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Abstract—We present a circuit design of the hierarchical 

attention network for multimodal affective computing, which can 

be used in mental health monitoring. Specifically, a kind of 

cost-effective memristor is fabricated using the albumen protein, 

and the corresponding testing performance is conducted to ensure 

its efficiency and stability. Then, considering the hierarchical 

mechanism inspired by the human limbic system, the nanoscale 

memristors arranged in a crossbar array configuration are 

further applied to construct a compact hierarchical attention 

network that can perform the multimodal affective computing. 

Furthermore, based on the wearable technology and flexible 

electronics technology, a mental health monitoring system with 

low privacy invasiveness, low energy consumption, and low 

fabrication cost can be designed. Based on the mapping 

relationship between the multimodal affective computing and 

mental health, the mental health state of the current user can be 

monitored. This study is expected to help achieving the deep 

integration of neuromorphic electronics and mental health 

monitoring system, further promoting the development of 

next-generation consumer healthcare technology in smart city. 

Index Terms—Hierarchical attention network, multimodal 

affective computing, human limbic system, mental health 

monitoring 

I. INTRODUCTION

ith the progressive increase of stress, anxiety and

depression in social environment, mental health 

problems are as prevalent as other common physical disease or 

injury, and these problems appear to be increasing in recent 

years [1]. So far, the mental health problems have been the 
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leading causes of behavioural adjustment difficulties or even 

disability in many countries [2]. Generally, clinicians evaluate 

the mental health of people through psychological evaluations 

and questionnaires, which suffer from subjectivity and 

timeliness [3]. Mental health monitoring approaches have 

attracted more and more attention in recent years since they can 

effectively establish the relationship of signal processing and 

mental health [4-8]. In [4], researchers proposed a highly 

integrated multimodal signal system for mental health 

prediction, which can infer the user’s current mental state. In 

[5], researchers designed a machine learning algorithm to 

distinguish between happy and unhappy, which evaluated the 

relationship between different opponents of emotion including 

happiness, health, energy, alertness and stress. Chernykhet al. 

achieved emotion classification by using Long Short-Term 

Memory (LSTM) network [6], and Hanet.al built an improved 

LSTM network through the DenseNet structure to further 

enhance the accuracy [7]. A novel solution to targeted 

aspect-based sentiment analysis was proposed, which solved 

the challenges of sentiment analysis by exploiting common 

sense knowledge [8]. However, traditional health monitoring 

systems are facing challenges and barriers. Specifically, the 

implementation and operation of such traditional mental health 

monitoring methods are costly and energy intensive. 

Meanwhile, these methods are not particularly designed for 

people in the early stages of developing mental health problems 

and may raise severe privacy concerns in the present society [9]. 

Furthermore, traditional health monitoring systems based on 

von Neumann computer architecture still suffer from 

computationally challenging problems with unattainable 

energy efficiencies. To realize mental health monitoring in 

smart home/city, advanced artificial intelligence (AI) 

technologies such as nanotechnology, intelligent sensing, and 

deep learning can be seamlessly incorporated into the 

developed mental health monitoring system, to facilitate 

higher-dimensional and more depth data analysis. 

The emerging of the nanoscale memristor provides a new 

approach to realize the mental health monitoring, offering 

benefits in terms of good privacy, low cost, and easily 

deployable software [10, 11]. As the fourth basic circuit 

element, memristor was first proposed by L. O. Chua in 1971 

[10] and was further associated with physical devices by R.

Stanley Williams and his team from Hewlett-Packard Labs in

2008 [11]. With the development of memristor theory and

technology, this nanoscale electronics device has been proved
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effective in the fields of intelligent sensing and deep learning. 

For example, a memristor-based artificial sensory neuron with 

visual-haptic fusion was fabricated in [12], which enabled the 

manipulating of skeletal myotubes and a robotic hand. A novel 

memristor-based edge computing system for image recognition 

was proposed in [13], which had advantages in computing 

resources, calculation time, and energy consumption. In [14], 

researchers demonstrated in situ training of both the spatial 

shared-weight Convolutional Neural Network (CNN) and the 

spatial-temporal shared-weight Convolutional LSTM 

(ConvLSTM) using memristor crossbar arrays. Therefore, 

combining memristor technology with intelligent sensing and 

deep-learning methods for mental health monitoring is 

desirable and achievable, which can reduce the system 

complexity and the computational burden, while maintaining 

low cost and comfort. The main contributions are briefly 

summarized as below: 

1) The circuit designs of LSTM module and self-attention

module are proposed using the cost-effective, reliable, flexible, 

and eco-friendly albumen protein memristor, enabling a 

parallel-computed and highly integrated neuromorphic system. 

2) Inspired by the human limbic system, a memristor-based

hierarchical attention network is designed which can perform 

the multimodal affective computing. Compared with the 

existing mainstream methods, the proposed network achieves 

good performance especially in processing time.  

3) Based on the wearable technology and flexible electronics

technology, a mental health monitoring system with low 

privacy invasiveness, low energy consumption, and low 

fabrication cost is designed.   

The outline of the paper is organized as follows: Section II 

briefly describes the fabrication process of the albumen protein 

memristor and the testing performance is conducted to explore 

its electrical characteristics. In Section III, the memristor-based 

hierarchical attention network is designed according to the 

human limbic system. Section IV describes the specific process 

of the multimodal affective computing, and provides the 

classification results compared with existing mainstream 

methods. In Section V, a schematic of mental health monitoring 

is proposed combined with the classification results. Finally, 

Section VI concludes the entire work. 

II. MEMRISTOR FABRICATION AND TESTING PERFORMANCE

So far, a variety of memristor models with different physical 

mechanisms and materials have been proposed. As a natural 

biological material, albumin protein does not require additional 

chemical extraction and purification processes, which reduces 

manufacturing costs and simplifies processing steps [15]. 

Considering the renewability, biocompatibility and 

pollution-free property, a kind of organic memristor is 

fabricated using albumin protein, as shown in Fig. 1.    

The specific preparation process is provided as below: 

Step 1: H2O2 solutions with concentrations of 5%, 10%, 15% 

and 30% are prepared, respectively. 

Step 2: The pristine egg albumen solutions and H2O2 

solutions with different concentrations are dispersed into 

deionized water at a volume ratio of 1:10 and continuously 

stirred using a magnetic stirrer for 30 minutes.  

Step 3: A white flocculate appears with stirring, which can 

be used to fabricate the precursor after filtering operation.  

Step 4: The prepared precursor is continuously spin-coated 

on a flexible ITO plastic substrate at speed of 4,500 rpm for 60 

seconds. 

Step 5: The flexible ITO substrate is transferred to a muffle 

furnace and annealed at 97°C in ambient atmosphere for 3 

hours, and then the H2O2-egg-albumen-based active film is 

formed. 

Step 6: Ag electrodes with a diameter of 200μm and a 

thickness of 120±10nm is fabricated by physical magnetron 

sputtering to cover the active egg albumen. In this way, the 

Ag/Egg Albumin/ITO memristor is fabricated. 

 5%, 10%, 15%, 30% H O

Step1 Step2 Step3

Step4Step5Step6

Stirred continuously for 30 minutes Filtered to fabricate the precursor

ITO plastic
ITO Egg

albumen

Ag Precursor

Precursor

 4,500 r/min for 60 seconds
Annealed at 97 °C in

ambient atmosphere for 3
Fabricate the Ag electrode

 1:10 ratio by volume Pristine egg

albumen solutions

Fig. 1 The specific preparation process of albumen protein memristor 
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In this work, the electrochemical workstation CHI-600D is 

used to test the performance of the Ag/Egg Albumin/ITO 

memristor at room temperature. The typical I-V hysteresis 

curves of Ag/Egg Albumin/ITO memristor demonstrate that 

resistive switching behaviour can be observed in all Ag/Egg 

Albumin/ITO memristors with different H2O2 concentrations, 

as shown in Fig. 2(a). Specifically, the Ag/Egg Albumin/ITO 

memristor with concentration of 10% exhibits a significant 

resistive switching effect. While the Ag/Egg Albumin/ITO 

memristors with concentration of 5%, 15% and 30% show poor 

resistive switching behaviour. Therefore, an optimized 

memristor is developed using the 10% H2O2 solution modified 

egg albumen as a functional film at room temperature.  In order 

to test the flexibility of the device, the I–V curves are measured 

after the device mechanically bending 101, 102, 103, 104 times, 

as shown in Fig. 2(b). The resistive switching behaviour can be 

maintained after the device mechanically bending over 104 

times, indicating that the Ag/Egg Albumin/ITO memristor have 

good performance against mechanical bending. To study the 

endurance of the device, a 0.2 V reading voltage is applied both 

in the high resistive state and low resistive state for 900 

switching cycles, as shown in Fig. 2(c). Notably, the specific 

time of a single cycle can be achieved by electrochemical 

workstation using the cyclic voltammetry technique [16]. In 

this work, a single cycle can be calculated and defined as 120 

seconds. 

A resistance ratio between the high resistive state and low 

resistive state of over 104 can be maintained during the 

retention time indicating that the prepared memristor has good 

stability and endurance. 

III. MEMRISTOR-BASED HIERARCHICAL ATTENTION NETWORK

FOR AFFECTIVE COMPUTING

With the development of the basic brain neuroscience, the 

knowledge of the correlation between the human brain and its 

emotion/behaviour control have been developed recent years. It 

is currently accepted that the human limbic system (as shown in 

Fig. 3(a)), mainly composed of the amygdala, hippocampus, 

insula, anterior cingulate cortex, and prefrontal cortex, 

participates in almost all of the emotional processes [17]. 

Normally, there are two basic forms of sensory information 

existing in the emotional process [18]: The first form occurs 

through the lateral cortex, which mainly refers to the 

nonspecific sensory activities dominated by the dorsal thalamus. 

The sensory information will be analysed roughly, and the 

thalamus can provide a decision whether the external stimulus 

is a known one within a short time. The second form occurs 

through the cingulate cortex and hippocampus, which is 

directly related to hypothalamic activity. The sensory 

information will be transmitted slower, and a detailed and 

comprehensive analysis can be given. Inspired by this 

mechanism, the fabricated memristor is utilized to construct a 

(a)                                                                                  (b)                                                                                (c) 

Fig. 2 The performance test of albumen protein memristor. (a) The I-V curves of the Ag/Egg Albumin/ITO memristor with concentrations of 5%, 10%, 15% and 

30%; (b) The I–V curves of the Ag/Egg Albumin/ITO memristor with concentration of 10% are measured after mechanical bending 101, 102, 103, 104 times; (c) The 

retention endurance of an Ag/Egg Albumin/ITO memristor. 
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Fig. 3 The overall framework of the memristor-based hierarchical attention network. (a) The limbic system of human brain; (b) The structure of the fast-path layer; 

(c) The structure of the slow-path layer
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hierarchical attention network in this section, which can be 

further applied to perform the multimodal affective computing. 

Specifically, the overall framework of the memristor-based 

hierarchical attention network is provided as below: 

From Fig. 3, the entire memristor-based hierarchical 

attention network consists of two parts, i.e., the fast-path layer 

(corresponding to the 1st form, as shown in Fig. 3(b)) and the 

slow-path layer (corresponding to the 2nd form, as shown in Fig. 

3(c)). The former is used to realize a binary classification task 

(i.e., positive and negative), while the latter is used to perform 

the five-class classification task (i.e., joy, anger, sorrow, 

happiness, and neutrality). Notably, the structures of the 

fast-path layer and the slow-path layer mainly conclude four 

components, i.e., the LSTM module, the self-attention module, 

the dense layer module, and the feature extraction module. 

Particularly, the circuit implementation of the dense layer 

module and the feature extraction module is relatively simple 

and easy to achieve [19, 20]. The specific implementation 

scheme can be found in [19, 20], and we will not repeat any 

details here. This section mainly focuses on the circuit design of 

LSTM module and self-attention module, due to the fact that 

the relative research is insufficient and challenging. The 

specific process description is provided as below. 

A. Circuit design of LSTM module

LSTM network is a subclass of recurrent neural network

(RNN) that specializes in machine learning tasks involving 

sequences, especially in sentiment analysis. A standard LSTM 

cell contains three gates, i.e., the forget gate, the input gate, and 

the output gate, as shown in Fig. 4.  
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Fig. 4. The internal structure of an LSTM cell 

From Fig. 4. xt and ct denote the input vector and the cell state 

at the present step, respectively. ht and ht-1 are the output 

vectors at the present and previous time steps, respectively. σ is 

the logistic sigmoid function, which yields it, ft, and ot via the 

network parameters weight W (Wa, Wf, Wi, and Wo), recurrent 

weight U (Ua, Uf, Ui, and Uo), and bias b (ba, bf, bi, and bo). It is 

noted that the internal operating mechanism of an LSTM cell 

can be characterized by two main phases, i.e., the linear matrix 

operation and the gated nonlinear activation [6].  

Based on this, an LSTM unit consisted of two sub-circuits, 

i.e., the linear matrix operation circuit and the nonlinear

activation circuit, is designed in Fig. 5(a). Meanwhile, it is clear

that an LSTM cell can be constructed by four LSTM units, the

specific circuit design of an LSTM cell is provided in Fig. 5(b).

Particularly, there are many LSTM variants (e.g., the Bi-LSTM 

[21], GRU [22], ConvLSTM [14]) have been proposed recently. 

For different LSTM variants, the corresponding circuit 

structure can also be design by recombining the fundamental 

linear matrix operation circuit and the activation circuit. 

To better illustrate the circuit design scheme in Fig. 5, the 

relevant circuit analysis is provided as below:  

The linear matrix operation circuit: the linear matrix 

operation circuit is consisted of two albumen protein memristor 

crossbar arrays, an auxiliary circuit, and a biasing circuit.  The 

memristor crossbar array is used to perform the matrix-vector 

multiplication in LSTM, and the biasing circuit is responsible 

for the sum operation.  

Assuming Ra1=Ra2=Ra3=Ra4 (the resistors in auxiliary circuit) 

and Rb1=Rb2=Rb3=Rb4=0.5Rb5 (the resistors in biasing circuit), 

the output of the matrix operation circuit Vob can be 

mathematically expressed by Vob=VxW+VhU+Vb. Here, Vx and 

Vh denote the applied normalized voltage, bias voltage Vb is the 

input of the biasing circuit (labeled by the green rectangle), 

representing the bias parameter in LSTM. W=Gw,ij+- Gw,ij- and 

U= Gu,ij+- Gu,ij- denote the weights and recurrent weights, 

respectively. Notably, Gw,ij and Gu,ij are the conductance of the 

albumen protein memristor. 

The activation circuit: the activation circuit (labeled by the 

blue rectangle) is used to realize the nonlinear activation 

function. The input voltage Vob is connected to one side of an 

NMOS source-coupled pair, biased with a current sink Imax. The 

output current Iout is computed by the product of the normalized 

current In and the current sink Imax. Notably, the normalized 

current In with a piecewise form can be achieved by [23].  

According to the Ohm’s law, the output voltage Vout can be 

calculated by Vout=In·Imax·Rout+Vss. If we assume the load 

resistance Rout =1Ω is a constant resistor, the output voltage Vout 

can be rewritten by Vout=In·Imax +Vss. Notably, this activation 

circuit can be used to realize both the logistic sigmoid function 

and the hyperbolic tangent function by tuning circuit 

parameters. 

B. Circuit design of Self-attention module

Self-attention mechanism can effectively identify the

relations among input data, which aims at reducing the 

fundamental constraint of sequential computation in LSTM 

network [24]. The self-attention mechanism can be described as 

mapping a query and a set of key-value pairs, where the query 

(Q), keys (K), values (V), and output are all vectors. as shown in 

the bottom left of Fig. 6. Notably, unlike the LSTM module, the 

input of the self-attention module is voltage, while the output of 

the self-attention module is current. 

From Fig. 6, x∈RN×d is the input matrix, parameter N and

parameter d are the sequence length and the hidden dimension, 

respectively. Connection weights (Wq, Wk, Wv and W) ∈RN× 

are all learnable parameters. Following the weights (Wq, Wk, 

and Wv), the input matrix x can be converted into the attention 

query, key and value matrices Q, K, and V∈RN×d. In this work,

we compute the additive attention between each query vector 

and each key vector and apply a SoftMax function to normalize 

the additive attention scores. Then, we compute the dot product 

of the value matrix V and the corresponding normalized 

attention score as the output. 
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Similarly, the self-attention mechanism can also be 

characterized by two main phases, i.e., the similarity 

computation and the dot product operation. Based on this, a 

self-attention circuit consisted of two sub-circuits, i.e., the 

similarity operation circuit and the dot product operation circuit 

are designed in Fig. 6. To better illustrate the circuit design 

scheme in Fig. 6, the relevant circuit analysis is provided as 

below:  

The similarity computation circuit: the similarity 

computation circuit is consisted of three albumen protein 

memristor crossbar arrays, a tanh circuit and a SoftMax circuit. 

The memristor crossbar arrays are used to compute and store 

the parameters of each row in the key matrix K, the query 

matrix Q, and the matrix W, respectively. The tanh circuit can 

directly use the above-mentioned activation circuit, realizing 

the nonlinear activation function. The SoftMax circuit is 

responsible for the normalization operation [25].  

The dot product operation circuit: the dot product operation 

circuit is consisted of an albumen protein memristor crossbar 

array and several multiplying units. The albumen protein 

memristor crossbar array is used to compute and store the 

parameters of each row in the value matrix V, and multiplying 

units compute the weighted sum of rows in value matrix V and 

the corresponding SoftMax circuit outputs, i.e., the final 

outputs of the self-attention circuit. 

IV. MULTIMODAL AFFECTIVE COMPUTING

In this section, the proposed memristor-based hierarchical 
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attention network (as shown in Fig. 3) is used to perform the 

multimodal affective computing, and the entire process can be 

divided into two phases: a binary classification phase 

conducted by the fast-path layer, and a five-class classification 

phase conducted by the slow-path layer. The details are 

provided as follows: 

A binary classification phase: 

As shown in Fig. 3(b), when the photodetector [26] and 

sound detector [27] collect the sensory information, the visual 

and acoustical signal in the form of voltage pulses can be 

obtained successfully. Notably, the visual signal contains two 

parts here, i.e., the image part and the text part. Then, the 

hierarchical feature representation (i.e., the image features, text 

features, and audio features) can be achieved by the feature 

extraction module [20]. Next, these hierarchical features are 

fused using the self-attention module and further injected to the 

LSTM module. Finally, the outputs of the LSTM module are 

input to the dense layer, the classification result 0/1 (0 

represents negative, while 1 represents positive) is obtained. 

The binary cross entropy loss function [28] is used as the 

performance function to train and optimize the parameters in 

LSTM.  

A five-class classification phase: 

According to the classification results obtained by the 

fast-path layer, the original hierarchical features (image 

features, text features, and audio features) can be further 

divided into two subsets, i.e., the negative subset and the 

positive subset. Actually, the slow-path layer can be deemed as 

a dual-channel structure, as shown in Fig. 3(c). Notably, these 

two channels are the same with each other, the only difference 

is the input signal (one is the negative subset, the other is the 

positive subset). Then, the hierarchical features are injected to 

the three respective LSTM modules, and three initial 

classification results based on different modals can be achieved. 

Next, a combined set formed by any two initial classification 

results are input to a self-attention module for the fusion 

operation, and a combined set containing all three initial 

classification results are input to another self-attention module 

for realizing the same task. Finally, the outputs of the two 

self-attention modules are further injected to the dense layer, 

and the final classification result with five possible values (+2, 

+1, 0, -1, and -2) can be obtained. Here, the categorical cross

entropy loss function [29] is utilized as the performance

function to train and optimize the parameters in LSTM. 

Based on the above-mentioned two phases, an effective 

verification process is necessary. So far, there have been 

multiple standard datasets [30] for multimodal sentiment 

analysis, for example, YouTube, ICT-MMMO, CMU-MOSI, 

MOUD, and CMU-MOSEI datasets. Considering the 

applicability of dataset, CMU-MOSI and CMU-MOSEI dataset 

are used for verification purpose. Notably, CMU-MOSI 

contains 2199 utterance-video segments sliced from 93 videos 

played by 89 distinct narrators. Each segment is manually 

annotated with a real-valued score within the range of [-3, +3]. 

As the next generation of CMU-MOSI dataset, CMU-MOSEI 

dataset contains 23453 annotated segments and 250 topics from 

approximately 1000 different speakers. Each utterance in 

CMU-MOSEI dataset corresponds to an integer label from -3 to 

+3, indicating seven types of emotional categories. Notably,

since up to five different classes (i.e., joy, anger, sorrow,

happiness, and neutrality) need to be recognized in this work,

the data with the label greater than 2 or less than -2 will not be

considered.

Furthermore, comparison experiments are conducted and the 

final classification results are collected in Table I.  

From Table 1, the classification results on the test set of 

CMU-MOSI and CMU-MOSEI dataset are exhibited. Firstly, 

considering the control variable rule, the modality of all the 

sentiment recognition methods is audio, image, and text. 

Clearly, the proposed method achieves the best performance, 

compared with the other competitors. Specifically, for 

CMU-MOSI dataset, the accuracy of the proposed method 

(five-class classification task) is 68.31% that is slightly higher 

~1% than that of the second place. For CMU-MOSEI dataset, 

the accuracy is higher 1.2% than that of the second place. 

Meanwhile, although the proposed method is a two-step 

strategy, the total time is much less than the other one-step 

methods, which provides the efficiency advantage in 

subsequent mental health monitoring. Notably, the overall 

accuracy of the five-class classification task is insufficiently 

high (~70%), which is an inherent issue of existing mainstream 

affective computing methods especially when the number of 

categories is more than 4. According to [38], this problem can 

be addressed by building a more universal dataset and a more 

efficient feature fusion mechanism. 

Table I. The collection of the classification results obtained by different methods 

Methods Modalities 
CMU-MOSI CMU-MOSEI 

Procedure Accuracy Time Procedure Accuracy Time 
The proposed 

method 

Audio + image + text Fast-path 81.20% 0.73 Sec Fast-path 84.31% 0.98 Sec 

Audio + image + text Slow-path 68.31% 1.15 Sec Slow-path 70.67% 1.16 Sec 

Reference [31] Audio + image + text － 65.54% 4.23 Sec － 66.39% 4.31 Sec 

Reference [32] Audio + image + text － 62.19% 5.42 Sec － 64.22% 5.19 Sec 

Reference [33] Audio + image + text － 67.43% 4.65 Sec － 68.54% 4.48 Sec 

Reference [34] Audio + image + text － 66.58% 5.19 Sec － 67.31% 5.21 Sec 

Reference [35] Audio + image + text － 65.41% 6.21 Sec － 66.88% 6.34 Sec 

Reference [36] Audio + image + text － 63.22% 5.22 Sec － 67.31% 5.53 Sec 

Reference [37] Audio + image + text － 61.16% 5.44 Sec － 67.31% 5.61 Sec 

Note: The proposed method is a two-step method, the accuracy of fast-path process is the result of binary classification task, 

correspondingly, the accuracy of the slow-path process is the result of five-class classification task. 
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V. MENTAL HEALTH MONITORING USING WEARABLE 

TECHNOLOGY AND FLEXIBLE ELECTRONICS TECHNOLOGY

In this section, a schematic of mental health monitoring 

system integrating the wearable technology and flexible 

electronics technology is illustrated in Fig. 7, which can be used 

in the smart city/home areas for various intelligent monitoring 

and healthcare.  

From Fig. 7, the multisensory module and the 

memristor-based hierarchical attention network can be easily 

integrated into a small rectangle neuromorphic computing film 

and further installed in a wearable device (e.g., glasses). 

Notably, the multisensory module is used to collect sensory 

information and the memristor-based hierarchical attention 

network is used to perform multimodal affective computing. 

The multisensory module essentially encompasses two 

multimodal sensory channels: the visual, and the audio channel, 

which can convert multimodal information into voltage signals. 

The multisensory module on the glasses can effectively extend 

the sensing range to detect the variation of information (e.g., the 

image signal, text signal, and acoustical signal) in home 

environment, offering a more private way for affective 

computing in smart glasses with the advantages of low cost and 

eco-friendly fabrication. With aides of memristor-based 

hierarchical attention network, the emotion from the user can 

be recognized effectively. Next, all affective states obtained by 

the smart glasses will be uploaded to a server (storing the 

mapping relationship between the mental health state and the 

multimodal affective computing) for further analysis and 

decision making. Notably, this mapping relationship can be 

achieved through many machine learning methods [4] or expert 

experience and knowledge. After that, the corresponding result 

will be shown on guardian’s (or user’s) mobile device for 

long-term health monitoring and the valuable clinical mental 

health diagnosis. Notably, the processor of the hierarchical 

attention network is mainly composed by LSTM module and 

self-attention module. Based on this, the proposed hierarchical 

attention network can be regarded as a general intelligent 

computing system that has the potential to perform some 

LSTM/self-attention-based recognition applications. 

The mental health monitoring system using wearable 

technology and flexible electronics technology can handle the 

multimodal data from the collected data on the hardware side to 

the artificial intelligence comprehension on the software side, 

and finally can be combined with Internet of Things (IOT) to 

promote the development of smart home/city. 

VI. CONCLUSIONS

This paper focuses on the investigation of mental health 

monitoring method using neuromorphic sensing devices, brain 

neuroscience and computer science theory. Specifically, a kind 

of organic memristor is firstly prepared using the albumen 

protein, the corresponding testing performance demonstrate the 

electrical characteristics of the nanoscale device. Then, the 

albumen protein memristor pairs with the crossbar array 

configuration are used to design the LSTM module and the 

Wearable device
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Fig. 7. The schematic of mental health monitoring system using wearable technology and flexible electronics technology 
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self-attention module. Combining with the existing dense layer 

module and the feature extraction module, a memristor-based 

hierarchical attention network is designed for multimodal 

affective computing. Notably, inspired by the human limbic 

system, the structure of the entire network can be further 

divided to two parts, i.e., the fast-path layer and the slow-path 

layer. The former one can be used to perform the binary 

classification task, and the latter one can be used to perform the 

five-class classification task. Compared with the existing 

mainstream affective computing methods, the proposed method 

achieves the best performance in terms of accuracy (slightly 

increase ~1%) and processing time (~62.4% reduction). 

Furthermore, a mental health monitoring system integrating the 

wearable technology and the flexible electronics technology is 

designed, where the constructed memristor-based hierarchical 

attention network and the necessary multisensory module can 

be easily integrated into a small rectangle neuromorphic 

computing film and further installed in a wearable device (e.g., 

glasses). Based on the mapping relationship between the 

multimodal affective computing and mental health, the mental 

health state of the current user can be continuously monitored. 

This work provides a new avenue for the wearable mental 

health monitoring system development, which is expected to 

promote the development of consumer healthcare services in 

smart city. 

Notably, mental health monitoring system is still in an 

infancy stage with abundant opportunities and challenges. To 

further develop and improve the performance of mental health 

monitoring system, several aspects can be considered in future 

research: 1) At the data level: A complete and universal dataset 

is necessary and important for validation process; 2) At the 

device level: More reliable and eco-friendly memristor models 

are required. The memristive mechanism needs to be more 

thoroughly comprehended to further improve the device 

performance; 3) At the circuit level: Memristive circuits are 

desired to be effectively enlarged with efficient read/write 

schemes. Equipping memristors with transistor-based selectors 

or rectifying capabilities can reduce the sneak path currents; 4) 

At the system level: To overcome the device variations, 

low-precision algorithms and systems can be further studied. 

Meanwhile, brain-inspired intelligence algorithm can be further 

explored to solve different practical problems. 
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