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Abstract

Agriculture is one area where the simulation of crop growth, nutrition, soil condition

and pollution could be invaluable in any land management decisions. The Environ-

mental Policy Integrated Climate Model (EPIC) is a simulation model to investigate

the behaviour of crop yield in response to changes in inputs such as fertiliser levels,

soil, steepness, and other environmental covariates. We build a model for crop yield

around a non-linear Mitscherlich Baule growth model to make inferences about crop

yield response to changes in continuous input and factor variables. A Bayesian hi-

erarchical approach to the modelling was taken for mixed inputs, requiring Markov

Chain Monte Carlo simulations to obtain samples from the posterior distributions,

to validate and illustrate the results, and to carry out model selection.

The emulation of complex computer simulations has become an effective tool in

exploring this high-dimensional simulated process’s behaviour. Initially, we built a

Bayes linear emulator to efficiently emulate crop yield as a function of the simulator’s

continuous inputs only. We explore emulator diagnostics and present the results from

the emulation of a subset of the simulated EPIC data output. Computer models with

quantitative inputs are used widely, but the challenge is incorporating the factors.

We propose a framework for solving this issue considering the Bayes linear emulation

approach. We explore a variety of correlation structures to represent the mixed

inputs and combine this with the Bayes linear approach to construct an emulator.

Finally, we developed a method to make an optimal decision for the farmers to gain

maximum utility considering yield and pollutants, accounting for weather factors,

land characteristics and fertiliser use.



Declaration

The work in this thesis is based on research carried out in the Department of Math-

ematical Sciences at Durham University. No part of this thesis has been submitted

elsewhere for any degree or qualification, and it is all my own work unless referenced

to the contrary in the text.

Copyright © 2023 by Muhammad Mahmudul Hasan.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

iv



Acknowledgements

My first and foremost acknowledgement should go to almighty Allah for inex-

haustible grace and opportunities to mount from a countryside area to one of the top

Russell Group universities. I am in debt for blessing me with the Durham Doctoral

Scholarship out of many magnificent Candidates.

Most importantly, I would like to thank my exquisite, pleasant, and bountiful

supervisor Dr Jonathan Cumming for his valuable time, proper guidance, uncondi-

tional support, and patience throughout my PhD. He has constantly stimulated me

about all aspects of my life, academic or non-academic. The afford and abutment

provided for me cannot be conveyed with some dictionary words. I appreciate his

excellent deed, and he will always be my prayer.

I would also like to show my gratitude to my second supervisor Professor Ian

Vernon. Although his role was official, he always encouraged me about this work

and provided fruitful feedback. I also acknowledge Dr Ashar and Lioba for their

help with the simulation part of this thesis.

It is impossible to describe the unconditional support from my family members.

During COVID, I could not support my parents, but surely, they will be delighted

to be part of my PhD journey. My wholehearted love towards them for their support

since birth, and I am gratified to my mother for her calls every morning. My grave

gratitude also goes to my parents-in-law for their stanchion; they treated me as a

child of their own.

I hugely cherish my beloved wife, Suraya, for sacrificing her career to accompany

me in the UK. I am grateful to her for this noble deed; without her, this work

should be incomplete. The most valuable gift for me during this thesis work was the

birth of my princess Sehrish. I am indebted to her for giving me joy and strength

v



vi

to go forward. I also thank my brothers (Khairul, Arafat, Mostafiz, Mir) and sisters

(Swarna, Sathi and Tithy) for praying and supporting me.

I want to thank my friend Asikunnaby, who has encouraged me to apply to

Durham University. I am sharing my tribute to the late Professor Taslim Sazzad

Mallick; special thanks to Professor Jafar Ahmed Khan and Professor Wasimul Bari

for their support and recommendations for applying to this PhD study. I am grateful

to Raisul for his suggestions and support during my PhD days and to Farhad for

their accompany during my lonely days in Newcastle. I am acknowledging Qasem

for his continuous encouragement throughout this PhD work. I am giving my inner

thanks to Saidur, Shanu, Topu and Reid for supporting my family and me.

I am obliged to Durham University for awarding me the DDS to pursue this PhD.

I am also grateful to the Department of Mathematical Sciences and Ustinov College,

Durham University, for providing every assistance during the PhD period and the

Charles Wallace Trust for a PhD Bursary. Finally, I acknowledge the University of

Dhaka for the travel award from Bangladesh to the United Kingdom and all other

fruitful support.



Contents

Abstract iii

Declaration iv

Acknowledgements v

1 Introduction 1

1.1 Goal of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background and Context . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 EPIC Crop Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Crop Yield Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Computer Models and Emulation . . . . . . . . . . . . . . . . . . . . 5

1.6.1 Emulation and Bayes Linear Approach . . . . . . . . . . . . . 5

1.6.2 Emulation with Mixed Inputs . . . . . . . . . . . . . . . . . . 6

1.7 Utility and Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.8 Organisation of the Chapters . . . . . . . . . . . . . . . . . . . . . . 7

2 Environmental Policy Integrated Climate (EPIC) Simulation &

Data 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 EPIC Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 EPIC Simulation Setup and Data . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Crop Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Inputs of EPIC Simulation . . . . . . . . . . . . . . . . . . . . 14

vii



Contents viii

2.3.3 EPIC Simulation Outputs . . . . . . . . . . . . . . . . . . . . 16

2.4 Simulated Data Set From EPIC . . . . . . . . . . . . . . . . . . . . . 17

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Crop Yield Modelling 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Background of the Crop Yield Modelling . . . . . . . . . . . . . . . . 21

3.2.1 Crop Yield Models . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Preliminary Data Analysis for Crops Yield . . . . . . . . . . . . . . . 28

3.4 Fitting Crop Yield Models . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Bayesian Hierarchical Framework for Crop Yield 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Bayesian Hierarchical Modelling Framework . . . . . . . . . . . . . . 38

4.2.1 Stage I: Bayesian Modelling Framework . . . . . . . . . . . . . 39

4.2.2 Incorporating Factor Effects . . . . . . . . . . . . . . . . . . . 42

4.2.3 Stage II: Posterior Sampling via MCMC . . . . . . . . . . . . 43

4.2.4 Stage III: Model Selection and Validation . . . . . . . . . . . . 44

4.3 Results of Bayesian Analysis . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Model Comparison and Validation . . . . . . . . . . . . . . . . 52

4.4 Results of Incorporation of a Factor Variable . . . . . . . . . . . . . . 53

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Emulation Approaches For Quantitative Inputs 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Context of Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 General Idea of Emulation . . . . . . . . . . . . . . . . . . . . 65

5.2.4 Necessity of Emulation . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Basic Structure and Approaches of Emulation . . . . . . . . . . . . . 66



Contents ix

5.3.1 General Structure of an Emulator . . . . . . . . . . . . . . . . 67

5.3.2 Active Variables and Nugget . . . . . . . . . . . . . . . . . . . 67

5.3.3 Variance Specification and Correlation Functions . . . . . . . 68

5.3.4 Approaches for Emulation . . . . . . . . . . . . . . . . . . . . 69

5.4 Construction of Emulators for Continuous Inputs . . . . . . . . . . . 73

5.4.1 Maximum Likelihood Inference for the Parameters . . . . . . . 73

5.4.2 Introducing Nugget Effect on Optimisation . . . . . . . . . . . 76

5.4.3 Algorithm to Estimate Correlation Parameters . . . . . . . . . 77

5.5 Construction of the Bayes Linear Emulator . . . . . . . . . . . . . . . 77

5.5.1 Emulator Prior Specifications . . . . . . . . . . . . . . . . . . 77

5.5.2 Calculation of Bayes Linear Emulation . . . . . . . . . . . . . 78

5.5.3 Formulation of Bayes Linear Emulation . . . . . . . . . . . . . 80

5.5.4 Diagnostics of Bayes Linear Emulation . . . . . . . . . . . . . 81

5.5.5 One Dimensional Example . . . . . . . . . . . . . . . . . . . . 82

5.6 Application to EPIC Simulator Data . . . . . . . . . . . . . . . . . . 83

5.6.1 Emulator Fitting for Crop Spring Barley and Winter Barley . 83

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Mixed Variable Bayes Linear Emulation 88

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 General Model and Factor Effect Layout . . . . . . . . . . . . . . . . 89

6.3 Approaches to Model Factor Input Correlation . . . . . . . . . . . . . 91

6.4 Maximum Likelihood Inference for Correlation Parameters . . . . . . 95

6.4.1 Objective Function for Mixed Inputs . . . . . . . . . . . . . . 95

6.5 Bayes Linear Emulation for Mixed Inputs . . . . . . . . . . . . . . . . 98

6.6 Application to EPIC Simulator Data . . . . . . . . . . . . . . . . . . 99

6.6.1 Correlation Matrix and Performance Measures of Approaches 99

6.7 Emulation with Steepness and Soil Factors . . . . . . . . . . . . . . . 103

6.8 Emulation for Factors Weather, Steepness and Soil . . . . . . . . . . 106

6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



Contents x

7 Bayes Linear Emulation Approach for Utility and Implausibility 110

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Utility Measures and Functions . . . . . . . . . . . . . . . . . . . . . 111

7.3 History Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3.1 Implausibility Measure . . . . . . . . . . . . . . . . . . . . . . 113

7.4 Utility Function for Yield and Pollutants . . . . . . . . . . . . . . . . 115

7.5 Implausibility for Utility Function . . . . . . . . . . . . . . . . . . . . 116

7.6 Emulation for Continuous Inputs Pollutants . . . . . . . . . . . . . . 117

7.7 Sensitivity Analysis of the Utility Parameters . . . . . . . . . . . . . 120

7.8 Utility Emulation and Implausibility . . . . . . . . . . . . . . . . . . 124

7.8.1 Continuous Inputs Only . . . . . . . . . . . . . . . . . . . . . 124

7.8.2 Mixed Inputs Including Steepness and Soil . . . . . . . . . . . 125

7.8.3 Mixed Inputs Including Weather . . . . . . . . . . . . . . . . 130

7.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Conclusion 140

8.1 Summary of the Chapters . . . . . . . . . . . . . . . . . . . . . . . . 141

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.3 Research Achievements and Awards . . . . . . . . . . . . . . . . . . . 143

Appendix 146

A Bayesian Hierarchical Framework for Crop Yield 146

A.1 MCMC Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.1.1 Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . . . 146

A.1.2 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.1.3 Hamiltonian Monte Carlo Within No-U-Turn Sampler . . . . . 147

A.2 Diagnostics of the Bayesian Analysis . . . . . . . . . . . . . . . . . . 150

A.3 Diagnostics of Incorporating Bayesian Factor Inputs . . . . . . . . . 154

B Bayes Linear Emulation Approach For Quantitative Inputs 158

B.1 Objective Function and Optimization Techniques . . . . . . . . . . . 158

B.1.1 Broyden–Fletcher–Goldfarb–Shanno (BFGS) Method . . . . . 159



Contents xi

B.1.2 Nelder Mead Method . . . . . . . . . . . . . . . . . . . . . . . 159

B.2 Emulation for Continuous Inputs Spring and Winter Barley . . . . . 160

B.3 Building the Covariance Matrix . . . . . . . . . . . . . . . . . . . . . 162

B.3.1 Formulation of Block Structure . . . . . . . . . . . . . . . . . 163

B.4 Results of Factors Weather, Steepness and Soil . . . . . . . . . . . . . 165

Nomenclature 165

Bibliography 173



List of Figures

1.1 Organisation of the Chapters . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Flowchart of EPIC Model Simulation . . . . . . . . . . . . . . . . . . 11

2.2 Flowchart of EPIC model Simulation to Generate Unique Yield and

Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Basic Plot for Yield and Pollutants for a Subset Data . . . . . . . . . 19

3.1 Simple plot of the Crop Models . . . . . . . . . . . . . . . . . . . . . 27

3.2 Line Graphs for All Input Simulations Response to Nitrogen . . . . . 28

3.3 Line Graphs for all Unique Combinations Response to Nitrogen Ex-

cluding “0” Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Line Graphs for all Unique Combinations Response to the Phosphorus 30

3.5 Line Graphs for 100 Combinations Response to the Input Phosphorus 30

3.6 Plots of Simulated Yield for a Sample of 15 Simulations . . . . . . . . 31

3.7 Plot of the Fitted Crop Yield Models . . . . . . . . . . . . . . . . . . 32

4.1 Prior and Posterior Plots for Hyperparameters . . . . . . . . . . . . . 47

4.2 Trace plot for the Crop Spring Barley. . . . . . . . . . . . . . . . . . 49

4.3 Pairs Plot for the Crop Spring Barley. . . . . . . . . . . . . . . . . . . 49

4.4 Autocorrelation Diagnostic Plot for the Crop Spring Barley. . . . . . 50

4.5 Trace Plot for the Crop Winter Barley. . . . . . . . . . . . . . . . . . 50

4.6 Trace Plot for the Crop Silage. . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Non-linear Bayesian Model Fitting . . . . . . . . . . . . . . . . . . . 52

4.8 Trace plot for the Factor Effect Considering Soil . . . . . . . . . . . 56

4.9 Trace plot for the Factor Effect Considering Weather . . . . . . . . . 57

xii



List of Figures xiii

4.10 Trace plot for the Factor Effect Considering Steepness . . . . . . . . 57

4.11 Posterior Density Plot for the Factor Steepness . . . . . . . . . . . . 58

4.12 Autocorrelation Diagnostic Plot for the Factor Steepness. . . . . . . . 58

4.13 Prediction Plot for the Factor Steepness . . . . . . . . . . . . . . . . 59

4.14 Prediction Plot for the Factor Soil . . . . . . . . . . . . . . . . . . . . 60

4.15 Prediction Plot for the Factor Weather . . . . . . . . . . . . . . . . . 61

5.1 Plot for 1-D Function Simulator . . . . . . . . . . . . . . . . . . . . . 65

5.2 Plot for 1-D Function Emulation . . . . . . . . . . . . . . . . . . . . 82

5.3 Adjusted Emulator Mean, Standard Deviations and Resolution Plot

for Spring Barley Extended Grid . . . . . . . . . . . . . . . . . . . . 84

5.4 Adjusted Emulator Mean, Standard Deviations and Resolution Plot

for Winter Barley Extended Grid . . . . . . . . . . . . . . . . . . . . 85

5.5 Standardised Prediction Errors Plot for Spring Barley . . . . . . . . . 86

5.6 Standardised Prediction Errors plot for Winter Barley . . . . . . . . . 86

6.1 Zhou Method Hypersphere Decomposition . . . . . . . . . . . . . . . 94

6.2 Estimated Factor Correlations Using General Approach . . . . . . . . 101

6.3 Estimated Factor Correlations Using McMillan and Zhou approaches 102

6.4 Box Plot for Resolutions and SPE of Three Approaches . . . . . . . . 103

6.5 Emulation of Factor Steepness and Soil for Linear Mean . . . . . . . 104

6.6 Emulation of Factor Steepness and Soil for 2nd Order Mean . . . . . 105

6.7 Emulation of Factor Steepness and Soil for 3rd Order Mean . . . . . . 106

6.8 Correlation Matrix for Factor Weather using General Correlation Ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.9 Emulation of Factor Steepness Soil, Weather for 3rd Order Mean . . . 108

7.1 Adjusted Emulator Mean, Standard Deviations and Resolution Plots

for Continuous Np . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Adjusted Emulator Mean, Standard Deviations and Resolution Plots

for Continuous Pp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Standardized Prediction Errors for Pp (Left) and Pp (Right) . . . . . 120

7.4 Expected Utility Plots for Assessing Sensitivity . . . . . . . . . . . . 123



List of Figures xiv

7.5 Expected Utility, Variance and Implausibility for b0 = 0.15, b1 = 0.01

and b2 = 0.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.6 Adjusted Emulator Mean, Standard Deviations and Resolution Plots

for Steepness and Soil Factors Emulation . . . . . . . . . . . . . . . . 127

7.7 Expected Utility, Utility Variance and Max Implausibility Plots for

Steepness and Soil Factors . . . . . . . . . . . . . . . . . . . . . . . . 128

7.8 Implausibility Plots for Three Unique Combinations and Maximum

Implausibility for Steepness And Soil . . . . . . . . . . . . . . . . . . 129

7.9 Adjusted Emulator Mean, Standard Deviations and Resolution Plots

for All Inputs of Np . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.10 Adjusted Emulator Mean, Standard Deviations and Resolution Plots

for All Inputs of Pp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.11 SPE Plot of Selected Inputs for Pp and Np . . . . . . . . . . . . . . . 136

7.12 Implausibility (I(x)) Plots for Eight levels of Weather . . . . . . . . . 137

7.13 Expected Utility, Utility Variance and Max Implausibility Plots for

All Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.1 Pairs Plot for the Crop Winter Barley. . . . . . . . . . . . . . . . . . 150

A.2 Autocorrelation Diagnostic Plot for the Crop Winter Barley. . . . . . 151

A.3 Pairs Plot for the Crop Silage. . . . . . . . . . . . . . . . . . . . . . . 151

A.4 Autocorrelation Diagnostic Plot for the Crop Silage. . . . . . . . . . . 152

A.5 Trace Plot for the Crop Spring Barley with the Input N . . . . . . . . 152

A.6 Autocorrelation Diagnostic Plot for the Crop Spring Barley Using the

Input N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.7 Pairs Plot for the Crop Spring Barley using N-only Response Model . 153

A.8 Posterior Density Plot for the Factor Soil. . . . . . . . . . . . . . . . 154

A.9 Autocorrelation Diagnostic Plot for the Factor Soil. . . . . . . . . . . 155

A.10 Autocorrelation Diagnostic Plot for the Factor Weather. . . . . . . . 155

A.11 Posterior Density Plot for the Factor Weather. . . . . . . . . . . . . . 156

A.12 Pairs Plot for the Factor Weather. . . . . . . . . . . . . . . . . . . . . 157



List of Figures xv

B.1 Emulator Adjusted Mean, Standard Deviations and Resolution Plot

for Spring Barley Continuous Data . . . . . . . . . . . . . . . . . . . 160

B.2 Emulator Adjusted Mean, Standard Deviations and Resolution Plot

for Winter Barley Continuous Data . . . . . . . . . . . . . . . . . . . 161

B.3 Emulation of Factor Steepness Soil, Weather for 3rd Order Mean . . . 165



List of Tables

2.1 Illustration of Simulation use for Weather data (Wensum - Rotation 6) 14

2.2 Subset of Wensum Rotations No. 1− 8 . . . . . . . . . . . . . . . . . 14

2.3 Name of the Soil, its Descriptions and Levels for Wensum Catchment 15

2.4 Steepness Levels and Degrees for Wensum Catchment . . . . . . . . . 15

2.5 Yield Variables Used for Each Crop for Wensum Catchment . . . . . 16

2.6 Simulated Data Set for Unique Crop Spring Barley (Rotation-16) . . 17

3.1 Summary of Models of Y , in Response to N , and P . . . . . . . . . . . 24

3.2 Summary Statistics of the Fitted Nine-Crop Yield Models for the

Crop Spring Barley (SBAR) and Silage . . . . . . . . . . . . . . . . . 33

4.1 Posterior Sample Summary Statistics (1.0 ¬ R̂ < 1.02) . . . . . . . . 48

4.2 Bayesian Model Comparison Results . . . . . . . . . . . . . . . . . . 53

4.3 Posterior Sample Summary Statistics for Spring BarleyN Only Model

(1.0 ¬ R̂ < 1.01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Posterior Sample Summary Statistics forN -only Spring Barley Model,

each Including a Single Factor Input (1.0 ¬ R̂ < 1.01) . . . . . . . . . 55

6.1 Mean Function and Basis for Factor Steepness and Soil . . . . . . . . 100

7.1 Sensitivity Analysis for the Coefficients b0, b1 and b2 . . . . . . . . . . 122

7.2 Basis for Pollutants Considering Inputs Nitrogen and Phosphorus

With Factors Steepness and Soil . . . . . . . . . . . . . . . . . . . . . 126

7.3 Inputs Selection using Forward Stepwise Regression for Np, Pp and

Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4 Basis for Pollutants Considering Inputs N and P with Selected Inputs 133

xvi





Chapter 1

Introduction

1.1 Goal of the Thesis

The main objective of this thesis is to build a general framework to seek the max-

imum expected utility considering the proper use of fertilisers, land characteristics

(soil type and steepness), and weather by combining crop yield and pollutants. We

explore several vital techniques to satisfy the primary goal of this thesis. The analysis

of this research uses the Environmental Policy Integrated Climate (EPIC) simulator

data, a complex computer crop simulation model. The study begins by reviewing

crop yield models to identify the best fit for the simulated data. We construct a

hierarchical Bayesian model structure with mixed data inputs and implementing

several diagnostic tools. We perform emulation using a Bayes linear approach and

propose a framework for qualitative and quantitative variables. Finally, we use util-

ity and history matching methods to seek the maximum expected utility decision

concerning the inputs. Some of the achievements of this thesis can be highlighted as

follows:

1. Bayes linear emulation technique for qualitative and quantitative inputs using

a factor input correlation matrix (Chapters 5 and 6)

2. Using utility and implausibility to seek maximum expected utility for mixed

inputs (Chapters 5 to 7)

1
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1.2 Background and Context

The agricultural industry is a priority-based research sector that needs to analyse

crop yield growth to maintain food adequacy worldwide. It is natural for farmers to

seek greater profitability from agricultural production; however, it is challenging to

predict crop yield in certain uncertain circumstances, such as the type of crops to

cultivate, land characteristics, weather effects and fertilisation. Understandably, to

make a good amount of money, our farmers must be fully aware of the proper use of

fertilisers, the optimal level to be used, land characteristics and exogenous factors

like weather.

Proper fertilisation is crucial for crop yield growth as an essential component

of our models and to maintain the required levels of food. Nitrogen and Phospho-

rus are the primary two nutrients for crop productivity [101], and healthy plants

use Nitrogen to preserve protein and chlorophyll for photosynthesis. According to

one study [117], plants with excessive use of Nitrogen might produce lower yields,

exceed the production time-bound, and damage human beings and the environ-

ment. So, proper timing and balanced Nitrogen fertilisation are essential to achieve

the maximum yield [147]. Phosphorus is the second most crucial nutrient for plant

growth, and optimum Phosphorus fertilisation is indispensable to achieve maximum

yields [44]. Excessive use of Phosphorus fertiliser also gives way to excessive losses

of the crop yield [65, 70, 109].

In addition to being a significant part of agricultural productivity, soil type is

another source of nutrients for crop yield growth [88, 106]. About 95% of our total

food production is over-reliant on soils. Due to the increasing population over the

last five decades, we have introduced extreme pressures on soils [104], which causes

lower yields, especially in grass yield [19]. Another critical factor in crop growth and

yield is the weather effect due to its consequences on crop outcomes [115]. Extreme

hot temperature hampers the crop’s development and production, but sometimes

low temperatures negatively affect yield. A study [118] illustrated that an increase

in temperature led to a decrease in crops such as Wheat, Rice, Maize, and Soybean

production. The low temperatures devastate crop yield, especially for vegetables

[20]. From the scientific mechanism of the agricultural output, over-fertilisation and
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under-fertilisation are detrimental for achieving maximum yield. The well-planned

soil type choice and consideration of volatile weather effects are also crucial to crop

yield.

1.3 EPIC Crop Simulation

In the recent past, conventional field experiments were considered the only data

source for the global agriculture sector. However, this traditional agricultural re-

search is losing popularity due to the increasing need for data within a limited time

frame, high expense, need for intensive labour and failure to provide site-specific

and complete seasonal information.

Alternatively, crop simulation computer models are promising options to solve

these challenges of field experiments. Crop models are now pivotal in predicting

agriculture productivity, considering weather volatility, soil erosion, and pollution

[94, 119, 123]. Agricultural field experiments running for a couple of years generate

the same data within minutes of formulation on a laptop, or desktop [69, 86]. These

simulations are getting wider attention and can successfully give optimal decisions

considering climate change, land management and so on [57, 105].

We will use one such crop simulation or computer model, the Environmental

Policy Integrated Climate (EPIC) model, for this thesis. The EPIC simulator is a

complex computer model [12, 24, 89] updated with weather conditions, soil type, and

steepness to generate the crop yield and pollutants as time series outputs. Initially,

it was used to quantify soil erosion and later changed to a biophysical system to

generate crop yields, pollutants, etc. This biophysical system represents the whole

physical system using a set of differential equations. The practical use of EPIC has

three broad aspects: improvements of the crop growth model and assess the impact

of climate change and pollution [143]. This thesis will cover all of these aspects.

In Chapter 2, we discuss the EPIC model in more detail and the entire simulation

process to generate the time series data based on a catchment in the UK.
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1.4 Crop Yield Models

Combining crop simulation models with statistical models makes it possible to get

answers to many research questions and decision support before harvesting any

crop. The behaviour of the yield of a particular crop in response to endogenous

variables such as fertilisation levels and exogenous variables such as weather has

been extensively studied in the literature’s [37, 50, 87, 110]. These literature’s are

providing an analytical way to gather quantitative information about the growth of

crops in terms of inputs by using a mathematical equation [96]. Some linear and

non-linear models are extensively used to assess crop yields. Typically, yield models

comprise a non-linear relationship between the observed yield and the fertiliser levels

for a particular crop. The model is also expected to respect the number of intuitive

features of the relationship between these quantities, such as the yield should increase

monotonically in response to additional fertiliser and the presence of a plateau effect

beyond which additional fertilisation will have no further benefit. A challenge that

needs to be better addressed is adapting such models to account for discrete-valued

inputs, such as land characteristics or management scenarios [138]. In Chapter 3,

we reveal some background studies of crop yield models and then extract the crop

models to use in conjunction with EPIC data with basic principle features.

1.5 Bayesian Inference

Bayesian inference is a statistical approach which uses data to update beliefs about

uncertain quantities of interest and combines prior information and data into a

meaningful joint probability distribution through the Bayes rule. Bayesian inference

has proven to be a very effective and helpful way to model the trend of agricultural

productivity [49, 131], which is usually efficient for crop models with continuous

inputs, but the presence of factor variables is challenging to formulate. However,

formulation within a fully Bayesian method encounters difficulties while analysing

multivariate problems, such as specifying meaningful priors and dealing with high-

dimensionality. Chapter 4 forms a Bayesian hierarchical model for mixed inputs. We

use Hamiltonian Monte Carlo within the No-U-Turn Sampler algorithm to generate
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posterior samples and to validate it using the best-fitted crop yield growth function

from Chapter 3.

1.6 Computer Models and Emulation

A computer model, f , represents a physical system and can simulate the outputs

(such as crop yield and pollutants) in terms of the interest of the study [21, 56]. This

model runs with a set of inputs (such as fertilisers, soil, weather for the EPIC) x ∈ Rp

to a physical system and hence provides the outputs of interest. Computer models

are used to explore large and complex physical systems, and these models are widely

used in different fields of science, technology [21], politics [47], and business [41]. This

thesis focuses on an application within agriculture - specifically, the simulation of

EPIC and crop yield modelling.

1.6.1 Emulation and Bayes Linear Approach

Computer models are often complex, with many parameters, and high-dimensional,

which require many more evaluations [121] to compute. Statistical modelling, or em-

ulation, of the output of computer simulation, has become an increasingly helpful

tool for analysing such complex systems within the sciences [72, 129, 134]. While a

computer simulation can be constructed to capture our best understanding of the

mathematical and scientific processes within the system, we are typically left with

substantial uncertainties regarding the precise operation of the system. These uncer-

tainties can range from simple uncertainties on the values of the parameters to more

complex uncertainties surrounding our understanding of the science represented by

the simulation [67]. Consequently, this motivates a statistical treatment of such data

and model analysis.

An alternative option to understand a complex system is to use the emulation

technique, which mimics the behaviour of these complex computer experiments. Em-

ulation is an effective tool for modelling computer simulations, where a parametric

model of the simulator’s response to input changes may not be known a priori. A

fully Bayesian approach would require distributional specifications for each of the
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parameters in such an emulator and simulation-based methods for any subsequent

inference, which becomes challenging when dealing with computer models with large

numbers of outputs. So we need an approach which does not require detailed speci-

fications like specifying the distributions.

A fast statistical approximation of a complex computer model uses the Bayes

linear emulation approach [74]. This emulation [59] technique considers the specifica-

tions based on partial belief for all uncertain quantities rather than considering fully

probabilistic specifications of prior and data observation. Two equations govern the

Bayes linear emulation approach to calculate the adjusted mean and variance. This

approach is proven to be effective due to its simple mathematical formulation. Chap-

ter 5 starts with the context of emulation with the basic structure and introduces

the Bayes linear and Gaussian process emulation approaches. This chapter shows

the general Bayes linear emulation set-up to calculate adjusted mean and variance

with some diagnostic tools to check the validity. Finally, Chapter 5 demonstrates a

1-D example and EPIC simulation data for continuous inputs over some crops.

1.6.2 Emulation with Mixed Inputs

The use of complex computer modelling with qualitative and quantitative inputs

is an issue in various fields of study. But the problem is finding a suitable way to

model the mixed inputs in the context of complex computer experiments. The quan-

titative inputs problem has a particular structure of correlation functions, but the

mixed input problem still needs the proper form of this covariance function. This

thesis will review existing procedures and propose a framework for mixed inputs

using the Bayes linear emulation method [59], which has only been used for quan-

titative inputs. Chapter 6 generalises the idea of the primary emulation function

for qualitative and quantitative inputs with some existing methods to construct the

factor input correlation matrix. We apply our proposed model to one of the EPIC

crop yields and check the performance measures of the factor input approaches us-

ing different validation tools. We combine factor modelling with the Bayes linear

emulation technique to calculate the adjusted expectations and variances.
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1.7 Utility and Decision

The utility is a number which measures the desirability of any items or events. We

can then compare the utility of different items or events to determine the specific

preference between them. Agriculture needs to balance crop yield and pollutants to

seek maximum utility. Using the Bayes linear emulation technique, utility measure-

ment, and history matching motivated us to seek an input space for maximum utility

by combining crop yield and pollutants. We have to consider a utility measure by

minimising the pollutants from crop yield, which arises to use a linear utility func-

tion to assess the linear effect between them. To find the region in the input space of

maximum utility, we need to apply history matching [71, 74], which determines how

far the emulator expectation is from a maximum expected utility. History match-

ing requires an implausibility measure [74] to identify the mismatch between the

emulator expectation and maximum expected utility. As a part of decision-making,

it is considered that the smaller values of implausibility are good representations

of the input space. Chapter 7 is about seeking the best input space to obtain the

maximum expected utility by combining yield and pollutants for both inputs, which

starts with the utility measures and the history matching technique to calculate the

implausibility. A sensitivity analysis is performed to obtain the maximum expected

utility and build a framework considering the history-matching approach to obtain

the non-implausible region.

1.8 Organisation of the Chapters

This thesis consists of eight chapters, including this introduction. Figure 1.1 shows

a graphical overview of the organisation of the thesis. Chapter 8 contains concluding

remarks with limitations, further research and research achievements from Chapter

2 to 7.
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Chapter 2

Environmental Policy Integrated

Climate (EPIC) Simulation &

Data

2.1 Introduction

A crop simulation model describes crop growth procedures as a function of soil,

weather, nutrients, and crop management [54]. Crop simulation models have been

used effectively for decision-making [102, 105], which is crucial for agriculture pro-

duction. One such model is named the Environmental Policy Integrated Climate

(EPIC) Model, a cropping system model designed with mathematical equations to

generate the crop yield and pollutants [89] concerning a set of inputs. The complete

analysis of this thesis is based on this EPIC simulator’s outputs. The details about

the EPIC model and its simulation are illustrated in the following sections.

Section 2.2 discusses the EPIC and its detailed process procedure with a flowchart.

In Section 2.3, we provide the inputs and outputs for the EPIC simulation for a

catchment. In the penultimate Section 2.4, we initially display a simulated data set

from the EPIC simulator and then show some basic plots after processing. Finally,

the concluding remarks are in Section 2.5.

9
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2.2 EPIC Simulator

The EPIC model is a simulation-based model widely used in the agricultural indus-

try for simulating crop yield, water use, Nitrogen and Phosphorous levels, emissions

of carbon dioxide, and land management systems [13, 24, 73, 125]. The EPIC model

is also used for assessing the cost of agricultural production and making optimal

decisions [13]. The model was developed in 1985 in the United States, and it con-

sidered unique parameter values for eighty crops under one growth model [13, 16,

89]. The details of this growth model and other mathematical forms are extensively

discussed in the EPIC manual [22].

The main components of the EPIC model are weather year simulation, hydrology,

nutrient cycling, soil erosion, yield growth, tillage, the temperature of soils, economic

and environmental condition [13, 16, 24]. The model can generate data for 100

years, and can be used to investigate the relationship between yield, growth and the

impacts of the environment [125]. Due to its ability to generate data for 100 years,

it is considered as an ideal source for projecting trends of food demand [125]. The

whole process of the EPIC model is shown in Figure 2.1 and can be described as;

1. Initially, EPIC reads the starting data and computes the first day of simulation.

2. Using simulation data of day 1, it computes the daily weather effect with soil

and steepness combinations.

3. EPIC models land management techniques and fertilisation for crops account-

ing for weather effects, and hence simulates the crop growth.

4. Storing the Day 1 outcome, EPIC simulates again for Day 2 and continues

this procedure for 365 days.

5. Finally, a summary of the whole year’s output is saved, and the process con-

tinues for the following year.
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Figure 2.1: Flowchart of EPIC Model Simulation



2.3. EPIC Simulation Setup and Data 12

2.3 EPIC Simulation Setup and Data

This EPIC simulation that will be investigated in this thesis is part of the Economic and

Social Research Council Project (2019) [124]. In this project EPIC works on a 1-hectare

area with crop yields and pollutants. It is based on two geographical catchments: (1) Eden,

located in the North-East of England [128], and (2) Wensum is located in the South-East

of England [132]. This research explores the data concerning the Wensum catchment.

The data for our analysis comprises a large-scale simulation from the EPIC simulator

over a fully-factorial design in crop rotations, fertilisers, land characteristics and weather.

The EPIC simulator for our study consists of four stages: input, simulator, output and

post-process. The overall simulation run provides a simulated large (≫ 20 terabyte (TB))

amount of time series of annual crop yields and pollutants for all crops over 58 years

subject to the various input conditions of crop rotations, fertilisers, land characteristics

and weather. These yields and pollutants were then post-processed and aggregated into

data sets for each ‘unique’ crop. The whole process of the EPIC simulation that we consider

is given as follows.

INPUTS SIMULATOR OUTPUT POST PROCESSING

Crop Rotations

Fertilizers

Land Characteristics

Weather

EPIC

(Runs 58

Years)

Time

Series Data

of Crop

Yield and

Pollutants

Yields and

Pollutants

Under

Unique

Combi-

nations

Figure 2.2: Flowchart of EPIC model Simulation to Generate Unique Yield and Pollutants
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2.3.1 Crop Rotations

A crop rotation is a sequence of different crops planted and harvested in sequence over time,

after which the entire sequence is repeated for as long as necessary. Typically, crop rotations

are used to replenish nutrients in the soil that may have been depleted by previously

harvested crops. In the case of the EPIC simulation, a total of 30 distinct crop rotations

were considered.

For illustration, Rotation 6 comprises three distinct crops over a 5-year period: Winter

Wheat (WW), Maize (MAIZ), and Spring Barley (SBAR). The sequence of crops in this

rotation is: Winter Wheat, Maize, Spring Barley, Winter Wheat, Winter Wheat. As EPIC

simulates the crops over a 58-year period, this sequence is then cycled for the duration of

the simulation.

Additionally, as the sequence of crops is all which identifies a crop rotation, we can

offset the start of the simulation and plant, for example: Maize, Spring Barley, followed

by three instances of Winter Wheat. This is still the same rotation of the same crops,

though given the sequential nature of the simulation and historical weather data we would

get different simulation results for each of the crops. Repeating this process we can obtain

five different sequences of the same crop rotation, as shown in Table 2.1, giving rise to

five different simulations and sets of outputs for this crop rotation under the same set of

simulator inputs. A subset of the other crop rotations is shown in Table 2.2, noting that

the other rotations include a variety of different crops and are not all the same length.

Across all the crop rotations, several crops of particular interest were identified to be the

focus of our analysis - in the case of our example rotation, these were Maize, Spring Barley,

and the final instance of Winter Wheat. These crops were given labels (MAIZ1, SBAR1,

WW1) to identify these unique instances of these crops. Note that while, for example,

Winter Wheat will feature in many rotations, this is the only instance in conjunction with

maize and spring barley and so the behaviour here is unique to this combination. Each

58-year simulation of EPIC will then yield multiple occurrences of each of these unique

crops under slightly different conditions, thus one simulation run yields many simulated

observations of, say, WW1. These simulated values are then aggregated along with the

similar instances of WW1 from simulations of the offset rotations to form the data set for

this unique crop for a given set of input parameters.
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Table 2.1: Illustration of Simulation use for Weather data (Wensum - Rotation 6)

Weather Year 1954 1955 1956 1957 1958 ... 2011

Year of Simulation 1 2 3 4 5 ... 58

Simulation 1 WW Maize SBAR WW WW ... SBAR

Simulation 2 WW WW Maize SBAR WW ... Maize

Simulation 3 WW WW WW Maize SBAR ... WW

Simulation 4 SBAR WW WW WW Maize ... WW

Simulation 5 Maize SBAR WW WW WW ... WW

Table 2.2: Subset of Wensum Rotations No. 1 − 8; Crop codes: WOSR: Winter Oil Seed

Rape, SBEET: Sugar Beet, WBAR: Winter Barley, VPE: Vining Peas, GR(R): Grazing

Grass Reseed, CAR: Carrot.

Rota 1 2 3 4 5 6 7 8 9

1 WW WW WOSR WW WW

2 WW WW WOSR WW WW SBEET SBAR

3 WW WOSR SBEET WW WBAR WOSR WW

4 WW WW WOSR WW WW GR(R) GRAZ1

5 WW VPE WW SBAR WW WOSR WW

6 WW Maize SBAR WW WW

7 WW WW CAR WW WW WOSR WW

8 VPE WW SBAR WBAR WOSR WW SBEET WW WW

2.3.2 Inputs of EPIC Simulation

The inputs are considered an essential part of a simulator. In this section, we illustrate

the detailed description of the four different types of inputs processed for each simulation,

which is a fully factorial design, and they are (i) Fertilisers, (ii) Land Characteristics

(steepness and soil type), and (iii) Weather.



2.3. EPIC Simulation Setup and Data 15

2.3.2.1 Fertiliser

Two fertilisers, Nitrogen (N) and Phosphorus (P), were used as inputs to our simulations.

Each fertiliser took one of 13 different values 0, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100

and was treated as a continuous variable. The ranges 0 − 100 correspond to a standard-

ized range for each rotation, however, the actual fertilizer values have different maxima

depending on the rotation.

2.3.2.2 Land Characteristics

We have two categorical variables representing land characteristics in the simulation: soil

type (So) and the steepness or slope (St). The data for soil was collected based on NSRI

NATMAP soil mapping data [146], giving three different soil types for the catchment. In

Table 2.3 we present the name of the soil, and the categorical level used in the simulation.

Table 2.3: Name of the Soil, its Descriptions and Levels for Wensum Catchment

So level Name Description

6 Beccles medium loamy over clayey chalky drift

7 Burlingham medium loamy chalky drift

8 Barrow light loamy over chalky drift

The steepness (St) variable is ordinal, with four different levels. The values of the

variable steepness are in degrees, and for the Wensum catchment, they are presented in

Table 2.4.

Table 2.4: Steepness Levels and Degrees for Wensum Catchment

St level Steepness (Degrees)

5 0.4

6 1

7 1.6

8 2.7
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2.3.2.3 Weather

Weather input to the simulation takes the form of observed weather data from 1954 -

2011 from the UK meteorological department data archive [130]. This data comprised five

indicators used for the simulation purpose: (i) Daily maximum temperature, (ii) Daily

minimum temperature, (iii) Precipitation, (iv) Humidity, and (v) Wind speed. However,

these individual attributes were not treated as distinct inputs to the model to be varied

separately, as these quantities are in the form of complex time series. Therefore, a similar

strategy was adopted to that of the crop rotations whereby the time series of weather data

was offset and cycled to fill the simulation period. This effectively results in a series of

distinct weather scenarios which can be applied to each simulation, and thus each unique

crop.

2.3.3 EPIC Simulation Outputs

From the EPIC simulations, yield is the primary output variable of the study. There are

two types of yield; GYLD, which is grain yield relevant to grain crops and forage/foliage/

fodder yield (FYLD) applicable to leafy crops, both of them are expressed in terms of

tonnes in a hectare (t/ha). In Table 2.5, we see grain crops Spring Barley and Maize yield

output as GYLD; leafy crops Silage generate yield output as FYLD. In addition to yield

output, EPIC can generate another two outputs total biomass (BIOM) and below-ground

biomass (BGBM). Table 2.5 presents the yield variables used for some EPIC unique crops

in terms of GYLD and FYLD.

Table 2.5: Yield Variables Used for Each Crop for Wensum Catchment

Crop Yield Output Variable

Spring Barley GYLD

Maize GYLD

Silage FYLD

Hay FYLD+GYLD

Another output variable of the study is the pollutants for respective crops. For our

analysis, we will explore pollutants: Nitrogen to the river (NRLOAD) and Phosphorus to
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the river (PRLOAD). Nitrogen to the river (NRLOAD) is the load/kg per day and can be

expressed as [89],

NRLOAD = QNO3 +DRNN + SSFN, (2.1)

where QNO3 is the nitrate loss in runoff (surface runoff), DRNN is the soluble Nitrogen

in drainage outflow, and SSFN is the Nitrogen in subsurface flow. Phosphorus to the

river (PRLOAD) is the load/kg per day and can be expressed as [89],

PRLOAD = QAP +DRNP + SSFP, (2.2)

where QAP is the Phosphorus loss in runoff (surface runoff), DRNP is the soluble Phos-

phorus in drainage outflow and SSFP is the Phosphorus in subsurface flow.

2.4 Simulated Data Set From EPIC

A subset of the simulated output data from EPIC simulator based on our design is shown

in Table 2.6 for rotation 16 of the Wensum catchment for the crop Spring Barley, which is

a grain crop. Here, N and P indicate the Nitrogen and Phosphorus fertiliser, respectively,

St means the steepness, So means the soil, Wy and Sy tell the weather and simulation

year factor variables depending on the crop rotation.

Table 2.6: Simulated Data Set for Unique Crop Spring Barley (Rotation-16)

Inputs Outputs

N P St So Wy Sy Yield NRLOAD PRLOAD

0 0 5 6 1 4 6.861 12.955 0.259

0 0 5 6 1 12 3.445 11.014 0.081

... ... ... ... ... ... ... ... ...

5 5 6 6 3 36 3.561 7.260 0.047

... ... ... ... ... ... ... ... ...

10 20 8 7 8 44 2.751 23.452 5.911

... ... ... ... ... ... ... ... ...

100 100 8 8 8 60 2.872 71.914 42.484

... ... ... ... ... ... ... ... ...
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Finally, Yield, NRLOAD and PRLOAD are three outputs from the EPIC simulator

which interest this study. Each row of Table 2.6 indicates one unique combination of the

inputs. Columns 1 to 6 show the input data, and the remaining columns indicate our

three outputs yield and two pollutants. Columns 1 and 2 are about N and P fertilizers

standard values, St is steepness with four levels in column 3, column 4 reveals soil (So)

levels, Wy is the weather variable with eight different levels, and Sy is the simulation runs

in 8 different years. For our analysis, we will focus on the continuous fertiliser inputs of

Nitrogen (N) and phosphorus (P ) levels, which were simulated over a discrete grid of

values, each with 13 values over [0, 100]. Thus, for a given crop and fixed combination of

land and weather variables, we obtain a grid of 169 simulated yields, Y , and pollutants

NRLOAD and PRLOAD in response to N and P .

Figure 2.3 presents the yield for the crop Spring Barley, and two pollutants NRLOAD

and PRLOAD. The crop Spring Barley simulated at 8 different years based on crop rota-

tions such that simulation year, Sy = 8 with 3 levels of soil, 4 levels of steepness and 8

levels of weather makes a total combination of 3×4×8×8 = 768. We present the plots for a

subset of 15 different input combination values to assess the general trend. To demonstrate

the basic trends of our outputs, we consider the inputs Nitrogen and Phosphorus.

From the upper panel (left) of Figure 2.3 showing the response crop yield of Spring

Barley to Nitrogen, we can see that yield shows an increasing trend for all of the simulations

initially; however, some of the combinations show a plateau after a certain level of Nitrogen

input. On the other hand, we can see an increasing trend for the low level of Phosphorus

input for a few of the unique combinations and all different simulations shows a flat and

weak response. Chapters 3 and 4 will further explore the mathematical relationship and

statistical modelling of the yield concerning N and P . We will also use advanced statistical

techniques to assess the impact of N and P on crop yield in Chapters 5 to 7.

The lower panel of Figure 2.3 shows the line plots for the pollutants PRLOAD (left)

and NRLOAD (right). The pollution for PRLOAD shows a linear relationship with respect

to Phosphorus such that PRLOAD is higher for high Phosphorus values and lower for low

P values. And, for the pollutant NRLOAD, we can see a non-linear relationship for the

input Nitrogen. We will explore extensively in Chapter 7 for these pollutants, such as to

assess the impact of both inputs on the pollutants.
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Figure 2.3: Upper left and right panel: Spring Barley crop yield with the response of

Nitrogen and the Response of Phosphorus. Lower left panel: Pollutant PRLOAD for the

response of Phosphorus input, Lower right panel: Plot for NRLOAD with Respect to

Nitrogen.
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2.5 Conclusion

In this Chapter 2, we describe the sequential stages of the EPIC simulator and outline

the simulation study. We discuss the quantitative and qualitative input variables with the

outputs yields and the pollutants for the catchment Wensum. Finally, we explored the

general trend of the EPIC simulator outputs for the Spring Barley crop.

From Chapter 2, we have acquired knowledge about handling data from the EPIC

simulator. We have gained an understanding of the crop rotations, real-life steepness, soil

type, fertilisation for the Wensum catchment and the weather within the implementation

of the EPIC simulator. We have also learned a general idea about the catchment, the

definition of the pollutant outputs, and how to extract crop yield and different pollutants.

This Chapter also provided an understanding of the yield output type, such as the grain

or foliage. Finally, this Chapter taught us how to extract a subset of data and summarise

the data as general plots.



Chapter 3

Crop Yield Modelling

3.1 Introduction

Identifying a proper mathematical relationship is essential for assessing crop growth in

response to the inputs of a study [48, 77, 98]. The appropriate form of crop modelling is

essential and enables us to predict the yield output for short to long-run periods [80]. After

checking the best cropping model, decision-making becomes possible for governments to

import any food or not to maintain the demand for food [61]. This Chapter explores and

fits the crop yield models from existing literature, eventually using them in conjunction

with the EPIC simulations data to assess the relationship with the inputs. The main goal

of this Chapter is to find an appropriate mathematical relationship between the input

fertilisers and the output yield.

In Section 3.2, we survey some important crop yield modelling literature to identify the

crop yield models to fit to the EPIC simulated data with the basic standard features for

crop yield models and summarise the relevant characteristics in Section 3.2.1. We perform

some preliminary data analysis for three different crops in Section 3.3, fit the crop yield

models and identify the best fitting model for the EPIC data in Section 3.4, and finally

draw some concluding remarks with our understanding in Section 3.5.

3.2 Background of the Crop Yield Modelling

The response of crop yield to inputs such as fertilisation has been extensively studied

in the literature [14, 17, 23, 31, 38, 37, 42, 58, 62, 87] providing many valuable insights

21
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into the expected or desirable behaviour of any yield response model. It is expected that a

yield may show monotonicity, growth plateau, and increasing return to scale, and these are

treated as critical features of a crop model. Without these features, a crop response model

will not respect the expected behaviour of a yield response, and a detailed discussion of

these features is given as follows;

1. Linearity: Linearity is one of the basic features of the crop yield model. The mean

crop yield is expected to show a linear trend with the increase in the input. So for a

simple linear regression for the input N and P with output yield Y and error term

e we can write;

Y = β0 + β1N + β2P + e,

E(Y ) = β0 + β1N + β2P.
(3.1)

2. Monotonicity: Crop yield should be monotonically increasing in response to fertilis-

ers. For example, with the increase in Nitrogen levels, the crop yield should increase.

3. Growth Plateau: For the feature of growth plateau, crop yield will increase initially

and then become constant in response to increasing fertiliser levels. For example,

in Figure 2.3(h), the crop yield increases monotonically to N = 70, and after this

adding more fertiliser has no effect such that it shows a flat trend until N = 100.

4. Input Substitution: Input substitution is where one input fertilizer can be replaced

with another for a specific crop [111]. For example, a crop can give maximum output

for either N or P and a combination of the two, so an increase in N substitutes for

an increase in P and vice versa, rather than affecting the crop yield. In other words,

N and P are equivalent in their effect on yield.

5. Returns to Scale: This feature measures the proportional change of the yield con-

cerning inputs N and P . If the yield increases more than the effect of both fertiliser

inputs, it is called increasing return to scale such that the sum of slopes for N and

P is greater than 1. On the other hand, if yield output decreases due to both inputs’

effects, it is treated as decreasing return to scale (such that the sum of regression

coefficients corresponding to inputs N and P is less than 1). Finally, suppose the re-

turn of yield shows the same growth for the effect of the inputs; it is called constant

return to scale (the sum of regression coefficients corresponding to inputs is 1). For
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our study, increasing return to scale is very much expected because of the increas-

ing nature of yield, such that the sum of slopes should be positive and greater than

1. The following relations clarify the feature of the returns to scale by considering

β1, and β2 are the slopes for the inputs from Equation 3.1.

• If β1+β2 = 1 constant returns to scale of the output yield for increasing inputs

N or P .

• If β1 + β2 < 1 decreases the output for an increasing input. However, the rate

still increases when both slopes are positive and within 0 < β1 + β2 < 1.

• If β1 + β2 > 1 an increase of the output for an increasing input.

3.2.1 Crop Yield Models

Various functional forms of yield, Y , in response to Nitrogen, N , and Phosphorous, P ,

have been proposed in the literature [14, 17, 23, 31, 38, 37, 42, 58, 62, 87] and can be

loosely categorised into three groups. We summarise these yield models in Table 3.1:

1. Linear Models: Multiple Regression, Quadratic, and Square Root function.

2. Non-linear Models: Power function, Gompertz function, Logistic function, and

Mitscherlich-Baule function.

3. Threshold Models: Linear Von Liebig function, and Non-linear Von Liebig func-

tion.

The linear models are ubiquitous in statistical modelling, and the form of these models

is shown in Table 3.1 with their standard features.

We illustrate a brief mathematical structure of the non-linear and threshold models

with their properties.

Power Function or Cobb Douglas Model: The power function [87], also known as Cobb

Douglas Production function in Economics [145], is given as follows:

Y = β0Nβ1P β2 , (3.2)

where Y equals yield, N and P are the inputs, β0 is the intercept of the power model,

and β1, β2 are the slopes for the inputs N and P . It is expected that the power model

will show growth plateaus and monotonicity with the main features of the power function

given as follows:
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• If β1 + β2 = 1 constant returns to scale of the output for increasing input.

• If β1 + β2 < 1 decrease of the output for increasing input.

• If β1 + β2 > 1 increase of the output for increasing input.

Table 3.1: Summary of Models of Y , in Response to N , and P .

Name Function Features

Linear Y = β0 + β1N + β2P Linearity

Quadratic
Y = β0 + β1N + β2P

+β3N2 + β4P 2 + β5NP
Input substitution

Square Root
Y = β0 + β1N + β2P + β3(N)1/2

+β4(P )1/2 + β5(NP )1/2
Input substitution, no

plateau

Power Model Y = β0Nβ1P β2 Returns to scale,

Monotonicity, Plateau

Gompertz
Y = β0 exp

(
− β1e−β2N

)
exp

(
− β3e−β4P

) Increasing return to

scale, Monotonicity,

Plateau

Logistic Y = β0(
1+β1e−β2N+β3e−β4P

) Increasing return to

scale, Monotonicity,

Plateau

Mitscherlich-Baule

(M-B)

Y = β0
[
1− exp(−β1(β2 − β3N))

]
×
[
1− exp(−β4(β5 − β6P ))

] Monotonicity, Increas-

ing return to scale,

Positivity, Plateau

Linear Von Liebig Y = min
[
β0, β1 + β2N, β3 + β4P

]
Plateau, Linearity,

Monotonicity

Nonlinear Von Liebig
Y = min

[
β0(1− β1 exp(−β2N)),

β0(1− β3 exp(−β4 × P ))
] Plateau, Monotonic-

ity, Positivity

Gompertz Growth Model: Gompertz growth model is one of the commonly [2, 87] used
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model to assess the yield data and can be expressed as,

Y = β0 exp
(
− β1e−β2N

)
exp

(
− β3e−β4P

)
, (3.3)

where there are five parameters to fit; β0 is the maximum yield, β1 is the slope parameter

corresponding to fertiliser N , and β2 is the slope parameter. The parameters β3 is the

parameter corresponding to fertiliser P and β4 is the slope parameter for the P input.

This model’s main features are:

• The increasing return to scale such that β1 + β2 + β3 + β4 > 1.

• The monotonicity and growth plateau when the yield is at least β0.

Logistic Regression Model: The logistic regression model uses a logit transformation

of the response variable Y [11, 87], and can be expressed as:

Y =
β0(

1 + β1e−β2N + β3e−β4P
) , (3.4)

where β0 is the maximum yield, β2 is the corresponding growth rate for N , and β4 is the

slope for P . Like the Gompertz model, the Logistic model has the same increasing trend,

monotonicity and growth plateau features.

Mitscherlich-Baule Model: The Mitscherlich-Baule (M-B) Model is generally used to

predict crop yield and is considered as the most appropriate to assess the growth of crop

yield [23, 31, 37, 42]. The Mitscherlich-Baule Model can be represented as,

Y = β0

[
1− exp(−β1(β2 − β3N))

]
×
[
1− exp(−β4(β5 − β6P ))

]
,

= β0

[
1− exp(−β1 − β2N)

][
1− exp(−β3 − β4P )

]
.

(3.5)

Some properties of the Mitscherlich-Baule model are given as follows:

• M-B model coefficients should be positive [62] as this model only allows positive

total production.

• Mitscherlich-Baule function allows for input substitution.

• The M-B function is monotonically increasing.

• It also allows for increasing return to scale such that β1 + β2 + β3 + β4 > 1.
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Linear Von Liebig Model: The Von Liebig linear model is different to the usual linear

regression specifications due to its growth plateau [23]. The Linear Von Liebig model can

be written as follows,

Yi = min
[
β0, β1 + β2N, β3 + β4P

]
, (3.6)

where β0 is the maximum crop yield, and the other parameters are similar to previous

models. The common features of the linear Von Liebig model are given as follows:

• The model equation shows linearity between yield and inputs.

• This model shows the plateau when the yield is at least β0 [14].

• This model also allow the linear trend until the growth plateau.

Nonlinear Von Liebig Model Another form of the model [28, 37] is known as the Non-

linear Von Liebig model, and the form of this model is constructed under the Von Liebig

linear model specifications, and Mistcherlich-Baule model frame work, which can be writ-

ten as,

Y = min
[
β0 × (1− β1 exp(−β2N)), β0 × (1− β3 exp(−β4P ))

]
. (3.7)

The common features of the linear Von Liebig model are given as follows:

• All the parameters β0, β1, β2, β3, β4 of the response function are expected to be

positive [28, 37] .

• The non-linear Von Liebig model considers a yield plateau Figure 3.1 and non-

substitution among N and P [37].

• This model also allows the monotonic increasing trend until the growth plateau.

• This model doesn’t allow linearity but shows the increasing return to scale.

• This model doesn’t allow input substitutions [62].

Figure 3.1 shows an illustrative plot for all nine crop yield models. These plots are the

general trend plot to show the basic features of the crop yield models of interest. Overall,

we can see the linearity feature from the linear model and a monotonic increasing trend

feature for the quadratic, square root, Logistic, Gompertz and Mitscherlich-Baule models.

The power model function shows a power shape, and finally we can see the growth plateaus

from the linear and non-linear Von-Liebig models.
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Figure 3.1: Simple plot of the Crop Models
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3.3 Preliminary Data Analysis for Crops Yield

In this section, we explore three sets of yield simulations from EPIC for Spring Barley,

Winter Barley, and Silage. Initially, we plot the raw simulated yield for all three crops in

the form of a line diagram versus Nitrogen and Phosphorus.

In Figure 3.2, we plot a line for simulated yield in response to Nitrogen for Spring

Barley, Winter Barley and Silage, respectively. Colour here has no intrinsic meaning and

is simply used to help differentiate different lines. Each line corresponds to a simulated yield

obtained with the same combination of steepness, soil, weather scenario, and simulation

year. For example, with Spring Barley we have 768 such lines obtained from 3 levels of

soil, 4 levels of steepness, 8 levels of weather, and 8 levels of simulation year (this version

of Spring Barley occurred 8 times within the 58-year simulation) giving this total of 3 × 4

× 8 × 8 = 768. Similarly, Winter Barley was occurred at 7 different simulation years with

the same weather levels of Spring Barley, making the total combinations 672; and Silage

occurred at 7 simulated years with 9 different weather levels giving the total number of

combinations as 756.
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Figure 3.2: Line Graphs for All Input Simulations Response to Nitrogen

Figure 3.2 shows all inputs simulations with respect to all 13 levels of Nitrogen inputs,

including the 0 level for the crops Spring Barley, Winter Barley and Silage. Simulator

outputs for N = 0, P = 0 are in-feasibly large, and clearly nonphysical as a crop response

should not exhibit such discontinuity. As this looks likely due to simulation error, we
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remove all data for N = 0, P = 0 from future analysis.

It is expected that yield should increase with fertiliser levels, up to a point and respond

to one, other, or both fertilisers depending on the crop behaviour. From Figure 3.3, it can

be said that (i) most of the simulations are showing a monotonic increasing trend as well

as growth plateaus for some of the simulations concerning input Nitrogen for the crops

Spring Barley and Winter Barley, (ii) Silage is showing an increasing trend for most of the

simulations with some flat trends and apparent noise.
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Figure 3.3: Line Graphs for all Unique Combinations Response to Nitrogen Excluding “0”

Level

In Figure 3.4, we re-plotted crop yield data of Spring Barley, Winter Barley, and Silage

in response to the input Phosphorus. Figure 3.4 shows a flat yield response concerning

Phosphorus (P ) for most simulations except for some increasing and unusual decreasing

trends for the low levels of P for Spring Barley and Winter Barley. The crop yield Silage

shows a clear flat response for all levels of Phosphorus. Figure 3.5 shows 100 random

simulations for P to determine the visible flat trends.

Figure 3.6 shows a subset of 15 random unique combinations to clarify the apparent

trends of our three data sets. From figure 3.6, for N , it can be said that yield shows

monotonicity and a growth plateau for Spring Barley and Winter Barley crops only. We

can see some flat trends for a few of the unique input simulations for Silage in response

to input Nitrogen with a monotonic increasing trend. However, some simulations show

unusual increasing and decreasing trends for all crops at low P levels.
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Overall, the yield shows a strong response to Nitrogen input for all three yield data.

We can see an overall weak and flat response to the input Phosphorus except for some

increasing trend for the low levels of P . The contribution of the input Phosphorus to yield

will be clarified after fitting the models.
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Figure 3.4: Line Graphs for all Unique Combinations Response to the Phosphorus
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Figure 3.5: Line Graphs for 100 Combinations Response to the Input Phosphorus
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Figure 3.6: Plots of Simulated Yield for a Sample of 15 Simulations in Response to Nitrogen

(Upper left panel) and Phosphorus (Upper right panel) for Spring Barley. Middle panel

and lower panel Plots are for the Crops Winter Barley and Silage.
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3.4 Fitting Crop Yield Models

In this section for our model-fitting, we have explored nine yield response models for

three crops concerning Nitrogen and Phosphorus from Section 3.2.1. The Linear models:

Simple Linear, Square Root, and Quadratic regression, are fitted using the default linear

regression function lm() from R-language. We assigned the starting values for the model

parameters to fit the non-linear models and used the nlsLM() [108] function.

We compare the nine fitted models to the data (red line) in Figure 3.7 for Spring

Barley, Winter Barley, and Silage crops, respectively considering one unique simulation.

From Figure 3.7, we can see that all models can achieve reasonably close fits to the data,

apart from the power model (black line) for the crop Spring Barley and Winter Barley.

Silage is slightly different from Spring Barley and Winter Barley, where we can see more

spread and variation between the other fitted models approaching a visible plateau for

both linear and non-linear Von Liebig’s models. The power curve also shows a close fit to

the data for the Silage crop compared to the other two crops’ trends.

20 40 60 80 100

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

N

Y
ie

ld

data
von
mb
gom
logis

power
squ
quad
lin
nlvon

20 40 60 80 100

6
.5

7
.0

7
.5

8
.0

N

Y
ie

ld

data
lin
mb
gom
logis

power
squ
quad
linvon
nlvon

20 40 60 80 100

1
1

1
2

1
3

1
4

1
5

N

Y
ie

ld

data
lin
mb
gom
logis

power
squ
quad
linvon
nlvon

Figure 3.7: Plot of the Fitted Yield Response to Nine Models concerning Nitrogen and

Phosphorus for the Spring Barley Crop (left panel); Winter Barley Crop (middle panel);

Silage (right panel)

Table 3.2 summarises the nine fitted crop yield models with the residual standard error

for Spring Barley and Silage crops for the subset of the data of one unique simulation. We

have only presented the result of the crops Spring Barley as Winter Barley has shown the
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same results. The values of the model coefficients satisfy the properties of the yield models

such that the show linearity, increased return to scale such that the sum of βi, i = 1, 2, 3, 4

are greater than 1, and positivity of the parameters. The models that satisfy these criteria

can be considered the best-fitted models.

Table 3.2: Summary Statistics of the Fitted Nine-Crop Yield Models for the Crop Spring

Barley (SBAR) and Silage

Crop(s) Models β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 RSE

Linear 3.44 0.019 0.0 0.05

Quadratic 3.41 0.02 0.0 0.0001 0.0 0.0 0.04

Square Root 3.45 0.02 0.0 0.004 0.0 0.0 0.04

Power Model 2.48 0.16 0.0 0.19

SBAR Logistic Model 7.70 1.25 0.01 0.0001 0.0 0.03

Gompertz Model 9.35 1.0 0.01 0.19 0.0 0.03

M-B Model 5.82 0.80 0.02 7.70 0.0 0.03

Linear Von Liebig 5.33 3.42 0.02 5.33 0.0 0.04

Non-linear Von Liebig 5.61 0.43 0.02 0.002 0.0 0.04

Linear 10.65 0.05 0.0 0.38

Quadratic 9.89 0.01 0.0 0.0004 0.0 0.0 0.15

Square Root 8.53 0.01 0.0 0.78 0.0001 0.0 0.20

Power Model 7.18 0.44 0.0001 0.42

Silage Logistic Model 16.52 0.66 0.02 0.0004 0.0 0.12

Gompertz Model 16.83 0.45 0.02 0.0057 0.0 0.12

M-B Model 17.28 0.89 0.02 6.29 0.0 0.12

Linear Von Liebig 15.32 10.21 0.07 15.32 0.0 0.14

Non-linear Von Liebig 15.59 0.44 0.05 0.006 0.0 0.14

From the results of all the nine fitted models, the estimates corresponding to N input

are significant such that p values are less than 0.05, whereas P have no effect, such that the

estimated values are zero or close to zero for all the crops. Since P has no impact, we can
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not substitute Phosphorus in the place of Nitrogen, meaning using both Square Root and

Quadratic models is infeasible for these crop yield data. The Power model shows decreasing

return to scale for both the crops such that β̂1 + β̂2 < 1. In all Gompertz, Logistic and

Mitscherlich-Baule crop yield models, we have seen a growing return to scale such that

the sum of β̂1 + β̂2 + β̂3 + β̂4 > 1, for the crop Spring Barley only but unfortunately a

decreasing trend for the Silage for Logistic and Gompertz. All of the coefficients for the

Mistcherlich-Baule and non-linear Von Liebig models are positive, which is one of the main

features of these models.

For the Residual Standard Errors (RSE), we have seen a higher variation among the

model residuals for the Silage crop. The Power model has the highest deviation, which

validates the unusual trend of Figure 3.7. The Logistic, Gompertz, and M-B models show

the minimum RSE estimate for Spring Barley and Silage crops. The RSE estimates for all

models are close to each other for Spring Barley, indicating a very close trend for all the

models concerning simulated data apart from the power model. For the crop Silage, we

can see very close RSE estimates for non-linear and threshold models but a slight variation

for the linear models. So in terms of RSE, we can say the Mitscherlich-Baule, Logistic,

and Gompertz models are the best-fitted yield models for the selected three crops.

The growth plateau for the Gompertz and Logistic models is not revealed for these

data, which is the main feature of these models; however, they have lower RSE values

and an increasing return to scale for Spring Barley. The Mitscherlich-Baule model shows a

monotonic increasing trend, increasing return to scale and the positivity of the coefficients

for all crops with a smaller RSE estimate. We can see the visible plateaus for both linear

and non-linear Von Liebig’s model, but only for the Silage crop; unfortunately, the EPIC

simulated data does not reveal this attribute. The simple linear model is straightforward

to use but we can not fully capture the variation of the data, and our result also showed

a slightly higher RSE value. Overall, we can say that Mitscherlich-Baule (MB) model

can be considered the best fit for our data for several reasons, such as (i) a substantial

similarity between the fitted yield responses with the relative RSE values; (ii) only model

to achieve a monotonic increasing trend, increasing return to scale and the positivity of all

the coefficients; and (iii) is has been seen to be the best fitting model in previous studies

for crop simulation models [37, 62] over others.
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3.5 Conclusion

In Chapter 3, we have demonstrated nine different crop models from previous studies

with their features. We have shown yield plots considering all input simulations and a 15

subset of unique input simulations. The results of these plots showed a strong response

for Nitrogen for the explored crops but a weak and flat response to Phosphorus in Section

3.3. In Section 3.4, we fitted the nine crop models, and the results demonstrated that our

models are very close to each other except for the power model. The Mitscherlich-Baule

model showed the best fit to the data, exhibited a monotonic increasing trend, positivity

and smaller RSE.

This chapter aimed to assess the best crop yield model for our crop yield data and

provided a deeper understanding of the mathematical form of crop yield models and how

to fit them. We also gained competence in the literature review and extracting primary

information, such as model selection and reparameterisation. Finally, we have learned how

to visualise a large volume of data.

The crop models are generally used to assess crop growth trends. However, linear

models must fulfil some assumptions, such as linearity and independence, which makes

them impracticable. Dealing with non-linear models are quite complicated due to the

uncertainty of the model parameters, boundary constraint, and initialisation problems.



Chapter 4

Bayesian Hierarchical Framework

for Crop Yield

4.1 Introduction

The frequentist and Bayesian approaches are two different views or statistical inference

procedures used by statistical modellers. The frequentist approach estimates the param-

eters from the data only, like the crop yield modelling in Chapter 3. But the Bayesian

approach needs to deal with both data and prior information. Bayesian inference is a well-

known method to infer the posterior distribution based on prior specifications and data. A

prior needs to be specified initially and then combined with the evidence using the Bayes

rule [1, 18] to calculate the posterior for the parameters. This approach is extensively used

in different fields of study, such as science, sports, law, medicine, etc. The Bayesian frame-

work has been applied in agricultural research to predict crop yield growth, especially for

decision making [90, 133, 136].

Several studies have been conducted from different perspectives of crop yield modelling,

and some of them are highlighted in the following passage. A Bayesian framework with

a normal likelihood for yield used the Michalis-Menten modified equation [97] as a mean

function to estimate the effect of crop yield considering the inputs of fertiliser and farmyard

manure. The crop yield was positively impacted by the input fertiliser, and the diagnostic

plots showed trace plot chains are mixing well. This study illustrated the advantage of

using a non-linear growth model as a mean function. A Bayesian model was used to analyse

a crop simulation model (CSM) [79], and this study used Gibbs sampling with random

36
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walk Metropolis and a satisfying convergence was diagnosed after 10000 iterations. This

Bayesian model gives us an indication of the optimal number of iterations required in the

MCMC. A hierarchical non-linear model was introduced for Nitrogen and soil nutrients

[49] using three possible mean functions: linear plus plateau, quadratic, inverse linear, and

linear methods failed to detect the unusual trend of the data. These authors used Gibbs

sampling to sample from the posterior with 100000 iterations. The Bayesian framework

has been used to assess the consequences of weather on yield [131] using linear and non-

linear growth response mean functions. This work used the two-dimensional Gaussian

regression model as the yield response, which works well to assess the effect of weather

on yield. This work recommended to evaluate the variable weather in details to assess the

impact on yield. A Bayesian approach was used for the analysis of yield response to inputs

N fertiliser on soil type and precipitation in Africa using the Hamiltonian No-U-Turn

sampler (HMC-NUTS) [133]. This study used a default four chains with 7000 iterations

and found the effect of N on soils.

These previous studies mostly model yield as a function of a single fertiliser, weather

or soil as a continuous input. So we must look forward to developing a more general

model for our purposes with factor effects of our data. The motivation for using Bayesian

inference for this research is to set up a Bayesian hierarchical framework using the non-

linear Mistcherlich-Baule growth model (from Chapter 3) for both continuous and factor

inputs.

We start this Chapter with the general Bayes rule, the steps needed for Bayesian

modelling and the selection of priors in Section 4.2. In Section 4.2.1, we construct a

Bayesian hierarchical framework for continuous inputs of N and P and incorporate the

factor variable in Section 4.2.2. Section 4.2.3 discusses MCMC with some basic terms

and the algorithms needed to sample from the posterior distribution. We discuss the

model selection and validation tools in Section 4.2.4. We demonstrate the result of the

Bayesian framework concerning EPIC data in Section 4.3 using continuous inputs. Section

4.4 provides the results of the factor incorporation, and, finally, we draw some concluding

remarks in Section 4.5.
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4.2 Bayesian Hierarchical Modelling Framework

In this section, we set up a Bayesian hierarchical framework for quantitative and factor

inputs based on the best-fitting Mitscherlich-Baule (MB) model mean function, then draw

posterior samples using the MCMC algorithm. Finally, we compare the models and validate

them using different diagnostic based on the MCMC samples.

While the frequentist modelling approach is centred on using a likelihood for both

observed and unobserved data, the Bayesian approach combines prior beliefs with the

likelihood to obtain the posterior probability distribution. The Bayesian approach updates

the posterior distribution via the Bayes rule: [1, 18]

π(θ|y) = π(y|θ)π(θ)
π(y)

, (4.1)

where y is the real data, π(θ|y) is the posterior distribution of the parameters θ after

gathering the data, π(y|θ) is the likelihood and quantifies the information from observing

the data, π(θ) is prior distribution for θ, and π(y) is the marginal distribution of the data,

and can be expressed as;

π(y) =
∫ ∞
−∞
π(y|θ)π(θ) dθ. (4.2)

It is common to have a non-conjugate prior distribution, thus requiring the Monte

Carlo Markov Chain algorithms to simulate posterior samples. Markov Chain Monte Carlo

(MCMC) methods [26, 34] are effective Monte Carlo techniques in Bayesian inference used

to sample from the posterior distribution. MCMC simulations allow posterior estimates

such as expectations, standard deviation, and credible intervals of Bayesian models.

There are some specific steps [51, 91, 138] to follow for our Bayesian modelling, and

they are given as follows;

1. Stage I: Bayesian Modelling Framework: Specify the data model and prior without

observing the data. Collect data and update the model parameters to form the

posterior based on prior and likelihood.

2. Stage II: Posterior Sampling from MCMC: Draw and check the quality of the pos-

terior MCMC samples. Finally, summarise and interpret the results obtained by

MCMC sampling.

3. Stage III: Model comparison and validation: Use different diagnostic tools to validate

the Bayesian model.
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The prior distribution expresses a belief about an uncertain quantity before seeing

data [91]. It is a key part of Bayesian analysis and can be assessed in different ways for a

study. The different types of priors [10, 35, 91] are given as follows,

1. Informative Prior: A prior is said to be informative if it contains information about

the parameter. We can use a Normal prior if the parameter lies on the entire line such

that N(µ, σ2), and Gamma prior if it lies on the positive line such that Ga(α, λ).

2. Weakly informative prior: A prior is said to be weakly informative if it contains

partial information about the parameter. The main point in the use of the weakly

informative prior for the stabilisation of the parameter within a reasonable range.

3. Uninformative prior: A prior is considered uninformative or diffuse if it contains

only vague information about the parameters.

A prior can only be one of these three types, which are mutually exclusive. In addition

to these three types of priors, a prior could also be improper if its density function can not

be integrated such that CDF is less than 1 and conjugate if it results in a posterior distri-

bution of the same type. For our problem, we will use informative and weakly informative

priors.

4.2.1 Stage I: Bayesian Modelling Framework

Definition 4.2.1 (Normal Distribution). For two parameters µ ∈ R and σ ∈ R > 0, the

probability density function for the normal distribution with yield Y ∈ R is defined as:

f(Y ) =
1

σ
√
2π
exp

[
− 1
2σ
(Y − µ)2

]
. (4.3)

which we can write as Y ∼ N(µ, σ2)

For each unique crop, we assume the yield Yi, i = 1, 2, ..., n follow the Normal dis-

tribution with mean µ(Ni, Pi|B), where B = (β0, β1, β2, β3, β4) is the vector of regression

parameters, and variance V ar[Yi] = σ. So we can say that,

Yi ∼ N(µ(Ni, Pi|B), σ). (4.4)

Initially, we consider modelling yield as a function of the continuous covariates Nitrogen

(N) and Phosphorus (P ) for the study and the Mitscherlich-Baule model as the mean
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response function. Thus, the MB mean yield function from Table 3.1 can be parameterised

in the following way,

µi = µ(Ni, Pi|B) = β0
[
1− exp(−β1 − β2Ni)

][
1− exp(−β3 − β4Pi)

]
, (4.5)

where parameter β0 > 0 is the maximum yield, β1, β2 are the intercept and slope for the

Nitrogen input, and β3, β4 are the intercept and slope for the Phosphorus input.

Definition 4.2.2 (Gamma Distribution). The density function of the Gamma distribution

for the random variable X with shape parameter α and rate parameter λ can be written

as,

f(Y |α, λ) = λ
α

Γ(α)
yα−1 exp(−yλ), (4.6)

for y > 0 and zero otherwise. So we can write that Y ∼ Gamma(α, λ)

Parameter β0 is the maximum yield, which is a positive finite value. We require pos-

itive estimates from the parameters β1, β2 for the Nitrogen variable and β3, β4 for the

Phosphorus variable from the nonlinear MB model based on the increasing positive trend

in the graphical analysis in Chapter 3. Due to these reasons and the positive nature of

the MB model [37], we have considered the Gamma distribution as our priors for all five

parameters of the Mistcherlich-Baule model. We have also considered the Gamma prior

for our variance parameter since σ > 0. Thus we can write,

βk ∼ Gamma(αk, λk); k = 0, 1, 2, 3, 4

σ ∼ Gamma(u, v).
(4.7)

Considering the term λα

Γ(α) as constant and under the assumption that all of the pa-

rameters are independent, the general form of the joint prior distribution of all parameters

can be presented as follows,

π(βk;σ) = π(σ)
4∏
k=0

π(βk),

∝ (σ)u−1 exp(−σv)
4∏
k=0

βαk−1k exp(−βkλk),

∝ (σ)u−1 exp(−σv) exp
(
−
4∑
k=0

βkλk

) 4∏
k=0

βαk−1k ,

∝ (σ)u−1 exp
(
− σv −

4∑
k=0

βkλk

) 4∏
k=0

βαk−1k ,

(4.8)
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where αj and λk are the shape parameters and rate parameters for the βk; u and v are

the shape parameters and rate parameters for the variance σ.

Considering the yield observations Yi as a vector Y = (Y1, Y2, ..., Yn) and vector pa-

rameters B = (β0, β1, β2, β3, β4), and assuming conditional independence of Y given B, σ

we can write the likelihood function;

L(Y|B, σ) =
n∏
i=1

π(Y|B, σ). (4.9)

We have already assumed that our yield model follows a Normal distribution in Equation

(4.4), so the likelihood function can be written as,

L(Y|B, σ) =
n∏
i=1

1√
2σπ
exp

[
− 1
2σ
(Yi − µi)2

]
,

∝ σ−
n
2 exp

[
− 1
2σ

n∑
i=0

(Yi − µi)2
]
.

(4.10)

Using the likelihood for an MB model for mean yield in Equation (4.10) and prior distri-

bution in Equation (4.8), we can write the form of our posterior distribution as,

π(B, σ|Y) ∝ σ−
n
2 exp

[
− 1
2σ

n∑
i=0

(Yi − µi)2
]
× (σ)u−1 exp(−σv) exp

(
−
4∑
k=0

βkλk

) 4∏
k=0

βαk−1k ,

∝ σu−1−
n
2 exp

[
− 1
2W

n∑
i=0

(Yi − µi)2
]
× exp(−σv) exp

(
−
4∑
k=0

βkλk

) 4∏
k=0

βαk−1k ,

∝ σu−1−
n
2 exp

[
− 1
2σ

n∑
i=1

(Yi − µi)2 − σv −
4∑
k=0

βkλk

] 4∏
k=0

βαk−1k ,

∝ σu−1−
n
2 exp

[
− 1
2σ

n∑
i=1

(Yi − β0[1− exp(−β1 − β2Ni)][1− exp(−β3 − β4Pi)])2

− σv −
4∑
k=0

βjλk

] 4∏
k=0

βαk−1k .

(4.11)

Equation (4.11) is not recognisable as a similar form as Equation (4.8), and so our problem

is non-conjugate. The structure of posterior distribution requires MCMC to draw posterior

samples.

Another possible option is to use the log-normal distribution or truncated Normal, i.e.

Yi ∼ LN(µ(Ni, Pi|B), σ) due to the strictly positive nature of the yield but this would

completely change the interpretation of our model. For the log-normal distribution, the

mean of yield is E(Yi) = expµ+
σ2

2 , which creates the complexity due to E(Yi) ̸=MB and

we would need to re-parameterise the model. The yield variance is generally low, so that
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negative yield values will be highly unlikely. So to maintain the same structure of the MB

model, we base our analysis on the Normal distribution to consider the MB model as the

mean function of the Bayesian inference.

After this, we can adapt the mean function for the factor effect considering the design

matrix with 0−1 encoding and follow the stages mentioned above to execute the Bayesian

framework for mixed inputs.

4.2.2 Incorporating Factor Effects

The structure of the MB model must be generalised, such that it can be used as a mean

function for a fully Bayesian model with mixed inputs. There are several ways to formulate

this, and we use a pragmatic approach to keep the problem simple by introducing factor

inputs using a 0 - 1 encoding. For a factor variable with levels cj with an observed value

of fi, we write that;

Zi,j =


1 if fi = cj ,

0 otherwise
(4.12)

such that if the ith observation of the factor has the jth level cj then we have Zi,j = 1,

and Zi,j = 0 otherwise.

We assume that the factors only influence maximum yield β0, and do so by shifting

the value. Hence, we use a simple hierarchical structure of the following form for a single

factor input;

β0 = γ0 + γ1Zi,1 + ...+ γjZi,j ,

= γ0 +
j∑
k=1

γkZi,k,

= γ0 + ZTi γ,

(4.13)

where Z is the model matrix of the factor variables, and γ is the vector of factor effect

parameters;; j is the length of the factor levels and γ0 is the coefficient similar to the

maximum yield of β0. The prior for the γ0 is considered as Gamma(α, λ); for γk, we

consider the standard normal prior. Section 4.4 reveals more details about choosing these

priors. In each model, we take the first-factor level as the baseline value, for example, for

the first level of steepness factor, ZSt1 = 0 in Equation (4.13). Thus the N input MB model
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can be written as follows;

µNi = (γ0 + Z
T
i γ)[1− exp(−β1 − β2Ni)]. (4.14)

Using Equation (4.13) in Equations (4.10) and (4.11) makes it possible to calculate

the likelihood and hence posterior distribution for the effect of the factors. The form of

the posterior distribution is similar to Equation 4.11 and thus needs to use MCMC to

generate posterior samples.

4.2.3 Stage II: Posterior Sampling via MCMC

This section initially discusses MCMC with some basic terms and gives a brief overview of

the Gibbs sampling and Metropolis-Hastings algorithms. We then introduce Hamiltonian

Monte Carlo within a No-U-Turn sampler.

4.2.3.1 Markov Chain Monte Carlo

MCMC is one of the key ideas in Bayesian analysis. MCMC consists of two parts; the

first part is the Markov Chain (MC), and the second part is called Monte Carlo sampling.

MCMC is a method applied through a set of sampling algorithms used to sample the

posterior parameters using MC [113].

A MC is the basis of MCMC to generate the posterior samples from a potentially

complex, high-dimensional and non-conjugate probability distribution. With a large num-

ber of iterations, the distribution of the samples converges to the desired distribution. A

set of algorithms are used to build Markov chains, such as (i) Metropolis-Hastings, (ii)

Gibbs Sampling, (iii) Hamiltonian Monte Carlo and so on. Building a MC with the target

distribution makes it possible to sample from the posterior as samples from the Markov

chain [113].

4.2.3.2 Metropolis-Hastings (MH) Algorithm

The Metropolis-Hastings (MH) algorithm [7] generates candidates based on the full joint

density distribution of priors. MH is used to generate the sequence of random samples

from a target distribution (a distribution depends on the current sample to draw the

next sample) with a Markov chain. This algorithm works well if the proposal distribution

matches the target distribution/ posterior distribution to generate posterior samples. The

details of the Metropolis-Hastings algorithm are discussed in [33].
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The Metropolis-Hastings algorithm is infeasible to use for the Bayesian set-up discussed

in Section 4.2.1 because of choosing the appropriate initial value is quite challenging, the

low acceptance rate and slow mixing. For a non-linear mean function, it is inefficient to

compute the conditional distribution for each parameter.

4.2.3.3 Gibbs Sampling

Gibbs sampling [43] is the special case of the Metropolis-Hastings algorithm for which the

acceptance probability is always one. This sampling is based on the conditional distribu-

tions of priors rather than joint distribution. Gibbs sampling works at the two-conditional

distribution of π(x|y) and π(y|x) rather than the joint distribution of π(x, y). A detailed

explanation of Gibbs sampling is discussed in [25, 43].

The correlated nature among the parameters of the Mitscherlich-Baule model also

makes the use of Gibbs sampling impractical for our particular hierarchical Bayesian

setup. So we need to look at another possible option to generate samples considering

the parameters high dimensional and correlated nature.

4.2.3.4 Hamiltonian Monte Carlo within No-U-Turn Sampler

Hamiltonian Monte Carlo (HMC) [83, 126] is becoming a popular MCMC method due

to its unique behaviour, which use a differential equation system to produce marginal

variance to discard the random walk behavior and sensitivity to correlated parameters. It

uses algorithm differentiation to get derivatives of every parameter. HMC calculates the

gradient of the posterior distribution and can also simulate samples with a high acceptance

rate and fewer iterations for convergence over broader range of parameter space. However,

sometimes a poor parameter value selection drastically reduces the effectiveness of MCMC.

For this problem, Hoffman and Gelman [100] introduced a No-U-Turn sampler within

HMC using a recursive algorithm for the efficiency of HMC and implemented by the Stan

language [112]. The details of this method is extensively discussed in [83, 100, 126].

4.2.4 Stage III: Model Selection and Validation

In this section, we introduce multiple model selection criteria to select the best fitting

model. For this, we considered the Expected Log point-wise Predictive Density(ELPD)

[91], Leave-One-Out cross-validation criterion (LOOIC) [116], and, Widely Applicable In-



4.2. Bayesian Hierarchical Modelling Framework 45

formation Criterion (WAIC) [116] validation tools to evaluate and compare the Bayesian

models.

Let us consider for our yield Yi = (Y1, Y2, ..., Yn) given parameters B = (β0, ..., β4), the

prior distribution π(B) and the posterior distribution π(B|Yi). The Expected Log point

wise Predictive Density (ELPD) for n data points [116] can be expressed as ;

ELPD =
n∑
i=1

∫
π(y∗) log π(y∗|Yi)dy∗, (4.15)

where
∫
π(y∗) log π(y∗|Yi)dy∗ is the log predictive density for a new observation y∗, which

can not be calculated directly due to its unknown feature but can be estimated using

LOOIC and WAIC; the details are discussed as follows. In general, we would seek B

parameters that would maximise the predictive density, thus the maximum value of ELPD

is the best selection criterion. The log score log π(y∗|Yi) used for determining the predictive

density can be written as follows;

LPD = log π(y∗|Yi) =
∫
π(y∗|B) log π(B|Yi)dB. (4.16)

So, in the practice, the log point-wise density (LPD) can be calculated from the samples

of the posterior distribution π(B|Yi), and these samples can be denoted as Bk; k = 1, ...,K.

This too can be estimated by.

L̂PD =
n∑
i=1

log

(
1
K

K∑
k=1

π(Yi|Bk)
)
. (4.17)

The Leave-One-Out (LOO) approach is one of the method to estimate ELPD. So the LOO

estimate for the Bayesian model selection [116] is expressed as;

ÊLPDLOO =
n∑
i=1

log π(Yi|Y−i), (4.18)

where π(Yi|Y−i) =
∫
π(Yi|B)π(B|Y−i)dB is the LOOIC density for given yields considering

ith yields with π(Yi|B) is the likelihood and π(B|Y−i) is the posterior for the parameter

vector B.

WAIC [75] is another approach for estimating expected log point-wise predictive den-

sity and can be written as,

ÊLPDWAIC = L̂PD − π̂WAIC , (4.19)

where π̂WAIC can be calculated from
n∑
i=1

V ar(log π(Yi|B)). So for WAIC and LOOIC, we

can express them as follows;

WAIC = −2L̂PD + 2π̂WAIC ,

LOOIC = −2ÊLPD.
(4.20)
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The LOOIC and WAIC behave like the AIC criterion to minimise the information loss

and select the best fitting model with minimum information loss. Due to this reason, the

minimum value of WAIC and LOOIC are considered the best selection criterion.

4.3 Results of Bayesian Analysis

In this section, we perform the Bayesian analysis of the EPIC data corresponding to three

crops Spring Barley, Winter Barley and Silage. For the continuous set-up, we have fixed

one combination of factor variables steepness, soil and weather such that St = 5, So = 6,

Wy = 1, and Sy = 4 which generate the data for the yield with the inputs N and P .

Later on, we also demonstrate the Bayesian framework for all the factor combinations

incorporating the soil, steepness and weather.

The Mistcherlich-Baule response function, upon which we base our model, has several

characteristics which can be incorporated into the prior distributions for its parameters

[62]. Namely, we know that: (i) β0 is the maximum yield which should be positive and finite;

(ii) the intercept, β1, and slope, β2, for the Nitrogen (N) response should have positive

parameters; (iii) we expect similar properties from the Phosphorus (P ) parameters β3,

and β4. As all parameters are required to be positive, we adopt weak Gamma priors

to enforce this positivity for the parameters β1, β2, β3 and β4. Specifically, we used the

β0 ∼ Ga(Ymax, 1) for the maximum yield parameter where Ymax is the observed maximum

observed yield value for Spring Barley, which also means that E(β0) = Ymax = 4.68.

We consider the priors of the remaining parameters subjectively. For our analysis, we

choose β2 ∼ Ga(1, 10) the slope prior corresponding to N . Based on the basic yield Figures

in Chapter 3, we have seen an increasing trend for all the crops corresponding to N and

a flat trend for P which motivates to assume the prior β4 ∼ Ga(1, 500), where the mean

is close to zero. For the intercepts of N and P , we assume that β1, β3 ∼ G(5, 1) as a

weak priors around a mean of 5 to give same weight to the slopes. Finally, our error term

variance parameter σ was given a Ga(1, 100) relatively weak prior.

To sample the posterior distributions of these parameters, we used Hamiltonian Monte

Carlo-NUTS using RStan [112]. For the Hamiltonian Monte Carlo-NUTS, we perform

10000 iterations with four different chains and discard 5000 burn-in samples for each

chain as a default set-up of RStan.
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Figure 4.1: Prior and Posterior Plots for the Hyperparameters.

Figure 4.1 shows the prior and posterior density plot for the parameters of the Bayesian

hierarchical model. The prior and posterior density plots show strong learning from the

data concerning the input N for the parameters β0 and β2. However, we have seen rea-

sonable learning for the β1 such that the posterior mean is not close to prior mean. We

can not see any substantial change for the parameters β3 and β4 concerning Phosphorus

input such that prior and posterior are very close to each other. The error variance σ is

also showing strong learning and we can reveal a good understanding from the data for

the parameters β0, β2 and σ.

In Table 4.1, we present the summary of these posterior simulations, giving the mean

values for the fitted coefficients with 2.5%, and 97.5% posterior credible intervals from the

Bayesian model fitting for Spring Barley, Winter Barley and Silage simulations.

The N coefficients for all crops indicate a positive response to N of yield. Still, the

Phosphorus coefficient β4 estimate is close to zero for all crops showing a negligible reaction

to P . We also tabulate the effective sample size, neff , which varies considerably with

a good portion of accepted posterior samples. We also evaluate R̂, the potential scale

reduction factor, also known as Gelman-Rubin statistic [91] to summarise each chain in

the sampler. This statistic has the property that values between 1.00 to 1.01, indicating
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that our chains are essentially indistinguishable from one another, suggesting no evidence

of lack of convergence. For the chains corresponding to the results in Table 4.1, all the

R̂ values lie between 1.00 to 1.01, suggesting a suitable level of convergence had been

achieved. For four parallel chains, it is recommended that neff should be at least 400 to

make R̂ useful for the HMC-NUTS [135]. So, we can see that our effective sample sizes are

far higher than the recommended size, which indicates the MCMC simulation is working

effectively.

Table 4.1: Posterior Sample Summary Statistics (1.0 ¬ R̂ < 1.02)

Crops Coefficients Mean 2.5% 97.5% neff

β0 4.172 3.871 4.502 7472

β1 0.125 0.101 0.153 14163

Spring Barley β2 0.015 0.013 0.018 7713

β3 6.900 4.412 11.213 11925

β4 0.001 0.00002 0.004 17539

σ 0.238 0.212 0.267 9571

β0 4.824 4.539 5.117 6371

β1 0.031 0.013 0.053 15204

Winter Barley β2 0.022 0.019 0.025 6426

β3 7.005 4.857 10.080 11495

β4 0.0002 0.000004 0.0007 18526

σ 0.336 0.294 0.384 7538

β0 17.269 17.057 17.499 6417

β1 0.838 0.825 0.853 7462

Silage β2 0.016 0.014 0.017 6804

β3 13.009 6.954 20.917 13449

β4 0.005 0.0001 0.018 17839

σ 0.127 0.113 0.144 13390

Diagnostic trace plots for the crops Spring Barley, Winter Barley and Silage with four

different chains are shown in Figure 4.2, 4.5 and 4.6, indicating generally good mixing and

no signs of lack of convergence of the chains. From the pairs plot in Figure 4.3 for the crop
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Spring Barley, we can see some parameters are weakly correlated. Others are negatively

correlated, such as β0 with β2. For the autocorrelation plot in Figure 4.4, all parameters

show a decreasing trend with the increase of the lags, indicating good mixing of chains.

The parameter β4 showed a weakly correlated relationship with all other parameters. In

further diagnostics of auto-correlations, pairs plots for all the crops showed no features of

concern.
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Figure 4.2: Trace plot for the Crop Spring Barley.
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Figure 4.3: Pairs plot for the crop Spring Barley.
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Figure 4.4: Autocorrelation Diagnostic Plot for the Crop Spring Barley.
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Figure 4.5: Trace Plot for the Crop Winter Barley.
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Figure 4.6: Trace Plot for the Crop Silage.

Synthesising these results, in Figure 4.7, we plot the yield data (black circles) along-

side the point predictions (green circles), predicted yield curve (black line), 95% credible

intervals (blue line) for the mean function only and 95% predicted credible intervals (red

line) shows the credible intervals corresponding to the yield Y . We note that the simulated

data lie within the predicted credible intervals with narrow uncertainty.
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Figure 4.7: Non-linear Bayesian Model Fitting for the Crops Spring Barley (right); Winter

barley (middle); Silage (right).

4.3.1 Model Comparison and Validation

Not all crops are expected to respond to both inputs, so we use model selection tools to

identify the appropriate model in terms of the fertiliser response. It is reasonable to con-

sider whether retaining Phosphorous in the yield model is meaningful after observing such

weak dependency. Given the results observed above, where the influence of Phosphorous

in the model appeared negligible, we now move to model comparison. We considered three

possible models for yield response: (i) Nitrogen only, (ii) Phosphorus only, and (iii) both

Nitrogen and Phosphorus giving the following mean functions.

µNi = β0[1− exp(−β1 − β2Ni)],

µPi = β0[1− exp(−β3 − β4Pi)], (4.21)

µNPi = β0[1− exp(−β1 − β2Ni)][1− exp(−β3 − β4Pi)].

To select between the models, we apply the criteria of Subsection 4.2.4. Evaluating

the ELPD, LOOIC, and WAIC statistics gives the results in Table 4.2, where we see that

every crop favours the N only model highlighted in red. We observe that the values of

ELPD are maximised for the N -only model and minimised for the LOOIC and WAIC as

desired. So we remove P from the model for further analysis.
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Table 4.2: Bayesian Model Comparison Results

Crops Models ELPD LOOIC WAIC

N 251.1 -502.2 -502.3

Spring Barley P -135.6 271.2 271

N + P 225.4 -450.8 -497.5

N 246.1 -492.2 -492.3

Winter Barley P -140.6 281.2 280

N + P 219.7 -439.4 -481.5

N 91.2 -182.4 -182.34

Silage P -290.9 581.8 581.71

N + P 89.1 -178.2 -180.7

4.4 Results of Incorporation of a Factor Variable

We now apply the approach described in Section 4.2.2 with an N -only model as suggested

by the model selection above in Table 4.2. Our data set has three different factor inputs:

steepness, soil, and weather. We have seen the same result pattern of a solid response to

Nitrogen and a weak response to Phosphorus for all the crops for the Bayesian model with

continuous inputs. Now, we explore including categorical variables in the model for the

Spring Barley crop only.

We consider the effect of including a single factor variable into the model, as in Equa-

tion (4.14). In each model, we take the first-factor level as the baseline value giving up

to seven additional parameters depending on the factor variable denoted by the vector

ZTi representing the deviation of the maximum yield from this baseline value. We note

that the three-factor variables are such that we have four levels of steepness, three levels

of soil, and eight levels of weather as discussed in Chapter 2. The priors for γ0, β1 and

β2 the same as the priors of β0, β1, β2 from the continuous set up. The factor effect

ZTi in Equation (4.13) can be positive or negative (to allow the negative effect of factor

effects). Without precise information on the model’s behaviour under the different factor

levels, Normal independent priors were adopted for each component of ZTi with mean 0
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and variance 1.

In Table 4.3, we present the summary statistics for the Spring Barley crop using N input

only without the factors. The Nitrogen coefficients indicate a strong positive response to

Nitrogen of yield. The R̂ statistic means that our chains are mixing well such that there is

no evidence of lack of convergence. For the chains corresponding to the results in Table 4.3,

all the R̂ values lie between 1.00 to 1.01, suggesting a suitable level of convergence had

been achieved.

Table 4.3: Posterior Sample Summary Statistics for Spring Barley N Only Model (1.0 ¬

R̂ < 1.01)

Crops Coefficients Mean 2.5% 97.5% neff

β0 4.164 3.869 4.483 6092

β1 0.126 0.102 3.152 9261

Spring Barley β2 0.015 0.013 0.018 6224

σ 0.238 0.212 0.267 7119

Now, we consider the models of Spring Barley yield which include each one of the

categorical variables. Applying the same Hamiltonian Monte Carlo-NUTS approach used

previously for the continuous inputs, we obtained the summary statistics given in Table 4.4

from our factor posterior simulations. Introducing the factors to the model has increased

the overall acceptance rate compared to Table 4.3. In diagnostics, all of the R̂ values lie

between 1.00 to 1.01, suggesting no evidence of lack of convergence of our posterior samples.

The sum of γ0, and γk,i is greater than zero for all three factors such that maximum yield

coefficient β0 is positive.

In general, most of the estimated values for the effects of different levels of the factors

are far from zero except the weather factor level ZW6 , indicating a negative departure from

the baseline maximum yield level. Additionally, we observe that the posterior estimates of

the error variance parameter have increased from 0.238 to 0.26 for the steepness factor, 0.34

for soil factor, and 0.36 for weather factor, after adding the factors into our modelling. This

indicates a broader uncertainty due to the additional variability and increasing number

of parameters through the expanded model. We have seen a broader uncertainty for the

factor of weather due to more variation of the simulations.
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Table 4.4: Posterior Sample Summary Statistics for N -only Spring Barley Model, each

Including a Single Factor Input (1.0 ¬ R̂ < 1.01)

Factor Coefficients Mean 2.5% 97.5% neff

γ0 4.18 3.97 4.40 7137

β1 0.12 0.10 0.13 14104

Steepness Only β2 0.014 0.012 0.016 8017

ZSt2 0.21 0.10 0.33 10154

ZSt3 0.18 0.07 0.30 10587

ZSt4 0.14 0.03 0.26 10282

σ 0.26 0.24 0.28 8862

γ0 4.15 3.90 4.42 7707

β1 0.15 0.14 0.17 13300

Soil Only β2 0.013 0.011 0.015 7280

ZSo2 0.94 0.79 1.11 10543

ZSo3 1.91 1.73 2.09 9674

σ 0.34 0.33 0.38 9810

γ0 4.15 3.96 4.35 6388

β1 0.05 0.04 0.06 9756

Weather Only β2 0.013 0.012 0.014 5461

ZW2 2.0021 1.82 2.19 5603

ZW3 2.70 2.51 2.89 5236

ZW4 3.71 3.50 3.92 4906

ZW5 0.46 0.40 0.64 6309

ZW6 2.48 2.29 2.67 5599

ZW7 -0.28 -0.46 -0.10 6472

ZW8 4.86 4.63 5.10 4985

σ 0.36 0.35 0.39 9044

The estimated value of the coefficients β1 is similar for the factors steepness and soil,

which is expected. However, introducing the factor weather has decreased the estimated

value of β1 from the baseline model values from Table 4.3. The estimate for β2 remained



4.4. Results of Incorporation of a Factor Variable 56

moreover similar after factoring compared to the base result in Table 4.3. Compared to the

baseline N-only model, the coefficient for the maximum yield γ0 is approximately equal to

β0.

The trace plots in Figures 4.8, 4.10, and 4.9 of the model fitting for the factor soil,

weather, and steepness still show good mixing of the chains for all the coefficients. Ad-

ditionally, an inspection of auto-correlation plots 4.12 showed that not much information

is lost because the factors’ thinning and posterior density plots 4.11 also show normality,

which is the expected attribute for the density plot diagnostic. The equivalent figures for

the other factors are showing similar results, see Appendix A.3.
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Figure 4.8: Trace plot for the Factor Effect Considering Soil
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Figure 4.9: Trace plot for the Factor Effect Considering Weather
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Figure 4.10: Trace plot for the Factor Effect Considering Steepness
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Figure 4.12: Autocorrelation Diagnostic Plot for the Factor Steepness.
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We plot the observed yield data (black circles) alongside the point predictions (green

circles), predicted yield curve (black line), 95% mean credible intervals (blue line), and

95% predicted credible intervals (red line). All the simulated data lie within the mean and

predicted credible intervals.

Generating plots of the predicted yield as a function of N in Figure 4.13 including the

steepness factor, we see the baseline (Steepness 1), level 2 (Steepness 2), level 3 (Steepness

3) and level 4 (Steepness 4). All the steepness factor levels shows a wider uncertainty and

we can also see that the models with factor effects all show the same trend, which is fixed

by the model, and the estimated posterior values for β1, β2, and γ0 are approximately

similar. The last three levels of the steepness factor are showing the same shape and

uncertainty, indicates little variation among the factor levels.
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Figure 4.13: Prediction Plot for the Factor Steepness

Figure 4.14 also shows the prediction plot for model including the factor soil. This

figure shows a similar trend for the baseline and soil level 2 with broad uncertainty. For the
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third level, we can see a comparatively a narrow uncertainty boundary and the simulated

values and predicted values lie within the intervals indicating well-behaved and consistent

predictions. Figure 4.15 shows the prediction plot for the factor weather, which also yields

good and consistent predictions. But compared to the other factor inputs, it offers more

variability among the factor levels. We can see that factor levels weather 4, 5 and weather

7 fit closely with slightly less uncertainty compared to the others levels. The shape of the

observations for factor levels 6 and 8 deviates from the MB model. For the large N values

baseline level is showing the growth plateau, as well as for levels 2 and 3.

The figures are showing under-confidence and bias. The failure of MB model to capture

the trend of the simulated data creates the bias and under-confidence. However, for the

factor inputs model, we have seen generally good and consistent fitting for all the curves

with an increase in variance. However, a potential improvement could be made by intro-

ducing a further factor effect to modify the β1 parameter to permit different strengths of

the relationship between yield and N at the different categorical levels.
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Figure 4.14: Prediction Plot for the Factor Soil
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Figure 4.15: Prediction Plot for the Factor Weather



4.5. Concluding Remarks 62

4.5 Concluding Remarks

The purpose of chapter 4 is to demonstrate Bayesian hierarchical modelling for the non-

linear Mistcherlic Baule model to crop yield. This chapter also illustrated this analysis by

comparing and validating the model using different modern diagnostic tools. Finally, this

chapter also incorporated factor variables into the Bayesian analysis.

From this chapter, we have learned some significant features of modern Bayesian hi-

erarchical modelling. We learned to use the non-linear function as a mean and about the

mathematical expression of the prior, posterior and likelihood functions. We utilised the

modern MCMC algorithm of HMC-NUTS. We gathered knowledge about the diagnostics

tools and their use in Bayesian inference. Finally, we experienced the challenge of fac-

tor incorporation into Bayesian inference such as under-confidence and biased behaviour

motivated us to explore different method.

A Bayesian hierarchical model has proven to be a valuable and effective tool for mod-

elling the behaviour of the critical quantity of interest in our agricultural application. The

fully-Bayesian approach allowed for appropriate modelling and capture of the uncertainties

in the problem. However, without solid prior information to inform the process, we prefer

a less computationally intensive approach that could deliver results of similar quality. For

example, a Bayes linear [59] emulator would capture much of the uncertainty without

requiring intensive simulation.



Chapter 5

Emulation Approaches For

Quantitative Inputs

5.1 Introduction

Complex computer models are usually used to represent physical systems. The evaluation

of this whole process is highly complex, contains too many parameters and requires a lot

of time [121, 139] to complete. So we often need a simple surrogate of this complex system

to assess efficiently. An alternative option to understand real-life applications is to use the

emulation technique, which mimics the behaviour of these complex computer experiments.

This chapter starts with the context of emulation by introducing the concept of a

simulator, emulator, and the basic idea of emulation in Section 5.2. In Section 5.3, we

provide the general structure of an emulator with variance and correlation specifications

and finally show the general outline of emulation approaches such as Gaussian process

emulation and Bayes linear emulation. The construction of the emulator using the Bayes

linear emulation technique for continuous inputs is illustrated in Sections 5.4 and 5.5

with maximum likelihood inference and emulator diagnostics. The Bayes linear method

is demonstrated initially using a 1-D example and then using the EPIC simulator data

of 2-D continuous inputs shown in Section 5.6. Finally, the chapter ends with concluding

remarks in Section 5.7.

63
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5.2 Context of Emulation

In this section, we discuss the context of emulation starting with the basic definition of a

simulator and emulator. We also discuss the general idea of emulation with its necessity

for the complex physical system.

5.2.1 Simulator

A simulator is the computer code used to describe a complex physical system or process. A

simulator aims to generalise the physical process, such as which input settings can be used

to model the real-life application to get the maximum output. A simulator tends to have

many combinations of inputs and outputs, which lie in a high dimensional space. This

calculation can require many thousands of lines of code to simulate the whole physical

system. The simulator is also used to compare observed data to simulated data, and the

formation for this naturally requires a fully Bayesian approach [120]. Let us consider the

following equation of a simulation process,

y = F (x), (5.1)

where y is the simulator output; x is the input(s) and F is the simulator.

Let us consider an one-dimensional (1−D) example;

F (x) =
1
2
x+ cos(x) + log(3x).

We consider F (x) as the simulator’s function for the input x. We evaluate our function

F (x) for n = 5 data points such that x = (1, 2, 3, 4, 5). The simulator output for the inputs

x is; F (x) = (1.09, 0.25,−0.68, 0.38, 3.27). Figure 5.1 is the basic 1-dimensional simulator

plot for five input points. We have five different simulator outputs for five different inputs

from 1 to 5. This problem is simple to generate, but most real simulators of physical

systems are high-dimensional, with thousands of data points, making them infeasible and

challenging to formulate.

The simulator F (x) in Figure 5.1 has only limited evaluations for those five data

points (blue). However, without evaluating the model, we do not know the behaviour of

F (x) between those five data points. So we must introduce an approach representing the

unknown behaviour of F (x) away from the evaluations.
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Figure 5.1: Plot for a Simple 1-D Simulator

5.2.2 Emulator

An emulator is a stochastic representation of a simulator that is used to represent the

uncertainty in the behaviour of F (x) for any space of input x [56]. The emulation process

can be written as the following Equation;

y
′
= f(x), (5.2)

where y′ is the emulator output; x is the input and f is the emulator, which is different

to the simulator function F . Emulators are generally fast approximations, generating the

predicted value for any given input with the related uncertainty. The simulator is certain

(only for deterministic simulators) but the emulator represents uncertain knowledge about

the simulator. The mean of f(x) is usually interpolated between F evaluations, and the

variance of f(x) is used to represent the uncertainty in the simulator values for inputs x.

5.2.3 General Idea of Emulation

The main concept of emulation is to use the small number of simulations to gain an un-

derstanding of the simulator behaviour and to use this learning to predict over input space

without re-running the model [59]. Statistical emulation is able to catch the complexity of

the simulator without knowing the underlying details of the physical system, and can be
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used to formulate model simplification, optimisation, and calibration [99]. Emulation has

been used in many fields such as climate change [95], system biology [121], hydrocarbons

reservoir [66], ocean carbon cycle [140], energy system [144], galaxy formation [71], COVID

model [137] and so on. This study explores the use of emulation in agricultural research

from an environmental complex computer simulator [134].

5.2.4 Necessity of Emulation

The use of a complex computer model or simulator is becoming more popular to model and

understand the behaviour of real-life applications or physcial systems. However, it is not

a simple task to model that physcial system due to some obstacles. Statistical emulation

is a solution to those obstacles, which is highlighted as follows;

• The simulator represents the behaviour of y over the entire input space, but it is not

easy to explore the whole range of input variables due to the model’s complexity

and computational expanse. Emulation techniques can represent the behaviour of

the entire input space of the computer model, and are simple and feasible to specify.

• For a complex model, the simulator can be defined over a high dimensional space,

requiring substantial computational resources to complete the simulation. However,

the emulation technique is a fast approximation for the same input space.

• With the complex nature of a simulator, we also need to deal with the uncertainties

such as input uncertainty, observational uncertainty, model discrepancy and so on.

This uncertainty analysis requires many simulator evaluations [127]; thus, we need

emulators to include these uncertainties.

5.3 Basic Structure and Approaches of Emulation

This section is about the basic structure of an emulator, different correlation functions

and emulation approaches. This section also discusses the various forms of correlation

functions and illustrates the two emulation techniques: Gaussian Process Emulation and

Bayes Linear Emulation. Finally, we suggest some reasons to choose one for the rest of the

analysis.
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5.3.1 General Structure of an Emulator

An emulator, meta model, or surrogate model is a fast approximation of the complex

computer model [56, 59, 74]. It is the approximation of the simulator, F , and constructed

by a set of training points say f(Xp) = {f(x(1)), ..., f(x(n))} over the input space of X

given by Xp = {x(1), x(2), ..., x(n)}, also known as design points.

The general form of an emulator f(x) for inputs x can be expressed as;

f(x) = g(x)Tβ + u(x),

=
p∑
j=1

gj(x)Tβj + u(x).
(5.3)

Equation (5.3) consists of two terms and the first term ∑p
j=1 gj(x)

Tβj represents the mean

function in regression form expressed in terms of input variables. This is the product of

basis functions gj(x) =
(
g1(x), ..., gp(x)

)
, a vector of known functions, and the parameters

βj = (β1, ..., βp) are unknown regression coefficients where j = 1, 2, ..., p.

The second term u(x) is the residual process, which is a zero mean weakly stationary

process to explain the additional variation around the mean function in terms of input x.

The emulator residual process u(x) often follows the Gaussian form of covariance, with

Cov[x, x
′
] = σ2R(x− x′), where R is the function of covariance, sigma2 is error variance

and x, x′ are two distinct inputs.

5.3.2 Active Variables and Nugget

The form of Equation (5.3) can be modified by restricting the input variables x to be the

active variables, xA, which are those inputs which are very influential for the emulation

process [66, 74]. Most complex computer simulators require a high dimensional space with

many parameters; under this situation, a portion of input variables x is used as active

inputs xA, which can explain the majority of the simulator variability. By considering the

problem in this way, high dimensional complex simulators can be modelled with substan-

tially simpler models, increasing the emulator’s performance [56, 66, 120, 121]. We can

modify the general form of the emulator as follows;

f(x) = g(xA)Tβ + u(xA) + ν(x), (5.4)

where g(xA)Tβ is the mean function in regression form for the active inputs xA only;

u(xA) is the residual variance with zero mean and Gaussian covariance for the active
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inputs xA. The final term ν(x) is called the nugget, has a zero mean and variance σ2ν such

that Cov[ν(x), ν(x′)] = σ2ν for x = x′ and 0 otherwise.

In emulation, an active variable has the most impact on the simulator. The active

variable only affects the mean function g(xA)Tβ, and the residual process u(xA). There

are many ways to select the active variables, and model selection criteria are mostly used

to determine the best inputs. On the other hand, the inactive variables, considered less

necessary and sometimes referred to as the noise variables, are not used to model fit as

the training points.

5.3.3 Variance Specification and Correlation Functions

We require a covariance function for the residual process of u(x). A common choice of

covariance function for the inputs over the output components is the following structure;

Cov

[
u(x), u(x

′
)
]
= σ2R(x, x

′
), (5.5)

where R(x, x′) is the correlation between the inputs x and x′ and σ2 is the variance of the

residual between simulator outputs. Suppose the input values are close to each other, then

we would expect the values of u to show a high correlation over the input space, and if the

inputs are far apart then we would expect a low correlation between the process values at

inputs x and x′ . There are many forms of correlations for R(x, x′), including: Exponential

Kernel, Squared Exponential Kernel, and Matérn Kernel.

One of the simple forms of the covariance function for the residual process u(x) is the

exponential kernel which can be expressed as;

R(x, x
′
) = exp

[
− θ|x− x′ |

]
, (5.6)

where θ > 0 is the correlation length. The size of the correlation length determines the

magnitude of the correlation for points of a fixed distance |x−x′ |. The exponential kernel

is positive and semi-definite and for the smoothing feature, this kernel is suitable due to

its infinitely differentiable properties. This method is sensitive to the correlation length

such that it will produce large values for a smaller length choice.

A common choice of correlation for the residual process u(x) is the squared exponential

kernel which can be expressed as;

R(x, x
′
) = exp

[
− θ(x− x′)2

]
. (5.7)
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The properties of the exponential kernel and the squared exponential kernel are more-

over similar but the latter kernel shows more smoothness. This kernel is also sensitive to

correlation length, θ.

The Matérn covariance is a covariance function between the inputs when they are

stationary only, and the basic form can be expressed as;

R(x, x
′
) =
21−s

Γ(s)

(√
2s|x− x′ |s

θ

)
Ks

(√
2s|x− x′ |
θ

)
, (5.8)

where θ is the length parameter, s is a positive power parameter, and Ks is the modified

2nd-order Bassel function. The smoothness of the process while using the Matérn function

depends on s, and it has three forms of set-up for s = 12 ,
3
2 ,
5
2 , which are as follows;

R
1
2 (x, x

′
) = exp

(
− |x− x

′ |
θ

)
, (5.9a)

R
3
2 (x, x

′
) =

(
1 +

√
3|x− x′ |
θ

)
exp

(
−
√
3|x− x′ |
θ

)
, (5.9b)

R
5
2 (x, x

′
) =

(
1 +

√
5|x− x′ |
θ

+
5(x− x′)2

3θ2

)
exp

(
−
√
5|x− x′ |
θ

)
, (5.9c)

For Matérn s = 12 the Equation (5.8) shows a similar form to the exponential kernel. This

kernel is very effective for unknown smoothness. But this method is very sensitive to the

parameters s, and θ, so proper selection of these parameters is crucial.

5.3.4 Approaches for Emulation

The general emulator form given by (5.3) can be used for all emulation problems. For rep-

resenting uncertainty, there are two main approaches: the Bayes linear emulation approach

and the Gaussian process emulation approach.

5.3.4.1 Gaussian Process Emulation

A fully Bayesian emulation process requires the joint probability distribution for all uncer-

tain quantities. One common emulation preference is to use a Gaussian process emulator

(GPE). A Gaussian process (GP) [4, 55] is a stochastic process, say Xa, of a collection

of random variables indexed by time or space a, such that for every finite set of elements

a1, a2, ..., an we can write as;

Xa1,...,an =

[
Xa1 , ..., Xan

]
, (5.10)
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where each collection Xa1 , ..., Xan follows the normal distribution and together have a joint

distribution which follows the multivariate normal distribution.

Let us assume that a Gaussian process emulator f takes inputs of x1, x2, ..., xn and

then the GP can be expressed as;

f ∼ GP
(
µ(x),Σ(x, x

′
)
)
, (5.11)

where µ(x) is the mean function, which could be a first-order polynomial function of input

variables µ(x) = g(x)Tβ, and the term Σ is the covariance function and can be expressed

as follows;

Σ(x, x
′
) = σ2[R(x, x

′
, θ)], (5.12)

where σ2 is the error variance, R(x, x′) is the correlation function, and θ is the input’s

correlation length. The GP in Equation (5.11) can be expressed as the following compact

matrix form as G = (g1(x), ..., gp(x)) and β = (β1, ..., βp);

f ∼ GP
(
Gβ, σ2[R(x, x

′
, θ)]

)
, (5.13)

where G is the matrix of basis function for regressors and β is the vector of regression

coefficients. So we need to model these parameters of β, σ2, θ by using a fully Bayesian

approach. To model these hyperparameters, we need to consider a suitable prior and then

combine with the multivariate Gaussian likelihood to obtain the posterior distribution. To

determine the posterior distribution, we often require MCMC methods.

So, for the output of design points f(x) = {f(x(1)), ..., f(x(n))} for a univariate emu-

lator f , the Gaussian process f |f(x), µ(x),Σ(x, x′) ∼ GP
(
µ∗(x),Σ∗(x, x

′
)
)

, where µ∗(x)

is the posterior mean and Σ∗(x, x′) is the posterior variance. So the posterior mean and

variance can be expressed as [142];

µ∗(x) = µ(x) + Cov[f(x
′
), f(x)]V ar[f(x)]−1

(
f(x)− E[f(x)]

)
, (5.14a)

Σ∗(x, x
′
) = Σ(x, x

′
)− Cov[f(x′), f(x)]V ar[f(x)]−1Cov[f(x), f(x′)], (5.14b)

where Cov[f(x), f(x′)] is the covariance; E(f(x′)) is the mean for testing design points

f(x
′
) and E(f(x)) is the mean for training points.

5.3.4.2 Bayes Linear Emulation Approach

Bayes linear emulation is a different emulation approach which can be used to assess the

relationship between the input and output of the simulator in terms of the adjusted mean
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and variance instead of the probability distribution [36, 59]. For the uncertain, complex

computer output, Bayes linear emulation can be viewed as a simple belief specification

and a fast approximation, which only needs the specifications for the expectations and

variances rather than the full probability distribution.

Bayes linear emulation is usually applied for complex physical systems when it requires

fewer model evaluations and precise specifications. It is widely used in different fields of

study. This approach has been used in the system biology model of hormonal cross-talk in

Arabidopsis Thailana [121, 139], human skin risk assessment [92], hydrocarbon reservoirs

[36, 66], energy system models [122], galaxy formation [71], and water research [27].

Bayes linear inference depends on expectations and measures of dispersion, which

are primitive, and its update is performed by orthogonal projection [59]. Bayes linear

emulation [59] provides a new form of diagnostic tools and removes the need of full Bayesian

probability distributions. For example, if we have two sets of random quantities, say P =

(P1, P2, ..., Pi) and Q = (Q1, ..., Qj), Bayes linear analysis updates the subjective belief

of P , given the observation Q. At first, we need to specify the prior mean E(P ) and

variance V ar(P ), and the prior mean E(Q) and variance V ar(Q). The covariance for the

vectors P and Q can be expressed as Cov(P,Q). The Bayes linear update for the vector

of observations P given Q can be expressed as,

EQ[P ] = E[P ] + Cov[P,Q]V ar[Q]−1(Q− E(Q)), (5.15a)

V arQ[P ] = V ar[P ]− Cov[P,Q]V ar[Q]−1Cov[Q,P ], (5.15b)

CovQ[P1, P2] = Cov[P1, P2]− Cov[P1, Q]V ar[Q]−1Cov[Q,P2], (5.15c)

where EQ[P ] and V arQ[P ] are the adjusted expectation and variance for the observation

of P given Q. The CovQ[P1, P2] is the covariance of the sub-collection P1 and P2 of the

observation P . So, considering the concept of training f(x) = {f(x(1)), ..., f(x(n))} and

testing data, f(x′) for a univariate emulator, the Bayes linear update can be written

similarly as (5.15);

Ef(x)[f(x
′
)] = E[f(x

′
)] + Cov[f(x

′
), f(x)]V ar[f(x)]−1(f(x)− E[f(x)]) (5.16a)

V arf(x)[f(x
′
)] = V ar[f(x

′
)]− Cov[f(x′), f(x)]V ar[f(x)]−1Cov[f(x), f(x′)]. (5.16b)

5.3.4.3 Choice of Bayes Linear or Gaussian Process Emulation

The updated emulator equations for both the Gaussian process (5.14) and Bayes linear

emulation (5.16) are the same except for the probabilistic assumptions of the Gaussian
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process. In this thesis, we prefer the Bayes linear emulation approach to the fully Bayesian

Gaussian process approach for reasons as follows:

1. We must specify the full joint distribution for all random quantities in a fully

Bayesian approach. It needs the entire probability distribution for all the random

variables for the GP emulation; on the other hand, Bayes linear emulation approach

does not require any distribution for the random variables, but it does need all

expectations and variances.

2. In a fully Bayesian approach, one of the concerns is to specify the meaningful form

of the likelihood and prior distribution. However, the Bayes linear approach does

not require taking any form of the likelihood, which makes this process simpler to

evaluate.

3. For the higher dimensional problems, the likelihood function for fully Bayesian

framework calculations can be challenging to work with, for example, due to the

surface having many peaks, needing to optimise and being high dimensional. This

causes problems in finding the posterior, but Bayes linear approach doesn’t have

these issues.

4. If the fully Bayesian approach doesn’t yield an analytic joint posterior distribution,

then MCMC methods are required to get the posterior samples. MCMC methods

are sometimes problematic due to a lengthy process to execute due to a high number

of iterations to converge, failure to mix of the chains, problems with the correlated

inputs, high dimensional parameters space and unsatisfactory autocorrelation plots.

However, the Bayes linear approach is free from this computational problem.

While the Bayes linear (BL) method has advantages over the GP method, the GP emulator

can give credible intervals due to its probabilistic nature, as well as the mean and variance.

Often, the choice between GP and BL emulator depends on the form of the problem and

philosophical view of analysis [68, 74, 78]. Suppose a problem needs a fully probabilistic

distribution; in that case, the natural choice is the GP emulator. For our situation, we

will use the Bayes linear emulation approach to avoid the burden of computational issues,

the absence of meaningful prior knowledge, and the non-conjugate form of the posterior

distribution created in Chapter 4.
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5.4 Construction of Emulators for Continuous In-

puts

From the general emulation function, we have seen the first part is the multiplication of

basis function g(x)T and parameters β, and the second part is about the residual process

u(x), which needs the covariance structure from the kernels involving two hyperparameters

σ2 and θ. Given a lack of useful information about β, σ2, θ, and the non-linear way in which

(σ2, θ) appear in the emulator, we will seek to estimate these quantities by maximum

likelihood. Given that large volume of available data, the MLE and Bayes estimates will

be sufficiently close that the impact will be negligible.

5.4.1 Maximum Likelihood Inference for the Parameters

The form of the emulator for the single model can be written as;

f(x) = g(x)Tβ + u(x). (5.17)

The first part of the above equation can be expressed in matrix form G = (g1(x), g2(x),

..., gp(x))T and β = (β1, β2, ..., βp)T ; p is the total number of regression parameters. In the

emulator, most of the response variables’ structural behaviour is captured by the trend

component, with the reminder explained by the residual GP. Assume that the emulator

takes the form, f(x) ∼ (Gβ, σ2Rθ). Then the likelihood function can be written as,

L(β, σ2, θ|f(x)) = 1√
(2πσ2)n|Rθ|

exp
[
− 1
2σ2
(f(x)−Gβ)TR−1θ (f(x)−Gβ)

]
,

= (2π)−n/2(σ2)−n/2|Rθ|−1/2 exp
[
− 1
2σ2
(f(x)−Gβ)TR−1θ (f(x)−Gβ)

]
.

(5.18)

Now taking logarithmic transformation on Equation (5.18) gives;

LL(β, σ2, θ|f(x)) = −n
2
ln(2π)− n

2
ln(σ2)− 1

2
ln |Rθ| −

1
2σ2
(f(x)−Gβ)TR−1θ (f(x)−Gβ).

(5.19)

With negative log likelihood:

NL(β, σ2, θ|f(x)) = −1× LL(β, σ2, θ|f(x))

= c+
n

2
ln(σ2) +

1
2
ln |Rθ|

+
1
2σ2
(f(x)−Gβ)TR−1θ (f(x)−Gβ),

(5.20)

where c = n2 ln(2π) is a constant.
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Theorem 5.4.1. If f(x) ∼ MVN(Gβ, σ2Rθ), then the estimates of the parameters are

β̂ = (GTR−1θ G)
−1GTR−1θ f(x) and σ̂2 = 1n(f(x)−Gβ̂)

TR−1θ (f(x)−Gβ̂) respectively where

θ is assumed known, which is generalized least squares problem [3, 8].

Proof. Ignoring the common factor of −12 from Equation (5.19) and considering the first

term as constant gives us the above-simplified likelihood equation in Equation (5.20).

Now the work is to estimate the parameters β and σ2 using the generalized least squares

method. So differentiating Equation (5.20) for β and equating zero gives us the estimate

for the β coefficient.

From Equation (5.20) and using the gradient of quadratic matrix equation, we can

write that;

∂NL

∂β
= (f(x)−Gβ)TR−1(f(x)−Gβ) = 0,

= −(f(x)−Gβ)TR−1θ G− (f(x)−Gβ)
TR−1θ G,

= −2(f(x)−Gβ̂)TR−1θ G.

For two invertible matrices of same order we can write (Gβ)T = βTGT and setting
∂NL
∂β = 0 at β = β̂:

−2(f(x)−Gβ̂)TR−1θ G = 0,

−(f(x)−Gβ̂)TR−1θ G = 0,

−f(x)TR−1θ G+G
T β̂TR−1θ G = 0,

GT β̂TR−1θ G = f(x)
TR−1θ G,

(Gβ̂)TR−1θ G = f(x)
TR−1θ G,

β̂TGTR−1θ G = f(x)
TR−1θ G,

β̂T = f(x)TR−1θ G(G
TR−1θ G)

−1,

β̂ =
[
(GTR−1θ G)

−1
]T
(f(x)TR−1θ G)

T ,

β̂ = (GTR−1θ G)
−1GTR−1θ f(x).

Now again, for Equation (5.20) make the substitution for the precision φ = 1
σ2 , differ-

entiate with respect to φ and equate to zero, which gives us the estimate for φ and hence

σ2. From Equation (5.20) we can write that;

NL(β, φ, θ) = −c− n
2
ln
( 1
φ

)
− 1
2
ln |Rθ| −

1
2
φ(f(x)−Gβ̂)TR−1θ (f(x)−Gβ̂),
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= c+
n

2
ln(φ)− 1

2
ln |Rθ| −

1
2
ln |Rθ| −

1
2
φ(f(x)−Gβ̂)TR−1θ (f(x)−Gβ̂).

Now setting ∂NL(β,φ,θ|f(x))∂φ = 0 at φ = φ̂ and then substituting in variance of the MLE

where φ̂ = 1
σ̂2

:

n

φ̂
− (f(x)−Gβ̂)TR−1θ (f(x)−Gβ̂) = 0,

nσ̂2 = (f(x)−Gβ̂)TR−1θ (f(x)−Gβ̂),

σ̂2 =
1
n
(f(x)−Gβ̂)TR−1θ (f(x)−Gβ̂).

It is noted that both β̂ and σ̂2 depends on θ.

Theorem 5.4.2. If the emulator f(x) = Gβ + V , where V = u(x1, ..., xp)T with residual

variance V is σ2Rθ then V ar(β̂) = σ̂2(GTR−1θ G)−1 [3, 8] also depend on θ.

Proof. The variance V ar(β̂) can be calculated from the following equation;

V ar(β̂) = E[(β̂ − β)(β̂ − β)T ]. (5.21)

Considering the estimate of β̂ from Theorem 5.4.1;

β̂ = (GTR−1θ G)
−1GTR−1θ f(x),

= (GTR−1θ G)
−1GTR−1θ (Gβ + V ),

= (GTR−1θ G)
−1GTR−1θ Gβ + (G

TR−1θ G)
−1GTR−1θ V,

= β + (GTR−1θ G)
−1GTR−1θ V.

(5.22)

Now we put the value of β̂ from Equation (5.22) into Equation (5.21). Since E(V ) = 0

then E(V V T ) = σ2Rθ, and also by symmetry E(V V T )T = E(V V T ). Now fixing σ2 = σ̂2,

and also using the symmetry of Rθ to get (R−1θ )T = RTθ we have;

V ar(β̂) = E
[
(β + (GTR−1θ G)

−1GTR−1θ V − β)(β + (G
TR−1θ G)

−1GTR−1θ V − β)
T
]
,

= E
[
{(GTR−1θ G)

−1GTR−1θ V }{(G
TR−1θ G)

−1GTR−1θ V }
T
]
,

= (GTR−1θ G)
−1GTR−1θ E(V V

T )R−1θ G(G
TR−1θ G)

−1,

= E(V V T )R−1θ (G
TR−1θ G)

−1(GTR−1θ G)(G
TR−1θ G)

−1,

= σ̂2RθR
−1
θ (G

TR−1θ G)
−1,

= σ̂2(GTR−1θ G)
−1.
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The overall negative log-likelihood function can be written in a simplified way by

introducing the estimate of σ̂2 into Equation (5.19) which gives;

NL = −n
2
ln(2π)− n

2
ln(σ̂2)− 1

2
ln |Rθ| −

1
2σ2
(f(x)−Gβ̂)TR−1θ (f(x)−Gβ̂),

= −n
2
ln(2π)− n

2
ln(σ̂2)− 1

2
ln |Rθ| −

1

2 1n(f(x)−Gβ̂)TR
−1
θ (f(x)−Gβ̂)

(f(x)−Gβ̂)TR−1θ (f(x)−Gβ̂),

= −n
2
ln(2πσ̂2)− 1

2
ln |Rθ| −

n

2
.

(5.23)

where σ̂2 and Rθ depends on the correlation parameters θ. Equation (5.23) can be used as

the objective function in the minimisation problem and can be solved to find the maximum

likelihood estimates for σ̂2, β̂, θ̂.

θ̂

[
σ̂2, β̂

]
= min

θ

[
− n
2
ln(2πσ̂2)− 1

2
ln |Rθ| −

n

2

]
.

Subject to θi  0; i = 1, ..., p

(5.24)

5.4.2 Introducing Nugget Effect on Optimisation

Introducing the nugget term affects the emulator interpolation for noisy data by imposing

a small positive quantity as a diagonal covariance matrix element. Given that for a single

x, V ar[u(x)] = σ2, the incorporation of an independent nugget term ν(x) of size σ2v would

mean that,

σ2 = V ar(u(x)) = Σ = V ar[u(xA)] + V ar[ν(x)],

= σ2A + σ
2
ν .

(5.25)

Thus a convenient parameterisation is to consider σ2ν as a function of δ and σ2, so from

Equation (5.25) we can write;

σ2 = (1− δ)σ2 + δσ2, (5.26)

Wherever x ̸= x′ , we would also have V ar[u(x), u(x′)] = (1 − δ)σ2Rθ(x, x
′
) So, now

our emulator of f(x) will follow a multivariate normal distribution with mean Gβ and

variance-covariance σ2R[θ,δ]. So all the maximum likelihood estimate equations will be

changed from Rθ to R[θ,δ] to include the nugget effect. And the new objective function

with the nugget effect can be expressed as similar way as in Equation (5.24).
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5.4.3 Algorithm to Estimate Correlation Parameters

We have showed the Equations to estimate the coefficients and the objective function

with the nugget effect in the previous Sections. Now, we need to follow certain steps to

estimate the correlation parameters and nuggets. Initially, we need to set up a non-linear

function like Equation (5.24) and then use it as an optimisation function with the relevant

algorithms to estimate the parameters. A nice way to present this is to use an algorithm

which is given as follows;

Algorithm 1 Estimation process for the MLE and correlation parameters
1: Calculate the Gaussian correlation matrix R[θ,δ] with the nugget effect.

2: Calculate the inverse of the R[θ,δ].

3: Calculate the determinant R[θ,δ].

4: Calculate β̂ = (GTR−1[θ,δ]G)−1GTR
−1
[θ,δ]f(x) .

5: Calculate σ̂2 = 1
n
(f(x)−Gβ̂)TR−1[θ,δ](f(x)−Gβ̂)

6: Calculate V ar(β̂) = σ̂2(GTR−1[θ,δ]G)−1.

7: Use an optimisation technique within the constraints for θ and δ, to give us the

estimate for the correlation parameters and nugget term.

5.5 Construction of the Bayes Linear Emulator

5.5.1 Emulator Prior Specifications

To fit the emulator f(x) for complex computer experiments, we need some specifications,

known as prior specifications, before fitting the emulator. From the updated Equations

(5.16), we have the terms E[f(x)], E[f(x′)], V ar[f(x′)]−1, V ar[f(x)], Cov[f(x′), f(x)],

to specify before the evaluation of the emulator. These terms are known as the prior

specifications. These specifications are needed to update the adjusted mean and variance

of the Bayes linear emulation. The important ingredients are as follows;

• Basis functions
[
g(x)

]
: The basis functions are crucial to represent the behaviour

of the simulator mean. There are many ways to select the basis functions, such as

model selection criterion, or to assess them from emulator diagnostic tools, such as

standard prediction errors, resolution, etc. These can also be selected [82] by expert
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knowledge and elicitation, or for extensive model evaluations g(x) may follow the

form of polynomials, Fourier functions and so on. One can also explore the data to

suggest the appropriate functions to use as the basis function.

• The prior mean, variance and covariance (between each pair) for the regression

parameters (β1, ..., βp). The MLE estimate for these parameters can be estimated

from Algorithm 1 using the training data. After estimating these parameters, we

can multiply them by the basis functions to calculate the prior mean for the testing

and training data. It is noted that β̂, σ̂2, θ̂ are fixed and known at MLE values. More

details about the process are illustrated in Sections 5.5.2 and 5.5.3.

• The prior expectation and variance of the residual covariance u(x). It is the multi-

plication of residual variance σ2 and covariance function R(x, x′) with correlation

parameter θ and nugget δ. In addition, residual variance σ2 and the correlation

function parameter θ require specification [120] which can also be calculated using

the Algorithm 1.

5.5.2 Calculation of Bayes Linear Emulation

The general form of a univariate emulator is based on a combination of a regression surface

with correlated errors for observed and unobserved data can be written as follows:

f(x) = g(x)Tβ + u(x), (5.27a)

f(x
′
) = g(x

′
)Tβ + u(x

′
), (5.27b)

where x and x′ are two distinct points treated as the emulator training and testing data

points. Based on the univariate emulator with training points x and testing points x′ , the

Bayes linear update can be written on the basis of general forms of the emulator;

Ef(x)[f(x
′
)] = E[f(x

′
)] + Cov[f(x

′
), f(x)]V ar[f(x)]−1(f(x)− E[f(x)]), (5.28a)

V arf(x)[f(x
′
)] = V ar[f(x

′
)]− Cov[f(x′), f(x))]V ar[f(x)]−1Cov[f(x), f(x′)]. (5.28b)

Due to property of weakly stationary process we can write, E(u(x)) = 0andE(u(x′)) = 0.

We know that from general covariance formula, Cov[β, u(x)] = E[β u(x)] − E(β)E[u(x)]

such that Cov(β, u(x′)) = 0; Cov(u(x), β) = 0 as E(u(x)) = 0. Using Equation (5.27a) and
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(5.27b) into the Equation (5.28a), we can write for the expectation part of the emulator:

Ef(x)[f(x
′
)] = E[f(x

′
)] + Cov[f(x

′
), f(x)]V ar[f(x)]−1(f(x)− E[f(x)]),

= E[g(x
′
)Tβ + u(x

′
)] + Cov[g(x

′
)Tβ + u(x

′
), g(x)Tβ + u(x)]V ar[f(x)]−1,

×
(
f(x)− E(g(x)Tβ + u(x)

)
,

= E[g(x
′
)Tβ] + Cov[g(x

′
)Tβ + u(x

′
), g(x)Tβ + u(x)]V ar[f(x)]−1

×
(
f(x)− E(g(x)Tβ)

)
,

= g(x)TE(β) +
[
Cov[g(x)Tβ, g(x)Tβ] + Cov[g(x

′
)Tβ, u(x)] + Cov[u(x

′
), g(x)Tβ],

+ Cov[u(x
′
), u(x)]V ar

[
f(x)

]−1(
f(x)− E(g(x)Tβ)

)
,

= g(x
′
)TE(β) +

[
Cov[g(x

′
)Tβ, g(x)Tβ] + Cov[u(x

′
), u(x)]

]
,

× V ar
[
f(x)

]−1(
f(x)− g(x)TE(β)

)
,

= g(x
′
)TE(β) +

[
g(x

′
)TCov[β, β]g(x) + Cov[u(x

′
), u(x)]

]
,

× V ar[f(x)]−1
(
f(x)− g(x)TE(β)

)
,

= g(x
′
)TE(β) +

[
g(x

′
)TV ar[β]g(x) + Cov[u(x

′
), u(x)]

]
V ar[f(x)]−1,

×
(
f(x)− g(x)TE(β)

)
.

(5.29)

The Bayes linear adjusted mean formulation of Equation (5.29) is similar to the posterior

mean function of Equation (5.14) of the Gaussian process emulation. For the variance part

of the Bayes linear update, we know that:

V arf(x)[f(x
′
)] = V ar[f(x

′
)]− Cov[f(x′), f(x)]V ar[f(x)]−1Cov[f(x), f(x′)],

= V ar[f(x
′
)]−

[
g(x

′
)TV ar[β]g(x) + Cov[u(x

′
), u(x)]

]
V ar[f(x)]−1,

×
[
g(x)TV ar[β]g(x

′
) + Cov[u(x), u(x

′
)]
]
.

(5.30)

We need to expand the V ar[f(x)] and V ar[f(x′)] such that;

V ar[f(x)] = V ar
[
g(x)Tβ + u(x)

]
,

= g(x)TV ar[β]g(x) + V ar[u(x)],

= g(x)TV ar[β]g(x) + Cov[u(x), u(x)].

(5.31)
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V ar[f(x
′
)] = V ar

[
g(x

′
)Tβ + u(x

′
)
]
,

= g(x
′
)TV ar[β]g(x

′
) + V ar[u(x

′
)],

= g(x
′
)TV ar[β]g(x

′
) + Cov[u(x

′
), u(x

′
)].

(5.32)

So Equation (5.30) can be written as;

V arf(x)[f(x
′
)] =

[
g(x

′
)TV ar[β]g(

′
) + Cov[u(x

′
), u(x

′
)]
]
−
[
g(x

′
)TV ar[β]g(x) + Cov[u(x

′
), u(x)]

]
,

×
[
g(x)TV ar[β]g(x) + Cov[u(x), u(x)]

]−1[
g(x)TV ar[β]g(x

′
) + Cov[u(x), u(x

′
)]
]
.

(5.33)

The Bayes linear adjusted variance formulation of Equation (5.33) is also similar to

the Gaussian process emulation posterior variance function of Equation (5.14).

5.5.3 Formulation of Bayes Linear Emulation

The formulation of the Bayes linear emulation has been illustrated extensively in the

previous Sections. So for simplification, we have formulated the whole procedure step by

step, described as follows;

1. Step 1: Construct the data frame for the basis of continuous inputs, denoted by G

such that G = (g1(x), g2(x), , ..., gp(x)).

2. Step 2: Find estimate the maximum likelihood estimates of the correlation param-

eters and all other parameters considering the objective function (5.24).

3. Step 3: Calculate the mean function values by using β̂: Find the estimates of β̂ =

(GTR−1θ G)
−1GTR−1θ f(x), then multiplying and summing with basis terms gives

the prior mean for training E[f(x)] and testing E[f(x′)] data points. This part is

considered as emulation’s regression part.

4. Step 4: Estimate V ar(β̂) and calculate the variance part of the emulation using

g(x)TV ar[β]g(x) for training points and same way for the testing points.

5. Step 5: Residual process u(x): This part is known as the Gaussian part can be

calculated using kernels such that Cov[u(x′), u(x)] = σ̂2R[θ,δ]. The first part σ̂2 and

the second part R[θ,δ] depends on the correlation length θ and nugget δ, which are

possible to estimate using Algorithm 1.
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6. Step 6: Now add the variance and Gaussian parts from Step 4 and Step 5 to calculate

the variance of training and testing data from Equations (5.31) and (5.32).

7. Step 7: Finally, we needed to add every element from Steps 1-6 to give us the

adjusted expectation and variance for the Bayes linear emulation for the continuous

inputs.

5.5.4 Diagnostics of Bayes Linear Emulation

To assess the validity of our emulator, we can compute various diagnostics such as (i)

resolution, (ii) standardised prediction errors (iii) Mahalanobis distance.

Firstly, the resolution [59] of the Bayes linear update can be expressed as,

Rf(x)[f(x
′
)] = 1−

V arf(x)[f(x
′
)]

V ar[f(x)]
. (5.34)

The resolution lies between 0 and 1 and functions much like a classical R2 where resolution

values close to 1 indicate a high proportion of the variation has been explained. Values

close to 0 indicate the emulator is unable to explain the variation in the simulator. The

resolution is related to the emulator adjusted variance but they are not reciprocal.

Secondly, the standardised prediction errors (SPE) or squared standardised changes

[59, 64] are the differences between simulator output and emulator expectation for the same

input. For a simulation value of ys with corresponding inputs the SPE can be expressed

as,

SPE =
ys − Ef(x)[f(x

′
)]√

V arf(x)[f(x
′)]
. (5.35)

Large values of SPE indicate an apparent conflict between the emulator and simulator,

indicative of deficiencies in the fit of the emulator or surprising simulator output values.

Generally, the SPE threshold is considered as +2 and −2 [64]. An enormous value or

outlier on the edge of input space can be discounted due to the difficulty of emulating on

that space. Values larger than ±2 are considered poor matches between the emulator and

the simulator. If most values lie within ±2, it is regarded as a good match between the

emulator and the simulator.

Finally, the Mahalanobis distance (MD) between the simulator outputs and the emu-

lator outputs at testing points can be expressed as;

MD = (ys − Ef(x)[f(x
′
)])TV arf(x)[f(x

′
)](ys − Ef(x)[f(x

′
)]), (5.36)
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where very large or small values outside the range of−2 to+2 for the observed Mahalanobis

distance (MD) indicate clear conflict between the emulator and simulator [64].

5.5.5 One Dimensional Example

The simple one-dimensional (1-D) example can be considered;

F (x) =
1
2
x+ cos(x) + log(3x). (5.37)

Recalling the data points and the simulator outputs from Section 5.2.1, we construct an

emulator to get the simulator output F (x) at new testing points from 0.01 to 5 with an

evenly spaced distance of 0.005, which creates 999 points. The emulator adjusted mean

and variance are calculated using the Equations (5.29) and (5.33), respectively. For our

analysis, we used the maximum likelihood estimate technique algorithm and the L-BFGS-

B [39] method to estimate the value of correlation parameters. We also assume E[f(x)] = 0

and E[f(x′)] = 0 for all x considering the values of β are zero. This problem has no nugget

such that δ = 0. We have estimated σ2 = 0.75 and the correlation parameter θ = 0.45

using MLE. So the prior covariance for inputs x and x′ can be written as;

Cov[f(x), f(x
′
)] = 0.75× exp{−0.45(x− x′)2}. (5.38)

Considering all our prior belief specifications, we updated the Bayes linear emulation

adjusted expectation and variance. Figure 5.2 shows the result of the fitted emulator.

0 1 2 3 4 5

−1
0

1
2

3

x

F(
x)

Figure 5.2: x-axis: x is the inputs, y-axis: F (x) is the simulator outputs. Emulator Adjusted

expectation Ef(x)[f(x
′
)] (red colour) with ±3 Emulator Standard Deviation V arf(x)[f(x

′
)]

(green colour)
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The smooth red line represents the emulator expectation Ef(x)[f(x
′
)], and the two

green lines are at ±3 of the emulator standard deviation. The blue circle points are our

training points of F (x).

So from the result, we can see that our emulator adjusted expected line passed through

our five simulator outputs of f(x) with a narrow uncertainty and some uncertainty for the

initial points. In the next Section, we demonstrate emulation techniques over the EPIC

simulator data of continuous inputs in 2-D space. We also check the validity of our emulator

using the diagnostic tools and fit the emulator with more training points on a grid.

5.6 Application to EPIC Simulator Data

In this Section, we extend our problem to a two-dimensional problem of the EPIC simulator

data set for the continuous inputs of Nitrogen and Phosphorus.

5.6.1 Emulator Fitting for Crop Spring Barley and Winter

Barley

To construct our Bayes linear emulator, we structure the mean function as a simple regres-

sion in terms of the simple basis [1, N, P ]. Thus, for the prior expectation of the simulator

f(x) we can write as E[f(x)] = E[β0] + E[β1]N + E[β2]P , in terms of three regression

coefficients β0, β1, β2. Values for these three coefficients, nuggets δ and σ2, were estimated

by maximum likelihood over the training data set. The correlation length parameters for

N and P were estimated at θ̂N = 0.02 and θ̂P = 0.03, respectively. The nugget parameter

is estimated as δ̂ = 0.05, and the error variance is estimated as σ̂2 = 1 for the emulation

process. So only the Gaussian process is updated from data via Bayes linear emulation

approach.

For our analysis, we present results from a subset of crops, namely Spring and Winter

Barley. For both of the crops, we have considered one input simulation combination by

fixing St = 5, So = 6, Wy = 1, Sy = 4 for Spring Barley and Sy = 6 for Winter

Barley, respectively, which explores a 12 × 12 grid of combinations of the two fertilizer

inputs, N and P . Focusing on this single grid of simulated yield, we construct a Bayes

linear emulator based on a simple linear regression and a correlated error with squared

exponential covariance function using 60% of the available data for fitting, reserving the
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remaining 40% for testing and diagnostics.

The emulator is finally updated for the new training data a 100 × 100 grid via the

Bayes linear formulae in (5.29) and (5.33) for the functions of N and P , which are used to

calculate the adjusted emulator mean, standard deviations and the diagnostic resolution.

For the diagnostic of the standardized prediction errors, we used the 40% data from the

EPIC simulator, as we can not generate the yield for this extended grid.

Figures 5.3 and 5.4 show the result of emulator adjusted mean and standard deviations

with resolution diagnostics for the crop Spring Barley and Winter Barley, respectively.

Figure 5.3: Upper Panel: Adjusted Emulator Mean and Standard Deviations for Spring

Barley; Lower Panel: Resolution Diagnostic.

The left upper and right upper panels show the adjusted emulated mean and its as-

sociated standard deviations as functions of N and P . We note that the crop yield is

monotonically increasing with increasing Nitrogen levels and higher for high N values.

The crop yield appears insensitive to values of P for both crops. The weak effect of P

is much more apparent showing a flat trend such that the dependency on Phosphorous

has disappeared entirely due to more prediction points. This trend is exactly showing the
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same outcome as in Chapters 3 and 4. The adjusted standard deviations plot illustrates

low-level uncertainty around the locations of simulations and flat all over the grid space

and an increasing trend as we move away from those simulation points for the low levels

of N .

Figure 5.4: Upper Panel: Adjusted Emulator Mean and Standard Deviations for Winter

Barley; Lower Panel: Resolution Diagnostic.

From diagnostics of the resolution, we can see high flat resolution all over the space of

greater than 0.9, indicating the emulator is very confident in explaining the variability of

the simulator. The simple linear regression fitting using lm() function in R-language for

N and P inputs shows R2 = 0.9482 that 94.82% of the variation of the dependent variable

yield can be explained by the independent variables fertilisers. Clearly, the emulator and

simulator have no conflict, hence the valid emulators for both crop yields.

Diagnostic plots of standardised prediction errors for emulating Spring Barley yield

and Winter Barley are given in Figures 5.5 and 5.6. All points lie within ±2, suggesting

high consistency and agreement between the emulator and the simulator. The SPE are

all smaller than 1 for both crops, indicating the under-confidence of the emulators. The
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problem of under-confidence depends on the specific application, such as the concern of

sufficient reflection of beliefs about the emulators [120]. It is noted that overconfidence is

treated as more problematic than under-confidence if the emulators are used for history

matching [120]. For this problem, we only use 40% of the 144 observations, which is a small

number of prediction points, and they are also consistent with error variance σ2 = 1. All of

these prediction points are very close to emulator-adjusted expectations. SPE will exhibit

more variations when we explore the factor effect.
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Figure 5.5: Left Panel: Standardised Prediction Errors Corresponding to N ; Right Panel:

Standardised Prediction Errors Corresponding to P for Spring Barley
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Figure 5.6: Left Panel: Standardised Prediction Errors Corresponding to N ; Right Panel:

Standardised Prediction Errors Corresponding to P for Winter Barley
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5.7 Conclusion

This chapter initially discussed the concept of an emulator and simulator. We set up a

general structure of an emulator and illustrated the idea of both Bayes linear and Gaus-

sian process emulation approaches with relevant correlation functions; we have preference

for Bayes linear emulation and discussed the various steps to construct the emulator for

continuous inputs. Finally, we have shown some tools as a diagnostic to validate our em-

ulator.

Initially, we applied Bayes linear emulation techniques to a one-dimensional example.

We then used emulation techniques for EPIC simulator data for the continuous inputs of N

and P . Spring and Winter Barley crops have a strong response to N but a weak response

to P . The emulator uncertainties for both crops are generally low and only higher near

the boundaries of the parameter space. The diagnostics of the emulators illustrated the

validity and no conflict with the simulator. The high resolution for both crops indicates

the emulators explain most of the simulator uncertainties.

We adopted a Bayes linear approach for our analysis, which substantially simplified

the computation and complexity in fitting the model while providing a powerful tool for

modelling and analysing the computer model output. The emulator’s quality and perfor-

mance can be readily assessed and monitored through appropriate diagnostics. A natural

progression is broadening the input space and considering the effects of the entire collection

of simulator inputs, including continuous and categorical variables.



Chapter 6

Mixed Variable Bayes Linear

Emulation

6.1 Introduction

The use of complex computer models with qualitative and quantitative inputs are increas-

ing in various field of study. But a key issue is finding a suitable way of modelling the mixed

inputs in the context of complex computer experiments. The Gaussian process model is

widely used [52, 63, 107] for solving the computer experiments problem for qualitative and

quantitative inputs. The continuous input problem can be addressed using the techniques

in Chapter 5. However, the main challenge is constructing the covariance between the

factor levels. The challenge with incorporation of the factor inputs, as we don’t have any

particular type of correlation structure to account for the factor correlations. This chapter

aims to propose a possible solution to this challenging problem.

Different approaches have been developed to analyze the mixed inputs problem using

a Gaussian process. McMillan [40], Joseph and Delaney [60] used the Gaussian process

model and proposed a restrictive correction function for assessing the correlation between

the levels of factor effects. Qian et al. (2008) [63] illustrated a layout for the nonrestrictive

nature of the correlation structure to calculate the correlation between the factor levels in

two steps using an optimis ation technique. Furthermore, Zhou et al. (2011) [84] proposed

a hypersphere decomposition technique. All the literature used the Gaussian process ap-

proach to emulation to assess the mixed input effect for the complex computer problem.

An alternative way of handling complex computer experiments is using the Bayes lin-

88



6.2. General Model and Factor Effect Layout 89

ear emulation method [59], which has only been used for quantitative inputs so far. Our

current analysis will explore the Bayes linear method for mixed factor inputs.

One of the limitations of the existing methods is the use of a constant mean for their

analysis procedure [63, 40], and often only considering a single factor effect. Most of the

previous studies exclude the nugget effect. Our current study will explore the impact of

the mixed inputs using Bayes linear emulation. In Section 6.2, we generalise the idea of

the emulation function with the factor effect layout. Section 6.3 discusses three approaches

used for mixed inputs computer modelling. In Section 6.4, we use the maximum likelihood

theory for mixed inputs with an objective function to estimate the optimum values. Section

6.5 shows the steps to calculate the emulator mean and variance using a Bayes linear

emulation approach. We apply the Bayes linear emulation framework techniques to the

EPIC simulator in agricultural research demonstrated in Sections 6.6 to 6.8. In Section 6.6,

we construct the correlation matrix and identify the best option for the EPIC simulations,

and build the emulator for factor steepness and soil in Section 6.7. In Section 6.8, we

create the emulator for all inputs, including weather and finally, draw concluding remarks

in Section 6.9.

6.2 General Model and Factor Effect Layout

Suppose that a computer experiment involves two distinct types of inputs v = (x,w)T ,

where x = (x1, ..., xI)T are quantitative variables and w = (w1, ..., wJ)T are qualitative

variables. So the general emulation function can be written as;

f(v) = g(v)Tβ + u(v),

where g(v)Tβ represents the mean function in a regression form, expressed in terms of

the mixed input variables, x and w. The parameters β are unknown scalar regression

coefficients corresponding to the regression matrix of basis functions, say G, for the ac-

tive inputs. The final component, u(v), is the residual process for mixed inputs, which

denotes a zero mean weakly stationary process to explain additional variation around

the mean function in terms of inputs. We assume that, Gp×k = (g1(v), g2(v), ..., gp(v))T

and βk×1 = (β1, β2, ..., βk)T and f(v) follows multivariate normal distribution with mean

Gβ and variance-covariance of σ2R[θ,τ ]; where θ is the correlation length for continuous

variables and τ is the vector of correlation parameters for factor variables. R[θ,τ ] is the com-
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bination of Gaussian covariance function R[θ] for continuous inputs with factor correlation

matrix T .

Consider a factor variable, w, with levels c1, c2, ..., cj and two distinct factor inputs

w and w′ such that w,w′ ∈
{
c1, c2, ..., cj

}
. So for a single factor variable w and a single

quantitative input x, the correlation between v = (x,w) and v′ = (x′ , w′) can be expressed

as follows (Quin et al. (2008) [63]);

Cor(u(v), u(v
′
)) = R(x, x

′
; θ)× T (w,w′ ; τ). (6.1)

For x, x′ ∈ R, R(x, x′ , θ) is the Gaussian correlation function with correlation length

parameter θ such that Equation (6.1) can be written as;

Cor(u(v), u(v
′
)) = exp

{
−
I∑
i=1

θi(xi − x
′
i)
2
}
×T (w,w′ , τ). (6.2)

where x = (x1, ..., xI)T is quantitative input for i = 1, 2, ..., I.

If w = ci and w′ = ck, then we write T (w,w′) = T (ci, ck) = tci,ck = ti,k, where

ti,k ∈ [−1, 1] is the correlation between levels i and k. We can summarise these correlations

for all levels of the factor in the matrix T ,

T =



t1,1 t1,2 · · · t1,j

t1,2 t2,2 · · · t2,j
...

... . . . ...

tj,1 tj,2 · · · tj,j


(6.3)

For multiple categorical variables such that v = (x,w)T and v′ = (x′ , w′)T , where

w,w
′ is a vector of factors of length j, and wa, w

′
a ∈

{
ca,1, ..., ca,ja

}
, for the ath factor with

ja levels when a = 1, 2, ..., j. Then, using separability, the correlation can be written as;

Cor(u(v), u(v
′
)) = R(x, x

′
, θ)× T1(w1, w

′
1; τ)× ...× Tj(wj , w

′
j ; τ),

= R(x, x
′
, θ)

j∏
a=1

Ta(wa, w
′
a; τ).

(6.4)

The correlations associated with each factor can be summarised in a ja × ja matrix, one

for each factor of a = 1, ..., j. The term Ta is the correlation matrix for the factor variables

with two distinct inputs of wa and w′a which can be expressed as follows;

Ta =



ta1,1 ta1,2 ta1,3 · · · ta1,ja
ta1,2 ta2,2 ta2,3 · · · ta2,ja

...
...

... . . . ...

taja,1 t
a
ja,2 t

a
ja,3 · · · t

a
ja,ja


(6.5)
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Matrix Ta will be a valid factor correlation matrix if Ta is symmetric, and positive definite

matrix with diagonal elements tab,c = 1 for all b = c [63].

6.3 Approaches to Model Factor Input Correla-

tion

There are several approaches to determine the correlation values to assign to matrix T

and its elements. We consider the (i) McMillan approach [40], (ii) Zhou approach [84],

which was also used by Zhang et al. [107], (iii) Exchangeable approach by Quin et al. [63]

and Joseph et al. [60] and a modified version of this correlation approach. The details of

these approaches are given as follows;

1. The McMillan Approach (MC): The McMillan approach [40] is a multiplicative way

of estimating the correlation between the factor levels of ti,j as follows:

ti,j =


exp{−τi} exp{−τj} = exp{−(τi + τj)}, if ci ̸= cj

1 ci = cj

(6.6)

where the parameters are τi,j > 0 and the diagonal elements of the factor correlation

matrix T will equal 1, and the matrix will be symmetric. So for a factor matrix T

with 3 levels t1,1, t1,2, t1,3 the correlation matrix between the factor levels can be

expressed as follows considering the MC approach;

T =


1

exp{−(τ1 + τ2)} 1

exp{−(τ1 + τ3)} exp{−(τ2 + τ3)} 1

 (6.7)

So for a three-factor levels correlation matrix, the MC method needs three param-

eters τ1, τ2, τ3.

2. Exchangeable Correlation (EC) approach: An exchangeable correlation function was

proposed by Joseph and Delaney [60] initially and later used by Qian [63]. This EC

approach can be expressed as;

tj,i = ti,j =


τ, if i ̸= j

1 i = j
(6.8)

where, τ parameter lies between -1 to +1. This method is considering as a simplifi-

cation of (6.6) where all τi = τj . This model has only one parameter, τ .
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• General Correlation (GC) Approach: The Exchangeable approach makes all

the factor correlation values as the same, which can be highly restrictive. To

get different correlation values, we can modify Equation (6.8) as follows:

tj,i = ti,j =


τi,j if i ̸= j

1 i = j
(6.9)

For a factor matrix T with 3 levels τ1,1, τ1,2, and τ1,3 the correlation matrix between

the factor levels can be expressed as follows considering the GC approach;

T =


1

τ1,2 1

τ1,3 τ2,3 1

 (6.10)

where τ1,2 is the correlation between the factor levels of 1 and 2. This method

also gives correlation matrices that are symmetric, have unit diagonal, and positive

definiteness such that the eigen values are positive. For this approach, three different

parameters are needed to estimate for a 3× 3 matrix.

3. Zhou Method of Hypersphere Decomposition: This method [84] differs from the pre-

vious techniques as it allows the correlation between factor levels to be positive and

negative. This approach uses a hypersphere decomposition (which ensures both neg-

ative and positive correlation and also ensures the diagonal element of the correlation

matrix are 1) to model the factor levels correlation matrix T . The approach has two

different steps as follows:

(a) Step 1: Applying a Cholesky decomposition to T ,

T = LLT , (6.11)

where L =
[
ld,s
]

is a strictly positive diagonal lower triangle matrix.

(b) Step 2: L can be treated as a spherical coordinate system of equations for each

row vector in L of the surface point on a d dimensional unit hypersphere such

that dimension of the matrix (2 × 2 dimension for a 2 levels factor variable)

and can be expressed as follows;

l1,1 = 1

ld,1 = cos(τd,1)

ld,s = sin(τd,1), ..., sin(τd,s−1) cos(τd,s) for s = 2, ..., d− 1

ld,d = sin(τd,1), ..., sin(τd,d−2) sin(τd,d−1)

(6.12)
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where the τi,j values lies between 0 and π. The nature of the equations makes the

unit diagonal element equal to 1. For the three-factor input d = 3, the correlation

matrix for the factor input levels can be written as,

T3 =


1 t1,2 t1,3

t1,2 1 t2,3

t1,3 t2,3 1

 (6.13)

Following the step 1, matrix T3 can be expressed as follows,

T3 = L3LT3

=


1 0 0

l21 1 0

l31 l32 l33



1 l12 l13

0 l22 l23

0 0 l33



=


1 l12 l13

l21 l221 + l
2
22 l21l31 + l22l32

l31 l21l31 + l22l32 l231 + l
2
32 + l

2
33



(6.14)

For two factor levels we can write;

l21 = cos(τ21),

l22 = sin(τ21).
(6.15)

From Equation (6.15), we can compute the correlation of two factor level as follows.

The coordinates of l21 and l22 are shown on Figure 6.1 as a half unit circle such that

l221 + l
2
22 = 1,

T2 = L2LT2

=

 1 l12

l21 l
2
21 + l

2
22


=

 1 cos(τ1,2)

cos(τ2,1) cos2(τ2,1) + sin2(τ2,1)


=

 1 cos(τ1,2)

cos(τ2,1) 1



(6.16)

Similarly, for factor input level d = 3, can be written as

l31 = cos(τ3,1),

l32 = sin(τ3,1) cos(τ3,2),

l33 = sin(τ3,1) sin(τ3,2).

(6.17)
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and using the above values of l31, l32, l33 and the coordinates from Figure 6.1(b), we

can calculate the correlation between factor levels for T3 in Equation (6.13) as;

T3 =


1

cos(τ2,1) 1

cos(τ3,1) cos(τ2,1) cos(τ3,1) + sin(τ2,1) sin(τ3,1) cos(τ3,2) 1

 (6.18)

Thus, we need to estimate the parameters τ , which it the parameter of the factor

correlations to evaluate the correlation matrix. So for Equation (6.18), we need

three parameters to assess the correlation matrix T3; we also need six parameters

to estimate for a 4-factor levels variable and 28 parameters for an 8-factor levels

variable. So all three methods required the same number of parameters as there are

unique correlations, except the simple Exchangeable approach. The nature of the

McMillan and General approach are such that they are mathematically amenable

to estimate, but, the more involved nature of the Zhou method makes it hard to

handle the large number of factor levels.

Figure 6.1: Zhou Method of Hypersphere Decomposition for 2-Factor Input (a) and 3-

factor input (b) Extracted from the Paper [84]
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6.4 Maximum Likelihood Inference for Correla-

tion Parameters

By recalling the assumptions from Section 5.4 and Equation (5.18), the likelihood function

of the f(v) parameters can be written, with factor inputs as follows:

L(β, σ2, θ, τ |f(v)) = 1√
(2πσ2)n|R[

θ,τ
]| exp

[
− 1
2σ2
(f(v)−Gβ)TR−1[

θ,τ
](f(v)−Gβ)] ,

= (2π)−n/2(σ2)−n/2|R[
θ,τ
]|−1/2 exp [− 1

2σ2
(f(v)−Gβ)TR−1[

θ,τ
]

× (f(v)−Gβ)
]
,

logL(β, σ2, θ, τ |f(v)) = −n
2
log(2π)− n

2
log(σ2)− 1

2
ln |R[

θ,T τ
]| − 1
2σ2
(f(v)−Gβ)TR−1[

θ,τ
],

× (f(v)−Gβ),

= c+
n

2
log(σ2) +

1
2
log |R[

θ,τ
]|+ 1
2σ2
(f(v)−Gβ)TR−1[

θ,τ
](f(v)−Gβ).

(6.19)

Following the results from Chapter 5 and changing the Rθ to R[
θ,τ
] with the addition of

factor effect gives us the following estimates for our parameters for mixed inputs:

β̂ = (GTR−1[
θ,T
]G)−1GTR−1[

θ,τ
]f(v)

σ̂2 =
1
n
(f(v)−Gβ)TR−1[

θ,τ
](f(v)−Gβ)

V ar(β̂) = σ̂2
(
GTR−1[

θ,τ
]G)−1

6.4.1 Objective Function for Mixed Inputs

In Chapter 5, we estimated the correlation lengths for the Gaussian correlation function

by maximum likelihood. In this Chapter, we need to apply an optimisation technique to

estimate the factor correlation values. We need the estimates for τ to build the matrix T ,

so an optimisation technique must be applied.

For our problem, the overall negative log likelihood function can be written in a sim-
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plified way by substituting the estimate of σ̂2 into the Equation (6.19);

NL(θ, τ |f(v)) = −n
2
log(2π)− n

2
log(σ̂2)− 1

2
log |R[

θ,τ
]| − 1
2σ̂2
(f(v)−Gβ̂)T

×R−1[
θ,τ
](f(v)−Gβ̂)

= −n
2
log(2π)− n

2
log(σ̂2)− 1

2
log |R[

θ,τ
]|

− 1

2 1n(f(v)−Gβ̂)TR
−1[
θ,τ
](f(v)−Gβ̂)(f(v)−Gβ̂)TR−1[θ,τ](f(v)−Gβ̂),

NL(θ, τ |f(v)) = −n
2
log(2πσ̂2)− 1

2
log |R[

θ,τ
]| − n
2
,

(6.20)

where β̂, σ̂2 and R[
θ,τ
] depends on the correlation parameters θ and the factor correlation

levels τ . To estimate the parameters, we must minimise Equation (6.20).

(θ̂, τ̂) = min
θ,τ

[
− n
2
log(2πσ̂2)− 1

2
log |R[θ,τ ]| −

n

2

]
.

Subject to θi  0; i = 1, ..., I

tj,k = 1, tj,k ∈ [−1, 1]; j, k = 1, ..., J
(6.21)

The constraint θi  0 is the correlation length for the continuous inputs, and diag(T ) =

1 ensures the diagonal element of the factor correlation matrix is 1. We have another

constraint to ensure the positive definite of the correlation matrix, which is not easy to

express in terms of the parameter τ . We can confirm these properties after building the

correlation matrix using the estimated values from the optimisation techniques mentioned

in Chapter 5.

6.4.1.1 Introducing Nugget Effect on Mixed Inputs

To introduce a nugget term from Chapter to f(v), with factor inputs can be expressed as,

σ2 = V ar(u(v)) = Σ = V ar[u(vA)] + V ar[ν(v)],

= σ2A + σ
2
ν .

(6.22)

Thus a convenient parameterization is to consider σ2ν as a function of δ of σ2, so from

Equation (6.22) we can write;

σ2 = (1− δ)σ2 + δσ2. (6.23)

wherever v ̸= v′ . We would also have V ar[u(v), u(v′ ] = (1− δ)σ2R[θ,τ ](v, v
′
)
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With the nugget parameter the emulator of f(v) will now follow a multivariate normal

distribution with mean Gβ and variance-covariance of σ̂2R[
θ,τ,δ

]. The maximum likelihood

estimates will be;

β̂(θ, τ, δ) = (GTR[
θ,τ,δ

]−1G)−1GTR[
θ,τ,δ

]−1f(v), (6.24)

σ̂2(θ, τ, δ) =
1
n
(f(v)−Gβ̂)T (R[

θ,τ,δ
])−1(f(v)−Gβ̂), (6.25)

V ar(β̂) = σ̂2(GT (R[
θ,τ,δ

])−1G)−1. (6.26)

And the new objective function with the nugget effect is;

(θ̂, τ̂ , δ̂) = min
θ,τ,δ

[
−n
2
log(2πσ̂2)− 1

2
log |R[

θ,τ,δ
]| − n
2

]
Subject to θi  0; i = 1, ..., I

δ ∈ [0, 1]

diag(Tj) = 1; j = 1, ..., J

τi,j ∈ [−1, 1]
(6.27)

We need to estimate the maximum likelihood and correlation parameters considering

the objective function of Equation (6.27). For this, we set an algorithm for the whole

procedure as follows;

Algorithm 2 Estimation Process for the MLE and Correlation Parameters
1: Calculate the Correlation matrix R′[

θ,T,δ

].
2: Calculate the factor effect correlation matrix T .

3: Matrix multiplication of steps (1) and (2) gives the correlation Cor(v, v′).

4: Calculate inverse and determinant of R′[
θ,τ,δ

].
5: Calculate β̂ from Equation (6.24), which gives the estimate for σ̂2 from Equation

(6.25).

6: Plugging σ̂2 estimate gives V ar(β̂) from Equation (6.26).

7: Use optimisation technique within the constraints gives us the estimate for the

correlation parameters and lengths.
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6.5 Bayes Linear Emulation for Mixed Inputs

The objective of this section is to use the Bayes linear emulation technique for mixed in-

puts. We apply mixed inputs general layout with the optimisation function to estimate the

values and hence use the Bayes linear update to calculate emulator adjusted expectations

and variances.

The general form of an emulator with two distinct inputs v and v′ and nugget effect δ

can be written as follows:

f(v) = g(v)Tβ + u(v) + δ,

f(v
′
) = g(v

′
)Tβ + u(v

′
) + δ.

The Bayes linear update can be written based on general forms of a univariate emulator

for the mixed inputs as follows;

Ef(v)[f(v
′
)] = E[f(v

′
)] + Cov[f(v

′
), f(v)]V ar[f(v)]−1(f(v)− E[f(v)]), (6.28)

V arf(v)[f(v
′
)] = V ar[f(v

′
)]− Cov[f(v′), f(v)]V ar[f(v)]−1Cov[f(v), f(v′)]. (6.29)

The formulation of the Bayes linear emulation for mixed inputs is more complex to

compute. For simplification, we have formulated the whole procedure step by step. The

reason to simplify the whole process in to different steps is to make it more understandable,

which can be described as follows;

1. Step 1: We consider the design matrix for the factor input w = (w1, ..., wJ), say

Z = (Z1,2, Z1,3, ..., Z1,J)T .

2. Step 2: Construct the data frame for a combination of factor inputs w and continuous

inputs x = (x1, x2, ..., xI)T , such that G = (g1(x,w), g2(x,w), ..., gp(x,w))T .

3. Step 3 (Expectation and Variance): Calculate the prior expectation and variance

similar to Chapter 5 using Algorithm 2.

4. Step 4: Calculate the Gaussian residual process part with the factor inputs and error

variance;

Cor(u(v), u(v
′
)) = σ̂2R[θ,τ,δ] ×T (6.30)

Now adding the variance part from Step 3 and the Gaussian part from Step 4 gives

the covariance Cov[f(v), f(v′)] of training and testing data of (x,w) and (x′ , w′).
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5. Step 5: Finally, using each part from Steps 1 to 4 in Equations (6.28) and (6.29)

gives the emulator adjusted expectation and variance for the Bayes linear mixed

inputs emulation. Now we can use the adjusted expectation and variance for the

emulator diagnostic process, similar to Chapter 5.

6.6 Application to EPIC Simulator Data

We applied our methodology to the EPIC simulator data for the Spring Barley crop and ini-

tially measured the performance of three approaches: McMillan approach, Zhou approach

and the general correlation approach. Firstly, two factors, steepness and soil, were used

to fit the emulator to assess the efficiency of our methods. We estimated the MLE for the

correlation parameters and then constructed the correlation matrix. Finally, we considered

another factor input, weather, assessing our approach works nicely for many mixed inputs.

6.6.1 Correlation Matrix and Performance Measures of Ap-

proaches

In this subsection, we illustrate the use of Algorithm 2 to estimate the optimum values

for the correlation of the factor levels. Considering f(v) we use the objective function of

(6.27) with a nugget effect δ to optimize the factor-level correlations. We fixed the same

hyperparameters from Chapter 5 to optimise the factor level correlations for steepness,

soil and weather subject to boundary constraints on the parameters τ, θ.

For the mixed inputs problem, initially, we consider only the two-factor inputs of

steepness and soil, plus the quantitative inputs of Nitrogen and Phosphorus. We explore

three possible bases g(v) for our preliminary analysis, namely linear, second order and

third-order polynomials in N, P summarized in Table 6.1.

Let us denote the three levels of the soil factor as w1 ∈
{
c1,1, c1,2, c1,3

}
and the four

levels of steepness factor as w2 ∈
{
c2,1, c2,2, c2,3, c2,4

}
. Then we can construct a set of

dummy variables based on 0− 1 as a factor encoding as in Section 4.2.2.
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Table 6.1: Mean Function and Basis for Factor Steepness and Soil

Mean Function Simple Basis [g(v)T ] No. of Coefficients

Linear 1, N, P, ZSo2 , Z
So
3 , Z

St
2 , Z

St
3 , Z

St
4 8

2nd Order 1, N, P, NP, N2, P 2, ZSo2 , Z
So
3 , Z

St
2 , Z

St
3 , Z

St
4 11

3rd Order 1, N, P, NP, N2, P 2, N3, P 3, N2P, NP 2,

ZSo2 , Z
So
3 , Z

St
2 , Z

St
3 , Z

St
4 15

For the inputs we explore three mean functions as a simple basis in terms of 8, 11 and 15

regression coefficients shown in Table 6.1, with a correlated error with squared exponential

covariance function. We fit the model on 60% of the available data, reserving the remaining

40% for testing and diagnostics. At first, we constructed the correlation matrix using

the McMillan, Zhou and General correlation approaches. The results of the estimated

factor level correlations using the General correlation (GC) in Equation (6.9), McMillan

in Equation (6.6) & Zhou approach in Equation (6.18) are shown in Figures 6.2 and 6.3

respectively. The upper panel correlations show the model with a linear mean function.

The middle panel correlations are for the model with the 2nd-order polynomial mean

function, and the lower panel correlations are the 3rd-order polynomial mean function.

The steepness factor level correlations get higher with the increase in complexity of

the mean function. We observed a weak (> 0.31) to strong (> 0.7) correlation between the

majority of the levels of the factor steepness in the right column. The correlations between

steepness levels 2 and 4 and steepness levels 3 and 4 are high, indicating a moderate degree

of association for all three polynomial mean functions. A high correlation between all the

steepness factor levels is observable for the third order mean function. On the other hand,

soil factor level correlations remain low across all three cases of the mean function so that

we can potentially treat them as approximately independent. Checking the eigen-values

of the factor correlation matrix, we find all are greater than zero which fulfils the positive

definite matrix’s requirement for our correlation matrix.

Figure 6.3 shows the correlation matrix of the McMillan approach and Zhou approach

using the third-order polynomial mean function. From McMillan’s and Zhou’s approaches,

we can see a high positive correlation between the factor levels for the factor steepness

compared to GC approach. We can also see very low correlations, which are close to zero

for the factor soil for the MC approach.
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We consider the standardised prediction errors (SPE) and mean squared errors (MSE)

diagnostics. The box plot of the standardised prediction errors (SPE) for three methods

is shown in Figure 6.4. The Zhou and Exchangeable methods satisfy SPE’s diagnostic

threshold, falling between -2 to 2 but, the McMillan approach indicates a comparatively

poorer performance due to SPE values falling outside of the threshold, which possibly

indicates conflict between the emulator and the simulator. The box plot of MSE for the

three methods is shown in Figure 6.4. The GC method shows the smaller MSE compared

to the other two methods. However, all three methods looks very close to each other, but

GC method is still performing better. For both SPE and MSE selection criteria, the GC

method performs better among the approaches. However, the Zhou method yields a good

SPE but is outperformed by GC regarding MSE.
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Figure 6.2: Estimated Factor Correlations Using GC. Left Column: Soil, Right Column:

Steepness. Top Row: Linear, Middle Row: 2nd order, Bottom Row: 3rd order mean function
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Figure 6.3: Estimated Factor Correlations Using McMillan and Zhou approaches with 3rd

Order Mean Function. Left Column: Soil, Right Column: Steepness. Top Row: McMillan

Approach, Bottom Row: Zhou Approach

The structure of the Zhou method is complicated due to the hypersphere decompo-

sition. Suppose we include the weather factor variable with 8 levels and the other two

factors of steepness and soil. In that case, using the Zhou method becomes very complex

due to the hypersphere decomposition required to construct a correlation matrix of 96

factor combinations, which will create difficulties to optimize over so many parameters.

The McMillan method is comparatively less flexible than the other two methods because

of the nature of the correlation function. For example, if we have four-factor levels, say

w2 ∈
{
c1, c2, c3, c4

}
. Consider the case where we have a factor with four levels. Levels 1

and 2 are strongly correlated, giving large values for τ1 and τ2. Similarly, levels 3 and 4

are also highly correlated with τ3 and τ4 large. Under the McMillan model, this will force,

for example, levels 1 and levels 3 to also be highly correlated as the correlation is given by

exp(-(τ1+τ3)), which will be large. Thus it would be impossible to represent a situation

where these pairs of factor levels were uncorrelated in this model.
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In summary, we can see the largest SPE, and MSE for MC and Zhou compared to the

GC method. So, considering all the drawbacks and the diagnostics, we will proceed with

our further analysis using the GC method correlation matrix as our preference.
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Figure 6.4: Left Panel: Box plot for the Standardised Prediction Error; Right Panel: Box

Plot for the MSE using Zhou method, McMillan (MC) Method and General Approach

(GC) Method

6.7 Emulation with Steepness and Soil Factors

Using the mean function and basis from Table 6.1 with the GC approach to represent the

correlations, the emulators are updated from the training data using the formulae (6.28)

and (6.29) for mixed inputs to calculate the adjusted mean and standard deviations.

Figures 6.5 − 6.7 shows the result of adjusted emulator means and standard deviations

with companion diagnostics of resolution and standardized prediction errors considering

the simple linear, second order polynomial and third order polynomial mean function

respectively as a function of N and P .

From all three orders of mean functions emulator expectations from Figures 6.5− 6.7,

it is noticeable that crop yield is increasing with increasing N levels. However, the effect of

P is weak. From Figures 6.5 to 6.7, we can say standard deviations display comparatively

low levels of uncertainty around the locations where we have simulations and show an

increasing trend as we move away from those simulations points. However, the uncertainty



6.7. Emulation with Steepness and Soil Factors 104

is lower for the linear mean function, going to around 0.11, with slight higher standard

deviations for the second-order mean function around 0.25 and slightly higher for the

third-order polynomial compared to second order, which is around 0.30.

From diagnostics of the resolution from Figures 6.5 and 6.6, we notice the low resolution

all over the space, whose values are less than 0.4 for first order and less than 0.4 to 0.65

for the second order mean function, indicating the emulator’s failure to explain most of

the variability of the simulator. Finally, from Figure 6.7, the resolution plot for third order

mean function shows high resolution values, which indicates the emulator mostly catches

the variation of most of the simulator behaviour.

Figure 6.5: Linear mean function when steepness St = 6, soil So = 5, Weather Wy = 1,

and Sy = 4. Top left: Emulator expectation; Top right: Emulator Standard Deviations;

Bottom left: Emulator Resolution; Bottom right: SPE
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Standardised prediction error values outside ±2 standard deviation indicate a conflict

between the simulator and emulator. The linear mean function in Figure 6.5 shows several

values outside of the threshold for the high N values, which is the indication of under-

fitting of the mean. The 2nd order polynomial function in Figure 6.6 shows a few values

outside of the threshold, close to the edge and there exist no testing points to emulate and

can be ignored [64]. Figure 6.7 shows standardised prediction errors lying between ±2 of

the standard deviation highlighting no conflict between the emulator and simulator.

In summary, we see clear evidence in favour of the third-order polynomial means func-

tions over the other two possible mean functions based on the results of our diagnostics.

Due to the lower SPE and higher resolution, we will proceed with the third-order polyno-

mial mean function as a basis of g(v)T for further analysis with the GC approach.

Figure 6.6: 2nd Order mean function when St = 6, So = 5. Top left: Emulator Expecta-

tion; Top right: Emulator Standard Deviations; Bottom left: Emulator Resolution; Bottom

right: SPE
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Figure 6.7: 3rd Order mean function when St = 6, So = 5, Wy = 1, and Sy = 4. Top left:

Adjusted Emulator Expectation; Top right: Emulator Standard Deviations; Bottom left:

Emulator Resolution; Bottom right: SPE

6.8 Emulation for Factors Weather, Steepness and

Soil

In this section, we apply the mixed input emulation approach to all factors including the

additional variable weather with 8 levels. We now need to set up an emulator which can

evaluate the 96 possible factor combinations of steepness, soil and weather (3×4×8 = 96).

We use the General approach from Equation (6.9) to parameterize the factor correla-

tions. Initially, we use Algorithm 2 to estimate the 28 values for the correlation parameters

for weather factor levels. These optimisations were carried out using the L-BFGS-B opti-

mization method, which was implemented via the optim() function in R-language adapting

from Algorithm 2. We use the objective function of (6.27) with the nugget effect to op-
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timize the factor level correlation assuming the same hyper-parameter values such that

θ̂N = 0.02, θ̂P = 0.03, δ̂ = 0.05 similar to continuous input emulation.

We consider the third-order polynomial mean function for the mixed inputs problem

involving weather. The estimated factor level correlation matrix for factor weather is shown

in Figure 6.8. We observe some weak (< 0.30) to moderate correlations (0.40 < m < 0.7)

between the levels of the factor weather. Factor level 1 has moderate correlations with

factor levels 2, 6, and 7. And, factor level 2 shows the same moderate corrections trend

with factor levels 6 and 7.
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Figure 6.8: Correlation Matrix for Factor Weather using General Correlation Approach

For mixed inputs of weather, steepness and soil analysis with an extended grid, we con-

struct a Bayes emulator based on a 3rd-order polynomial regression and a correlated error

with covariance function and nugget effect using all simulator data as training points and a

grid of 15×15 with 21600 observations as testing points and resolution diagnostic in terms

of the simple basis of g(v)T = [1, N, P, NP, N2, P 2, N3, P 3, N2P, NP 2, ZSo2 , ZSo3 ,

ZSt2 , Z
St
3 , Z

St
4 , Z

W
2 , Z

W
3 , Z

W
4 , Z

W
5 , Z

W
6 , Z

W
7 , Z

W
8 ] and E[f(v)] = g(v)TE(β) with 22

regression coefficients. Expectations E[f(v)] and variances V ar[f(v)] for these coefficients

are calculate by using Algorithm 2 for all mixed inputs.

Figure 6.9 offers the result of the adjusted emulator mean and standard deviations
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with companion diagnostics of resolution considering the 3rd-order polynomial regression

mean function over a 15×15 grid, with standardised prediction errors for the testing data.

Figure 6.9: 3rd Order mean function when St = 6, So = 5, Wy = 1, Sy = 4. Top left:

Emulator Adjusted Expectation; Top right: Emulator Standard Deviations; Bottom left:

Emulator Resolution; Bottom right: SPE

From Figure 6.9, the crop yield is showing same response with respect to inputs Ni-

trogen and Phosphorus. The adjusted standard deviations plot is showing slightly nar-

rower uncertainty compared to the steepness and soil only problem after adding the factor

weather. From diagnostics of the resolution, we can see high flat resolution all over the

space of greater than 0.9 except edges, indicating the same trend as the steepness and soil

only problem. The standardised prediction error values lying clearly inside of ±2 standard
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deviations indicate no evidence of conflict and a high degree of consistency and agreement

between the emulator and the simulator.

6.9 Conclusion

In this chapter, we have proposed an approach for emulating complex computer models

with quantitative and categorical inputs using Bayes linear emulation. We demonstrated

the methods by applying them to the EPIC crop yield simulator.

We have shown the extension of Bayes continuous emulation inputs to Bayes mixed

input emulation in Section 6.2. Section 6.3 has featured the different approaches to model

the factor input correlations. Section 6.4 found the MLE estimates of the correlation pa-

rameters, and set-up the Bayes linear mixed input emulation. We used the EPIC simulator

data for the Spring Barley crop, initially estimated the MLE of the correlation parameters,

and constructed the correlation matrices. In Section 6.7, we updated the emulators for two

factors, steepness and soil, using linear and polynomial mean functions. We extended our

problem by adding weather for the third-order polynomial mean function and updated

this complex emulator. The diagnostics revealed no conflict between the emulator and the

simulator.

We learned some valuable tools for the emulation approach, which will be a handy

addition to the emulation methodology. Firstly, we have acquired skills in the mathematical

formulation of an emulator considering quantitative and qualitative inputs together. We

used direct maximum likelihood estimation to estimate the parameter values. This chapter

reviewed three approaches to model the mixed inputs with a modified general version of

the correlation function. Finally, we gained understanding how to apply the correlation

matrix to construct the emulators in the context of the Bayes linear approach .



Chapter 7

Bayes Linear Emulation Approach

for Utility and Implausibility

7.1 Introduction

The main goal of this chapter is to balance the crop yield and the pollutant outputs of

the simulator to find the best choice of Nitrogen and Phosphorus fertilisers levels in the

input space. We will use utility to quantify the combined value of yield and pollution to

determine which combinations of inputs give better overall results than others. So this

chapter will initially explore utility over the input space and seek the maximum expected

value to find the best input choice.

The final part of this chapter is about identifying an area using the mixed input emu-

lators for the combined yield and pollutants by using history matching and implausibility

techniques. The approach we will use to determine the optimal input space for maximum

utility by emulation will be history matching. History matching is a technique for finding

a set of model inputs for the simulator such that its outputs most closely resemble the

observed data accounting for model uncertainty [74, 121, 129]. The method works by iden-

tifying and excluding the input space where the simulator fails to match the observed data

(the history); this region is called the implausible [74, 121, 129] region. For this research,

we build an emulator of the expected utility and apply the history-matching technique to

seek input values that best match the maximum utility value.

This chapter starts with the basic concept of utility in Section 7.2. We then introduce

the idea of history matching (HM) with implausibility in Section 7.3. We set up a utility

110
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function considering yield and two pollutants with the respective coefficients in Section

7.4. In this Chapter, we initially build the emulators for the pollutants NRLOAD (Np)and

PRLOAD (Pp) considering both continuous and mixed inputs like we did with crop yield

of Spring Barley in Chapters 5 and 6. Section 7.5 applies the concept of history matching

and implausibility to our utility function to find the optimum region for the yield in

terms of the fertilisers Nitrogen and Phosphorus. Thus, we must emulate the pollutants

Np and Pp in Section 7.6. We perform a sensitivity analysis for the utility parameters in

Section 7.7. Section 7.8 is about utility emulation and implausibility, where the utility

and implausibility for the continuous inputs are calculate. Section 7.8.2 covers building

the emulators for the pollutants with the steepness and soil factors. Variable selection is

applied in Section 7.8.3 to remove the unnecessary basis terms, and we build the final

emulators for the pollutants in Section 7.8.3.2 with the selected inputs, including the

weather factor. Then we calculated the utility and implausibility for all inputs. Finally,

some concluding remarks are in Section 7.9.

7.2 Utility Measures and Functions

In general, utility is a numeric value measuring the preference for an event by the decision

maker. The importance of the event increases with the increase of the utility. So a decision

maker makes a decision based on the maximum principle such that they choose the best

one which provides higher utility. However, sometimes it becomes complicated to describe

an event with a numeric value which is not generally measurable. So it will be simpler if

we start the utility estimation procedure by considering the presence of a numerical value

[15].

A utility function is required to identify the optimal combination of crop yield and

pollutants to quantify the overall benefit. The utility is a measure of preference which

depends on the nature of the study. A cardinal utility [5] is the preference of the individuals

based on a countable number. For example, a farmer harvested two crops, Maize and

Barley, in different crop rotations, and the Maize crop provided a 500 kg yield, but the

Barley crop produced a 450 kg yield. The farmer’s utility lies on the numeric scale, such

as the monetary value of the crops, and the farmer will prefer the crop Maize for the next

year due to its higher production if both crops have same price.

For this thesis, the utility will be calculated based on a simple linear combination of
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the variables and can be written as:

U(x1, x2, ..., xn) = b0x1 + b1x2 + ...+ bnxn, (7.1)

where x1, x2, ..., xn are the variables of the interest and b0, b1, ..., bn are the parameters

which quantify the value of a single unit of each variable. Our interest is to obtain the

maximum utility from the yield, so we need to consider the linear effect yield by subtracting

the impact of pollutants in terms of cost coefficients. So the Equation (7.1) can be written

as;

U(x1, x2, ..., xn) = b0x1 − b1x2 − ...− bnxn, (7.2)

where x1 is the yield, x2, ..., xn are the pollutants.

7.3 History Matching

History matching (HM) is a method used to calibrate complex computer models like EPIC.

In general, these models consist of a set of inputs with an actual value at which it is assumed

the simulator will replicate the real-world system. However, these actual values have yet

to be discovered, and the real-world values are observed with error. So history matching

is a technique used to identify sets of input parameters which give acceptable matches

between model output and physical experiments or real data, accounting for the effects of

model discrepancy and observational error [36, 45, 74, 81, 121]. This method follows an

iterative procedure that eliminates the unmatched model parameter regions between the

model output and real observations. History matching requires extensive exploration of the

model parameter space. So it’s most commonly used with a Bayes linear approximation

to emulation due to its speedy evaluations, and computational simplicity [141]. Suppose

history matching finds that the parameters are not matched with the real data. In that

case, the model will not accurately represent reality, suggesting a need to consider model

discrepancy. The use of history matching is as widespread as emulation and has been used

in different backgrounds such as climate [76, 103, 114], epidemiology [85], and reservoir

modelling [36, 45, 72]. This research is an effort to use the history-matching technique in

agricultural research.

In order to analyze the concept of history matching, a statistical relationship between

the computer model F (.) and related system y [46] can be expressed by the best input

assumption [120];

y = F (x∗) + ϵ, (7.3)
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where ϵi is the model discrepancy between the related system and computer model such

that ϵ = y−F (x∗), and x∗ is the best input. Under the best input assumption, ϵ is assumed

to be independent of the model output F (x∗) with variance V ar(ϵ) = σ2ϵ ; in other words

we have that F (x) |= ϵ [120].

History matching requires a system observation z of the value of real data subject to

unknown observational error e. Assuming that the observation is obtained from the system

value y combined with additive observational error, we obtain the observation equation

[141]:

z = y + e, (7.4)

where e is the observational error such that E(e) = 0 and V ar(e) = σ2e which are judged

independent of y. So from Equations (7.3) and (7.4), we can write the observed history as

z = F (x∗) + ϵ+ e. (7.5)

Thus we can relate the observed values z to the simulator F , evaluated at its best input

x∗ under model discrepancy ϵ and observational error e.

7.3.1 Implausibility Measure

History matching requires a means to identify the region of acceptable matches between

simulator output and reality, for this we use the implausibility measure. The implausibility

measure, I(x), is defined over x ∈ χ, which is a parameter space and quantifies the

mismatch between the simulator output and the actu al observation. The input values for

which I(x) is large form the implausible region, and those with I(x) small are considered

non-implausible regions.

For an individual simulator output, F (x), implausibility measures the deviation be-

tween F (x) and y with specific tolerances to identify model discrepancy. In an ideal sit-

uation, where we are given the true value of the system y without the error, we could

quantify the implausibility as:

I1(x) =

[
F (x)− y

]2
V ar(ϵ)

. (7.6)

where the main goal of the implausibility measure is to identify values of x for which F (x)

and y are close. But, in reality, it is impossible to calculate the value of y, only being
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observed as a noisy observation z, which also includes the observational errors e. Thus we

obtain:

I2(x) =

[
F (x)− z

]2
V ar(ϵ) + V ar(e)

. (7.7)

where ϵ and e are assumed to be uncorrelated, I2(x) now measures how far the observed

value is from the output F (x). Given the computationally expensive nature of the simulator

we need to replace F (x) with the emulator. Considering the independence of ϵ and e and the

emulator adjusted mean and variance Ef(x′ )[f(x)] and V arf(x′ )[f(x)], the implausibility

I(x) for any input parameter x can be given by [74, 121];

I(x) =

[
Ef(x′ )[f(x)]− z

]2
[
V arf(x′ )[f(x)] + V ar(ϵ) + V ar(e)

] . (7.8)

The numerator is the deviation between the observed value and the emulator expectation

and the denominator is the sum of all the uncertainties of emulator variance, discrepancy

and observed error. To obtain large values of implausibility, we need large differences for

the numerator and smaller values for the variances such that we are confident of a bad

representation of reality. On the other hand, small differences and large variances give

small implausible values such as a good match between the simulator output and reality

or sufficient uncertainty to be unable to determine. So now, a threshold value, c, can be

introduced to define a region of poorly matched input space, using I(x) > c. A common

choice is to use c = 3 using Pukelsheim’s 3-sigma rule [32].

Naturally, complex computer simulators are used to produce multiple outputs. So con-

sidering this fact, we can consider a collection of O univariate responses. For a multivariate

output, it is a desirable to combine the individual implausibilities of each output into a

single implausible measure. We combine the implausibility measures over the different

outputs, Ii(x), for each output i = 1, ..., O by finding the maximum implausibility. Which

can be written as;

IM (x) = max
i∈O
Ii(x). (7.9)

To be small, we need a good match on all outputs for IM (x). For example, combining

smaller implausibilities for one output and larger for the other will create a bad match

with reality.
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7.4 Utility Function for Yield and Pollutants

To get the utility value of a particular simulation, we need to combine the yield and pol-

lutants. For illustration purpose, we use a linear utility function in the pollutants and

yields. Naturally, one might want to maximise yield but whilst minimising pollution, so

we subtract the effect of the pollutants from the yield. Thus the function for utility is the

difference between yield and pollutants up to some multiplicative coefficients. Alternative

utilities could also consider by deducting fertiliser costs, in addition to pollution contri-

butions. For simplicity, we will not consider this at this stage. The linear utility function

U(Y,Np, Pp) considering the yield Y and pollutants Np, Pp can be expressed as;

U(Y,Np, Pp) = b0Y − b1Np − b2Pp, (7.10)

where b0, b1 and b2 are the coefficients corresponding to yield, nitrogen pollutant and

phosphorus pollutant, respectively. These coefficients are treated as a gain, per unit yield

or unit pollution such that the value per unit, b0, can be determined from the market

price for a given crop. However, there is no equivalent way to determine the pollutants

coefficients. A sensitivity analysis is performed to explore the different values of these

coefficients in Section 7.7.

Now considering the mean and variance for the yield and pollutants, we can calculate

the expected utility and variance of the utility using Equation (7.10). The expected utility

is expressed as;

E
[
U(Y,Np, Pp)

]
= E(b0Y − b1Np − b2Pp),

= b0E(Y )− b1E(Np)− b2E(Pp).
(7.11)

where E(Y ) is the emulator mean for the yield, constructed in Chapters 5 and 6 for

continuous inputs and mixed variables, respectively. The emulator means of E(Np) and

E(Pp) will be constructed in this Chapter and then applied to this utility function. As-

suming the yield Y and two pollutants Np and Pp are independent such that Cov[Y,Np] =

Cov[Y, Pp] = Cov[Np, Pp] = 0, then the variance of the utility function can be expressed

as follows;

V ar
[
U(Y,Np, Pp)

]
= V ar(b0Y − b1Np − b2Pp),

= b20V ar[Y ] + b
2
1V ar[Np] + b

2
2V ar[Pp]− 2b0b1Cov[Y,Np]

− 2b0b1Cov[Y, Pp]− 2b1b2Cov[Np, Pp], (7.12a)
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= b20V ar[Y ] + b
2
1V ar[Np] + b

2
2V ar[Pp], (7.12b)

where V ar(Y ) is the emulator variance for the yield, which was already constructed in

Chapters 5 and 6. The emulator variance for the pollutants V ar(Np) and V ar(Pp) will

be built in this Chapter and then applied to this utility function to create an emulator.

If we were not to assume that Y,Np, Pp as independent, we would need a multivariate

emulator for [Y,Np, Pp] such that U = bT


Y

Np

Pp

 from which we would obtain the necessary

co-variances to evaluate (7.12a).

7.5 Implausibility for Utility Function

As our goal is to find the maximum value of utility, not to match the observation z, we

need to replace the z with a suitable maximum expected utility value. So, we modify

the basic implausibility Equation (7.8) in terms of the utility function to compare to a

maximum utility value such that;

I(x) =

[
E{U(Y,Np, Pp)} − U∗

]2
V ar{U(Y,Np, Pp)}+ V ar[U∗]

, (7.13)

where E{U(Y,Np, Pp)} is the expected utility, which can be estimated using Equation

(7.11) and V ar{U(Y,Np, Pp)} the variance of the utility, which can be calculated using

Equation (7.12b). The term U∗ is the maximum expected utility value of E{U(Y,Np, Pp)}

such that U∗ = max[E{U(Y,Np, Pp)]. And also, note that we remove the terms V ar(ϵ)

and V ar(e), as we don’t have the real observations for comparison and we will treat U∗

as fixed and known. So Equation (7.13) can be written as

I(x) =

[
E{U(Y,Np, Pp)} −max

[
E{U(Y,Np, Pp)

]]2

V ar

[
U(Y,Np, Pp)

] . (7.14)

To calculate the implausibility from Equation (7.14) we need the expected utility, max-

imum expected utility and the utility variance by combining yield and pollutants. To

estimate the value of U∗, firstly, we need to calculate the expected utility from Equation

(7.11) for which we required the emulators adjusted expected values with the values for
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b0, b1, b2 coefficients and then to take the maximum of the calculated expected utility val-

ues. The smaller the difference between the expected utility and the maximum expected

utility with large utility variance, yields the lower implausibility and vice versa. The low

non-implausible region is the matched region for the expected and maximum expected

utility. If the expected utility values are close to the maximum expected value, this yields

a good match and hence the lower implausible values. On the other hand, if the expected

utility values show a departure from the maximum expected utility value indicates a bad

match between them and high implausibility.

This chapter intends to determine a region for which the expected and maximum

expected utility are close to each other and the variance of the utility is small. We split

the problem into two parts, like the continuous case in Chapter 5 and mixed inputs problem

in Chapter 6. So for the continuous case, we used one combination of the factors, where we

can only calculate the implausibility I(x) concerning the inputs Nitrogen and Phosphorus.

This case intends to find the region of low I(x) and discard the larger values. This region

can be calculated by using I(x) < 3.

For mixed inputs, we have many possible combinations of the factor variables to con-

sider. Our optimisation will be for the continuous inputs, N and P only as categorical

factors can not be controlled by the farmer here. So we will apply a similar maximization

technique to Equation (7.9), where we consider each of the i = 1, 2, ..., nc factor combina-

tions separately, generating implausibilities, which are combined into

IM (x) = max
i
Ii(x). (7.15)

Suppose we have two different outputs from the simulator, then IM (x) is used to

combine them to get a single measurement which is its main property. We use the same

concept to combine Ii(x) across the different categorical factors. So for a given continuous

input x, we have one set of implausibility measures for a given factor combination w and

another for w′ until we have all nc unique factor combinations. The maximum overall

factor combinations thus provides the value of IM for each input setting x.

7.6 Emulation for Continuous Inputs Pollutants

In this section, we fit the emulators for the pollutants Nitrogen to the river (Np), and

Phosphorus to the river (Pp) for the continuous inputs N and P . The definitions of these

variables are already defined in Chapter 2.
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To construct the Bayes linear emulator, we need to structure the mean function as the

basis function of gT (x) in terms of the regression parameters. For the pollutants, Pp andNp,

to construct the Bayes linear emulator, we also structure the mean function as a simple

regression in terms of the simple basis [1, N, P ] as for yield. Thus, for the prior expectation

of the simulator fN (x) we can write as E[fN (x)] = E[βN0 ] +E[βN1 ]N +E[βN2 ]P , in terms

of three regression coefficients βN0 , βN1 , βN2 . The MLE estimate values of the nugget

δ̂ = 0.054 and the estimated correlation length parameters for N and P are θ̂N = 0.017

and θ̂P = 0.024 respectively, and we used the same optimised values for the pollutant Pp.

These estimated values moves slightly and return the estimates close to starting values for

the pollutant Np, which may happen for a flat gradient.

We explore Bayes linear emulation techniques for more prediction points and the em-

ulator updates from the training data over the 100× 100 grid for the functions of N and

P for crop yield Spring Barley 5. Figure 7.1 shows the result of adjusted emulator mean

and standard deviations with relevant diagnostics considering the 1st-order polynomial

regression mean function for the pollutant Np.

Figure 7.1: Upper Panel: Adjusted Emulator Expectation (Left) And Standard Devia-

tions(Right) for Np as a function of Nitrogen (N) on the x-axis and Phosphorus (P ) on

the y-axis using St = 5, So = 6,Wy = 1, Sy = 4; Lower Panel: Resolution for Np.
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The left upper panel of Figure 7.1 shows adjusted emulator expectation for Np; it is

noticeable that pollution is increasing with increasing N and getting flat for N > 85 and

also high for very low values of N . The effect of P appears negligible, as with crop yield

Spring Barley. Figure 7.2 left upper panel shows the plot of emulator adjusted expectation

for Pp; it is noticeable that pollution is increasing substantially with increasing P and

getting higher for high levels of P , and shows higher pollution for low N values indicating

an interaction with P . So the overall trend of the adjusted emulator expectation plots

shows the increasing trend for Np pollution with the increase of N values and increasing

Pp pollution with the increase of P values. The emulator standard deviations plots from

Figures 7.1 and 7.2 illustrate narrow low-level uncertainty around the locations and more-

over flat all over the parameter space similar to the emulator adjusted variance plot for

crop yield Spring Barley.

Figure 7.2: Upper Panel: Adjusted Emulator Expectation (Left) And Standard Deviations

(Right) for Pp as a function of Nitrogen (N) on the x-axis and Phosphorus (P ) on the

y-axis using St = 5, So = 6,Wy = 1; Lower Panel: Resolution for Pp.

From diagnostics in the resolution plot from Figures 7.1 and 7.2, it shows high flat



7.7. Sensitivity Analysis of the Utility Parameters 120

resolution (> 90%) all over the input space for both pollutants. So the emulator is very

confident in explaining the variability of the simulator for more prediction points. Figure

7.3 shows the result of standardized prediction errors (SPE) for the two pollutants Np
(Right) and Pp (Left). From the result for Pp, we can see two points are outside the band

for the low values of P , which is negligible in practice. The right panel shows the result of

SPE for Np, and no points are outside the band ±2. The values for the Np are scattered

all over the input space indicating the emulator is not under-confident like crop yield.

Considering the two plots, it is clear that the emulator and simulator have no conflict,

hence the valid emulators for both pollutants for further analysis.
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Figure 7.3: Standardized Prediction Errors for Pp (Left) and Pp (Right)

Overall, the adjusted emulator standard deviations plot results of pollutants show the

same trend as the yield plot in Chapter 5. The resolution plots can explain most of the

simulators’ variability for yield and pollutants outputs. Finally, the plots of SPE for all

output variables of interest also showed no evidence of poor fits indicating the validity of

the emulators.

7.7 Sensitivity Analysis of the Utility Parameters

This section explores the values of b1 and b2 suitable for the utility and implausibility

measurement. To calculate the expected utility and variance from Equations (7.11) and

(7.12b) respectively, we need to specify values for the utility coefficients b0, b1 and b2.

For an emulator of Spring Barley, the value for the coefficient b0 corresponding to yield

is chosen to be b0 = 0.15, which is the wholesale barley price in British pounds sterling
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per kg for the year 2022 [148]. However, it is impossible to determine the values for the

pollutants coefficients b1 and b2 similarly; instead, we must make a subjective specification.

We need to gain prior knowledge and perform a sensitivity analysis to assess the impact

of the possible options.

Using the emulator for the crop yield of Spring Barley from Chapter 5 and the pollutant

emulator from Section 7.6, we can calculate the expected utility and implausibility for the

continuous inputs from Equation (7.13). We fix b0 = 0.15 and assume a domain from 0

to 0.3 for the coefficients b1 and b2 with an equal space of 0.02 distance, which generates

225 evenly spaced grid points as a part of explorations. It is noted that the mean for Np
is 13.625, approximately three times higher than the yield mean of 4.21, and the average

for pollutant Pp is 4.89. Also, the standard deviation of Np is 6.42, about 3.5 times the

standard deviation of 1.99 for Pp and 1.82 for yield. In Table 7.1, we present the results

of different combinations as a subset of 225 combinations of b0, b1, b2. Column five of

Table 7.1 shows the range of the implausibility values Ii(x), column six shows the results

for a total number of implausibility observations less than cut point 3, and the last two

columns reveals the regions for the N and P values when Ii(x) < 3.

From the output of Table 7.1 when we penalize Np such that the value of b1 is higher

than b0 and b2 in rows 8, we get lower maximum utility and higher implausibility values

because substantial Np penalty pushes many values further from the maximum. On the

other hand, when we penalize Pp in row 7 such that the value of b2 is higher than b0 and

b1, we also get negative maximum utility values but a broader region of implausibility for

N with high values. If we penalise both pollutants in row 6, we can also see a departure

from the maximum such that a high negative maximum utility with a wider implausibility

range for N . When we give the same weight to all coefficients in row 3, we can still see a

departure from the maximum, as two of the three emulators don’t depend on P . Providing

very minimal penalties to both pollutants in row 2 causes a high positive maximum utility

value. However, considering the region for all P values is not an expected feature as P

has no effect. If we give the same weight to the yield and Np with a minimal penalty for

Pp in row 1, we still see a negative utility with a broad range of P implausibility values.

Finally, when we give the same weight for yield and Pp coefficient and minimal penalties

for Np in rows 4 and 5, we can see positive maximum utility values with a narrow range

for both N and P , which is the desired feature of the emulators.
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Table 7.1: Sensitivity Analysis for the Coefficients b0, b1 and b2

Row b0 b1 b2 U∗ Ii(x) Ii(x) < 3 Region of N Region of P

1 0.15 0.15 0.01 −0.44 [0, 13.79] 5143 [46, 100] [1, 100]

2 0.15 0.01 0.01 0.85 [0, 9.47] 4824 [47, 100] [1, 100]

3 0.15 0.15 0.15 −0.44 [0, 19.10] 1892 [43, 100] [1, 49]

4 0.15 0.01 0.15 0.85 [0, 17.55] 1760 [40, 100] [1, 44]

5 0.15 0.07 0.15 0.30 [0, 19.03] 1727 [42, 100] [1, 45]

6 0.15 0.29 0.29 −1.74 [0, 19.48] 1860 [38, 100] [1, 45]

7 0.15 0.15 0.27 −0.45 [0, 20.18] 1642 [38, 100] [1, 41]

8 0.15 0.27 0.15 −1.55 [0, 17.63] 2365 [42, 100] [1, 59]

Figure 7.4 illustrates the expected utility surface for the eight rows in Table 7.1. The

general trend of all eight combinations of b0, b1, and b2 reveals high utility for the high

N and low P values. However, the first plot of column 1 for row 1 shows trapezium shape

for the region of maximum utility and gives the region of high maximum utility for all

the P input space, which is unrealistic as the input P has no effect on crop yield. For

the first plot of column 2 corresponding to row 2, which is equal weight for the pollutants

of no penalties the maximum utility area covers approximately 60% of the region for P

response, which is also not the desired feature.

For all other plots from rows 3 to 8, we can see a similar shape such that maximum

utility area covers the high N values and low P values. We can see a very narrower area

for P for the equal weight of pollutant Pp and yield in row 4 (second plot of column

2), which is mostly desired. As mentioned earlier, we can see the very close mean and

standard deviation for yield and pollutant Pp, and we are also getting the desired feature

by considering the equal weight for both. So for further analysis, we will use the values of

b0 = 0.15, b1 = 0.01, b2 = 0.15.
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Figure 7.4: Expected Utility Plot for the Subset of Eight Unique Combinations; Column

1: Plots for Odd Rows; Column 2: Plots for Even Rows
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7.8 Utility Emulation and Implausibility

This section concerns the utility emulation and implausibility for the continuous and mixed

inputs. Initially, we show the result for the continuous input and then built the emulators

for mixed inputs.

7.8.1 Continuous Inputs Only

In this section we fit the emulated utility for Spring Barley, including the two pollutants

Np and Pp for continuous inputs by fixing St = 5, So = 6 ,Wy = 1 and Sy = 4. We then

evaluate the implausibility for a 100× 100 of points using b0 = 0.15, b1 = 0.01, b2 = 0.15.

Figure 7.5 presents the results of expected utility and variance with the implausibility and

the region for the implausibility using the threshold (I(x) < 3).

Figure 7.5: Upper panel: Utility Expectation (left) and Variance as a function of Nitrogen

(N) on x-axis and Phosphorus (P ) on y-axis; Lower panel: Implausibility (left) and the

Region of Implausibility for (Ix < 3) with b0 = 0.15, b1 = 0.01 and b2 = 0.15.
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From Figure 7.5 we can see the region of maximum expected utility for high values

of Nitrogen and very low values of Phosphorus, which is the desired feature of the crop

Spring Barley. As we have seen a flat response for P , so increasing P has no benefit,

only penalties. We can see a narrow uncertainty for the variance of the utility over the

whole input space. The lower panel of Figure 7.5 of the implausibility confirms that the

implausibility is higher for high P values and lower N . The reason behind this is that we

have a low yield on the lower values of N and very high pollution for Pp in that region. The

right lower panel shows the implausibility refocused on the region for which (I(x) < 3)

denoting the non-implausible region with respect to N and P . For b0 = 0.15, b1 = 0.01 and

b2 = 0.15 we can approximate the non-implausible region by the rectangle N ∈ [40, 100]

and P ∈ [1, 44].

7.8.2 Mixed Inputs Including Steepness and Soil

In this section, we will construct the correlation matrices and then build the Bayes linear

mixed inputs emulators for the pollutants Np and Pp considering the soil and steepness

factors. Finally, we check the robustness of the emulators based on the diagnostic resolution

and SPE.

7.8.2.1 Emulating Pollutants

We consider the linear mean function for the pollutant Pp with the interaction of N and

P , which is shown in Figure 7.2. For the pollutant Np, we assume the linear regression

terms of N and P and the interaction effect of N with the factors of soil and steepness as

we have seen that it has a solid response to N as an increasing trend for low values and

then monotonic increase for large N values.

Table 7.2 summarises the mean function for Np and Pp with inputs steepness, and soil

with quantitative variables Nitrogen, Phosphorus and simple basis in terms of 9 and 14

regression coefficients for the two pollutants.
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Table 7.2: Basis for Pollutants Considering Inputs Nitrogen and Phosphorus With Factors

Steepness and Soil

Pollutant Simple Basis [g(v)T ] No. of Coefficients

Pp 1, N, P,NP, ZSo2 , Z
So
3 , Z

St
2 , Z

St
3 , Z

St
4 9

Np 1, N, P,NP, ZSo2 , Z
So
3 , Z

St
2 , Z

St
3 , Z

St
4

NZSo2 , NZ
So
3 , NZ

St
2 , NZ

St
3 , NZ

St
4 14

Considering a correlated error with squared exponential covariance function for the

continuous variables, we construct the factor level correlation matrix for factor soil TSo
and for factor steepness TSt using the general correlation approach in Equation (6.9). The

estimated matrices TSo and TSt are shown as follows, following the methods of Chapter 6;

TSo =


τ1,1 τ1,2 τ1,3

τ1,2 τ2,2 τ2,3

τ1,3 τ2,3 τ3,3

 =

1 0.31 0.12

0.31 1 0.22

0.12 0.22 1

 (7.16)

TSt =



τ1,1 τ1,2 τ1,3 τ1,4

τ1,2 τ2,2 τ2,3 τ2,4

τ1,3 τ2,3 τ3,3 τ3,4

τ1,4 τ2,4 τ3,4 τ4,4


=



1 0.85 0.76 0.62

0.85 1 0.78 0.80

0.76 0.78 1 0.93

0.62 0.80 0.93 1


(7.17)

We can see a weak correlation between the factor levels from the correlation matrix TSo
for factor soil. On the other hand, in the correlation matrix TSt for factor steepness, we

can see a strong positive correlation among the factor levels for most cases.

To build the Bayes linear emulators for both pollutants, we assume the same hyper-

parameters of θ̂N = 0.017, θ̂P = 0.024 and nugget δ̂ = 0.054 similar to the continuous input

problem with the above-constructed correlation matrices of TSo and TSt for the factors

steepness and soil only. Expectations E[f(v)] and variances V ar[f(v)] for the emulators

used in Table 7.2 are calculated by using Algorithm 2 for mixed inputs from Chapter 6.

The emulator is updated by using the 15 × 15 simulation grid for functions of N and

P . Figure 7.6 shows the adjusted emulator mean and standard deviations with resolution

considering the basis functions from Table 7.2 for the pollutants.
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Figure 7.6: Upper panel: Emulator expectations for Np (left) and Pp (right); Middle panel:

Standard deviations of the pollutants; Lower panel: Resolution Considering the Factor

Steepness and Soil only fixing St = 5, So = 6, Wy = 1 and Sy = 4.

Figure 7.6 shows that Np (upper left panel) increases with increasing N levels as in the

continuous input problem. However, the trend appears to be decreasing from a spuriously

high level of Np at very low levels of N before behaving the desired increasing feature.

Further exploration is needed with this input space to catch behaviour. The upper right
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panel shows the adjusted emulator expectation for Pp, which shows the same trend for

continuous inputs. The standard deviation plots in the middle panel show entirely different

features from the continuous input results, with slightly higher uncertainty around the

locations for both pollutants over the input space after introducing the factor effects into

the model. From diagnostics of the resolution for both pollutants, we can see a different

feature than the continuous problem. However, it’s not flat but shows high resolutions

greater than 0.8 all over the input space indicating the emulators are very confident in

explaining the variability of the simulator.

7.8.2.2 Utility and Implausibility for Steepness and Soil

In this section, we calculate the expected utility and variance corresponding to the emu-

lators for crop yield of Spring Barley from Chapter 6 and the two pollutants considering

factors of steepness and soil from Section 7.8.2.1. Figure 7.7 shows the expected utility

and variance in the upper panel using the steepness and soil factors fixing Wy = 1 and

Sy = 4. The lower panel shows the maximum implausibility and the region of maximum

implausibility for which IM (x) < 3.

Figure 7.7: Upper panel: Expected utility (Left) and Variance (Right); Lower panel: Max-

imum Implausibility (Left) and the Region of Maximum Implausibility (Right).
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From Figure 7.7, we can see the expected utility is maximised for high values of N and

low values of P , which is the same trend as the continuous input problem. The variance

of the utility plot shows in Figure 7.7, which is showing quite different trend from the

continuous input problem with slightly higher uncertainty values. This unusual variations

may happen due to the factor effect, where more data points were used to emulate and

the parameter space are not flat like as continuous-only problem.

The left lower panel in Figure 7.7 shows the maximum implausibility over the factors.

The result confirms that the maximum implausibility is higher for high P values and for

low values of N . The region with IM (x) < 3 suggests an approximate non-implausible

region of N ∈ [60, 100] and P ∈ [1, 15]. This result gives us the same evidence as the

previous Chapters that the Spring Barley crop has the highest yield for high N and low P

values. Figure 7.8 shows the plot of implausibility for three different unique combinations

(i) St = 5, So = 6, (ii) St = 5, So = 7, and (iii) St = 6, So = 6, with the lower right

panel the maximum implausibility IM (x) for all steepness and soil. These plots are similar

to the continuous only problem in Section 7.6.

Figure 7.8: Upper Panel: Implausibility Plots for the Combinations St = 5, So = 6, Wy =

1 (Left) and St = 5, So = 7,Wy = 1 (Right); Lower Panel: Implausibility Plot (Left) for

the Combination St = 6, So = 6, Wy = 1, Sy = 4 and Maximum Implausibility (Right)

(IM (v)).



7.8. Utility Emulation and Implausibility 130

The upper left panel plot for implausibility when St = 5, So = 6, Wy = 1, Sy = 4

shows a similar trend and shape as the continuous-only problem. From the plots in the

upper panels for the different factors, we can see a similar shape and trend of implausibility

plots, which suggests implausibility is always higher for high P values across the factors.

The right lower panel is the plot of the maximum implausibility, which exhibits the same

general shape and trend as the other unique combinations. So similar results for different

factor combinations indicates that some factors have no effect, which motivated us to

perform variable selection to remove non-essential terms.

7.8.3 Mixed Inputs Including Weather

7.8.3.1 Selection of Inputs Using Stepwise Regression

In this section, we will apply variable selection methods to remove some basis terms

irrelevant to the emulation process, thus reducing g(v) and selecting the essential regression

parameters. For this, we will use stepwise regression.

Stepwise regression is a system to construct a model of essential inputs using an in-

clusion and exclusion process in a systematic way [9]. Three different ways are available

to identify the important inputs:

• Forward Stepwise Selection: This selection method starts with no variables in the

model, then adds each of the variables using the model selection criterion and repeats

the procedure until there is no improvement of the model.

• Backward Stepwise Selection: This method starts with all variables, deletes each

term, and repeats until there is no improvement in the model.

• Both-Direction Stepwise Regression: This method combines the above two selection

approaches to eliminate and add variables simultaneously.

Table 7.3 shows the result for the forward stepwise regression of the essential variables

considered first, and the relevant AIC values corresponding to the three outputs Np, Pp
and Yield with the inputs steepness, soil, weather, Nitrogen and Phosphorus. We have

considered the intercept term as the null model and all other inputs as the alternative.

The forward selection method and both-way stepwise regression give the same results

presented in Table 7.3. The results for all outcome variables are showing in Table 7.3, but

we only discuss the input Pp.
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Table 7.3: Inputs Selection using Forward Stepwise Regression for Np, Pp and Yield

Np Pp Yield

g(v) AIC g(v) AIC g(v) AIC

Null 22802.27 Null 22802.27 Null 9755.25

ZW8 22336.98 P 13895.25 N 3120.54

ZW7 21782.51 ZW8 12479.89 ZW7 −1576.87

ZW6 21306.43 ZW7 10597.76 ZW3 −6715.84

N 21003.17 ZW6 8531.70 ZW8 −8358.41

ZSo2 20810.91 N 6738.89 ZW6 −9260.72

ZW4 20744.88 ZSo2 5492.25 N3 −10095.47

ZSo3 20702.79 ZW4 5030.50 N2 −10893.16

ZW3 20688.86 ZSo3 4612.48 ZW5 −11761.68

ZW5 20688.05 ZW3 4468.19 ZSo3 −12220.62

NZW7 20659.76 ZW5 4348.39 N2P −12255.30

ZW2 20655.33 NP 4240.04 ZW4 −12271.71

NZSo3 20653.04 ZW2 4158.25 ZW2 −12277.21

NZW6 20652.79 ZSt4 4154.62 ZSo2 −12291.07

NZW8 20652.32 NP −13001.49

NZW4 20648.10 NP 2 −13059.00

NZSo2 20647.81 ZSt2 −13090.01

NZW2 20647.37 P −13151.23

P 20643.24 ZSt4 −13155.14

ZSt3 −13165.04

P 2 −13227.75

P 3 −13240.21

Firstly we fit the intercept-only model, which has an AIC value of 22802.27. Secondly,

we identify the model with the lowest AIC compared to the null model, so input P with

the AIC value of 13895.25 is added. After this, we need to fit every viable two-term model,
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including P and select the model that produced the lowest AIC compared to the one-term

AIC value. Then we need to consider the three-term models and so on with the comparison

to the previous AIC value, and the procedure stops when the model fails to reduce the AIC

such that there is no improvement in the model. The result shows the expected feature of

Pp that the variable was P have added first as well N and its interaction term NP .

For the pollutant variable Np, we can see that input steepness is never added by

the forward selection method, indicating that the input steepness is unimportant for this

outcome variable. The levels of the factor variable steepness shows high dependency among

them for Np, which is similar to result in Chapter 4. The interaction N with weather levels

ZW3,3, Z
W
3,5 are the same as baseline and hence not included in the final model. From the

result, we can also see that the variable P is included by the selection method as the last

choice, which is the same conclusion as for Np, such that there is a weak effect of P .

For the outcome Pp, we can see that the selection method has not included all input

steepness levels except ZSt4 . So we discount the steepness variable for the emulation, and

the result demonstrated that the input N and NP are included by the model for outcome

Pp, which shows the same feature from the baseline figures.

For the outcome yield, steepness has some significant effects in the context of the other

two outcome variables. The result illustrated that the model selection for the yield included

inputs P as the last choice and N as the first choice, which is the main contributor to the

yield. So our results show that steepness does not affect both pollutants, but does effect

yield. Now we will fit the emulators using the selected inputs for the pollutants only.

7.8.3.2 Emulation of Pollutants

In this section, we fit the emulators for both Pp and Np using the selected inputs from

Table 7.3. A simple basis of 13 and 19 regression coefficients in terms of two pollutants

are shown in Table 7.4 for the selected inputs. The design matrix is calculated in the same

way as Chapter 6.
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Table 7.4: Basis for Pollutants Considering Inputs N and P with Selected Inputs

Pollutant(s) Simple Basis [g(v)T ] No. of Coefficients

Pp 1, N, P,NP,ZSo2 , Z
So
3 , Z

W
2 , Z

W
3 , Z

W
4 , Z

W
5 , Z

W
6 , Z

W
7 , Z

W
8 13

Np 1, N, P, ZSo1,2, Z
So
1,3, Z

W
3,2, Z

W
3,3, Z

W
3,4, Z

W
3,5, Z

W
3,6, Z

W
3,7, Z

W
3,8

NZSo1,2, NZ
So
1,3, NZ

W
3,2, NZ

W
3,4, NZ

W
3,6, NZ

W
3,7, NZ

W
3,8 19

Using the general correlation approach, we construct the factor level correlation matrix

by considering a correlated error with a squared exponential covariance function. We use

the same correlation matrix from Equation (7.16) for factor soil. For factor weather, the

correlation matrices TW (Np) and TW (Pp) are constructed using the general correlation

approach as in Chapter 6. Equations (7.18) and (7.19) show the correlation matrices for

the pollutants Np and Pp with factor weather, respectively, and both are symmetric. The

matrices T (Np)W and T (Pp)W are as follows;

T
(Np)
W =

τ3,1 τ3,2 τ3,3 τ3,4 τ3,5 τ3,6 τ3,7 τ3,8



1 τ3,1

0.33 1 τ3,2

0.19 0.23 1 τ3,3

0.32 0.12 0.25 1 τ3,4

0.17 0.15 0.30 0.23 1 τ3,5

0.42 0.28 0.28 0.4 0.16 1 τ3,6

0.32 0.19 0.26 0.19 0.30 0.14 1 τ3,7

0.22 0.26 0.32 0.14 0.19 0.16 0.13 1 τ3,8

(7.18)

T
(Pp)
W =

τ3,1 τ3,2 τ3,3 τ3,4 τ3,5 τ3,6 τ3,7 τ3,8



1 τ3,1

0.26 1 τ3,2

0.68 0.37 1 τ3,3

0.30 0.32 0.29 1 τ3,4

0.31 0.49 0.51 0.35 1 τ3,5

0.43 0.45 0.29 0.25 0.31 1 τ3,6

0.31 0.60 0.21 0.48 0.37 0.26 1 τ3,7

0.35 0.27 0.51 0.22 0.20 0.36 0.32 1 τ3,8

(7.19)
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From the correlation matrix (7.18) for the factor input weather concerning Np, we can

see that all values are below 0.43, indicating a weak correlation between the factor levels.

On the other hand, in the correlation matrix T (Pp)W for pollutant Pp, we can see moderate

to weak correlations among the factor levels most of the time. However, we can perhaps

see a slightly stronger correlation between the factor level 1 and 3 and levels 2 and 7.

To build the Bayes linear emulators for both pollutants, we consider correlation ma-

trices for the factor weather and soil constructed with the same hyper-parameters as for

Section 7.6 .

Figure 7.9: Upper panel: Adjusted Emulator expectation for Np (left) as a function of Ni-

trogen (N) on the x-axis and Phosphorus (P ) on the y-axis; Emulator Standard Deviations

(right) of the Np; Lower panel: Resolution of the Np.

From Figure 7.9, we can see the adjusted emulator mean (upper left panel) for Np,

which shows the desired feature of an increasing trend with an increase of Nitrogen values
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and the unusual trend for steepness and the soil-only problem has now disappeared. The

upper left panel in Figure 7.10 shows the adjusted emulator expectation for Pp. The plot

shows a clear increasing trend concerning P values such that high pollution for higher P

and for lower N values. The trend of Pp shows the same direction and interaction with

N , similar to the problem of continuous input, and steepness and soil only problem. The

effect of P on Np shows a weak dependency, which is an expected pattern.

The adjusted emulator standard deviations plots from the upper right panel of Figures

7.9 and 7.10 illustrate a high uncertainty around the locations for both pollutants over

the input space after considering the weather factor. From diagnostics of the resolution for

both pollutants, we can see high flat resolution over the input pace, greater than 0.9 for

most of the predictions. It indicates that the emulators can explain most of the variability

of the simulator.

Figure 7.10: Upper panel: Adjusted Emulator Expectation for Pp (Left) as a function

of Nitrogen (N) on the x-axis and Phosphorus (P ) on the y-axis; Emulator Standard

Deviations (Right) of the Pp; Lower panel: Resolution of the Pp (Left).
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Figure 7.11: SPE Plot for Selected Inputs of Pp (Left) and Np (Right)

Figure 7.11 shows the plot of SPE for both pollutants considering the 60% of the

observations as training data and the rest of the data as testing. Both figures shows no

concern about the conflict of the emulator and simulator. So we can say that our emulators

for the selected input pollutants are valid and can be used for implausibility and utility.

7.8.3.3 Utility and Implausibility

We now construct the expected utility of crop yield of Spring Barley and the maximum

implausibilities by using the values of b0 = 0.15, b1 = 0.01 and b2 = 0.15. Figure 7.12

presents the result of implausibilities considering eight different weather levels.

The implausibility plots corresponding to weather levels show the same trends and

shapes. From the figure we can see the non-implausible region forN values varying between

N ∈ [1, 100] but P values are within P ∈ [1, 20]. We see a smooth trend for all weather

levels. However, we can see different ranges of the implausibilities for different weather

levels, such as higher for weather levels 2 (row 1 right), 4 (row 2 right), 6 (row 3 right),

and 7 (row 4 left). The pattern and trend for weather level 1 are similar to St = 5, So =

6, Wy = 1, Sy = 4 from Figure 7.5.
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Figure 7.12: Implausibility (I(x)) plots for Weather levels 1-8 (Row 1 is for weather level

1 (Left), and 2 (Right)), Row 2 is for levels 3 and 4, Row 3 is for levels 5 and 6, Row 4 is

for levels 7 and 8.

Both expected utility and variance show the same shape and trend, similar to the mixed

inputs problem for steepness and soil only. In Figure, 7.13 upper panel shows the results



7.8. Utility Emulation and Implausibility 138

of the expectation and variance of the utility by fixing St = 5, So = 6, Wy = 1, Sy = 4.

The lower panel shows plots of maximum implausibility and maximum implausibility for

the threshold (IM (x) < 3). From Figure 7.13, we can see the expected utility is highest

for the region of N ∈ [45, 100] and P ∈ [1, 10]. The uncertainty is slightly higher for the

utility variance in Figure 7.13 over the input space of prediction points. The uncertainty

is higher on the edges of the region but can be ignored due to minimal prediction points

to emulate.

Figure 7.13: Upper panel: Expected utility (Left) and Variance of the Utility (Right);

Lower panel: Maximum Implausibility and Zooming Region of Maximum Implausibility

(Left).

The left lower panel from Figure 7.13 shows the maximum implausibility. The result

confirms that the maximum implausibility is higher for high P and low N values. The

shape of the plot is different and non-smooth, as we have seen that the weather levels

show a diverse range of implausibilities and fluctuations. The right lower panel shows the

region of maximum implausibility considering the threshold value of 3, confirming the
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non-implausible area to be approximately N ∈ [20, 100] and P ∈ [1, 15]. The region for N

is wider, which causes high uncertainty. Weather is the main contributor to uncertainty,

so further analysis is needed. If the factor steepness and soil values are known, it could be

conditioned to reduce the uncertainty. One possible option is to look at the region for the

threshold I(x) < 2.

This thesis aimed to make a framework for determining the best input values for the

Spring Barley crop considering all the associated factors. Spring Barley gives the non-

implausible region approximately at N ∈ [20, 100] and P ∈ [1, 15], which provides us with

the best combinations of fertilisers to apply after accounting for all land characteristics

and weather factors.

7.9 Conclusion

This chapter created a framework to seek maximum utility considering the input space of

Nitrogen and Phosphorus for the crop Spring Barley.

We introduced the utility and history matching with implausibility measures and used

a linear utility function. The difference between expected utility value and maximum ex-

pected utility value with variance of the expected utility used to calculate the maximum

implausibility and hence to construct the emulators. The emulator’s diagnostic plots illus-

trated narrow uncertainty around the prediction points and no conflict with the simulator.

We assessed a sensitivity analysis for the coefficients related to yield and pollutants by

fixing the value of b0. Then we calculated the utility and implausibility for the continu-

ous case and mixed inputs. We performed variable selection to identify the essential basis

terms, including the factor weather, to reduce the extra complexity and to remove the

unessential inputs. Finally, we built the emulators for the reduced inputs, hence finding

the utility and implausibility.

From this chapter, we constructed a utility function to represent the value of a given

output, and used it to find the region of N and P for mixed and continuous inputs. We

learned the basics of implausibility and the maximum implausibility to determine the

optimal area. We also understand how to perform the sensitivity analysis for the extended

grid points and, finally, the stepwise regression method to select the best contributors.

The further scope of this chapter is use different yield function to include the cost of N

and P .



Chapter 8

Conclusion

This thesis aimed to develop a method to make an optimal decision for the farmers to gain

maximum utility considering yield and pollutants, accounting for weather factors, land

characteristics and fertilizer use. This research focuses on dealing with EPIC simulator

outputs generated by both categorical and continuous inputs. In this thesis, we have

explored three different views of the problem: a frequentist approach of crop modelling in

Chapter 3, Bayesian hierarchical inference in Chapter 4, and subjective Bayesian emulation

techniques in Chapters 5 to 7. Some of the significant achievements of this thesis are:

1. Extension of the Bayes linear emulation approach for mixed inputs with the nugget

effect.

2. Use the history matching technique with implausibility measures in terms of the

utility theory to find an optimal region of the expected maximum utility for the

qualitative and quantitative inputs.

3. Application of the Bayes linear emulation techniques with mixed inputs and history

matching in the agricultural sector for the first time.

One of this thesis’s main limitations is using real-life agricultural data; future research can

apply the same technique to real-life data. Overall, this thesis provided an optimal decision

for the region to get the expected maximum utility for the farmers, considering the effects

of weather, soil type, steepness, and fertilisation to yield and pollutants. We aimed to build

general framework for the farmers and implement them through the EPIC crop simulation

model data. This thesis developed and illustrated the methodology using Spring Barley

crop data, and future researchers can follow our steps to apply it to real-life data. Our
140
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farmers are the core for feeding the whole world, and they need more agricultural outputs;

this thesis’s general set-up is just one of the contributions of this world’s challenge for

food.

8.1 Summary of the Chapters

In Chapter 2, we presented the detailed procedure of the EPIC simulator, which is the base

of the analysis of this thesis. We performed the EPIC simulation study for 58 years with

different types of inputs and outputs for the Wensum catchment. A subset of simulated

data was demonstrated in this chapter and explored to assess the crop yield trend for inputs

Nitrogen and Phosphorus. We only considered two pollutants and a few crops because our

interest was to develop a general framework rather than extensive data analysis.

Chapter 3 mainly reviewed the basic crop yield models with their features and fit them

to the EPIC simulation data. These models were fitted for three different crops Spring

Barley, Winter Barley and Silage. The fitted curve and estimates of these crops were

shown, whose were only satisfying all features of the Mitscherlich-Baule (MB) model with

lower RSE estimates and also favoured by most of the pieces of literature. However, the

crop models must fulfil the standard features, and violating these makes them impractical

to use. Despite the typical features, the boundary constraints and initialization for non-

linear fitting models are complicated.

Setting up a non-linear Bayesian hierarchical framework in terms of mixed inputs was

the main objective of Chapter 4 with the MB model. This chapter set up a Bayesian hier-

archical model for the MB model for mixed inputs. For the non-conjugate form, we used

the HMC-NUTS MCMC to generate the posterior samples. The results showed strong evi-

dence of Nitrogen but a weak response to Phosphorus. A model comparison was performed

using some diagnostic tools, and the diagnostics showed no concern to worry. Finally, fac-

tors incorporation were explored using N only reduced model from model comparison. We

then reran the MCMC with factor variables, which also showed no concern in diagnostics,

and the simulated data lie within the mean and predicted credible intervals for all factors.

However, we have seen a broader uncertainty for all the factors, and some failed to capture

the data trend. The possible reason for this failure is that the MB model can not capture

the direction of the monotonic nature of the yield, and another reason is to assess the

effect on the maximum crop yield parameter only.
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The Bayes linear emulation approach is introduced with application to EPIC data

for continuous input only in Chapter 5. The chapter started by discussing the context of

emulation, the basic structure and approaches. We introduced the maximum likelihood

inference to estimate the parameters for constructing the emulator. The detailed calcula-

tion of the Bayes linear emulation was shown with the formulations to generate adjusted

emulator expectations and variance with some diagnostics tools. One dimensional example

was demonstrated, and finally, EPIC simulator data was used to build the emulator for

the crops Spring Barley and Winter Barley. The adjusted emulator expectation revealed a

solid response for Nitrogen only with narrow uncertainties for both crops. We also assessed

the validity of the emulators using some diagnostic tools and found no evidence of conflict

with the simulator.

In Chapter 6, we focused on developing a framework for the Bayes linear mixed inputs

emulation using approaches to build the factor correlation matrix. We presented three

approaches to assessing the correlation matrix for factor levels. We provided a general

set-up to estimate the correlation matrix for qualitative and quantitative inputs. Finally,

we combined the correlation matrix with the Bayes linear emulation technique to calculate

the emulator-adjusted expectations and variances. We have applied our new method to

the EPIC simulator data for the Spring Barley crop and identified the general approach

as the best correlation approach using the SPE and MSE diagnostic tools. We then built

the emulators of mixed inputs combining the correlation matrix for the chosen correla-

tion approach. The results also revealed a solid response to Nitrogen and no response to

Phosphorus with little uncertainty over the input space.

Chapter 7 started by introducing utility, history matching, and implausibility mea-

sures. A linear utility function was considered by combining yield and pollutants with the

respective coefficients. We applied the concept of history matching by using the expected

maximum utility as the actual observation to calculate the implausibility. Initially, we con-

structed the emulators for the continuous and steepness soil only for the pollutants. Then,

a sensitivity analysis for coefficients related to yield and pollutants was assessed by fixing

the value of b0 and hence calculated the utility and implausibility for the continuous case

and mixed inputs soil-steepness only. We performed a variable selection method, including

the weather factor, and finally, built the emulators for the reduced inputs. We calculated

adjusted emulator expected mean and variance for the utility with the maximum implau-

sibility with the reduced mean function. Our result showed the area of expected maximum
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utility for the lower values of P and higher values of N .

8.2 Future Work

The possible future works of this thesis are presented as follows:

1. To explore more crop yields, and pollutants, especially the outputs of total biomass

and below-ground biomass general trends concerning fertilisers for the Wensum

Catchment.

2. To analyze and compare the Eden catchment data and the eight management sce-

narios, such as Tillage, Cover crops, etc. Future work may consider these scenarios

to analyze the trend of crop yields under different scenarios for both catchments.

3. The future extension of this work is to consider the factor effects for the Phosphorus

inputs while setting the Bayesian framework.

4. To extend this work to other factor effects on coefficients β1 and β2 and assess the

overall factor effects in Chapter 4 for the Bayesian modelling framework.

5. To consider the multivariate emulation technique for the output pollutants to see

the overall pollution effect in Chapter 7.

8.3 Research Achievements and Awards

One of our research works has already been published in Springer conference proceedings

(Chapter 5 [134]) of Data Analysis. The Bayesian hierarchical framework of Chapter 4

with the yield model selection from Chapter 3 is under revision in the Journal of Sta-

tistical Modelling. It has already been presented at the 13th International Conference of

the ERCIM WG on Computational and Methodological Statistics (CM Statistics, 2020).

Chapters 6 and 7 are in the submission process. The work for the continuous part of

the Bayes linear emulation approach from Chapters 5 to 7 already submitted to the En-

vironmental Modelling and Software journal. Our work on Chapter 6 has already been

presented in a contributed session at the Royal Statistical Society Conference, 2022 and

the SIAM student chapter conference. These research works helped me to achieve ”The

Euan Squires Memorial Prize,” awarded to an overseas Postgraduate Research (PGR)
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student with an excellent academic performance from Durham University Mathematical

Sciences Department and the reputed ”Charles Wallace Trust PhD Bursary” for final year

students. Despite these, I have been awarded travel awards from Ustinov College for the

RSS conference, SIAM UKIE National Student Chapter Conference, and the conference

registration fee award from the 6th Canadian Conference in Applied Statistics. Moreover,

I have also been awarded the most competitive Durham Doctoral Scholarship (DDS) for

my ongoing PhD work.





Appendix A

Bayesian Hierarchical Framework

for Crop Yield

A.1 MCMC Algorithms

A.1.1 Metropolis-Hastings Algorithm

Definition A.1.1 (Proposal Distribution). A distribution π(a′) is said to be a proposal

distribution if it depends on the current sample ai to draw the following sample ai+1.

Definition A.1.2 (Target Distribution). A distribution π(θ|y) is said to be a target dis-

tribution or posterior distribution if it uses to generate the posterior samples.

1. Initialize the starting parameter a0

2. For i = 1, 2, ..., N

• Generate a sample from the proposal distribution such that a′ ∼ π(a′ |ai)

• Use u ∼ U(0, 1) to generate sample from the uniform distribution

• Compute H = π(a
′
)π(ai|a

′
)

π(ai)π(a
′ |ai)

, which is known as Hastings ratio

• Now, if u < min(1 +H) then accept the proposal and set ai+1 = a
′

• Else ai+1 = ai

3. Repeat step 2.

146
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A.1.2 Gibbs Sampling

1. Set the initial value a(0) =
(
a
(0)
1 , ..., a

(0)
n

)
,

2. Repeat for k = 1, 2, ...,M

• Generate a(k+1)1 from π
(
a1|a(k)2 , ..., a

(k)
n

)
,

...

• Generate a(k+1)n from π
(
an|a(k+1)1 , ..., a

(k+1)
n−1

)
,

3. Repeat the values of
[
a(1), a(2), ..., a(M)

]
.

A.1.3 Hamiltonian Monte Carlo Within No-U-Turn Sam-

pler

• Supplementary Variable: A variable is said to be called supplementary due to its

indirect effect such that it cannot use as an outcome or explanatory variable.

• Hamiltonian Dynamics: A Hamiltonian dynamics is a dynamical system of the scalar

function H(a, b, t), which is generalized by two coordinates a and b known as mo-

mentum and position, respectively. So with respect to Hamilton’s Equation [93] we

can write;

δa

δt
= −δH
δb
,

δb

δt
=
δH

δa
.

(A.1.1)

• Leapfrog Integration: Leapfrog integration is the numerical integration of the differ-

ential equations of the second order; the more details are explained in [30] and can

be expressed as;

y
′
=
d2y

dt
= A(y). (A.1.2)

In leapfrog integration, the simultaneous equations are as follows [30] :

aj = A(yj),

vj +
1
2
= vj− 12

+ aj ∆t,

yj+1 = yj + vj+ 12
∆t.
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Here, yj is the position at step j; for step j + 12 , the first derivative of y is vj + 12 ;

the second derivative of y for the step j is aj = A(yj); and ∆t is called the size of

every time step.

• Tuning Parameter: A parameter Λ is called the tuning parameter, which is used to

control the strength of the penalty term.

HMC efficiency strongly relies on the tuning parameters of momentum covariance, step

size, and the step number corresponding to several iterations [100]. So the introduction

of NUTS within HMC adaptively tunes the parameters during the warming period and

adjusts the step size number during the iteration process. HMC can be written as [100,

126];

H(λ, k) = v(λ) + p(k), (A.1.3)

where v(λ) and p(k) are the potential and dynamic energies. In HMC, for estimating λ

with f(λ), we can introduce a supplementary variable [126] k such that f(k) ∼ N(0, D)

with zero mean and covariance matrix D. So the joint density of f(λ, k) can be written

as;

f(λ, k) = exp log f(λ) + log f(k) ∝ exp(log f(λ)− 1
2
λ′D−1λ),

= exp(−v(λ)− p(k),

= exp(−H(λ, k)),

(A.1.4)

where v(λ) = − log f(λ), and p(k) = 12λ′D−1λ. So HMC generate samples from the joint

distribution of (λ, k) and Hamiltonian dynamics can be written as following two differential

equations;

δλ

δt
= −δH
δk
,

δk

δt
=
δH

δλ
.

(A.1.5)

It is also known that [83] Hamiltonian equation has no potential solution but can be

approximated for the discrete setting using the leapfrog method of integration. So using

the leapfrog integration method, we can write that;

k(a+
1
2
b) = p(a)− 1

2
b
δf(λ)
δλ
(λ(a)),

λ(a+ b) = λ(a) + bk(a+
1
2
b),

k(a+ b) = k(a+
1
2
b)− 1
2
b
δf(λ)
δλ
(λ(a+ b)),

(A.1.6)



A.1. MCMC Algorithms 149

where b is the integration step size and a is the time within the range 1 ¬ a ¬ Qt; Qt
is the total number of integration steps. The complexity arises for HMC due to the large

value of b leading to a low acceptance rate, and a smaller value of b increases the time

length; also, smaller values of Q increase the auto-correlation.

For NO-U-Turn, Sampler (NUTS) selects an appropriate length for Q for every itera-

tion, maximizing the distance between each step and working efficiently via the doubling

method. NUTS started from a supplementary variable k i.e. k(t|λ) ∼ U(0, exp(log f(λ)−
1
2λ
′D−1λ)). By doubling the size, NUTS generates a finite set for (λ, k) in repeated nature.

Let us consider M a subset for the candidate states (λ, k) and M is considered from (λ, k)

by doubling process to justify t ¬ exp(log f(λ) − 12λ′D−1λ). If we consider (θ, p) is our

initial values and the following values of (θ∗, p∗) are sampled from M . For that, Hoffman

and Gelman [100] proposed a Kernel for double sampling steps and also determined 0.6

as the optimal acceptance probability. For jth iteration of MC in NUTS of the tuning b

can be expressed as;

log(bj+1)←− ∆−
√
j

β

1
j + j0

j∑
i=1

(pt − αja),

log(bj+1)←− σj log(bj+1) + (1− σj) log(bj),

(bj+1)←− bj+1,

where σj = j−w set by [100]; αja is the actual acceptance probability, and pt is the desired

acceptance probability; ∆ is the arbitrary choosing point; j0 used to initial exploration.

The acceptance probability is calculated as follows;

αja =
1
|γj |

∑
λ,kϵγja

min
[
1,
π(λj , kj)
π(λj−1, kj,0)

]
,

where λj , kj are candidates, λj−1, kj,0 are initial values, γja are all possible sets explored

during MCMC. So the algorithm of NUTS can be briefly described as follows [126];

1. Set the initial value for λ, b and values of pt,∆, β, j0, w.

2. Generate k ∼ N(0, I).

3. Generate t ∼ U(0, exp(log f(λ)− 12k′M−1k)

4. SetM from double sampling within kernel mentioned in Hoffman and Gelman [100].

5. The proposed (θ∗, p∗) is accepted with probability αja for jth iteration.
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6. Renew bj through dual averaging.

7. Repeat steps 2 to 6.

Using the above discussed set-up of Hamiltonian Monte Carlo within a No-U-Turn

sampler, we update the posterior probability distribution in Equation ( 4.11) to generate

the posterior samples.

A.2 Diagnostics of the Bayesian Analysis
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Figure A.1: Pairs plot for the crop Winter Barley. Like the crop Spring Barley, most are

independent such that no trend, except β0, is positively correlated with β2 with a linear

trend.
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Figure A.2: Autocorrelation diagnostic plot for the crop Winter Barley and from this plot

can be shown a decreasing trend of bins with the increase of the lags, indicating good

mixing of chains like as Spring Barley with high effective samples for β4.
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Figure A.3: Pairs plot for the crop Silage, and from this figure, we can see the parameters

β3, β4, and sigma show no visible trend but a linear trend among the parameters β0, β1
and β2.
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Figure A.4: Autocorrelation diagnostic plot for the crop Silage and from this plot shows a

significant decreasing trend of bins with the increase of the lags indicates a high effective

sample for β3, β4, σ but a gradual decrease for other parameters.
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Figure A.5: The trace plot for the crop Spring Barley for the input N only with four

different chains and figure reveals a good mixing.
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Figure A.6: Autocorrelation diagnostic plot for the crop Spring Barley using the response

N and bins are decreasing gradually with the increase of lags, suggesting no concern to

worry about the chain mixing.
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Figure A.7: Pairs plot for the crop Spring Barley using N response and like the entire

model with P , most are showing no trend, except β0, is showing a linear trend with β2.
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A.3 Diagnostics of Incorporating Bayesian Factor

Inputs

In this Section, we have demonstrated the diagnostics of the factor input steepness, soil

and weather. We have presented the density plot, autocorrelation plot and pairs plot for

all three inputs. Our diagnostics reveal no concern to worry about the framework; hence,

our Bayesian mixed inputs framework is valid.

beta1 beta2 sigma

gamma0 gamma1[1] gamma1[2]

0.12 0.14 0.16 0.18 0.20 0.012 0.014 0.016 0.30 0.33 0.36 0.39 0.42

3.9 4.2 4.5 4.8 0.8 1.0 1.2 1.6 1.8 2.0 2.2

Figure A.8: The figure for the posterior density of the parameters using soil and all of

them are normally distributed.
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Figure A.9: An autocorrelation plot using the factor soil shows a gradual decrease of

the bins with the increase of lags, which is the expectation of good mixing chains with

adequate, effective samples.
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Figure A.10: The plot for autocorrelation diagnostic of the factor weather illustrates a

decreasing trend with increasing lags such that the chains mixing are justified and hence

the Bayesian framework.
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Figure A.11: The posterior density diagnostic plot figure using the factor weather and

all eleven parameters are normally distributed. So, the factor weather in the Bayesian

inference framework is valid.
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Figure A.12: The diagnostic of pairs plot among the hyperparameters for the factor incor-

poration weather shows no clear pattern indicating weak correlations, which is desired.



Appendix B

Bayes Linear Emulation Approach

For Quantitative Inputs

B.1 Objective Function and Optimization Tech-

niques

Optimization is the problem of finding optimum values from every set of possible solutions.

The general form of optimization can be expressed as follows [53];

O min
y
f(y)

Subject to mi(y) ¬ 0; i = 1, ..., p

kj(y) = 0; j = 1, ..., q

(B.1.1)

where; f : Rn → R is set to be minimizing objective function over the vector of y for the

nth variables. And, also mi(y) ¬ 0 is the inequality constraint and kj(y) = 0 is the equal

constraint for p, q  0.

Definition B.1.1 (Objective Function). An objective function is the real-valued function

of mathematical optimization of the problem O to be minimized or maximized, such that

f(y) is the objective function.

B.1.0.1 Optimizations Techniques

There are two widely used optimization techniques available to solve the non-linear objec-

tive function with box constraints such as;
158
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• Limited memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) Box Constrained (L-

BFGS-B) method

• Nelder Mead method

B.1.1 Broyden–Fletcher–Goldfarb–Shanno (BFGS) Method

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is the local search optimization

algorithm. It usually uses the quasi-Newton method, which minimizes f(y) concerning y

and second order derivative, which requires a gradient of f to be known and uses the

Hessian matrix [39, 53].

Like the BFGS method, BFGS-L (Limited Memory) [39, 53] method use the approximation

of the Hessian matrix. Still, this algorithm store only a few vectors, say a, compared to

n× n dense such that a≪ n and then update the position of y and gradient ▽f(y).

The L-BFGS-B method handles the box constraints of pi ¬ y ¬ qi, where pi and qi are the

lower and upper bounds. This method is used to figure out the free and fixed variable at

every step of iteration from a simple gradient method and then use the L-BFGS technique

to those free variables for identifying the highest precision and repeat the procedure until

the required iterations of sample converge.

B.1.2 Nelder Mead Method

The Nelder Mead optimization technique is used for non-linear optimization, for which

direct derivatives are hard to formulate. This method was developed by Nelder and Mead

in 1965 [6]. This method uses the simplex idea and approximates the local optimum of n

variables for the uni-modal and smooth objective function. For the n dimension, Nelder-

Mead uses n + 1 testing points and extrapolates the nature of the objective function for

each testing point to identify new test points [29]. The method also performs well for noisy

and discontinuity objective functions.
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B.2 Emulation for Continuous Inputs Spring and

Winter Barley

Figure B.1 shows the result of Bayes linear update for the crop Spring Barley and the

resolution diagnostic for 12×12 grid points. The left upper and right upper panels show the

emulated posterior mean for the Spring Barley crop and its associated standard deviations

as functions of N and P . We note that the crop yield is increasing with increasing Nitrogen

levels. However, the effect of Phosphorous is much less pronounced and arguably only

significant when Nitrogen levels are low for Spring Barley.

Figure B.1: Left Upper Panel: Adjusted Emulated Mean for Spring Barley Yield as a

Function of Nitrogen (N) on x axis and Phosphorus (P ) on y axis; Right Upper Panel:

Emulator Standard Deviations (
√
V ar); Left Lower Panel: Resolution Diagnostic.
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The standard deviations plot highlights low levels of uncertainty in Spring Barley

yield around the locations for which we have simulations, with uncertainty increasing as

we move away from these points. It is noticeable that higher uncertainties are on edge

for the higher levels of N and P , which need more training points to emulate. The left

lower shows the emulated resolution diagnostic for Spring Barley, indicates most values

lie above 0.70 over much of the space. So, an indication of high-resolution values means

that our emulator can explain most of the variation of that complex simulator, and the

estimated values are valid to use for further analysis. The blue regions of low resolution

indicate locations corresponding to the test data, which were not used for emulator fitting;

hence little data was available to reduce the variance in these locations.

Figure B.2: Left Upper Panel: Adjusted Emulated Mean for Winter Barley Yield; Right

Upper Panel: Emulator Standard Deviations (
√
V ar); Left Lower Panel: Resolution Diag-

nostic.
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Figure B.2 shows the result of Bayes linear update for the crop Winter Barley and

the resolution diagnostic. The left upper and right upper panels show the emulated mean

Winter Barley yield and its associated standard deviations as functions of N and P . We

note that the weak dependency on Phosphorous has disappeared entirely, and the crop

yield appears insensitive to values of P . The standard deviations plot highlights low levels

of uncertainty all over the space but high uncertainty around 60 levels for both N and P .

The left lower panel shows the emulated resolution diagnostic, where most values lie above

0.70 over the space. So, an indication of high-resolution values means that our emulator

can quite explain most of the variation of the EPIC complex simulator. The blue regions

of low resolution 60 levels for both N and P indicate locations corresponding to the test

data, which were not used for emulator fitting. There needed to be more data available to

reduce the variance in these locations.

B.3 Building the Covariance Matrix

Building the block structure is one of the essential parts of mixed inputs modelling. Its

focus is on the multiplication of each block with the corresponding factor effect. The layout

of the block structure for the single factor is easy to implement by using the product of

covariance matrix (R′[
θ,T,g

]) with the correlation matrix T . For the block structure of the

single factor, we needed to make inferences about the variance part of the single model

emulator of f(y) and the covariance part of f(x), f(y). The block structure for the variance

part can be expressed as follows for the 2-level single factor input, and quantitative inputs

can be expressed as follows;

V ar[f(v)] =

 C1,1 C1,2
C2,1 C2,2

⊙
 1 t1,2

t2,1 1


So we can write the above matrix in terms of the general model layout;

C1,1 = σ2R
[
(x,w)1, (x,w)

′
1

]
,

C1,2 = t1,2 × σ2R
[
(x,w)1, (x,w)2

]
,

C2,1 = t2,1 × σ2R
[
(x,w)2, (x,w)1

]
,

C2,2 = σ2R
[
(x,w)2, (x,w)

′
2)
]
,
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where, x and w are the continuous inputs, and factor inputs respectively, which are treated

as testing data set; t1,2 is the correlation between factor level 1 and factor level 2. The

error variance σ2 can be estimated using the maximum likelihood estimate of the theorem

2. Similarly, the variance part of the testing data can be expressed for training data for

the 2-level factor input;

V ar[f(v
′
)] =

 C1,1 C1,2
C2,1 C2,2

⊙
 1 t1,2

t2,1 1


The variance of C1,1 is also calculated by using the same general model layout. The

covariance between the training and testing data set for the emulator f(x) and f(y), which

can be expressed in the following way;

Cov[f(v), f(v
′
)] =

 Cov1,1 Cov1,2
Cov2,1 Cov2,2

⊙
 1 t1,2

t2,1 1


Here, the Cov1,1 is the variance between the training data for the factor level-1 and the

testing data for the factor level-1. So the general layout of the block structure of the

variance part for the J factor levels and I continuous inputs can be written as,

V [f(v)] =



C1,1 C1,2 · · · C1,I

C2,1 C2,2 · · · C2,I
...

... . . . ...

CJ,1 CJ,2 · · · CJ,I


⊙



1 t1,2 · · · t1,I

t2,1 1 · · · t2,I
...

... . . . ...

tJ,1 tJ,2 · · · 1


(B.3.2)

B.3.1 Formulation of Block Structure

Recalling the concept of section 6.2, let us consider the factor variable w = (w1, w2, ..., wm).

Again considering w1 ∈
{
c1,1, c1,2, ..., c1,ja

}
; w2 ∈

{
c2,1, c2,2, ..., c2,ja

}
and wm ∈

{
cm,1, cm,2, ..., cm,ja

}
.

Now consider these factors levels as a column of the matrix WF , we can write as:

WF =



C1,1 C1,2 · · · C1,ja
C1,2 C2,2 · · · C2,ja

...
... . . . ...

C1,ja C2,ja · · · Cm,ja


(B.3.3)

Now we have to calculate the factor correlation matrix (T1, T2, ..., Tm) corresponding to

w1, w2, ....wm by using the approaches discussed in Section 6.3. Let el is the lth column of

the matrix WF and it can be presented as,

fl =WF el, (B.3.4)
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where, l = 1, 2, ...m. Let again T ′1 is the subset of the factor correlation matrix WF on

the basis of Equation B.3.4 when l = 1. And, el is the vector of 0 with 1 in position l.

Similarly for T ′2, when l = 2 and so on for T ′m when l = m can be expressed as following

Equations.

[
T
′
1

]
ij

=

[
T1

]
f1,i,f1′ ,j[

T
′
2

]
ij

=

[
T2

]
f2,i,f2′ ,j

...[
T
′
m

]
ij

=

[
Tm

]
fm,i,fm′ ,j

(B.3.5)

The whole procedure is presented as follows by an Algorithm in a compact way.

Algorithm 3 Algorithm for Block Structure Formulation
1: Calculate R′[

θ,T,g

] for continuous inputs.

2: Calculate the Factor correlation matrix WF , using approaches.

3: Extract the column of the factor matrix fl; l = 1, 2, ...,m

4: Calculate T ′1 using the concept from Equation (B.3.4).

5: Repeat the same procedure for T ′2, ..., T
′
m.

6: Calculate T = T ′1 × T2′×, ...,×Tm′

7: Calculate Cor(v, v′) = T ×R′[
θ,T,g

] .
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B.4 Results of Factors Weather, Steepness and

Soil

Figure B.3: 3rd Order mean function when Sy = 6, So = 5, Wy = 1, Sy = 4. Top

left: Emulator Adjusted Expectation; Top right: Emulator adjusted Standard Deviations

(
√
V ar); Bottom left: Emulator Resolution; Bottom right: SPE

Figure B.3 shows the results of weather, steepness and soil factors using the 60 % training

and 40 % testing data points with the same hyperparameters. The posterior mean shows

the increasing trend concerning N but no effect on P response. The adjusted standard

deviations plot shows the narrower uncertainty for most input space and a growing trend

in the edge, where the N is very low and P are very high. The resolution plot shows that

most values are around 0.85, indicating the emulator can explain most of the variability.

The diagnostic of the SPE also shows no points lying outside the threshold, indicating no

conflict between the emulator and the simulator.
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