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A B S T R A C T

This study introduced a clustered polynomial chaos expansion (CPCE) model to reveal random propagation and
dynamic sensitivity of uncertainty parameters in hydrologic prediction. In the CPCE model, the random char-
acteristics of the streamflow simulations resulting from parameter uncertainties are characterized through the
polynomial chaotic expansion (PCE) model based on the probabilistic collocation method. At the same time, a
multivariate discrete non-functional relationship between PCE coefficients and hydrological model inputs is es-
tablished based on stepwise cluster analysis. Therefore, compared with traditional PCE method, the developed
CPCE model cannot only reflect uncertainty propagation in stochastic hydrological simulation, but also have
the capability of random forecasting. Moreover, the dynamic sensitivities of model parameters are investigated
through the multilevel factorial analyses. The developed approach was applied for streamflow forecasting for the
Ruihe watershed, China. Results showed that with effective quantification for the random characteristics of hy-
drological processes, the CPCE model can directly predict runoff series and generate the associated probability
distributions at different time periods. The dynamic sensitivity analysis indicates that the maximum soil moisture
capacity within the catchment plays a key role in the accuracy of the low-flow forecasting, while the degree of
spatial variability in soil moisture capacities has a remarkable impact on the accuracy of the high-flow forecast-
ing in the studied watershed.

1. Introduction

The hydrologic system is random in nature; in other words, its be-
haviors change with the time consistent with the law of probability as
well as the sequential relationship between the occurrences of the sys-
tem (Chow and Kareliotis, 1970). Conventional hydrological models
(e.g., distributed model, conceptual hydrological model) do not closely
represent the natural stochastic processes, which may produce results
that can hardly match the behaviors of the hydrologic system accu-
rately (Vinogradov et al., 2011). That is, the random features of
the system can hardly be well reflected in the traditional modelling
process (Lindenschmidt and Rokaya, 2019). Such an overlook of
the system randomness would further lead to unreliable hydrological
predictions, limiting the applicability of hydrological models to many
real-world water resources issues (Khaiter and Erechtchoukova,

2019; Lu et al., 2017). Thus, great efforts are desired to reveal these
stochastic features and analyze their impacts on resulting predictions in
the hydrologic system (Papalexiou et al., 2011; Wang et al., 2020a)

Previously, there were many studies in developing mathematical
models for revealing the stochastic features of hydrological processes.
For instance, Chow and Kareliotis (1970) treated the watershed as
the stochastic system and represented the system components, includ-
ing precipitation, evapotranspiration, storage and runoff, through time
series models. In terms of research progress in mathematical modeling
research, Singh and Woolhiser (2002) reported a comprehensive re-
view and provided a short synopsis of used models. Given the inher-
ent complexity of watershed system, recent studies have utilized more
advanced stochastic methods, such as Bayesian analysis (Kavetski et
al., 2006) and data assimilation (Fan et al., 2017a), for uncertainty
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quantification of hydrological predictions. In particular, to alleviate the
computational burden encountered in stochastic simulation, the surro-
gate modeling techniques have gained much attention in hydrological
modeling and water resource management (Razavi et al., 2012; Rui
et al., 2013). A surrogate model can be considered as “a simple sur-
rogate of a complex model” which describes the relationship between
model parameters and model outputs (e.g. streamflow) (Chowdhury,
2019; Wang et al., 2014). Some widely used surrogate model meth-
ods entail polynomial chaos expansion (PCE) (Hu et al., 2019; Wang
et al., 2015), artificial neural networks (ANN) (Yan and Minsker,
2006), Gaussian processes regression (GPR) (Marrel et al., 2008), sup-
port vector machine (SVM) (Zhang et al., 2009), and sparse poly-
nomial chaos(SPC) (Wang et al., 2020b). Razavi et al. (2012) re-
ported a comprehensive review for research progress in surrogate mod-
els in the water resources field. It has shown that a surrogate mod-
eling, when applied correctly, is able to perform as well as the origi-
nal model. Recently, surrogate modeling-based uncertainty quantifica-
tion methods have been proposed in hydrological simulations. For ex-
ample, Fan et al. (2015a) investigated the applicability of second-
and third-order PCE in quantifying uncertainties of the conceptual hy-
drologic predictions. Fan et al. (2015b) combined the capabilities of
the ensemble Kalman filter and the probabilistic collocation method to
quantify the uncertainty of hydrologic models. Meng and Li (2018) as-
sessed the model uncertainties quantitatively through running PCE sur-
rogate model rather than solving governing equations or performing the
simulator repetitively. Many studies reported that the surrogate model
based optimization is an efficient way to reduce the computational bur-
den of parameter optimization of a hydrological model (Gong et al.,
2016; Gou et al., 2020; Wang et al., 2020b).

However, the surrogate models may not represent the studied sys-
tem accurately when strong nonlinearity/irregularity presents in the
modeling responses (Meng and Li, 2018). Moreover, these methods
have been applied mostly to uncertainty quantification of the modeling
processes and the application of stochastic approaches in hydrological
predictions has barely begun. The application of stochastic approaches
in forecasting processes need more research (Ghaith and Li, 2020; Xi-
ang et al., 2019). Besides, the coefficients of PCE surrogate models
are mainly quantified based on observed model responses (i.e., stream-
flow) in previous research works, which prevent the PCE model from
offering hydrological predictions. Therefore, as an extension of previous
studies, the objective of this study is to develop a clustered polynomial
chaos expansion (CPCE) model for revealing the stochastic features in
hydrologic predictions. The objective entails: (i) characterization of the
random characteristics in hydrological process through the PCE model
based on the probabilistic collocation method, (ii) establishment of re-
lationship between the PCE model parameters and the input variables
based on stepwise cluster analyses (SCA), (iii) demonstration of the pre-
dictability of the CPCE model for the Ruihe watershed, China, and (iv)
investigation of the dynamic sensitivity of model parameters on proba-
bilistic predictions through multilevel factorial analyses.

2. Development the clustered polynomial chaos expansion (CPCE)
model

Fig. 1 presents the specific framework of clustered polynomial chaos
expansion (CPCE) model. In detail, stochastic hydrological analysis is
carried out based on the PCE and the probabilistic collocation method
according to the probability characteristics of the model parameter
θ. The distribution of parameter θ is firstly trans

formed into a standard normal distribution by the gaussian anormopho-
sis method, and a PCE model based on Hermite polynomial is estab-
lished. Through the probabilistic collocation method, a series of regres-
sion models are established to obtain the coefficients of PCE. Then, a
stepwise cluster analysis is adopted to characterize the discrete relation-
ship between the meteorological data (e.g., precipitation, temperature,
wind speed, and evapotranspiration) and PCE coefficients. Finally, based
on the established cluster tree and the PCE model, the probabilistic daily
flow can be obtained in the forecasting period. The alogical inference
graph is presented in Fig. 1(b) to illustrate the procedures for determin-
ing PCE coefficients in the forecasting period. The model output y (e.g.,
streamflow) of the hydrological model (e.g., Hymod) is determined by
forcing data × (e.g., precipitation, potential evapotranspiration), para-
meter vector θ (e.g., maximum soil moisture capacity), and state vector
β (e.g., soil moisture storage), which can be conceptualized as:

(1)
Since the state variable is continuously updated in daily iteration

process, its specific value depends on the previous climatic (e.g., precip-
itation, tempretural, potential evapotranspiration) and hydrological in-
puts (Chen et al., 2011; Ghaith et al., 2020; Wang et al., 2018;
Zhong et al., 2016). Therefore, the state variable can be assumed as a
function of the previous forcing data (e.g., multi-day cumulative precip-
itation):

(2)

where t is the time. The PCE surrogate model describes the relation-
ship between hydrological model parameter and streamflow (i.e., model
output), which can be conceptualized as:

(3)
where are coefficients of PCE. Combining Eqs. (1), (2), and (3),

when the model parameters are the same, the PCE coefficients can be
expressed as a function of the previous climate:

(4)

2.1. Polynomial chaos expression (PCE)

Generally, the output of a hydrological model is expressed by a non-
linear function of stochastic inputs (i.e., presents as a set of random vari-
ables). To express the evolution of uncertainty in dynamical system with
random inputs, Wiener (1938) introduced the theory and application
of polynomial chaos (PC) comprehensively. For Gaussian random vari-
ables, the modeling stochastic process can be decomposed by Hermite
polynomials (Fan et al., 2015a), and the general polynomial chaos ex-
pansion (PCE) can be expressed as follows:

(5)

where y is the output of a model, is the pth or-
der polynomial in terms of the multi-dimensional random variables,
and are the unknown coefficients to be determined.
Take the standard normal variable as an example, the
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Fig. 1. Framework (a) and Logical inference (b) of the Clustered Polynomial Chaos Expansion (CPCE) model.
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Hermite polynomial can be expressed as:

(6)

where . (x is the vector form) present the standard nor-
mal random variables. Consequently, Eq. (6) is often written in a simple
formulation as:

(7)

where ai (i = 0, 1, …) are the unknown coefficients to be deter-
mined. The truncated PCE model is generally applied based on the di-
mension of the random variables and the highest order of the Hermite
polynomials. If the pth order Hermite polynomials is involved, the trun-
cated PCE for M dimensional random variables can be expressed as (Fan
et al., 2016a):

(8)

where Table S2 gives some explicit values of n for given
dimensions (i.e. M) and degrees (i.e. p) of PCE. For example, the sec-
ond order Hermite polynomials with two random variables are

. Then, according to Eq (8), the
expansion of truncated PCE for a second-order two-random-variables
model is presented as follows:

(9)

To determine the unknown coefficients contained in the PCE model,
the probabilistic collocation method (PCM) was used in previous studies
(Fan et al., 2015a). The PCM is executed through approaching a model
output with a PCE in terms of random inputs. In other words, the basic
idea of PCM is to let the PCE responses equal to the model simulations
at selected collocation points. Collocation points can be specified by the
algorithm proposed by Webster et al. (1996) in this research. In this
algorithm, the collocation points are selected from combinations of the
roots for the higher-order Hermite polynomial (Huang et al., 2007).
Moreover, the regression based collocation method is employed to ob-
tain the unknown coefficients in PCE (Huang et al., 2007). More detail
of PCM are supplied in (Fan et al., 2015a).

2.2. Estimation of PCE coefficients through stepwise cluster analysis

The PCE model can be adopted to replace the original hydrolog-
ical model for uncertainty quantification and propagation. Neverthe-
less, it can hardly do the prediction work since no streamflow obser-
vations are available to estimate the coefficients of PCE in the fore-
casting period. To address this challenge, the stepwise cluster analy-
sis (SCA) will be introduced into PCE, leading to a clustered polyno-
mial chaos expansion (CPCE) model. In detail, nonlinear relationships
between hydrological model inputs (e.g., precipitation, potential evap-
otranspiration) and PCE coefficients are established through SCA in the
historical period where streamflow observations are available. Then, the
PCE coefficients in the forecasting period can be estimated with mete-
orological data and the trained SCA model. Finally, the PCE surrogate
model can be adopted to generate the probabilistic streamflow predic

tions. More details for this procedure is provided in the supporting ma-
terials.

SCA is a multivariate analysis tool which can simulate variations of
single or multiple dependent variables (ys) with a group of independent
variables (xs) (Huang, 1992). According to the theory of multivariate
analysis of variance (MANOVA), the sample sets of independent-depen-
dent variables (i.e., xs-ys) pairs are divided into groups through a se-
ries of cutting and merging operations (Li et al., 2015; Wang et al.,
2013). According to (Huang, 1992), the cutting and merging proce-
dures are conducted through the F-test based Wilks’ likelihood ratio cri-
terion (Wilks, 1963). For example, assume a cluster contains m
samples of n dimensional predictors. The cluster can be cut into
two sub-clusters . and , where based on Wilks’ likeli-
hood ratio criterion. The value of Wilks’ statistic can be calculated as
follows:

(10)

where W is the within-groups sums of squares and cross products ma-
trices; B is the between-group sums of squares and cross products.

(11)

(12)

and are the sample means of sub-clusters and ,
respectively:

(13)

(14)

and indicate the determinants of matrices. The smaller
the Λ value is, the larger the difference between the sub-clusters of
and . The cutting point is optimal, if and only if the value of is
minimum (Huang, 1992; Wilks, 1963). On the contrary, sub-clusters

and cannot be cut if the value is very large, which may
be merged into a new cluster. By Rao’s F approximation (Rao et al.,
1973), we have R-statistic as following:

(15)

where K is the number of groups and P is the number of predictors.
Z and S can be calculated as following:

(16)

(17)

Here, K = 2 (two sub-clusters and ) and the R-statistic will
be an exact F-variate:

(18)

Therefore, the process of cutting and merging clusters is conducted
through a number of F tests (Martin and Maes, 1979;
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Rao et al., 1973; Var, 1998). In other words, the F test is used to iden-
tify whether sub-clusters and are significantly different. Clus-
ter can be cut into two sub-clusters and if
is larger than . The p-cutting is the significance level of cutting
process. On the other hand, the F test could also be used to identify
whether any two sub-clusters are similar between each other. For two
clusters and with samples of and , if
is smaller than , the two clusters can be merged into a new clus-
ter. The p-merging is the significance level of merging process.

As shown in Fig. 2, the main procedures to estimate the PCE co-
efficients through SCA are as follows: (1) Select forcing data of the
hydrological model (i.e., xs) and PCE coefficients (ys), prepare a train-
ing matrix, and set the significant level p (default 0.05); (2)

Rank sample sets of xs-ys pairs according to the value of x.j (the jth
variable); (3) Cut the matrix as two groups from row t randomly;
(4) Estimate the Wilks’ statistic value of the two groups; (5) Re-
peat steps 2–4 for all j and t to find the minimum ; (6) Cut op-
eration is performed if is larger than ;
(7) Cut loops until all hypotheses of further cut are rejected; (8) Es-
timate Wilks’ statistic value of ys’ difference of any two child-clus-
ters; (9) Merge the two clusters into one if is
smaller than ; (10) Repeat steps 8–9 for all clusters; (11) Merg-
ing loops until all hypotheses of further merge are rejected; (12) Re-
peat cut-merge to the end when hypotheses of further cut or merge
are rejected; (13) Generate the cluster tree of the training samples;
(14) The PCE coefficients are predicted according to the generated
cluster tree when new forcing data are available.

Fig. 2. Procedures of stepwise cluster forecasting method (SCA).
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Here, a simple example has been provided to show the structural of SCA
model in the supporting material. More detailed description of the
SCA method can be accessible from relevant studies by (Cheng et al.,
2016; Fan et al., 2016b; Huang, 1992; Huang et al., 2006).

2.3. Multilevel factorial analysis

Multilevel factorial analysis (MFA) is one of powerful tools to quan-
tify the effects of several independent variables as well as their interac-
tions on a dependent variable (Duan et al., 2020). In order to use the
same terminology to present MFA approach, a generalized three-vari-
able model is defined as . represent the independent
variables (e.g., inputs, parameters, or model structure) and represents
the response (e.g., the model performances). Assume there are ele-
ments (or levels) for variables and , respectively. According to the
analysis of variance (ANOVA) theory, the total sum of the squares (SST)
can be divided into the sum of squares due to individual variable and
their interactions as follows (Saltelli et al., 2010, 2008):

(19)
where respectively represents the square due to the in-

dividual effect of factor A, B, and C; represent the
squares due to interactions. In this model, all interaction terms are sum-
marized into the term SSint.

(20)

Then, for each effect, the variance fractions are derived as follows:

(21)

(22)

The value of indicates the contribution of independent variable
and their interaction to the total variance.

(23)

(24)

The symbol “o” indicates averaging over the particular index. For a
general N-variable model, the calculation process of factorial analysis is
shown in the supporting material.

3. Overview of research area

3.1. Complexity of Ruihe watershed

The developed CPCE model is applied to address the stochastic hy-
drological predictions for the Ruihe River, which is one of the ma-
jor tributaries of Jinghe River. Ruihe River is located in the middle
of the Loess Plateau in China, as shown in Fig. 3. The catchment
area of the Ruihe River is 1670 km2 with a mainstream length of
119 km and the elevation varying from 1200 to 2645 m. The annual
mean temperature is 8.8 ℃, and the annual mean precipitation is
562 mm with approximate 60–70% of precipitation

occurs between June and September. The Ruihe River plays a vital
role in reducing soil erosion, alleviating water loss, and protecting the
ecosystem of the middle reach of the Jinghe River. Hydrological mod-
eling in this watershed would benefit the description of hydrological
processes and water resources management.

In this study, the climatic and hydrological data of the Ruihe River
watershed were collected from different sources. The areal daily precip-
itation (P) data were interpolated from site precipitation measurements
distributed over the catchment, and the areal potential daily evapotran-
spiration (E) were interpolated from the national meteorological sta-
tions. The streamflow observations of the Ruihe River (from 1981 to
1987) were obtained from Yuanjiaan hydrometric station as shown in
Fig. 3(b). The time series of streamflow, precipitation, and potential
evapotranspiration of Ruihe River basin are presented in Fig. 3(c). It
can be found that the climatic and hydrological data remained stable
during the study period. Here, it is assumed that the relationship be-
tween climate conditions and streamflow has not changed significantly
in this short term (seven years). Thus, the historically normal years from
1981 to 1984 will be used as the calibration period in this study. The
input topography map was collected to derive the flow direction and
hydrographic network. DEM (1:250,000) is obtained from Data Center
for Resources and Environmental Sciences, Chinese Academy of Sciences
(RESDC) (http://www.resdc.cn).

3.2. Hymod

In this study, rainfall–runoff simulation is undertaken by using a sim-
ple conceptual model-Hymod, which is proposed by Moore (1985).
Based on the probability distribution of soil moisture, water storage dy-
namics are built to represent the mass balance principles among inflow
from rainfall, losses to evaporation, drainage to groundwater, and pro-
duction of direct runoff. In brief, assume that a catchment consists of
infinite points and each of them can be defined by a soil moisture ca-
pacity. Soil moisture capacities vary within the catchment as a result of
variability in soil texture and depth. Therefore, to describe the soil mois-
ture variability of the whole catchment, a cumulative distribution func-
tion can be presented as follows:

(25)

where c is soil moisture capacity, Cmax is the maximum storage ca-
pacity, and the exponent Bexp is the degree of spatial variability of stor-
age capacity over the basin. A schematic representation of Hymod is
shown in Fig. 4, where Alpha is introduced to represent how much of
the subsurface runoff is routed over the fast (Rq) and slow (Rs) path-
ways. The descriptions of the five parameters and their prior fluctuating
ranges are shown in Table1. The five parameters of Hymod, including
Cmax, Bexp, Alpha, Rs, and Rq can be obtained through a model cali-
bration process. In this study, the prior range of the five parameters are
obtained from previous literatures (Fan et al., 2017a, 2017b, 2015b).
These prior distributions are assumed spread over a wide range to rep-
resent vague prior knowledge. Input data including daily precipitation,
P (mm/d), and daily potential evapotranspiration, E (mm/d), are used
to drive Hymod. For the sake of brevity, we recommend to access the
studies (Moore, 1985, 2007) for a comprehensive description of this
model. For Hymod, a second-order two-random-variables PCE will be
built as:

(26)
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Fig. 3. The location of the studied catchments: (a) the Jing River basin, (b) the Ruihe River basin, and (c) presents the time series of streamflow, precipitation, and potential evapotran-
spiration of Ruihe River basin. The green triangles show the location of national rain stations used to generate potential evapotranspiration and areal precipitation, and the green circle
shows the location of the streamflow station. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Schematic representation of Hymod.

here, Q presents the streamflow, and are standard
Gaussian variables which are transformed from Cmax and Bexp.

In this study, Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe,
1970) is used to evaluate the deterministic prediction of the hydrologi-
cal modeling.

(27)

where N is the total number of observations (or predictions); is
the observed stream;. . is the estimated streamflow; is the mean
of all observations.

The probabilistic prediction is evaluated by continuous ranked prob-
ability score (CRPS), which is defined as the integrated squared dif-
ference between the CDF of forecasts and observations (Fan et al.,
2017a; Hersbach, 2000; Murphy and Winkler,

Table 1
The descriptions of Hymod parameters.

Parameter Description
Prior
range

Posterior
range

Cmax Maximum soil moisture capacity
within catchment (mm)

[0, 700] [100,123]

Bexp Shape factor that is dependent on the
degree of spatial variability in soil
moisture capacities

[0.01,15] [0.26,
0.32]

Alpha Fraction coefficient for distribution of
water between slow and quick
reservoirs

[0.5,0.9] 0.58

Rq Inverse of residence time in quick
reservoirs (1/day)

[0.01,0.2] 0.022

Rs Inverse of residence time in a slow
reservoir (1/day)

[0.3,0.7] 0.58

1987):

(28)

where and are CDFs for predicted streamflow and observed
streamflow, respectively. A small CRPS value indicates a better model
performance, with the value of zero suggesting a perfect accuracy for
model prediction.

4. Influence of the parameter distribution on surrogate system

To evaluate the uncertainty of Hymod predictions, the second-or-
der PCE ( ) is built
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with the historical data, and then applied to quantify the uncertainty
of the Hymod predictions. As presented in Table S3, nine collocation
points are obtained to establish the linear regression equations and gen-
erate the values of the six unknown coefficients in the second-order PCE
(Fan et al., 2015a). In the prediction period, 50 values of Cmax’ and
Bexp’ are randomly generated through the standard Gaussian distrib-
ution which are transformed from Cmax and Bexp. Thus, total 2,500
PCE simulation values would be generated for each time point with the
generated Cmax’ and Bexp’, as well as PCE coefficients. The mean and
variance values of CPCE model would be obtained with the 2500 real-
izations. To evaluate PCE’s reliability for uncertainty quantification, the
Monte Carlo (MC) simulation, is applied as the benchmark results. Sim-
ilarly, 50 values of Cmax and Bexp are randomly generated from their
distribution randomly, and total 2500 combinations of parameter values
are applied to run Hymod simulations for MC analysis. And again, the
mean and varianance values of MC model would be obtained. In this
study, the prior distributions for the parameters (i.e. Cmax and Bexp)
of Hymod are assumed to uniformly spread over predefined ranges to
represent vague prior knowledge as presented in Table 1. Posterior
distributions of Cmax and Bexp are obtained by Metropolis-Hastings
(MH) algorithm through the calibration of Hymod over the period of
1981–1984. After the calibration process, the parameters posterior dis-
tributions are obtained as shown in Fig. 5. The detail of MH and the
calibration process are provided in the supporting material.

To analyze the influence of the parameter distributions on the sur-
rogate system, PCE surrogate model is established based on the prior
and posterior distributions of the parameters in Hymod, respectively.
The comparison for the mean and variance values of daily streamflow
obtained through the 2-order PCE and MC simulation methods are pre-
sented in Fig. 6. As shown in Fig. 6(a) and (b), with the parame-
ter prior distribution, the mean streamflow obtained by PCE surrogate
model are highly identical with the MC simulation results. By linearly
fitting the mean values of MC simulation and PCE simulation, the coef-
ficient of determination R2 = 0.999. In Fig. 6(c) and (d), the variances
of the streamflow obtained through MC and PCE simulations are com-
pared with the corresponding coefficient of determination R2 = 0.995.
These indicate that the PCE results would fit well with the MC simu-
lation results in both means and variances. However, as can be seen
from Fig. S2, neither the MC simulation nor the PCE model would fit

well with the observed streamflows as they are established based on the
parameter prior distributions. Due to the wide prior distributions of pa-
rameters, MC simulations cannot reflect the true relationship between
rainfall and runoff, and the simulation results cannot match the actual
runoff observations. Not surprisingly, the PCE simulation where the col-
location points are selected in the parameter prior spaces also cannot
match the actual runoff observations.

In comparison, as shown in Fig. 7, the PCE surrogate model based
on the posterior distributions of parameters cannot only better match
the MC simulations in both means and variances, but also fit well with
the runoff observations (i.e., NSE = 0.84). In other words, the PCE sur-
rogate model can generally replace the hydrologic model (i.e. Hymod)
with posterior parameter distributions to reflect the temporal variations
for the streamflow. Combining the prior distribution and actual obser-
vations, the posterior distributions of parameters are obtained based on
MH algorithm. The PCE surrogate model with the collocation points se-
lected from parameter posterior distribution spaces can well match the
observed runoff. These indicate that the mean values obtained through
PCE surrogate model are highly identical with the MC simulation results
no matter whether they are established based on the parameters’ prior
or posterior distributions. In other words, the PCE surrogate model can
generally replace the hydrologic model (i.e. Hymod). However, only the
PCE surrogate model and MC simulation based on parameters’ poste-
rior distributions can reflect the temporal variations for streamflow ac-
curately. Therefore, the MH method would be employed to approximate
the posterior probabilities of model parameters and improve the fore-
casting accuracy based on the observed measurements.

5. Projection of CPCE model

For the historical period, the unknown coefficients in PCE can be
assessed through regression-based PCM method with model input (e.g.,
precipitation and evapotranspiration) and output (e.g., streamflow)
(Fan et al., 2015a). However, for the forecasting period, these coeffi-
cients are unavailable due to the lack of observed streamflow (Ghaith
and Li, 2020). Therefore, before exploring PCE’s capability to fore-
cast streamflow stochastically, the potential predictors of PCE coeffi-
cients need to be identified. As shown in Fig. 1(b), since the state
variable (i.e., x-loss) is continuously updated, its specific value de-
pends on the previous climatic and hydrological relationship (Xie et
al., 2017). Hence, it can be assumed that the state variableis a func-
tion of the previous forcing

Fig. 5. Posterior distributions of Cmax and Bexp obtained by metropolis–hastings (MH) algorithm for Ruihe River.
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Fig. 6. The comparison of MC simulation, PCE simulation and observation based on parameters prior distribution. (a) The mean values of the streamflow obtained through MC and 2-order
PCE simulation; (b) Scatter plot of the mean values of MC simulation and 2-order PCE results; (c) The variance values of the streamflow obtained through MC and 2-order PCE simulation;
(d) Scatter plot of the variance values of MC simulation and 2-order PCE results.

data. For convenience, the PCE coefficients are firstly correlated with
various climatic variables, including multi-day cumulative precipita-
tion (denoted as P, sumP3, sumP5, sumP7, sumP10, sumP15, sumP20,
sumP30, sumP60, and sumP90) and multi-day cumulative potential
evapotranspiration (denoted as E, sumE3, sumE5, sumE7, sumE10,
sumE15, sumE20, sumE30, sumE60, and sumE90). As presented in Fig.
8, there are significant correlations among the PCE coefficients and cli-
mate variables. For example, except for a5, all PCE coefficients have
strong correlations with climate variables (especially the cumulative
precipitation). The biggest correlation (0.853) exists between a2 and
sumP5 (i.e., the cumulative 5-day rainfall). Therefore, a reasonable
guess is that the coefficents of the PCE prediction model can be obtained
based on climate factors.

The PCE coefficients and climate data during 1981–1984 are used to
traing SCA model, and the obtained SCA tree is shown in Fig. S3. Then,
the PCE coefficients and climate data in 1984 are used to test the ob-
tained SCA model. As shown in Fig. 9, most of the PCE coefficients (e.g.,
a0, a2, a4) predicted by the SCA model can fit their theoretical values.
As mentioned in Section 3.2, a second-order two-random-variables PCE
is built for Hymod as:

. Here, and are standard Gaussian variables which are
transformed from the distributions of Cmax and Bexp. The variability
in PCE coefficients implies the different main (and/or interactive) ef-
fects of these parameters on model outputs (i.e., streamflow). For in-
stance, the high predictability of a2 (NSE = 0.80) indicates that the
model performance is more sensitive to Bexp (as shown in Fig. 12). At

the same time, it is difficult to predict a5 accurately (NSE = 0.14),
which means that the interaction between Cmax and Bexp has little ef-
fect on the model results. This also corresponds to the result of Fig.
12, which shows that the interactive effects of Cmax and Bexp in CPCE
model are lower than 0.004. However, the relationship between PCE co-
efficients and climate variables is unknown, and has been rarely stud-
ied and not quantified in previous studies (Ghaith and Li, 2020).
This study attempts to construct and quantify this relationship through
the SCA approach for the first time. The advantage of SCA is that it
can quantify nonlinear non-functional relationships (Huang, 1992). As
shown in Fig. S3, the unknown relationships between PCE coefficients
and climatic conditions can be revealed through the loop of cutting and
merging, which is described through a clustering tree. With this trained
tree, SCA model is expected to predict the unknown coefficients in PCE
for the forecasting period with obtained climatic conditions. The accu-
racy of PCE coefficient predictions by SCA reflects the strength of these
relationships. Using SCA to analyze the relationship between PCE coef-
ficients and climate variables is one of the advantages of CPCE method.

The mean and variance values of streamflow obtained by MC and
CPCE during the validation period are presented in Fig. 10. It is found
that the predicted streamflows obtained by CPCE can fit very well with
the results from MC. When compared with observed streamflows, MC
and CPCE performed well for low streamflow while produced under-
estimations for the peak streamflows. This may be due to the peak
clipping phenomenon of SCA method. For the validation period, NSE
values of MC and CPCE are 0.79 and 0.57. Fig. 11 presents the en-
sembles of the forecasted streamflow
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Fig. 7. The comparison of MC simulation, PCE simulation and observation under the posterior distribution of parameters obtained by AM. (a) The mean values of the streamflow obtained
through MC and 2-order PCE simulation; (b) Scatter plot of the mean values of MC simulation and 2-order PCE results; (c) The variance values of the streamflow obtained through MC and
2-order PCE simulation; (d) Scatter plot of the variance values of MC simulation and 2-order PCE results; (e) The mean values of simulation and observation; (f) Scatter plot of the mean
values of simulation and observation.

obtatined by MC and CPCE during the validation period. The distribu-
tions show that the probability distributions generated by CPCE are very
similar with those obtained by MC. For the validation period, CRPS val-
ues of MC and CPCE are 1.9 and 2.9, respectively. Similar to determin-
istic predictions, CPCE is likely to provide probabilistic forecasts reli-
ably for low streamflow while generate underestimations for the peak
streamflows. To make it clear, the histograms of streamflow obtained by
MC and CPCE on several selected days are presented in Fig. S4. The dif-
ferent performances of the CPCE reflect the inconsistency in the process
of uncertainty transmission. In CPCE model, the PCE coefficients are
obtained through the SCA tree, where the predicted value is the aver-
age of the samples in each leaf node. For low runoff or normal runoff

with a large number of samples, the samples of each leaf node are con-
centrated, and the average value can reflect the predicted value well.
However, for flood peak with small sample size, the average value of
leaf node may underestimate the predicted value and the uncertainty of
prediction is amplified. This resaerch is the first attempt to establish the
relationship between PCE coefficients and climatic conditions through
SCA model and the traditional SCA method is chosen here. In the fol-
lowing research, the authors will consider using modified SCA (Fan et
al., 2016b) to improve the prediction ability of CPCE further.

One major issue of the proposed CPCE model is its computation de-
mand, since training a SCA tree would require a considerable computer
time for repeating cut-merge. As presented in
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Fig. 8. Correlations between PCE coefficients and climatic conditions.

Fig. 9. The PCE coefficient predicted by SCA model.

Fig. 10. Time series of streamflow obtained by MC and CPCE during the validation period. (a) mean values; (b) variance values.

Table 2, if the above CPCE procedures (i.e., include training and pre-
diction) are applied for Hymod the computation demand would be
about 481.22 and 1.54 (s) for training and prediction, and these would
be 65.88 and 65.35 (s) for MC. The results show that CPCE needs
more computation time than MC for this simple five-parameter Hy-
mod. In CPCE model, SCA training does not need to be repeated,
and random predictions can be quickly obtained once the SCA model
is built. The main calculation require

ments of CPCE for prediction are not affected by the complexity of the
hydrological model. While, MC needs to run the hydrological model
repeatedly, and its calculation time increases rapidly as the complex-
ity of the model increases. Thus, the acceptable computational require-
ments and reliable performances make CPCE be an appealing hydro-
logical tool in revealing interactive rainfall-runoff relationships (Ghaith
and Li, 2020). Compared with traditional PCE method, the devel-
oped CPCE model cannot only reflect un
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Fig. 11. Comparison between the ensembles of the forecasted streamflow obtatined by (a) MC and (b) CPCE during the validation period.

certainty propagation in stochastic hydrological simulation, but also
have the capability of random forecasting. It has reported that the per-
formance of SCA is sensitive to the clustering significance (i.e., p value),
which determines the threshold value for cutting and merging opera-
tions (Qin et al., 2008; Sun et al., 2018). Therefore, to explore the
sensitivity of CPCE on clustering significance (i.e., p value), three clus-
tering significance values (i.e., p = 0.01, 0.05, and 0.10) are examined.
It is found that the generated PCE coefficients are insensitive with p
values (Fig. S5). The CPCE has the best prediction skill when p value
equals to 0.05 (Fig. S5).

6. Dynamic sensitivity

Since the CPCE variables (i.e., Cmax and Bexp) have different con-
tributions to the variability of the model outputs, a multilevel facto-
rial analysis is introduced to quantify their main and interactive ef-
fects on uncertainty propagation (Fan et al., 2020). As an illustra-
tion, the functional approximation of a stochastic system with two-di-
mension second-order Hermite polynomials can be presented as:

”. Here, and

are standard Gaussian variables which are transformed from Cmax
and Bexp. Thus a 52 factorial experiment can be conducted to explore
the sensitivities of (Cmax) and (Bexp) in CPCE model for each day.
Fig. 12 shows the dynamic sensitivities of the parameters in the CPCE
model on the streamflow. Among the 2553 daily streamflows, 70.2%
of them have a main effect of Cmax higher than 0.8. In comparison,
only 7.6% of daily streamflows have a main effect of Bexp higher than
0.5. As shown in Fig. 12, Cmax mainly has high main effects for
low-flows, and Bexp would have high main effects for high-flows. In Hy-
mod, Cmax indicates the maximum soil moisture capacity within the
catchment, and Bexp presents the degree of spatial variability in soil
moisture capacities. The conceptual hydrological model-Hymod adopts
the saturation excess runoff generation mechanism (Moore, 1985).
Saturation-excess overland flow is generated when the soil becomes
saturated to the extent that additional precipitation cannot infiltrate.
Runoff production at a point in the catchment is controlled by the
maximum soil moisture capacity and precipitation (Li and Ishidaira,
2012), which is more likely to occur during small precipitation pe-
riod. Thus, it can be concluded that the maximum soil moisture ca-
pacity within the catchment has the strongest main effect, which plays
a key role in the forecasting streamflow especially for low-flows. Any
change in the value of Cmax would cause a considerable variation in
the accuracy of the low-flow forecasting. While for the high stream-
flow, the spatial variability in soil moisture capacities has a remarkable

impact on the accuracy of hydrological forecasting. This can be ex-
plained by that saturation-excess flow generation mechanism may has
the limited contribution to the total runoff during intensive storm
events. It has been reported that the extreme rainfall event is the domi-
nant trigger of annual maximum runoff events in the Yellow River basin
(Ran et al., 2020). Extreme rainfall generally lasts for a short time. Un-
der this condition, the spatial variability of river basins may have certain
influence on the time and magnitude of runoff generation.

7. Conclusions

Based on the uncertainty evolution and sensitivity analysis of the hy-
drological process, this study introduced a clustered polynomial chaos
expansion (CPCE) model for stochastic hydrological prediction. With
effectively reflecting the stochastic characteristics of hydrological
processes, CPCE model can directly predict future runoff sequences and
generate probability distributions of all runoff values. The CPCE model
characterizes the random characteristics of state variables in the hy-
drological model through a polynomial chaotic expansion (PCE) model
based on the probabilistic collocation method. At the same time, the
multivariate discrete non-functional relationship between PCE coeffi-
cients and hydrological model inputs (i.e. precipitation and potential
evapotranspiration) is established based on stepwise cluster analysis.
The CPCE model integrates the PCE and SCA approaches to generate the
probabilistic predictions for streamflow. Finally, the dynamic parame-
ters’ sensitivities for streamflow forecasting are assessed with the help
of multilevel factorial analyses.

The main conclusions are as follows: (1) The PCE surrogate model
based on the posterior distributions of parameters can generally replace
the hydrologic model (i.e. Hymod) to reflect the temporal variations for
the streamflow. (2) The PCE coefficients can be estimated through SCA
model through revealing the complicated multivariate nonlinear rela-
tion between the forcing data of hydrological model and the coefficients
of the PCE model. (3) The proposed CPCE model is likely to provide re-
liable probabilistic predictions, which is an appealing modelling tool in
revealing interactive rainfall-runoff relationships. (4) Dynamic sensitiv-
ity analysis indicates that the maximum soil moisture capacity within
the catchment plays a key role in the accuracy of the low-flow forecast-
ing while the degree of spatial variability in soil moisture capacities has
a remarkable impact on the accuracy of the high-flow forecasting. The
different performances of the CPCE model also reflect the inconsistency
in the process of uncertainty transmission.

The main innovation of this research is the development of a clus-
tered polynomial chaos expansion (CPCE) model which over
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Table 2
Computational time of both MC and CPCE.

Period Main steps
ComputationalTime
(s)

MC Training i) Sampling
2500 from
parameter
prior ranges

0.01

ii) Running
hydrological
model (i.e.,
Hymod) and
calculating
likelihood
function for
2500 times
to obtain
parameter
posterior
distributions

65.87

Prediction i) Sampling
2500 from
the obtained
parameter
posterior
distributions

0.01

ii) Runinig
hydrological
model (i.e.,
Hymod) for
2500 times

64.34

CPCE Training i) Solving
regression
equations
based on
probabilistic
collocation
method to
determine
PCE
coefficients
in the history

0.01

ii) Training
SCA model
with
obtained PCE
coefficients
and climate
data

481.21

Prediction i) Sampling
2500 from
parameter
posterior
distributions

0.01

ii) Predicting
PCE
coefficients
with trained
SCA model
and new
climate data

1.26

Period Main steps
ComputationalTime
(s)

iii) Running
PCE for 2500
times with
predicted
PCE
coefficient

0.27

comes the shortcoming of the traditional PCE models in doing predic-
tion work. The main finding is that the maximum soil moisture capac-
ity within catchment plays a key role in the accuracy of the low-flow
forecasting while the degree of spatial variability in soil moisture capac-
ities has a remarkable impact on the accuracy of the high-flow forecast-
ing. The results conclude that the clustered polynomial chaos expansion
(CPCE) model can provide accurate predictions with less computational
burden.

Moreover, some extensions, improvements, or applications are still
needed to be conducted in future studies. For instance, the relationship
between precipitation and runoff are assumed to be consistent during a
short term (seven years in this study). Thus, the trained SCA model is not
constantly updated here. However, the hydrological model also needs to
consider the non-stationarity of streamflow for the long-term prediction.
Thus, in the following research, the authors will consider updating the
SCA model constantly during the forecasting period. The combination
of dynamic SCA with PCE model is expected to update the relationship
between PCE coefficient and climate conditions in real time, so as to
maintain good prediction accuracy of CPCE model for long-term stream-
flow. Secondly, a high-dimensional high-order expansion model is not
involved in this study. The total number of PCE terms increases rapidly
with the dimensionality and the degree of the PCE. For instance, there
are 56 PCE terms and coefficients for one five-dimension three-order
PCE surrogate model. It is difficult to accurately predict 56 expansion
coefficients at the same time, which may lead to inaccurate predictions.
One potential solution is to remove the unimportant PCE items based on
sensitivity analysis, as reported by Wang et al. (2015). Therefore, in
the following work, we will also consider the combination of stepwise
cluster analyses and reduced PCE models to solve the projection prob-
lem of a high-dimensional high-order expansion model.

Declaration of Competing Interest

The authors declare that they have no known competing financial in-
terests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This research was supported by the National Key Research and De-
velopment Plan (2016YFC0502800), the Natural Sciences Foundation
(51520105013, 51679087), the 111 Program (B14008) and the Nat-
ural Science and Engineering Research Council of Canada. The data
that support the findings of this study are available from https://www.
researchgate.net/publication/342065388_Yuanjiaan1981-1987. The
code used in this paper are available from the corresponding author
upon reasonable request.

13

https://www.researchgate.net/publication/342065388_Yuanjiaan1981-1987
https://www.researchgate.net/publication/342065388_Yuanjiaan1981-1987


UN
CO

RR
EC

TE
D

PR
OO

F

F. Wang et al. Journal of Hydrology xxx (xxxx) xxx-xxx

Fig. 12. Time series of the main and interactive effects of Cmax and Bexp in CPCE model. (Note: the color bars represent the strength of the main and interactive effects).
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