval 915 

variability (semi-minor axis length of Poincaré plot ellipse fitting); SD2: standard deviation of the long term beat-to-beat inter-beat interval 916 

variability (semi-major axis length of Poincaré plot ellipse fitting); alpha 1: short-range scaling exponent; alpha 2: long-range scaling exponent; 917 

ApEn: approximate entropy; SamEn: sample entropy;†: significant difference from baseline (adjustment for multiple comparisons, Bonferroni); 918 

*Statistically significant at p<0.05. 919 

 920 

 921 

Table 3. Comparison of linear and nonlinear heart rate variability parameters used to classify physical fatigue using supervised machine learning 922 

classifiers   923 

Models Classifiers Performance indicators (%) 

AUC CA F1 Precision Recall 

1. Time-domain features* 

 

KNN 96.5 87.8 87.8 87.9 87.8 

DT 90.0 87.6 87.4 87.5 87.6 

SVM 98.0 88.9 88.9 89.3 88.9 

RF 97.8 92.0 92.0 92.0 92.0 

ANN 98.0 89.9 89.9 89.9 89.9 

2. Frequency-domain 

features** 

 

KNN 82.0 63.0 62.7 62.9 63.0 

DT 78.7 66.8 67.0 67.5 66.8 

SVM 86.6 68.1 68.3 68.8 68.1 

RF 88.4 74.0 73.9 73.8 74.0 

ANN 87.2 69.7 69.5 69.5 69.7 
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3. Nonlinear dynamics 

features*** 

 

KNN 82.6 65.6 65.5 65.6 65.6 

DT 82.4 72.1 71.8 72.0 72.1 

SVM 88.7 72.4 72.6 73.3 72.4 

RF 90.6 77.3 77.0 77.0 77.3 

ANN 88.9 75.5 75.3 75.4 75.5 

4. Time- and frequency-

domain features 

KNN 95.7 84.8 84.8 85.0 84.8 

DT 92.2 90.0 89.9 89.9 90.0 

SVM 97.9 89.7 89.8 89.9 89.7 

RF 98.8 92.6 92.6 92.7 92.6 

ANN 98.8 92.0 92.0 92.0 92.0 

5.Time-domain and Nonlinear 

dynamics features 

KNN 95.8 83.8 83.9 84.4 83.8 

DT 93.9 91.0 91.0 91.0 91.0 

SVM 98.0 89.2 89.3 90.0 89.2 

RF 98.4 93.5 93.5 93.6 93.5 

ANN 97.9 88.7 88.7 88.9 88.7 

6. Frequency-domain and 

Nonlinear dynamics features 

KNN 83.5 63.9 63.9 64.2 63.9 

DT 79.3 70.6 70.2 70.1 70.6 

SVM 89.9 72.4 72.6 72.8 72.4 

RF 90.8 75.8 75.7 75.6 75.8 

ANN 90.1 74.2 74.2 74.2 74.2 

7. All features KNN 93.2 81.1 81.3 82.1 81.1 

DT 94.8 93.6 93.6 93.7 93.6 

SVM 97.8 88.5 88.6 88.7 88.5 
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RF 98.2 91.9 91.9 91.9 91.9 

ANN 98.2 90.1 90.3 90.3 90.1 

Note: *(RRI: RR Intervals; SDNN: the standard deviation of NN intervals; HR: heart rate; RMSSD: root mean square of successive differences; 924 

NN50: number of successive RRI that differ more than 50 ms; pNN50: percentage of successive RRI that differ more than 50 ms; TINN: triangular 925 

interpolation of RRI histogram); **(LF: low frequency; HF: high frequency; pw: power; perc: percentage; nu: normalized units); ***(SD1: standard 926 

deviation of the instantaneous beat-to-beat inter-beat interval variability (semi-minor axis length of Poincaré plot ellipse fitting); SD2: standard 927 

deviation of the long term beat-to-beat inter-beat interval variability (semi-major axis length of Poincaré plot ellipse fitting); alpha 1: short-range 928 

scaling exponent; alpha 2: long-range scaling exponent; SamEn: sample entropy); AUC (Area under curve); CA (Classification accuracy); F score 929 

(weighted average of Precision and Recall); KNN (K-nearest neighbor); DT (Decision tree); SVM (Support vector machine); RF (Random forest); 930 

ANN (Artificial neural networks). 931 

 932 

 933 

 934 

 935 


