

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Toward relevant answers to
queries on incomplete

databases

Etienne Toussaint

T
H

E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

THE UNIVERSITY OF EDINBURGH

2022

To Abigail, Judith, Charlie, Pepe and Lison

Etienne

Abstract

Incomplete and uncertain information is ubiquitous in database management applic-
ations. However, the techniques specifically developed to handle incomplete data are
not sufficient. Even the evaluation of SQL queries on databases containing NULL
values remains a challenge after 40 years. There is no consensus on what an answer
to a query on an incomplete database should be, and the existing notions often have
limited applicability.

One of the most prevalent techniques in the literature is based on finding answers
that are certainly true, independently of how missing values are interpreted. However,
this notion has yielded several conflicting formal definitions for certain answers. Based
on the fact that incomplete data can be enriched by some additional knowledge, we
designed a notion able to unify and explain the different definitions for certain answers.
Moreover, the knowledge-preserving certain answers notion is able to provide the first
well-founded definition of certain answers for the relational bag data model and value-
inventing queries, addressing some key limitations of previous approaches. However,
it doesn’t provide any guarantee about the relevancy of the answers it captures.

To understand what would be relevant answers to queries on incomplete databases,
we designed and conducted a survey on the everyday usage of NULL values among
database users. One of the findings from this socio-technical study is that even when
users agree on the possible interpretation of NULL values, they may not agree on
what a satisfactory query answer is. Therefore, to be relevant, query evaluation on
incomplete databases must account for users’ tasks and preferences.

We model users’ preferences and tasks with the notion of regret. The regret function
captures the task-dependent loss a user endures when he considers a database as
ground truth instead of another. Thanks to this notion, we designed the first framework
able to provide a score accounting for the risk associated with query answers. It allows
us to define the risk-minimizing answers to queries on incomplete databases. We
show that for some regret functions, regret-minimizing answers coincide with certain
answers. Moreover, as the notion is more agile, it can capture more nuanced answers
and more interpretations of incompleteness.

A different approach to improve the relevancy of an answer is to explain its provenance.
We propose to partition the incompleteness into sources and measure their respect-
ive contribution to the risk of answer. As a first milestone, we study several models
to predict the evolution of the risk when we clean a source of incompleteness. We
implemented the framework, and it exhibits promising results on relational databases

iii

and queries with aggregate and grouping operations. Indeed, the model allows us
to infer the risk reduction obtained by cleaning an attribute. Finally, by considering a
game theoretical approach, the model can provide an explanation for answers based
on the contribution of each attributes to the risk.

iv

Acknowledgements

This Thesis would not have been possible without the academic and emotional support
of many people. First, I wish to thank every researcher who patiently listened to the
mathematical errand of my mind. I have been lucky to encounter Amélie Gheerbrant,
who first introduced me to the Principles of Data Management. Since then, she and
many others from the community have blessed me with invaluable feedback (and fun
moments).

I am grateful to Leonid Libkin, Paolo Guagliardo, and Juan Sequeda for being actively
involved in the research projects of this Thesis. But more importantly, they went far
behind their academic duties and provided crucial emotional support.

A special place in my heart belongs to Luke Darlow, Piete Cyrus, and Patricia Rubbish
for their ongoing daily support during the Ph.D. Even as a father, Christian Toussaint,
went far behind his responsibilities and, despite his lack of expertise, spent countless
hours discussing ideas with me.

Finally, my academic life would have stopped before undergrad without Philippe Tous-
saint. He had no social or academic responsibilities. He simply helped due to his kind
heart. For that and much more, he earned my highest esteem and gratitude.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification except as specified.

Etienne Toussaint

vi

Contents

Abstract iii

Acknowledgements v

Declaration vi

Figures and Tables x

1 Introduction 1
1.1 Related work . 5

2 Preliminaries 10
2.1 Incomplete Databases . 10

2.1.1 Database domain . 10
2.1.2 Certain anwers . 11

2.2 Set Relational Databases . 12
2.2.1 Certain answers for relational databases 14
2.2.2 Complexity of Query evaluation 16

3 Knowledge-preserving certain answers 19
3.1 Abstract Framework . 21
3.2 Certainty in Relational Databases . 25

3.2.1 Bag Relational Databases . 26
3.2.2 Collapsing and Additive Semantics 28
3.2.3 Mixed Semantics . 31
3.2.4 Proof of section 3.2: Certainty in relational databases 33

3.3 Certainty for Value-Inventing Queries . 36
3.3.1 Query Answering for UCQ-F . 37
3.3.2 Relational Databases over Free Algebra 38
3.3.3 Approximation Algorithms for UCQ-F 40
3.3.4 Proof of section 3.3: Value-inventing queries 42

3.4 Conclusion . 47

4 SQL incompleteness: A Socio-technical study 49
4.1 Survey Design and Methodology . 51

4.1.1 Question Types and Analysis Methodology 51
4.1.2 Sample of Respondents . 55

vii

CONTENTS viii

4.2 SQL’s NULL features usage . 57
4.3 Meanings of NULLs . 60
4.4 SQL’s handling of NULLs . 62

4.4.1 Generic Queries . 63
4.4.2 Value-Inventing Queries . 65

4.5 Solutions vs Demographics . 68
4.6 Conclusion . 71

5 Answer notions with query-evaluation semantics 73
5.1 Query-evaluation semantics . 75

5.1.1 Evaluation-based Certain answers 76
5.2 Evaluation semantics for relational databases 77

5.2.1 Relational Algebra with null . 78
5.2.2 CWA and OWA consistent evaluation semantics 82
5.2.3 Whole world assumption . 84
5.2.4 Proof of Theorem 8 . 86

5.3 Risk minimizing answers . 90
5.4 A Class of Regret functions for relational databases 95

5.4.1 Kantorovich transportation problem 96
5.4.2 Information dissimilarity between tuples 97
5.4.3 Tuple mass assignment . 98
5.4.4 Risk minimizing answers with OT regret function 100

5.5 Conclusion . 103

6 Improving and Explaining Answers 104
6.1 Risk associated with Knowledge . 105

6.1.1 Vectorial Knowledge Query Evaluation Semantics 106
6.2 Improving and explaining answers . 109

6.2.1 Improving answers . 109
6.2.2 Explaining the risk of answers . 111

6.3 Applications on SQL database management system 117
6.3.1 Attribute-consistent NI-evaluation semantics 118
6.3.2 Aggregates and groupings . 122
6.3.3 Optimal transport based regret function with numeric element

and knowledge . 125
6.3.4 Information dissimilarity between tuples 127

6.4 Experiments . 130
6.4.1 Validation procedure . 131
6.4.2 Results . 135

6.5 Conclusion . 138

CONTENTS ix

7 Conclusion 140
7.1 Future work . 142

Appendices

A TPC-H Queries: 145

Bibliography 151

Figures and Tables

Figures

1.1 Incomplete tables with EU nulls: a in the model with marked nulls, and b in
SQL. 8

4.1 Examples of questions in our online survey. 52
4.2 Demographic information . 55
4.3 Participants’ engagement . 56
4.4 . 58
4.5 . 59
4.6 a Popularity of different semantics of NULL; b Combinations of NULL se-

mantics chosen by the participants. 61

5.1 A database d containing the relations Orders and Payments. 81
5.2 A database d containing the relation Employees. 84

6.1 Error-rate per attribute for each prediction models on Q16 133
6.2 Evolution of the average Error-rate with the database parameters 135
6.3 Evolution of the average Error-rate with the regret function parameters . . . 136
6.4 Evolution of the average Error-rate with the NullRateFix in the cleaned

database . 137
6.5 Comparison between possible explanations of the risk 139

Tables

4.1 . 61
4.2 Proportion of answers that differ from SQL. 63
4.3 Proportions of respondents’ answers vs SQL. 65
4.4 Results obtained with a value-inventing queries and NULLs that occur in

the database, and b value inventing queries and computational NULLs. . . . 67
4.5 Association and prediction scores obtained with a generic queries, b value

inventing queries and NULL values in the database, and c value inventing
queries and computational NULLs. 70

x

Chapter 1

Introduction

Mostly known as computer science, the term Informatics seems to be more appropri-
ate to describe the field today. Indeed information is at heart of most IT applications,
as a consequence Data management has become one of the most relevant fields in
computer science Abiteboul (2013). In April 2016, a community of researchers working
in the area of Principles of Data Management (PDM) identified the study of Uncertain
Information as one of the most important research directions Abiteboul et al. (2017).
Indeed Database applications need to handle incomplete data, this is especially true
these days: Many sources of incompleteness arise due to the “big data” phenomenon:
for instance, integrating or exchanging large datasets is a common task nowadays,
and resulting databases almost invariably have lots of missing data. Likewise, data
found in large repositories available on the Web tend to be incomplete and contain
many gaps Abiteboul, Buneman, and Suciu (2000). Even if the problem has been
acknowledged early on Codd (1975, 1979), the current way to deal with incomplete
information leaves much to be desired. It has been estimated that handling dirty and
incomplete data costs US businesses alone more than $600B each year Eckerson
(2002).

SQL uses NULL as a single placeholder object for representing incomplete informa-
tion, and problems persist after so many years. When it comes to handling NULLs,
SQL’s behavior has been described as “fundamentally at odds with the way the world
behaves” Date and Darwen (1996), or capable of “ruining everything” Celko (2010),
and recommendations to avoid nulls altogether are not uncommon Darwen and Date
(1995). The origin of SQL’s controversial behavior with NULL can be traced back to
Codd’s original 12 rules for relational database management system.

Rule 3: Null values (distinct from the empty character string or a string
of blank characters and distinct from zero or any other number) are sup-
ported in fully relational DBMS for representing missing information and
inapplicable information in a systematic way, independent of data type.

1

1. Introduction 2

The third rule stated that NULL values should represent both “missing” and “inapplic-
able” information, but those two interpretations are often at odds with each other. The
question has been addressed in the research literature, going all the way back to
Zaniolo (1984) which defined three types of nulls: non-applicable, no-information, and
those representing existing but currently unknown values. To go even further, consider
a hypothetical example: we have a table with information about employees, and the
salary of the CEO is given as NULL. This could have different meanings:

• Non-applicable (NA). The CEO may not receive a regular salary and use another
remuneration scheme. Then NULL indicates a field that is non-applicable, for which
a value does not exist.

• Existing unknown (EU). The CEO salary cannot be disclosed for privacy reasons. In
such cases, NULL denotes an existing but currently unknown constant.

• Existing known constant (C). The CEO salary may not be specified because it
depends on changing financial results of company operations. Here NULL denotes
an existing, and known, value.

• Dirty (D). The CEO may receive a regular salary but the data source from which the
table is populated may be dirty.

• No-information (NI). We may be in a situation when we know nothing at all about the
reasons why that NULL is in the database.

In an attempt to deal with the many possible interpretations of NULL, the implementa-
tion of most SQL’s features is based on 3-valued-logic. As it is commonly assumed
that programmers tend to think in terms of the familiar two-valued logic, SQL’s 3-
valued-logic is often consider responsible when SQL behavior is not satisfactory. In
practice the SQL evaluation of most queries would return answers compatible with the
“inapplicable” (NA) interpretation of NULL. Moreover one can always consider a setting
where non-applicable NULLs have been removed – e.g., by using the techniques of
Franconi and Tessaris (2012). Hence most theoretical works on incomplete databases
has traditionally focused on the interpretation of NULL as "missing" values (EU).

Since the early days of database field, the standard approach to answering queries
over databases with NULL representing existing but unknown values has been based
on finding answers one can be certain about, regardless of the interpretation of the
missing data. This notion was introduced about 40 years ago Codd (1979); Grant
(1977); Lipski (1979) and has since been studied on its own, leading to several con-
flicting mathematical definitions of certain answers. Abiteboul, Segoufin, and Vianu
(2006); Grahne (1991); Imielinski and Lipski (1984); Libkin (2016a, 2016b); Lipski
(1984); van der Meyden (1998). Moreover all these definitions are build with a single
setting in mind: first-order (or closely related) queries over relational databases, in-

1. Introduction 3

terpreted under set semantics. While understanding certainty and its computational
properties in this setting was very useful Console, Guagliardo, Libkin, and Toussaint
(2020), it nonetheless falls short of what one needs to deal with in realistic everyday
queries, like those written in SQL. There are key shortcomings to existing techniques:

Data-model: Real-life relational databases operate with bags rather than sets. Syn-
tactically straightforward extensions of certainty notions have been studied over bags
Console, Guagliardo, and Libkin (2017) but they were not properly justified unlike their
set-theoretic counterparts (and we shall see that this indeed leads to serious problems
with existing definitions).

Query Language: Existing definitions only work for queries that essentially manipu-
late data. Real-life queries also generate new data values, by means of, for example,
arithmetic operations or aggregates. In fact, in the standard TPC-H benchmark for
evaluating SQL-database performance, over 90% of queries are value-inventing “TPC
Benchmark™ H Standard Specification” (2018).

Pertinence: Despite its maturity, foundational research on incomplete data has not yet
properly translated to practice. This gap between practice and theory is often justified
by the fact that most theoretical solutions are inefficient (computing certain answers is
coNP-hard even for first order queries) and rely on abstract model (marked nulls). The
reality is that expectations of database practitioners with respect to incomplete data
have not been systematically documented. It is not known if existing research results
can readily be used to address the relevant practical challenges.

We have to address each of those shortcomings to provide more relevant answers for
queries on incomplete databases.

In Chapter 3, we leverage our understanding of the notion of certainty for queries
in SQL-like languages. We consider incomplete databases whose information con-
tent may be enriched by additional knowledge. The knowledge order among them is
derived from their semantics, rather than being fixed a priori. The resulting framework
allows us to capture and justify existing notions of certainty, and extend these concepts
to other data models and query languages. As natural applications, we provide for the
first time a well-founded definition of certain answers for the relational bag data model
and for value-inventing queries on incomplete databases.

In Chapter 4, we present the first milestone to study the expectations of database
practitioners with respect to incomplete data. We present the results of a survey we
designed and conducted on the everyday usage of NULL values among SQL database
users. We reach the conclusion that while NULL values are ubiquitous and problematic
in real-life scenarios, foundational research on NULLs and has been addressing prob-
lems of limited practical relevance. The community has mostly focused on the "miss-

1. Introduction 4

ing" value interpretation for NULL that only a minority of users encounter. Furthermore,
theoretical solutions have been based on the assumption that, in the presence of NULL
values and for a specific semantics, all users want the same answers. The results of
the survey provide evidence that this assumption does not hold in practice.

In Chapter 5, we address the problem of the interpretation of incomplete data. Most
existing frameworks are tight to the assumption that incompleteness should be inter-
preted as missing data, which can be completed thanks to database semantics and
additional knowledge. To overcome this limitation, we model incompleteness on the
level of database and query by considering a semantics function that maps a query
and a database to a set of databases representing its possible answers. Especially,
the query evaluation semantics can capture the no-information interpretation of NULL
in relational databases. Another critical component to obtain pertinent answers is
the notion of similarity between database objects. Indeed, the most pertinent answer
is often defined as the database that is the least dissimilar to every other possible
answer. For instance, the certain answers are based on a boolean similarity measure,
namely the less-informative pre-order. To obtain a more flexible notion of answers,
we propose a numerical similarity measure called regret. The regret capture the task-
dependent loss a user endures when he considers a database as ground truth instead
of another. The notion of answer defined with regret similarity measures is called risk-
minimizing answers. We show that for some regret functions, the regret-minimizing
answers coincide with the certain answers. Moreover, because regret functions are
numerical, the risk-minimizing notion can define more nuanced and pertinent answers.

In Chapter 6, we leverage the practical advantages of using the risk to represent
the degree of incompleteness. The risk can be computed for any answer. We can
especially compute the risk of the answers returned by existing database management
systems. Then instead of trying to change the behavior of a system, we propose to
explain and improve the answers it returns. We lay down the theoretical foundation
to partition the query evaluation semantics additional knowledge into incompleteness
sources. Then we reason about each source of incompleteness and determine how
they impact the risk of answers. We defined two measures: The importance of cleaning
is a prediction of the risk evolution if we remove a source of incompleteness. The
contribution to the risk is a game theoretical perceptive on the correlated impact of
each source of incompleteness on the risk. To study the framework’s applicability and
the precision of its inference models, we experimented with relational databases and
queries with aggregate and grouping operations. Despite some remaining challenges,
the results are promising.

. Introduction 5

“There is a cat in a box . . .
Some argue that the cat may be dead or alive. Others consider that the cat
is either certainly dead or certainly alive. Schrodinger insists that the cat can
be both dead and alive, while Bohr denies the cat’s existence altogether.
Thankfully, SQL accommodates all and proclaims the cat to be NULL."

Luke Darlow & Etienne Toussaint

Example 1. Let the following table representing the information about employees:

Person Age Salary
John NULL 2000
Jane NULL NULL

Let a query q1 returning the name of all employees older than 18, with the standard SQL
evaluation and the NA interpretation of NULL, the answer is the empty set. Similarly the
answer to a query q2 returning the name of all employees younger than 18 is also
empty. Finally, the evaluation of tautology q1∪ q2 returns the empty set. Without explicit
access to the database, one could easily conclude that the company does not have
any employees which seems at odd even with the NA interpretation of NULL. On the
other hand, if we consider the notion of certain answers with nulls, then the answer to
q1 ∪ q2 is {John, Jane}.
If we ask for the average salary in the company, SQL assumes that Jane’s salary is non-
applicable and would return 2000. Therefore the SQL evaluation loses the information
about the existence of a NULL placeholder in the Salary column. Depending on the
user’s interpretation of NULL and his preferences, the placeholder NULL could also be
a valuable answer. In this thesis, we explore various frameworks to define relevant
answers on incomplete databases, and we argue that there is no good answer if no
explanation about its origin can be provided.

1.1 Related work

The subject of incomplete data has been addressed in the literature, starting from
foundational papers in the 1970s Codd (1975); Grant (1977); Lipski (1979), and sev-
eral surveys are available; e.g., Console et al. (2020); Greco, Molinaro, and Spezzano
(2012); van der Meyden (1998). In this overview of related work, we concentrate on
the interpretations that are commonly accepted, and especially outline what has been
done for the existing unknown semantics of nulls, which is the subject of most of the
material in the aforementioned surveys and the basis of this thesis.

1.1. Related work 6

Nulls in SQL. Even prior to the development of SQL, an ANSI committee working
on the then new relational model suggested 14 different interpretations of nulls “In-
terim Report: ANSI/X3/SPARC Study Group on Data Base Management Systems”
(1975). Most of these fall into the categories we introduced earlier, with some ex-
ceptions that have been made obsolete by subsequent developments. While “Interim
Report: ANSI/X3/SPARC Study Group on Data Base Management Systems” (1975)
did not provide any semantics of operations on nulls, nor a logic for their handling, this
was suggested in two later documents Cannan, Dee, and Kerridge (1987); Introduce
named null definitions (1990) from the SQL standardization process; these proposals
date back to the late 1980s, but no action with respect to the Standard was taken.
They proposed user-defined nulls, a model moving in the direction of marked nulls,
with user-defined meanings, and SQL’s NULL as the fallback position.

Shortcomings of SQL’s NULLs are anecdotally known in the community, with only few
exceptions trying to systematize them in the research literature. Among those are
Brass and Goldberg (2006), which looks into issues experienced by SQL programmers
in general, not with nulls directly, and Neumann (2018), which studies how aggressive
optimization techniques result in incorrect query evaluation in the presence of nulls.

Existing unknown EU and Dirty D: imputation. A well-established line of research
that concerns these two interpretations is to impute null values. That is, nulls are
replaced with actual constants according to some statistical model. In the end, this
gives us a database without nulls that can be queried and analyzed assuming the
data is clean and complete. Most of this work is seen in the statistical and data
cleaning literature Gao and Miao (2018); van der Loo and de Jonge (2018) and these
approaches are fundamentally geared towards machine learning tasks on data derived
from a database.

Non-applicable (NA) and No-information (NI) nulls. Some early work on query
evaluation with nulls under the NI semantics was done in Zaniolo (1984), which pro-
posed the trichotomy of NI, NA, and EU nulls. This was followed by work on NA in
Lerat and Jr. (1986), essentially treating them as problems with the database design.
There are different lines of work on NA and NI, each going in its own direction. For
example, Gottlob and Zicari (1988) extended truth tables and arithmetic operations
to the NA null, and Atzeni and Morfuni (1984); Hartmann and Link (2012) looked at
functional dependencies over databases with NA and NI nulls. One direction of work is
to capture the semantics of different nulls by extending the 3-valued logic of SQL with
more values and even paraconsistent logics Arieli, Avron, and Zamansky (2010); Con-

1.1. Related work 7

sole, Guagliardo, and Libkin (2016); Gessert (1990); Thalheim and Schewe (2010);
Yue (1991). However it was shown recently that SQL’s 3-valued logic is the most
rational choice of a propositional logic that does not hamper query evaluation Console,
Guagliardo, and Libkin (2022).

On the query evaluation side, we mention Candan, Grant, and Subrahmanian (1997);
Franconi and Tessaris (2012); Klein (2001). The approach of Klein (2001) is based on
the notion of subsumption of tuples with nulls, already present in Buneman, Jung, and
Ohori (1991); Zaniolo (1984), and defined the semantics of EU and NI by different ways
of lifting this subsumption from tuples to relations. This led to a well-defined notion of
query answering and approximation for the EU semantics, but not for the NI semantics,
where the discussion stopped at the level of investigating a number of concrete SQL
queries. A step further was made in Candan et al. (1997), which looked at NI added
as either a substitute for a value, or a disjunction of several values (this, by itself, is
a model of incompleteness known as or-sets Imielinski, Naqvi, and Vadaparty (1991);
Libkin and Wong (1996)). These can be expressed by means of extra constraints
attached to tuples in the spirit of conditional tables Imielinski and Lipski (1984). The
paper shows then how to use such conditions to evaluate relational algebra queries;
the result is again a conditional table, which can complicate understanding the output
from a user’s perspective.

Last but not least, Franconi and Tessaris (2012) formally shows that answering queries
(in relational algebra and calculus) on databases where nulls are interpreted under the
NA semantics is equivalent to naively evaluating a rewritten query on a decomposed
database without nulls, in which the “absence” of values is implicitly encoded in the
schema. From a practical point of view, however, no concrete implementation and
experimental evaluation of such rewriting and decomposition algorithms were devised.

Existing unknown EU and certain answers. Theoretical work on incomplete data-
bases has traditionally focused on the interpretation of nulls as missing values, in the
sense of the EU semantics: a value exists, but it is currently unknown. The latest
survey in that area is only two years old, and we refer the reader to it for multiple
additional details and references Console et al. (2020), while we here outline only
the part relevant to the thesis. The prevalent model in this line of research is that
of so-called marked nulls, first systematically studied in Imielinski and Lipski (1984),
where each missing value is represented by a special null symbol with an associated
identifier. For example, the symbols in the “age” column of the table in Figure 1.1a
express the fact that John, Mary and Jane do have an age, but we do not know how
old they actually are.

1.1. Related work 8

Person Age
John ⊥1

Mary ⊥2

Jane ⊥1

(a)

Person Age
John NULL
Mary NULL
Jane NULL

(b)

Figure 1.1: Incomplete tables with EU nulls: (a) in the model with marked nulls, and
(b) in SQL.

There is a clear mismatch between the model of nulls used in theoretical database re-
search and that of SQL; even if we interpret SQL nulls solely under the EU semantics,
marked nulls are more expressive, because they allow co-reference of nulls, which is
not possible in SQL. For example, the table in Figure 1.1b does not capture the fact
that John and Jane have the same (but unknown) age.

It is folklore in the database theory community that SQL nulls can be modeled by non-
repeating marked nulls (i.e., with distinct identifiers). This, however, is not the case,
as was demonstrated in Guagliardo and Libkin (2019). Nonetheless, the marked nulls
model dominated not only research on incomplete information, but also work in areas
where incomplete databases naturally arise. Examples of these include ontology-
based data access Poggi et al. (2008) and data exchange Fagin, Kolaitis, Miller, and
Popa (2005). We refer the reader to specific surveys of these areas Arenas, Bar-
celó, Libkin, and Murlak (2014); Bienvenu and Ortiz (2015), with hundreds of further
references, and detailed explanations of the usage of marked nulls under the EU
interpretation.

For marked nulls, the preferred model of query answering is that of certain answers
Imielinski and Lipski (1984); Lipski (1979). These are answers that are true under all
interpretations of nulls, i.e., all possible ways of assigning known values to them. The
definition of certainty itself is not unique Libkin (2016a); Lipski (1984), but in all cases
query answering is computationally hard; e.g., coNP-complete for relational algebra
queries Abiteboul, Kanellakis, and Grahne (1991). The standard query evaluation
(a.k.a. naïve), where nulls are treated like regular constants, does sometimes produce
answers that come with certainty guarantees; this is the case for unions of conjunctive
queries (i.e., select-project-join-union queries) Imielinski and Lipski (1984), or their
extension with relational algebra division Gheerbrant, Libkin, and Sirangelo (2014).
Given the general hardness of computing certain answers, recent efforts concen-
trated on finding efficient approximations Feng, Huber, Glavic, and Kennedy (2019);
Fiorentino, Greco, Molinaro, and Trubitsyna (2018); Guagliardo and Libkin (2016).

1.1. Related work 9

But, there are no developed algorithms, nor even a generally accepted definition,
for extending certainty to queries with aggregation, which are extremely common in
applications. Thus, despite much solid research in this area, its outcomes are often
not directly applicable.

Chapter 2

Preliminaries

2.1 Incomplete Databases

2.1.1 Database domain

We present the general framework of Libkin (2016a) by considering databases as
abstract “objects”; these could be relational databases, or graphs, or XML documents,
or other. Later we look at the relational setting, here to make clear the distinction with
concrete relational databases, we denote database objects with lowercase letters x,
y, and so on.

Definition 2.1.1 (Database domain). A database domain D is a triple (I,C, J·K), where
I is a set of database objects, C ⊆ I is the set of complete objects (over which queries
are defined), and J·K is a semantic function from I to the powerset of C such that
x ∈ JxK for every x ∈ C.

For convenience of notation, we also use ID, CD, J·KD to refer to the set of incomplete
objects, the set of complete objects, and the semantic function, respectively, of a
database domain D.

The elements of JxK are referred to as the possible worlds of x. Intuitively, the more
possible worlds a database object represents, the more ambiguous it is. To make
this intuition formal, with each database domain D = (I,C, J·K), we associate an
information pre-order ⪯D (that is, a reflexive and transitive relation) on I, defined as
follows: x ⪯ y iff JyK ⊆ JxK. That is, x ∈ I is less informative than y ∈ I if every possible
world of y is also a possible world of x.

Given two database domains S (for source) and T (for target), a query from S to T is
a mapping q from CS to CT, i.e., it maps complete databases of a source database
domain S to complete databases of a target database domain T. The natural question
that arises is how to define relevant answers for query on database which are not
complete.

10

2.1. Incomplete Databases 11

2.1.2 Certain anwers

A natural way to define query answers on an incomplete database object x is to
consider answers that are “true” in all possible worlds of x. To this end, for a set C
of complete database objects, we let

q(C) =
{
q(x) | x ∈ C

}
.

Then, to formalize the notion of truth, we assume, for each database domain, the
existence of a set F of formulae expressing knowledge about incomplete objects, and
a satisfaction relation |= indicating when a formula ϕ is true in a possibly incomplete
database object x, written x |= ϕ.

For a set X of database objects we write X |= ϕ if x |= ϕ for each x ∈ X. Similarly, for
a set Φ of formulas, we write x |= Φ if x |= ϕ for each ϕ ∈ Φ. The theory of X is the
set Th(X) = {ϕ | X |= ϕ}, and the models of Φ are given by Mod(Φ) = {x | x |= Φ}.
Intuitively, Th(X) contains the knowledge we have about objects of X, and Mod(Φ)

consists of all objects satisfying the knowledge expressed by Φ. When the database
domain is not clear from the context, we will explicitly indicate it as superscript in Th

by writing, e.g., ThD.

For a database domain D, we want the knowledge F to satisfy some minimal re-
quirements, such as being compatible with the information pre-order ⪯D, and being
expressive enough to capture at least the semantics of incompleteness J·KD. To this
end, we require that

1. for every ϕ ∈ F and every x, y ∈ ID, if x ⪯D y and x |= ϕ then y |= ϕ;
2. for every x ∈ ID there exists a formula δx ∈ F equivalent to Th(x) (i.e., Mod

(
Th(x)

)
=

Mod(δx)), furthermore if x ̸⪯D y, then y ̸|= δx.

We are finally ready to define what is certainly true when answering queries on incom-
plete database objects.

Definition 2.1.2. Let q be a query from S to T, and let x ∈ IS. The certain knowledge
of q on x is the set ThT

(
q(JxKS)

)
.

Thus, the certain knowledge of q on x is the set of formulae that are true in all query
answers over the possible world of x . However, in practice, we expect the answer to a
query on a database object to be an object itself, ideally one that captures the entire
certain knowledge of the query, that is, o ∈ IT such that ThT(o) = ThT(q(JxKS). Unfor-
tunately, such an object need not exist in general. To overcome this issue, we define
the certain answer as the most informative object (w.r.t. ⪯T) whose theory is a subset
of the certain knowledge: ThT(o) ⊆ ThT(q(JxKS). Therefore, the definition of certain
answers as an object is an under-approximation of the certain knowledge; the most
informative one allowed by the database domain, but an approximation nonetheless.

2.1. Incomplete Databases 12

Definition 2.1.3. Let q be a query from S to T, and let x ∈ IS. The information-based
certain answer to q on x is

cert□(q, x) = glb⪯T
q(JxKS) , (2.1)

where the greatest lower bound glb is with respect to ⪯T.

That is, the most informative object that is less informative than every possible answer.
This notion satisfies the expected property of answers on incomplete databases: more
informative query inputs yield more informative query answers.

Proposition 1 (Libkin (2016a)). Let q be a query from S to T, and let x, y ∈ CS be
such that x ⪯S y. If cert□(q, x) and cert□(q, y) exist, then cert□(q, x) ⪯T cert□(q, y).

Even though the certain answers as object are an approximation of the certain know-
ledge, this does not guarantee their existence. Next, we discuss this problem in the
context of relational databases.

2.2 Set Relational Databases

Despite the fact that commercial relational database management system are based
on bags (a.k.a. multiset), and a single placeholder object to represent incomplete data
NULL, the standard theoretical model for relational database is based on sets and
marked nulls. Formally, we consider that relational databases are populated by two
kinds of values, constants and marked nulls. These come from two disjoint countably
infinite sets, Const and Null, respectively. We denote the elements of Null using the
symbol ⊥ with subscripts.

A relational database schema is a finite set of table names with associated arities,
and a k-ary table is a finite set of k-tuples over Const ∪ Null. Then, a set relational
database d over a given schema maps each table name R in the schema to a table Rd

of appropriate arity. We write Const(d) and Null(d) for the set of constants and nulls
occurring in d, respectively. The active domain of d is adom(d) = Const(d) ∪ Null(d).
For convenience of notation, we sometimes represent a set relational database as
a set of facts; e.g., d = {R(1,⊥1), S(⊥1, 2), R(1,⊥1)} is the database d such that
Rd = {(1,⊥1), (1,⊥1)} and Sd = {(⊥1, 2))}.

A relational databases d is said to be incomplete when some of its values are elements
of the set Null. An element⊥i ∈ Null(d) is a placeholder object to represent incomplete
information. However this incompleteness can have different interpretation, it could
mean that the information is ’inapplicable’ but also that it is ’missing’. Most of the
literature consider that null values represent ’missing’ information, more specifically
the null is used as a placeholder for an existing constant which is currently unknown.

2.2. Set Relational Databases 13

In the context of null as ’missing’ values, an incomplete relational databases can be
seen as a compact representation of many possible worlds. We define a valuation v on
a relational database d as a partial mapping v : Null(d)→ Const that assigns constant
values to nulls occurring in the database. If v is defined on all elements of Null(d), we
say that v is d-complete. By v(d) we denote the result of replacing each null ⊥i with
v(⊥i) in d. The semantics JdK of an incomplete database d is the set of all complete
databases it can represent, i.e.,

JdKCWA = {v(d) | v is a d-complete valuation} .

This is known as the closed-world semantics of incompleteness, or semantics under
CWA, or closed-world assumption Reiter (1977).

Under CWA, the facts stored in a database are assumed to be the whole truth. When
used on the target domain of queries, this would provide a precise semantics for
answers; however, in such a case, information-based certain answers may not exist
even for very simple queries Libkin (2016a). To see this, consider the database d =

{R(⊥i)} and the Boolean query q returning true iff R(2) belongs to the database.
Then, the certain knowledge of q on d is the set of formulae satisfied by both {()}
(when ⊥i 7→ 2) and ∅ (otherwise); therefore, this knowledge is empty and, under CWA,
there exists no database whose theory is the empty set. The reason for this is that all
facts in a database are true, but at the same time, under CWA, all other facts not in
it are assumed to be false. So, the theory of the empty database is not empty under
CWA.

To overcome this difficulty, we often consider the open-world assumption of incom-
pleteness, under which the facts stated in a database are true but they are not as-
sumed to be the whole truth. The semantics of incompleteness under OWA, or open-
world assumption is defined as

JdKOWA = {complete d′ | v(d) ⊆ d′ for a d-complete valuation v} .

When OWA semantics is used on the target domain, the more facts an answer contains,
the more knowledge it provides. This fits in well with the idea of approximating query
answers: finding additional tuples in the answer makes approximations more inform-
ative. Also, with OWA, unlike with CWA, the theory of the empty database is the empty
set: Th(∅) = ∅. Therefore, as we shall see, the information-based certain answers exist
for larger classes of queries.

2.2. Set Relational Databases 14

Definition 2.2.1. A set relational database domain D is such that ID consists of set
relational databases populated with elements of Const ∪ Null, CD is the subset
of ID of databases without nulls, and J·KD is either the CWA or OWA semantics of
incompleteness.

2.2.1 Certain answers for relational databases

A k-ary query is a map that, with a database d, associates a subset of k-tuples over its
elements, i.e., a subset of adom(d)k. Queries in standard languages such as relational
algebra, calculus, Datalog, etc., cannot invent new values, i.e., return constants that
are not in the active domain. Such a query is called generic if it commutes with
permutations of the domain of constants.

Definition 2.2.2 (Generic queries). A query q is generic if q
(
π(d)

)
= π

(
q(d)

)
whenever

π : Const→ Const is a bijection. The class of generic queries will be denoted by GEN.

For the source domain S, either the semantics CWA or OWA can be used: the former
assumes we completely know the real world, while the latter allows for the possibility
that we may be missing some facts. When this choice is relevant for the results, we
indicate it by saying that a query, or class of queries, is “under CWA” (resp., under
“OWA”).

Proposition 2 (Amendola and Libkin (2018)).

(a) The information-based certain answer always exists for generic queries under
CWA;

(b) There exists a generic query such that the information-based certain answer does
not exist under OWA.

Thus, OWA on the source makes a huge difference in the class of queries for which
the information-based certain answers exist. The reason for this is that we can find a
generic query q and a database d (under OWA) for which the certain knowledge con-
tains infinitely many non-equivalent formulae. Then, for every finite answer database a
whose theory is contained in this infinite set, we can always find a finite a′ such that:

Th(a) ⊂ Th(a′) ⊆ Th
(
q(JdKOWA)

)
and therefore the greatest lower bound does not exist.

Other notions of certain answers exist in the literature. The most common ones are
intersection-based certain answers Abiteboul et al. (1991); Imielinski and Lipski (1984);
Lipski (1979); Reiter (1986), and certain answers with nulls Libkin (2016b); Lipski
(1984). While these are specific to the relational domain, and therefore less general
than information-based certain answers, they have the advantage of existing for larger
classes of queries.

2.2. Set Relational Databases 15

Definition 2.2.3. The intersection-based certain answer to a query q on a relational
database d is the intersection of the answers to q on every possible world represented
by d:

cert∩(q, d) =
⋂{

q(d′) | d′ ∈ JdKS
}

(2.2)

Observe that cert∩(q, d) consists solely of constants. When the target domain of quer-
ies allows only for databases without nulls, the intersection-based certain answers are
precisely the information-based ones:

Proposition 3 (Amendola and Libkin (2018)). Let S and T be relational database
domains such that

(a) S is under either OWA or CWA,
(b) T is under OWA, and IT consists of databases without nulls.

Then, for every generic query q from S to T and for every database d ∈ IS, we have
that cert□(Q,D) and cert∩(Q,D) exist and coincide.

One of the problems with intersection-based certain answers is that they only consist
of constants and, for this reason, may miss tuples that are in fact certain. To see
this, consider the database d = R(⊥i) and the query q that simply returns R. Then
cert∩(q, d) = ∅, even though we are certain that ⊥i is in R no matter which missing
value it represents. To overcome this shortcoming, nulls in certain answers can be
allowed as follows:

Definition 2.2.4. The certain answers with nulls to a query q on a relational database
d is the table cert⊥(q, d) such that, for every d-complete valuation v and for every
c ∈ Jv(d)KS, each tuple in v

(
cert⊥(q, d)

)
is also in q(c):

cert⊥(q, d) =
{
t̄ | v(t̄) ∈ q(c) for every d-complete valuation v

and for every c ∈ Jv(d)KS
}

When the source relational database semantics is that of CWA, the definition becomes

cert⊥(q, d) =
{
t̄ | v(t̄) ∈ q

(
v(d)

)
for every d-complete valuation v

}
.

With the above example of d containing R(⊥i), and the query q that simply returns R,
we have cert⊥(R, d) = {⊥i}, i.e., we keep the certain information about ⊥i being in R.

While cert⊥(q, d) may contain nulls and constants, these may only come from element
of the database d. Thus, certain answers with nulls exist for every generic query q and
for every database d.

2.2. Set Relational Databases 16

Unlike intersection-based certain answers, certain answers with nulls cannot be cap-
tured by the information-based ones. This is due to the fact that it does not keep track
of what nulls are mapped to. With the above example of d containing R(⊥i), and the
query q that simply returns R, we have cert□(R, d) = {⊥j}, where ⊥j is a fresh null.
Since null labels are not preserved, there is no relationship between ⊥j in the output,
and ⊥1 in the input. In particular, it is not enforced that the value ⊥j in the output and
the value ⊥i in the input must be equal.

2.2.2 Complexity of Query evaluation

The standard language for query on the set relational model is called relational algebra
(RA) and has the following syntax:

q := R | πᾱ(q) | σαi=αj (q) | σαi ̸=αj
(q)

| q × q | q ∪ q | q ∩ q | q − q

where αi and αj are attributes, and ᾱ is possibly empty tuple of attributes.

The semantics of a (well-formed) RA query q is given by inductively defining the
quantity set q(d), which is the the result of applying q to a database d. This is done as
follows:

R(d) = Rd

πᾱ(q)(d) = {t̄ | ∃t̄′ ∈ q(d), πᾱ(t̄′) = t̄}

σαi=αj (q)(d) = {t̄ | t̄ ∈ q(d), t̄[αi] = t̄[αj]}

σαi ̸=αj
(q)(d) = {t̄ | t̄ ∈ q(d), t̄[αi] ̸= t̄[αj]}

(q × q′)(d) = {t̄ t̄′ | t̄ ∈ q(d), t̄′ ∈ q′(d)}

(q ∪ q′)(d) = {t̄ | t̄ ∈ q(d) ∨ t̄ ∈ q′(d)}

(q ∩ q′)(d) = {t̄ | t̄ ∈ q(d) ∧ t̄ ∈ q′(d)}

(q − q′)(d) = {t̄ | t̄ ∈ q(d) ∧ t̄ /∈ q′(d)}

where t̄[αi] denotes the αi element of t̄, and πα1,··· ,αi(t̄) is the tuple (t̄[α1], · · · , t̄[αi]).

The size of a query is often negligible with respect to the size of the database we often
consider data complexity.

Definition 2.2.5 (M. Y. Vardi (1986)). Let S and T be relational database domains, and
L a set of queries from S to T. The data complexity of a query evaluation algorithm
Eval : L× IS → IT is defined for every k-query q in L as the complexity of the decision
problem Eval[q]:

• Input: A database d ∈ IS, and a tuple t̄ ∈ (Const ∪ Null)k.

2.2. Set Relational Databases 17

• Output: t̄ ∈ Eval(q, d)?

Theorem 1 (M. Y. Vardi (1986)). For every query q ∈ RA, given a relational database
without null c, and a tuple t̄, deciding whether t̄ ∈ q(c) is in LOGSPACE.

In one hand the evaluation of relational algebra queries over complete databases is
really efficient. On the other hand the evaluation of the miscellaneous notion of certain
answers is untractable.

By definition, the information-based certain answer is the most informative database
consistent with all query answers. Since answers are interpreted under OWA, more
informativeness means more tuples, which of course comes at a cost in space.

Theorem 2 (Amendola and Libkin (2018); Arenas, Botoeva, Kostylev, and Ryzhikov
(2017)). For generic queries, under the CWA semantics of input databases, the size
of the information-based certain answer is at most doubly exponential in the size of
the database. Moreover, under both OWA and CWA interpretation of input databases,
there exist a relational algebra query q ∈ RA and a database d for which the size of
cert□(q, d) is exponential in the size of d.

At the moment we do not know how to close the gap between the single-exponential
lower bound and the double exponential upper bound for queries on CWA databases.
This depends on some unresolved problems related to families of cores of graphs Hell
and Nešetřil (2004); see Amendola and Libkin (2018) for more details.

On the other hand, as the certain answer with nulls consists only of tuples over the
domain of the database, the size of cert⊥(q, d) is at most polynomial in the size of d.
However, computing it is intractable in data complexity under CWA, and undecidable
(still in data complexity, i.e., for a fixed query) under OWA.

Theorem 3 (Abiteboul et al. (1991); Gheerbrant and Libkin (2015)). Under OWA, there
exist a (fixed) relational algebra query q ∈ RA for which, given a database d and a tuple
t̄, it is undecidable whether t̄ ∈ cert⊥(q, d) (resp., t̄ ∈ cert□(q, d)) (resp., t̄ ∈ cert∩(q, d)).

Under CWA, there exist a (fixed) query q ∈ RA such that deciding, given a database d
and a tuple t̄, whether t̄ ∈ cert⊥(q, d) (resp., t̄ ∈ cert□(q, d)) (resp., t̄ ∈ cert∩(q, d)) is
CONP-complete.

The intractability of computing certain answers yield to the study of fragment of relation
algebra for which its computation is tractable. The most common restriction is called
union of conjunctive queries denoted UCQ and has the following syntax:

q := R | πᾱ(q) | σαi=αj (q)

| q × q | q ∪ q

2.2. Set Relational Databases 18

Proposition 4 (Gheerbrant et al. (2014)). For every union of conjunctive queries q ∈
UCQ under both OWA and CWA interpretation of input databases, deciding, given a
database d and a tuple t̄ whether t̄ ∈ cert⊥(q, d) (resp., t̄ ∈ cert□(q, d)) (resp., t̄ ∈
cert∩(q, d)) is in PTIME.

The tractable algorithm to compute certain answers over union of conjunctive queries
is based on naive evaluation. The idea of naive evaluation is simple: treat nulls as new
values, and evaluate the query by using normal evaluation techniques on databases
with nulls. For example, if we have a graph with edges {(1,⊥1), (⊥1, 2), , (⊥2, 3)} then
evaluating a query q naively amounts to changing ⊥1 to a new constant c1 and ⊥2 to a
new different constant c2, then evaluating q on the database {(1, c1), (c1, 2), (c2, 3)}.

Formally, we say that v : Null(d) → Const is a bijective valuation if it is a bijection and
v
(
Null(d)

)
is disjoint from adom(D) and all the constants mentioned in q. Then

naive(q, d) = v−1
(
q
(
v(d)

))
.

It is easy to see that for queries that are generic, i.e., that are invariant under permuta-
tions of the domain (see Section 2.2.2), this definition does not depend on the choice
of a particular valuation v.

Chapter 3

Knowledge-preserving certain
answers

Based on ’Knowledge-Preserving Certain Answers for SQL-like Queries’ pub-
lished in KR 2020, Toussaint, Guagliardo, and Libkin (2020).

The key shortcomings of existing techniques to handle incomplete relational data-
bases are of two kinds. To start with, real-life databases operate with bags rather
than sets. Syntactically straightforward extensions of certainty notions have been stud-
ied over bags Console et al. (2017) but they were not properly justified unlike their
set-theoretic counterparts (and we shall see later that this indeed leads to serious
problems with existing definitions). Furthermore, existing notions only work for queries
that essentially manipulate data. Real-life queries also generate new data values, by
means of, for example, arithmetic operations or aggregates. In fact, in the standard
TPC-H benchmark for evaluating SQL-database performance, over 90% of queries
are value-inventing “TPC Benchmark™ H Standard Specification” (2018), and all of
them use bag semantics.

Our goal is thus twofold. We want to build an abstract framework for justifying the
notion of certainty, and upon validating it, we shall use it to explain what certainty is for
realistic SQL-like queries that use bag semantics and value-invention. By validating
we mean that it should capture existing notions in the setting where they are well
understood, namely relational databases under set semantics, and no value invention
in queries.

We follow the approach presented in Preliminaries (see. Section 2.1.1) that has the
advantage of being applicable in different data models. The key concept is that of
informativeness of databases: a database x is more informative than a database y if all
the possible worlds it represents are also possible worlds represented by y. Intuitively
the more informative a database is, the fewer worlds it may represent and the less
ambiguous it is. Then the certain answer to a query on an incomplete database x is
the most informative database which is not more informative than the query answer

19

3. Knowledge-preserving certain answers 20

on every possible world of x. This however may be too permissive as it misses the
reason, or explanation, why a complete database is a possible world for an incomplete
database x. In general an explanation can turn an incomplete object into a more
informative object; explanations compose, and certain answers must preserve the
informativeness order provided by the explanation. Such an order essentially says
that applying an explanation to a database results in a more informative database.
Using this idea, Amendola and Libkin (2018) developed a framework that was capable
of explaining the commonly used definition of certainty of Lipski (1984), for relational
database queries under set semantics and informativeness orders naturally imposed
by such a model. The main drawback of the approach is that it is too closely tied to
a particular data model (relations as sets) and the informativeness orders it imposes,
and to particular features of query languages (no bags, no value invention).

To overcome those problems, we refine the information-based framework in a way
that opens up an approach to defining certainty for most typical queries that occur
in SQL-like languages over real-life databases. The key concept is that of knowledge
preservation to improve the information content of answers to queries on incomplete
databases. Intuitively, the interpretation of missing data may be specified by some
additional knowledge, and hence the information content of a database is defined with
respect to this knowledge. Consequently, certainty of an answer to a query q on a
database x means two things. First, it is no more informative than answers to q in all
possible worlds x. Second, if c is a possible world for x obtained by providing some
new knowledge, then the answer to q on c must also be a possible world for the answer
to q on x with this new knowledge.

The main distinguishing feature of this approach is that we derive the knowledge-
preserving information pre-order from the semantics of data, rather than have it as a
basic notion in the model. The latter restricted us to a handful of cases where such
an ordering already existed, such as familiar open- and closed-world interpretation
of incomplete databases under set semantics. The new approach allows us to unify
already existing notions of certain answers without using any specific database model.
The framework is very natural to instantiate for other data models and for expressive
query languages. We demonstrate it by showing that it allows us for the first time to give
a well-founded notion of certain answers on bag relational databases. We demonstrate
its additional power with respect to query language features by showing that we can
define, again for the first time, a notion of certain answers for value-inventing queries.
We can further use the approach to devise an implementation-friendly approximation
scheme for such certain answers.

3.1. Abstract Framework 21

3.1 Abstract Framework

An incomplete database x is less informative than y if every possible world of y is
also a possible world of x. Suppose now that we discover some new information
that reduces the ambiguity of x by eliminating some possible worlds; nothing ensures
that this knowledge would also reduce the incompleteness of y. Indeed, it may well
be the case that, in the presence of some additional knowledge, x would become
more informative than y. Informally the notion of additional knowledge allows us to
capture potentially uncertain information that the database model can not capture. For
instance, the additional knowledge may constrain the interpretation of some NULL to
be EU.

To make this intuition formal, we define the notion of universal knowledge K. Its ele-
ments are viewed as pieces of knowledge that can be applied to a database to make it
potentially more informative. Such pieces of knowledge can be concatenated: applying
ωω′ means applying ω first and then applying ω′ to the result of applying ω. Finally we
have the empty knowledge ϵ: applying it to any database x does not change x. That
is, K is a monoid as it has a binary concatenation operation ωω′ (which we assume to
be associative) and the identity ϵ satisfying ϵω = ωϵ = ω.

Then, for a database domain (I,C, J·K), the K-semantics of an incomplete database
x ∈ I under knowledge ω ∈ K is the set JxKω of complete databases in C represented
by x when ω is known. We assume that, for any given database domain, such a
semantic function from I × K to 2C always exists and it is such that JxKϵ = JxK for
every x ∈ I. Intuitively, the empty knowledge does not give us any extra information
about the semantics of incomplete databases.

As K contains all possible knowledge, it would be reasonable to assume that the K-
semantics, while always existing, is not always fully known. Thus, we consider sub-
monoids of K, in particular those whose knowledge increases the information content
of database objects.

Definition 3.1.1. A sub-monoid A of the universal knowledge K is additional know-
ledge for a database domain D if

∅ ⊊ JxKωω
′

D ⊆ JxKωD (3.1)

for every x ∈ ID and for every ω, ω′ ∈ A.

Intuitively, the information content of an incomplete database can only increase with
the additional knowledge in A and is consistent with it. Note that {ϵ} is additional
knowledge for every database domain and corresponds to the situation in which we
only have “empty” knowledge.

3.1. Abstract Framework 22

We can now define the relative informativeness of incomplete databases in the pres-
ence of additional knowledge.

Definition 3.1.2. Let A be additional knowledge for D, and let x, y ∈ ID. We say that
x is less A-informative than y, and write x⪯A

D y, if JyKωD ⊆ JxKωD for every ω ∈ A.

In other words, x is less informative than y under the additional knowledge A if, for
every piece of knowledge ω ∈ A, each possible world of y under ω is also a possible
world of x under ω. We omit the subscript in ⪯A

D, and simply write ⪯A, when the
database domain is clear from the context.

As shown below, additional knowledge conservatively extends the information-based
framework of Libkin (2016a): if we do not have any knowledge beyond ϵ, we get the
standard information pre-order ⪯; but the more we discover – by means of additional
knowledge – of the K-semantics of incomplete databases, the less permissive the
information pre-order becomes.

Proposition 5. The following are true:

(a) ⪯A is a pre-order;
(b) ⪯{ϵ} is a equivalent to ⪯;
(c) If x⪯A y, then x⪯B y for every sub-monoid B of A.

Proof of Proposition 5.
(a) Let x, y, z ∈ I such that x ⪯A y and y ⪯A z. By definition for every ω ∈ A we have

JzKωD ⊆ JyKωD ⊆ JxKωD. Hence we have JzKωD ⊆ JxKωD and x⪯A z.
(b) Simply recall that for every databases JxKϵD = JxKD.
(c) By definition for every ω ∈ A we have JyKωD ⊆ JxKωD. As B ⊆ A, especially for every

ω ∈ B we have JyKωD ⊆ JxKωD, hence x⪯B y.

With this in place, our goal is to capture answers that are consistent with the answers
on every possible world under every extra knowledge.

Definition 3.1.3 (Knowledge-preserving certain answer). Let q be a query from S to
T, let x ∈ IS, and let A be additional knowledge for both S and T. The A-preserving
certain answer to q on x, denoted by certA(q, x), is the most informative database with
respect to ⪯A that satisfies the following:

q
(
JxKωS

)
⊆ JcertA(q, x)KωT (3.2)

for every ω ∈ A.

This notion generalizes the information-based certain answer cert□ and it relies only
on the existence of a possible-worlds semantics for the additional knowledge in A.

3.1. Abstract Framework 23

The A-preserving certain answer can also be interpreted as a kind of “synchronized”
greatest lower bound, with respect to ⪯A, of the query answers on the possible worlds
of the input:

certA(q, x) = glb⪯A q(x)

where, for every knowledge ω ∈ K, the K-semantics of the artifact q(x) is given as
Jq(x)KωT = q(JxKωS).

The expected behavior of query answering under incomplete information is that more
informative query inputs yield more informative query outputs. We show that this is
indeed the case for certain answers that preserve additional knowledge. Moreover,
the information-based certain answers are precisely the certain answers that preserve
the empty knowledge.

Proposition 6 (Information preservation). Let A be a sub-monoid of K, and let q be a
query from S to T. Then, for all x, y ∈ IS and every ω ∈ A, all of the following hold:

(a) If certA(q, x) and certA(q, y) exist and x⪯A y, then certA(q, x)⪯A certA(q, y);
(b) certA(q, x)⪯B certB(q, x) for every B ⊆ A;
(c) cert□(q, x) = cert{ϵ}(q, x).

Proof of Proposition 6.
(a) By definition, for every ω ∈ A we have q

(
JxKωS

)
⊆ JcertA(q, x)KωT. Moreover we

know that x ⪯A y and JyKωS ⊆ JxKωS. Especially for every ω ∈ A we have q
(
JyKωS

)
⊆

JcertA(q, x)KωT. And by definition certA(q, y) is the most informative database w.r.t.
⪯A which satisfies this property. Therefore certA(q, x)⪯A certA(q, y).

(b) By definition, for every ω ∈ A we have q
(
JxKωS

)
⊆ JcertA(q, x)KωT. As B ⊆ A,

especially for every ω ∈ B we have q
(
JxKωS

)
⊆ JcertA(q, x)KωT. And by definition

certB(q, y) is the most informative database w.r.t. ⪯B which satisfies this property.
Therefore certA(q, x)⪯B certB(q, x).

(c) Simply recall that the pre-order ⪯ and ⪯{ϵ} are equivalent.

The above also implies that information-based certain answers are the most informat-
ive answers one could expect with empty knowledge; however, they do not preserve
non-empty knowledge in general. The following example shows why this is important.

3.1. Abstract Framework 24

Example 2. Consider the database d = {R(⊥1, 1)} and a query q that returns the
first and second columns of R plus an extra column with their sum. The most relevant
answer one could expect is (⊥1, 1,⊥1 + 1). But the information-based notion cert□(q,).
gives us a tuple of the form (⊥i, 1,⊥j), where ⊥i and ⊥j are fresh nulls. However, since
null labels are not preserved, there is no relationship between ⊥i and ⊥j in the output,
and ⊥1 in the input. In particular, it is not enforced that the value ⊥i in the output and
the value ⊥1 in the input must be equal (and that ⊥j is equal to ⊥1 + 1).
Now consider the extra piece of knowledge ω encoding the fact that the value of ⊥j is
0. Clearly, the information content of the original database d is not increased by this
new knowledge, since ⊥j ̸∈ Null(d). But ⊥j occurs in the information-based certain
answer (⊥i, 1,⊥j), whose possible worlds under ω always contain the tuple (⊥i, 1, 0).
Thus, the information-based certain answer under additional knowledge is not less
informative than all possible answers under the same knowledge, and it may contain
false tuples.

What this means is that information-based certain answers become irrelevant once we
discover additional knowledge: they must be recomputed on a more informative data-
base, if it exists. Knowledge-preserving certain answers do not have this shortcoming,
as we show next.

Theorem 4. Let q be a query from S to T, let x ∈ IS, and letA be additional knowledge
for both S and T. If certA(q, x) exists, then

q(JxKωS) ⊆ JcertA(q, x)KωT

for every ω ∈ A. Moreover, there exist a query q, database x ∈ IS and w ∈ A such
that:

(a) q(JxKωS) ̸⊆ Jcert□(q, x)KωT, and
(b) Jcert□(q, x)KT ⊆ JcertA(q, x)KωT.

Informally, knowledge-preserving certain answers remain consistent when new in-
formation is discovered. Moreover, there are queries for which this notion gives more
informative answers under additional knowledge.

Proof of Theorem 4. For every ω ∈ A we have that JcertA(q, x)KwT ⊆ q(JxKωS) is imme-
diate from the definition of certA(q, x).

An example of a query and a database such that Jcert□(q, x)KωT ̸⊆ q(JxKωS) is given
in Example 2. And we obtain JcertA(q, x)KωT ⊇ Jcert□(q, x)KT as soon as certA(q, x)
contains some marked-null values.

3.1. Abstract Framework 25

Next, we apply our abstract framework to relational databases, under the set se-
mantics. We do so in a setting where additional knowledge is given by partial valu-
ations of nulls. We then show that the well-known certain answers with nulls corres-
ponds to the valuation-preserving certain answers.

3.2 Certainty in Relational Databases

Recall that an incomplete relational database is a finite set of tables populated by
constants and nulls, and its semantics of incompleteness is given by instantiating nulls
with constants by means of valuations.

Definition 3.2.1. The monoid of partial valuations V ⊆ K consists of all partial func-
tions from Null to Const. Moreover, for every v, v′ ∈ V, the K-semantics of incomplete
relational databases is JdKvv′ = Jv′

(
v(d)

)
K.

We immediately have that the knowledge encoded by V is additional to the relational
database domain for both closed and open world semantics. Below we use the notion
of valuation-preserving certain answers to justify the use of certain answers with nulls.

Proposition 7. Let S be the set-relational databases domain with either OWA or CWA

semantics and T be the set-relational databases domain with OWA semantics. Then,
for every query q from S to T and for every d ∈ IS
(a) either both certV(q, d) and cert⊥(q, d) exist and coincide, or neither of them exists.
(b) for every database d′ we have d′ ⊆ cert⊥(q, d) iff. d′ ⪯V certV(q, d)

Proof. This proposition is a special case of proposition 9 for which a proof is given.

We also justify the intersection-based certain answer:

Proposition 8. Let S be the set-relational databases domain with either OWA or CWA

semantics and T be the set-relational databases domain with OWA semantics and
without null. Let A an additional knowledge S and T, then, for every query q from S

to T and for every d ∈ IS, either both certA(q, d) and cert∩(q, d) exist and coincide, or
neither of them exists.

The intersection-based certain answer is the maximal knowledge-preserving answer
containing only constant tuples.

Proof of Proposition 8. By proposition 6 we have that certA(q, d) ⪯{ϵ} cert{ϵ}(q, d) =

cert□(q, d) and by proposition 3, for databases without nulls as target we have cert□(q, d) =
cert∩(q, d). Therefore we have certA(q, d) ⪯{ϵ} cert∩(q, d) hence JcertA(q, d)KOWA ⊆
Jcert∩(q, d)KOWA. Recall that certA(q, d) and cert∩(q, d) are complete databases, there-
fore we obtain certA(q, d) ⊆ cert∩(q, d)

3.2. Certainty in Relational Databases 26

cert∩(q, d) =
⋂{

q(d′) | d′ ∈ JdKS
}

, therefore for every d′ ∈ JdKS, cert∩(q, d) ⊆ q(d′).
Recall that by definition of Additional knowledge we have that for every ω ∈ A, JdKωS ⊆
JdKS, therefore for every ω ∈ A, for every d′ ∈ JdKωS we have cert∩(q, d) ⊆ q(d′).
Especially we have, cert∩(q, d) ⊆ q(JdKωS) for every ω ∈ A. Moreover by definition
of the knowledge preserving certain answer, we have q(JdKωS) ⊆ JcertA(q, d)KωT. Now
recall that certA(q, d) is a complete database, therefore we obtain q(JdKωS) ⊆ certA(q, d)
and we conclude that cert∩(q, d) ⊆ certA(q, d).

3.2.1 Bag Relational Databases

The model of bag relational database is closely related to set relational database, here
we present the differences. A bag relational database schema is a finite set of table
names with associated arities, and a k-ary table is a finite bag (a.k.a. multiset) of k-
tuples over Const∪Null. The number of occurrences of a tuple t̄ in a table T is denoted
by #

(
R, t̄

)
. Then, a bag relational database d over a given schema maps each table

name R in the schema to a table Rd of appropriate arity.

For convenience of notation, we sometimes represent a bag relational database as
a bag of facts; e.g., d = {|R(1,⊥1), S(⊥1, 2), R(1,⊥1)|} is the database d such that
Rd = {|(1,⊥1), (1,⊥1)|} and Sd = {|(⊥1, 2))|}.

Relational algebra for Bag Relational Databases

The relational algebra language on the bag relational model denoted Bag-RA has the
following syntax:

q := R | πᾱ(q) | σαi=αj (q) | σαi ̸=αj
(q)

| q × q | q ⊎ q | q ∪ q | q ∩ q | q − q

where αi and αj are attributes, and ᾱ is possibly empty tuple of attributes.

3.2. Certainty in Relational Databases 27

The semantics of a (well-formed) Bag-RA query q is given by inductively defining the
quantity #

(
q(d), t̄

)
, which is the number of occurrences of a tuple t̄ (of appropriate

arity) in the result of applying q to a database d. This is done as follows:

#
(
R(d), t̄

)
= #

(
Rd, t̄

)
#
(
πᾱ(q)(d), t̄

)
=

∑
t̄′ : πᾱ(t̄′)=t̄

#
(
q(d), t̄′

)

#
(
σαi=αj (q)(d), t̄

)
=

#
(
q(d), t̄

)
if t̄[αi]

Const
= t̄[αj]

0 otherwise

#
(
σαi ̸=αj

(q)(d), t̄
)

=

#
(
q(d), t̄

)
if t̄[αi]

Const
̸= t̄[αj]

0 otherwise

#
(
(q × q′)(d), t̄ t̄′

)
= #

(
q(d), t̄

)
· #

(
q′(d), t̄′

)
#
(
(q ⊎ q′)(d), t̄

)
= #

(
q(d), t̄

)
+ #

(
q′(d), t̄

)
#
(
(q ∪ q′)(d), t̄

)
= max{#

(
q(d), t̄

)
,#

(
q′(d), t̄

)
}

#
(
(q ∩ q′)(d), t̄

)
= min{#

(
q(d), t̄

)
,#

(
q′(d), t̄

)
}

#
(
(q − q′)(d), t̄

)
= max{#

(
q(d), t̄

)
− #

(
q′(d), t̄

)
, 0}

where t̄[αi] denotes the αi element of t̄, πα1,··· ,αi(t̄) is the tuple (t̄[α1], · · · , t̄[αi]), and
the tuples t̄ and t̄′ in the rule for q×q′ have the same arity as q(d) and q′(d), respectively.

The most common restriction of bag relational algebra is called union of conjunctive
queries denoted UCQ and has the following syntax:

q := R | πᾱ(q) | σαi=αj (q)

| q × q | q ⊎ q

Incompleteness in Bag Relational Databases

The semantics of incompleteness for bag relational database are also defined by the
mean of valuation such that:

(a) JdKCWA = {v(d) | v is a d-complete valuation} .
(b) JdKOWA = {complete d′ | v(d) ⊆ d′ for a d-complete valuation v} .

The notion of certain answers with null can also be extended to the bag model in the
following way:

3.2. Certainty in Relational Databases 28

Definition 3.2.2. The certain answers with nulls to a query q on a bag relational
database d is the table cert⊥(q, d) such that, for every d-complete valuation v and
for every c ∈ Jv(d)KS, the multiplicity of each tuple in v

(
cert⊥(q, d)

)
is less than or

equal to its multiplicity in q(c):

#
(
cert⊥(q, d), t̄

)
= min

{
#
(
q(c), v(t̄)

)
| c ∈ Jv(d)KS, v is a d-complete valuation

}
However, so far we have not explained how a valuation v is applied to a bag relational
database d. When tables T are constrained to be sets, there is no ambiguity on how to
construct v(T). But when they are bags, there are several possibilities, each leading
to different semantics Hernich and Kolaitis (2017).

3.2.2 Collapsing and Additive Semantics

The first construction we study prescribes that, when a valuation is applied to a table,
distinct tuples that become equal (i.e., unify) under the valuation are “collapsed” to-
gether, so that the maximum number of occurrences of each such tuple appears in the
result.

Definition 3.2.3. The collapsing application of a valuation v on a table T is the table
v(T) such that for every tuple t̄

#
(
v(T), t̄

)
= max

{
#
(
T, ū

)
| v(ū) = t

}
For example, consider a table T given by the following bag:

{|(1, 2), (⊥1, 2), (1,⊥2), (1,⊥2)|} (3.3)

and a valuation v such that v(⊥i) = i for every i. Then, the collapsing application of v
to T is the table v(T) given by the bag {|(1, 2), (1, 2)|}.

Intuitively, when valuations are applied in such a way, incomplete facts only represent
new information if they do not unify with already existing data. Below we show that,
under this semantics of valuations, the certain answers with nulls coincide with the
valuation-preserving ones.

Proposition 9. Let S be the bag-relational databases domain under the collapsing
application of valuations with either OWA or CWA semantics and T be the bag-relational
databases domain under the collapsing application of valuations with OWA semantics.
Then, for every query q from S to T and for every d ∈ IS, either both certV(q, d) and
cert⊥(q, d) exist and coincide, or neither of them exists.

We remark that the above result holds for databases under the bag data model, but
also – in particular – when tables are constrained to be sets.

3.2. Certainty in Relational Databases 29

Proof. Due to its length and for sake of readability, the proof is given at the end of the
chapter 3.2.4.

Since the collapsing semantics negates the importance of a tuple’s identity by disreg-
arding – to some extent – its multiplicity, the most commonly used semantics is instead
one where the multiplicities of tuples that become equal under a valuation are added
up in the result.

Definition 3.2.4. The additive application of a valuation v on a table T is the table
v(T) such that for every tuple t̄

#
(
v(T), t̄

)
=

∑
ū : v(ū)=t̄

#
(
T, ū

)

To see the difference with the collapsing semantics, consider again the table T given by
the bag in (3.3), and the same valuation v such that ⊥i 7→ i. The additive application of
v to T results in a table v(T) consisting of 4 (as opposed to 2) occurrences of the tuple
(1, 2). When valuations are applied in such an additive way, incomplete facts always
represent new information even if they unify with already existing data, in contrast with
the collapsing semantics discussed earlier.

However, while more natural, this semantics of valuations leads to problems in terms
of certain answers, as shown below.

Theorem 5. Let S be the bag-relational databases domain under the additive applic-
ation of valuations with either OWA or CWA semantics and T be the bag-relational
databases domain under the additive application of valuations with OWA semantics.
There exists a union of conjunctive queries with negation such that:

(a) the valuation-preserving certain answer does not exist;
(b) the {ϵ}-preserving certain answer does not exist.
(c) the certain answer with nulls is not less informative than every possible answer.

Proof. Due to its length and for sake of readability, the proof is given at the end of the
chapter 3.2.4.

Below we give an example in which the certain answer with nulls to a query q on a
database d is not less informative than the answer to q on some possible world of d.

Example 3. Consider the following database D:

3.2. Certainty in Relational Databases 30

R

A B C

1 ⊥1 2
⊥2 2 1

S

A B C D

1 2 ⊥2 ⊥1

T

A B

1 2

and the following relational algebra query q:

πA,B

(
σA ̸=C∧B ̸=C(R)

)
⊎ πA,B

(
σA=C∧B=D(S)

)
⊎ T

Then, cert⊥(q,D) is the bag {|(1, 2), (1,⊥1), (⊥2, 2)|}. If we take a valuation v such
that v(⊥1) = 2 and v(⊥2) = 1, then {|(1, 2); (1, 2)|} belongs to q

(
Jv(D)K

)
. But with

the additive semantics Jcert⊥(q,D)K contains at least three tuples and so it cannot be
less informative than q

(
v(D)

)
.

The answers A1 = {|(1, 2)|} and A2 = {|(1,⊥i), (⊥k, 2)|} are both less informative than
every element of q(JdK). Thus, cert□(q,D) should be more informative than bothA1 and
A2. We clearly have that A1 ⪯̸ A2 and A2 ⪯̸ A1; moreover, it is easy to check that we
cannot increase the information content of A1 or A2 and still be less informative than
the answer to q on every possible world described by D. Therefore, the information-
based certain answer does not exist.

The above result tells us that, under additive valuations, the notion of certain answers
with nulls is not well-founded, as even for simple queries they may not be less inform-
ative than the query answers on every possible world. Thus, some fact in the certain
answers with nulls might be false.

Moreover, Example 2 showed that the information-based certain answer can be strictly
less informative than the certain answer with nulls, and Proposition 6 states that, for
every knowledge, the knowledge-preserving certain answer is no more informative
than the information-based certain answer. Therefore, there is no additional knowledge
such that knowledge-preserving certain answers captures certain answers with nulls.
We argue that this is due to the additive semantics itself.

To see this, consider two incomplete relational databases d1 and d2 of the same
schema. Then, under OWA and collapsing valuations, we can always build a database
d3 such that Jd3K = Jd1K ∩ Jd2K = Jd1 ∪ d2K, where ∪ denotes the union-max operator:
#
(
(T1 ∪ T2), t̄

)
= max

(
#
(
T1, t̄

)
,#

(
T2, t̄

))
. This ensures that, if we have a finite num-

ber of possible answers to a query, then the certain answers always exist. However,

3.2. Certainty in Relational Databases 31

under additive valuations, we lose this property: as shown in Example 3, there exist
databases d1 and d2 such that, for every database d3, we have Jd3K ̸= Jd1K∩ Jd2K. This
can be interpreted as a mismatch between the semantics and the set of incomplete
objects.: there are not enough objects to capture the complexity of the semantics.

Now that we have identified the problem, we can finally capture the notion of certain
answers with nulls by changing the semantics of target. To do this under additive
valuations, we need to interpret query answers under the collapsing semantics.

Proposition 10. Let S be the bag-relational databases domain under the additive
application of valuations with either OWA or CWA semantics and T be the bag-relational
databases domain under the collapsing application of valuations with OWA semantics.
Then, for every query q from S to T and for every database d ∈ IS, either both
certV(q, d) and cert⊥(q, d) exist and coincide, or neither of them exists.

Proof. Due to its length and for sake of readability, the proof is given at the end of the
chapter 3.2.4.

We have been able to justify the notion of certain answers with nulls for both the
additive and the collapsing semantics of valuations, but neither is entirely satisfactory.
On the one hand, collapsing valuations decreases the expressiveness of the relational
data model based on bags. On the other hand, certain answers with nulls under
additive valuations must be interpreted using the collapsing semantics on target, which
is counter-intuitive especially on top of the open world assumption.

We will now propose a new semantics of incompleteness for relational databases that
overcomes these shortcomings.

3.2.3 Mixed Semantics

The main idea behind our proposed semantics is that applying a valuation to a table
does not produce one table, as is the case with the collapsing and additive semantics,
but rather a set of tables.

Definition 3.2.5. The mixed application of a valuation v to a k-ary table T is the set
v(T) consisting of all tables B of arity k such that, for every k-ary tuple t̄:

max
{
#
(
T, ū

)
| v(ū) = t̄

}
≤ #

(
B, t

)
≤

∑
ū : v(ū)=t̄

#
(
T, ū

)
This extends to databases d as follows: v(d) is the set of all databases d1 of the same
schema as d such that Rd1 belongs to v(Rd) for every table name R.

3.2. Certainty in Relational Databases 32

Finally, the mixed semantics of incompleteness under OWA and CWA are given as
follows:

JdKCWA = {d1 complete | d1 ∈ v(d), v is a valuation}

JdKOWA = {d2 complete | d2 ⊇ d1 ∈ v(d), v is a valuation}

As the name suggests, the mixed semantics combines the collapsing and the additive
ones, by taking into account that incomplete facts unifying with already existing data
may or may not represent new information.

Below we show that, when using the mixed semantics of valuations on both the source
and target domain of queries, the valuation-preserving certain answers and the certain
answers with nulls coincide.

Theorem 6. Let S be the bag-relational databases domain under the mixed application
of valuations with either OWA or CWA semantics and T be the bag-relational databases
domain under the mixed application of valuations with OWA semantics. Then, for every
query q from S to T and for every database d ∈ IS, either both certV(q, d) and
cert⊥(q, d) exist and coincide, or neither of them exists.

Proof. Due to its length and for sake of readability, the proof is given at the end of the
chapter 3.2.4.

Note that when we consider the open world assumption on S, the collapsing and
mixed semantics are equivalent. And for every valuation from V their K-semantics
are also the same. However, as illustrated in Example 4, there exists a query such that
valuation-preserving certain answers upon additive, collapsing and mixed semantics
are different for closed-world semantics.

Example 4. Let d be a relational database such that

Rd = {|1,⊥1,⊥2|} ; Sd = {|1, 1|} ;

and consider the following relational algebra query q:

π∅
(
(R− S) ⊎ (S −R)

)
It is easy to see that the certain answers of q are empty iff there exists a possible world
c of d such that Rc = Sc. Since Sd does not contain nulls, we focus on R.
Under the additive semantics of valuations, for every possible world c of d there are at
least 3 tuples in Rc. As there are always exactly 2 tuples in Sc, we have that Rc − Sc

cannot be empty. Thus, the valuation-preserving certain answer to q on d is non-empty.

3.2. Certainty in Relational Databases 33

Under the collapsing semantics of valuations, {|1, 1|} ̸= v(Rd) for every valuation v

because, even if v(⊥1) = 1 or v(⊥2) = 1, they collapse into a single occurrence of
value 1. Hence, for every possible world c of d, we have that Sc −Rc cannot be empty,
and therefore the valuation-preserving certain answer to q on d is non-empty.
Under the mixed semantics of valuations, we consider every possible multiplicity for
each tuple, and {|1, 1|} ∈ v(Rd) when v(⊥1) = v(⊥2) = 1. Thus, the empty bag is a
possible answer to q, and the valuation-preserving certain answer to q on d is empty.

In light of the above, we argue that the semantics of valuations one should use in the
context of relational databases is the mixed semantics, because it behaves consist-
ently independently of whether a (relational) database domain is the source or the
target of queries. However, under mixed semantics, the valuation-preserving certain
answers coincide with the certain answers with nulls, and these are still unsatisfactory
as they cannot produce answers involving values that were not present in the original
data, as Example 2 illustrates.

3.2.4 Proof of section 3.2: Certainty in relational databases

The proof for bag relational database domain are a bit more involved and require some
domain specific lemma:

Lemma 1. For every relational database d, d′ ∈ I we have

(a) with open world assumption the valuation-information pre-order is equivalent to
the subset pre-order ie. d ⪯V

OWA d
′ ⇔ d ⊆ d′.

(b) with closed world assumption the valuation-information pre-order is equivalent to
the subset pre-order ie. d ⪯V

CWA d
′ ⇔ d = d′.

Proof.

Definition 3.2.6. We say that a d-complete valuation is naive, if for every ⊥i,⊥j ∈
Null(d) we have v(⊥i) ̸= v(⊥j) and v(⊥i), v(⊥j) /∈ Const(d) where Const(d) the set
of constant value appearing in d. As d is finite and Const is infinite, such a valuation
always exists.

The (⇐) is trivial for each pre-order.

We want to prove d ⪯V
OWA d′ ⇒ d ⊆ d′. By contradiction assume that d ̸⊆ d′ then

there exists a tuple t̄ and a relation R such that #
(
Rd, t̄

)
> #

(
Rd′ , t̄

)
. By definition of a

d ⊎ d′-complete naive valuation v, we know that t̄ does not unify with any tuple of Rd

and Rd′ after the application of v. Therefore we have #
(
v(Rd), v(t̄)

)
> #

(
v(Rd′), v(t̄)

)
,

hence v(d′) ̸∈ Jv(d)K and Jv(d′)KOWA ̸⊆ Jv(d)KOWA. Finally we have Jd′KvOWA ̸⊆ JdKvOWA and
we conclude that d ̸⪯V

OWA d
′.

3.2. Certainty in Relational Databases 34

The proof of d ⪯V
CWA d

′ ⇒ (d = d′) is similar as neither d ̸⊆ d′ or d′ ̸⊆ d and we do not
use property of the OWA semantic in the proof.

Lemma 2. For every relational database d we have

JdK =
⋃

v a d-complete valuation

JdKv (3.4)

Proof. Recall that

JdKOWA = {d′ complete | ∃ valuation v s.t. v(d) ⊆ d′}

JdKCWA = {d′ complete | ∃ valuation v s.t. v(d) = d′}

In both definition d′ is a complete database, hence v(d) is a complete database and
v is a d-complete valuation. Moreover by lemma 1 the inclusion and equality can be
rewritten as d′ ∈ Jv(d)K = JdKv.

Lemma 3. For every relational databases d, d′ ∈ I if for all
(
d⊎ d′

)
-complete valuation

v we have Jd′Kv ⊆ JdKv then d⪯V d′.

Proof. Let a partial valuation v, by lemma 2 we have that:

Jv(d)K = JdKv =
⋃

v′ a v(d)-complete valuation

Jv′(v(d))K (3.5)

And by hypothesis for every v′ a
(
v(d)⊎v(d′)

)
-complete valuation we have Jv′(v(d′))K ⊆

Jv′(v(d))K. Therefore for every valuation v we have Jv(d′)K ⊆ Jv(d)K.

Proof of Proposition 9

This proof is a bit more involved than one might expect. It mostly rely on the fact
that for collapsing semantic with the open world assumption we have the following
property, which essentially says that we have enough incomplete objects to capture
the semantics.

Lemma 4. For every databases A1, A2 ∈ IT and every valuation v with the collapsing
application and the OWA semantics we have JA1KvOWA ∩ JA2KvOWA = J

(
A1 ∪A2

)
KvOWA.

Proof. Let A1, A2 ∈ IT, we have A1 ⊆
(
A1 ∪ A2

)
and A2 ⊆

(
A1 ∪ A2

)
. Therefore by

lemma 1, with OWA semantics, for every valuation v we have J
(
A1∪A2

)
KvOWA ⊆ JA1KvOWA

and J
(
A1 ∪A2

)
KvOWA ⊆ JA2KvOWA. Hence J

(
A1 ∪A2

)
KvOWA ⊆

(
JA1KvOWA ∩ JA2KvOWA

)
.

Let a
(
A1 ⊎ A2

)
-complete valuation v, and a complete database C ∈ CT such that

C ∈ Jv(A1)KOWA and C ∈ Jv(A2)KOWA. As C is complete, by lemma 1, we have v(A1) ⊆
C and v(A2) ⊆ C. Moreover, with the collapsing semantics, for every tuple t̄ we have
#
(
v(A1 ∪ A2), t̄

)
≤ max

(
#
(
v(A1), t̄

)
;#

(
v(A2), t̄

))
, therefore #

(
v(A1 ∪ A2), t̄

)
≤ #

(
C, t̄

)

3.2. Certainty in Relational Databases 35

and v(A1∪A2) ⊆ C. Hence we have C ∈ Jv(A1∪A2)KOWA and C ∈ J
(
A1∪A2

)
KvOWA. So

we can conclude JA1KvOWA ∩ JA2KvOWA ⊆ J
(
A1 ∪ A2

)
KvOWA for every

(
A1 ⊎ A2

)
-complete

valuation v. And by lemma 3 we have JA1KvOWA ∩ JA2KvOWA ⊆ J
(
A1 ∪ A2

)
KvOWA for every

valuations.

Now that we can compose bag with union-max operator and compute its semantics,
we can prove the proposition:

Proposition. Let S and T be relational database domains under the collapsing ap-
plication of valuations. Then, for every query q from S to T and for every d ∈ IS, either
both certV(q, d) and cert⊥(q, d) exist and coincide, or neither of them exists.

Proof. For every tuple t̄ and every bag B we denote Bt̄ the bag such that #
(
Bt̄, t̄

)
=

#
(
B, t̄

)
and #

(
Bt̄, t̄

′) = 0 if t̄ ̸= t̄′. Then by definition we have

B =
⋃
t̄∈T ∗

Bt̄ (3.6)

with ∪ the union-max operation for bags.

By definition of cert⊥(q, d) for every tuple t̄ and every complete valuation v we have
q(JxKv) ⊆ Jcert⊥(q, d)t̄Kv. Therefore we have cert⊥(q, d)t̄ ⪯V q(d). Hence by lemma 4
we have cert⊥(q, d)⪯V q(d). And by definition of valuation preserving certain answers
as greatest lower bound, we can conclude that cert⊥(q, d)⪯V certV(q, d).

To prove that certV(q, d) ⪯V cert⊥(q, d), by contradiction we assume there exists a
tuple t̄ such that certV(q, d)t̄ ̸⊆ cert⊥(q, d)t̄. Hence by definition of certV(q, d)t̄ we
have certV(q, d)t̄ ⪯A certV(q, d) and certV(q, d)t̄ ⪯V q(x). Especially for all d-complete
valuation v, v(certV(q, d)t̄) ⊆ q(v(d)). And if certV(q, d)t̄ ̸⊆ cert⊥(q, d)t̄ it contradicts the
maximality definition of certain answers with nulls.

Proof of Theorem 5

The example 3 gives such query and therefore a proof for the Theorem.

Proof of Proposition 10 and Theorem 6

The proof are similar to the proof of Proposition 9. Indeed notice that as mixed se-
mantic and collapsing semantic are the same with the open assumption, lemma 4 is
applicable. And the rest of the proof apply disregarding the semantic of the source as
soon at the valuation monoid is additional to it.

3.3. Certainty for Value-Inventing Queries 36

3.3 Certainty for Value-Inventing Queries
We would like to capture all the information-based certain answers, while keeping the
valuation-preservation property of the certain answers with nulls. By Proposition 6, we
know that with the relational database domain as target it is impossible to be valuation-
preserving and more informative at the same time. Therefore, we must modify the
target domain. To handle queries whose answers may contain values not appearing
in the original input, we extend relational databases with the notion of persistent nulls.
Informally, these are information placeholders with the same semantics as marked
nulls, but their incompleteness does not decrease in the presence of new knowledge:
every interpretation of a persistent null is consistent with any additional knowledge.

Relational database domains with persistent nulls are simply relational database do-
mains, where databases are populated by constants, nulls and persistent nulls. The
latter values come from a countably infinite set PNull. We denote the elements of PNull
using the symbol ⊤ with subscripts. For a database d, we denote by PNull(d) the set
of persistent nulls appearing in it.

A P-valuation is a partial function v from Null ∪ PNull to Const. We denote by v(d)

the database obtained from d by replacing each element e of Null ∪ PNull with v(e),
if this is defined. We introduce P-valuations only as a means to define the semantics
of relational database domains with persistent nulls; such P-valuations, however, do
not provide additional knowledge about the persistent nulls, as their incompleteness
cannot be reduced. Indeed, we consider again the monoid V of partial valuations
introduced in Section 3.2, which is additional to relational database domains with
persistent nulls.

In what follows, we will only use relational database domains with persistent nulls as
target, and we focus on open-world semantics as before. For simplicity, we use the
collapsing semantics of P-valuations, which is defined below and is equivalent to the
mixed one.

Definition 3.3.1. The collapsing application of a P-valuation v to a k-ary table T is the
k-ary table v(T) such that, for every tuple t̄ ∈ Constk we have:

#
(
v(T), t̄

)
= max

{
#
(
T, ū

)
| v(ū) = t̄

}
The corresponding OWA semantics of incompleteness is defined as follows:

JdKOWA = {d′ complete | d′ ⊇ v(d), v is a P-valuation}

With all of this in place, we can capture information-based certain answers while still
preserving knowledge from partial valuations.

3.3. Certainty for Value-Inventing Queries 37

Below, we show that the valuation-preserving certain answers with persistent nulls
are as informative as information-based certain answers, and more informative than
valuation-preserving certain answers without persistent nulls.

Proposition 11. Let R be a relational database domain with either OWA or CWA

semantics, and let P be a relational database domain with persistent nulls with OWA

semantics, such that CR = CP and IR ⊆ IP. Let q be a query from R to R, and let q′

be a query identical to q, but from R to P. Then, for every d ∈ IR, all of the following
hold:

(a) cert□(q, d) ≡P certV(q′, d);
(b) certV(q, d)⪯V

P certV(q′, d).

Proof. Due to its length and for sake of readability, the proof is given at the end of the
chapter 3.3.4.

Since we are now able to capture information-based certain answers, the valuation-
preserving certain answers will not be empty. As an application, we look at a class
UCQ-F of value-inventing queries defined by unions of conjunctive queries with func-
tion application.

3.3.1 Query Answering for UCQ-F

Let F be a set of functions where each function f of arity k is from Constk to Const.

Definition 3.3.2. The language UCQ-F of union of conjunctive queries with function
application is defined by the following grammar:

q := R | q × q | q ⊎ q | πᾱ(q) | σαi=αj (q)

| Applyᾱ(f, q) with f ∈ F

where αi and αj are attributes, and ᾱ is a tuple of attributes.

All of the operations above, except Apply, are defined in subsection 3.2.1. The se-
mantics of q′ = Applyα1,...,αk

(f, q), for every complete relational database d and for
every tuple t̄ of the same arity as q, is defined as follows:

#
(
q′(d), (t̄, t)

)
=

#
(
q(d), t̄

)
if t = f

(
t̄[α1], . . . , t̄[αk]

)
0 otherwise

While the query language UCQ-F is conceptually quite simple, computing the valuation-
preserving certain answers for UCQ-F queries is intractable even if F consists of just
one unary function.

3.3. Certainty for Value-Inventing Queries 38

Proposition 12. There is a unary function f such that computing the {ϵ}-preserving
certain answer and the valuation-preserving certain answer to Boolean queries in
UCQ-{f}, on relational databases with or without persistent nulls, is coNP-hard in
data complexity.

Proof. Due to its length and for sake of readability, the proof is given at the end of the
chapter 3.3.4.

For UCQ-F queries, the standard SQL evaluation is polynomial, so it cannot compute
any knowledge-preserving notion of certain answers, which may result in counter-
intuitive results on database with nulls. An approach to approximate certain answers
when they are intractable is to build a query evaluation algorithm with correctness
guarantees that runs in polynomial time.

Definition 3.3.3. Let S and T be database domains, and Q be a query language. A
query evaluation algorithm Eval : Q× IS → IT has A-preserving correctness guaran-
tees for Q if, for every query q ∈ Q, all of the following hold:

(a) Eval(q, x)⪯A
T certA(q, x) for every x ∈ IS, and

(b) Eval(q, c) = q(c) for every c ∈ CS.

In other words, a query evaluation algorithm with correctness guarantees produces
answers that are consistent (w.r.t. the A-preserving information ordering on the target
domain) with the query answers on incomplete databases, and equal to them on
complete databases.

In order to obtain a polynomial-time algorithm, we extend the idea of naive evaluation
on relational database domains based on a free algebra of terms.

3.3.2 Relational Databases over Free Algebra

We consider a free algebra of terms T , where the basis of T is the set Const ∪Null of
constants and (marked) nulls, and the operations are functions from T × · · · × T to T .
The set of such functions is denoted by Γ. Then, a relational database is over T if it is
populated with elements of T .

3.3. Certainty for Value-Inventing Queries 39

Definition 3.3.4. An interpretation ·I of Γ over Const associates each γ ∈ Γ of arity k
with a function γI : Constk → Const. The grounding of T under I is the function grd
that maps each t ∈ T to an element of Const ∪ Null ∪ PNull as follows:

grd(t) =

t if t ∈ Const ∪ Null

γI(c1, . . . , ck) if t = γ(t1, . . . , tk) and

ci = grd(ti) ∈ Const

for every i ∈ {1, . . . , k}

⊤grd(t) otherwise

This naturally extends tables and relational databases over T . The grounding of a
table T is the table grd(T) with persistent nulls such that, for every tuple t̄ of the same
arity as T , we have:

#
(
grd(T), t̄

)
=

∑
ū : grd(ū)=t̄

#
(
T, ū)

)
Finally, the grounding of a relational database d over T is the database grd(d) of the
same schema such that, for every table name R, we have Rgrd(d) = grd(Rd).

A relational database domain D is over the free algebra T if every database in ID is
over T and its grounding belongs to CD; in addition, J·KD uses OWA with the collapsing
semantics of valuations as defined below.

Definition 3.3.5. For every valuation v : Null→ Const and for every term t = γ(t1, . . . , tk) ∈
T , we let v(t) denote the term γ

(
v(t1), . . . , v(tk)

)
.

The collapsing application of v to a k-ary table T over T is the k-ary table v(T) such
that, for every t̄ ∈ T k, we have:

#
(
v(T), t̄

)
= max

{
#
(
T, ū

)
| v(ū) = t̄

}
The corresponding OWA semantics of incompleteness is defined as follows:

JdKOWA = {d′ complete | d′ ⊇ v(d), v is a valuation}

We will now use the relational database domain over T to define naive evaluation for
value-inventing queries.

3.3. Certainty for Value-Inventing Queries 40

3.3.3 Approximation Algorithms for UCQ-F

For the rest of this section, we consider the free algebra of terms T defined as above,
with a set Γ of operations whose interpretation I over Const is assumed to be comput-
able in polynomial time. We take F = {γI | γ ∈ Γ} as the set of functions for UCQ-F
queries.

Definition 3.3.6. The interpreted naive evaluation of a UCQ- F query q is the query
qi-naive from incomplete relational databases to incomplete relational databases over
T , where qi-naive is the standard naive evaluation for relational algebra (i.e., nulls are
treated as new constants) and such that, for every relational database d and for every
tuple t̄ of appropriate arity, we have:

• for q = Applyα1,...,αk
(γI , q′); #

(
qi-naive(d), (t̄, t)

)
is#

(
q′i-naive(d), t̄

)
if t = γ(t̄[α1], . . . , t̄[αk])

0 otherwise

• for q = σαi=αj (q
′); #

(
qi-naive(d), t̄

)
is#

(
q′i-naive(d), t̄

)
if grd(t̄[αi]) = grd(t̄[αj])

0 otherwise

Informally, the interpreted naive evaluation behaves like the classical naive evaluation
for relational algebra, except that it interprets the free algebra terms when checking
for equality in selections.

Proposition 13. For UCQ-F query q and for every relational database d, the inter-
preted naive evaluation of q can be computed in polynomial time in the size of d.

Proof. Due to its length and for sake of readability, the proof is given at the end of the
chapter 3.3.4.

We have built a polynomial-time evaluation algorithm for UCQ-F queries on relational
database domains over T . In addition, by means of grounding, we can provide an
evaluation algorithm with correctness guarantees.

Theorem 7. The grounding of the interpreted naive evaluation is a query evaluation
algorithm with correctness guarantees for UCQ-F . Thus, for every query q ∈ UCQ-F
and for every relational database d, we have:

(a) grd
(
qi-naive(d)

)
⪯V

P certV(q, d); and
(b) if d is complete, then grd

(
qi-naive(d)

)
= q(d).

Proof. Due to its length and for sake of readability, the proof is given at the end of the
chapter 3.3.4.

3.3. Certainty for Value-Inventing Queries 41

We conclude this section with a fully worked-out example of how UCQ-F queries are
evaluated and grounded.

Example 5. Consider a database D with a relation R = {(3, 0, 1, 2),
(1,⊥1, 1,⊥1), (2,⊥2,⊥2, 2) over attributes A,B,C,D, and the following value inventing
query q′:

π(A+B);(C+D)

(
Apply(C,D)(+,Apply(A,B)(+, R))

)
where +(c, c′) = c+ c′ for every c, c′ ∈ Const. The naive evaluation of q′ on D gives the
following answers:

q′i-naive(D) = q′naive(D) =

A+B C +D

+(3, 0) +(1, 2)

+(1,⊥1) +(1,⊥1)

+(2,⊥2) +(⊥2, 2)

The naive evaluation of q = σ(A+B)=(C+D)

(
q′
)

on D and its grounding are:

qnaive(D)

A+B C +D

+(1,⊥1) +(1,⊥1)

grd
(
qnaive(D)

)
A+B C +D

⊤i ⊤i

These return unsatisfactory answers, because they miss some complete tuples. Naive
evaluation cannot capture the fact that +(0, 3) = +(1, 2) = 3, as it does not interpret
the function. On the other hand, the interpreted naive evaluation and its grounding are:

qi-naive(D)

A+B C +D

+(3, 0) +(1, 2)

+(1,⊥1) +(1,⊥1)

grd
(
qi-naive(D)

)
A+B C +D

3 3

⊤j ⊤j

The interpreted naive evaluation is able to capture all complete tuples. It recognizes
that constant terms such as +(3, 0) and +(1, 2) are equal. Moreover, for this query, the
interpreted-naive evaluation captures more tuples than the certain answers with nulls,
but strictly less tuples than the valuation-preserving certain answers on the relational
database domain with persistent nulls:

3.3. Certainty for Value-Inventing Queries 42

cert⊥(q,D)

A+B C +D

3 3

certV(q,D)

A+B C +D

3 3

⊤j ⊤j

⊤k ⊤k

The valuation-preserving certain answer captures more tuples, because it is able to
recognize that +(2,⊥2) and +(⊥2, 2) are equal for every valuation.

We have been able to build a polynomial query evaluation algorithm with correctness
guarantee for the applied union of conjunctive query language UCQ-F . Moreover as
illustrated in Example 5, there exist queries where the interpreted naive evaluation
algorithm is a strict improvement from the certain answers with nulls: it returns more
certain tuples.

3.3.4 Proof of section 3.3: Value-inventing queries

For sake of clarity we denote:

1. R the relational database domain.
2. P the relational database domain with persistent nulls.
3. F the relational database domain with free algebra terms.

Proof of Proposition 11

Proposition. Let R be a relational database domain, and let P be a relational data-
base domain with persistent nulls, such that CR = CP. Let q be a query from R to R,
and let q′ be a query identical to q, but from R to P. Then, for every d ∈ IR, all of the
following hold:

(a) cert□(q, d) ≡P certV(q′, d);
(b) certV(q, d)⪯V

P certV(q′, d).

Proof. We first prove: certV(q′, d) ⪯P cert□(q, d). Notice that for every database d

we have JdKP = JdKR. Therefore cert□(q′, d) = cert□(q, d). And by lemma 4 we can
conclude.

3.3. Certainty for Value-Inventing Queries 43

We now prove: cert□(q, d) ⪯P certV(q′, d). Let a functionm which maps every null⊥i ∈
Null(cert□(q, d)) to a distinct P-null ⊤i ∈ PNull. Then we have m(cert□(q, d)) ∈ IP and
as there is no null value inm(cert□(q, d)), for every valuation we have Jm(cert□(q, d))KvP =

Jcert□(q, d)KP. Therefore we also havem(cert□(q, d))⪯V
Pq(d) = q′(d). And by definition

of valuation preserving certain answers as greatest lower bound: m(cert□(q, d)) ⪯V
P

certV(q′, d). Hence we can conclude cert□(q, d) ⪯P certV(q′, d).

We want to show: certV(q, d) ⪯V
P certV(q′, d). We notice that IR ⊂ IP, especially we

have certV(q, d) ∈ IP. And it verifies certV(q, d)⪯V
P q(d) = q′(d). Hence by definition of

greatest lower bound we have certV(q, d)⪯V
P certV(q′, d).

Proof of Proposition 12

Proposition. There is a unary function f such that computing the {ϵ}-preserving
certain answer and the valuation-preserving certain answer to boolean queries in
UCQ-{f}, on relational databases with or without persistent nulls, is coNP-hard in
data complexity.

Proof. We consider the modulo operation f such that for every constant c ∈ Const we
have f(c) = c mod 3. Then it is easy to build a boolean query in UCQ-{f} which is
not empty if and only if the numbering of a graph is not a valid 3-colouring. Therefore
by reduction to 3-colouring computing the certain answers to such query is coNP-hard
in data-complexity.

Proof of proposition 13

Proposition. For UCQ-F query q and for every relational database d, the interpreted
naive evaluation of q can be computed in polynomial time in the size of d.

We focus on the selection operation and prove that computing it for each tuple can be
done in polytime with respect to the size of the query.

Definition 3.3.7. For each term t ∈ T we define the metric of t denoted ∥t∥ such that:

∥t∥ =

{
1 +

∑k
i=1 ∥ti∥ if t = γ

(
t1, · · · tk

)
1 otherwise

Lemma 5. For every query q in UCQ-F and every database d, the metric of the term
in qi-naive(d) is independent of the size of d.

Proof. By induction assume that q is such that for every term t ∈ qi-naive(d) we have
∥t∥ independent of the size of d. Let Q = Apply(α1,··· ,αk)

(γ, q). Let t ∈ Qi-naive(d), then
by definition of Q and interpreted naive evaluation, we either have t ∈ qi-naive(d), or
t = γ(t̄) with t̄ ∈ qi-naive(d). The first case is immediate, hence assume t = γ(t̄) with

3.3. Certainty for Value-Inventing Queries 44

t̄ ∈ qi-naive(d); then by definition:

∥t∥ = 1 +
∑
t′∈t̄

∥t′∥ (3.7)

And by hypothesis of induction ∥t′∥ is independent of the size of d, hence ∥t∥ is also
independent.

By definition of interpreted naive evaluation, checking selection can then by done
linearly in the size of the term. And by lemma previous lemma we can conclude that
computing selection can be done in polytime with respect to size of d.

Proof of Theorem 7

This proof is more involved: we first have to prove that qi-naive(d) ⪯V
F certV(qi-naive, d),

and then that grd(certV(qi-naive, d)) ⪯V
P certV(q, d).

Lemma 6. For every free relational database d, d′ ∈ IF, the valuation-information pre-
order is equivalent to the subset pre-order ie. d ⪯V

F d
′ ⇔ d ⊆ d′.

Proof. The proof is similar to the one for R.

Lemma 7. qi-naive(d) ⊆ certV(qi-naive, d)

Proof. The proof is done by induction on the structure of q; we assume q, q′ such that
for every database we have qi-naive(d) ⊆ certV(qi-naive, d) and q′i-naive(d) ⊆ certV(q′i-naive, d)

Case 1. Let Qi-naive = qi-naive ⊎ q′i-naive.
By definition of Qi-naive we have Qi-naive(d) = qi-naive(d) ⊎ q′i-naive(d). And by induction
hypothesis we conclude Qi-naive(d) ⊆ certV(qi-naive, d) ⊎ certV(q′i-naive, d).

Case 2. Let Qi-naive = Apply(α1,··· ,αk)
(γ, qi-naive)i-naive. Then by definition for every tuple

t̄ ∈ T ∗ we have

#
(
Qi-naive(d), (t̄, t)

)
=

{
#
(
qi-naive(d), t̄

)
if t = γ(t̄[α1], · · · , t̄[αk])

0 otherwise.

By induction hypothesis we have #
(
qi-naive(d), t̄

)
≤ #

(
certV(qi-naive, d), t̄

)
hence:

#
(
Qi-naive(d), (t̄, t)

)
≤

{
#
(
certV(qi-naive, d), t̄

)
if t = γ(t̄[α1], · · · , t̄[αk])

0 otherwise.

3.3. Certainty for Value-Inventing Queries 45

Therefore we have #
(
Qi-naive(d), (t̄, t)

)
≤ #

(
certV(Qi-naive, d), (t̄, t)

)
, and we conclude

Qi-naive(d) ⊆ certV(Qi-naive, d).

Case 3. Let Qi-naive = σαi=αj (qi-naive)i-naive. Then by definition for every tuple t̄ ∈ T ∗ we
have:

#
(
Qi-naive(d), t̄

)
=

{
#
(
qi-naive(d), t̄

)
if grd(t̄[αi]) = grd(t̄[αj])

0 otherwise.

By induction hypothesis we have #
(
qi-naive(d), t̄

)
≤ #

(
certV(qi-naive, d), t̄

)
hence:

#
(
Qi-naive(d), t̄

)
≤

{
#
(
certV(qi-naive, d)), t̄

)
if grd(t̄[αi]) = grd(t̄[αj])

0 otherwise.

Therefore we have #
(
Qi-naive(d), (t̄, t)

)
≤ #

(
certV(Qi-naive, d), (t̄, t)

)
, and we conclude

Qi-naive(d) ⊆ certV(Qi-naive, d). Note that for the selection the converse is not true, in
general certV(Qi-naive, d) ̸⊆ Qi-naive(d)

The other cases are similar.

Lemma 8. grd(certV(qi-naive, d)) ⪯V
P certV(q, d)

Proof.

Claim 1. For every free algebra database d ∈ IF and every d-complete valuation v we
have

grd(Jv(d)KF) ⊆ Jv(grd(d))KP

By definition of the interpreted naive evaluation we have c ∈ CR we have grd(qi-naive(c)) =

q(c). Notice that it is not true for naive evaluation, we only have grd(qnaive(c)) ⊆ q(c).
For every every d-complete valuation v we have qnaive(v(d)) ∈ JcertV(qi-naive, d)Kv.
Therefore we have grd(qnaive(v(d))) ∈ grd(JcertV(qi-naive, d)Kv) and q(v(d)) ∈ grd(JcertV(qi-naive, d)Kv).
By claim 1 we can obtain q(v(d)) ∈ Jgrd(certV(qi-naive, d))Kv.
Therefore we have grd(certV(qi-naive, d)) ⪯V

P q(d), and by definition of greatest lower
bound we conclude that grd(certV(qi-naive, d)) ⪯V

P certV(q, d).

Theorem 1. The grounding of the interpreted naive evaluation is a query evaluation
algorithm with correctness guarantees for UCQ-F . Thus, for every query q ∈ UCQ-F
and for every relational database d, we have:

(a) grd(qi-naive(d))⪯V
P certV(q, d); and

(b) if d is complete, then grd(qi-naive(d)) = q(d).

3.3. Certainty for Value-Inventing Queries 46

Proof. Combining the previous lemmas we obtain grd(qi-naive(d)) ⪯V
P grd(certV(qi-naive, d)) ⪯V

P

certV(q, d) which conclude the proof of Theorem 7

Proof of Claim 1

Claim. For every free algebra database d ∈ IFand every d-complete valuation v we
have

grd(Jv(d)KF) ⊆ Jv(grd(d))KP

Proof. First by induction on the term we are first proving that for every t̄ ∈ T ∗ there
exists a P-valuation vP such that vP

(
v(grd(t̄))

)
= grd(v(t̄)).

Case 1. Let c ∈ Const then we trivially have v(grd(c)) = grd(c) = c = v(c) = grd(v(c)).

Case 2. Let ⊥ ∈ Null and v(⊥) = c by definition we have grd(⊥) = ⊥. Hence
v(grd(⊥)) = v(⊥) = c and grd(v(⊥)) = grd(c) = c.

Case 3. Let γ(t̄) ∈ T .
Assume grd(t̄) ∈ Const∗. By definition grd(γ(t̄)) ∈ Const therefore v(grd(γ(t̄))) =

grd(γ(t̄)). Moreover as grd(t̄) ∈ Const∗ we also have v(γ(t̄)) = γ(t̄).
Assume grd(t̄) ̸∈ Const∗. then by definition grd(γ(t̄)) = ⊤γ(t̄). Let vP the P-valuation
such that vP(⊤γ(t̄)) = grd(γ(v(t̄))) ∈ Const. Then we have vP(v(⊤γ(t̄))) = grd(γ(v(t̄))).

Case 4. Let t̄ = (t1, t2) such that for every i ∈ {1, 2} there exists a P-valuation vPi

such that grd(v(ti)) = vPi
(
v(grd(ti))

)
. By definition grd(v(t̄)) =

(
grd(v(t1)),grd(v(t2))

)
.

By induction hypothesis we have: grd(v(t̄)) =
(
vP1(v(grd(t1))), vP2(v(grd(t2)))

)
. We

consider the P-valuation vP such that vP(⊤t1) = vP1(⊤t1) and vP(⊤t2) = vP2(⊤t2). And
we obtain

(
vP1(v(grd(t1))), vP2(v(grd(t2)))

)
= vP(v(grd(t̄)))

We have been able to prove that for every t̄ ∈ T ∗ there exists a P-valuation vP such that
grd(v(t̄)) = vP

(
v(grd(t̄))

)
. Now we want to extend this result to relations, but it does

not hold because of possible unification and therefore collapsing. Hence we prove that
for every free-algebra relation there exists a P-valuation vP such that vP

(
v(grd(R))

)
⊆

grd(v(R)). We consider the P-valuation vP such that

vP = ◦
t̄∈R

vPt̄

where vPt̄ such that grd(v(t̄)) = vPt̄
(
v(grd(t̄))

)
. Then every tuples in vP

(
v(grd(R))

)
and grd(v(R)) are the same. And their multiplicities might be lower in vP

(
v(grd(R))

)
because of the collapsing application of vP. Therefore we have

vP
(
v(grd(R))

)
⊆ grd(v(R))

3.3. Certainty for Value-Inventing Queries 47

From there we can trivially extend this results to free algebra databases: for every free-
algebra database d there exists a P-valuation vP such that vP

(
v(grd(d))

)
⊆ grd(v(d)).

Then by definition of P for every free algebra database d ∈ IFand every d-complete
valuation v we have

grd(v(d)) ∈ Jv(grd(d))KP

And by definition of the J·KP semantic for every c′ ∈ CR such that grd(v(d)) ⊆ c′ we
have c′ ∈ Jv(grd(d))KP. Also by definition of the J·KF semantic for every c′ ∈ grd(J·KF)
we have grd(v(d)) ⊆ c′. Hence we can conclude

grd(Jv(d)KF) ⊆ Jv(grd(d))KP

3.4 Conclusion

If one looks at real-life database queries (e.g., in standard benchmarks, as those
produced by the TPC-H), there are very few queries from the classes for which we
have query-answering techniques in the presence of incomplete data. Real-life queries
differ in the most basic semantics of the underlying data model and in their features,
as crucially, they invent new values that form part of the output. For those, we lacked
notions of correctness, or certainty, of query answering.

Our goal here was to remedy this situation by first providing a general framework
explaining what correctness is, and second by showing how it can be applied in some
cases that go well beyond queries that we had known how to handle. We have done so
for the prevalent bag semantics and for queries that can invent new values by means,
for example, of arithmetic functions.

The most pressing next question is to extend these techniques to queries with aggreg-
ates that can produce new values by applying arithmetic functions to entire columns
in relations. These are extremely common in applications, as witnessed again by
benchmark queries. Theoretical literature offers no insight into a satisfactory notion
of answers for queries with aggregates over incomplete data. The only well-defined
notions for queries with aggregates are the information-based certain answers and
the valuation-preserving certain answers with persistent nulls. And they produce a
fresh null or a persistent null for each aggregation involving incomplete data.

3.4. Conclusion 48

For generic queries, the valuation-preserving certain answers are a strict improvement
over the information-based certain answers. They have the same information content
and the same computational complexity, but the valuation-preserving certain answers
remain relevant and consistent when the values of some nulls are discovered. How-
ever, we have only been able to improve certain answers without any computational
cost because every element preserving the knowledge from valuations in the certain
answers is also in the source database. Indeed, for generic queries, the elements in
the valuation-preserving certain answers (null values included) are also elements of
the source database.

For queries with aggregates, we do not have a one-to-one injection between the
element of the answer and the element of the source database. Actually, the size of
an element preserving the knowledge from valuations can be exponential with respect
to the size of the source database. Therefore, for aggregate queries, if we want to
improve the information-based certain answers without a too high computational cost,
we have to consider a different additional knowledge.

In order to know what would be a relevant additional knowledge, we need to discover
what are the database users’ expectations.

Chapter 4

SQL incompleteness: A
Socio-technical study

Based on ’Troubles with nulls, views from the users’ published in VLDB 2022,
Toussaint, Guagliardo, Libkin, and Sequeda (2022).

Despite its maturity, foundational research on incomplete data has not yet properly
translated to practice. While we may expect academics to be familiar with concepts
such as relational algebra or even certain answers, we should not expect it from
practitioners. In order to study what real-life users expect from incomplete databases,
we need to consider the SQL database management system that practitioners are
familiar with. Afterward, we will be able to infer how to improve and implement the
theoretical models in a relevant way.

Anecdotally, one hears that the way in which SQL handles nulls creates a myriad of
problems in everyday applications of database systems. To the best of our knowledge,
however, the actual shortcomings of SQL, as perceived by database practitioners,
have yet to be systematically documented, and it is not known if existing research
results can readily be used to address the practical challenges.

Our goal is to improve our understanding of database practitioner’s expectations and
approaches to incomplete information in relational databases, namely NULL values, in
order to know how we can further bridge the gap between theory and practice. We
wish to validate or refute the common assumptions made by the database research
community about the causes and potential solutions to the problem. Towards achieving
our goal, we seek to answer four questions:

(Q1) How commonly are SQL’s NULL and related features used?
(Q2) What do nulls mean to users?
(Q3) Are users satisfied with SQL’s handling of nulls and, if not, why?
(Q4) Are there readily available solutions to mitigate the problems?

49

4. SQL incompleteness: A Socio-technical study 50

As a first milestone to find answers to these questions, we designed an online sur-
vey which ran for four months and attracted 175 participants, with three quarters of
them being database practitioners and one quarter academics. Our major findings, in
response to the above questions, are summarized below.

SQL’s NULL features usage. Our participants acknowledge that NULL values appear
often in their databases. They use some NULL-specific operators of SQL (most com-
monly IS NULL tests), but rely more on schema constraints to rule out NULL values.
It appears that NULL values are mostly perceived as an inconvenience rather than a
feature that one can take advantage of.

Meaning of NULL values. NULL values appear for many reasons, and our participants
often ascribe different meanings to them. While there is a near consensus that nulls
can represent non-applicable values, only a quarter of respondents think that this is
the only interpretation. A majority think that a NULL can also represent some unknown
value, which may or may not exist. The meaning of NULL could also be 0, empty-string,
or another constant, but this is rare.

SQL handling of nulls is not satisfactory. SQL’s rules for handling NULL values are
not fully satisfactory. While for simple queries (positive fragment of relational algebra)
most of our respondents accept SQL’s behavior, for more complex queries, involving
either aggregation or negation, many are not satisfied with SQL answers.

No readily available solutions and more research is needed. There is no consensus
among the respondents as to what a better behavior of SQL could be. The desired
behaviors are diverse, and independent of the users’ view of what nulls mean. Some
users want the answers to contain more tuples (moving in the direction of possible
answers), others want fewer tuples (but with more guarantees), and yet others simply
wish for a warning or error message to be given. These different approaches also
indicate that the focus of the academic literature, which typically concentrated on the
missing value model of nulls and certain answers as the holy grail, is addressing only
a very narrow spectrum of the database practitioner’s needs.

While the responses we collected and analyzed can only provide indications, the scope
of the mismatch between the common assumption made by the research community
and the participants’ answers provide strong evidence that a problem does exist and
deserves to be studied with more resources. Obtaining definitive answers to questions
(Q1)–(Q4), requires access to a larger sample of participants and a more in-depth pro-
tocol that can include random sampling, interviews, web-data analysis (Twitter, Stack

. SQL incompleteness: A Socio-technical study 51

Overflow, Reddit, etc.) Bryman (2016); Evans and Mathur (2018). Our questionnaire
design can serve as the basis for such further studies. Moreover, the design of a social
study experiment necessitates some prior information about the target population to
minimize bias and maximize efficiency; our survey design and analysis methodology
allow to gather such information Evans and Mathur (2005). An obvious step in this
direction would be to run our survey on a larger sample, although we note that our
sample of 175 respondents is twice as large as those that have previously been seen
in database research of this kind Sahu, Mhedhbi, Salihoglu, Lin, and Özsu (2017) and
has a higher proportion of practitioners. A different possibility is to run the survey on
a more focused sample (e.g., database professionals working in a particular industry,
specific DBMS users) to study the problems that different application domains may
experience and reduce non-response bias Bhattacherjee (2012). For that reason, the
survey and the software for analyzing its results have been made available in the
GitHub repository.

4.1 Survey Design and Methodology

In this section, we explain the design of the survey and the methodology used to
analyze each type of question. We then describe how participants were recruited,
and we analyze the respondents’ demographic and their level of engagement with the
survey.

4.1.1 Question Types and Analysis Methodology

The survey is an online structured questionnaire consisting of 34 items. To reduce
bias and improve the experience of respondents, the design of the survey has been
reviewed by a selected group of practitioners and academics. However, biases are
inherent to the survey tool, and while some are reduced by our process of answers
analysis, we advise readers to discuss our findings.

Multiple-choice These questions were used when there is a fixed number of possible
answers, with an option labeled “other” always made available as a fallback. For this
kind of questions, we wish to study the prevalence of choices; therefore, for each
available option, we compute the proportion of respondents who selected it. When a
question allows more than one option to be chosen, we also compute the proportion
of participants who selected each subset of all available options. In our analysis, the
data collected through multiple-choice questions is mostly used to get demographic
information about the participants, and the results are presented as a pie or bar chart.

4.1. Survey Design and Methodology 52

Consider the following SQL query: |
a
| ■□ |

`

SELECT cid, name
FROM Customers

WHERE name = alias

on the following SQL database:
Customers

cid name alias

c1 Etienne Etienne
c2 Leonid NULL
c3 Paolo Juan
c4 NULL
c5 NULL NULL

Regardless of what SQL computes, please add [⊕] the rows you would like to be in the
answer. You can add each row multiple times.

Rows

cid name

c1 Etienne ⊕
c2 Leonid ⊕
c3 Paolo ⊕
c4 NULL ⊕
c5 NULL ⊕

other other ⊕

→←
Answers

cid name

(a) Build the answer

Consider the following SQL query: |
a
| ■□ |

`

SELECT O.cid, SUM(O.price) AS result
FROM Orders AS O

GROUP BY O.cid

on the following SQL database:
Orders

oid cid price taxes

o5 NULL 10 0
o6 NULL 20 10

Regardless of what SQL computes, please specify how satisfied you are with each of the
following answer tables.

cid result

NULL 0
⋆⋆⋆⋆⋆

cid result

NULL 30
⋆⋆⋆⋆⋆

cid result

NULL 10
NULL 20

⋆⋆⋆⋆⋆

I would prefer the following:
Please
describe
your answer

⋆⋆⋆⋆⋆

(b) Likert interval scale

Figure 4.1: Examples of questions in our online survey.

4.1. Survey Design and Methodology 53

Frequency scale These are “how-often” questions whose answer is a frequency
chosen from an ordinal Likert scale Likert (1932) with options never, infrequently, oc-
casionally, often, and regularly, which are ordered from the least to the most frequent.
Answers to different frequency scale questions can be compared with one another, but
we cannot assume that the frequency differential between each subsequent option in
the scale is constant; thus, numerical analysis that computes an average frequency
score on a single question is largely meaningless Robertson (2012). For each such
question and each frequency option, we compute the proportion of participants who
selected that option in the question under consideration. As the number of available
options is limited, these statistics can be effectively exploited. Moreover, since the
same scale is used for several questions, we can compare the relative frequency of
some events. The data collected through frequency scale questions is mostly used to
obtain information about the participants’ demographic as well as to answer question
(Q1).

Build the answer In these questions (Figure 4.1a) participants are presented with
a relational database and an SQL query, and then asked to construct, by adding
default or custom rows to the output table, the answer they would like to obtain. This
design allows us to gather information about our respondents’ expectations from the
evaluation of each query. From an abstract point of view, this type of question is a
multiple-choice question. The default rows can be seen as the choices of the question,
and adding them to the answer is equivalent to selecting the choice. However, due
to the nature of the task, even if the prevalence of each row can be of interest, we
argue that more emphasis should be put towards SQL’s default answers. Therefore, we
partition the participants’ answers into four groups, according to whether the answer

(1) matches the SQL answer,
(2) is a subset of the SQL answer,
(3) is a superset of the SQL answer, or
(4) is not comparable with the SQL answer.

We then compute the proportion of answers in each of the groups and report the
results in a table. The data collected through this kind of questions are mostly used to
answer the question (Q3).

4.1. Survey Design and Methodology 54

Interval Likert scales In these questions (Figure 4.1b) participants are presented
with a relational database, a value-inventing SQL query (i.e., producing a value not
already present in the database, such as an aggregate value over a column) and
several tables. The task is to score each table with a value between 0 and 5 stars
(in half-star increments) based on how satisfied the participant would be if the scored
table were the answer to the query on the given database. This design lets us gather
information about our respondents’ expectations for the evaluation of value-inventing
queries. Each option is displayed with an initial satisfaction score of 0. The respond-
ents can also use an option labeled “other”, with an initial score of 5, to provide a better
alternative to those presented. We only consider the score of a custom answer if the
participant has provided one. For each query we report the average and the quartile
values of the satisfaction score obtained by the SQL answer, and we also compute the
proportion of participants who would be more satisfied with a different answer. This
data is used to answer the question (Q3).

In designing a survey which asks the respondents to evaluate or construct query
answers, it is important to ensure that the sample relational databases represent
realistic real-life scenarios rather than data patterns that are unlikely to occur. The
latter would render the results of the survey less valuable. To this end, for each of the
three databases used in the survey, we asked the participants the following frequency
question: How often may the pattern in the given database occur in a real-life dataset?
As shown in the summary (the average for the three databases used) of responses in
Figure 4.2a, 80% of our respondents are of the opinion that such patterns can occur
in real-life databases, with a varying degree of frequency; about half are of the opinion
that such patterns occur frequently.

For all types of questions, depending on the quality of the respondents’ sample, the
results can be either considered as a representation of the general population (high-
quality sample) or, in the case of a small sample, used to identify trends or outliers
(choices for multiple-choice questions, events for frequency scale questions, and cat-
egories for build the answer and interval Likert scale questions) Evans and Mathur
(2005). We will discuss the results we obtained from the participants we managed to
recruit, but since the quality of the conclusions one can draw is heavily dependent on
the size and quality of the sample, anyone is encouraged to run the survey and its
analyses on their own community.

4.1. Survey Design and Methodology 55

4.1.2 Sample of Respondents

We conducted the survey during a four-month period, and used several different meth-
ods to recruit participants. First, we posted a summary of our research on the data.world
blog Sequeda (2020) to advertise the survey. We also sent both the survey and the
blog post to the data.world mailing list through the monthly digest, reaching their user
base. We used mailing lists, such as dbworld, as well as Reddit posts, and several
Slack channels dedicated to specific DBMSs.

All participants accessed the survey using the same online link, so we cannot tell how
many participants were recruited via each individual channel. In the end, there were
175 participants who took the survey, among which 94 completed it in full. Below, we
discuss the participants’ demographics and how their engagement with the questions
evolved during the completion of the survey.

20.0% 31.3% 23.3% 15.7% 9.7%

How often may the patterns [in the databases of the survey] occur in a real-life dataset?

10.0% 23.5% 19.0% 46.4%

How often do you manipulate SQL code?

Never Infrequently Occasionally Often Regularly

(a) Database patterns and manipulation of SQL
code.

73 (41.2

36 (20.3

22 (12.4

17 (9.6

ISIC domain of work

Information and communication
Professional, scienti�c and
technical activities

Education

Financial and insurance activities

Other
Human health and social work
activities
Wholesale and retail trade; repair
of motor vehicles and motorcycles

Manufacturing
Electricity; gas, steam and air
conditioning supply

(b) Participants’ ISIC domain of work.

A B C D E F G H I

Pr
op

or
tio

n
of

re
sp

on
de

nt
s(

%)

98.3

82.1
78.0

63.0
57.2

42.2
34.1 31.8

19.7

Type of data
A: Relational databases
B: CSV �les
C: Spreadsheets
D: Text documents
E: JSON
F: XML
G: Column-store
H: Graph databases
I: RDF

(c) Types of data users work with.

A B C D E F G H I

Pr
op

or
tio

n
of

re
sp

on
de

nt
s(

%)

56.6

47.4 45.1

28.9 27.2

15.0 11.6 9.2

23.1

Relational DBMS
A: PostgreSQL
B: MySQL
C: Microsoft SQL Server
D: Oracle Database
E: SQLite
F: Redshift
G: IBM DB2
H: Snow�ake
I: Others (combined)

(d) Popularity of Relational DBMSs.

Figure 4.2: Demographic information

4.1. Survey Design and Methodology 56

Demographic information We first asked the participants which domain they work
in, according to the ISIC classification Nations (2007). As shown in Figure 4.2b, the
participants indicated 14 different domains, demonstrating that nulls matter for a wide
variety of fields.

Next, we asked the participants what best describes their role in their organization.
According to the answers, we split participants into “practitioners” and “academics”,
where the latter are those who chose Education as a domain of activities, or Professor
or Student as a role in their organization. As intended, the sample has a prevalence of
practitioners (73%), which our study is geared for.

We asked how often participants manipulate SQL code, to assess their familiarity with
the language itself. The answers are shown in Figure 4.2a. We split our participants
into two groups:

• Front-end users, who manipulate SQL code only occasionally or infrequently; they
make up 34% of the respondents (with 1% saying never).

• Back-end users, who manipulate SQL code often or regularly; they account for 65%
of the respondents with the largest group, almost half, saying regularly; thus, we
have reached our target audience.

Finally, we asked what type of data and which relational DBMSs our participants use.
As shown in Figure 4.2c and Figure 4.2d, they mostly deal with relational data, and
use a variety of systems, with a preference for PostgreSQL, MySQL, and Microsoft
SQL Server (followed by Oracle Database, SQLite, and others).1

0 5 10 15 20 25 30 35 40
Number of questions

50

60

70

80

90

100

Pr
op

or
tio

n
of

re
sp

on
de

nt
s(

%) Total
Backend
Frontend
Academics
Professionals

(a) Proportion of respondents for each ques-
tion.

0 10 20 30 40
Number of questions

0

10

20

30

40

Av
er

ag
ec

um
ul

at
iv

et
im

e
sp

en
t(

m
in

ut
es

)

Total
Backend
Frontend
Academics
Professionals

(b) Average time spent on each question.

Figure 4.3: Participants’ engagement

1. The survey erroneously offered both “DB2” and “IBM DB2” as options; 20 respondents chose at least
one of them, with 4 selecting both, so we considered 16 as the combined total.

4.1. Survey Design and Methodology 57

Participants’ engagement The complexity and the extent of our study was too ambi-
tious to be kept within the recommended 10-minute survey format Revilla and Ochoa
(2017). Despite our best efforts, we knew that our survey would take longer than
that to complete. It is surprising that so many participants spent so much time on
it. Figure 4.3a and Figure 4.3b show the number of participants and the average time
they spent on the survey, respectively; we report the results for each question and
each group of participants.

We observe that the engagement is similar for each group of participants, and a
significant drop-off in the number of respondents occurs after question 18, which in fact
corresponds to the 10-minute mark of average time spent on the survey. In retrospect,
the design of question 18 could have been improved: although not complex to answer,
it is bulky and cumbersome, and this may have discouraged some participants from
continuing.

We also observe that, despite the average completion time being rather high (around
45 minutes), a high proportion (60%) of participants finished the survey. This shows
that database practitioners have a strong interest in the problem of nulls in SQL.

4.2 SQL’s NULL features usage

The importance of studying nulls stems from their ubiquity in everyday applications;
this was confirmed by the survey. Figure 4.4a shows how frequently users encounter
nulls; more than 80% of them see NULL often or regularly, and less than 20% fall
into the infrequently and occasionally categories. Even if NULL does not appear in a
dataset, it can be generated by queries, in particular outer joins. Figure 4.4d shows
that users frequently deal with LEFT and RIGHT JOIN; in fact, these are more common
than explicitly specified inner joins. Full outer joins are also quite common.

The features offered by RDBMSs to handle NULL can be subdivided into the following
two categories:

• SQL’s DDL constraints, such as NOT NULL, to prevent NULL from appearing in columns;
• null-specific tests and functions, such as IS [NOT] NULL, IS [NOT] DISTINCT,
COALESCE(), ISNULL(), and IFNULL().

Figure 4.4b and Figure 4.4c show the prevalence of using null-prohibiting constraints
in the DDL. The use of NOT NULL is very common, with almost 70% of respondents
regularly or often declaring columns, and just over 5% avoiding the practice. These are
also frequently added to keys, foreign keys, and UNIQUE declarations. It is interesting
to note that, in the case of primary keys, NOT NULL is superfluous; yet, the majority of

4.2. SQL’s NULL features usage 58

4.1 15.8% 32.2% 47.9%

(a) How often do you encounter NULL values?

5.3 5.9 20.1% 38.5% 30.2%

(b) How often do you explicitly specify a column as NOT NULL?

31.3% 3.7 4.3 58.9%

PRIMARY KEY

12.3% 13.5% 20.9% 24.5% 28.8%

FOREIGN KEY

16.7% 14.2% 16.7% 19.1% 33.3%

UNIQUE

(c) How often do you explicitly add NOT NULL to the following constraints?

13.0% 25.3% 19.5% 16.2% 26.0%

[INNER] JOIN

7.2% 14.9% 27.9% 24.0% 26.0%

LEFT | RIGHT [OUTER] JOIN

19.5% 29.2% 29.9% 13.0% 8.4%

FULL [OUTER] JOIN

Never Infrequently Occasionally Often Regularly

(d) How often do you use the following join operators on columns with NULLs?

Figure 4.4

users nevertheless includes it explicitly. Adding NOT NULL to foreign keys also appears
to be a common practice, in all likelihood aimed at avoiding three-valued logic in joins.
On the other hand, it is also noteworthy that a non-negligible minority, around a quarter
of respondents, never or almost never use null-prohibiting declarations.

4.2. SQL’s NULL features usage 59

46.5% 17.4% 16.1% 8.4% 11.6%

IFNULL()

26.9% 10.9% 22.4% 18.0% 21.8%

ISNULL()

8.8% 7.0% 15.2% 20.9% 48.1%

IS [NOT] NULL

24.2% 10.8% 16.55% 16.55% 31.9%

COALESCE()

60.9% 19.2% 9.6% 5.15 5.15

IS [NOT] DISTINCT

Never Infrequently Occasionally Often Regularly

(e) How often do you explicitly add NOT NULL to the following constraints?

Figure 4.5

In Figure 4.5a we see how commonly SQL’s null-related features are used in queries.
By far the most common one is checking whether a value is NULL. To this end, the
IS NULL condition, or its negation, are used by almost 70% of the users, often or
regularly, and completely avoided by fewer than 10%. The next most common feature
is COALESCE, with almost half the respondents using it at least often; other operations
are less common. We remark that ISNULL() and IFNULL(), as opposed to IS [NOT]

NULL, are non-standard functions only available in some systems.

Conclusion: NULL is a common occurrence in relational databases, and users are well
aware of it. This manifests itself most commonly in the use of SQL’s DDL, by frequently
declaring some columns as NOT NULL. Null-related features are also fairly common in
queries.

4.2. SQL’s NULL features usage 60

“The prevalence of dirty and missing data ought not to be underestimated.
For many years, I was in charge of systems for data collection of medical
data. Even such a regularized domain frequently had problems managing
missing, dirty and suspicious data."

A participant

4.3 Meanings of NULLs

Now that we confirmed the ubiquity of nulls and analyzed operations on nulls, both in
the DDL and the query language, we move to the next question: what does NULL

mean? The question has been addressed in the research literature, going all the
way back to Zaniolo (1984) which defined three types of nulls: non-applicable, no-
information, and those representing existing but currently unknown values (two of
those, non-applicable and unknown values, were adopted early by relational data-
bases Codd (1986)). To see what options we can give to the users asking them a
multiple choice question on the meaning of nulls, consider a hypothetical example: we
have a table with information about employees, and the salary of the CEO is given as
NULL. This could have different meanings:

• Non-applicable (NA). The CEO may not receive a regular salary and use another
remuneration scheme. Then NULL indicates a field that is non-applicable, for which
a value does not exist.

• Existing unknown (EU). The CEO salary cannot be disclosed for privacy reasons. In
such cases, NULL denotes an existing but currently unknown constant.

• Existing known constant (C). The CEO salary may not be disclosed because it
depends on changing financial results of company operations. Here NULL denotes
an existing, and known, value.

• Dirty (D). The CEO may receive a regular salary but the data source from which the
table is populated may have been dirty.

• No-information (NI). We may be in a situation when we know nothing at all about the
reasons why that NULL is in the database.

While the different semantics described above are easy to understand in a particular
example, a single universally accepted description is not particularly easy to formu-
late in natural language. Thus, we introduced some redundancy with the options we
presented to the users, as shown in Table 4.1.

4.3. Meanings of NULLs 61

A B C D E F G H I

Pr
op

or
tio

n
of

re
sp

on
de

nt
s(

%)
84.4

64.2
59.0

30.1
25.4 22.5 22.0

16.2 13.3

Semantics of NULL
A: The value does not exist (NA)
B: Nothing is known about the value (NI)
C: It denotes a non-applicable �eld (NA)
D: The value exists and could be anything (EU)
E: The data is dirty (D)
F: The value exists

and is equal to an unknown constant (EU)
G: There is a bug (D)
H: The value exists

and is equal to a known constant (C)
I: Other [Please specify]

(a)

NA+NI

NA

NA+NI+EUNA+NI+EU+D

NA+NI+EU+D+C

NA+NI+D

NI

NA+D+EU

NA+D

NA+C

NA+EU

NA+NI+EU+C

NA+NI+D+C

19.8%

19.2%

13.4%8.1%

7.6%

5.8%

5.2%

2.9%

2.9%

2.9%

2.3%

1.7%

1.7%

(b)

Figure 4.6: (a) Popularity of different semantics of NULL; (b) Combinations of NULL
semantics chosen by the participants.

Table 4.1

Sem. Options presented in the survey

NA “the value does not exist”
“non-applicable field”

EU “the value exists and could be anything”
“the value exists and is equal to an unknown constant”

C “the value exists and is equal to a known constant”

D “there is a bug”
“the data is dirty”

NI “nothing is known about the value”

Figure 4.6a provides the frequencies with which the participants chose each option
describing a possible meaning of NULL. The NA semantics is the most popular one,
selected by over 85% of respondents. It is followed by NI, which was chosen by more
than 60% of the respondents. The EU semantics is considered by nearly 40% of the
respondents. Finally, the D and C semantics were chosen by nearly 35% and 20% of
the respondents, respectively.

The data in Figure 4.6a does not provide any information about combinations of dif-
ferent semantics chosen by the participants. If we take that into account, we obtain
23 different groups, as shown in the pie chart of Figure 4.6b. Not surprisingly, NA
dominates: alone or in combination with NI and NI+EU, it accounts for more than half

4.3. Meanings of NULLs 62

of all the combinations of the semantics seen. We remark that 13% of participants
proposed an alternative meaning that does not coincide with any of those we have
discussed (see Example 6). In light of this, our list of possible interpretations of NULL,
while not exhaustive, covers most of the cases one meets in real-life situations.

Example 6. As an example of other meanings proposed by participants, we highlight
four given propositions:

I think of NULL as the "nothing" option of an optional (1 + x) type. If
consistently interpreted in this way, there is nothing wrong with NULL (key
word: consistently). (A participant)
NULL is not a value, it is a state of the value. Mostly it is the state that no
decision has been made yet or the decision was rescinded and there is no
decision at this time. (A participant)
NULL is a metadata bit that represents a statement that information about
this field cannot be expressed solely through the data domain defined for
the field. All of the above (and other meanings) are examples of information
that cannot be directly expressed via simple domains. (A participant)
As there is a bug does not completely satisfy me, i prefer to divide it into: -
Data collection system (Extract) is not perfectly matching data generation
system (data is not collected) - Transformations (Transform) are not OK
and loses information (data is lost during process). (A participant)

A formal interpretation of those meanings is not trivial, and they do not seem to fall
under the umbrella of our proposed semantics.

Conclusion: The meaning of a NULL value is highly varied, and therefore there is no
consensus on any one specific interpretation. However, the non-applicable semantics
seems to dominate.

“It is impossible to know what NULL means without understanding the intent
of the one who put it there in the first place. Unfortunately, I’ve seen it used
for all of the above."

A participant

4.4 SQL’s handling of NULLs

In order to understand SQL’s handling of NULL we organize our findings in two parts.
Section 4.4.1 addresses data manipulation queries that stay within the standard text-
book version of relational algebra, known as generic queries Abiteboul, Hull, and Vianu
(1995); Arenas, Barceló, Libkin, Martens, and Pieris (2022). These types of queries
do not generate new values by means of function application or aggregates. On the
other hand, Section 4.4.2 focuses on how NULL is dealt with when applying arithmetic
functions and aggregates.

4.4. SQL’s handling of NULLs 63

Table 4.2: Proportion of answers that differ from SQL.

Operator (a): 0 or " (b): Constant (c): NULL

Equality String 5.1 3.8 22.2
Equality Integer 3.3 2.6 21.5

Inequality String 41.6 48.7 11.0
Inequality Integer 41.6 43.0 8.72

4.4.1 Generic Queries

We look at three different aspects of such queries with respect to NULL handling:

(1) comparisons involving NULL,
(2) positive queries without NOT, and
(3) negative queries using NOT.

The latter are more likely to cause issues given what we know from the literature Libkin
(2014, 2016b), due to the way the 3-valued logic is handled in query evaluation.

Comparisons involving NULL We would like to see whether survey participants were
satisfied with the way SQL evaluated comparisons between NULL and

• a constant equal to: 0 for numerical types, and empty string for character types;
• another constant;
• another NULL.

We use the results of four build-the-answer questions (Figure 4.1a) to study both
equality and disequality comparisons, and are interested in the percentage of par-
ticipants who disagree with the way SQL handles such comparisons; the higher the
value is, the more problematic such a comparison. The results, summarized in Table 4.2,
show that the desired behavior does not depend on the data-type. Moreover, contrary
to a popular belief neither the empty string or the integer value 0 are treated differently
than any other constant (even though the former is used as a substitute for NULL in
some RDBMSs). Around 20% of our respondents would want SQL to view two NULL

values as equal (i.e., use syntactic equality for them), while around 10% would like
them to be different. Finally around 40% would like for SQL to evaluate disequality
comparisons between NULL and a constant to false rather than unknown.

When it comes to queries, we aim to learn whether the answer the participants would
like to see returned in the presence of NULL

• coincides with the SQL answer, or
• contains the SQL answer, or
• is contained in the SQL answer, or

4.4. SQL’s handling of NULLs 64

• is incomparable with the SQL answer.

Positive queries In these queries there is no negation; they are built using joins
as well as IN and EXISTS subqueries. For each individual query testing a particular
feature, more than 90% of our participants say that the answer should be the same as
the one SQL returns. At the same time, the percentage of participants who say that
the result should be the same as SQL for every query using those features is 84%. If
we consider the whole positive fragment of SQL generic queries, and therefore also
take into account the answers obtained with filtering queries on equality conditions
(Table 4.2), this percentage drops to 68%. Thus even for fairly uncontroversial queries
it is hard to find a uniform agreement across a query workload. But things quickly get
much more problematic when we consider the interaction of NULL with queries that
involve negation.

Queries with negation When queries have negation, the disagreement with SQL
query results increases significantly. In the survey we used queries containing NOT IN

and NOT EXISTS subqueries, as well the difference query expressed either via EXCEPT

under set semantics or EXCEPT ALL under bag semantics. In Table 4.3 we report the
views of the participants under the four possibilities shown above, with A standing for
the answer a participant wanted, and SQL standing for the answer returned for by
SQL. For example, the first row in that table says that for a query with a NOT IN sub-
query, 15.4% of participants agree with the result that SQL returned, while 84.5% of
participants preferred an output that was a proper superset of SQL’s query evaluation.

Looking at NOT IN and NOT EXISTS subqueries, we see that a large majority are
unsatisfied with NOT IN and think that it filters out too many results, while the users are
generally satisfied with NOT EXISTS subqueries. In fact those who are unsatisfied with
NOT IN and want it to output more results, want it to behave in the spirit of NOT EXISTS.
We note that IN subqueries follow the rules of three-valued logic (the condition in
WHERE could evaluate to unknown) while NOT EXISTS subqueries follow the familiar
two-valued logic (only true and false are possible), thus suggesting that the users are
more comfortable with two truth values.

Regarding EXCEPT, we see that there is a significant variation in results wanted by the
users. Recall that set operations treat NULL syntactically, so for the purpose of these
operations two NULL values will be equal, even if testing them explicitly for equality
does not return true. This sudden change of the semantics may well be at play here.
The results for EXCEPT ALL seem to be more about handling duplicates than handling

4.4. SQL’s handling of NULLs 65

Table 4.3: Proportions of respondents’ answers vs SQL.

Query A=SQL A⊂SQL SQL⊂A A̸= SQL

NOT IN 15.4 0 84.5 0
NOT EXISTS 78.3 15.8 1.7 4.1

EXCEPT 53.0 10.4 27.0 9.6
EXCEPT ALL 10.7 76.8 8.9 3.6

nulls: analyzing them in more detail we see that most outputs preferred by survey
participants match SQL answers except for duplicates. The desire to have a smaller
result, expressed by over 75%, appears to be the desire to eliminate duplicates from
the result.

4.4.2 Value-Inventing Queries

We now look at queries that may output values not found in a database. Examples
of such would be queries whose SELECT clauses contain arithmetic expressions like
A+B or aggregates such as SUM or AVG. For such queries we want to see how satisfied
the participants are with the results that SQL produces, and whether they have altern-
atives. Thus, we ask about users’ expectations with respect to queries that evaluate
expressions such as 30+NULL or NULL+NULL (whose values, returned by SQL, is NULL),
or the same expression in the SUM aggregate (which, perhaps confusingly for some
users, would return 30 for SUM(30,NULL) and NULL for SUM(NULL,NULL)).

The results are presented in Table 4.4. In the left column we have a key feature of a
query that depends on handling nulls. For example, we may ask how adding two nulls
will behave (NULL+NULL) or adding a null and a constant (NULL+30), or how the same
operations are performed under the aggregate SUM (SUM(NULL,30) and SUM(NULL,NULL)
respectively). We also ask about queries in which the summation aggregate is applied
to values obtained as the result of arithmetic expressions (SUM(NULL+30,NULL+0)), and
look at queries with GROUP BY where grouping is done on an attribute whose value is
NULL.

In all of these questions we ask the participants to tell us how satisfied they are with
SQL answers on the 0-to-5 scale, with 0 being the least satisfied and 5 the most
satisfied. The additional columns in Table 4.4 have the following meaning:

Quartiles/Median This is a box plot displaying the minimum, first quartile, median, third
quartile, and maximum. We draw a box from the first quartile to the third quartile. A
vertical line goes through the box at the median. The whiskers go from each quartile
to the minimum or maximum. For example, looking at the first row of Table 4.4, we
see that 75% of respondents gave answers 3, 4, or 5, indicating that they were rather

4.4. SQL’s handling of NULLs 66

or very satisfied with the fact that SQL evaluated 30+NULL as NULL. The next row
shows that more than 75% were satisfied with the way SQL evaluated NULL+NULL.
The vertical bar in those results gives the median answer to the question; when it
is not visible within the blue-colored rectangle, it means the median is 5 (complete
satisfaction).

Mean This column provides the mean answer.

Agreement and Controversy This is our informal interpretation of the results; agree-
ment indicates to what extent people agree with SQL answers and controversy in-
dicates how much of the difference of opinion there is; the possible scores are high,
medium, and low. The higher the average and the median score are the higher the
agreement of the participants is. The larger the difference between the median value
and the lower quartile value is, the higher is the controversy. For example, in the first
row of Table 4.4, there is generally high level of agreement as the mean and median
tend to be high, with a moderate amount of controversy as for 75% of participants they
range from 3 to 5.

Alternative Participants were asked to score several tables for each query (Figure 4.1b).
The “Alternative” column gives the percentage of respondents who scored the table
produced by SQL lower than (at least one of) the others.

We see from Table 4.4a that the way SQL applies functions whose arguments could
be NULL (using the rule that the value of any such function is NULL then) is fairly
uncontroversial and accepted by most. The agreement with SQL’s way of handling
NULL slightly decreases when aggregates are applied to columns containing NULL (in
which case the rule is not to output NULL but rather to ignore all nulls and then compute
the aggregate). In the case of aggregates, a significantly higher proportion of parti-
cipants would be more satisfied with an alternative answer. Most disagreement with
SQL occurs in the case of queries with grouping on a column that may contain NULL.
In this case SQL uses the syntactic equality of nulls, i.e., two NULLs are equal, which
of course differs from the treatment of NULLs elsewhere and thus causes additional
problems.

We then look at similar queries but with one important difference. Now NULLs are
not present in the database but rather created by an OUTER JOIN query. Then we
ask questions about similar queries involving arithmetic, aggregation, and grouping
on NULL. Results, in the same way as before, are presented in Table 4.4b. While the
trends are the same, we see three notable differences. First, the level of agreement
with SQL results is higher: the median in all the cases except grouping on NULL moves

4.4. SQL’s handling of NULLs 67

Table 4.4: Results obtained with (a) value-inventing queries and NULLs that occur in
the database, and (b) value inventing queries and computational NULLs.

Query Quartiles/Median Mean Agreement Controversy Alternative
0 1 2 3 4 5

30 + NULL
0 1 2 3 4 5

3.8 high medium 21.6%

(a)

NULL+ NULL
0 1 2 3 4 5

4.4 high low 2.1%

SUM(30,NULL)
0 1 2 3 4 5

3.4 medium high 33.3%

MIN(30,NULL)
0 1 2 3 4 5

3.4 medium medium 30.5%

SUM(NULL,NULL)
0 1 2 3 4 5

4.1 high low 9.5%

SUM(30 + NULL, 0 +
NULL)

0 1 2 3 4 5

3.6 high high 23.2%

GROUP BY(NULL,NULL)
0 1 2 3 4 5

3.1 medium high 29.5%

NULL+ NULL
0 1 2 3 4 5

4.3 high low 7.5%

(b)

SUM(30,NULL)
0 1 2 3 4 5

3.1 high high 35.5%

MIN(30,NULL)
0 1 2 3 4 5

3.3 high high 31.5%

SUM(NULL)
0 1 2 3 4 5

3.2 high high 37.9%

GROUP BY(NULL,NULL)
0 1 2 3 4 5

2.0 low high 63.2%

4.4. SQL’s handling of NULLs 68

to the highest score 5. Second, the level of controversy increases too (indicated by the
widened blue shaded area in the diagram: more different scored are picked by more
participants). And third, the percentage of users who prefer an answer that differs from
SQL’s is now much higher and peaks (at almost two thirds) for the grouping on NULL.

Conclusion: SQL’s way of handling NULLs for the positive generic queries satisfies
a vast majority of the users. For negative queries, the amount of dissatisfaction in-
creases significantly. The users do not seem to like that SQL’s 3VL filters out so many
tuples. Users are reasonably accustomed to SQL’s way of handling NULLs in arithmetic
operations, and slightly less so in aggregation, where the rule changes and NULLs are
ignored. Their level of dissatisfaction increases when NULLs come not from a database
but generated by a query. What they do not like is the use of syntactic equality (saying
that two NULLs are equal) for generating groups using GROUP BY.

“The NOT IN vs NOT EXISTS trap does nail people in real life, fairly often.
I understand why it is the way it is, but I wish SQL had defined NOT IN as
a syntactic transform to NOT EXISTS. GROUP BY NULL should cause the
user and/or data designer to vanish from existence immediately."

A participant

4.5 Solutions vs Demographics

We now move to the next question: whether there exists any correlation between
the demographics for our respondents, and their preferences for the behavior of SQL
queries. To address this, we performed a statistical analysis of the received responses.
It revealed that, somewhat surprisingly, there is no correlation between the users’
demographics and their responses to the questions about SQL. This makes the task
of fixing SQL even more daunting, if at all possible.

To perform the analysis, we defined eight binary parameters that take into account
users’ information (academic vs practitioner, front-end vs back-end) and the preferred
semantics of NULL; we refer to these parameters collectively as “demographic data”.
We looked at how they correlate with participants’ agreement with SQL answers for
each of the queries, which is simply labeled as true or false. For generic queries,
participants were considered to agree with SQL if they built precisely the answer SQL
produces. For value-inventing queries, participants agreed with SQL if the answers
produced by SQL were their most satisfying options.

4.5. Solutions vs Demographics 69

The first measurement we report is the uncertainty coefficient – also called proficiency
coefficient or Theil’s U Zellner and Theil (1992) – between the demographic data
and the responses for each query. This measure, for two random variables x and
y, is the ratio of the mutual information of x and y to the entropy of x. Informally,
this is the proportion of the information content of the agreement data that can be
explained by the demographics. The demographic data would always correlate with
some of the information of the agreement data for each query, simply because it is
multi-dimensional while the latter, by definition, is a Boolean value. Thus, to see the
real meaning of the uncertainty coefficient, we also compute its value for randomly
generated data that uses the same distribution as the demographic and agreement
data.

We also use machine learning techniques to analyze possible correlations. We study
the average accuracy of a Logistic Regression McCullagh and Nelder (2019), a Ran-
dom Forest Breiman (2001), and a Multi-layer Perceptron (Neural Network) Murtagh
(1991) classifier trained on 80% of our data, and then assessing the remaining 20%.
To evaluate the quality of the prediction, we compare the accuracy of these classifiers
with a dummy classifier algorithm that always returns the highest probability outcome
from the training set.

The results, for both generic and value-inventing queries, are presented in Table 4.5.
Startlingly, they show that the uncertainty coefficient does not produce better results
than those obtained on random data, that is, the real life correlation between demo-
graphics and answers is noticeably lower than the one obtained from random data.
Likewise, the logistic regression, the random forest and the multi-layer perceptron
classifiers fail to outperform the dummy classifier.

Therefore, we have strong evidence that the demographic data is not sufficient to
predict, with a reasonable degree of certainty, the user’s preferred behavior of SQL
queries in the presence of NULL. As a consequence, the paradigm – prevalent in the
academic literature – of deriving answers from the semantics of NULL cannot satisfy
all users.

“Though some of these scenarios give the opportunity to address common
frustrations, they have also illustrated how difficult it would be to change
the way NULLs are handled without significantly changing how other SQL
syntax works. Any changes could also lead to horrendous version control
issues."

A participant

4.5. Solutions vs Demographics 70

Table 4.5: Association and prediction scores obtained with (a) generic queries, (b)
value inventing queries and NULL values in the database, and (c) value inventing
queries and computational NULLs.

Query Theil’s U Theil’s U
Random

LR
Classifier

RF
Classifier

MLP
Classifier

Dummy
Classifier

= 48% 69% 69% 63% 65% 72%

(a)

<> 45% 73% 61% 51% 50% 52%

NOT IN 61% 79% 84% 79% 78% 84%
NOT EXISTS 45% 78% 78% 72% 72% 78%

EXCEPT 51% 78% 56% 60% 55% 55%
EXCEPT ALL 54% 92% 89% 85% 87% 89%

30 + NULL 55% 80% 84% 81% 80% 84%

(b)

NULL+ NULL 51% 100% 98% 97% 97% 98%

SUM(30,NULL) 61% 76% 63% 64% 62% 68%
MIN(30,NULL) 44% 83% 70% 66% 65% 72%
SUM(NULL,NULL) 49% 90% 92% 91% 91% 92%

SUM(30 + NULL, 0 + NULL) 51% 79% 81% 77% 78% 81%

GROUP BY(NULL,NULL) 57% 81% 71% 61% 56% 73%

NULL+ NULL 55% 95% 93% 90% 89% 93%

(c)
SUM(30,NULL) 39% 76% 70% 64% 64% 70%
MIN(30,NULL) 40% 80% 74% 70% 68% 74%
SUM(NULL) 49% 85% 66% 65% 68% 67%

GROUP BY(NULL,NULL) 38% 82% 54% 46% 46% 51%

4.6. Conclusion 71

4.6 Conclusion

Based on the results of the survey, we arrive at the following.

Conclusion 1: NULL values are problematic. The data management community has
come to this conclusion anecdotally. To the best of our knowledge, ours is the first
study that provides strong evidence that this is actually the case in practice. The study
provides clues and indications about users’ (dis)satisfaction with SQL features:

• The NULL values appearing in a single database can have a variety of meanings; we
identified over 20 semantic combinations.

• SQL’s three-valued logic filters out too many results, which increases users’ dis-
agreement with SQL on queries with negation.

• When NULL is considered as a syntactic value, as in GROUP BY or set operations,
dissatisfaction increases.

• While NULL as a function argument tends to behave as expected by users, the
use of NULL in aggregates is more controversial and would benefit from further
explanations.

Conclusions 2: Handling NULLs in RDBMSs is an open problem. Even though we
have identified concrete issues with NULL values, there are no satisfying solutions to
handle them yet. Most existing research is not addressing the problems that database
practitioners are encountering. What exacerbates the problem, is that neither demo-
graphics nor the semantics of NULL can explain what users want. The bottom line is
that more socio-technical studies (e.g., interviews, web-data analysis, online surveys,
etc.) are required to address the problem of NULL with users in mind.

Conclusion 3: The research spectrum needs to broaden. The research on in-
complete information undertaken by the data management community is insufficient,
given the problematic state of NULL values that practitioners continue to tolerate today.
One could argue that research has not yet properly translated to practice. However,
research has mostly focused on the EU semantics, which only a minority of users
encounter, rather than the NA and NI semantics, which are much more prevalent in
practice. Furthermore, for a good part of the last 40 years, research has been based
on the assumption that, in the presence of NULL values and for a specific semantics,
all users should expect the same answers. The results of our survey provide evidence
that this assumption does not hold in practice. Thus, we need to tackle the problem in
a different way.

4.6. Conclusion 72

The notion previously introduced in this thesis, namely the knowledge-preserving cer-
tain answers, is also based on this assumption and the missing information interpret-
ation of incomplete data. While we initially conducted the survey to discover relevant
additional knowledge to consider in order to deal with aggregation, we discovered it
would not be sufficient to offer satisfactory answers to users. First, we need to refine
our model to capture more interpretations of incompleteness. Second, we need a more
flexible notion of answers that have users’ requirements in mind.

Chapter 5

Answer notions with
query-evaluation semantics

In light of the survey results, there are key shortcomings to the notions of certain
answers discussed in this thesis. In previous frameworks, an incomplete database
is represented by a set of complete possible worlds. Therefore, incompleteness is
interpreted as missing information that can be completed. However, for relational data-
bases, merely 2% of the users consider that missing information is the sole interpret-
ation of incompleteness. Moreover, only 40% of the users view it as a possible inter-
pretation. We need a notion of answers able to capture other models of incomplete-
ness, especially the none-applicable and no-information interpretations encountered
by most users (85%).

Furthermore, answers to queries on incomplete databases need to return more in-
formation, even if it means the information contained is not certain. SQL is filtering
too many tuples from the answers, and in most cases, the standard notion of certain
answers with the open-world assumption is even more restrictive. We need to propose
alternative semantics or assumptions to provide more relevant answers to users.

In previous frameworks, incompleteness is captured on the level of database objects
by the mean of a semantics function which maps an incomplete database to complete
databases representing its possible interpretations. Upon this model of incomplete-
ness and independently of the query language, each framework defines a notion of
answers. Therefore, the incompleteness model does not impact query evaluation. To
overcome this limitation, we model incompleteness on the level of database and query
by considering a semantics function that maps a query and a database to a set of
databases representing its possible answers. This model allows us to capture more
interpretations of incompleteness, especially the none-applicable and no-information
interpretations (see Example 7). On top of this model of incompleteness, we propose
a notion of certain answers and introduce the whole-world assumption for answers on
relational databases, resulting in databases containing more tuples.

73

5. Answer notions with query-evaluation semantics 74

Finally, the survey results show that users have different expectations for answers
on incomplete databases. Indeed even if two users agree on the interpretation of
incompleteness, what they consider a satisfying answer may differ. We need a more
adaptable notion of answers.

The key component to define answers is the notion of similarity between database
objects. Indeed, the most pertinent answer is often defined as the database that is
the least dissimilar to every other possible answer. For instance, the certain answers
are based on a boolean similarity measure, namely the less-informative pre-order. To
obtain a more flexible notion of answers, we propose a numerical similarity meas-
ure called regret. The regret capture the task-dependent loss a user endures when
he considers a database as ground truth instead of another. The notion of answer
defined with regret similarity measures is called risk-minimizing answers. We show
that for some regret functions, the regret-minimizing answers coincide with the certain
answers. Moreover, because regret functions are numerical, the risk-minimizing notion
can define more nuanced and pertinent answers.

Example 7. Considere the database:

R

a
⊥1

⊥2

When we consider the traditional semantic (EU), as the query is a tautology we obtain
the following answers to queries:

σa=0(R)

a

σa̸=0(R)

a

σa=0∨a̸=0(R)

a

⊥1

⊥2

The problem arises when we want to capture the NI or NA semantics. Especially for
the tautological query σa=0∨a̸=0(R) and the NI semantics, we wish the set of possible
answers to be:

σa=0∨a̸=0(R)

a a

⊥1

a

⊥2

a

⊥1

⊥2

. Answer notions with query-evaluation semantics 75

And it is impossible to capture all those possible answers by only considering a
semantic on databases.

5.1 Query-evaluation semantics

Recall that a query q from a source database domain S to a target database domain T

is a mapping from the source’s complete objects to the target’s complete objects. For
each query q, we define its evaluation semantics as a function mapping incomplete
objects from the source to the power set of incomplete objects of the target, repres-
enting the possible answers. Moreover, the evaluation semantics has to be consistent
with the source and target database domain semantics.

Definition 5.1.1 (Evaluation semantics). The evaluation semantics of a query q from
S to T is a mapping from the source databases IS to the powerset of target databases
IT, ie. Q : IS → 2IT such that for every database x ∈ IS, every complete database
c ∈ CS:

(a) Jq(JxKS)KT ⊆ JQ(x)KT
(b) Jq(JcKS)KT = JQ(c)KT
The evaluation semantics of a query q on a database x ∈ IS contains at least all the
complete answers obtained by evaluating the complete interpretations of the database
x. Moreover, if the database x is complete, the evaluation semantics of q is equal to
the evaluation of q on x.

In chapter 3, we introduced the notion of K-semantics for databases. We considered
the elements of the universal knowledge K as pieces of knowledge that can be applied
to a database to make it potentially more informative, i.e., restrict its possible interpret-
ations. We now consider that the knowledge in K can be applied to query evaluation
to make it more informative, i.e., restrict the set of possible answers returned by the
evaluation semantics. Such pieces of knowledge can be concatenated: applying ωω′

means applying ω first and then applying ω′ to the result of applying ω. Finally, we have
the empty knowledge ϵ: applying it to any query evaluation does not change it. That is,
K is a monoid as it has a binary concatenation operation ωω′ (which we assume to be
associative) and the identity ϵ satisfying ϵω = ωϵ = ω.

Then for a query q with evaluation semantics Q and a database x ∈ IS, the K-
evaluation semantics under knowledge ω ∈ K is the set Q(x, ω) of possible answers
in IT to the evaluation of q on x when ω is known. We assume that for any given
evaluation semantics Q, such a semantic function from IS × K to 2IT always exists,
and it is such that Q(x, ϵ) = Q(x) for every x ∈ IS. Intuitively, the empty knowledge
does not give us any extra information about the semantics of the query evaluation.

5.1. Query-evaluation semantics 76

As the monoid K contains all possible knowledge, it is reasonable to assume that the
K-operation semantics, while always existing, is not fully known. Thus, we consider
sub-monoids of K, in particular those whose knowledge increases the information
content of query evaluation.

Definition 5.1.2 (Additional evaluation knowledge). We say that a sub-monoid of know-
ledge A ⊆ K is an additional evaluation knowledge to an evaluation semantics Q iff.
A is additional to S and T and for every database x ∈ IS, every complete database
c ∈ CS and every knowledge ω, ω′ ∈ A we have:

JQ(x, ωω′))Kωω
′

T ⊆ JQ(x, ω))KωT

Intuitively, the additional knowledge in A is consistent with the evaluation semantics
and can only restrict the set of possible answers returned by the evaluation semantics.
Note that {ϵ} is an additional evaluation knowledge for every query and corresponds
to the situation in which we only have “empty” knowledge.

Moreover for every q from S to T and every sub-monoid of knowledgeA ⊆ K additional
to S and T, we can always build a trivial evaluation semantics for q denoted Qt

such that A is an additional evaluation knowledge. We define Qt such that for every
database x ∈ IS and every knowledge ω ∈ A, Qt(x, ω) = q(JxKωS). Informally the
incompleteness of the evaluation semantics is fully contained in the incompleteness of
the source database domain.

5.1.1 Evaluation-based Certain answers

Our goal is to capture answers consistent with every possible answer and under every
extra knowledge.

Definition 5.1.3 (Evaluation-Based Certain answers). Let a query q from S to T with
an evaluation semantics Q. Let a database x ∈ IS, and let A be an additional eval-
uation knowledge for Q. The A-evaluation-based certain answer to Q on x, denoted
by certA(Q, x), is the most informative database with respect to ⪯A that satisfies the
following:

JQ(x, ω)KωT ⊆ JcertA(Q, x)KωT (5.1)

for every ω ∈ A.

If we consider the trivial evaluation semantics of a query q denoted Qt such that for
every database x ∈ IS and every knowledge ω ∈ A, Qt(x, ω) = q(JxKωS). Then the
A-knowledge preserving answers and the A-evaluation-based certain answer of Qt

coincides. For every database x ∈ IS we either have certA(q, x) = certA(Qt, x), or
none exists.

5.1. Query-evaluation semantics 77

The expected behavior of query answering under incomplete information is that more
informative inputs yield more informative outputs. We show that this is also true for
evaluation-based certain answers. Moreover, if they both exist, the evaluation-based
certain answers are always less informative than certain answers based on database
semantics.

Proposition 14. Let q be a query from S to T with evaluation semantics Q, and let A
be an additional evaluation knowledge for Q. Then, for every database x, y ∈ IS the
followings hold:

(a) If for every ω ∈ A we have Q(x, ω) ⊆ Q(y, ω), then certA(Q, y)⪯A certA(Q, x)
(b) certA(Q, x)⪯A′

certA′(Q, x) for every A′ ⊆ A;
(c) If certA(q, x) and certA(Q, x) exist, then certA(Q, x)⪯A certA(q, x).

Recall that the information-based certain answers coincide with the knowledge pre-
serving certain answers upon the empty knowledge {ϵ}. There we can conclude that
if both certA(Q, x) and cert□(q, x) exists we have certA(Q, x)⪯ cert□(q, x). Therefore,
while capturing more incompleteness models, the evaluation-based certain answers
notion is always less informative than the information-based certain answers. However,
this only holds when both notions exist. In the next section, we will see that on relational
databases, there exists an evaluation semantics for which the evaluation-based certain
answers exist, and the information-based ones do not.

5.2 Evaluation semantics for relational databases

The notion of database semantics is strongly tied to the missing interpretation of
null, the existing unknown (EU) interpretation of incompleteness. With evaluation se-
mantics, we can capture more interpretations of incompleteness, such as the no-
information semantics (NI). Query evaluation semantics allow us to consider more
possible answers, even answers inconsistent with the EU interpretation of null. The
intuition behind the no-information meanings of null values is that nothing should be
assumed about their behavior. More specifically, when a null value is involved in the
resolution of a predicate, we should consider both the cases for which the predicate is
true and is false as possible answers. We want to account for those two cases even if
there exists no complete instance of the database which satisfies the predicate.

5.2. Evaluation semantics for relational databases 78

5.2.1 Relational Algebra with null

To define an evaluation semantics, we have to consider a query language; we intro-
duce a variation of relational algebra. We recall the grammar of the standard relational
algebra for complete databases given in subsection 3.2.1:

q := R | πᾱ(q) | σαi=αj (q) | σαi ̸=αj
(q)

| q × q | q ∪ q | q ∩ q | q − q

where αi and αj are attributes, and ᾱ is possibly empty tuple of attributes.

It is folklore that for complete databases there is no difference between the quer-
ies σα1=α2

(
σα3=α4(R)

)
and

(
σα1=α2(R)

)
∩

(
σα3=α4(R)

)
. Informally, the intersection

between queries acts as a conjunction between selection operators, and the union
acts as a disjunction. Thanks to that, relational algebra has precisely the power of
first-order logic, despite not explicitly allowing first-order logic formulae in selection.

For incomplete databases, intersection and conjunction carry different interpretations.
On the one hand, the intersection is performed on the level of relations, i.e., database
objects. Therefore its evaluation should result in a database object whose semantics
is equal to the intersection of the source databases’ semantics. On the other hand,
evaluating a selection operator involves the resolution of a formula with elements of
the databases. As those elements may be null, the resolution of predicates and their
conjunctions or disjunctions can be specified by an evaluation semantics. For this
reason, we allow the selection operator to contain a formula with conjunctions and
disjunctions.

Now consider the following SQL query returning the ’id’ of each order for which there
does not exist a payment entry:

SELECT id FROM Orders

WHERE NOT EXISTS (SELECT id FROM Payments

WHERE Orders.id = Payments.id)

For complete database this query can be written in relational algebra:

q = πid(Orders)− πid(Payments)

5.2. Evaluation semantics for relational databases 79

However, those two queries have different interpretations for incomplete databases.
On the one hand„ both πid(Orders) and πid(Payments) are relations ie. they are data-
base objects. Hence the evaluation of q should result in a database object whose
semantics contains the database objects in the semantics of πid(Orders) which are not
in the semantics of πid(Payments). On the other hand, the evaluation of the SQL query
involved the evaluation of the equality predicate between elements of the database.
Therefore its resolution can be specified by an evaluation semantics.

We introduce the Relational Algebra with null language to be closer to SQL language
and semantics.

Definition 5.2.1 (Relational Algebra with null). Considering a collection of predicates
Γ, a relational algebra with null query q is given by the following grammar:

q := R | q × q | πᾱ(q) | σϕ(ᾱ)(q)

| ∃ϕ(ᾱ)(q, q) | ∄ϕ(ᾱ)(q, q)

where ᾱ is a possibly empty tuple of attributes.

ϕ(ᾱ) := P(ᾱ) | ϕ(ᾱ) ∨ ϕ(ᾱ) | ϕ(ᾱ) ∧ ϕ(ᾱ) with P ∈ Γ

For simplicity, a formula ϕ can not contain negation (¬); however, as there is no
constraint on the collection of predicates Γ, one can always force it to be close under
negation.

The semantics of a (well-formed) relational algebra with null query q is given by induct-
ively defining the quantity #

(
q(d), t̄

)
, which is the number of occurrences of a tuple t̄

(of appropriate arity) in the result of applying q to a possibly with nulls database d.

#
(
R(d), t̄

)
= #

(
Rd, t̄

)
#
(
(q × q′)(d), t̄ t̄′

)
= #

(
q(d), t̄

)
· #

(
q′(d), t̄′

)
#
(
πᾱ(q)(d), t̄

)
=

∑
t̄′ : πᾱ(t̄′)=t̄

#
(
q(d), t̄′

)

#
(
σϕ(ᾱ)(q)(d), t̄

)
=

#
(
q(d), t̄

)
if Jϕ(ᾱ)Kt̄ = true

0 otherwise

#
(
∃ϕ(ᾱ)(q, q′)(d), t̄

)
=

#
(
q(d), t̄

)
if ∃t̄′ ∈ q′(d), Jϕ(ᾱ)Kt̄t̄′ = true

0 otherwise

#
(
∄ϕ(ᾱ)(q, q′)(d), t̄

)
=

#
(
q(d), t̄

)
if ∄t̄′ ∈ q′(d), Jϕ(ᾱ)Kt̄t̄′ = true

0 otherwise

5.2. Evaluation semantics for relational databases 80

The semantics of evaluation for a formula ϕ is given by:

JP(ᾱ)Kt̄ =

P(t̄[α]) if ∀αi ∈ ᾱ, t̄[αi] ∈ Const

⊥ otherwise

Jϕ(ᾱ) ∧ ϕ′(ᾱ′)Kt̄ =

false Jϕ(ᾱ)Kt̄ = false ∨ Jϕ′(ᾱ)′Kt̄ = false

true if Jϕ(ᾱ)Kt̄ = Jϕ′(ᾱ)′Kt̄ = true

⊥ otherwise

Jϕ(ᾱ) ∨ ϕ′(ᾱ′)Kt̄ =

true Jϕ(ᾱ)Kt̄ = true ∨ Jϕ′(ᾱ)′Kt̄ = true

false if Jϕ(ᾱ)Kt̄ = Jϕ′(ᾱ)′Kt̄ = false

⊥ otherwise

Note that only the evaluation of the operators σ, ∃ and ∄ varies when some elements
of the databases are null.

The evaluation of ∃ϕ(ᾱ)(q,q′) matches the SQL evaluation of the query:

SELECT * FROM (q)

WHERE EXISTS (SELECT * FROM (q′)

WHERE ϕ(...))

and the evaluation of ∄ϕ(ᾱ)(q,q′) matches the SQL evaluation of the query:

SELECT * FROM (q)

WHERE NOT EXISTS (SELECT * FROM (q′)

WHERE ϕ(...))

Indeed in SQL, if the evaluation of a formula ϕ involves NULL the behavior of EXISTS
and NOT EXISTS will be at odd. In the case of EXISTS the tuple will be discarded,
while in the case of NOT EXISTS it will be kept. This behavior explain the definition of
the semantics for ∄ϕ(ᾱ)(q,q′) where we check that no possible evaluation of the formula
returns true. In other words, we keep the tuple even if there exists a tuple in q′(d) for
which the formula’s evaluation returns ⊥.

Finally, remark that we are not allowing database object operators such as ∩,∪, and
−. Indeed as mentioned earlier, those operators do not manipulate elements of the
databases. Therefore their output is independent of the evaluation semantics and
only depends on the semantics of the database. Our goal is to provide an evaluation
semantics for the no-information interpretation of nulls, for which database semantics
do not exist. Hence we can not consider those operators. However, remark that those
operations can be implemented for complete databases thanks to the ×, ∃, and ∄
operations.

5.2. Evaluation semantics for relational databases 81

Orders

a

1
2
3

Payments

b

1
⊥

Figure 5.1: A database d containing the relations Orders and Payments.

For every relational algebra with null query q and every relational database d, the
database q(d) is well-defined and is a possibly incomplete relational table. However,
the straightforward evaluation of q on d given by relational algebra with null is not
a consistent evaluation semantics neither for the close-world assumption nor for the
open-world assumption.

Example 8. Consider the relational algebra with null query:

q = ∄a=b(Orders,Payments)

Or the equivalent SQL query:

SELECT * FROM Orders

WHERE NOT EXISTS (SELECT * FROM Payments

WHERE a = b)

and the database d from Figure 5.1.
The evaluation of q on d returns the bag q(d) = {|(2), (3)|}.
The tuple (1) ∈ Orders is discarded. Indeed if we choose the tuple (1) ∈ Payments,
then we obtain Ja = bK(1,1) = true.
On the other hand, we have Jc = bK(2,1) = false and Ja = bK(2,⊥) = ⊥, hence we keep
the tuple (2) ∈ Orders. Similarly we keep tuple (3) ∈ Orders.
With both CWA and OWA, there exists a possible interpretation of d =

{Orders,Payments} where ⊥ ∈ Paymentsd is equal to 2, we denote v(d) ∈ JdK such
interpretation.
Then the evaluation of q on v(d) returns the bag q(d) = {|(3)|}. Indeed if we choose the
tuple (2) ∈ v(Payments), then we obtain Ja = bK(2,2) = true.
As J{|(3)|}K ̸⊆ J{|(2), (3)|}K the evaluation of relational algebra with null queries is not a
valid evaluation semantics for neither the CWA nor OWA.

5.2. Evaluation semantics for relational databases 82

5.2.2 CWA and OWA consistent evaluation semantics

We have to capture more possible answers to propose a valid evaluation semantics for
relational algebra with null. Informally we wish to model the no-information meanings
of null values. Our interpretation of the no-information meanings of null values is that
nothing should be assumed about their behavior. More specifically, when a null value
is involved in the resolution of a predicate, we should consider both the cases for which
the predicate is true and is false as possible answers. Therefore, we wish to consider
all possible resolutions of a predicate when it involves a null value. It results in a set of
possible answers, which is then propagated to parent queries.

Definition 5.2.2 (Evaluation semantics for relational algebra with null). Let a relational
algebra with null query q and d a bag relational database. The NI-evaluation semantics
qNI is given by induction:

RNI(d) = Rd

(q × q′)NI(d) = {a1 × a2 | a1 ∈ qNI(d), a2 ∈ q′NI(d)}

(πᾱ)(q)NI(d) = {πᾱ(a) | a ∈ qNI(d)}

(σϕ(ᾱ))(q)NI(d) =

a
∣∣∣∣∣∣∣∣∣
∃a1 ∈ qNI(d), ∀t̄ ∈ a1,∃p ∈ {true, false},

#
(
a, t̄

)
=

#
(
a1, t̄

)
if Jϕ(ᾱ)Kt̄ = true ∨

(
p ∧ Jϕ(ᾱ)Kt̄ = ⊥

)
0 otherwise.

(∃ϕ(ᾱ))(q, q′)NI(d) =

a

∣∣∣∣∣∣∣∣∣∣∣∣

∃a1 ∈ qNI(d), ∃a2 ∈ q′NI(d), ∀t̄ ∈ a1,∃p ∈ {true, false},

#
(
a, t̄

)
=

#
(
a1, t̄

)
if ∃t̄′ ∈ a2 such that

Jϕ(ᾱ)Kt̄t̄′ = true ∨
(
p ∧ Jϕ(ᾱ)Kt̄t̄′ = ⊥

)
0 otherwise.

(∄ϕ(ᾱ))(q, q′)NI(d) =

a

∣∣∣∣∣∣∣∣∣∣∣∣

∃a1 ∈ qNI(d), ∃a2 ∈ q′NI(d), ∀t̄ ∈ a1,∃p ∈ {true, false},

#
(
a, t̄

)
=

#
(
a1, t̄

)
if ∄t̄′ ∈ a2 such that

Jϕ(ᾱ)Kt̄t̄′ = true ∨
(
p ∧ Jϕ(ᾱ)Kt̄t̄′ = ⊥

)
0 otherwise.

Example 9. Consider the relational algebra with null query:

q = ∄a=b(Orders,Payments)

Or the equivalent SQL query:

SELECT * FROM Orders

5.2. Evaluation semantics for relational databases 83

WHERE NOT EXISTS (SELECT * FROM Payments

WHERE a = b)

and the database d from figure 5.1.
Then the set of possible answers given by the evaluation semantics qNI is:

Answer1

a

2

3

Answer2

a

2

Answer3

a

3

Answer4

a

Recall that Ja = bK(1,1) = true, hence the tuple (1) is always filtered out. Moreover,
recall that Ja = bK(2,1) = false and Ja = bK(2,⊥) = ⊥, therefore there does not exists a
tuple t in Payments such that Ja = bK(2,t) = true.
But as Ja = bK(2,⊥) = ⊥ we have to consider the cases when (2) is filtered out and when
it is kept in the answers. Similarly, with the tuple (3), which gives us the previously given
set of possible answers.
On the other hand, the set of answers given by the semantics of d, q(JdKCWA) is

Answer1

a

2

3

Answer2

a

2

Answer3

a

3

Indeed we can not find a valuation such that the tuples (2) and (3) are both filtered
out. However, we notice that with the open-world-assumption on the target database
domain, we retain that:

Jq(JdKCWA)KOWA ⊆ JqNI(d)KOWA

Finally, we obtain that the information-based certain answers cert□(q, d) are equal to a
{|⊥|} and that the {ϵ}-evaluation-based certain answers are equal to the empty bag.

Proposition 15. For every relational algebra with null query q from the source rela-
tional database domain S with the CWA semantics to the target relational database
domain with OWA, the mapping qNI is an evaluation semantics of q. Moreover, the
{ϵ}-evaluation-based certain answers, cert{ϵ}(qNI, d) exists and can be computed in
polynomial time.

Proof. The proof of this proposition is included in the proof of theorem 8.

5.2. Evaluation semantics for relational databases 84

Employees

First Name Second Name Salary
John ⊥1 2000
⊥1 Peter 1000

Figure 5.2: A database d containing the relation Employees.

We have proposed the first notion of answers compatible with the no-information inter-
pretation of null values. Moreover, we can compute the evaluation-based certain an-
swers with this incompleteness model in polynomial time. However, as the evaluation-
based certain answers are less informative than the information-based ones, it does
not seem to be a practical notion. But this statement only holds if both the answer
notions exist at the same time.

5.2.3 Whole world assumption

Recall that for relational databases, we consider the open world assumption over the
target database domain. With OWA, an answer contains only true facts but can also
miss arbitrary many true facts. Therefore the more facts an answer contains, the more
information it carries. Now consider a semantics called whole world assumption, such
that an answer contains all the true facts but can also contain arbitrary many wrong
facts. Then the fewer facts an answer contains, the more information it carries.

Formally the whole-world assumption semantics is defined as follows:

JdKWWA = {complete d′ | d′ ⊆ v(d) for a d-complete valuation v}

Under WWA, a complete database is a possible interpretation of d, if there exists a
valuation v such that it is a subset of v(d)

However, when considered on the target databases, the WWA semantic shares a
similar caveat as the CWA semantics. The information-based certain answers do not
exist even for simple queries, as illustrated in the following Example 10.

Example 10. Consider the generic query q returning the salary of all employees such
that the first name is equal to the second name:

q = πSalary
(
σFirst Name=Second Name

)
(Employees)

on the database given in Figure 5.2

5.2. Evaluation semantics for relational databases 85

With the valuation v : ⊥1 7→ Jane, the answer is empty. Therefore if we consider the
OWA on the target, the information-based certain answers would exist and be empty.
On the other hand, the set of answers given by the semantics is

q(JdKCWA) = {{|1000|}, {|2000|}, {||}}

The bag {|1000, 2000|} is not a possible answer of the semantics, because ⊥1 can not
be evaluated to ’Peter’ and ’John’ at the same time.
To compute the information-based certain answers, we first have to find the databases
which are less informative than all possible answers with the WWA semantic. A trivial
one would be {|1000, 2000|}, and any superset of it would also be less informative than
all possible answers. However, the database {|⊥i|} is also less informative than all
possible answers.
Recall that the certain answer is the most informative database, which is less
informative than all possible answers. The problem is that the information content
of {|1000, 2000|} and {|⊥i|} is incomparable. Therefore, the information-based certain
answers do not exist.

Intuitively the relational database objects are not able to carry precise enough inform-
ation. The resulting pre-order is often too sparse, and the greatest lower bound of the
set of possible answers do not exist. On the one hand, the easiest way to ensure the
existence of certain answers is to use a more expressive model of incompleteness for
the target database. However, it comes with a cost, and it pushes us further away from
applicability (conditional tables are such a model Imielinski and Lipski (1984)). On the
other hand, we can allow more permissive semantics of incompleteness for the source
databases. Indeed it will increase the size of the set of possible answers to consider
and help toward the existence of a greatest lower bound.

Theorem 8. For every relational algebra with null query q from the source relational
database domain S with the CWA semantics to the target relational database do-
main with WWA, the mapping qNI is an evaluation semantics of q. Moreover, the {ϵ}-
evaluation-based certain answers, cert{ϵ}(qNI, d) exists and can be computed in poly-
nomial time.

Informally, with the whole world assumption WWA, the evaluation-based certain an-
swers are the smallest database that contains all the true facts. On the other hand,
with the open world assumption, OWA, the evaluation-based certain answers are the
largest database that only contains true facts.

5.2. Evaluation semantics for relational databases 86

Example 11. In example 10, the qNI evaluation semantics enforces that any predicate
evaluation involving ⊥1 have to be considered true resp. false at some point. Therefore
the set of possible answers qNI(d) contains {|1000|},{|2000|}, the empty set, but also
{|1000, 2000|}. It resolves the previous issue regarding the existence of a greatest
lower bound for the WWA semantics, and the evaluation-based certain answers are
{|1000, 2000|}.

By considering a different assumption on the target database domain, namely the
whole world assumption, we have been able to offer a notion of answers for relational
database with the no-information interpretation of nulls which filters-out less tuple than
previous notions.

5.2.4 Proof of Theorem 8

Theorem 2. For every relational algebra with null query q from the source relational
database domain S with the CWA semantics to the target relational database do-
main with WWA, the mapping qNI is an evaluation semantics of q. Moreover, the {ϵ}-
evaluation-based certain answers, cert{ϵ}(qNI, d) exists and can be computed in poly-
nomial time.

Proof of Theorem 8. In order to prove the theorem, we inductively define two new
query evaluation procedures for relational algebra with null query. We will prove that
those evaluation procedures respectively return the evaluation-based certain answers
with WWA and the evaluation-based certain answers with OWA.

5.2. Evaluation semantics for relational databases 87

For every relational algebra with null query q, we define the evaluation procedure
qtrue resp. qfalse such that their semantics is given by inductively defining the quantity
#
(
qtrue(d), t̄

)
resp. #

(
qfalse(d), t̄

)
, which is the number of occurrences of a tuple t̄ (of

appropriate arity) in the result of applying qtrue resp. qfalse to a database d.

#
(
R∗(d), t̄

)
= #

(
Rd, t̄

)
#
(
(q × q′)∗(d), t̄ t̄′

)
= #

(
q∗(d), t̄

)
· #

(
q′∗(d), t̄

′)
#
(
πᾱ(q)∗(d), t̄

)
=

∑
t̄′ : πᾱ(t̄′)=t̄

#
(
q∗(d), t̄

′)

#
(
σϕ(ᾱ)(q)true(d), t̄

)
=

#
(
qtrue(d), t̄

)
if Jϕ(ᾱ)Kt̄ = true ∨ Jϕ(ᾱ)Kt̄ = ⊥

0 otherwise

#
(
σϕ(ᾱ)(q)false(d), t̄

)
=

#
(
qfalse(d), t̄

)
if Jϕ(ᾱ)Kt̄ = true

0 otherwise

#
(
∃ϕ(ᾱ)(q, q′)true(d), t̄

)
=

#
(
qtrue(d), t̄

)
if ∃t̄′ ∈ q′true(d), Jϕ(ᾱ)Kt̄t̄′ = true ∨ Jϕ(ᾱ)Kt̄t̄′ = ⊥

0 otherwise

#
(
∃ϕ(ᾱ)(q, q′)false(d), t̄

)
=

#
(
qfalse(d), t̄

)
if ∃t̄′ ∈ q′false(d), Jϕ(ᾱ)Kt̄t̄′ = true

0 otherwise

#
(
∄ϕ(ᾱ)(q, q′)true(d), t̄

)
=

#
(
qtrue(d), t̄

)
if ∄t̄′ ∈ q′false(d), Jϕ(ᾱ)Kt̄t̄′ = true

0 otherwise

#
(
∄ϕ(ᾱ)(q, q′)false(d), t̄

)
=

#
(
qfalse(d), t̄

)
if ∄t̄′ ∈ q′true(d), Jϕ(ᾱ)Kt̄t̄′ = true ∨ Jϕ(ᾱ)Kt̄t̄′ = ⊥

0 otherwise

Notice that the computation of both qfalse and qtrue can be done in polynomial time as
we do not need to consider a set of possible answers anymore.

Corollary 1. For every relational algebra with null query q and database d, for every
database a ∈ qNI(d) we have

certOWA(qNI, d) ⊆ a ⊆ certWWA(qNI, d)

where. certOWA(qNI, d) resp. certWWA(qNI, d) denotes the {ϵ}-evaluation based certain
answers with the OWA, resp. WWA semantics.

Proof of Corollary 1. Recall that the evaluation-based certain answers cert∗(qNI, x), is
the most informative database with respect to ⪯∗ that satisfies the following:

JqNI(d)K∗ ⊆ Jcert∗(qNI, d)K∗

5.2. Evaluation semantics for relational databases 88

In other words, cert∗(qNI, d) = glb⪯∗ qNI(d).

Recall the definition of the OWA semantics:

JdKOWA = {complete d′ | v(d) ⊆ d′ for a d-complete valuation v} .

Therefore for every database d, d′ we have d ⪯OWA d′ iff. d ⊆ d′ (see Lemma 1 from
Chapter 3 for a complete proof).
Which gives us certOWA(qNI, d) = glb⪯OWA qNI(d) = glb⊆ qNI(d). Especially, we obtain
that for every database a ∈ qNI(d) we have certOWA(qNI, d) ⊆ a.

Now recall the definition of the WWA semantics:

JdKWWA = {complete d′ | d′ ⊆ v(d) for a d-complete valuation v}

Therefore for every database d, d′ we have d ⪯WWA d′ iff. d ⊇ d′ (see Lemma 1 from
chapter 3 for a proof sketch).
Which gives us certWWA(qNI, d) = glb⪯WWA qNI(d) = glb⊇ qNI(d). Especially, we obtain
that for every database a ∈ qNI(d) we have certWWA(qNI, d) ⊇ a.

And we can conclude

certOWA(qNI, d) ⊆ a ⊆ certWWA(qNI, d)

■

As qtrue(d) and qfalse(d) are possible answers from qNI(d) and by definition of the
evaluation-based certain answers we immediately have

certOWA(qNI, d) ⊆ qfalse(d)

certWWA(qNI, d) ⊇ qtrue(d)

We wish to prove inductively that for every relational algebra with null query q and
every database d we have qtrue(d) = certWWA(qNI, d) and qfalse(d) = certOWA(qNI, d).

Proof of certWWA(∄ϕ(ᾱ)(q, q′)NI, d) = ∄ϕ(ᾱ)(q, q′)true(d)

Proof. We assume that certWWA(qNI, d) = qtrue(d) and certOWA(q
′
NI, d) = q′false(d).

If t ∈ certWWA(QNI, d), then there exists a ∈ QNI(d) such that t ∈ a. More precisely
there exists a1 ∈ qNI(d) and a2 ∈ q′NI(d) and p ∈ {true, false} such that t ∈ a1 and there
not exists t′ ∈ a2 such that Jϕ(ᾱ)Kt̄t̄′ = true ∨

(
p ∧ Jϕ(ᾱ)Kt̄t̄′ = ⊥

)
.

As we can choose p to be false it gives us, if t ∈ certWWA(QNI, d), then there exists

5.2. Evaluation semantics for relational databases 89

a1 ∈ qNI(d) and a2 ∈ q′NI(d) such that t ∈ a1 and there not exists t′ ∈ a2 such that
Jϕ(ᾱ)Kt̄t̄′ = true

Which is equivalent to, if t ∈ certWWA(QNI, d), then there exists a1 ∈ qNI(d) and a2 ∈
q′NI(d) such that t ∈ a1 and for all t′ ∈ a2, Jϕ(ᾱ)Kt̄t̄′ = false ∨ Jϕ(ᾱ)Kt̄t̄′ = ⊥.

By inductive assumption, qtrue(d) = certWWA(qNI, d). And with corollary 1 (For every
database a ∈ qNI(d) we have a ⊆ certWWA(qNI, d).)
We obtain that for every a ∈ qNI(d), qtrue(d) ⊇ a.
Therefore if there exists a ∈ qNI(d) such that t ∈ a then we have t ∈ qtrue(d).

Then we have that if t ∈ certWWA(QNI, d), then t ∈ qtrue(d) and there exists a2 ∈ q′NI(d)

such that for all t′ ∈ a2, Jϕ(ᾱ)Kt̄t̄′ = false ∨ Jϕ(ᾱ)Kt̄t̄′ = ⊥.

By inductive assumption we have q′false(d) = certOWA(q
′
NI, d). And with corollary 1 (For

every database a ∈ qNI(d) we have certOWA(qNI, d) ⊆ a.)
We obtain that for every a ∈ q′NI(d), q

′
false(d) ⊆ a.

Therefore for every tuple t ∈ q′false(d) we have that for every a ∈ q′NI(d), t ∈ a.

Then we have that if t ∈ certWWA(QNI, d), then t ∈ qtrue(d) and for all t′ ∈ qfalse(d),
Jϕ(ᾱ)Kt̄t̄′ = false ∨ Jϕ(ᾱ)Kt̄t̄′ = ⊥.

And we can conclude that t ∈ ∄ϕ(ᾱ)(q, q′)true(d) which gives us:

certWWA(∄ϕ(ᾱ)(q, q′)NI, d) = ∄ϕ(ᾱ)(q, q′)true(d)

■

Proof of certOWA(∄ϕ(ᾱ)(q, q′)NI, d) = ∄ϕ(ᾱ)(q, q′)false(d)

Proof. We assume that certOWA(qNI, d) = qfalse(d) and certWWA(q
′
NI, d) = q′true(d).

If t ∈ Qfalse(d), then, t ∈ qfalse(d) and there not exists t′ ∈ q′true(d) such that Jϕ(ᾱ)Kt̄t̄′ =
true ∨ Jϕ(ᾱ)Kt̄t̄′ = ⊥.
Which is equivalent to, if t ∈ Qfalse(d), then, t ∈ qfalse(d) and for every t′ ∈ q′true(d) we
have Jϕ(ᾱ)Kt̄t̄′ = false.

By inductive assumption we have qfalse(d) = certOWA(qNI, d). And with corollary 1 (For
every database a ∈ qNI(d) we have certOWA(qNI, d) ⊆ a.)
We obtain that for every a ∈ qNI(d), qfalse(d) ⊆ a.
Therefore for every tuple t ∈ qfalse(d) we have that for every a ∈ qNI(d), t ∈ a.

Then we have that if t ∈ Qfalse(d), then for every a ∈ qNI(d), t ∈ a, and for every
t′ ∈ q′true(d) we have Jϕ(ᾱ)Kt̄t̄′ = false.

5.2. Evaluation semantics for relational databases 90

By inductive assumption, q′true(d) = certWWA(q
′
NI, d). And with corollary 1 (For every

database a ∈ qNI(d) we have a ⊆ certWWA(qNI, d).)
We obtain that for every a ∈ q′NI(d), q

′
true(d) ⊇ a.

Therefore if there exists a ∈ q′NI(d) such that t ∈ a then we have t ∈ q′true(d).

Then we have that if t ∈ Qfalse(d), then for every a ∈ qNI(d), t ∈ a, for every a′ ∈ q′NI(d)

and for every t′ ∈ a′ we have Jϕ(ᾱ)Kt̄t̄′ = false.
Hence if t ∈ Qfalse(d), then for every a ∈ ∄ϕ(ᾱ)(q, q′)NI(d), t ∈ a.
By defintion of certOWA(∄ϕ(ᾱ)(q, q′)NI, d) we can conclude that tt ∈ certOWA(∄ϕ(ᾱ)(q, q′)NI, d)

which gives us:
certOWA(∄ϕ(ᾱ)(q, q′)NI, d) = ∄ϕ(ᾱ)(q, q′)false(d)

■

Other cases are omitted because they are similar. QED

We have used the evaluation semantics to provide a notion of certain answers for the
NI interpretation of nulls. Moreover, with this interpretation, we can consider a target
semantics, for which the evaluation-based certain answers exist for a large class of
queries and which filters fewer tuples than the previously used one. Finally, we showed
that the notion of NI-evaluation based certain answers with either the OWA or WWA

semantics is easy to compute for a large class of relational queries.

However, one of the shortcomings of the existing techniques to define relevant an-
swers on incomplete databases is that they commonly assume that if users agree on
an interpretation of their incompleteness, they should also agree on what a relevant
answer to a query is. Results from the survey presented in Chapter 4 provide evidence
that this assumption does not hold for most users (Figure 4.5). Even if the evaluation-
based certain answers notion offers more flexibility, as a user can choose between the
open or whole world assumption on the target databases domain, we argue that it is
insufficient.

5.3 Risk minimizing answers

The problem with the notion of certain answers is that it can only provide Manichean
answers. Indeed certain answers have to be less informative than every possible an-
swer. And the less-informative pre-order is absolute; a database is either less inform-
ative, incomparable, or more informative. The notion does not allow for any nuances.
While additional knowledge can explain why a database is less informative or not, it
can not help to quantify the information dissimilarity between two databases.

5.3. Risk minimizing answers 91

As an illustration, consider the situation from Example 10. The evaluation-based cer-
tain answers are completely different depending on the semantics we consider on the
target database domain. With the open world assumption, the certain answers are the
empty set, and with the whole world assumption, the certain answers are {|2000, 1000|}.
A user may be more satisfied with an answer in between, such as {|⊥i|}. However,
to the best of our knowledge, no existing semantics or incompleteness models can
produce this answer.

The problem comes from the notion of similarity we consider between database ob-
jects. Indeed, the most pertinent answer is often defined as the database that is the
least dissimilar to every other possible answer. For instance, the certain answers are
based on a boolean similarity measure, namely the less-informative pre-order. To
obtain a more flexible notion of answers, we need to propose a numerical similarity
measure.

Based on this observation, we introduce the notion of regret function µ : IT×IT×O →
[0,∞],. For any two databases x, y ∈ IT, and any extra-knowledge ω ∈ A, the regret
function returns a value µ(x, y, ω) representing the degree of regret that a user would
have if deciding according to the information contained in x instead of the information
contained in y while also knowing the extra knowledge ω. Therefore for every x ∈ IT
and every extra piece of knowledge ω ∈ A we have µ(x, x, ω) = 0.

The regret functions acts as numerical measures of dissimilarity between possible
answers. They also are user-dependent functions. Therefore, it allows us to consider
users’ preferences.

With the notion of regret, we can now assign a risk score to a database we wish to use
as an answer to a query on a database. We define the risk associated with an answer
a as the maximal regret a user would have if the real answer to q on x is different.

Definition 5.3.1 (Risk of an answers). Let a query q in from S to T with Q its evaluation
semantics. Let x ∈ IS, and let A be additional evaluation knowledge for Q. The risk
of a database a ∈ IT as an answer to Q on x with the evaluation knowledge A is the
value:

riskA(Q, x)[a] = sup
{
µ(a, y, ω) | ω ∈ A, y ∈ Q(x, ω)

}
Remark that the risk value does not have to rely on the semantics of the database
domain. It is dependent on the chosen regret function. This allows us to consider
other notions of answers upon incomplete databases.

5.3. Risk minimizing answers 92

Definition 5.3.2 (Risk minimizing answer). Let a query q in from S to T with Q its
evaluation semantics. Let x ∈ IS, and let A be additional evaluation knowledge for Q.
When it exists the risk-minimizing answer is defined as:

bestA(Q, x) = argmin
{

riskA(Q, x)[a] | a ∈ IT
}

Naively, to find the risk-minimizing answer to a query, one has to compute the risk
associated with each possible database object in the target database domain. Un-
fortunately, the set of objects IT is often infinite, but we will see that computing the
risk-minimizing answer for reasonable instances of regret functions is possible.

First we prove that for most database target domain (enumerable ones), the notion of
risk minimizing answer can capture the notion of information-based certain answers
and knowledge preserving certain answers.

Theorem 9. Let a query q from S to T such that the set of databases IT is enumerable.
LetA be an additional knowledge to S and T. Consider the trivial evaluation semantics
of q denoted Qt such that for every database x ∈ IS and every piece of knowledge
ω ∈ A we have Qt(x, ω) = q(JxKωS).
Then there exists a regret function such that for every database x ∈ IT, if the A-
preserving certain answer of q on x exists, then the A-risk minimizing answer of Qt on
x exists and they coincide: certA(q, x) = bestA(Qt, x)

Proof of Theorem 9. For clarity, we prove a weaker version of the theorem. We ig-
nore the additional knowledge A and prove that the risk-minimizing answers and
information-based certain answers coincide. The proof with additional knowledge is
similar in construction and just adds extra notation to an already tedious proof.

As we will use the cardinality of sets of databases, it is important to only count se-
mantically equivalent databases once. For every database x ∈ IT the set of x equival-
ent databases denoted x̄ is defined as

x̄ = {y ∈ IT | JxKT = JyKT}

It is clear that for every y ∈ x̄, we have ȳ = x̄.

As IT is enumerable we pick an arbitrary mapping f : IT 7→ N. Then for every i > 0,
we define the finite set of database objects:

IiT = {x̄ | ∃y, f−1(y) < i ∧ y ∈ x̄}

5.3. Risk minimizing answers 93

Note that the cardinality of IiT is bounded by i but not necessarily equal to i. Indeed
two databases x, y ∈ IT, such that f−1(x) < i and f−1(y) < i may be semantically
equivalent and belong to the same class.

For every z ∈ IT we build the directed graph Gi[z] = (IiT ∪ z̄, E[z̄]) such that there
exists a edge between x̄ and ȳ if and only if we have JȳKT ⊂ Jx̄KT.

E[z̄] = {(x̄, ȳ) ∈ (IiT ∪ z̄)× (IiT ∪ z̄) | JȳKT ⊂ Jx̄KT}

Note that for every z ∈ IT, the directed graph Gi[z] is acyclic, otherwise we would be
able to find x̄ ∈ IiT such that Jx̄KT ⊂ Jx̄KT which is absurd.

Corollary 2. For every i > 0 the function µi : IiT × IT 7→ [0, 1] such that, for every
x̄ ∈ IiT and every y ∈ IT,

µi(x̄, y) =

1− 1
|longest-path(Gi[y],x̄,ȳ)|+1

if x⪯ y

1 otherwise.

where longest-path(Gi[y], x̄, ȳ) is the function returning the longest path between x̄

and ȳ in Gi[y] when it exists, is well defined.
Moreover for every x̄ ∈ IiT and every y ∈ IT the following holds:

(a) µi(x̄, y) ≤ µi+1(x̄, y) ≤ 1

(b) µi(x̄, y) = 1 iff. x ̸ ⪯y

Proof of Corrollary 2. Let i ≥ 0 and let x̄ ∈ IiT and y ∈ IT.

If x ̸ ⪯y, then µi(x̄, y) is well defined, and for every j ≥ i we have µi(x̄, y) = 1.
If x̄ = ȳ, by convention we have |longest-path(Gi[y], x̄, ȳ)| = 0, then µi(x̄, y) is well
defined, and for every j ≥ i we have µi(x̄, y) = 0.
If x̄ ̸= ȳ and x̄ ⪯ ȳ, then there exists an edge in Gi[y] between x̄ and ȳ. Moreover as
Gi[y] is a directed acyclic graph and its size is finite and bounded by i, the longest
path between x̄ and ȳ exists and is bounded by i. Hence µi(x̄, y) is well defined
and µi(x̄, y) < 1. Moreover for every j ≥ i we have Gi[z] ⊆ Gj [z]. Therefore we
also have |longest-path(Gi[y], x̄, ȳ)| ≤ |longest-path(Gj [y], x̄, ȳ)|. And we can conclude
µi(x̄, y) ≤ µj(x̄, y) < 1. ■

Corollary 3. For every database x, y ∈ IT, the limit limi 7→∞ µi(x̄, y) exists.

5.3. Risk minimizing answers 94

Proof of Corrollary 3. If x ̸ ⪯y there exists i > 0 such that µi(x̄, y) = 1. Then for every
j ≥ i we have µj(x̄, y) = 1 . Therefore if x ̸ ⪯y we have limi 7→∞ µi(x̄, y) = 1

If x ⪯ y there exists exists i > 0, such that for every j ≥ i we have µj(x̄, y) <

1. Moreover as we have µj(x̄, y) ≤ µj+1(x̄, y) (by corrolary 2), by the monotone
convergence theorem we can conclude that limi 7→∞ µi(x̄, y) exists. ■

For every x, y ∈ IT, we denote µ(x, y) = limi 7→∞ µi(x̄, y)

Let x ∈ IS, such that cert□(q, x) exists. By contradiction assume there exists α > 0

and b ∈ IT such that for every database c ∈ Qt(x, ϵ) = q(JxKS) we have

µ(b, c) ≤ risk(Qt, x)[cert□(q, x)]− α < 1

Especially µ(b, c) ≤ 1 − α, therefore for every c ∈ q(JxKS) we have b ⪯ c. And by
definition of the certain answers we must have b⪯ cert□(q, x).

By definition of the risk of an answer, there exists c ∈ q(JxKS) such that

risk(Qt, x)[cert□(q, x)]−
α

2
≤ µ(cert□(q, x), c) < 1

Therefore by assumption on b there exists c ∈ q(JxKS)

µ(b, c) < µ(cert□(q, x), c) < 1

Especially, there exists i > 0, such that µi(b, c) < µi(cert□(q, x), c).
And by definition of µi we have that Li(b̄, c) < Li(cert□(q, x), c). Therefore the longest
path between b̄ and c̄ in Gi[c] is strictly shorter than the path between cert□(q, x) and
c̄ in Gi[c]. Which means there can not exists a path between b̄ and cert□(q, x), hence
we have b̄ ̸ ⪯cert□(q, x), which is absurd.

Therefore b can not exist, which implies that for all α > 0 and for all b ∈ IT, there exists
a database c ∈ Qt(x, ϵ) = q(JxKS) such that

µ(b, c) ≥ −risk(Qt, x)[cert□(q, x)]− α

And we can finally conclude that cert□(q, x) = best(Qt, x) QED

5.3. Risk minimizing answers 95

As the set of relational databases with null is enumerable, Theorem 9 tells us that we
can build a regret function for relational algebra with null for the OWA and the WWA,
such that the valuation-preserving certain answers and the risk-minimizing answers
coincide. However, we wish to be able to capture answers in between the certain an-
swers obtained with OWA and WWA. In the next sections, we propose a class of regret
functions based on the optimal transportation problem, which offers more flexibility to
the users.

5.4 A Class of Regret functions for relational databases

Example 12. Consider the query q and database d returning the salary of all
employees such that the first name is equal to the second name:

q = πSalary
(
σFirst Name=Second Name

)
(Employees)

on the database:
Employees

First Name Second Name Salary
John ⊥1 2000

⊥1 Peter 1000

The NI-evaluation semantics of q gives us the following possible answers:

Answer1

a

Answer2

a

1000

Answer3

a

2000

Answer4

a

1000

2000

And it yields the following answers:

cert{ϵ}(qNI, d) with OWA

a

cert{ϵ}(qNI, d) with WWA

a

2000

1000

A potential problem with those certain answers is that they are not the risk-minimizing
ones for some reasonable notion of regret. If we consider the bag {|1000, 2000|} as the
answer, we may face a situation where we consider two false tuples as true. If we
consider the empty bag as the answer, we may face a situation where we are missing

5.4. A Class of Regret functions for relational databases 96

two true tuples. A user may want to find a compromise between missing some true
tuples and considering some false ones. For instance, an answer such as {|⊥|} could
be more satisfying for some users. Indeed in the worst-case scenario, we are either
missing one tuple and one value or assuming one false tuple. Depending on the regret
a user assigns to missing a true tuple, assuming a false tuple and missing a value,
{|⊥|} could be a better answer than both {|1000, 2000|} and the empty bag.

Example 12 sums up the intuition behind the class of regret functions we introduce in
this section. We assume that a user provides a value CostProd accounting for the regret
he faces when missing some true tuples. The user also provides a value CostSink

accounting for the regret he faces when considering some false tuples. Finally, he
provides a value Costunify accounting for the regret he faces when using a null place-
holder instead of a constant.

To propose a fair notion of regret for relational databases, we consider each tuple
in an answer as an information container to which we assign a mass. The cost of
transporting a tuple’s mass to another is proportional to their information dissimilarity
(using the value Costunify). Then the regret value between two bags is the minimal cost
of transporting the mass of the tuples in one bag to the tuples in the other bag without
overfilling them. To compensate for non-unifying tuples or bags of different sizes, we
use the value CostProd and CostSink to create special tuples.

Depending on the values of CostProd, CostSink , and Costunify it results in different
risk-minimizing answers. Indeed if the regret of missing some tuples CostProd is low
compared to CostSink then the risk-minimizing answers tend to contain fewer tuples.
Moreover, if the regret of using a null instead of a constant Costunify dominates the
other values, then the risk-minimizing answers will not contain any null placeholders.

5.4.1 Kantorovich transportation problem

The Kantorovich problem is a formulation for optimal transportation Villani (2009). The
notion produced satisfactory results in other domains of computer science Chapel,
Alaya, and Gasso (2020); Flamary, Courty, Rakotomamonjy, and Tuia (2014); Vincent-
Cuaz, Vayer, Flamary, Corneli, and Courty (2021).

Considering a set of locations X , we define the set of mass assignment over X
denoted M as the set of functions a : X → R+. Let a cost function C : X × X ∈ R+

such that C(x, y) is the price for moving a unit of mass from the location x to the
location y. Considering two mass assignment a,b ∈ M we denote ma resp mb the
total mass of a resp. b such that ma =

∑
x∈X a(x) resp. mb =

∑
x∈X b(x). We consider

the balanced version of the Kantorovich transportation problem, and we assume that
m = ma = mb. We denote the set of admissible m-mass transport U(a,b) as the set

5.4. A Class of Regret functions for relational databases 97

of assignments u : X × X → R+ such that:

∀xa ∈ X ,
∑
xb∈X

u(xa, xb) ≤ a(xa)

∀xb ∈ X ,
∑
xa∈X

u(xa, xb) ≤ b(xb)∑
xa,xb∈X

u(xa, xb) = m

The Kantorovich optimal transportation solution is defined as the minimal cost of an
admissible m-mass transport:

KC(a,b) = min{
∑

xa,xb∈X

u(xa, xb) · C(xa, xb) | u ∈ U(a,b}

For relational databases, each location will correspond to a tuple, and its mass will
match its multiplicity in the bag. Before detailing the specificity of the mass assignment,
we introduce a cost function for transporting mass between tuples depending on
Costunify.

5.4.2 Information dissimilarity between tuples

First, we introduce a notion of dissimilarity between element of an attribute α as a
function Cα : (Const∪{⊥})×(Const∪{⊥}) 7→ [0,∞] such that for all e, e′ ∈ Const∪{⊥}:

Cα(e, e
′) =

0 if e = e′

Costunify if (e = ⊥)⊕ (e′ = ⊥)

∞ otherwise.

The information dissimilarity is minimal when the two values are the same. It is user-
dependent when one value is null, and the other is a constant. Finally, the information
dissimilarity is maximal between two different constants because they have incompar-
able information content.

For tuples t̄, t̄′ with attribute ᾱ we define the information dissimilarity cost as the
average cost between each of their attributes.

Cᾱ(t̄, t̄
′) =

∑
α∈ᾱ

Cα(t̄[α], t̄
′[α])

|ᾱ|

5.4. A Class of Regret functions for relational databases 98

5.4.3 Tuple mass assignment

Let a,b two bags of tuple with the same attributes ᾱ. A naive mass assignment would
be to attribute to every tuple in a and b a mass equal to its multiplicity. However, a
problem arises when the size of a and b are different. Then the Kantorovich problem
is not balanced. We could consider the generalized formulation of the Kantorovich
problem to solve the issue. But the difference of size between a and b is a piece of
valuable information we exploit to propose a relevant notion of regret.

a

From To Total
Jane Alice 1000
⊥ Jane 2000

b

From To Total
Jane John ⊥
Alice Jane ⊥
⊥ Jane 1000

To illustrate the mass assignment situation, consider the answers a and b above. First
notice that the tuple (Jane,Alice,1000) ∈ a do not unify with any tuple from b. Hence
the cost of transporting its mass to any tuple in b is infinite. Therefore, with the trivial
mass assignment, any valid transportation plan from a to b would be infinite. We argue
it is not fair, mainly because we asked our user to provide a value accounting for the
regret he faces when considering some false tuples CostSink.

Indeed instead of being infinite, the regret should depend on CostSink. More formally, a
transportation plan from a to b should be allowed to discard the tuple (Jane,Alice,1000)
with a cost CostSink to account for the fact that the tuple may be false. To make such a
transportation plan valid, we add a special tuple to b called sinker. Informally a sinker
is an information container that has a fixed transportation cost CostSink with every tuple
in a.

Similarly, notice that the tuple (Jane,John,⊥) ∈ b do not unify with any tuple from a.
The user has provided a value accounting for the regret he faces when missing some
true tuple CostProd. A transportation plan from a to b should be allowed to create the
tuple (Jane,John,⊥) with a CostProd to account for the fact that we are missing a tuple.
To make such a transportation plan valid, we add a special tuple to a called producer.
Informally a producer is an information container that has a fixed transportation cost
CostProd with every tuple in a.

Definition 5.4.1 (Mass assignment). For every bag relation a, b we define the mass
assignment as the function M [a 7→ b] such that for every tuple with fitting attribute:

5.4. A Class of Regret functions for relational databases 99

M [a 7→ b](a, t̄) =

|b| if t̄ is producer

#
(
a, t̄

)
otherwise.

M [a 7→ b](b, t̄) =

|a| if t̄ is sinker

#
(
b, t̄

)
otherwise.

And we extend the cost function between tuple in the following way:

Cᾱ(t̄, t̄
′) =

0 if t̄ is producer ∧ t̄′ is sinker

CostProd if t̄ is producer

CostSink if t̄′ is sinker

Cᾱ(t̄, t̄
′) otherwise.

The mass of the producer is equal to the size of b, so each missing tuple can be
produced with a regret CostProd. Similarly, the mass of the sinker is equal to the size of
a, so each completely false tuple can be discarded with a regret CostSink. Finally, the
cost of transporting the mass from the producer to the sinker is 0.

An example of a valid transportation plan from a to b would be the following:

u((Jane,Alice,1000) 7→ sinker) =1 (Jane,Alice,1000) is false information

u((⊥,Jane,2000) 7→ (Alice,Jane,⊥)) =1 (⊥,Jane,2000) has a partial match

u(producer 7→ (Jane,John,⊥)) =1 (Jane,John,⊥) is a new information

u(producer 7→ (⊥,Jane,1000)) =1 (⊥,Jane,1000)) is a new information

u(producer 7→ sinker) =1 sinking the residual producer mass

Which yield to a a total cost of

CostSink +
2

3
· Costunify + 2 · CostProd

Remark that with the mass assignment mentioned above, the multiplicity of tuples in
each bag matters as they define their respective mass.

5.4. A Class of Regret functions for relational databases 100

5.4.4 Risk minimizing answers with OT regret function

Definition 5.4.2 (OT regret function). For every Costunify,CostProd,CostSink ∈ N the
OT-regret function µ : IT × IT 7→ R+ is defined for every bag relational databases
a,b ∈ IT with attributes ᾱ as the optimal solution of the transportation problem with
the mass assignement M [a 7→ b] and the cost function Cᾱ:

µ(a,b) = KCᾱ

(
M [a 7→ b](a),M [a 7→ b](b)

)
The class of OT regret function allows us to capture the notion of certain answers with
either OWA and WWA easily.

Proposition 16. For every relation algebra with null query q and every database d,
there exist values M1 < M2 and N1 such that for every OT regret function with:

(a) 0 < CostProd < M1 and CostSink > M2

(b) 0 < Costunify < N1

the regret-minimizing answer coincides with the NI-evaluation-based certain answers
with OWA.

Recall that the NI-evaluation-based certain answers with OWA contain as many true
tuples as possible without containing any false tuple. Intuitively, the condition 0 <

Costunify < N1 ensures that a null placeholder’s information content is lower than
any constant’s information content. The condition 0 < CostProd < M1 ensures that
the risk-minimizing answers contain as many tuples as possible by punishing missing
tuples with a small but not 0 regret CostProd. The condition CostSink > M2 ensures that
we heavily punish every answer containing a false tuple with a cost CostSink, ensuring
that the risk-minimizing answers only contain tuples that are always true. Under those
conditions, the risk-minimizing answers will match the NI-evaluation-based certain
answers with OWA.

Proposition 17. For every relation algebra with null query q and every database d,
there exist values M1 < M2 and N1 < N2 such that for every OT regret function with:

(a) 0 < CostSink < M1 and CostProd > M2

(b) 0 < Costunify < N1

the regret-minimizing answer coincides with the NI-evaluation-based certain answers
with WWA.

Recall that the NI-evaluation-based certain answers with WWA contain all true tuples
and as few false tuples as possible. Intuitively, the condition 0 < Costunify < N1 ensures
that a null placeholder’s information content is lower than any constant’s information
content. The condition 0 < CostSink < M1 ensures that the risk-minimizing answers
contain as few tuples as possible by punishing false tuples with a small but not 0

5.4. A Class of Regret functions for relational databases 101

regret CostSink. The condition CostProd > M2 ensures that we heavily punish every
answer not containing a possibly true tuple with a cost CostProd, ensuring that the risk-
minimizing answers contain all true tuples. Under those conditions, the risk-minimizing
answers will match the NI-evaluation-based certain answers with WWA.

Proof sketch for Proposition 16 and 17. The proof of both Proposition 16 and Propos-
ition 17 are similar. First we have to prove that there exists M1 < M2 and N1 such that
for every OT regret function with:

(a) 0 < CostSink < M1 and CostProd > M2

(b) Costunify > N1

we have:
µ(a,b) > M2 iff. a ̸ ⪯WWAb

and
µ(a,b) ≤ µ(a, c) ≤M2 iff. a⪯WWA c⪯WWA b

In order to do so, we just have to pick M2 arbitrarily big. Then we choose M1 and N1

such that M2 dominates them. Then, we will only pay the cost M2 if no other tuple
unify because N1 << M2, and we have to produce a tuple. In other word, if we are
completely missing some potentially true tuple ie. a ̸ ⪯WWAb.

Moreover the cost of optimal transport will increase with the number of null in the
answers because Costunify > 0, and with the size of the answers because CostSink > 0

hence
µ(a,b) ≤ µ(a, c) ≤M2 iff. a⪯WWA c⪯WWA b

Finally because the set of relational databases is enumerable the proof is a special
case of the proof for Theorem 9.

Thanks to Proposition 16 and Theorem 17, we understand that certain answers are
special cases of risk-minimizing answers with extreme OT regret functions. Using
Example 12 we look at how the risk-minimizing answers evolve depending on the
user-defined values: CostProd, CostSink, and Costunify.

Example 13. Consider the query q and database d returning the salary of all
employees such that the first name is equal to the second name:

q = πSalary
(
σFirst Name=Second Name

)
(Employees)

on the database:

5.4. A Class of Regret functions for relational databases 102

Employees

First Name Second Name Salary
John ⊥1 2000

⊥1 Peter 1000

The NI-evaluation semantics of q gives us the following possible answers:

Answer1

a

Answer2

a

1000

Answer3

a

2000

Answer4

a

1000

2000

First, notice that independently of the query, if CostProd is equal to 0, then the risk-
minimizing answer would always be the empty bag, as its regret with any other bag is
0.
If the regret of using a null placeholder Costunify is lower than CostProd and CostSink

then the regret between {|(1000)|} and {|(⊥)|} is given by Costunify.
Therefore for a user who considers:
(a) Answers with false tuples are as bad as answers missing true tuples (CostProd =

CostSink).
(b) The information content of a null placeholder is less than a constant, but better

than no information (0 < Costunify < CostProd = CostSink)
Then the risk-minimizing answer for qNI on the database Employees is:

bestA(qNI,Employees) = {|(⊥)|}

Indeed we have

risk(qNI, d)[{|(⊥)|}] = sup
{
µ({|(⊥)|}, y) | y ∈ qNI(d)

}
and we have

µ({|(⊥)|}, {||}) =CostSink

µ({|(⊥)|}, {|(1000)|}) =Costunify

µ({|(⊥)|}, {|(2000)|}) =Costunify

µ({|(⊥)|}, {|(2000), (1000)|}) =Costunify + CostProd

hence risk(qNI, d)[{|(⊥)|}] = Costunify + CostProd.
While the risk of other potential answers is higher than 2× CostProd resp. 2× CostSink.

5.4. A Class of Regret functions for relational databases 103

We have shown that the class of OT regret function for relational databases can cap-
ture NI-evaluation based certain answers and also answers that were not accessible
before. Moreover, the user chooses those answers thanks to the values CostProd,
CostSink, Costunify.

5.5 Conclusion

Thanks to the survey results, we understood the importance of dealing with more
interpretations of incompleteness. While the previous notions were tight to the missing
data interpretation, our framework based on the notion of query evaluation semantics
can capture other models of incompleteness. First, we have shown how to instantiate it
on the relational algebra model and provided a model for the no-information interpret-
ation of null values. Then we showed how to efficiently compute the evaluation based
certain answers with either the open-world or the whole-world assumption. The latter
assumption is filtering out fewer tuples in the answers.

Then, we wanted to offer more possibilities to users. However, the certain answers
notion cannot provide flexible answers because of the notion of dissimilarity between
databases it considers. Therefore we introduce a new notion of answers on incomplete
databases based on a user-defined regret function, the risk-minimizing answers. We
have shown that there exists a regret function such that the risk-minimizing answers
coincide with the information-based certain answers. Moreover, because the regret
function is a numerical measure of dissimilarity, the notion offers more granularity in
the answers it can propose to a user.

As natural applications, we presented a class of regret functions based on the optimal-
transport problem for relational databases. We showed that depending on user pref-
erences, the risk-minimizing answers can vary between the evaluation-based certain
answers with the open-world and the whole-world assumption.

The next obvious step is to use the framework to define risk-minimizing answers for
queries with aggregates and groupings. However, the question of what are pertinent
answers for value inventing queries is still open. The survey did not provide meaningful
input. The results show that, even if not entirely satisfactory, the most popular answers
are SQL’s. Therefore instead of redefining answers, we use the notion of risk to improve
and explain answers returned by database management systems.

Chapter 6

Improving and Explaining Answers

“Authority is no source for Truth.” Aristotle. While we recognize the irony of the cita-
tion, it provides a good illustration of the query-answering on incomplete databases
problem. In the context of relational databases, the commercial implementations of
SQL are the Authority. Willingly or not, users have to accept the answers they output.
However, despite recent efforts to formalize their language and data model, users
have little reason to trust query evaluation systems. Worst on incomplete databases,
there is no ’Truth’. When we consider logically-consistent notions of answers on incom-
plete databases, such as certain answers and risk-minimizing answers, we provide a
explanation for answers instead of relying on ’Authority. However, there are two key
shortcomings to this approach.

First, a logically-consistent notion of answer provides a global explanation. Informally
the explanation for an answer is independent of the query and source database. In-
deed the explanation of any answer boils down to the interpretation of incompleteness
and the measure of dissimilarity between database objects. Then the answers are
defined as the most pertinent database object under those assumptions. While a step
in the right direction, we want to propose local explanation of answers. We wish to
provide explanations that depend on the query and source databases.

Second, database management systems are the ’Authority’. Defining and explaining
logically-consistent notions of answers is a step forward, but it does not change the an-
swers SQL gives users. We must acknowledge that SQL will not change its evaluation
behavior lightly. Too many applications rely on it. If we wish to have a practical impact
and improve user satisfaction, we must handle the answers provided by database
management systems. Considering DBMS’s apparent lack of logical consistency, a
satisfying global explanation for their answers to queries on incomplete databases
seems hard to obtain. However, we can provide local explanations.

In this chapter we leverage the advantage of considering a numerical dissimilarity
measure between databases, like the regret. It allows us to capture the degree of in-
completeness of any answer. Indeed the notion of risk is well defined for any database
object we wish to consider as an answer to a query on an incomplete database. Signi-

104

. Improving and Explaining Answers 105

ficantly, we can compute the risk of the answers provided by a database management
system. While already interesting, the next step would be to improve such answers. In
order to do so we propose to explain the degree of the risk of answers by exhibiting and
ranking its sources of incompleteness. We represent the sources of incompleteness
as the features of a latent representation of the additional knowledge.

Then we assign a value of importance to each feature. In isolation, we define the
cleaning-importance of a source of incompleteness as the diminution of the risk value
of a query-evaluation system’s answer if we clean the incompleteness from the afore-
mentioned source. In other words, How much would the risk of the SQL answers
diminish if we discover the meaning of a specific NULL.

The cleaning-importance provides valuable information to users who want to clean
their data to efficiently reduce the risk of answers. However, it does not offer a satis-
fying explanation for the risk. Indeed it is not a measure of the contribution of each
source. To overcome this difficulty, we introduce a measure of contribution based on
the well-known Shapley value, the risk-contribution of a source incompleteness. We
argue that the risk-contribution is a better value to provide an explanation for the risk
of an answer.

Finally, the cleaning importance and risk-contribution values can only be inferred.
Therefore, we propose simple models to infer its value. To study the framework’s
applicability and the precision of its inference models, we experimented with relational
databases and queries with aggregate and grouping operations. And despite some
remaining challenges, the results are promising.

6.1 Risk associated with Knowledge

Recall that with the notion of regret, we can assign a risk score to a database we wish
to use as an answer to a query on a database. Especially the risk associated with
an answer a is the maximal regret a user would have if the real answer to q on x is
different.

Definition (Risk of an answers). Let a query q in from S to T with Q its evaluation
semantics. Let x ∈ IS, and let A be additional evaluation knowledge for Q. The risk
of a database a ∈ IT as an answer to Q on x with the evaluation knowledge A is the
value:

riskA(Q, x)[a] = sup
{
µ(a, y, ω) | ω ∈ A, y ∈ Q(x, ω)

}
While the risk of an answer provides valuable information to users, studying the risk of
an answer does not allow us to extrapolate the properties of a DBMS evaluation.

6.1. Risk associated with Knowledge 106

On the other hand, the behavior of a DBMS can be captured by some extra knowledge
ω̄. If we assume that the evaluation semantics Q on x with the knowledge ω̄ returns a
single database a, then we can define the risk of a knowledge riskA(Q, x)[ω̄] such that

riskA(Q, x)[ω̄] = sup
ω̄′∈A

(
µ(Q(x, ω̄),Q(x, ω̄′), ω̄′)

)
= riskA(Q, x)[a]

However in general the evaluation of Q on x with the knowledge ω̄ does not need to
be a singleton.

Definition 6.1.1 (Risk of a knowledge). Let a query semantics Q, a database x ∈ IS
and an additional knowledge A for the query semantics Q on the database x. The risk
of a a knowledge ω̄ ∈ A to the evaluation of Q on x upon the additional knowledge A
is the value:

riskA(Q, x)[ω̄] = sup
ω̄′∈A

(
sup

y∈Q(x,ω̄′)
(inf {µ(ai, y, ω̄′) | ai ∈ Q(x, ω̄})

)
The risk of a knowledge vector ω̄ is the maximal regret a user endures if the knowledge
ω̄ is wrong. It boils down to finding the knowledge vector ω̄′ ∈ A, which maximizes the
regret between the answers obtained with the knowledge ω̄ and the answers obtained
with the knowledge ω̄′. Furthermore, because the query evaluation semantics may
return a set of possible answers even with the knowledge vector ω̄′, we look for the
possible answer which maximizes the regret. Finally, as the evaluation semantics with
the knowledge vector ω̄ may also give us several options to choose from, we select
the most suitable answer. Hence we consider the infimum of the regret values.

Thanks to the risk of knowledge we can reason about the DBMS behavior. We wish
to use this new tool to identify, explain and reduce the risk associated with a query
evaluation.

6.1.1 Vectorial Knowledge Query Evaluation Semantics

Why is the risk value so high or so low? How can a user reduce it? To answer those
questions, we partition the incompleteness into sources.

To better understand the situation, we present the following analogy. Assume we
conducted a sanguine transfusion experiment on a population. First, we mapped each
blood sample to the set of individuals who had a bad reaction when transfused with it.
It represents a query from a blood sample to a set of individuals, we are selecting all
the people who had a bad reaction. Now assume we are mixing some blood samples
and wish to infer the set of individuals who may have a bad reaction to the transfusion.
Then, the blood samples can be seen as the complete objects of a database domain,
and mixing blood samples is an analogy for considering an incomplete object and

6.1. Risk associated with Knowledge 107

its semantics. The logically-consistent notions of answers on incomplete databases
provide a global explanation for the population it would transfuse. With the certain an-
swers with the open-world assumption, we would transfuse the set of individuals who
had a bad reaction to every blood sample contained in the mix. And with the certain
answers with the whole-world assumption, we would transfuse the set of individuals
who had a bad reaction to at least one blood sample contained in the mix. Depending
on the regret one associates with a bad reaction, the risk-minimizing answers may
transfuse any set of individuals.

Now assume we receive a new blood sample for which we have no transfusion data.
This sample could either be a mix of already studied but unidentified samples or a
completely unstudied sample. How do we infer the risk associated with using this
blood sample? Which individual may have a bad reaction to it? We may provide some
answers depending on our information about the blood sample and our understanding
of the blood transfusion mechanism. In this situation, we are providing an additional
knowledge to the query evaluation semantics, which captures our understanding of
the mechanism for unidentified blood samples. Thanks to this additional knowledge,
we can partition the incompleteness into relevant features.

Assuming we still wish to use this unidentified blood sample, we will need to reduce
its risk. What test should I conduct on the blood sample to obtain better answers?
Assume that our understanding of the transfusion process allows us to know the
relevant features of blood. For the sake of simplicity, consider that we know about
blood-type (O, A, B, AB) and rhesus factor (+,-). We would like to know which test
is more valuable to conduct, rhesus factor or blood-type identification. For example,
suppose our population contains only individuals with blood-type (AB). In that case,
it is more valuable to conduct a rhesus test (indeed, an individual with group AB
can receive blood from all other blood-type). On the other hand, if our population
contains only individuals with rhesus factor (+), identifying the group type becomes
more important than identifying the rhesus. We understand that the test that will reduce
the risk the most depends on the population and the task. Therefore, studying the
importance of each test provides a local explanation for the risk.

In the context of databases, performing a test is an analogy for cleaning a source
of incompleteness. Therefore, finding the most important sources of incompleteness
accounts for guessing which would reduce the risk of the query evaluation the most.
However, we first have to understand what are sources of incompleteness in an ab-
stract context. For blood transfusion example, the blood type and the rhesus factor
are the sources of incompleteness. The blood type and the rhesus factor notion are
compatible sources of incompleteness because the pieces of knowledge they contain
can not contradict each other. We call them features, and they constitute a vectorial

6.1. Risk associated with Knowledge 108

knowledge for the blood transfusion problem. Moreover, if the features are enough to
completely infer the answers (if after cleaning all features, there is no incompleteness
remaining), we say that the vectorial knowledge is a a latent representation for blood
samples.

Definition 6.1.2 (Vectorial knowledge). A vectorial knowledge for a query evaluation
semantics Q and a database x ∈ IS of dimension n ≥ 0 is a n-tuple A = (X1, · · · , Xn)

such that, for every i, j ≤ n the following hold:

• Xi is a subset of the universal knowledge, Xi ⊆ K and ϵ /∈ Xi.
• For every piece of knowledge ωi ∈ Xi, and ωj ∈ Xj we have Q(x, ωiωj) = Q(x, ωjωi).

Moreover when A = (X1, · · · , Xn) is vectorial knowledge, we call the subsets of know-
ledge Xi features. The elements ωi ∈ Xi of the features are called characteristics, and
the tuples (ω1, · · · , ωn) ∈ X1 × · · · ×Xn are called knowledge vectors.

The elements of a knowledge vector are commutable non-empty pieces of knowledge
from K. A vectorial knowledge enforces that the characteristics are commutable with
respect to the query evaluation semantics. Therefore it ensures that the knowledge
contained in each feature can not contradict each other. For instance, in the case of
blood samples, we can not consistently specify blood samples with the three feature
sets {AB,B}, {O,A}, and {+,−}. While every combination of blood type and rhesus
factor is included, a knowledge vector AB · O · + is valid but would be inconsistent.
Therefore {AB,B}, {O,A} and {+,−} is not a vectorial knowledge.

In the context of incomplete query answering, a vectorial knowledge allows us to
define incompleteness sources as features. However, nothing ensures that the pieces
of knowledge contained in a vectorial knowledge are enough to capture the whole
query evaluation semantics.

Definition 6.1.3 (Latent representation). Let a sub-monoid of knowledge A ⊆ K
additional to a source domain S and a target domain T. A n-tuple A = (X1, · · · , Xn)

is a latent representation of A if for every query semantics Q from S to T such that A
is an evaluation-based additional knowledge to Q and every source database x ∈ IS
the following hold:

1. A is a vectorial knowledge for Q and x.
2. For every piece of knowledge ω ∈ A, there exists a knowledge vector (ω1, · · · , ωn) ∈

X1 × · · · ×Xn such that for every ω′ ∈ A we have Q(x, ωω′) = Q(x, ω1 · · ·ωn · ω′).

A vectorial knowledge is a latent representation of A if, for every piece of knowledge in
A, there exists a knowledge vector equivalent to it for every query evaluation semantics
on every source database. Intuitively, a latent representation enforces that our features
fully capture the knowledge in A. For instance, a vectorial knowledge {A,AB,B}

6.1. Risk associated with Knowledge 109

and {+,−} would not be a latent space for blood sample as there is no knowledge
vector to represent the blood samples with blood group O+ and O−. Remark that a
latent representation is a vectorial knowledge for all query semantics with the same
additional knowledge and database.

6.2 Improving and explaining answers

While the latent representation formalism provides a sound basis for many applica-
tions, we wish to provide a concrete use case to illustrate the real-world applications
of the framework. Therefore, the validity of the following sections does not rely on
formal proofs but on a concrete implementation and series of experiments presented
in the last section. To be as clear as possible, we relax the formalism but will specify
important remarks wrt. the approximations we are considering.

We consider a source database domain S, a target database domain T, an additional
knowledge A ⊆ K, and A a latent representation of A. We assume there exists a
knowledge vector ω̄sys ∈ A which can capture the query evaluation system behavior
such that, the for every query semantics Q and every database x ∈ IS, the evalu-
ation Q(x, ω̄sys) coincide with the answer returned by the system Q(x, ω̄sys) = q(x).
Moreover for the sake of simplicity we will also assume that for any knowledge vector
ω ∈ A the set of possible database returned by the semantic Q is reduce to a singleton.

Remark. Formally proving the existence of a knowledge vector ω̄sys ∈ A, which can
capture the query evaluation system behavior, is not reasonable in most cases. It
requires a formal verification of the query evaluation system.

6.2.1 Improving answers

As a first step, we focus on a simple use case for latent representations of the know-
ledge. We want to help the user reduce the risk of the answer produced by its query
evaluation system.

Our goal is to predict how much the risk will reduce if we clean the incompleteness
from a source. Let a source of incompleteness Xi, assume that after cleaning Xi we
discover its true characteristic is ωi ∈ Xi. Then the new risk is the value:

newrisk(Q, x, ωi) = max
ω̄∈A

(µ(Q(x, ωiω̄sys),Q(x, ωiω̄), ωiω̄))

It corresponds to the maximal regret of considering the knowledge ω̄sys everywhere
but for the feature Xi for which the characteristic is known to be ωi.

6.2. Improving and explaining answers 110

Remark. This first step assumes that the query evaluation semantics returns a single
database for every knowledge vector. It also requires the vectorial Knowledge to be a
latent representation.

However, we do not know the true characteristic of the feature Xi. Otherwise, it would
be complete. Hence our goal is to propose models to infer the value of newrisk for an
unknown characteristic. We denote the unknown true risk value after cleaning Xi with
an unknown characteristic newrisk(Q, x,Xi).

Definition 6.2.1 (Feature cleaning-importance). For every query semantics Q every
database x, the cleaning-importance of a feature Xi ∈ A is defined as:

ground-truth(Q, x,Xi) = riskA(Q, x)[ω̄sys]− newrisk(Q, x,Xi)

Then the cleaning-importance of a feature Xi corresponds to the evolution of the risk
value when we clean the feature Xi.

Optimistic and pessimistic inferences

As we do not know the true characteristic of the feature Xi, we propose an optimistic
and a pessimistic approach to the cleaning-importance of a featureXi. The pessimistic
prediction assumes the worst possible characteristic with respect to risk improvement:

Pessim(Q, x,Xi) = riskA(Q, x)[ω̄sys]− inf
ωi∈Xi

(newrisk(Q, x, ωi))

The optimistic prediction assumes the best possible characteristic with respect to the
risk improvement:

Optimi(Q, x,Xi) = riskA(Q, x)[ω̄sys]− sup
ωi∈Xi

(newrisk(Q, x, ωi))

And by definition the following holds:

Pessim(Q, x,Xi) ≤ ground-truth(Q, x,Xi) ≤ Optimi(Q, x,Xi)

While the optimistic and pessimistic approaches have some guarantees, the gap between
the two values can be arbitrarily big. Moreover, even if not critical for data-cleaning
tasks, the cost of computing the optimistic and pessimistic cleaning-importances is
similar to the cost of computing the risk, hence often intractable. For those reasons,
we propose a heuristic approach.

6.2. Improving and explaining answers 111

Linear inference

The Linear heuristic for cleaning importance assumes that regret and risk values are
aligned in the latent representation of the knowledge. The assumption is illustrated by
the following formalization, for every characteristic ωi, ωj we have:

µ(Q(x, ω̄sys),Q(x, ωiωjω̄sys), ωiωjω̄sys) =µ(Q(x, ω̄sys),Q(x, ωiω̄sys), ωiω̄sys)

+ µ(Q(x, ωiω̄sys),Q(x, ωiωjω̄sys), ωiωjω̄sys)

With this assumption the following holds:

riskA(Q, x)[ω̄sys] = max
ωi∈Xi

(µ(Q(x, ω̄sys),Q(x, ωiω̄sys), ωiω̄sys) + newrisk(Q, x, ωi))

Then we infer the risk value after cleaning newrisk(Q, x,Xi), with the following simpli-
fication:

riskA(Q, x)[ω̄sys] ≈ max
ωi∈Xi

(µ(Q(x, ω̄sys),Q(x, ωiω̄sys), ωiω̄sys)) + newrisk(Q, x,Xi)

And now we can infer the cleaning-importance.

Definition 6.2.2 (Linear heuristic for feature cleaning-importance). For every query
semantics Q every database x, the linear heuristic for cleaning-importance of a feature
Xi ∈ A is defined as:

Linear(Q, x,Xi) = max
ωi∈Xi

(µ(Q(x, ω̄sys),Q(x, ωiω̄sys), ωiω̄sys))

The evaluation of Linear(Q, x,Xi) can be arbitrarily hard, but with a reasonable regret
function, its complexity only depends on the evaluation of Q and the size of the set Xi.

Remark. None of the assumptions and simplifications considered by the linear heur-
istic are correct in general. The goal is not to provide an approximation with theoretical
guarantees but to illustrate the intuition behind the heuristic we are considering.

6.2.2 Explaining the risk of answers

The cleaning-importance should be considered when a user wishes to know which
features to clean to reduce the risk optimally. However, the cleaning-importance is not
a good measurement of the contribution to the risk. Therefore it should not be used to
explain the risk values.

6.2. Improving and explaining answers 112

First, the values of the cleaning-importance over all the sources of incompleteness do
not sum to the risk. Moreover, the cleaning-importance notion neglects the potential
correlation between features and considers the cleaning of each source of incom-
pleteness in isolation. Therefore, we wish to define the risk-contribution of the feature
with Shapley values. Indeed the notion produced satisfactory results not only with
databases Livshits, Bertossi, Kimelfeld, and Sebag (2019) but also in other domains
of computer science Cesari, Algaba, Moretti, and Nepomuceno (2018); Hunter and
Konieczny (2010); Michalak, Aadithya, Szczepanski, Ravindran, and Jennings (2013).

We want to build a cooperative game where each player controls a feature of the
latent representation. The value of the coalition game corresponds to the cleaning-
importance of the set of features in the coalition. Hence we need to extend the notion
of newrisk to sets of characteristics.

Let a set of characteristics {ωj , · · · , ωk}, then the new risk value if we discover that the
features {Xj , · · · , Xk} behave according to the characteristics in {ωj , · · · , ωk} is:

newrisk(Q, x, {ωj , · · · , ωk}) = max
ω̄∈A

(µ(Q(x, ωj · · ·ωkω̄sys),Q(x, ωj · · ·ωkω̄), ωj , · · ·ωkω̄))

It corresponds to the maximal regret of considering the knowledge ω̄sys everywhere
but for the feature Xi ∈ {Xj , · · · , Xk} for which the characteristic is known to be ωi.

We denote the unknown true risk value after cleaning the features {Xj , · · · , Xk} with
unknown characteristics newrisk(Q, x, {Xj , · · · , Xk}). Then the cleaning-importance
of a set of features {Xj , · · · , Xk} is:

ground-truth(Q, x, {Xj , · · · , Xk}) = riskA(Q, x)[ω̄sys]− newrisk(Q, x, {Xj , · · · , Xk})

It corresponds to the evolution of the risk value when we clean the set of features
{Xj , · · · , Xk}.

We also extend the linear heuristic for the cleaning-importance to a set of features
{Xj , · · · , Xk} such that:

Linear(Q, x, {Xj , · · · , Xk}) = max
(ωj ,··· ,ωk)∈(Xj ,··· ,Xk)

(µ(Q(x, ω̄sys),Q(x, ωj · · ·ωkω̄sys), ωj · · ·ωkω̄sys))

Remark. While the cost of computing the linear heuristic for a single feature is
reasonable, for a set of features, computing the linear heuristic is as hard as computing
the risk. Indeed if we consider the whole set of features we have:

Linear(Q, x,A) = ground-truth(Q, x,A) = riskA(Q, x)[ω̄sys]

6.2. Improving and explaining answers 113

We want to build a function ψ such that ψ(Xi, ω̄) is the contribution of the feature Xi to
the risk of the knowledge vector ω̄sys.

Proposition 18 (Shapley value Characterisation Roth (1988)). Let a database x ∈ IS.
The Shapley value function ψ is the only function such that for every feature Xi, Xj ,
and every query semantics Q and Q′ the following hold:

1. Efficiency: The sum of the player’s contribution is equal to the game’s overall value.

n∑
i=0

ψ(Q, x,Xi) = riskA(Q, x)[ω̄sys]

2. Null Player: If a feature contributes for nothing in every coalition, its overall contri-
bution is 0.

∀S ⊆ A, ground-truth(Q, x, S) = ground-truth(Q, x, S ∪ {Xi})

=⇒ ψ(Q, x,Xi) = 0

3. Symmetry: If two features contribute equally to every coalition, their overall contri-
butions are equal.

∀S ⊆ A \ {Xi, Xj}, ground-truth(Q, x, S ∪ {Xi}) = ground-truth(Q, x, S ∪ {Xj})

=⇒ ψ(Q, x,Xi) = ψ(Q, x,Xj)

4. Additivity: The contribution of a feature in the additive game is equal to the sum of
its marginal contributions.

ψ(Q+Q′, x,Xj) = ψ(Q, x,Xj) + ψ(Q′, x,Xj)

Where for every subset of features S the additive game is given by:

ground-truth(Q+Q′, x, S) = ground-truth(Q′, x, S) + ground-truth(Q′, x, S)

Moreover the Shapley value has an analytical form:

ψ(Q, x,Xj) =
∑

S⊆A\Xi

|S|! (n− |S| − 1)!

n!
(ground-truth(Q, x, S ∪ {Xi})− ground-truth(Q, x, S))

The characterization of the Shapley value tells us that it is the only notion of contribu-
tion with our desired properties. First, we expect the sum of every feature’s contribution
to equal the overall risk of the knowledge vector (Efficiency). Second, if a feature does
not influence the risk, we expect its contribution to be 0 (Null player). Third, if two
features influence the risk similarly, we want their contribution to be equal (Symmetry).

6.2. Improving and explaining answers 114

Finally, consider a feature and its cleaning-importance for two different query evalu-
ations. As the two query evaluations are independent, it is reasonable to expect that
the feature contribution to the risk of the two query evaluation is equal to the sum of its
marginal contributions (Additivity).

Definition 6.2.3 (Feature risk-contribution). For every query semantics Q every data-
base x, the risk-contribution of a feature Xi ∈ A is defined as the shapley value
ψ(Q, x,Xj) of the coalition game ground-truth(Q, x, ·).
And the Linear heuristic for the risk-contribution is defines as the shapley value ψ(Q, x,Xj)

of the coalition game Linear(Q, x, ·).

Intuitively, the Shapley values of the features involved in the computation of a query
semantics Q on a database x allow us to explain the risk. Indeed the Shapley value of a
feature Xi does not only depends on its isolated cleaning-importance. It also accounts
for its cleaning-importance if we have already cleaned other features.

Example 14. .

Blood Type

Name Blood Group
John AB−
Alice A+

Jane B−
Trudy A−
Peter AB−

Etienne AB−

We consider a population {John,Alice, Jane,Trudy,Peter} such that their respective
blood type is given above. We wish to use an unidentified blood sample to perform
transfusions. We consider a regret equal to the number of individuals who have a bad
reaction if we transfuse them with this blood. We performed a test on our blood sample
and identified it as A−. However, we know our test is not accurate. Therefore, what
is the risk associated with the knowledge vector A−? We consider an abstract query
semantics Q representing our transfusion mapping with the blood group and rhesus
factor features. The database d is the population we are considering.
If we consider that the sample is A−, we will transfuse the blood to John, Alice,
Peter, Etienne, and Trudy. Therefore if the sample happens to be AB+ our regret
will be 5 because John, Trudy, Peter, Etienne, and Alice will have a bad reaction:
risk(Q, d)[A−] = 5.

6.2. Improving and explaining answers 115

Now assume we can perform more expensive tests to accurately identify the blood
group {A,B,AB,O}, and the rhesus factor {+,−}. The question is, which test should
we perform to minimize the risk?
If we perform the blood group {A,B,AB,O} test, then we obtain the following new risk
value depending on the outcome:
• If the test returns A, our knowledge vector does not change. However, as we can not

be wrong about the blood group anymore, the risk diminish and becomes 4. Indeed
if we happen to be wrong about the rhesus factor and the blood sample is A+ then
John, Trudy, Peter and Etienne will have a bad reaction: newrisk(Q, d, A) = 4. If the
test returns O, then our knowledge vector becomes O−. Therefore we will consider
transfusing everybody with the blood sample. And as we can only be wrong about
the rhesus factor, the worst-case is when the blood sample is O+. Then everybody
but Alice have a bad reaction, and the new risk newrisk(Q, d, O) is equal to 5.

• If the test returns B, our knowledge vector becomes B−. Therefore we will consider
transfusing John, Jane, Peter, and Etienne. And as we can only be wrong about the
rhesus factor, the worst-case scenario is when the blood sample is B+. Then they
all have a bad reaction, and the new risk newrisk(Q, d, B) is equal to 4.

• If the test returns AB, then our knowledge vector becomes AB−. Therefore we will
consider transfusing John, Peter, and Etienne. And as we can only be wrong about
the rhesus factor, the worst-case scenario is when the blood sample is AB+. Then
they all have a bad reaction, and the new risk newrisk(Q, d, B) is equal to 3.

From there we obtain the optimistic and pessimistic cleaning importance for the blood
group source of incompleteness:

Optimi(Q, d, {A,B,AB,O}) = 5− 3 = 2

Pessim(Q, d, {A,B,AB,O}) = 5− 5 = 0

Finally, the Linear cleaning importance is equal to the maximal regret of considering
A− while it is either AB−,B−, or O−. The worst case is when the blood sample
happens to be AB−, and we have:

Linear(Q, d, {A,B,AB,O}) = 2

Obviously, we can not know the true value of newrisk(Q, d, {A,AB,O,B}), but we know
that the ground truth value is either 0, 1, or 2.

6.2. Improving and explaining answers 116

Similarly if we perform the rhesus factor test we obtain the following values:

newrisk(Q, d,−) = 2

newrisk(Q, d,+) = 1

Optimi(Q, d, {+,−}) = 5− 1 = 4

Pessim(Q, d, {+,−}) = 5− 2 = 3

Linear(Q, d, {+,−}) = 4

Our measures of cleaning-importance do not agree on the values associated with each
feature. Still, their ranking is similar, and we should perform the rhesus test to minimize
the risk associated with the sample.
Now we wish to compute the Shapley value associated with A and − for
the Linear(Q, x, ·) game. We can not compute the Shapley value for the
ground-truth(Q, x, ·) game as we need to know the real characteristics of the blood
sample.
First, we have to compute the linear heuristic for the cleaning-importance of each
subset of characteristics:

Linear(Q, d, ∅) = 0

Linear(Q, d, {{A,AB,O,B}, {−,+}}) = 5

Then we use the Shapley value analytical form, and we obtain:
1. The linear heuristic of risk-contribution for rhesus factor feature with the knowledge

vector (A,−) is:

ψ({+,−},Q, x) = 1

2
· (4− 0) +

1

2
· (5− 2) = 3.5

2. The linear heuristic of risk-contribution for the blood group feature with the
knowledge vector (A,−) is:

ψ({A,AB,O,B},Q, x) = 1

2
· (2− 0) +

1

2
· (5− 4) = 1.5

First, notice that the sum of the risk contribution equals the knowledge vector’s overall
risk:

risk(Q, d)[A−] = ψ({+,−},Q, x) + ψ({A,AB,O,B},Q, x)

6.2. Improving and explaining answers 117

Moreover, the ratio between the risk contributions of A and − and the ratio of their
cleaning-importance is different. The relative contribution given by the Shapley value
to the blood group characteristic A is lower than its relative cleaning-importance. It is
because the Shapley value does not only care about the first test we conduct. Indeed
if we first clean the group type feature, {A,B,O,AB} it leads to a risk reduction by 2.
But cleaning it after the rhesus factor has been cleaned leads to a risk reduction of 1.
With this in mind, we understand why the ratios are differents.

By the mean of vectorial knowledge and latent representation, we have been able to
provide an abstract notion for the sources of incompleteness in databases, namely the
features of the latent representation. Then we propose a notion of cleaning-importance,
which should be use if we wish to clean our incompletness one sources at a time. We
also proposed a notion of risk-contribution based on the shapley value and should
be used to provide an explanation to the risk value. The risk-contribution is a value
accounting for the correlation between features.

In the next sections we will provide a latent representation for the non-information
interpretation of null value for the relational algebra with null, aggregates and grouping
queries. Finally we will run some experiments to study the validity of the framework.

6.3 Applications on SQL database management system

We wish to build vectorial knowledge for the relational database domain with null.
Recall that the features of a vectorial knowledge are abstractions of the sources of
incompleteness. In the context of relational databases, the straightforward sources of
incompleteness are the null placeholders. Assume that every null placeholder in a
database d can be uniquely identified (it is always possible, even without the marked
null model of incompleteness). Then for every null ⊥i we consider a feature Xi. The
set of characteristics in the feature Xi varies depending on the interpretation of null
we are considering. For instance, with the existing but unknown interpretation of null,
the characteristics of Xi coincide with the set of Const. It represents the fact that
each null ⊥i can be instantiated to any constant element. When we consider the
no-information interpretation of null, the characteristics of Xi are more complicated.
The no-information interpretation of null can only be captured by the mean of the NI-
evaluation semantics. Therefore the characteristics of a feature Xi, representing the
possible behaviors of ⊥i, depends on the query one wants to study. For example,
considering a query semantics qNI, a characteristic in Xi must specify the expected
evaluation of every predicate of qNI involving ⊥i. While we can formally define such a
vectorial knowledge, it has little to no practical interest.

6.3. Applications on SQL database management system 118

First, the size of this vectorial knowledge depends on the source database d. Its
number of features is equal to the number of nulls in the databases. It is common
to assume that the size of queries is negligible compared to the size of the source
databases. If the size of the vectorial knowledge depends on the source databases, we
can not use this assumption anymore, and computing the contribution of the features
becomes expensive. Formally, we have to consider the combined complexity of the
query evaluation instead of the data complexity M. Vardi (1986). Second, we wish to
implement the framework on top of existing query evaluation systems. While in theory,
we can specify the behavior of each null independently, in practice, there is no RDBMS
able to do so. Indeed, RDBMSs use a single null placeholder to represent incomplete
information. And if the RDBMS can not differentiate two null placeholders, it must
handle them similarly. And RDBMS can not distinguish null placeholders in the same
attribute without implementing marked nulls. To the best of our knowledge there is
no implementation of relational database system with marked null yet. Therefore we
propose a vectorial knowledge for relational databases based on the attributes.

6.3.1 Attribute-consistent NI-evaluation semantics

We wish to build a vectorial knowledge for the relational database domain such that
the sources of incompleteness are the attribute of the input databases. For every
attribute α, we consider a feature Xα. A characteristic of the feature Xα should specify
the behavior of every null in the column α of the database wrt. the evaluation of a
query semantics qNI. However, as explained before, it is not reasonable in practice.
Hence we impose the evaluation of predicates to be consistent upon every null of the
same attribute. Every null in the same column has the same behavior. And We defined
the restriction of the NI-evaluation semantics, assuming that all the nulls in a column
behave similarly.

Remark. With this restriction, we can not build a latent representation for the no-
information query evaluation semantics. Indeed some possible answers returned by
qNI can only be obtained if we allow nulls of the same column to behave differently.
However, Theorem 8 and Proposition 15 ensure that for queries without aggregates
and groupings, we will still be able to capture the largest and the smallest possible
answer. Recall that the largest possible answer returned by the no-information query
semantics coincides with the evaluation-based certain answers with the whole-world
assumption. In the proof of Theorem 8 we provided a query rewriting to compute the
largest answer. And the query rewriting is compatible with the assumption that every

6.3. Applications on SQL database management system 119

null in a column behaves similarly. Because we only allow functions, aggregates, and
groupings for the top query level, with most regret functions and answers, we expect
the risk to be fairly similar to the risk upon the whole no-information query evaluation
semantics.

Definition 6.3.1 (Attribute-consistent NI-evaluation semantics). Let a relational al-
gebra with null query q ∈ RA(Γ) and d a bag relational database. The Attribute-
consistent NI-evaluation semantics qNI-A is given by induction:

RNI-A(d) = Rd

(q × q′)NI-A(d) = {a1 × a2 | a1 ∈ qNI-A(d), a2 ∈ q′NI-A(d)}

(π(t1,··· ,tl)(q)NI-A(d) = {π(t1,··· ,tl)(a) | a ∈ qNI-A(d)}

(σϕ(ᾱ))(q)NI-A(d) =

a
∣∣∣∣∣∣∣∣∣
∃a1 ∈ qNI-A(d),∃p ∈ {true, false}, ∀t̄ ∈ a1,

#
(
a, t̄

)
=

#
(
a1, t̄

)
if Jϕ(ᾱ)Kt̄ = true ∨

(
p ∧ Jϕ(ᾱ)Kt̄ = ⊥

)
0 otherwise.

(∃ϕ(ᾱ))(q, q′)NI-A(d) =

a

∣∣∣∣∣∣∣∣∣∣∣∣

∃a1 ∈ qNI-A(d),∃a2 ∈ q′NI-A(d), ∃p ∈ {true, false},∀t̄ ∈ a1,

#
(
a, t̄

)
=

#
(
a1, t̄

)
if ∃t̄′ ∈ a2 such that

Jϕ(ᾱ)Kt̄t̄′ = true ∨
(
p ∧ Jϕ(ᾱ)Kt̄t̄′ = ⊥

)
0 otherwise.

(∄ϕ(ᾱ))(q, q′)NI-A(d) =

a

∣∣∣∣∣∣∣∣∣∣∣∣

∃a1 ∈ qNI-A(d),∃a2 ∈ q′NI-A(d), ∃p ∈ {true, false},∀t̄ ∈ a1,

#
(
a, t̄

)
=

#
(
a1, t̄

)
if ∄t̄′ ∈ a2 such that

Jϕ(ᾱ)Kt̄t̄′ = true ∨
(
p ∧ Jϕ(ᾱ)Kt̄t̄′ = ⊥

)
0 otherwise.

When null placeholders are involved in the resolution of a predicate, we consider both
the cases for which the predicate is true and is false as possible answers. However,
notice that the decision to keep or discard the tuples for which the evaluation of
a formulae return ⊥ is done on the relation level. On the one hand, with the qNI-A

semantics, the value of p ∈ {true, false} is the same for every tuple in a relation. On
the other hand, with the qNI semantics (see definition 5.2.2), p can be different for each
tuple of a relation.

6.3. Applications on SQL database management system 120

Vectorial Knowledge with features based on attributes

Observe that if a query does not involve a formula by the mean of ∀, ∃ or σ operations,
its query evaluation semantics is reduced to a single possible answer. We only have
to account for these operations to build a vectorial knowledge based on the attributes.
Let a relational algebra with null query q ∈ RA(Γ) from S to T The set of ∃ resp. ∄ resp.
σ operations involved in the computation of q is:

∃[q] ={∃ϕ(ᾱ)(q′) | q′, q′′ ∈ RAAgg(Γ), ∃ϕ(ᾱ)(q′, q′′) ∈ q}

∄[q] ={∄ϕ(ᾱ)(q′, q′′) | q′, q′′ ∈ RAAgg(Γ), ∄ϕ(ᾱ)(q′, q′′) ∈ q}

σ[q] ={σϕ(ᾱ)(q′) | q′ ∈ RAAgg(Γ), σϕ(ᾱ)(q
′) ∈ q}

And we denote O[q] the union of these sets: O[q] = ∃[q] ∪ ∀[q] ∪ σ[q].

Definition 6.3.2. For every relational database d ∈ IS with attributes ᾱ,and every
relational algebra with null query q ∈ RAAgg(Γ), we define the |ᾱ| = n-tuple Aq

d =

(Xα1 , · · · , Xαn) such that for every i ≤ n:

Xαi =
{
(ωo1 , · · · , ωom) | m = |O[q]|, and ∀oj ∈ O[q] we have, ωoj ∈ {trueojαi , false

oj
αi}

}
For every attribute knowledge vector ω̄ ∈ A the Attribute-consistent NI-evaluation
semantics with knowledge qNI-A returns a single answer given by inductively defin-
ing the quantity #

(
qNI-A(d, ω̄), t̄

)
, which is the number of occurrences of a tuple t̄ (of

appropriate arity) in the result of applying qNI-A to a database d with the knowledge
vector ω̄

#
(
RNI-A(d, ω̄), t̄

)
= #

(
Rd, t̄

)
#
(
(q × q′)NI-A(d, ω̄), t̄ t̄

′) = #
(
qNI-A(d, ω̄), t̄

)
· #

(
q′NI-A(d, ω̄), t̄

′)
#
(
(πᾱ)(q)NI-A(d, ω̄), t̄

)
=

∑
t̄′ : πᾱ(t̄′)=t̄

#
(
qNI-A(d, ω̄), t̄

′)

#
(
(σϕ(ᾱ))(q)NI-A(d, ω̄), t̄

)
=

#
(
qNI-A(d, ω̄), t̄

)
if Jϕ(ᾱ)K(

ω̄,(σϕ(ᾱ))(q))
t̄

= true

0 otherwise.

#
(
∃ϕ(ᾱ)(q, q′)(d), t̄

)
=

#
(
qNI-A(d, ω̄), t̄

)
if ∃t̄′ ∈ q′NI-A(d, ω̄) such that

Jϕ(ᾱ)K(
ω̄,(∃ϕ(ᾱ))(q,q

′))
t̄t̄′ = true

0 otherwise.

#
(
∄ϕ(ᾱ)(q, q′)(d), t̄

)
=

#
(
qNI-A(d, ω̄), t̄

)
if ∄t̄′ ∈ q′NI-A(d, ω̄) such that

Jϕ(ᾱ)K(
ω̄,(∄ϕ(ᾱ))(q,q

′))
t̄t̄′ = true

0 otherwise.

6.3. Applications on SQL database management system 121

On the query level the knowledge vector ω̄ is just propagated to disambiguate the
evaluation of the formulae such that:

JP(ᾱ)K(ω̄,o)
t̄

=

P(t̄[α]) if ∀αi ∈ ᾱ, t̄[αi] ∈ Const

true else if ∃αi ∈ ᾱ,
(
t̄[αi] = ⊥ ∧ trueoαi

∈ ω̄
)

false else if ∃αi ∈ ᾱ,
(
t̄[αi] = ⊥ ∧ falseoαi

∈ ω̄
)

⊥ otherwise

Jϕ(ᾱ) ∧ ϕ′(ᾱ′)K(ω̄,o)
t̄

=

false if Jϕ(ᾱ)K(ω̄,o)

t̄
= false ∨ Jϕ′(ᾱ′)K(ω̄,o)

t̄
= false

true if Jϕ(ᾱ)K(ω̄,o)
t̄

= Jϕ′(ᾱ′)K(ω̄,o)
t̄

= true

⊥ otherwise

Jϕ(ᾱ) ∨ ϕ′(ᾱ′)K(ω̄,o)
t̄

=

true if Jϕ(ᾱ)K(ω̄,o)

t̄
= true ∨ Jϕ′(ᾱ′)K(ω̄,o)

t̄
= true

false if Jϕ(ᾱ)K(ω̄,o)
t̄

= Jϕ′(ᾱ′)K(ω̄,o)
t̄

= false

⊥ otherwise

For every relational database, d ∈ IS and every query q ∈ RA(Γ) a knowledge vector in
Aq

d encodes the behavior of every attribute of d for every operation involving a formula
of q. To control the behavior, during the resolution of a predicate P(t̄[ᾱ]) we have
access to the knowledge ω̄ and the operation involving this predicate o.

If t̄[ᾱ] only contains constant, then we keep the default evaluation of the predicate.

If one of the values in t̄[ᾱ] is null, for instance, the value t̄[αi], then we have to check
the content of the knowledge vector ω̄.
If the knowledge ω̄[Xαi]

o associated with the feature Xαi and the operation o in the
vector ω̄ is trueoαi

then we enforce the resolution of the predicate to be true. We ignore
the knowledge of any other null value, which may also be in t̄[ᾱ]. It is a design choice;
in the context of risk, it has no impact because we always look for the worst or the best
possible outcome with knowledge.
If none of the knowledge associated with null values in t̄[ᾱ] is trueo∗, then if one of them
is falseo∗, we enforce the resolution of the predicate to be false.

Remark. Our vectorial knowledge controls the behavior of predicate evaluation on
the level of the operation. The same knowledge controls every predicate in a formula.
Therefore if a null placeholder is involved in evaluating several predicates in the same
operation, its knowledge will force every predicate’s resolution to the same value true

or false. Remark that forbidding different resolutions of predicate only makes sense
because we are not allowing explicit negation in formulae.

6.3. Applications on SQL database management system 122

Claim 2. For every relational database d ∈ IS and every query q ∈ RA(Γ) we have:

1. Aq
d is a vectorial knowledge for qNI-A and d.

2. The evaluation of q on d coincides with the evaluation of qNI-A on d with the all false
knowledge vector. Let false ∈ Aq

d, such that for every operator o ∈ O[q] and every
attribute α in d we have falseoαi

∈ false, then we have:

q(d) = qNI-A(d, false)

Formally proving that Aq
d is a vectorial knowledge for qNI-A and d is doable but fairly

tedious. It involves an inductive proof on the relational algebra with null grammar. As
we wish to validate the framework experimentally, we emancipate from proof. The
second claim only holds because we are not allowing explicit negation in formulae. We
assume that the formulae have been transformed to equivalent ones without negation
(the negations have been pushed to predicate).

Remark. We have not given a latent representation for the relational database domain
and the no-information interpretation of null. The definition of a latent representation
imposes a bounded number of features. However, if we consider the whole relational
database domain, for any n > 0, we can find a database with n + 1 attributes. This
constraint on the latent representation can be lifted by allowing an enumerable number
of features for the domain and a finite number of features for each database. But it
will not be enough to define a latent representation for the relational database domain.
Recall that the vectorial knowledge Aq

d also depends on q. For each attribute, we only
consider the knowledge which applies to the query q. To build a latent representation,
we would have to consider an infinite number of characteristics for each attribute to
account for every possible query. As we do not need a latent representation for the
framework to work, and for simplicity’s sake, we choose not to offer one, even if it is
theoretically possible.

6.3.2 Aggregates and groupings

Most real-life relational queries involve aggregates and groupings. For instance, if we
look at TPC-H “TPC Benchmark™ H Standard Specification” (2018), the standard
benchmark for RDBMS, 18 out of the 21 queries use aggregates and/or groupings
operations. As we want to validate our framework on TPC-H instances, we quickly
extend our query language and database domain to allow aggregates and groupings
operation on the top level.

6.3. Applications on SQL database management system 123

With aggregates and groupings operations, the target database domain T is populated
by elements coming from three different sets. Elements can be constant values from
the set Const, or null values from {⊥}. Elements can also be numeric values from a
set Num if they are the output of an aggregate operation.

A Num aggregate operation F of arity n > 0, is a mapping from bags of n-tuple in
(Const ∪ {⊥})n to a numeric element of Num. We denote Γ, a set of Num aggregate
operations.

Definition 6.3.3 (Relational algebra with top-level aggregates). The relational algebra
with top-level aggregates and grouping RAAgg(Γ) is given by the following grammar:

q := R | q × q | πᾱ(q) | σϕ(ᾱ)(q)

| ∃ϕ(ᾱ)(q, q) | ∄ϕ(ᾱ)(q, q)

Q := GbᾱAggr (F1(ᾱ1), · · · ,Fn(ᾱn)) (q) with ᾱi ∩ ᾱ = ∅ for all i ∈ [1, n]

where ᾱ, ᾱ1, · · · ᾱn are possibly empty tuples of attributes, and F1, · · · ,Fn are aggreg-
ates from Γ. The semantics of a query q is the same as in definition 5.2.1. And for every
query Q = GbᾱAggr (F1(ᾱ1), · · · ,Fn(ᾱn)) (q) and every database d the semantics of
Q is given by:

Q(d) =

(t̄, t1, · · · , tn)

∣∣∣∣∣∣∣∣
t̄ ∈ πᾱ(q)(d)

and ∀i ∈ [1, n], we have ti = Fi (πᾱi(Bt̄))

with Bt̄ such that ∀t̄′,#
(
Bt̄, (t̄, t̄

′)
)
= #

(
q(d), (t̄, t̄′)

)

The evaluation of GbᾱAggr (F1(ᾱ1), · · · ,Fn(ᾱ1)) (q) coincides with the SQL evaluation
of the query:

SELECT ᾱ, F1(ᾱ1), · · · ,Fl(ᾱ1) FROM (q)

GROUP BY ᾱ

Independently of the vectorial knowledge with features attributes, we can define a
query evaluation semantics for the NI, EU, and NA interpretations of nulls. Because
we wish to study the cleaning-importance and the risk-contribution, in the next section,
we present an attribute-consistent NI-evaluation semantics.

6.3. Applications on SQL database management system 124

Attribute-consistent NI-evaluation semantics for aggregates and groupings

In the context of our framework, we want aggregate operations and numeric ele-
ments to be impacted by the attribute-knowledge vectors. While we can not reasonably
change the behavior of every aggregate operation in Γ, we can enrich their output with
valuable information. We wish for aggregate operations to output a numeric value but
also information about the proportion and characteristics of the null element in its input
bag. More formally we enrich the set of numeric element Num and we consider the set
of enriched numeric element:

ANum = {(v, p, q) | v ∈ Num, and p, q ∈ [0, 1]}

The enriched numeric elements are tuples (v, p, q), where v represents the numeric
element, p the proportion of null elements in the bag, and q the proportion of null
elements with at least a characteristic different from false.

Then for every query Q = GbᾱAggr (F1(ᾱ1), · · · ,Fn(ᾱ1)) (q), every database d, and
every attribute knowledge vector ω̄ ∈ A we define the attribute-consistent NI-evaluation
semantics for aggregates and groupings.

QNI-A(d, ω̄) =

(t̄, t1, · · · , tn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t̄ ∈ (πᾱ)(q)NI-A(d, ω̄)

and ∀i ∈ [1, n], we have ti = (Fi(πᾱi(Bt̄)), pi, qi)

with Bt̄ = {|(t̄, t̄′) | (t̄, t̄′) ∈ q(d)|}

and pi =
|Null(πᾱi(Bt̄))|

|Null(πᾱi(Bt̄))|+ |Const(πᾱi(Bt̄))|

and qi =

∑
α∈{α∈ᾱi|ω̄[α] ̸=false}

|Null(πα(Bt̄))|

|Null(πᾱi(Bt̄))|+ |Const(πᾱi(Bt̄))|

where |Null(πᾱi(Bt̄))| resp. |Const(πᾱi(Bt̄))| is the number of null elemets resp. con-
stant elements in the attributes ᾱi of the bag Bt̄.

In practice, to obtain the null proportion, we use the COUNT operator and the fact that
COUNT(*) returns the number of elements (nulls included), and COUNT(αi) returns the
number of constant elements in αi.

Remark. We are enriching the domain with numerical values and proportions of nulls
because we will use this information to refine our regret functions. We do not have
to enrich the database domain, as we could encode the relevant information in the
additional knowledge and use it later for the regret function. However, with additional
knowledge encoding, it didn’t feel easy to understand for the reader.

6.3. Applications on SQL database management system 125

6.3.3 Optimal transport based regret function with numeric element and
knowledge

Based on the same principle as the OT-based regret functions introduced in definition
5.4.2, we defined a cost function inductively on the element of the relational database
domain.

Generic value dissimilarity with knowledge

First, we introduce a notion of dissimilarity for generic elements in an attribute α as a
function Cα : (Const∪{⊥})×(Const∪{⊥})×A 7→ [0,∞] such that, for every elements
e, e′ ∈ Const ∪ {⊥} and every attribute knowledge vector ω̄ ∈ A we have:

Cα(e, e
′, ω̄) =

0 if e = e′and e, e′ ∈ Const

1 if (e = ⊥)⊕ (e′ = ⊥)

0 if (e = ⊥) ∧ (e′ = ⊥) and ω̄[α] = false

1 if (e = ⊥) ∧ (e′ = ⊥) and ω̄[α] ̸= false

∞ otherwise.

The information dissimilarity is minimal when the two constant values are the same.
It is equal to 1 when one of the values is null and the other a constant. When the
two values are null, we check if the knowledge for the attribute α is false. If it is, then
the information content of both values is similar, and the cost is 0. If the knowledge
is different from false, then it means the elements in α have been cleaned. Hence
the information dissimilarity between the two values is the same as between a null
and a constant. Finally, the information dissimilarity is maximal between two different
constant values because they are generic elements; hence they have incomparable
information content.

Numeric value dissimilarity

The set of elements Num contains all possible values from arithmetic and aggregation
operations. We assume that for every attribute α populated with element Num there
exists a normalized distance metric between the elements in α:

dα : Num× Num 7→ [0, 1]

6.3. Applications on SQL database management system 126

Remark. In the implementation, we used the fact that we can compute an upper and
lower relation for the set of answers upon the attribute knowledge with qfalse and qtrue

(see Theorem 8 and Proposition 15). Then for every numerical attribute, we store the
result of the aggregate operations MAX and MIN on qfalse and qtrue. This gives us the
lower and upper bound of the numerical values in the attribute, and we can normalize
the absolute value of the Euclidean distance.

In the case of our database domain, we consider the enriched set of numeric elements
ANum. Recall that the element of ANum are tuple (v, p, q) such that v represents the
output of an aggregation, p the proportion of null involved in the evaluation, and q the
proportion of null with a knowledge different from false.

Let two tuples (v1, p1, q1), (v2, p2, q2) ∈ ANum from an attribute α, a naive notion of
dissimilarity would be to consider the normalized distance between the integer values
v1 and v2. However, it neglects the possible impact of the null values involved in the
computation of v1 and v2. Because the numeric values are computed with aggregates
over bags, our idea to refine the dissimilarity is to, once again, instantiate an optimal
transport problem.

We represent a tuple (v1, p1, q1) ∈ ANum as an histogram H((v1, p1, q1)) with three
positions:

• v1 representing the integer values with a mass (1− p1).
• ⊥false representing the nulls with a knowledge false with a mass (p1 − q1).
• ⊥ representing the nulls with a knowledge different than false with a mass q1.

The cost of transporting the mass of the histograms between two positions is given by
a function C as follows:

• For every v1, v2 ∈ Num, C(v1, v2) = dα where dα is any normalized distance measure
on the set of numerical values in α.

• The transporting cost between two positions ⊥false is 0: C(⊥false,⊥false) = 0

• The transporting cost between two positions ⊥ is 0: C(⊥,⊥) = 0

• The transporting cost is 1 everywhere else.

Then the dissimilarity value between (v1, p1, q1) and (v2, p2, q2) is equal to the cost of
the optimal transportation plan between their histogram:

CNum
α ((v1, p1, q1), (v2, p2, q2)) = KC

(
H(v1, p1, q1),H(v2, p2, q2)

)
As all the cost are bounded by 1 and the sum of the weight of each histogram is 1 we
have:

0 ≤ CNum
α ((v1, p1, q1), (v2, p2, q2)) ≤ 1

6.3. Applications on SQL database management system 127

Remark. When we attribute a mass (1 − p1) to the position v1 in the histogram
H((v1, p1, q1)), we assume that every constant element involved in the aggregate func-
tion are equal contributors to the outcome. Therefore we uniformize the contribution
of every constant value in the bag. This assumption is generally false, even with
simple aggregate functions. For instance, consider an aggregation function returning
the maximal value of a bag. Hence there is no mathematical guarantee toward the
relevance of our dissimilarity function for Num values. However, building a cost function
with mathematical guarantees is possible if a user has a specific use case and does
not need to be as general (restrict the set of aggregate functions).

6.3.4 Information dissimilarity between tuples

For every tuple t̄, t̄′ with attributes ᾱ, we denote ᾱ[Const] the set of attributes with
generic elements and ᾱ[Num]| the set of attributes with numeric elements. Then the
information dissimilarity between the tuples is defined as the (Costunify,Costnumeric)-
weighted average of the generic dissimilarity and the numeric dissimilarity.

Cᾱ(t̄, t̄
′, ω̄) =Costunify ·

∑
α∈ᾱ[Const]

Cα(t̄[α], t̄
′[α], ω̄)

|ᾱ[Const]|
+ Costnumeric ·

∑
α∈ᾱ[Num]

CNum
α (t̄[α], t̄′[α])

|ᾱ[Num]|

with Costunify, Costnumeric accounting for the user preferences. The higher Costunify is
with respect to Costnumeric the more important the generic values are.

Remark. The cost function for generic elements Cα depends on the attribute α and
the knowledge ω̄. In contrast, the cost function for numeric elements does not depend
on the knowledge ω̄. It is a misrepresentation of the situation to simplify the notation.
Remember that we enriched our database domain with ANum instead of Num. Thanks
to that, the relevant information contained in the knowledge vector ω̄ has been added
to the output of the aggregate functions. Hence the cost function between numeric
elements also depends on the knowledge.

6.3. Applications on SQL database management system 128

Tuple mass assignment

Recall the mass-assignment we considered for query without grouping:

Definition 6.3.4 (Mass assignment). For every bag relation a, b we define the mass
assignment as the function M [a 7→ b] such that for every tuple with fitting attribute:

M [a 7→ b](a, t̄) =

|b| if t̄ is producer

#
(
a, t̄

)
otherwise.

M [a 7→ b](b, t̄) =

|a| if t̄ is sinker

#
(
b, t̄

)
otherwise.

And the cost function between tuple:

Cᾱ(t̄, t̄
′) =

0 if t̄ is producer ∧ t̄′ is sinker

CostProd if t̄ is producer

CostSink if t̄′ is sinker

Cᾱ(t̄, t̄
′) otherwise.

The mass of the producer is equal to the size of b, so each missing tuple can be
produced with a regret CostProd. Similarly, the mass of the sinker is equal to the size of
a, so each completely false tuple can be discarded with a regret CostSink. Finally, the
cost of transporting the mass from the producer to the sinker is 0. Moreover, the mass
of tuple t̄ ∈ a is equal to its multiplicity.

Now consider the following answers a and b.

a

From:Const To:Const Total:Num

Jane Alice 1000
⊥ Jane 2000

b

From:Const To:Const Total:Num
Jane John ⊥
Alice Jane ⊥
⊥ Jane 1000

Assume that the bags a and b are the answers returned by an aggregate (to compute
Total) and a grouping operation on the attributes (From,To). Due to the behavior of
group by, a and b should not be considered as bags anymore, but as sets. Therefore
the tuple (Alice,Jane,⊥) ∈ b should not be considered as brand new information, as it
unifies with (⊥,Jane,2000) ∈ a and multiplicity of tuples does not matter anymore.

6.3. Applications on SQL database management system 129

To retain the previous properties concerning missing tuples and false tuples while also
discarding the tuple multiplicity, we introduce the concept of ghost tuples. For each
tuple in the answers, we create a ghost tuple that carries similar information content,
except that the cost of producing or sinking a ghost tuple is free. Informally, ghost
tuples allow us to use the information of a tuple multiple times without any penalty and
retain the property that every tuple should be matched at least once.

Definition 6.3.5 (GroupBy mass assignment). For every bag relation a, b with group
by attributes we define the GroupBy mass assignment as the function MGb[a 7→ b]

such that for every tuple with fitting attributes:

MGb[a 7→ b](a, t̄) =

|a| · |b| if t̄ is producer

|b| − 1 if t̄ is ghost tuple

1 otherwise.

MGb[a 7→ b](b, t̄) =

|a| · |b| if t̄ is sinker

|a| − 1 if t̄ is ghost tuple

1 otherwise.

And we extend the cost function between tuple in the following way:

Cᾱ(gt̄, t̄
′, ω̄) =

0 if t̄′ is sinker

Cᾱ(t̄, t̄
′, ω̄) otherwise.

Cᾱ(t̄, gt̄′ , ω̄) =

0 if t̄′ is producer

Cᾱ(t̄, t̄
′, ω̄) otherwise.

Cᾱ(gt̄, gt̄′ , ω̄) = Cᾱ(t̄, t̄
′, ω̄)

6.3. Applications on SQL database management system 130

Coming back to our example, a valid transportation plan would be the following:

u((Jane,Alice,1000) 7→ sinker) =1 (Jane,Alice,1000) is false information

u((⊥,Jane,2000) 7→ (⊥,Jane,1000)) =1 (⊥,Jane,2000) has a generic match

u(g(⊥,Jane,2000) 7→ (Alice,Jane,⊥)) =1 (Alice,Jane,⊥) has a generic match

u(producer 7→ (Jane,John,⊥)) =1 (Jane,John,⊥) is a new information

u(g(Jane,Alice,1000) 7→ sinker) =2 sinking the residual ghost tuple mass

u(g(⊥,Jane,2000) 7→ sinker) =1 sinking the residual ghost tuple mass

u(producer 7→ g(Jane,John,⊥)) =1 producing the residual ghost tuple mass

u(producer 7→ g(Alice,Jane,⊥)) =1 producing the residual ghost tuple mass

u(producer 7→ g(⊥,Jane,1000)) =1 producing the residual ghost tuple mass

u(producer 7→ sinker) =2 sinking the residual producer mass

Which yield to a regret

µ(ā, b̄, false) = CostSink+
(

Costnumeric · dTotal(2000, 1000)
)
+(

Costunify

2
+Costnumeric)+CostProd

Definition 6.3.6 (OT regret functions with knowledge). For every Costnumeric,Costunify,

CostProd,CostSink ∈ N the OT-regret function with knowledge µ : IT × IT × A 7→ R+

is defined for every set relational databases a,b ∈ IT with attributes ᾱ as the optimal
solution to the transportation problem with the mass assignement MGb[a 7→ b] and the
cost function with knowledge Cᾱ:

µ(a,b, ω̄) = KCᾱ

(
MGb[a 7→ b](a),MGb[a 7→ b](b)

)

6.4 Experiments

We hypothesize that the attribute-based vectorial knowledge can be used to infer the
evolution of the risk associated with a query if we clean the incompleteness in one
attribute of the source database. To confirm or falsify our hypothesis, we need to
compare the prediction of our models with the actual value obtained when we clean
an attribute. Therefore we simulate an environment where we have control over the
incompleteness.

6.4. Experiments 131

6.4.1 Validation procedure

Our environment is based on a randomly generated TPC-H database c. As TPC-H
only generates databases without null, the database c is complete. To create some
incompleteness, we substitute some constants in the attribute α of the database c with
null values (if α is not a Primary key) and create the database: Nullify(c, α) = d. In this
controlled environment, cleaning an attribute α of the database d accounts to update d
with its matching value in c. Such a process can easily be done thanks to the primary
keys. Therefore, we have access to a function Nullify−1, such that for every complete
database and every attribute α:

c = Nullify−1 (Nullify(c, α), α)

We can trivially extend the Nullify, and Nullify−1 process to set of attributes. It allows
us to define the ground-truth for the evolution of the risk when we clean an attribute
αi ∈ ᾱ in a database d = Nullify(c, ᾱ):

ground-truth(q, d, αi) = riskA(qNI-A, d)[false]− riskAq
d
(qNI-A,Nullify−1(d, αi))[false]

Then for every prediction model ∈ {Linear,Optimi,Pessim} we can study the error-
rate:

Error-rate(model, q, d, αi) =
model(q, d, αi)− ground-truth(q, d, αi)

riskA(qNI-A, d)[false]

When the overall risk is equal to 0 we also have model(q, d, αi) = ground-truth(q, d, αi) =

0. Therefore when riskA(qNI-A, d)[false] = 0, we defined Error-rate(model, q, d, αi) as 0.

The closer to 0 the error rate of a model, the better its predictions are. However, to
discuss the validity of the hypothesis, we also need a baseline model. Indeed assume
that the error rate returned by a model is 0, 00001. Despite the immediate intuition, this
value does not confirm any hypothesis about the model. The prediction task may be
trivial, and any model, even the most trivial, would have a low error rate. As a baseline
for comparison, we propose the following naive prediction model:

baseline(q, d, αi) =
|Null(παi(d))|∑

α∈q
|Null(πα(d))|

· riskA(qNI-A, d)[false]

The baseline prediction model distributes the risk proportionally to the number of nulls
involved in the attribute αi divided by the total number of nulls in the attributes of q.
This prediction model being trivial, to falsify the hypothesis, we expect our vectorial
knowledge based model to outperform it.

6.4. Experiments 132

Remark. The results of this experiment do not provide any insight concerning the
relevancy of the optimal-transport based regret functions. The ground-truth values
used for the validation metric are also computed with optimal-transport based regret
function. Hence the relevance of the OT-based regret functions is an assumption of
the validation process. It is not a hypothesis that can be falsified or confirmed with the
results.

Remark. The Nullify and Nullify−1 processes to simulate incompleteness cleaning are
not captured with the attribute-based vectorial knowledge. Indeed the constant values
used to replace the nulls with the process Nullify−1 may not have an attribute-wide
consistent behavior. Therefore the model Pessim, and Optimi are not guaranteed to be
lower resp. upper bound of the evolution of the risk anymore.

Consider the following SQL query corresponding to Q16 from the TPC-H benchmark:

SELECT p_brand,

p_type,

p_size,

Count(ps_suppkey) AS supplier_cnt

FROM partsupp,

part

WHERE p_partkey = ps_partkey

AND p_brand <> 'Brand#45'

AND p_type NOT LIKE 'MEDIUM POLISHED%'

AND p_size IN (49, 14, 23, 45,

19, 3, 36, 9)

AND NOT EXISTS (SELECT *
FROM supplier

WHERE s_comment LIKE '%Customer%Complaints%'

AND ps_suppkey = s_suppkey)

GROUP BY p_brand,

p_type,

p_size

ORDER BY supplier_cnt DESC,

p_brand,

p_type,

p_size;

The error rate of each model for each attribute containing null is reported in figure
6.1. Those results tell us that for this specific query, on a specific database and with a
specific OT-based regret function, the Linear model outperformed the baseline model.
On the other hand, the Optimi and Pessim models performed poorly on the task.

6.4. Experiments 133

supplier.s_comment part.p_type part.p_size part.p_brand

Attribute

−0.4

−0.2

0.0

0.2

0.4

Er
ro

r-
ra

te

Linear
Baseline
Optimi
Pessimi

Figure 6.1: Error-rate per attribute for each prediction models on Q16

However, such reports are not sufficient to assess our hypothesis. We need to conduct
the experiment on more databases, more queries, and more optimal transport-based
regret functions. For the presentation to scale, we introduce average values of the
error rate. For every query q, and every database d, the average error rate is:

Error-rate(model, q, d) =

∑
αi∈q
|Error-rate(model, q, d, αi)|

|{αi ∈ q}|

The error rate can be negative or positive; therefore, we consider the average of its
absolute value. However, for every database, query, and OT-regret function we tried,
the predictions of Pessim were lower than ground-truth, and the predictions of Optimi
were higher. Therefore the error rate of Pessim resp. Optimi was always negative
resp. positive. That is why in the reports, we are giving negative average values for the
Pessim model.

For a batch of query Q the average of the error rate is given by:

Error-rate(model,Q, d) =

∑
q∈Q

Error-rate(model, q, d)

|Q|

6.4. Experiments 134

Finally, for a set of databases D, the average error rate is given by:

Error-rate(model,Q,D) =

∑
d∈D

Error-rate(model,Q, d)

|D|

To validate our prediction models of the attributes’ importance, we ran experiments
on the TPC-H benchmark. The set of TCP-H queries compatible with our framework
is Q = {’Q1’,’Q2’,’Q3’,’Q4’,’Q5’,’Q6’,’Q11’,’Q16’,’Q19’,’Q21’} given in appendix A. Other
queries contain operations we can not deal with yet, such as nested group-by, views,
and cases, or which were too expensive to compute due to the disjunctions we are
adding in the queries.

By default the parameters have the following values:

• The cost of producing and discarding a tuple is the same CostProd = CostSink = 1. It
means that the penalty for missing a tuple or having an extra tuple is the same.

• The cost between a null and a constant value is Costunify = 1. It means that null
values carries information but are still less valuable than constants. It also carries
the importance of generic values in the overall regret.

• The weight of the Num component of the answers by default is Costnumeric = 1.
• The size of the database is Size = 100 MB
• The null rate in the incomplete database is NullRate = 5%. It means that 5% of the

constant in the non Primary-Key attributes will be replace by a null.
• The probability of null values not being fixed in the database Nullify−1 is NullRateFix =

30%. It means that 30 % of the null in a attribute will still be null after the cleaning
process.

The validation procedure is the following:

1. Initiate a regret function with CostProd, CostSink, Costunify and Costnumeric.
2. Generate a set of 3 complete databases C of size Size.
3. For every complete database c ∈ C

• With a probability NullRate nullify element of c to generate an incomplete data-
base Nullify(c) = d.

• For every attribute αi generate the partially fixed databases Nullify−1(d, αi)

• Compute the ground-truth value of every attributes and every query in Q.
• Compute the average Error-rate over the set of queries Q for each model:

Error-rate(model,Q, d).
4. Compute the average Error-rate over the set of databases D: Error-rate(model,Q,D).

6.4. Experiments 135

6.4.2 Results

Plot The plot represents the evolution of the average Error-rate of the inference mod-
els. Each data point of the curve have been computed with the Validation process
described above.

Linear This curve corresponds to the average Error-rate rate obtained with the linear
heuristic inference model for the cleaning importance.

Oracle Optim-Pessim This curve corresponds to the average Error-rate rate obtained
by choosing the best inference of the risk between the Optimi and Pessim for each
attribute cleaning. This does not correspond to any implementable model.

Naive This curve corresponds to the average Error-rate rate obtained with the naive
inference model for the cleaning importance.

Optim-Pessim Bounds This area corresponds to the values in-between the always
negative Error-rate obtained with the Pessim model and the always positive Error-rate
obtained with the Optimi model.

0 100 200 300 400 500 600 700 800
Size of the database in MB

−0.4

−0.2

0.0

0.2

0.4

Er
ro

r-
ra

te

Linear
Oracle Optim-Pessim
Naive
Ground-Truth
Optim-Pessim Bounds

(a) Evolution of the average Error-rate with the
Size of the database

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Proportion of nulls in %

−0.4

−0.2

0.0

0.2

0.4

Er
ro

r-
ra

te

Linear
Oracle Optim-Pessim
Naive
Ground-Truth
Optim-Pessim Bounds

(b) Evolution of the average Error-rate with the
NullRate in the database

Figure 6.2: Evolution of the average Error-rate with the database parameters

Results

First, we discuss the problematic results. In Figure 6.2a, we remark that the evolution
of the Error-rate with the Size of the databases is erratic and unpredictable. The
immediate interpretation is that the models for inferring the cleaning-importance of the
attributes are not resilient when the size of the database increase. However, Figure
6.2b, shows that the models are resilient to the percentage of null values in the
databases. Those two results contradict each others. Indeed an erratic Error-rate is
mostly due to the fact that the vectorial knowledge we are considering for inferring the

6.4. Experiments 136

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Value of CostSink

−0.4

−0.2

0.0

0.2

0.4

Er
ro

r-
ra

te

CostProd=1

Linear
Oracle Optim-Pessim
Naive
Ground-Truth
Optim-Pessim Bounds

(a) Evolution of the average Error-rate with
CostSink

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Value of CostProd

−0.4

−0.2

0.0

0.2

0.4

Er
ro

r-
ra

te

CostSink=1

Linear
Oracle Optim-Pessim
Naive
Ground-Truth
Optim-Pessim Bounds

(b) Evolution of the average Error-rate with
CostProd

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Value of CostUnify

−0.4

−0.2

0.0

0.2

0.4

Er
ro

r-
ra

te

CostNumeric=1

Linear
Oracle Optim-Pessim
Naive
Ground-Truth
Optim-Pessim Bounds

(c) Evolution of the average Error-rate with
Costunify

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Value of CostNumeric

−0.4

−0.2

0.0

0.2

0.4

Er
ro

r-
ra

te

CostGeneric=1

Linear
Oracle Optim-Pessim
Naive
Ground-Truth
Optim-Pessim Bounds

(d) Evolution of the average Error-rate with
Costnumeric

Figure 6.3: Evolution of the average Error-rate with the regret function parameters

ground-truth value is attribute based, while we allow the cleaning process to be null
based. Hence increasing the number of null in the databases, either with the NullRate
or with the Size parameter will yield to worst Error-rate. But we do not notice any
correlation between the evolution of the Error-rate with the Size and with the NullRate.

Worst when the Size of the database increases, the naive baseline model inference
outperforms the linear heuristic. Our intuition is that the computation of the optimal
transport based regret does not scale to big bags. The fact that all the values of risk
returned for databases bigger than 500MB are 0 tend to confirm that. To be more spe-
cific with suspect that the numerical structure we are using to store the regret values
is not good enough (float 32). Moreover, we notice that for small databases <200MB,
the implementation is spending most of its running time on the evaluation of queries
(ie. waiting for the DBMS results). While for bigger databases, the implementation is
spending most of its running time on the evaluation of the optimal transport values.
This is a big problem wish require more investigation.

6.4. Experiments 137

0 10 20 30 40 50
Proportion of nulls in

−0.4

−0.2

0.0

0.2

0.4

Er
ro

r-
ra

te

Linear
Oracle Optim-Pessim
Naive
Ground-Truth
Optim-Pessim Bounds

Figure 6.4: Evolution of the average Error-rate with the NullRateFix in the cleaned
database

Hopefully solutions exist to help with this scaling issue. First the hardware we are
using is far from optimal. Second, the problem is fully parallelizable. Finally, tractable
approximation for the optimal transportation problem exists. Most notably the Sinkhorn
algorithm consider an entropic regularisation of the transportation plans Cuturi (2013).
It pushes the transportation plan of the tuples to be less deterministic. Overall, while
we recognize the issue, we think it is more an implementation and technical problem,
than a framework problem.

Second we discuss the expected results. The bounds of the cleaning importance of
attributes obtain thanks to the models Optimi and Pessim are wide. As expected it
gives us an upper and lower bound for the cleaning importance. But considering the
difference between the Optimi and Pessim values, they seem to have little practical
interest. While not perfect, the linear heuristic is resilient to the proportion of remaining
null after the cleaning process (Figure 6.4). It tends to show that the attribute based
vectorial knowledge is able to capture the no-information interpretation of null.

Third we discuss the promising results. Our inferences models are resilient with re-
spect to the regret function we are considering. Indeed the values CostProd and Costunify

while having a big influence on the risk values, do not impact significantly the Error-rate
of our models (Figure 6.3a and 6.3b). Similarly, the Error-rate are not impacted by the
ratio between Costnumeric and Costunify (Figure 6.3c and 6.3d). It shows that our models
are equally good at inferring the risk of numeric attribute and generic attribute.

6.4. Experiments 138

Finally, we wish to emphasize on the performances of the linear heuristic for inferring
the cleaning importance. While outperforming the naive inference model is already
good, the fact that it perform as good as the Oracle-Optim-Pessim model is impressive.
Recall that the oracle can not be implemented, it guess optimally which of the optim-
istic or pessimistic inference of the cleaning importance it picks for each attribute.
Despite this, the linear heuristic provides similar performances. It tend to show that
to further increase the inference performances, new models should include more
information about the attributes and the queries.

Explanations of the risk

As an example, we consider the query Q16 A and we output the distribution of the
Linear heuristic for cleaning-importance over the attributes (Figure 6.5a). If we were to
consider this distribution as an explanation of the risk, then it seems that the nulls in
the attribute s_comment have no impact on the risk.

However when we look at the distribution of the risk-contribution based on the Shapley
values (Figure 6.5b), then it is clear that the attribute s_comment contributes to the
the risk. If we consider the distribution of the risk-contribution divided by the number of
nulls in the attributes (Figure 6.5c), the contribution of the nulls in s_comment becomes
close to 20%. This simple example illustrates the relevance of considering the risk-
contribution notion to provide explanations for the risk.

6.5 Conclusion

The SQL answers to queries on incomplete databases are not going to change in a
near future. And providing a global explanation for them is problematic. For generic
queries, SQL seems to behave consistently with the none-applicable interpretation of
null. However it does not hold for queries with aggregates and groupings. Therefore
we choose to tackle the problem differently and focus on providing local explanations
for database management system answers.

First we abstracted the sources of incompleteness, and defined them as the features of
a latent representation of the additional knowledge. Then we defined the explanation
of an answer as the contribution of each sources of incompleteness to its risk value.
However the contribution of a source of incompleteness depends on the evolution
of the risk of an answer if we happen to clean the aforementioned source. And this
evolution is unknown, therefore we proposed several inference models.

6.5. Conclusion 139

part.p_size

part.p_brand

part.p_type

71.0%

17.9%

11.2%

(a) Distribution of the Linear cleaning-
importance.

part.p_size

part.p_brand

supplier.s_comment

part.p_type

63.1%

20.7%

1.8%

14.5%

(b) Distribution of the risk-contribution.

part.p_size

part.p_brand

supplier.s_comment

part.p_type

54.9%

10.5%

19.7%

14.9%

(c) Distribution of the risk-contribution divided
by the number of null

Figure 6.5: Comparison between possible explanations of the risk

To validate our inference models, we instantiate the framework on relational databases
with nulls. We extended the class of optimal transport based function to work with
numerical attributes. Then we implemented the framework and conducting a series of
experiments to study the behavior of our inference models. While the implementation
has some scaling issues, the results are promising.

Overall the experiments have been conclusive, and we can affirm that the notion of
risk and sources of incompleteness can be used to provide local explanations. Our
implementation should be seen as a first step toward local explanation of SQL answers
on queries with aggregates and groupings. We think it is an exiting new way to tackle
the problem of query-answering on incomplete databases, which may involves tools
and techniques from other fields of computer science where inference is crucial.

Chapter 7

Conclusion

The handling of incomplete information is a prime example of the rift between practi-
tioners and academics in the field of database management. On the one hand, most of
the solutions proposed by the community have not translated to practice. On the other
hand, most database systems lack formalism and often claim theoretically impossible
features. In this thesis, we studied why such a gap exists and started to build a bridge
between practical expectations and research.

At first glance, the results of the survey we conducted on the everyday usage of
NULL seemed to explain the problem. Indeed researchers in the field have focused
on interpretations of incompleteness which most users disagree with. It would explain
the apparent lack of interest in the theoretical frameworks. However, the survey data
also show that there is no consensus on what is a satisfactory answer to a query on an
incomplete database, even for a single interpretation of NULL (Chapter 4). We tackled
this problem with three complementary approaches.

Users’ expectations

First, we can try to change users’ expectations. Some users are satisfied with answers
inconsistent with their own interpretation of incompleteness. I argue that the com-
munity should not compromise with the logical consistency of their frameworks. Logical
consistency is the root of our work, and I think most users want consistent answers, but
some users simply do not know if a result is consistent or not. We could argue that the
resources are available, hence practitioners can learn about it. But I think we should
also acknowledge that a lot of the research in the field does not emphasize enough
on real-life models, and it tends to discourage practitioners. To help change users’
expectations, we have revisited some already existing theoretical frameworks for query
answering on incomplete databases. Our goal has been to explain and extend the
notion of certain answers to bring it closer to real-life models and applications.

140

7. Conclusion 141

We introduce the concept of knowledge preservation to improve the information con-
tent of answers to queries on incomplete databases. Intuitively, the interpretation of in-
complete data may be specified by some additional knowledge. Hence the information
content of a query evaluation and a database is defined with respect to this knowledge.
Consequently, the best answer one could expect is a database consistent with the in-
terpretation of incompleteness and which preserves the additional knowledge. Thanks
to this framework, we have been able to offer the first consistent notion of answers on
bag relational databases with missing information (Chapter 3). It also allowed us to
consider other interpretation of incompleteness, namely the no-information meaning
of NULL (Chapter 5). Finally, the additional knowledge allowed us to handle query with
arithmetic functions (Chapter 3).

Overall we have pushed further the limitations of the certain answers, bringing us a
step closer to real-life applications. Moreover the concept of knowledge preservation
arguably provides a straightforward intuition to understand certain answers.

User dependent answers

We can offer more flexible answer paradigms without sacrificing logical consistency.
If we accept that users can have different expectations, and we still wish to provide
a formal notion of answers, we have to model their preferences. In this thesis we
assumed that the preferences were specified by the user thanks to a regret function
representing his measurement of dissimilarity between databases.

Thanks to this framework, we have been able to offer user dependent answers, namely
the risk-minimizing answers (Chapter 5). We prove that certain answers were a special
case of risk-minimizing answers. Especially the notions coincide for a user who en-
dures a maximal regret when he is neglecting an interpretation of missing information.
For relational databases we proposed a class of customizable regret functions. And we
showed that depending on the parameters, the risk-minimizing answers would contain
more or less tuples and NULL elements.

To the best of our knowledge, it is the first user dependent and logically consistent
framework which define answers to queries on incomplete databases.

. Conclusion 142

Explaining and improving answers

The last approach is more convoluted. I argue that if there is no consensus among user
toward what is a satisfactory answers. it is because all answers are equally satisfying
and equally dissatisfying. The relevancy and the satisfactory value of answers to
queries on incomplete databases does not depend on the answers. The most valuable
component of an answer is its explanation. Why is this database the answer to my
query? The additional knowledge for certain answers, and the regret function for risk-
minimizing answers provides a global explanation for the answers. However the path
from additional knowledge and regret function to an answer is not always easy to
follow.

I think one of the most promising research venue to increase users’ satisfaction is to
provide easy to understand local explanation for answers. In this thesis we proposed
a first concept. We explained SQL answers by outputting their risk values and the
contribution of attribute involved in the query to the risk (Chapter 6). Such explanation
can help a user decide if he should trust the answer, or if he should try to improve it. In
order to facilitate the improvement of answers, we can infer the diminution of the risk if
we clean the incompleteness of an attribute.

But our notion of explanation has some shortcomings. Even for SQL, the framework
does not provide any mathematical guarantee for the contribution values. Computing
the explanation is often hard, and it depends on the user regret function. Finally, we do
not know what is a good explanation of an answers for practitioners. It is an exiting new
way to tackle the problem of query-answering on incomplete databases, which may
involves tools and techniques from other fields of computer science where inference
is crucial.

7.1 Future work

In future work, there are several short-term and long-term directions that could be
pursued to further improve query-answering over incomplete databases.

Exploiting and Extending risk-minimizing certain answers

While the proposed frameworks have been implemented and tested, there may be
other databases and queries for which they may not perform well. Therefore, it is
important to test and evaluate the proposed frameworks on a wider range of real-world
databases and queries. Moreover, it is known that the complexity of the framework is
intractable in most cases; therefore, studying its behavior on real-life datasets is even
more important.

7.1. Future work 143

Another important direction is to investigate how the proposed frameworks could be
extended to handle other data models besides the relational data model, such as
graph databases Angles et al. (2017). Graph databases are increasingly popular in a
wide range of applications, and their use of graph structures to represent data poses
unique challenges for handling incomplete and uncertain information. Specifically, it
is important to take into account structural uncertainty, where the incompleteness or
uncertainty of one node or edge in the graph can impact the interpretation of the entire
graph Fontaine and Gheerbrant (n.d.). Investigating the use of other query languages
besides SQL could also be important, particularly for graph databases that use dif-
ferent query languages such as GQL and SPARQL Barceló Baeza (2013); Pérez,
Arenas, and Gutierrez (2009). These languages may require different approaches to
handle incomplete and uncertain information.

Other metrics for regret should be considered to improve the relevance of query results
or to provide stronger mathematical guarantees. For example, exploring the use of
uncertainty measures such as entropy, or V-usable information could be an important
direction Lin (1991); Xu, Zhao, Song, Stewart, and Ermon (2020).

Finally, it may be interesting to directly incorporate user feedback in the query-answering
process. For example, one could design interactive systems where users can provide
feedback on query results. Investigating the use of decision theory to model user pref-
erences more explicitly will help develop more accurate and relevant regret functions
Benjamin (2019); Slovic, Fischhoff, and Lichtenstein (1977).

Beyond risk-minimizing certain answers

The proposed frameworks for risk-minimizing certain answers and user-dependent
answers are relevant for both data exploration and data cleaning tasks. However, data
exploration is not always done by experts in the field, and traditional query-answering
techniques may not provide satisfactory explanations for non-experts. Therefore, in-
vestigating alternative methods for providing explanations of query results could be
an important direction for future research. One promising avenue is the use of natural
language processing techniques and large language models (LLMs), such as GPT-
4 or Llama, to generate easy-to-understand natural language explanations that are
tailored to the user’s level of expertise and preferences OpenAI (2023); Touvron et al.
(2023).

More generally, exploring the use of machine learning techniques to automatically
generate explanations or develop metrics for evaluating the quality of explanations
could be another interesting avenue for future research. These approaches could
make query-answering more accessible and intuitive for non-experts in the field.

7.1. Future work 144

Finally, we aim to investigate how the proposed solutions could be applied in real-
world settings, such as healthcare or finance, to handle missing data and improve the
accuracy and efficiency of queries.

Appendix A

TPC-H Queries:

Q1:

select l_returnflag,

l_linestatus,

max(l_quantity) as sum_qty,

max(l_extendedprice) as sum_base_price,

max(l_extendedprice * (1 − l_discount)) as sum_disc_price,

max(l_extendedprice * (1 − l_discount) * (1 + l_tax)) as sum_charge,

max(l_quantity) as avg_qty,

max(l_extendedprice) as avg_price,

max(l_discount) as avg_disc,

count(*) as count_order

from lineitem

where l_shipdate <= (date '1998−12−01' − interval '90' day)::date

group by l_returnflag,

l_linestatus

order by l_returnflag,

l_linestatus;

Q1:

select l_returnflag,

l_linestatus,

max(l_quantity) as sum_qty,

max(l_extendedprice) as sum_base_price,

max(l_extendedprice * (1 − l_discount)) as sum_disc_price,

max(l_extendedprice * (1 − l_discount) * (1 + l_tax)) as sum_charge,

max(l_quantity) as avg_qty,

max(l_extendedprice) as avg_price,

max(l_discount) as avg_disc,

count(*) as count_order

from lineitem

where l_shipdate <= (date '1998−12−01' − interval '90' day)::date

group by l_returnflag,

l_linestatus

order by l_returnflag,

145

A. TPC-H Queries: 146

l_linestatus;

Q1:

select l_returnflag,

l_linestatus,

max(l_quantity) as sum_qty,

max(l_extendedprice) as sum_base_price,

max(l_extendedprice * (1 − l_discount)) as sum_disc_price,

max(l_extendedprice * (1 − l_discount) * (1 + l_tax)) as sum_charge,

max(l_quantity) as avg_qty,

max(l_extendedprice) as avg_price,

max(l_discount) as avg_disc,

count(*) as count_order

from lineitem

where l_shipdate <= (date '1998−12−01' − interval '90' day)::date

group by l_returnflag,

l_linestatus

order by l_returnflag,

l_linestatus;

Q2:

select s_acctbal,

s_name,

n_name,

p_partkey,

p_mfgr,

s_address,

s_phone,

s_comment

from part,

supplier,

partsupp,

nation,

region

where p_partkey = ps_partkey

and s_suppkey = ps_suppkey

and p_size = 15

and p_type like '%BRASS'

and s_nationkey = n_nationkey

and n_regionkey = r_regionkey

and r_name = 'EUROPE'

and ps_supplycost = (

select min(ps_supplycost)

from partsupp,

supplier,

A. TPC-H Queries: 147

nation,

region

where p_partkey = ps_partkey

and s_suppkey = ps_suppkey

and s_nationkey = n_nationkey

and n_regionkey = r_regionkey

and r_name = 'EUROPE'

)

order by s_acctbal desc,

n_name,

s_name,

p_partkey;

Q3:

SELECT l_orderkey,

sum(l_extendedprice * (1 − l_discount)) as revenue,

o_orderdate,

o_shippriority

FROM customer,

orders,

lineitem

WHERE c_mktsegment = 'BUILDING'

AND c_custkey = o_custkey

AND l_orderkey = o_orderkey

AND o_orderdate < date '1995−03−15'

AND l_shipdate > date '1995−03−15'

GROUP BY l_orderkey,

o_orderdate,

o_shippriority

ORDER BY revenue desc,

o_orderdate;

Q4:

SELECT o_orderpriority, COUNT(*) AS order_count

FROM orders

WHERE o_orderdate >= '1993−07−01'

AND o_orderdate < ('1993−07−01'::date + INTERVAL '3' MONTH)::date

AND EXISTS(

SELECT *
FROM lineitem

WHERE l_orderkey = o_orderkey

AND l_commitdate < l_receiptdate

)

GROUP BY o_orderpriority

ORDER BY o_orderpriority;

A. TPC-H Queries: 148

Q5:

SELECT n_name,

sum(l_extendedprice * (1 − l_discount)) as revenue

FROM customer,

orders,

lineitem,

supplier,

nation,

region

WHERE c_custkey = o_custkey

AND l_orderkey = o_orderkey

AND l_suppkey = s_suppkey

AND c_nationkey = s_nationkey

AND s_nationkey = n_nationkey

AND n_regionkey = r_regionkey

AND r_name = 'ASIA'

AND o_orderdate >= date '1994−01−01'

AND o_orderdate < (date '1994−01−01' + interval '1' year)::date

GROUP BY n_name

ORDER BY revenue desc;

Q6:

SELECT sum(l_extendedprice * l_discount) as revenue

FROM lineitem

WHERE l_shipdate >= date '1994−01−01'

AND l_shipdate < (date '1994−01−01' + interval '1' year)::date

AND l_discount between 0.06 − 0.01 AND 0.06 + 0.01

AND l_quantity < 24;

Q11:

SELECT ps_partkey,

SUM(ps_supplycost * ps_availqty) AS value

FROM partsupp,

supplier,

nation

WHERE ps_suppkey = s_suppkey

AND s_nationkey = n_nationkey

AND n_name = 'GERMANY'

GROUP BY ps_partkey

HAVING SUM(ps_supplycost * ps_availqty) > (

SELECT SUM(ps_supplycost * ps_availqty) * 0.0001000000e−2

FROM partsupp,

supplier,

nation

WHERE ps_suppkey = s_suppkey

A. TPC-H Queries: 149

AND s_nationkey = n_nationkey

AND n_name = 'GERMANY'

)

ORDER BY value DESC;

Q16:

SELECT p_brand,

p_type,

p_size,

Count(ps_suppkey) AS supplier_cnt

FROM partsupp,

part

WHERE p_partkey = ps_partkey

AND p_brand <> 'Brand#45'

AND p_type NOT LIKE 'MEDIUM POLISHED%'

AND p_size IN (49, 14, 23, 45,

19, 3, 36, 9)

AND NOT EXISTS (SELECT *
FROM supplier

WHERE s_comment LIKE '%Customer%Complaints%'

AND ps_suppkey = s_suppkey)

GROUP BY p_brand,

p_type,

p_size

ORDER BY supplier_cnt DESC,

p_brand,

p_type,

p_size;

Q19:

SELECT sum(l_extendedprice * (1 − l_discount)) as revenue

FROM lineitem,

part

WHERE (

p_partkey = l_partkey

AND p_brand = 'Brand#12'

AND p_container in ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')

AND l_quantity >= 1 AND l_quantity <= 1 + 10

AND p_size between 1 AND 5

AND l_shipmode in ('AIR', 'AIR REG')

AND l_shipinstruct = 'DELIVER IN PERSON'

)

OR (

p_partkey = l_partkey

AND p_brand = 'Brand#23'

A. TPC-H Queries: 150

AND p_container in ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')

AND l_quantity >= 10 AND l_quantity <= 10 + 10

AND p_size between 1 AND 10

AND l_shipmode in ('AIR', 'AIR REG')

AND l_shipinstruct = 'DELIVER IN PERSON'

)

OR (

p_partkey = l_partkey

AND p_brand = 'Brand#34'

AND p_container in ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')

AND l_quantity >= 20 AND l_quantity <= 20 + 10

AND p_size between 1 AND 15

AND l_shipmode in ('AIR', 'AIR REG')

AND l_shipinstruct = 'DELIVER IN PERSON'

);

Q21:

select s_name,

count(*) as numwait

from supplier,

lineitem l1,

orders,

nation

where s_suppkey = l1.l_suppkey

and o_orderkey = l1.l_orderkey

and o_orderstatus = 'F'

and l1.l_receiptdate > l1.l_commitdate

and exists(

select *
from lineitem l2

where l2.l_orderkey = l1.l_orderkey

and l2.l_suppkey <> l1.l_suppkey

)

and not exists(

select *
from lineitem l3

where l3.l_orderkey = l1.l_orderkey

and l3.l_suppkey <> l1.l_suppkey

and l3.l_receiptdate > l3.l_commitdate

)

and s_nationkey = n_nationkey

and n_name = 'FRANCE'

group by s_name

order by numwait desc,

s_name;

Bibliography

Abiteboul, S. (2013). Sciences des données: de la logique du premier ordre à la toile:
Leçon inaugurale prononcée le jeudi 8 mars 2012 (Vol. 226). Fayard.

Abiteboul, S., Arenas, M., Barceló, P., Bienvenu, M., Calvanese, D., David, C., . . .
others (2017). Research directions for principles of data management (dagstuhl
perspectives workshop 16151). arXiv preprint arXiv:1701.09007 .

Abiteboul, S., Buneman, P., & Suciu, D. (2000). Data on the web: from relations to
semistructured data and xml. Morgan Kaufmann.

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of Databases. Addison-
Wesley.

Abiteboul, S., Kanellakis, P., & Grahne, G. (1991). On the representation and querying
of sets of possible worlds. Theoretical Computer Science, 78(1), 158-187.

Abiteboul, S., Segoufin, L., & Vianu, V. (2006). Representing and querying XML with
incomplete information. ACM TODS, 31(1), 208-254.

Amendola, G., & Libkin, L. (2018). Explainable certain answers. In Ijcai (pp. 1683–
1690).

Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., & Vrgoč, D. (2017).
Foundations of modern query languages for graph databases. ACM Computing
Surveys (CSUR), 50(5), 1–40.

Arenas, M., Barceló, P., Libkin, L., Martens, W., & Pieris, A. (2022). Database theory:
Querying data. Freely available from github.com/pdm-book/community.

Arenas, M., Barceló, P., Libkin, L., & Murlak, F. (2014). Foundations of Data Exchange.
Cambridge University Press.

Arenas, M., Botoeva, E., Kostylev, E., & Ryzhikov, V. (2017). A note on computing
certain answers to queries over incomplete databases. In Amw.

Arieli, O., Avron, A., & Zamansky, A. (2010). Maximally paraconsistent three-valued
logics. In Principles of knowledge representation and reasoning (kr). AAAI
Press.

Atzeni, P., & Morfuni, N. M. (1984). Functional dependencies in relations with null
values. Information Processing Letters, 18(4), 233-238.

151

BIBLIOGRAPHY 152

Barceló Baeza, P. (2013). Querying graph databases. In Proceedings of the 32nd acm
sigmod-sigact-sigai symposium on principles of database systems (pp. 175–
188).

Benjamin, D. J. (2019). Errors in probabilistic reasoning and judgment biases.
Handbook of Behavioral Economics: Applications and Foundations 1, 2, 69–
186.

Bhattacherjee, A. (2012). Social science research: Principles, methods, and practices.
University of South Florida.

Bienvenu, M., & Ortiz, M. (2015). Ontology-mediated query answering with data-
tractable description logics. In Reasoning web (pp. 218–307).

Brass, S., & Goldberg, C. (2006). Semantic errors in SQL queries: A quite complete
list. Journal of Systems and Software, 79(5), 630–644.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

Bryman, A. (2016). Social research methods. Oxford university press.

Buneman, P., Jung, A., & Ohori, A. (1991). Using powerdomains to generalize
relational databases. Theoretical Computer Science, 91(1), 23-55.

Candan, K. S., Grant, J., & Subrahmanian, V. S. (1997). A unified treatment of null
values using constraints. Information Sciences, 98(1-4), 99–156.

Cannan, S., Dee, E., & Kerridge, J. (1987). A proposal to provide support for multiple
NULL states (Tech. Rep.). ISO/TC97/SC21/WG3-DBL-AMS51.

Celko, J. (2010). Joe celko’s sql for smarties: advanced sql programming. Elsevier.

Cesari, G., Algaba, E., Moretti, S., & Nepomuceno, J. A. (2018). An application of
the shapley value to the analysis of co-expression networks. Applied network
science, 3(1), 1–21.

Chapel, L., Alaya, M. Z., & Gasso, G. (2020). Partial optimal tranport with applications
on positive-unlabeled learning. Advances in Neural Information Processing
Systems, 33, 2903–2913.

Codd, E. F. (1975). Understanding relations (installment #7). FDT - Bulletin of ACM
SIGMOD, 7 (3), 23-28.

Codd, E. F. (1979). Extending the database relational model to capture more meaning.
ACM Transactions on Database Systems, 4(4), 397-434.

BIBLIOGRAPHY 153

Codd, E. F. (1986). Missing information (applicable and inapplicable) in relational
databases. SIGMOD Record , 15(4), 53–78.

Console, M., Guagliardo, P., & Libkin, L. (2016). Approximations and refinements of
certain answers via many-valued logics. In Kr (pp. 349–358). AAAI Press.

Console, M., Guagliardo, P., & Libkin, L. (2017). On querying incomplete information
in databases under bag semantics. In IJCAI (pp. 993–999). ijcai.org.

Console, M., Guagliardo, P., & Libkin, L. (2022). Propositional and predicate logics of
incomplete information. Artificial Intelligence, 302, 103603.

Console, M., Guagliardo, P., Libkin, L., & Toussaint, E. (2020). Coping with incomplete
data: Recent advances. In Proceedings of the 39th ACM symposium on
principles of database systems, PODS 2020 (pp. 33–47). ACM.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport.
Advances in neural information processing systems, 26.

Darwen, H., & Date, C. J. (1995). The third manifesto. SIGMOD Record , 24(1),
39–49.

Date, C. J., & Darwen, H. (1996). A guide to the SQL standard. Addison-Wesley.

Eckerson, W. W. (2002). Data quality and the bottom line: Achieving business success
through a commitment to high quality data. The Data Warehousing Institute, 1–
36.

Evans, J. R., & Mathur, A. (2005). The value of online surveys. Internet research.

Evans, J. R., & Mathur, A. (2018). The value of online surveys: A look back and a look
ahead. Internet research.

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2005). Data exchange: semantics
and query answering. Theoretical Computer Science, 336(1), 89–124.

Feng, S., Huber, A., Glavic, B., & Kennedy, O. (2019). Uncertainty annotated
databases - A lightweight approach for approximating certain answers. In
SIGMOD conference (pp. 1313–1330). ACM.

Fiorentino, N., Greco, S., Molinaro, C., & Trubitsyna, I. (2018). ACID: A system for
computing approximate certain query answers over incomplete databases. In
SIGMOD conference (pp. 1685–1688). ACM.

Flamary, R., Courty, N., Rakotomamonjy, A., & Tuia, D. (2014). Optimal transport
with laplacian regularization. In Nips 2014, workshop on optimal transport and
machine learning.

BIBLIOGRAPHY 154

Fontaine, G., & Gheerbrant, A. (n.d.). Querying incomplete graphs with data.

Franconi, E., & Tessaris, S. (2012). On the logic of SQL nulls. In AMW (Vol. 866, pp.
114–128). CEUR-WS.org.

Gao, Y., & Miao, X. (2018). Query processing over incomplete databases. Morgan &
Claypool Publishers.

Gessert, G. H. (1990). Four valued logic for relational database systems. SIGMOD
Record , 19(1), 29–35.

Gheerbrant, A., & Libkin, L. (2015). Certain answers over incomplete XML docu-
ments: Extending tractability boundary. Theory Comput. Syst., 57 (4), 892–926.
Retrieved from https://doi.org/10.1007/s00224-014-9596-y doi:
10.1007/s00224-014-9596-y

Gheerbrant, A., Libkin, L., & Sirangelo, C. (2014). Naïve evaluation of queries over
incomplete databases. ACM Transactions on Database Systems, 39(4), 31:1–
31:42.

Gottlob, G., & Zicari, R. V. (1988). Closed world databases opened through null values.
In Vldb (pp. 50–61). Morgan Kaufmann.

Grahne, G. (1991). The problem of incomplete information in relational databases
(Vol. 554). Springer.

Grant, J. (1977). Null values in a relational data base. Information Processing Letters,
6(5), 156-157.

Greco, S., Molinaro, C., & Spezzano, F. (2012). Incomplete data and data
dependencies in relational databases. Morgan & Claypool Publishers.

Guagliardo, P., & Libkin, L. (2016). Making SQL queries correct on incomplete
databases: A feasibility study. In PODS (pp. 211–223). ACM.

Guagliardo, P., & Libkin, L. (2019). On the codd semantics of SQL nulls. Information
Systems, 86, 46–60.

Hartmann, S., & Link, S. (2012). The implication problem of data dependencies over
SQL table definitions: Axiomatic, algorithmic and logical characterizations. ACM
Transactions on Database Systems, 37 (2), 13:1–13:40.

Hell, P., & Nešetřil, J. (2004). Graphs and homomorphisms. Oxford University Press.

Hernich, A., & Kolaitis, P. G. (2017). Foundations of information integration under bag
semantics. In LICS (pp. 1–12). IEEE Computer Society.

https://doi.org/10.1007/s00224-014-9596-y

BIBLIOGRAPHY 155

Hunter, A., & Konieczny, S. (2010). On the measure of conflicts: Shapley inconsistency
values. Artificial Intelligence, 174(14), 1007–1026.

Imielinski, T., & Lipski, W. (1984). Incomplete information in relational databases.
Journal of the ACM, 31(4), 761–791.

Imielinski, T., Naqvi, S. A., & Vadaparty, K. V. (1991). Incomplete objects - A data
model for design and planning applications. In Sigmod (pp. 288–297). ACM
Press.

Interim report: Ansi/x3/sparc study group on data base management systems. (1975).
FDT - Bulletin of ACM SIGMOD, 7 (2).

Introduce named null definitions (Tech. Rep.). (1990). ISO/IEC JTC1 SC21 WG3
LON-111.

Klein, H. (2001). Null values in relational databases and sure information answers. In
Semantics in databases (Vol. 2582, pp. 119–138). Springer.

Lerat, N., & Jr., W. L. (1986). Nonapplicable nulls. Theoretical Computer Science,
46(3), 67–82.

Libkin, L. (2014). Incomplete information: what went wrong and how to fix it. In Pods
(p. 1-13).

Libkin, L. (2016a). Certain answers as objects and knowledge. Artificial Intelligence,
232, 1–19.

Libkin, L. (2016b). SQL’s three-valued logic and certain answers. ACM Transactions
on Database Systems, 41(1), 1:1–1:28.

Libkin, L., & Wong, L. (1996). Semantic representations and query labguages for
or-sets. Journal of Computer and System Sciences, 52(1), 125–142.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of
Psychology , 22(140), 5–55.

Lin, J. (1991). Divergence measures based on the shannon entropy. IEEE
Transactions on Information theory , 37 (1), 145–151.

Lipski, W. (1979). On semantic issues connected with incomplete information
databases. ACM Transactions on Database Systems, 4(3), 262-296.

Lipski, W. (1984). On relational algebra with marked nulls. In Pods (pp. 201–203).

Livshits, E., Bertossi, L., Kimelfeld, B., & Sebag, M. (2019). The shapley value of
tuples in query answering. arXiv preprint arXiv:1904.08679.

BIBLIOGRAPHY 156

McCullagh, P., & Nelder, J. A. (2019). Generalized linear models. Routledge.

Michalak, T. P., Aadithya, K. V., Szczepanski, P. L., Ravindran, B., & Jennings, N. R.
(2013). Efficient computation of the shapley value for game-theoretic network
centrality. Journal of Artificial Intelligence Research, 46, 607–650.

Murtagh, F. (1991). Multilayer perceptrons for classification and regression. Neuro-
computing, 2(5), 183-197.

Nations, U. (2007). International standard industrial classification of all economic
activities (ISIC) revision 4 [Computer software manual]. New York. Retrieved
from https://unstats.un.org/unsd/classifications/Econ/isic

Neumann, T. (2018). Reasoning in the presence of nulls. In 34th IEEE international
conference on data engineering (pp. 1682–1683). IEEE Computer Society.

OpenAI. (2023). Gpt-4 technical report.

Pérez, J., Arenas, M., & Gutierrez, C. (2009). Semantics and complexity of sparql.
ACM Transactions on Database Systems (TODS), 34(3), 1–45.

Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., & Rosati, R.
(2008). Linking data to ontologies. Journal on Data Semantics, 10, 133–173.

Reiter, R. (1977). On closed world data bases. In Logic and data bases (p. 55-76).

Reiter, R. (1986). A sound and sometimes complete query evaluation algorithm for
relational databases with null values. Journal of the ACM, 33(2), 349–347.

Revilla, M., & Ochoa, C. (2017). Ideal and maximum length for a web survey.
International Journal of Market Research, 59(5), 557-565.

Robertson, J. (2012). Likert-type scales, statistical methods, and effect sizes.
Communications of the ACM, 55(5), 6–7.

Roth, A. E. (1988). The shapley value: essays in honor of lloyd s. shapley. Cambridge
University Press.

Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J., & Özsu, M. T. (2017). The ubiquity of
large graphs and surprising challenges of graph processing. Proceedings of the
VLDB Endowment , 11(4), 420–431.

Sequeda, J. (2020, oct). Understanding NULL values: a research partnership with
the University of Edinburgh. Retrieved from https://data.world/blog/

understanding-null-values-a-research-partnership-with-the

-university-of-edinburgh/

https://unstats.un.org/unsd/classifications/Econ/isic
https://data.world/blog/understanding-null-values-a-research-partnership-with-the-university-of-edinburgh/
https://data.world/blog/understanding-null-values-a-research-partnership-with-the-university-of-edinburgh/
https://data.world/blog/understanding-null-values-a-research-partnership-with-the-university-of-edinburgh/

BIBLIOGRAPHY 157

Slovic, P., Fischhoff, B., & Lichtenstein, S. (1977). Behavioral decision theory. Annual
review of psychology , 28(1), 1–39.

Thalheim, B., & Schewe, K. (2010). NULL ‘value’ algebras and logics. In 20th
european-japanese conference on information modelling and knowledge bases
(EJC) (Vol. 225, pp. 354–367). IOS Press.

Toussaint, E., Guagliardo, P., & Libkin, L. (2020). Knowledge-preserving certain
answers for sql-like queries. In Kr 2020-17th international conference on
principles of knowledge representation and reasoning (pp. 758–767).

Toussaint, E., Guagliardo, P., Libkin, L., & Sequeda, J. (2022). Troubles with nulls,
views from the users. Proceedings of the VLDB Endowment , 15(11), 2613–
2625.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., . . .
Lample, G. (2023). Llama: Open and efficient foundation language models.

Tpc benchmark™ h standard specification (Revision 2.18.0 ed.) [Computer soft-
ware manual]. (2018). (http://www.tpc.org/tpc_documents_current
_versions/pdf/tpc-h_v2.18.0.pdf)

van der Loo, M., & de Jonge, E. (2018). Statistical data cleaning. Wiley.

van der Meyden, R. (1998). Logical approaches to incomplete information: A survey.
In Logics for databases and information systems (p. 307-356).

Vardi, M. (1986). Querying logical databases. Journal of Computer and System
Sciences, 33(2), 142–160.

Vardi, M. Y. (1986). Querying logical databases. Journal of Computer and System
Sciences, 33(2), 142–160.

Villani, C. (2009). Optimal transport: old and new (Vol. 338). Springer.

Vincent-Cuaz, C., Vayer, T., Flamary, R., Corneli, M., & Courty, N. (2021). Online
graph dictionary learning. In International conference on machine learning (pp.
10564–10574).

Xu, Y., Zhao, S., Song, J., Stewart, R., & Ermon, S. (2020). A theory of usable
information under computational constraints. arXiv preprint arXiv:2002.10689.

Yue, K. (1991). A more general model for handling missing information in relational
databases using a 3-valued logic. SIGMOD Record , 20(3), 43–49.

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf

BIBLIOGRAPHY 158

Zaniolo, C. (1984). Database relations with null values. Journal of Computer and
System Sciences, 28(1), 142–166.

Zellner, A., & Theil, H. (1992). Three-stage least squares: simultaneous estimation
of simultaneous equations. In Henri theil’s contributions to economics and
econometrics (pp. 147–178). Springer.

	Abstract
	Acknowledgements
	Declaration
	Figures and Tables
	Introduction
	Related work

	Preliminaries
	Incomplete Databases
	Database domain
	Certain anwers

	Set Relational Databases
	Certain answers for relational databases
	Complexity of Query evaluation

	Knowledge-preserving certain answers
	Abstract Framework
	Certainty in Relational Databases
	Bag Relational Databases
	Collapsing and Additive Semantics
	Mixed Semantics
	Proof of section 3.2: Certainty in relational databases

	Certainty for Value-Inventing Queries
	Query Answering for
	Relational Databases over Free Algebra
	Approximation Algorithms for
	Proof of section 3.3: Value-inventing queries

	Conclusion

	SQL incompleteness: A Socio-technical study
	Survey Design and Methodology
	Question Types and Analysis Methodology
	Sample of Respondents

	SQL's NULL features usage
	Meanings of NULLs
	SQL's handling of NULLs
	Generic Queries
	Value-Inventing Queries

	Solutions vs Demographics
	Conclusion

	Answer notions with query-evaluation semantics
	Query-evaluation semantics
	Evaluation-based Certain answers

	Evaluation semantics for relational databases
	Relational Algebra with null
	cwa and owa consistent evaluation semantics
	Whole world assumption
	Proof of Theorem 8

	Risk minimizing answers
	A Class of Regret functions for relational databases
	Kantorovich transportation problem
	Information dissimilarity between tuples
	Tuple mass assignment
	Risk minimizing answers with OT regret function

	Conclusion

	Improving and Explaining Answers
	Risk associated with Knowledge
	Vectorial Knowledge Query Evaluation Semantics

	Improving and explaining answers
	Improving answers
	Explaining the risk of answers

	Applications on SQL database management system
	Attribute-consistent NI-evaluation semantics
	Aggregates and groupings
	Optimal transport based regret function with numeric element and knowledge
	Information dissimilarity between tuples

	Experiments
	Validation procedure
	Results

	Conclusion

	Conclusion
	Future work

	TPC-H Queries:
	Bibliography

