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Abstract

Relative navigation is paramount in space missions that involve rendezvousing
between two spacecraft. It demands accurate and continuous estimation of the six
degree-of-freedom relative pose, as this stage involves close-proximity-fast-reaction
operations that can last up to five orbits. This has been routinely achieved thanks to
active sensors such as lidar, but their large size, cost, power and limited operational
range remain a stumbling block for en masse on-board integration. With the onset
of faster processing units, lighter and cheaper passive optical sensors are emerging as
the suitable alternative for autonomous rendezvous in combination with computer
vision algorithms. Current vision-based solutions, however, are limited by adverse
illumination conditions such as solar glare, shadowing, and eclipse. These effects are
exacerbated when the target does not hold cooperative markers to accommodate the
estimation process and is incapable of controlling its rotational state.

This thesis explores novel model-based methods that exploit sequences of monoc-
ular images acquired by an on-board camera to accurately carry out spacecraft
relative pose estimation for non-cooperative close-range rendezvous with a known
artificial target. The proposed solutions tackle the current challenges of imaging in
the visible spectrum and investigate the contribution of the long wavelength infrared
(or “thermal”) band towards a combined multimodal approach.

As part of the research, a visible-thermal synthetic dataset of a rendezvous
approach with the defunct satellite Envisat is generated from the ground up using a
realistic orbital camera simulator. From the rendered trajectories, the performance
of several state-of-the-art feature detectors and descriptors is first evaluated for
both modalities in a tailored scenario for short and wide baseline image processing
transforms. Multiple combinations, including the pairing of algorithms with their
non-native counterparts, are tested. Computational runtimes are assessed in an
embedded hardware board.

From the insight gained, a method to estimate the pose on the visible band is
derived from minimising geometric constraints between online local point and edge
contour features matched to keyframes generated offline from a 3D model of the
target. The combination of both feature types is demonstrated to achieve a pose
solution for a tumbling target using a sparse set of training images, bypassing the
need for hardware-accelerated real-time renderings of the model.

The proposed algorithm is then augmented with an extended Kalman filter
which processes each feature-induced minimisation output as individual pseudo-
measurements, fusing them to estimate the relative pose and velocity states at
each time-step. Both the minimisation and filtering are established using Lie group
formalisms, allowing for the covariance of the solution computed by the former
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to be automatically incorporated as measurement noise in the latter, providing
an automatic weighing of each feature type directly related to the quality of the
matches. The predicted states are then used to search for new feature matches in the
subsequent time-step. Furthermore, a method to derive a coarse viewpoint estimate
to initialise the nominal algorithm is developed based on probabilistic modelling of
the target’s shape. The robustness of the complete approach is demonstrated for
several synthetic and laboratory test cases involving two types of target undergoing
extreme illumination conditions.

Lastly, an innovative deep learning-based framework is developed by processing
the features extracted by a convolutional front-end with long short-term memory cells,
thus proposing the first deep recurrent convolutional neural network for spacecraft
pose estimation. The framework is used to compare the performance achieved by
visible-only and multimodal input sequences, where the addition of the thermal band
is shown to greatly improve the performance during sunlit sequences. Potential
limitations of this modality are also identified, such as when the target’s thermal
signature is comparable to Earth’s during eclipse.

Keywords
Spacecraft pose estimation; non-cooperative rendezvous; active debris removal; com-
puter vision; thermal infrared imaging; multimodal imaging; optimisation; data
fusion; Kalman filter; deep learning.
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CHAPTER 1

Introduction

In this introductory chapter, the reader is made acquainted with the current
context from which this work arises and is presented with an overview of
how computer vision techniques adopted or developed herein were blended
with space science to address the extant obstacles in spacecraft rendezvous
missions. In particular, vision-based navigation is compared with its main
competitor, i.e. lidar, drawbacks of visible wavelength cameras are discussed,
and thermal infrared imaging is introduced as a candidate modality to
improve reliability and accuracy.

1.1 Motivation

This dissertation aims to tackle the fundamental problem of providing a reliable
and efficient solution for image-based spacecraft relative pose estimation. The

objective of this task consists in determining the rigid transformation between two
space bodies – one of which is controllable and carries the navigation sensors – in
terms of their relative position and attitude (as shown in Fig. 1.1). Together, these
two quantities define the six degrees-of-freedom (6-DOF) relative pose. Specifically,
the navigator must methodically select and extract raw visual cues from a two-
dimensional image of the target produced by the on-board camera using image
processing (IP) techniques, which are then subjected to pattern recognition algorithms
to recover the pose. In the present context, “reliable” means capable of providing
an accurate solution that fulfils the subsystem’s requirements, whereas “efficient”
refers to functioning in a manner that minimises the subsystem’s design budget, both
physically and computationally. This remains an arduous problem, as space is one
of the most extreme environments imaginable, and the target might be free to take
up a multitude of possible pose configurations.
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1. INTRODUCTION

Figure 1.1: Spacecraft relative pose estimation. The goal is to take an image of
the target captured by the on-board camera and, from it, infer the translation and
rotation that aligns the target’s frame of reference with the chaser’s. The solution
portrayed in this figure has been obtained with algorithms developed in this thesis.
(Left) Target spacecraft. (Centre) The estimated origin and orientation of the
target’s frame of reference. (Right) The 3D model of the target projected according
to the attained solution.

In Earth-based applications, cameras are often deployed as navigation sensors
for unknown environments. The objective is to estimate the vehicle’s egomotion in
the uncharted world, to recover its three-dimensional structure, or both. Whereas
this can and has been applied to the context of space, in many situations several
a priori assumptions about the target body can be made. For example, most of
Earth’s satellites are man-made crafts, fruit of previous and current missions, of
which material, textural, and structural information is known. Indeed, this thesis
is concerned with extending the state-of-the-art for the spacecraft relative pose
estimation problem by formulating it as a model-based problem with the goal of
deriving techniques to retrieve the robust and global solution.

Model-based formulations are not without their own challenges: often, information
captured on-board must be matched to a reference that is fundamentally different in
terms of imaging conditions. This thesis identifies and addresses these difficulties
present in the road map towards pose estimation, and the developed implementa-
tions cover feature detection and matching, probabilistic modelling, shape-based
classification, outlier rejection, optimisation, Kalman filtering, and deep learning.
The focus is placed on monocular systems, in which images are acquired through a
single camera, or equivalent. These have the potential for use at long range, but the
scale cannot be recovered (as shown in Chap. 2); this dissertation explores the role
of such model-based strategies in overcoming this challenge. This is in opposition
to stereo systems, which can naturally extract 3D information from the scene by
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triangulating points in the images acquired by both cameras. However, these become
problematic at long range when the disparity is small and even minimal amounts of
image noise can compromise the accuracy, limiting their use in spaceborne scenarios.

Relative pose estimation is a vital requirement for a space rendezvous (RV), i.e.
to bring two space objects within close proximity of one another. Be it to service a
space station, accomplish formation flying, or collect space junk, numerous RV tasks
involve the management of relative velocities and minimal reaction times, justifying
the need for autonomous operations. Others, such as landing on a small body,
occur far away from Earth such that ground operators cannot reliably navigate the
spacecraft in real-time. In general, the democratisation of space is evolving towards
the mass-production of hardware and investment in research and development,
cutting back on the reliance on ground control to save costs. Therefore, autonomous
RV is set to become the norm rather than the exception. When the target is
non-cooperative, redundancy for relative navigation sensors becomes a substantial
requirement; accordingly, passive sensors such as digital cameras present themselves
as a lower costing and lighter alternative to bulky active hardware.

Using regular cameras operating on the visible spectrum for navigation warrants
particular care and combination with adequate IP due to the particular imaging
conditions experienced in space. Often, orbiting spacecraft are covered in highly
reflective materials which affect its perception as a target, and pointing a camera
directly at the Sun will result in sensor failure. Conversely, during eclipse periods,
important features on the target might not be visible at all. As such, alternative
imaging modalities beyond the visible could improve relative navigation performance,
and multimodality is thus investigated in this dissertation.

Nevertheless, optical cameras are gaining popularity as the suitable sensor for
autonomous relative navigation in space due their attractive sizing and the fact that
acquired images can be compressed to be processed aboard the spacecraft, avoiding
the requirement of ground-processing the data. Additionally, the same sensor feeds
used to fulfil the mission scientific objectives can be used for navigation and mapping,
alleviating size and cost constraints associated with additional sensors.

1.2 Vision-based Navigation

In the field of mobile robotics, navigation is a necessary tool towards the fulfilment
of autonomy. Undoubtedly, in order to accurately make a decision that leads it from
one state to the next until the final goal is achieved, a machine must know how
to interact with its environment, i.e. how to navigate it. Despite the fact that a
spacecraft on an RV mission could technically be considered a mobile robot, and that
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1. INTRODUCTION

both subjects have shared common strategies on employing vision for navigation,
they began by carving out individual paths. This section briefly outlines the main
points of vision-based navigation for the former, and Section 1.4 does it specifically
for space RV.

Detection and matching of features is the fulcrum of navigation solutions based
on computer vision1 (Torr and Zisserman, 2000). A feature is purely an interesting
and distinguishable part of an image. In particular, Szeliski (2011) defines interest
points, also known as keypoints, as one of the fundamental and most popular types of
features; these are “specific locations in the images, such as mountain peaks, building
corners, doorways, or interestingly shaped patches of snow... often described by
the appearance of patches of pixels surrounding the point location”. Many different
types of features exist, such as edges, circles, or even colours, but keypoints have
remained consistently popular for navigation thanks to IP developments to efficiently
detect and match them across images and to the clarity in establishing geometric
constraints.

Vision-based navigation for mobile robots had its genesis with Moravec (1980),
who developed a combined localisation-path-planning-collision-avoidance approach.
An “interest operator” was applied to images from both cameras of a mounted stereo
setup to detect keypoints, which were then matched and triangulated to find the
corresponding 3D points in the scene. If clusters of these 3D points were determined
to be too close to the robot, the path planner would send out a command to go
around them for the next time-step. By matching these keypoints not only across
cameras but also across time-steps, the vehicle’s own motion could be derived. This
technique, termed visual odometry (VO), is one of the two archetypes of model-free
navigation strategies, as no prior knowledge of the environment’s structure is needed
to complete the task. The obvious limitation of VO is that only the vehicle’s own
trajectory, i.e. its egomotion, is computed, and hence it is only usable in scenarios
where scene understanding is not required. Furthermore, VO solutions tend to exhibit
long-term trajectory drift due to errors in feature matching or triangulation. This
is often mitigated by storing a sparse set of points from recent frames, whose 3D
coordinates are jointly optimised with previous poses in a process termed bundle
adjustment (Triggs et al., 2000). The term “visual odometry” was popularised by
Nister et al. (2004), who formalised the framework for both monocular and stereo
systems, and addressed the rejection of spurious feature matches. Overall, it is a less
burdensome algorithm compared to other methods which do perform mapping, and

1Whereas it may be accepted in the space literature to define “vision” as an umbrella term that
also covers active sensors, in this dissertation it shall be exclusively used in reference to cameras.
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has been adopted in circumstances where computational power is limited, such as
the navigation of Mars exploration rovers (Maimone et al., 2007).

The second class of model-free navigation strategies is derived from simultaneous
localisation and mapping (SLAM), which consists in navigating a robot through an
unknown environment while building a map of it and avoiding obstacles, and had
been traditionally accomplished using laser rangefinders (Thrun et al., 2005). In
computer vision, the problem is known as structure from motion (SFM), involving the
joint estimation of unordered camera poses and the geometry of the scene, although
it is typically solved offline (Szeliski, 2011). The solution to the SLAM problem in
real-time, with a monocular camera as the sole sensor, was devised by Davison (2003;
2007): as in VO, keypoints are associated to map landmarks via frame-to-frame
matching, but their depth (and, effectively, 3D coordinates) are modelled according
to a probabilistic extended Kalman filter (EKF) framework, in which the current
robot pose is also included in the state vector. This formulation includes a motion
model for the camera, and allows for the map to evolve dynamically due to the
EKF updates, whereby the state is augmented when new features are observed, or
likewise reduced if necessary. Importantly, the EKF formulation offers a natural way
to estimate the uncertainty of the solution.

The major shortcoming of monocular SLAM is that the navigation solution can
only be recovered up to an arbitrary scale. EKF-SLAM, in particular, was also
afflicted by an ever-growing state vector (and covariance matrix) in proportion to
the size of the map, which had to be limited before a certain number of landmarks
was reached to avoid computational bottlenecks.

Later on, Karlsson et al. (2005) addressed these issues by employing FastSLAM’s
factored solution for larger map support (Montemerlo et al., 2002), and a second
camera to form a stereo setup and derive scene depth information directly by
triangulating features, solving for the absolute scale. The formulation made use
of more modern keypoint descriptors (Lowe, 2004) rather than traditional feature
patches and coined the term visual simultaneous localisation and mapping (VSLAM),
despite also relying on data from the robot’s wheel encoder odometry.

In an effort to further increase map building efficiency and volume, Klein and
D. Murray (2007) broke away from the Bayesian formulation of VSLAM and in-
troduced the Parallel Tracking and Mapping (PTAM) algorithm, which employed
bundle adjustment to certain snapshots of the trajectory, or keyframes. Real-time
performance was achieved by splitting tracking and mapping in two distinct tasks,
each processed by a parallel thread of a dual-core central processing unit (CPU). The
end result provided detailed maps bearing thousands of features with state-of-the-art
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accuracy, thanks to the capability running both global and local bundle adjustment
on its own thread.

Further research in the field has since continued to evolve with strategies such
as visual loop-closure to reduce drift (Ho and Newman, 2006) and relocalisation
after tracking failure (Williams et al., 2007). The state-of-the-art in feature-based
SLAM condenses most of the improvements by its predecessors into a single pipeline
which has been baptised as ORB-SLAM (Mur-Artal et al., 2015). The prefix refers
to Oriented FAST and Rotated BRIEF, the feature detection and descriptor adopted
to achieve real-time performance on the IP front-end, and which is explored further
in Chapter 3. Furthermore, ORB-SLAM adds a third parallel thread exclusively
dedicated to loop closure, and provides fully automatic initialisation.

It is clear that much of SLAM’s performance, especially in terms of mapping,
was brought about by astute parallelisation strategies. Indeed, all of the algorithms
describe above have been designed for desktop CPUs, making their implementation
on mobile hardware more challenging, particularly for embedded systems which do
not support multithreading. Added to the fact that, in close-range RV with artificial
space objects, the “scene” normally consists of a single body of which the structure
is known, this is a plausible explanation as to why most of such missions have bet
on model-based methods instead.

Model-based methods are concerned with solving the task of determining the
pose of the scene’s frame of reference relative to the camera’s frame of reference,
given a model of the scene made up of 3D reference points and a 2D image of those
points, without assuming any prior information on the correspondence between
either the pose or feature correspondences. As described by David et al. (2004), this
model-to-image registration problem entails, in fact, two coupled problems: the pose
problem, consisting in retrieving the pose based on the set of 2D-3D corresponding
points; and the correspondence problem, which involves establishing the matches
between image and scene features. This approach therefore brings its own set of
challenges which are mainly related to bridging the gap brought about by the extra
dimension of the scene relative to its image. Additionally, model-based techniques
normally require an initialisation strategy. Chapter 4 further reviews the evolution
of model-based strategies, from their early industrial robotics applications until the
spillover into the field of spacecraft relative navigation.

Either navigation strategy can alternatively be formulated as a direct method,
whereby the parameters to be estimated are derived from measurable quantities at
each image pixel rather than at selected local interest points (Irani and Anandan,
2000). Recently, direct methods have witnessed a resurgence due to advances in
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deep learning, particularly convolutional neural networks (CNNs; LeCun et al., 1989).
This type of architecture is capable of providing a navigation solution directly from
a series of learned operations on image inputs and have been applied to VSLAM
(Tateno et al., 2017), VO (S. Wang et al., 2017), and model-based methods (Kendall,
Grimes, et al., 2015).

1.3 Space Rendezvous
A space rendezvous, or simply RV, is a set of operations that progressively manoeuvre
an active vehicle (the chaser) into the vicinity of, and finally into contact with, a
generally passive object (the target; Fehse, 2003; Wertz and Bell, 2003). Every
RV begins with a launch, which typically involves the chaser departing Earth and
being injected into orbit.2 Initially, the chaser and the target are expected to be in
entirely different orbits, tens of thousands of kilometres apart. Therefore, the chaser
must first engage in absolute navigation, which entails the determination of its own
orbit and inertial attitude. Orbit determination can be performed autonomously
as part of the guidance, navigation and control (GNC) subsystem, via ground
tracking, or by propagation of the ephemerides (Wertz, 1999). Earthbound RVs can
typically make use of global navigation satellite systems (GNSS) to obtain complete
positional information. For interplanetary trajectories, inertial measurement units
(IMU) can provide integration-based position and velocity, but the solution becomes
degraded over time, so typically other solutions are required (e.g. line-of-sight [LOS]
measurements of other planets or asteroids). Attitude determination can be performed
using rate gyros, magnetometers, Sun sensors, horizon sensors, star trackers, or a
combination thereof (Wie et al., 2014).

Once both orbits are known, the transfer burn that sets the chaser on course
towards the target can be calculated and executed. During this transfer orbit, the
bodies are out of sight and out of contact from each other, meaning that absolute
navigation is still in use. Once potential LOS is established, the far-range rendezvous
is initiated. At this point, if the target is cooperative, either passively (e.g. has a fixed
attitude, interfaces for communication or sensing) or actively (e.g. performs actual
manoeuvres to facilitate the RV), both crafts may begin communication (Fehse,
2003). Alternatively, the target is said to be non-cooperative when it bears no such
supportive equipment (Wertz and Bell, 2003).

The close-range rendezvous phase marks the beginning of the chaser’s final
approach to the target. It is divided into two subphases (Fehse, 2003):

2Special cases exist wherein the target may be launched towards the chaser, which is already in
orbit (e.g. the Apollo 11 Lunar Module ascent to rendezvous back with the Command and Service
Module; see Bennett, 1970).
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• Closing: typically begins at a relative distance of a few kilometres to 100 m.
Aims to attain the conditions leading to the final approach corridor. One of
two methods of approach are usually followed: horizontally along the target
spacecraft’s inertial velocity vector, or vertically along the radial vector; these
are named V-bar and R-bar approaches, respectively (see Chap. 2, § 2.2 for a
definition of the frames of reference involved).

• Terminal: begins when the chaser is between 10–100 m away from the target.
The subsequent chain of operations will depend on the nature of the mission.
In inspection missions, the chaser does not actually make contact with the
target, but rather keeps a short separation distance, possibly circumnavigating
it, for observation or study. For a scenario in which the target is another
spacecraft, the mission may culminate in mating; in this case the chaser will
proceed closer, reaching residual velocities, and ultimately match the necessary
pose for contact, performing a rendezvous and docking or berthing (RVD/B).

A close-range RV marks the switch to the chaser’s relative navigation sensors.
As the distance between the two bodies dwindles, attaining an accurate solution
grows more important, requiring the estimation of the complete 6-DOF pose.3 For
this reason, active sensors have traditionally been utilised on orbit. These function
by irradiating the target with a signal and then registering the reflection that is
bounced back. The main active sensors are radar and lidar4 (Chesley et al., 1999).
The latter is a precise and flight-mature sensor capable of working at frequencies
up to approximately 10 Hz, but is characterised by high mass, power consumption,
and cost. Furthermore, most lidars used for RV are of the scanning type, which is
affected by the stability of the platform (Wie et al., 2014). A short survey on the use
of lidar for spacecraft rendezvous is provided by J. A. Christian and Cryan (2013).

1.4 The Camera as a Rendezvous Sensor
Table 1.1 provides some figures of merit for two scanning lidars which have been
used aboard the European Space Agency’s (ESA) Automated Transfer Vehicle (ATV;
Roux and da Cunha, 2004) for RVD/B with the International Space Station (ISS):
the Rendezvous and Docking Sensor (RVS), and the LIRIS-2 (Laser and Infra-Red
Imaging Sensors). For comparison, the on-board camera of the Earth-orbiting
LightSail 2 CubeSat (Spencer et al., 2021) is also described. This camera was not

3Now that the estimation of this quantity is understood to exist in the context of relative
navigation, it will be mostly referred to as simply “the pose” throughout this dissertation.

4A portmanteau of “light detection and ranging” which is sometimes stylised as an acronym
instead.
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Table 1.1: Comparison between flight-proven remote sensing devices (Fehse, 2003;
Jena-Optronik, 2015; Micron Technology, 2006; Wagner, 2016; Wie et al., 2014).

Sensor RVS scanning
lidar

LIRIS-2 scan-
ning lidar

MT9D131 visi-
ble camera

Manufacturer Jena-
Optronik

Jena-
Optronik

Micron
Technology1

Type Active Active Passive
Power W 35–75 25–55 <0.15
Mass kg 14.7 13.3 0.012

Volume L ∼27 ∼22 ∼0.0092

Max. range
(cooperative) km 1.3 2.5 0.23

Max. range
(non-cooperative) km n/a ∼0.25 ∼1003

Max. frequency Hz 1 3 30
1 Now Onsemi.
2 Not including the lens.
3 Subject to field of view (FOV) and IP algorithms.

used for GNC, but is similar in performance to those used in the experimentation
validations of the solutions proposed within this dissertation, and highlights the low
system requirements and, by extension, cost when compared to lidar, justifying its
use for autonomous navigation in space.

Indeed, visible cameras have already proven their use for far-range navigation
in space. In 1976, the Viking Orbiters 1 and 2 demonstrated that in-situ imaging
of Mars’ natural satellites, Phobos and Deimos, could be used to perform fly-by
manoeuvres (Duxbury and Callahan, 1988). In the following decade, the two Voyager
spacecraft would use similar techniques along with radio tracking to navigate planets
beyond the asteroid belt (Synnott et al., 1986). The maiden voyage of autonomous
navigation was the Deep Space 1 (DS1) mission (Bhaskaran et al., 1998), which used
a camera to provide LOS measurements of several “beacon” asteroids, alongside their
predicted heliocentric orbits, to self-localise in an inertial frame, culminating in a
fly-by with comet 19P/Borrelly in 2001. Four years later, the Deep Impact probe
(Mastrodemos et al., 2005) would use an enhanced version of DS1’s autonomous
navigation suite to estimate its position relative to the Tempel 1 comet with a camera
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and successfully deploy on it an impactor craft. More recently, in 2014 the Rosetta
mission (Castellini et al., 2015) used visual navigation to rendezvous with the comet
67P/Churyumov–Gerasimenko.

For close-range RV, however, cameras have essentially been used as a supporting
sensor for cooperative scenarios, requiring fiducial markers on the target to estimate
the pose (Tietz and T. E. Richardson, 1983). The typical design of such a system
involves making these markers out of retroreflective material which is then illuminated
by a light source on the chaser to facilitate detection by the on-board camera. Since
the markers are arranged in a known pattern, their detected positions on the image
can be used to compute the pose using model-based methods (Fehse, 2003). This
principle has been used in multiple autonomous operations demonstrators with little
variation, namely for Japan Aerospace Exploration Agency’s (JAXA) Engineering
Test Satellite-VII (ETS-VII), which performed the first autonomous RVD/B between
two unmanned spacecraft (Kawano et al., 2001); the Orbital Express mission (Leinz
et al., 2008); and the Hyperspectral Precursor of the Application Mission (PRISMA;
Bodin et al., 2012).

Efforts are being made towards the transition to cameras for use in close-range
non-cooperative rendezvous (NCRV) scenarios. The SM4 mission to the Hubble Space
Telescope (HST) performed in-flight tests of the National Aeronautics and Space
Administration’s (NASA) Goddard Natural Feature Image Recognition (GNFIR)
algorithm, which was able to track Hubble’s pose via model-based matching of
contour edges of a 3D model made to resemble its shape projected onto the acquired
images (Naasz et al., 2010). The algorithm was not tested on a tumbling case,
though, as the relative attitude hardly changed. The method was also found to
be highly dependent on the expected illumination conditions, failing on one of the
three test trajectories. A keypoint-based method was also tested, but was unable to
produce a continuous estimation track in any trajectory. Promising results have led
NASA to develop Raven (Strube et al., 2015), an experiment aboard the ISS aimed
at maturing GNFIR, with an augmented sensor suite including a thermal camera
and a lidar, and testing the algorithm on incoming visiting vehicles.

Contrary to the mating phase, there are no explicit estimation accuracy require-
ments for the close-range RV phase. Fehse (2003) states that the rule of thumb is that
the accuracy must be of the order of 1 % of range or better. Table 1.2 summarises,
as an example, NASA’s close-range requirements for the cooperative Video Guidance
System, part of their Automated Rendezvous & Capture system (Howard et al.,
1999).
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Table 1.2: National Aeronautics and Space Administration (NASA) measurement
accuracy requirement for the Video Guidance Sensor (Howard et al., 1999).

Operating Range
(m)

Range Offset
(mm)

Lateral Offset
(mm)

Roll/Pitch/Yaw
(deg)

10.5–30 ±300 ±100 ±2
30–50 ±1000 ±200 ±3
50–110 ±3000 ±2000 ±5

1.5 Active Debris Removal

In 2007, the number of catalogued space objects orbiting Earth suddenly grew by
approximately 26 % (McKnight, 2010). It has since been shown that this hike was
due to the intentional destruction of the decommissioned Fengyun 1C spacecraft in
low Earth orbit (LEO) by China during the testing of an anti-satellite missile system.
This resulted in the exponentiation of the number of fragments in orbit, without
which the increase in the historical catalogued debris count would have been only
6 % (Johnson et al., 2008).

This class of phenomena had been predicted over 30 years ago by Kessler and
Cour-Palais (1978); the “Kessler Syndrome”, as it has been designated, suggests
that space debris can grow irrespective of newer spacecraft launches simply due to
cascading collisions between orbiting, most likely derelict, spacecraft, or fragments
thereof. Such a phenomenon is capable of precipitating the arrival of a point of no
return beyond which human intervention becomes futile, rendering space operations
permanently unfeasible. However, the number of Earth-orbiting debris had been
steadily growing even before 2007. In fact, they now outnumber active spacecraft by
more than 5 to 1, inhabiting mainly the orbits commonly targeted for launches, i.e.
LEO and geostationary orbits (GEOs; Andrenucci et al., 2011).

A potential chain reaction trigger is the Envisat spacecraft: a sizeable spacecraft
in LEO weighing over 8000 kg, launched on 1st March 2002 and non-functional since
9th May 2012. The existence of such space objects justifies that debris mitigation
strategies must be applied efficiently, whereas international rules state that at least
five large space objects per year must be de-orbited in order to ensure long-term
space operations (Bonnal et al., 2013).

One such mitigation strategy is termed active debris removal (ADR), whereby a
chaser spacecraft is deployed to perform an NCRV with the target object in order
to capture and de-orbit it. The e.Deorbit mission is set out to be the first ADR
mission to be carried out by the ESA, demonstrating the removal of a large object
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Figure 1.2: Computer-generated renders of potential active debris removal (ADR)
approaches developed for the European Space Agency’s (ESA) e.Deorbit mission.
(Left) Capture with net attached to tether. (Right) Capture with robotic arm.

from its current orbit and performing a controlled re-entry into the atmosphere. As
one of the few ESA-owned debris in LEO, Envisat is a possible target for the mission
(Biesbroek, Innocenti, et al., 2017).

ADR is thus a principal driver towards the development of affordable vision-based
NCRV algorithms. e.Deorbit is part of ESA’s CleanSpace initiative, which is focused
on outlining the required technology for this domain, including advanced IP for the
relative navigation aspect of the rendezvous operations. A smaller scale in-orbit
demonstration mission using CubeSats to test IP algorithms has been proposed:
e.Inspector, as it is called, would visually inspect Envisat to determine its tumbling
rate and axis. This data could then be used for validation purposes to use with
e.Deorbit (Biesbroek, Wolahan, et al., 2017). Figure 1.2 illustrates two potential
approaches for capturing an Envisat-type satellite with e.Deorbit.

In 2018, the first ever ADR demonstration was conducted by the RemoveDebris
mission (Forshaw et al., 2016). The main satellite was launched from the ISS, and
in turn deployed two 2U CubeSats to act as space debris simulators. Several novel
payloads were successfully tested on the CubeSats, namely a net and harpoon capture
system, as well as a drag sail to amplify the atmospheric friction, allowing for a
quicker de-orbiting. A model-based pose estimation algorithm based on an enhanced,
GPU-accelerated (graphics processing unit) version of GNFIR was run in-situ on
images captured by the chaser’s on-board camera of one of the targets during a slow,
controlled rotation lasting 210 s (Aglietti et al., 2020).

1.6 Thermal Imaging

The space environment must not be considered amiable towards vision-based nav-
igation systems. Elementary RV or RVD/B manoeuvres are capable of triggering
complex effects as seen by the on-board camera, such as shadowing or glare, by
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(a) Soyuz as viewed from the ISS (b) ISS as viewed from Soyuz

(c) Space Shuttle Challenger as seen
by the Shuttle Pallet Satellite during
STS-7

(d) ISS transit during eclipse

Figure 1.3: Diversity of illumination conditions during rendezvous (RV) and
rendezvous and docking or berthing (RVD/B).

changing the relative configuration between the chaser, the target, and the Sun. In
the case of the manoeuvre happening during an eclipse period of the orbit, direct
illumination from the latter is not available at all, and the only source of natural
brightness comes from Earth’s albedo. Specific materials required on artificial targets
for thermal control exacerbate these effects (Meseguer et al., 2014). One such example
is multi-layer insulation (MLI), a “thermal blanket” composed of multiple layers
highly reflecting shields with the goal of providing the spacecraft with radiative
insulation. Radiators, i.e. systems that reject heat from the system to outer space,
must also have a high solar reflectance to curb incoming heat. Furthermore, tumbling
targets in NCRV scenarios further aggravate the problem by changing the angle of
incidence of incoming light. Figure 1.3 exemplifies some of these dynamic effects as
imaged by on-board cameras on the visible wavelength (0.38–0.70 µm).

An alternative approach to image an object would be to do it in terms of its
emitted radiation rather than detecting what it reflects. All matter at a non-zero
absolute temperature emits radiation in the wavelength range 0.1–100 µm, but the
region in which that emission is concentrated moves towards longer wavelengths
as the temperature decreases (Meseguer et al., 2014). For the temperature range
of a spacecraft in orbit, and for many ground-based applications as well, this peak
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(a) 280 m (b) 70 m (c) 17 m

Figure 1.4: LIRIS-1 (Laser and Infra-Red Imaging Sensors) images of the Interna-
tional Space Station (ISS) at multiple distances (Cavrois et al., 2015). (Top Row)
Visible modality. (Bottom Row) Long-wavelength infrared (LWIR) modality.

corresponds to the long-wavelength infrared (LWIR) band (8–14 µm). Even though
thermal radiation refers to all emissions independently of the wavelength, in the
LWIR region of the spectrum specialised sensors can obtain a passive image of the
target bypassing the need for illumination, and for this reason it is colloquially known
as “thermal infrared”. Likewise, sensors that acquire images in this modality are
dubbed thermal cameras.

Thermal imagers have already been recognised as a means towards the enhance-
ment of vision-based RV suites. Figure 1.4 showcases sample images captured by
LIRIS-1 during an RVD/B sequence with the ISS in the visible and LWIR modalities,
where the latter exhibits significantly more constancy relative to the former. In
the image taken at 70 m distance, in particular, the centre portion of the target is
mostly obscured for the visible, but distinguishable in the LWIR. While the LIRIS-1
mission objective was to collect sensor data for posterior study, thermal imaging has
been used by Neptec’s Triangulation and Lidar Automated Rendezvous and Docking
(TriDAR) system on an RV of the Space Shuttle with the ISS for target detection
and LOS relative navigation (Ruel et al., 2012). Furthermore, the Raven experiment
(Strube et al., 2015, see § 1.4) is investigating the use of its model edge-tracking
algorithm for pose estimation on thermal imagery. Despite these initiatives, the use
of thermal cameras navigation in space is still at a relatively underdeveloped stage
and the potential of using it for 6-DOF estimation remains untrodden.
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1.7 Overview of the Thesis

This thesis was the product of an industrial collaboration with ESA and the Research
& Technology division of the Avionics and Power group for Thales Alenia Space
France (TAS-F).

1.7.1 Objective

Given the background established by this introductory chapter, the goal of the
thesis can now be defined. The main objective of this work is to design model- and
vision-based solutions capable of retrieving the 6-DOF pose of an object with respect
to a camera in the context of space NCRV sequences, with a focus on investigating
the potential of multiple imaging modalities, particularly the visible and the LWIR.
This camera would be mounted on the chaser vehicle, and by extension the proposed
methods allow the required localisation of the target to accomplish relative navigation.

Some assumptions are made regarding the task at hand. Firstly, this thesis
concentrates on the close-range RV problem, where the 6-DOF pose estimation
becomes relevant; in particular, the terminal subphase is tackled, with a relative
distance bounded at 100 m. The target itself is considered to be known, artificial,
but non-cooperative, meaning that it does not supply any equipment nor procedure
to aid in the task. A special focus is placed on the tumbling case, where the target
rotates uncontrollably. Furthermore, the target is assumed to be the only navigable
object in the FOV. Lastly, it is assumed that cameras are the only on-board sensor
available to estimate the relative state. The imaging system is monocular, or follows
a monocular configuration, meaning that either only one camera is used or they are
configured to share the same boresight.

Throughout this dissertation, the objective is further divided into a set of research
questions with the aim of answering them sequentially:

[RQ1] How do low-level image processing algorithms behave on images
acquired during a space rendezvous?

Feature extraction is normally the first operation performed on an image for machine
learning and pattern recognition applications. The past two decades have witnessed
an upsurge in the development of innovative feature detection, description, and
matching algorithms, particularly for keypoints, as the bedrock of vision-based pose
estimation algorithms for both model-based and model-free approaches. However,
these algorithms have been developed with ground-based applications in mind, or
at most drone-based ones, where the imaging conditions differ vastly from those
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experienced in orbit. As such, the performance and limitations, if any, of such IP
techniques must be clearly benchmarked before incorporating a navigation solution.

[RQ2] Can a contribution be made towards model-based spacecraft rela-
tive pose estimation in the visible wavelength?

On-orbit demonstrators such as GNFIR have blazed the trail for model-based NCRV
using images from cameras operating on the visible modality, albeit with limited
success. Vision-based navigation algorithms used in space generally still lag behind
in complexity with respect to those used on the ground. The potential for closing
this gap must be investigated while bearing in mind the budget limitations of a
spaceborne GNC system. Navigating complex targets under complex conditions
remains a potential research avenue.

[RQ3] Can the long-wavelength infrared modality improve vision-based
six degrees-of-freedom relative navigation? If so, how?

Thermal imaging has been targeted as a novel addition for new generation GNC
suites, but it is currently only used as a supporting input for visible imaging or other
RV sensors. Determining how LWIR features could be used explicitly to obtain a
6-DOF pose solution provides an open pathway towards innovation.

1.7.2 Outline and Contributions
The structure of the thesis along with each chapter’s contribution are presented as
follows:

Chapter 2 encompasses a summary of the required background concepts for
the current research, including the topics of image formation, frames of reference,
Lie groups, and artificial intelligence (AI) and machine learning (ML). A novel
multimodal dataset of a NCRV with Envisat, which will be used throughout the
thesis, is introduced along with the tools utilised for its generation.

Chapter 3 uses the dataset generation tools established in the previous chapter to
create a framework to benchmark keypoint detectors and descriptors for navigation.
The attained results are used to provide a first-of-its-kind analysis of the performance
of these algorithms on space NCRV trajectories, for both visible and LWIR modalities.

Chapter 4 employs the results obtained in the preceding chapter to derive a
relative navigation solution on the visible modality using combined point and edge
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features, demonstrating that 6-DOF pose estimation relative to a tumbling target is
possible using a small set of reference images (i.e. keyframes).

Chapter 5 proposes a method to address the problem of pose initialisation from
a single image of the target using global features. Furthermore, it improves the
algorithm introduced in Chapter 4 by introducing a Kalman filter that fuses the
pose estimates obtained by minimising the geometric constraints from local point
and edge correspondences. Both modules are parametrised using the formalism of
Lie groups which allows the automatic computation of the feature minimisation
process covariances to be interpreted as the filter measurement noise. The method is
validated on realistic simulations, as well as on laboratory data, and compared to
competitor methods.

Chapter 6 represents this dissertation’s contribution in the field of deep learning
for NCRV, in which a CNN architecture is reinforced with a recurrent neural network
(RNN) back-end to yield the first full deep recurrent convolutional neural network
(DRCNN) for spacecraft pose estimation. The resulting framework is used on
synthetic trajectories to compare the performance of the visible-only modality against
visible-thermal multimodal inputs. The capability of the network to generalise to
unseen eclipse trajectories is analysed. Moreover, the performance of the network
trained on limited data is assessed on laboratory data.

Chapter 7 recapitulates the work performed with a conclusion and extends rec-
ommendations towards future work.

1.7.3 Experimental Setup
Experimental validations of the solutions proposed in this thesis have been conducted
on real data custom-acquired for this purpose. Two different experimental setups
were created, in which NCRV sequences were simulated in the laboratory with distinct
tumbling targets.

1.7.3.1 Unmanned Autonomous Systems Laboratory

The Unmanned Autonomous Systems Laboratory (UASL) is Cranfield University’s
facility for testing autonomous ground and air vehicles. The lab features a 1:17
scaled mock-up of Envisat capable of one degree-of-freedom (DOF) rotation about
the horizontal axis at a constant rate of 5.73 deg s−1. The room has been fitted
with blackout curtains to simulate a deep space background, and a custom-built
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(a) Equipment configuration (b) Target mock-up

Figure 1.5: Validation setup of the Unmanned Autonomous Systems Laboratory
(UASL) at Cranfield University.

light-emitting diode (LED) illumination panel running at 900 W is used to simulate
direct sunlight acting on the target.

A visible camera is mounted on a platform which remains static for the data
acquisition. The camera is a Matrix Vision mvBlueFOX MLC200wC colour camera
with a 1/3 in format complementary metal-oxide semiconductor (CMOS) sensor
(Onsemi MT9V034) and a native resolution of 752 px × 480 px, fitted with a 2.97 mm
focal length Matrix Vision IRCB5M29740N lens.

The ground truth is obtained via manual registration of the first frame and
propagation of the state according to the target’s rotational mode. Since only short
data acquisition sequences are considered (maximum of three revolutions), the target
mechanism is not active long enough for any measurable drift to occur. Figure 1.5
illustrates the experimental setup. Table 1.3 summarises the camera’s physical
characteristics.

1.7.3.2 Autonomous Systems Laboratory

The Autonomous Systems Laboratory (ASL) is City, University of London’s facility
dedicated to the research activities of the Robotics, Autonomy and Machine Intelli-
gence group. A volume of approximately 5 m× 5 m× 3 m is available for the testing
of autonomous vehicle trajectories with ground truth provided by an OptiTrack
system.

OptiTrack is a motion capture system that can record 6-DOF pose data of rigid
and flexible bodies by detecting, tracking, and triangulating passive near infrared
markers placed on targets. The data can be saved or stream over a local network
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(a) Equipment configuration

(b) Target mock-up (c) Camera configuration

Figure 1.6: Validation setup of the Autonomous Systems Laboratory (ASL) at
City, University of London.

in real-time. The OptiTrack setup at City consists in six PrimeX 13 cameras with
a resolution of 1280 px × 1024 px running at a native framerate of 240 Hz, capable
of achieving positional errors less than ±0.20 mm and rotational errors less than
0.5 deg.

A 1:4 scale mock-up of the National Aeronautics and Space Administration
(NASA; United States) and National Centre for Space Studies (CNES; France)
satellite Jason-1 is considered for data acquisition. The mock-up rotates along its
vertical axis at a constant rate of 6 deg s−1. It is placed inside the capture volume
with blackout curtains behind it to simulate a deep space background. Illumination
is guaranteed by a 400 W directional floodlight. A visible camera and a thermal
camera are used for multimodal data acquisition:

• The Imaging Source DFK 22BUC03 colour camera with a 1/3 in format CMOS
sensor (Onsemi MT9V024) and a native resolution of 744 px × 480 px, fitted
with a Kowa LM4NCL 3.5 mm focal length lens;
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Table 1.3: Technical data – mvBlueFOX MLC200wC

Parameter Dimensions Value

Resolution px 752× 480
Frame rate Hz 90
Focal length mm 2.97
Horizontal FOV deg 74.4
Vertical FOV deg 51.7

Table 1.4: Technical data – DFK 22BUC03

Parameter Dimensions Value

Resolution px 744× 480
Frame rate Hz 76
Focal length mm 3.5
Horizontal FOV deg 65.6
Vertical FOV deg 44.7

• FLIR Vue Pro R uncooled VOx microbolometer, fixed lens 9 mm focal length,
640 px × 512 px native resolution.

Due to the lack of a beamsplitter setup, the cameras are mounted side to side with
a very small baseline to minimise image disparity. The rig is the placed on a mobile
platform that navigates the capture volume during data acquisition. The setup is
illustrated in Figure 1.6. Tables 1.4 and 1.5 summarise the physical characteristics
of the cameras.
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Table 1.5: Technical data – FLIR Vue Pro R

Parameter Dimensions Value

Resolution px 640× 512
Frame rate Hz 30
Focal length mm 9
Horizontal FOV deg 69
Vertical FOV deg 56
Spectral band µm 7.5–13.5

21



1. INTRODUCTION

1.7.4 Published and Submitted Manuscripts
Conferences

[C1] D. Rondao and N. Aouf (Jan. 2018). “Multi-View Monocular Pose Estimation
for Spacecraft Relative Navigation”. In: 2018 AIAA Guidance, Navigation,
and Control Conference. Kissimmee, FL: American Institute of Aeronautics
and Astronautics. doi: 10.2514/6.2018-2100

[C2] D. Rondao, N. Aouf, and O. Dubois-Matra (Oct. 2018). “Multispectral Image
Processing for Navigation Using Low Performance Computing”. In: 69th

International Astronautical Congress (IAC) 2018. Bremen, Germany: IAF.
url: https://dspace.lib.cranfield.ac.uk/handle/1826/13558

[C3] M. Hogan et al. (June 2021). “Using Convolutional Neural Networks for
Relative Pose Estimation of a Non-Cooperative Spacecraft with Thermal
Infrared Imagery”. In: 11th International ESA Conference on Guidance,
Navigation and Control Systems. Accepted manuscript. Virtual conference:
ESA

Journals

[J1] D. Rondao, N. Aouf, M. A. Richardson, and O. Dubois-Matra (July 2020).
“Benchmarking of local feature detectors and descriptors for multispectral
relative navigation in space”. In: Acta Astronautica 172, pp. 100–122. doi:
10.1016/j.actaastro.2020.03.049

[J2] D. Rondao, N. Aouf, M. A. Richardson, and V. Dubanchet (2021). “Robust
On-Manifold Optimization for Uncooperative Space Relative Navigation with
a Single Camera”. In: Journal of Guidance, Control, and Dynamics. Article
in advance, pp. 1–26. doi: 10.2514/1.G004794

[J3] D. Rondao, N. Aouf, and M. A. Richardson (2021). “ChiNet: Deep Recurrent
Convolutional Learning for Multimodal Spacecraft Pose Estimation”. In: IEEE
Transactions on Aerospace and Electronic Systems. Manuscript in submission

1.7.5 Awards and Competitions
[A1] ESA student sponsorship for the attendance of the 69th International Astro-

nautical Congress in Bremen, Germany, 2018.

[A2] Finalist (placed as one of four shortlisted candidates) of the Eric Beverley
Bursary competition organised by the Worshipful Company of Coachmakers
and Coach Harness Makers, 2018.

22

https://doi.org/10.2514/6.2018-2100
https://dspace.lib.cranfield.ac.uk/handle/1826/13558
https://doi.org/10.1016/j.actaastro.2020.03.049
https://doi.org/10.2514/1.G004794


1.7. OVERVIEW OF THE THESIS

[A3] Finalist (placed as one of three shortlisted candidates) of the 69th International
Astronautical Congress Interactive Presentation competition for Category C –
Technology, 2018.

[A4] European Union Erasmus+ grant to support industrial placement at Thales
Alenia Space, Cannes, France, 2019.

23



1. INTRODUCTION

24



CHAPTER 2

Theoretical Background and Tools

In this chapter, the fundamental concepts that serve as the basis for the
contributions made throughout this thesis are introduced. It begins with the
field of computer vision by reviewing how an image is formed in a camera,
in the visible and thermal infrared modalities, and both in terms of the
underlying physical processes and adopted mathematical models. Next, the
frames of reference encountered in a typical space rendezvous scenario are
described, followed by a characterisation of the six degree-of-freedom pose
space in the context of Lie groups. An in-depth delineation of artificial
intelligence is presented, covering classical machine learning techniques and
the recently-popularised field of deep learning, as well as their role in the
estimation of the relative pose from captured images. Lastly, the tools used
in the development of a synthetic rendezvous dataset are covered.

2.1 On Image Formation

Acamera is a device that captures a (usually) dynamic scene onto a static frame.
Typically, when considering a camera, one intuitively draws an equivalence

to a light-sensing mechanism, since images replicating the output of the human
eye, i.e. photographs, are commonplace in today’s society and cover a vast range of
applications. However, imaging is certainly not limited to this specific portion of the
electromagnetic spectrum as different methods exist to capture a scene beyond the
visible. This section briefly describes image formation mechanisms for cameras in
the visible wavelength and in the long-wavelength infrared (LWIR).
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2. THEORETICAL BACKGROUND AND TOOLS

2.1.1 Visible Wavelength

The term “camera” is nowadays actually a synecdoche for solid-state camera: one
that comprises arrays of photosensitive elements mounted on integrated circuits, in
opposition to the preceding standard of vacuum-tube cameras which supplied an
analogue voltage proportional to the intensity of incident light on a photoconductive
electrode. Solid-state cameras brought about multiple improvements, such as a
smaller form factor, additional robustness, and unlikelihood of damage from high
illumination intensities; they are broadly available as a commercial-off-the-shelf
(COTS) product at relatively inexpensive cost (Painter et al., 1994).

Such cameras include area image sensors that are engineered to function in a
two-step manner: conversion of incoming photons to electric charge at each pixel; and
charge transfer to an output amplifier following by conversion to an electric signal
(Tredwell, 1995). The former is performed by a silicon semiconductor image-sensing
element, which can be a photodiode, photocapacitor, or photoconductor, absorbing
the photon and resulting in the generation of an electron-hole pair. The latter is
achieved with a readout element, of which there are two main types in use: the
charge-coupled device (CCD) and the complementary metal-oxide semiconductor
(CMOS). The CCD operates by transferring charge packets from the vicinity of the
image-sensing element’s surface through physical storage areas towards the output
to be converted into a voltage. Anti-blooming circuits are incorporated to attenuate
the phenomenon of excess charge bleeding into the readout element or the substrate
and corrupting the image. CMOS sensors, on the other hand, integrate one or more
transistors into each pixel, allowing them to be individually read and amplified, and
to perform on-chip image processing. This makes it more compact than a CCD
sensor, which requires clocks and signal processing in separate hardware (Holst, 1995).
Despite the prevalence of CCDs for traditional applications due to their quality,
CMOS are the default choice nowadays for digital cameras (Szeliski, 2011).

2.1.2 Infrared Wavelengths

Despite imaging a scene’s emmited thermal radiation, infrared (IR) detector arrays
have a parallel structure with respect to their visible wavelength counterparts (Ko-
zlowski and Kosonocky, 1995). The front-end of an IR detector is the focal plane
array (FPA), which can be either scanning or staring-based.1 Scanning FPAs are
composed of linear one-dimensional arrays that scan the scene across the horizontal
field of view (FOV) by means of a rotating mirror to build a two-dimensional image

1Some sources consider an FPA to be exclusively synonymous with staring arrays.

26



2.1. ON IMAGE FORMATION

over time. Staring FPAs, on the other hand, encompass dedicated pixels at each
resolution element and are analogous to CCDs or CMOS in the visible wavelength.

Infrared detection is achieved on FPAs with either photon or thermal detec-
tors which convert the incoming photons into electrical signals. The former can
be photovoltaic or photoconductive elements and need to be actively cooled to
achieve moderate performance; within these, intrinsic detectors operate at higher
temperatures while dissipating less power when compared to extrinsic ones. Intrin-
sic detectors are typically mercury cadmium telluride-based (HgCdTe) or indium
antimony-based (InSb), whereas the most popular extrinsic photoconductive material
is doped silicon (Si). Thermal detectors, or bolometers, process incident radiation by
absorbing the energy and registering the consequent change in the temperature of
the system, and are typically uncooled. Resistive bolometers are composed of a thin
sheet of resistive material placed over a silicon readout, where incident IR radiation
changes the resistance of the detector element proportionally to the change in local
temperature. Capacitive bolometers are most commonly based on the pyroelectric
effect and thus use materials such as lithium tantalate (LiTaO) and barium strontium
titanate (BaSrTiO).

The above-mentioned technology is available for short-wavelength infrared (SWIR;
1–3 µm), medium-wavelength infrared (MWIR; 3–5 µm), and LWIR (8–14 µm). For
Earth-based IR imaging applications, the MWIR and LWIR bands are the most
used since atmospheric transmission is maximised therein; SWIR has limited use
but has been applied to astronomical settings, such as the Hubble Space Telescope
(HST). Whereas MWIR cameras provide a scene image with higher contrast, LWIR
cameras are favoured by higher resistance to atmospheric turbulence and reduced IR
emission rates originating from colder backgrounds; the latter is especially important
in military applications against high-temperature countermeasures such as flares, and
in spaceborne scenarios against solar glint reflected off insulating satellite materials.
For Earth-based applications, as the wavelength is increased in the electromagnetic
scale (up to a few microns), the influence of reflected solar radiation diminishes. This
is because the background radiation increases, thus decreasing the contrast, e.g. in
the visible wavelength, daytime contrast is higher than in LWIR as for the former
the source is light reflected off objects at ambient temperature generally under 290 K
and for the latter the background flux is equivalent to sunlight. On the other hand,
at nighttime, natural visible light is non-existent which brings the level of contrast
to zero, but in LWIR target vs. background metrics are comparable to daytime. In
space, LWIR images will generally witness a higher contrast variability, though, since
the scene is mainly comprised of the deep space background measuring a baseline
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Figure 2.1: Pinhole camera model geometry. The 3D point P is projected onto the
image plane Π as Z, i.e. the intersection of CP with Π.

temperature of 2.7 K.

2.1.3 Pinhole Camera Model

Regardless of the used device or spectral band considered, all cameras must be able
to cluster the incident light rays on the sensor in order to generate a good enough
signal to warrant image formation. This is achieved using a lens. For most computer
vision applications, complex optical models are usually avoidable and it is sufficient
to model the lens as an ideal pinhole at a certain distance, f , from the focal plane.
It is consequently known as the pinhole camera model (Szeliski, 2011), after the
“camera obscura” phenomenon named by Johannes Kepler in 1604 — but which had
been known since antiquity — in which a small hole on the wall of a darkened room
allows rays travelling from different points on the outside in, forming an image on
the wall opposite the hole (Dupré, 2008).

The pinhole camera model is described by its optical centre, or camera projection
centre, C, and the image plane, Π (see Figure 2.1). The perpendicular distance
from C to Π is termed the focal length, denoted by f ; the line intersecting C that
is perpendicular to Π is the optical, or principal, axis of the camera; and the plane
parallel to the image plane containing C is the focal, or principal, plane. The
centre of projection is the origin of the three-dimensional Cartesian coordinate
system, the camera reference frame, represented by the vectrix (Barfoot, 2017)

~
F c = [

~
c(1)

~
c(2)

~
c(3) ]>, of which

~
c(3) is the optical axis. The relationship between the

coordinate of a 3D point expressed in
~
F c and the coordinates of its projection in the
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image plane is characterised by a perspective projection.
Let P denote such a 3D point in the scene. The vector indicating the position of

P relative to the origin of
~
F c is denoted as

~
tcp. Its representation in coordinates of

~
F c is the 3× 1 column vector ctcp. With some loss of generality but no detriment to
the theory herein established, the term “point” shall also be used to refer directly to
the column vector representation xtxp of the position of any point P relative to the
origin of some reference frame

~
Fx in coordinates of

~
Fx.

Furthermore, let p′ = [ p′1 p′2 p′3 ]> := ctcp for brevity. Using perspective pro-
jection, points are projected onto the image plane by dividing them by the p′3
component:

p′3z̃
′ =

1 0 0 0
0 1 0 0
0 0 1 0

 p̃′, (2.1)

where z′ = [ z′1 z′2 ]> := Π′tΠ′z is the position of the projected point Z relative to
the centre of Π in image plane coordinates, and x̃ := [x 1 ]> is the conversion of a
vector x to homogeneous coordinates.

The transformation illustrated in Equation (2.1), however, does not take into
account certain nuances of image formation, in particular the pixel spacing in the
camera sensor. In effect, for computer vision applications, the coordinates of points in
the image plane must be mapped to the frame buffer,

~
FΠ. This can be achieved if the

intrinsic camera parameters are known, forming the intrinsic camera, or calibration,
matrix:

K =

f/s1 s c1

0 f/s2 c2

0 0 1

 , (2.2)

where s1, s2 are the spacing of the sensor pixels in the horizontal and vertical
directions, respectively, s is the skew between the sensor axes and the optical axis,
and c1, c2 are the coordinates in

~
FΠ of the intersection of Π with

~
c(3). A 3D point

can then be mapped directly to frame buffer coordinates as

λz̃ = K

1 0 0 0
0 1 0 0
0 0 1 0

 p̃′, (2.3)

where z := ΠtΠz and λ is the resulting scale factor. The intrinsic camera matrix
is obtained through a camera calibration process preceding the mission. However,
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Equation (2.3) is only valid for linear projection (i.e. straight lines in the scene
generate straight lines in the image), whereas most lenses have noticeable radial
distortion (i.e. curvature). It is therefore habitual to estimate a vector of radial
distortion parameters alongside K during camera calibration, then undistort the
image and work with a post-undistortionK. Throughout this thesis, linear projection
is assumed valid and K is assumed to be known; additional information on camera
calibration and radial distortion models can be found in Szeliski (2011, § 2.1.6, § 6.3).

Three-dimensional scene points, though, are not defined a priori in the camera
reference frame,

~
F c, but rather in terms of coordinates of the world frame,

~
Fw.

The two reference frames are related by a rotation, which can be represented by a
3× 3 rotation matrix Rcw, and by a 3× 1 translation vector ctcw. Regarding the
notation, the former should be read as “the rotation mapping a vector expressed
in
~
Fw coordinates to one expressed in

~
F c coordinates”, whereas the latter is “the

vector translating the origin of
~
F c to the origin of

~
Fw, expressed in coordinates of

~
F c”. In the context of estimating the pose of a rigid body, these quantities are also
typically called the attitude and position, respectively. Let p := wtwp represent a 3D
point P expressed in

~
Fw coordinates. Then, one has:

p̃′ =
[
Rcw

ctcw

0> 1

]
p̃

= Tcwp̃.

(2.4)

The matrix Tcw is the relative pose, having six degrees-of-freedom (DOF) equally
distributed by R and t, where the subscripts have been dropped for brevity. It is
also termed the extrinsic camera matrix (in contrast to K). Intrinsic and extrinsic
parameters are often combined in a single 3× 4 projection matrix:

P = KT1:3,1:4. (2.5)

The projection of a 3D point in the world reference frame to a pixel coordinate in
the frame buffer is therefore given by

λz̃ = P p̃. (2.6)

It is common to rewrite Equation (2.6) by defining a projective function π(z̃) := z̃1:2/z̃3

that applies the mapping from the 2D projective space P2 to R2 to a point expressed
in homogeneous coordinates, thus yielding the reprojection equation:

z = π (KT ⊕ p) . (2.7)
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Figure 2.2: The perspective-n-point (PnP) problem formulation. 3D points in the
scene Pi, known in

~
Fw coordinates as p(i), and their corresponding projection Zi,

known in
~
FΠ as z(i), define a ray passing through the optical centre C. From at

least three known correspondences, the distances di to C can be estimated, which is
equivalent to estimating their representation in

~
F c coordinates. The recovery of the

pose T then comes from aligning the two point clouds.

The ⊕ operator denotes pose-point composition and it is used to avoid limiting the
reprojection equation and similar formulations to the matrix representation of the
pose (i.e. writing T ⊕ p implicitly assumes the form of Eq. [2.4] and the necessary
division by the homogeneous scale factor). It shall also be used for pose-pose
composition (see § 2.3.1).

Remark 2.1: On the Projective Transform

Any two homogeneous points {z̃(i), z̃(j)} ∈ P2 that differ only by scale are
equivalent, i.e. z̃(i) = λz̃(i) = z̃(j) is true for any λ ∈ R \ {0}. This effectively
means that a point in the 2D image plane is treated as a ray in projective
space. When applying the transformation π(z̃) 7→ z, one has z ∈ R2, meaning
that the depth of a 3D point is lost after reprojection.

Indeed, inverting Equation (2.6) yields:

p = −R−1t+ λR−1K−1z̃, λ ∈ R, (2.8)

which shows that the resulting p is not a 3D point, but an optical ray that
passes through it since λ is unknown.
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2. THEORETICAL BACKGROUND AND TOOLS

2.1.4 Perspective-n-Point Problem

Given a set of n ≥ 3 correspondences {Z,Pw}, where Z = {z(1), . . . ,z(n)} is the set
of projected points in

~
FΠ and Pw = {p(1), . . . ,p(n)} is the set of scene points in

~
Fw, the pose T that best aligns them can be resolved. If the intrinsic matrix K is
known, the question consists in solving the perspective-n-point (PnP; Szeliski, 2011)
problem. Consider Figure 2.2, which represents the line segments connecting the
camera’s optical centre, C, to each of the world points in Pw, passing through each
image point in Z. Taking each world point pair yields a triangle 4PiCPj to which
the cosine law can be applied:

d2
i + d2

j − 2didj cos θij − d2
ij = 0, (2.9)

where di is the length of CPi and θij is the angle of 4PiCPj corresponding to C.
With three such equations, the scenario is reduced to the perspective-3-point (P3P)
problem, which solves for the three distances {di, dj, dk}. The result is equivalent to
the determination of the scene points in camera frame coordinates, and the remainder
of the problem consists then in estimating the alignment between the two point cloud
sets {Pc,Pw}: the centroids of each set are used to solve for the translation, whereas
the rotation is determined by solving the constrained Procrustes problem, for which
the singular value decomposition (SVD) is used (Schönemann, 1966). The latter is
equivalent to Wahba’s (1965) problem, which was originally posed in the context of
spacecraft attitude determination.

P3P yields four real solutions for T , so in practice a fourth point is often included
to disambiguate. The PnP problem has a closed-form solution for n = {3, 4, 5} points,
while for n < 3 it is not well-defined, and for n > 5 it can be solved iteratively (Tang
et al., 2008). A PnP solver is the staple of any computer vision programming library,
and over the penultimate decade algorithmic advances have brought on powerful
solutions with O(n) time complexity capable of dealing with many more than five
points, such as EPnP, which is based on a closed-form solution for four control
points, followed by an efficient Gauss-Newton optimisation step (Lepetit, Moreno-
Noguer, et al., 2008), or UPnP, which discards the calibrated camera assumption
(Moreno-Noguer et al., 2007).

2.1.5 Additional Considerations

The theory presented above is sufficient to model the relation between a three-
dimensional scene and a two-dimensional image of it. However, it is important to
highlight a few additional parameters that will affect image formation in a digital
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camera (Szeliski, 2011). After concentrating the incoming rays in the lens, the speed
of the shutter will dictate the amount of light that hits the sensor, i.e the exposure
time; an exposure too low may cause the image to be undesirably dark, whereas one
too high may lead to overexposure. Directly related to the intrinsic parameters s1

and s2 in Equation (2.2), the sensor pitch also affects the light sensitivity, since it
represents the physical space between two adjacent sensor cells (smaller pitch leads to
smaller area which leads to reduced photon exposure, but also to a larger resolution).
The values c1 and c2 are dependent on the sensor size, where a larger one means
added photo-sensitivity. The sensor signal amplification gain is controlled by the
ISO,2 which is defined in standardised units of {100, 200, 400, . . .}. A higher ISO
enhances an image acquired under low lighting conditions, which is especially useful
when the exposure cannot be further increased, but it also amplifies the sensor noise.
Other noise sources apart from the amount of incoming light and sensor gain include
fixed pattern noise (minute differences in the individual sensitivity of each sensor
element), shot noise (or photon noise, which depends on the particle nature of light),
and quantisation noise (arising from the analog-to-digital conversion bit resolution).
Image noise is arguably the parameter that most affects image processing (IP) tasks,
such as feature detection, feature matching, and, of course, denoising, and it is thus
commonplace to estimate the noise level; this is typically achieved with resort to
Gaussian models or, more rarely, Poisson noise models.

2.2 On Frames of Reference

This section defines the frames of reference necessary to describe the motion of
spacecraft in the context of a space rendezvous. A frame is defined by its origin (a 3D
point in space, A) and by a set of three orthogonal unit vectors (

~
a(1),

~
a(2),

~
a(3)). In this

thesis, Barfoot’s (2017) more compact vectrix representation
~
Fa = [

~
a(1)

~
a(2)

~
a(3) ]> is

commonly adopted. Furthermore, other terms such as “reference frame”, “coordinate
frame”, or simply “frame”, are treated as synonyms.

2.2.1 Spacecraft Body Frame

The body frame has its origin typically fixed at the center of mass of the spacecraft
and the axes rotate with it. The exact configuration depends on the spacecraft
manufacturer or on the flight dynamics engineers working on the mission. The body
frames are of critical importance in a close-range rendezvous. Figure 2.3 illustrates

2Not an acronym itself, but an eponym in reference to the International Organisation for
Standardisation, which defined levels of brightness analogous to film that were adopted by digital
camera manufacturers.
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FΠ (cf.

Fig. 2.1).

the geometric configuration between a chaser spacecraft body frame,
~
F b, and a target

object body frame,
~
F t, in the context of an on-board imager adopting the pinhole

camera model. The spacecraft relative pose estimation problem can be distilled in
terms of finding the rigid body transformation represented by the matrix Ttb. The
computer vision system, however, operates in terms of the camera frame,

~
F c. In

practice, the relative pose between the camera frame and the chaser body frame,
Tbc is fixed and can be determined in pre-mission calibration. Therefore, for the
scope of this thesis, it is assumed known and equal to Tbc = I, i.e. the chaser frame
coincides with the camera frame. Similarly, as the purpose of the work is relative pose
estimation in the context of a spacecraft rendezvous, the world frame

~
Fw (§ 2.1.3) is

often taken to be coincident with
~
F t unless otherwise stated.

Note that the centre of mass of the spacecraft, and hence the origin of
~
F b, may

shift during the mission due to changes in propellant levels (Fehse, 2003). This
shift is further assumed to be outside of the scope of this thesis and therefore

~
F b is

considered fixed to the spacecraft geometry.
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Figure 2.4: Definition of various orbital reference frames (adapted from Rondao,
2016).

2.2.2 Earth-Centred Inertial Frame
The Earth-centred inertial (ECI) frame of reference (denoted by

~
F i, see Figure 2.4) is

one defined to establish the spacecraft orbital equations of motion in a non-accelerated
or non-rotating frame (Markley and Crassidis, 2014). The

~
i(1) axis is aligned with

the vernal equinox direction, i.e. the intersection of Earth’s equatorial plane with
the plane of its orbit around the Sun, in the direction of the Sun’s position relative
to the Earth on the first day of spring. The

~
i(3) axis is aligned with Earth’s north

pole, whereas the
~
i(2) completes the right-handed triad. Since neither the polar axis

nor the vernal equinox direction are inertially fixed, the ECI axes are defined to be
mean orientations at a fixed epoch time (in particular, the standard epoch is J2000).

2.2.3 Earth-Centred/Earth Fixed Frame
For completeness, the Earth-centred/Earth-fixed (ECEF) frame of reference (denoted
by

~
Ff ) is described herein. Its origin is also fixed at the centre of Earth but, unlike

the ECI frame, it rotates with the planet: the
~
f (3) axis is aligned with the north pole,

~
f (1) points in the direction of Earth’s prime meridian, and

~
i(2) completes the right-

handed triad. The angular difference between
~
Ff and

~
F i is the angle θGMST (see

Figure 2.4), i.e. the Greenwich mean sidereal time (GMST; Markley and Crassidis,
2014). θGMST is defined in terms of the number of Julian centuries elapsed form the
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J2000 reference epoch, and the ECEF frame is useful to define physical properties
that affect the orbit of a satellite, such as the nonspherical mass distribution of Earth,
an effected often condensed into the term “J2”: a reference to the largest-weighing
term of the spherical harmonic expansion used to correct the planet’s gravitational
potential function; see (Rondao, 2016, Chap. 3) for additional details.

2.2.4 Local-Vertical/Local-Horizontal Frame

The local-vertical-local-horizontal (LVLH) frame of reference (denoted by
~
Fo), also

occasionally termed local orbital frame, is used to describe the orbital motion of
a body. The origin coincides with the centre of mass, the

~
o(3) axis points along

the nadir vector towards the centre of the Earth, the
~
o(2) axis is aligned with the

negative orbit normal, and the
~
o(1) axis completes the right-handed system. The

set {
~
o(1),−

~
o(2),

~
o(3)} is often referred to as the V-bar, H-bar, and R-bar approach

vectors, respectively.3

2.3 On Lie Groups

It is often useful to perform operations on poses, such as computing a combination,
a difference, or a representation change. Unlike a translation vector, though, a rigid
body transformation does not represent a vector space, meaning that the sum of two
poses is not a valid pose. Indeed, the matrix T is the homogeneous representation of
an element of the 3-dimensional special Euclidean group (R. M. Murray et al., 1994):

SE(3) :=
{
T =

[
R t

0 1

] ∣∣∣ R ∈ SO(3), t ∈ R3

}
⊂ R4×4. (2.10)

Analogously, the rotation matrix R is the homogeneous representation of an element
of the 3-dimensional special orthogonal group, SO(3). SE(3) is a 6-dimensional
smooth manifold with matrix multiplication as the group operation, meaning that
for {T (1),T (2)} ∈ SE(3), one has:

T (1)T (2) = T (3) ∈ SE(3). (2.11)

Furthermore, it is a non-abelian Lie group, meaning that chaining poses is possible
but order-dependant:

Tca = TcbTba. (2.12)

3Named after the variable symbols {v,h,r} commonly used to describe an orbit’s radius, angular
momentum, and velocity vectors, with which they are aligned.
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Remark 2.2: On Key Concepts

I

X

YG

TI(G)

explog

g

Figure 2.5: A matrix Lie group G and its tangent space at the identity, TI(G).
The exponential map exp(X) = Y maps an element of the latter to the former
(Eq. [2.13]). The inverse transform exists and is termed the logarithmic map.

This section makes use of concepts such as differential geometry and group
theory, which represent full mathematical domains on their own. A few key
concepts are summarised below, as opposed to diverging too much from the
context of relative pose estimation. For a broader consultation on the topic,
the reader is directed towards Stillwell (2008) and Hall (2015), which provide
an introduction to Lie groups without necessarily delving into manifold theory.
Additionally, Gallier (2011, Chap. 18) provides the basics of manifolds and Lie
groups, whereas Selig (2004) discusses Lie groups in the context of robotics.

A manifold is a space that is topologically Euclidean (i.e. Rn) on a local scope,
but which is not necessarily isomorphic to Rn on a global scale (an isomorphism
M∼= N between two structures means that there exists a mapping between
them that conserves relations among elements and that can be inverted). The
tangent space Tx(M) of an n-dimensional manifold M is an n-dimensional
vector space of tangent vectors to M at point x ∈ M. A group is a set
with a binary operation admitting the properties of associativity, inversion,
identity element, and closure. The general linear group over the real numbers,
GL(n,R), is the group under multiplication of all n × n invertible matrices
containing real entries, and is also a manifold embedded in Rn2 . A matrix Lie
group G is a closed subgroup of GL(n,R). The tangent space at the identity
of a matrix Lie group, TI(G) bears an algebraic structure — the Lie algebra
g — which provides a linearisation of G and conserves many of its properties
without significant information loss (see Figure 2.5).
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The Lie algebra is defined as g = {X ∈ M(n,R) | exp(tX) ∈ G, ∀ t ∈ R},
where M(n,R) is the set of all real n × n matrices, invertible or not, and is
closed under the Lie bracket [ • , • ] defined such that [A,B] = AB −BA for
all A,B ∈ M(n,R).

Nonetheless, it is possible, and useful, to characterise the tangent space at the
identity of both SO(3) and SE(3). The retraction mapping TI(G)→ G of any Lie
group G is the exponential map, and for matrix Lie groups it corresponds to matrix
exponentiation:

exp (X) =
∞∑
k=0

1
k!X

k, X ∈ Rn×n. (2.13)

Whereas the Lie algebra g can be thought of as a linearisation of G near the identity
element, the exponential map provides a “delinearisation” back onto G.

The ( • )∧ operator is used to map a vector φ ∈ R3 to the Lie algebra of SO(3):

( • )∧so(3) : R3 → so(3)

φ∧ :=

φ1

φ2

φ3


∧

7→

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 . (2.14)

This is occasionally found in the literature with the analogous representation ( • )×

since the mapping yields a 3 × 3 skew-symmetric matrix such that a× b = a×b.
The inverse mapping so(3)→ R3 is performed with the ( • )∨ operator. These two
operators are overloaded to achieve a mapping between R6 and the Lie algebra of
SE(3):

( • )∧se(3) : R6 → se(3)

ξ∧ :=
[
ρ

φ

]∧
7→

[
φ∧ ρ

0 0

]
ρ,φ ∈ R3.

(2.15)

For SO(3) and SE(3), Equation (2.13) has a known closed form expression (R. M.
Murray et al., 1994):

expSE(3) : se(3)→ SE(3)

ξ∧ 7→

[
expSO(3) (φ∧) N (φ)ρ

0 1

]
,

(2.16)
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with:

N (φ) := I3 + (1− cos ‖φ‖)φ∧/‖φ‖2 + (‖φ‖ − sin ‖φ‖)φ∧2/‖φ‖3. (2.17)

The map expSO(3) is given by the Rodrigues rotation formula:

expSO(3) : so(3)→ SO(3)

φ∧ 7→ I3 + sin ‖φ‖
‖φ‖

φ∧ + 1− cos ‖φ‖
‖φ‖2 (φ∧)2

.
(2.18)

The exponential map admits an inverse which is termed the logarithmic map:

logSE(3) : SE(3)→ se(3)

T 7→

[
logSO(3)(R) N−1t

0 0

]
,

(2.19)

logSO(3) : SO(3)→ so(3)

R 7→ θ

2 sin θ
(
R−R>

)
,

(2.20)

with 2 cos θ + 1 = Tr(R).

It is occasionally convenient to use the adjoint action of a Lie group on its Lie
algebra (Selig, 2004). For SE(3):

AdSE(3) : SE(3)→ R6×6

T 7→

[
R t∧R

0 R

]
.

(2.21)

Let u denote a generic element of SE(3). If T = T (u) is the homogeneous represen-
tation of the group element u, then then (ξ′)∧ = Tξ∧T−1 also yields an element of
se(3) and the relation can be written linearly in R6 as ξ′ = Ad(T )ξ. Furthermore,
the adjoint action of the Lie algebra on itself is:

adSE(3) : se(3)→ R6×6

ξ∧ 7→

[
φ∧ ρ∧

0 φ∧

]
,

(2.22)

such that the expression for the Lie bracket of se(3) can be written as [ξ(0), ξ(1)] :=
ξ(0)ξ(1) − ξ(1)ξ(0) = (ad[ξ(0)∧]ξ(1)∧)∧.
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2.3.1 Composition of SE(3) Elements

The ⊕ operator is used to denote the composition of two poses, regardless of their
representation:

uca = ucb ⊕ uba, (2.23)

where uba maps the pose from
~
Fa to

~
F b. The inverse operation is defined:

uca 	 uba = uca ⊕ u−1
ba = ucb, (2.24)

where u−1
ba maps the pose from

~
F b to

~
Fa. The ⊕,	 operators are overloaded to

designate pose-point composition:

bp = uba ⊕ ap, (2.25)
ap = bp	 uba. (2.26)

If a Lie group U is a manifold obtained through the semi-direct product of some
isomorphism of SO(3) and R3 (see § 2.3.2), then U is isomorphic to SE(3) as a
manifold, but not as a group (Gallier, 2011). The “box-plus” operator (Hertzberg,
2008) � : U × R6 → U is adopted to generalise a composition of a group element
u ∈ U representing a pose and an element ξ which is the compact representation in
R6 of ξ∧ ∈ se(3):

u′ = u� ξ, u, u′ ∈ U , U ∼= SE(3), (2.27)

which is equivalent, in homogeneous form, to:

T (u′) = exp (ξ∧)T (u), T (u′), T (u) ∈ SE(3). (2.28)

Likewise, one defines the inverse operation � : U × U → R6 that yields the compact
representation of an element of the Lie algebra.

2.3.2 Manifold Isomorphisms to SE(3)

It is also useful to see SE(3) as a semi-direct product of manifolds SO(3) oR3, as one
might be interested in working with isomorphic representations of SO(3), such as the
special unitary group SU(2) of unit quaternions, with the well-known isomorphism
(Markley and Crassidis, 2014):
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R (q) =
(
q2 − ‖e‖2) I3 − 2qe∧ + 2ee>, q ∈ SU(2), R ∈ SO(3), (2.29)

where e and q are the vector and scalar parts of the quaternion, respectively, which
takes the form:

q :=
[
e

q

]
, ‖q‖ = 1. (2.30)

The unit-norm constraint in Equation (2.30) must be included in order to be an
isomorphism to SO(3). Henceforth, whenever a quaternion is mentioned, it is implied
to be a quaternion of rotation without loss of generality. The map SU(2)→ SO(3)
is a 2-to-1 homomorphism, since {−q, q} represent the same attitude. It can also be
seen as the unit 3-sphere group S3, i.e. the points at distance 1 from the origin in
Rn+1 (Stillwell, 2008).

There are two diverging schools of thought on the definition of a quaternion for
attitude representation based on the group operation of SU(2). This thesis follows the
norm in spacecraft attitude determination literature, i.e. Shuster’s, or the “flipped”,
quaternion multiplication (Shuster, 1993):

q(0) ⊗ q(1) =
[
q(0)I3 − e(0)∧ e(0)

−e(0)> q(0)

]
q(1), (2.31)

such that R(q(0) ⊗ q(1)) = R(q(0))R(q(1)).
The quaternion has the lowest dimensionality possible for a globally non-singular

attitude representation. In some applications, however, it can be seen to take the form
of a three-dimensional rotation vector parametrisation, with the map SU(2)→ R3

given by (Diebel, 2006):

ϑ(q) = 2 arccos(q)
(1− q2) e, (2.32)

which is in turn related to the axis-angle representation by:

ϑ(α,n) = αn, α ∈ R, n ∈ S2. (2.33)

The rotation vector avoids the gimbal lock issues experienced when using Euler
angles, but it is not free of singularities of its own: if the rotation angle α is zero, the
axis n is not uniquely defined. Furthermore, at α = π both n and −n represent the
same rotation. Note that the map ϑ 7→ R is given by Rodrigues’ rotation formula
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(Eq. [2.18]). In practical terms, however, one typically has ‖ϑ‖ � ‖φ‖, meaning that
the addition of two rotation vectors does not constitute a rotation, and it should not
be confused with the exponential coordinates of SO(3).

2.4 On Artificial Intelligence
The notion of artificial intelligence (AI) is well-established amongst science, tech-
nology, engineering, and mathematics disciplines, but has recently gained notoriety
in the popular media despite being often used in loose ways to refer to somewhat
abstract concepts. Although historically several approaches to define AI have been
followed, arguably the most relatable is a human-centred one, aiming to create ma-
chines that will be able to perform the same tasks as humans do, ideally surpassing
them in performance. The epitome of this philosophy is the well-known Turing Test
(Turing, 1950), devised to determine an objective baseline for machine intelligence.
Today, the field has branched out in such a way that specific key areas may be
identified as necessary for a computer to pass off as intelligent (Russell and Norvig,
2013):

(1) Natural language processing to enable communication.

(2) Knowledge representation to store what it knows or learns.

(3) Automated reasoning to rely on the stored information to answer questions
and infer new information.

(4) Machine learning (ML) to adapt to novel situations and to recognise and
extrapolate patterns.

The reader is directed to Russell and Norvig (2013, Chap. 1) for alternative ap-
proaches to the definition of AI.

2.4.1 Machine Learning
ML is the key component responsible for automatically processing data inside an
AI. In today’s age of big data, i.e. the increased availability of massive datasets in
technology, information has never been so plentiful and available. As such, ML
techniques must adapt to maximise the potential of such large volumes of data.

ML can be divided into two central types: supervised learning and unsupervised
learning (Murphy, 2012). In supervised learning, the objective is to learn a mapping
from inputs to outputs given labelled pairs. On the other hand, unsupervised learning
has the goal to recognise noteworthy patterns in the input data, neither labels are
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given nor are outputs available for comparison. Naturally, this type of ML is far less
well-defined, and it is typical to observe more frequently problems posed in terms of
the former approach, although the latter is more applicable. For example, much of
the learning done by humans is performed simply by visual observation.

Regardless of the approach, computer vision is the machine-analogue for perceiving
objects, and alongside robotics and the four other above-mentioned points, it makes
up one of the six disciplines that compose most of AI (Russell and Norvig, 2013).
An ability to capture raw, rich information about the environment in a simple way,
allied to the fact that small, compact cameras can be bought as off-the-shelf items at
affordable prices, make computer vision a very frequent candidate method to acquire
input data for robotics applications.

Classical machine learning methods typically consist of two stages. The first
one, feature extraction, involves deriving informative and discriminative subsets
from the raw data, normally reducing the size of the information that needs to
be post-processed. In the context of relative pose estimation using a monocular
camera as the sensor, the relationship between scene and image points (§ 2.1.3,
§ 2.1.4) is suggestive of a need for mechanisms to extract meaningful points from said
image. The second stage involves selecting a model that will process the engineered
features to produce the desired output. Models are generated through optimisation
procedures, i.e. algorithms, that attempt to minimise its prediction error on the data.
For instance, after extracting feature points from the image of the scene, the model
dictates how they are matched to the three-dimensional world points. Naturally,
there are different approaches that can be taken, and in classical ML not only the
model but also the feature extractor must be carefully tailored to the problem at
hand. In Chapter 3, several state-of-the-art point feature detectors and descriptors
are benchmarked; these search an image for interest points in scale space and encode
them in a vector so that they can be afterwards matched to other features. This
matching process is natively constrained to operate in the two-dimensional domain,
and thus the remaining chapters are dedicated to the development of models that
extend it to the three-dimensional structure of the scene.

2.4.1.1 Optimisation

The algorithmic procedures to train a ML model are embodied in a cost, or loss
function, of which the value dictates the goodness of the fit for said model. Formally,
the loss is a real valued function f : Rn → R and the problem is posed as:
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minimise f(θ)

subject to θ ∈ Ω.
(2.34)

Here, θ are independent decision variables defining the model and Ω ⊂ Rn is the
constraint set. Optimisation therefore consists in finding the best values for θ within
Ω that result in the smallest f(θ). Real-world scenarios are consistently characterised
by nonlinear phenomena, in which case Equation (2.34) cannot be solved algebraically,
but rather must be solved iteratively. Indeed, the projection π(z̃) 7→ z in Equation
(2.7) — the basis for the pinhole camera model — is also nonlinear.

The optimisation procedure for a nonlinear function comes directly from applying
the first-order necessary condition for local minimisers in the form of Newton-
Raphson’s method (Chong and Zak, 2013):

θ(κ+1) = θ(κ) − ακF
(
θ(κ))−1∇f

(
θ(κ)) , (2.35)

where θ(κ) is the value of θ obtained at time-step τ = τκ, ∇f(θ) is the gradient of
θ, and F (θ) is the Hessian matrix of θ, i.e. Fi,j := ∂2f/∂θi∂θj. The factor ακ is an
added step size controlling the amount travelled in the descent direction. Newton’s
method (for short) is characterised by superior convergence properties when starting
out with an initial guess θ(0) that is close to the minimiser θ∗. However, there is no
guarantee of convergence towards decreasing values if F (θ) is not positive-definite.

Remark 2.3: Conditions for Local Minimisers
The conditions leading to Newton-Raphson’s method for optimisation are
summarised below (Chong and Zak, 2013).

The optimisation problem can be viewed as a decision problem that involves
finding the best vector θ∗ of the decision variables over all possible θ ∈ Ω such
that f(θ) is minimal, i.e. θ∗ is the minimiser. If θ∗ is a local minimiser, then
for any feasible direction s at θ∗, one has the first-order necessary condition:

s>∇f (θ∗) ≥ 0⇒ ∂f

∂s
(θ∗) ≥ 0, (2.36)

i.e. the rate of increase of f at θ∗ in any feasible direction s inside Ω is non-
negative. Taking the Taylor series expansion of f about a current point θ(κ)
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yields:

f(θ) ≈ f
(
θ(κ))+

(
θ − θ(κ))> g(κ)

+ 1
2
(
θ − θ(κ))> F (θ(κ)) (θ − θ(κ)) := q(θ), (2.37)

where g(κ) := ∇f(θ(κ)). If θ∗ is an interior point of Ω, then any s is feasible:

s>∇f (θ∗) ∧ −s>∇f (θ∗) ≥ 0⇒ s>∇f (θ∗) = 0⇒ ∇f (θ∗) = 0. (2.38)

Applying this condition to Equation (2.37) gives:

0 = ∇q(θ) = g(κ) + F
(
θ(κ)) (θ − θ(κ)) , (2.39)

which, after re-ordering, leads to Equation (2.35). The second-order necessary
condition for θ∗ to be a minimiser of f asserts:

s>F (θ∗) ≥ 0, (2.40)

i.e. F (θ∗) is positive semidefinite. Both of these conditions, however, are not
sufficient; the second order sufficient condition dictates that if ∇f (θ∗) = 0,
then

F (θ∗) > 0 (2.41)

is sufficient (albeit not necessary) for θ∗ to be a local minimiser of f . Further-
more, it is a strict local minimiser of f .

Newton’s method is commonly modified with the addition of a step size ακ
controlling the magnitude of descent along s such that

ακ = arg min
α≥0

f
(
θ(κ) − αF

(
θ(κ))−1

g(κ)
)
, (2.42)

in order to ensure that f(θ(κ+1))− f(θ(κ))< 0 for g(κ) 6= 0.

To combat this and robustify the optimisation procedure, other iterative methods
have been developed. The Levenberg-Marquardt (LM) method, in particular, is
a technique that ensures the search direction s(κ) = −F (θ(κ))−1g(κ) is a descent
direction by introducing low-magnitude noise along the diagonal of the Hessian
before inversion:
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θ(κ+1) = θ(κ) − ακ
(
F
(
θ(κ))+ µκI

)−1
g(κ), (2.43)

where µκ > 0 is a small, perturbative constant, and I is the identity matrix of
appropriate dimension. The idea behind the algorithm is that adding the term
µI increments the eigenvalues of F by µ. Therefore, for a sufficiently large µ, the
eigenvalues of F+µI are always positive and hence the new matrix is positive-definite.

Nonlinear Least Squares

As introduced in Section 2.1.4, in the face of flawless geometric correspondence
between world points and image points, the true relative camera pose satisfies the
relationship between the two (i.e. Eq. [2.7] is verified). However, the consideration of
real, physical scenarios implies that sensor data x are in fact subject to measurement
errors and, hence, non-ideal. Therefore, it becomes necessary to model such an error
in order to obtain an optimal estimate of the parameters θ.

Due to the ensuing tractability, it is commonplace to assume that such measure-
ment errors follow a Gaussian probability distribution (Hartley and Zisserman, 2004).
More specifically, the measurement error can be modelled as a zero-mean isotropic
Gaussian variable, independent on each feature xi constituting x:

xi = x̄i + ∆x, ∆x ∼ N
(
0, σ2) , (2.44)

where σ is the standard deviation and x̄i represents the i-th component of the true
measured quantity x̄. The probability density function (PDF) of the measurement
x is then:

p(x) =
(

1
2πσ2

)
exp

(
− 1

2σ2 (x− x̄)>(x− x̄)
)
. (2.45)

Obtaining a solution for θ can then be approached as a task minimising the distance
between the measurement, x, and the image of a function h(θ) 7→ x̄ that generates
the ideal data point based on the model parameters. This formulation gives meaning
to the “optimality” condition from the above-mentioned paragraph as it provides
the maximum likelihood estimate (MLE) of θ. The proof is almost direct, based on
the Gaussian error assumption; since the error on each measurement is considered
to be independent, the PDF of the full set X = {x(1), . . . ,x(m)} of noisy data is the
product of the PDF of each individual correspondence. Denoting the residual of the
i-th correspondence as the difference r(i) := x(i) − h(θ), one can write:
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p (X | θ) =
∏
i

(
1

2πσ2

)
exp

(
− 1

2σ2r
(i)>r(i)

)
. (2.46)

Taking the log-likelihood of Equation (2.46) yields:

log [p (X | θ)] = − 1
2σ2

∑
i

r(i)>r(i) + const. (2.47)

Therefore, maximising the log-likelihood is equivalent to the formulation:

min
∑
i

r(i)>r(i), (2.48)

and the MLE thus minimises the residual sum of squares. For this reason, the
problem is also termed one of nonlinear least squares (NLLS).

Concatenating the individual residuals into a single vector r> = [ r(1)> . . . r(m)> ] =
[ r(1)

1 . . . r
(1)
d . . . r

(m)
d ], where d is the dimensionality of x, Newton’s method be-

comes:

θ(κ+1) = θ(κ) −
(
J(θ)>J(θ) + S(θ)

)−1
J(θ)>r(θ), (2.49)

where the step size has been omitted. The matrix J(θ) is the Jacobian of r with
respect to θ:

J(θ) :=


∂r1

∂θ1
(θ) · · · ∂r1

∂θn
(θ)

... . . . ...
∂rmd
∂θ1

(θ) · · · ∂rmd
∂θn

(θ)

 , (2.50)

and the matrix S(θ) is defined in index notation as:

S(θ)j,k :=
md∑
i=1

ri(θ) ∂2ri
∂θj∂θk

(θ). (2.51)

Analogously, the LM formulation becomes:

θ(κ+1) = θ(κ) −
(
J(θ)>J(θ) + µκI

)−1
J(θ)>r(θ). (2.52)

The term µI can therefore be interpreted as an approximation to S(θ) avoiding the
computation of second-order derivatives.
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Remark 2.4: Derivation of Equation (2.49)

First, the cost function (see Eq. [2.34]) is rewritten as:

f(θ) = r>r. (2.53)

Then, the gradient of f can be computed in index notation:

(∇f(θ))j = ∂f

∂θj
(θ)

= 2
md∑
i=1

ri(θ)∂ri
∂θj

(θ)

⇒ ∇f(θ) = 2J(θ)>r(θ).

(2.54)

To develop an expression for the Hessian, index notation is again used with
the results from above:

F (θ)j,k = ∂2f

∂θj∂θk
(θ)

= 2
(

md∑
i=1

∂ri
∂θk

(θ) ∂ri
∂θk

(θ) +
md∑
i=1

ri(θ) ∂ri
∂θk

∂ri
∂θj

(θ)
)

⇒ F (θ) = 2
(
J(θ)>J(θ) + S(θ)

)
.

(2.55)

Substituting the derived quantities in Equation (2.35) finally leads to Equation
(2.49).

On-Manifold Optimisation

In most applications, it is prevalent to assume that the parameter vector is Euclidean
(i.e. θ ∈ Rn). In this case, the iterative NLLS update derived from Equation (2.48)
yields a correction that can be added to the previous estimate of θ to obtain the
next one. Taking the LM normal equations, for example:

∆θ = −
(
J(θ)>J(θ) + µκI

)−1
J(θ)>r(θ), (2.56)

θ(κ+1) = θ(κ) + ∆θ. (2.57)

Concretely, the corrective step of Equation (2.57) takes for granted that θ ∈ Ω (cf.
Eq. [2.34]), which is not necessarily true if the domain Ω is non-Euclidean. On the
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other hand, the theory developed in this chapter has so far highlighted the importance
of the tangent space as a local vector space approximation for the pose manifold
SE(3). Let Rx be a retraction at x ∈M that maps Tx(M)→M. In addition, let
0x be the 0-element of Tx(M) such that Rx(0x) = x, and φ a real-valued function
acting inM. Then, ifM is endowed with a Riemannian metric, one can write:

∇ (φ ◦Rx) (0x) = ∇φ(x), (2.58)

i.e. the retraction preserves gradients at x (Absil et al., 2008). This means that
optimisation problems based on Euclidean spaces relying on the computation of
gradients (or some approximation thereof), such as NLLS, can be generalised to
(nonlinear) manifolds via retraction mappings. Since any Lie group can be endowed
with a Riemannian metric (Gallier and Quaintance, 2019), Equation (2.58) applies
to the problem of pose estimation, and the exponential map could be used as the
bridge to locally convert an optimisation problem stated in terms of T to the more
tractable vector space of the corresponding Lie algebra element ξ∧ (or simply its
compact representation ξ ∈ R6), using the composition theory of Section 2.3.1, where
methods of Euclidean analysis can be used. This section therefore reformulates the
NLLS problem into the general case where Ω is a manifold (e.g. SE(3)).

Let u represent the object to be determined. Its domain is a manifold U ⊂ Rm

which defines the parameter space. Let x be the vector of measurements in Rn.
Consider also the general case where x is observed in the presence of noise with a
covariance matrix Σx (cf. Eq. [2.44]), and let x̄ be its true value, i.e. x = x̄+ ∆x. Let
h : Rm → Rn be a mapping such that, in the absence of noise, h(ū) = x̄. Varying the
value of ū traces out a manifold X ⊂ Rn defining the set of allowable measurements,
i.e. the measurement space. The objective is, given a measurement x, to find the
vector x̂ ∈ Rn lying on X that is closest to x (Figure 2.6).

Given the form of the multivariate Gaussian probability density function, under
the assumption of Gaussian noise with covariance matrix Σx, the MLE now minimises
the squared Mahalanobis distance (cf. Eq. [2.45]):

dΣ (x, h(û))2 := (x− h(û))>Σ−1
x (x− h(û)) . (2.59)

As prefaced in Section 2.3, it is assumed that, in the neighbourhood of x, the surface
of X is essentially planar and well approximated by the tangent space; concretely, this
approximation is reasonable within the order of magnitude of the measurement noise
variance (Hartley and Zisserman, 2004). Then, the maximum likelihood corrected
measurement x̂ is the foot of the perpendicular from x onto the tangent plane.
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U

Tū(U)
ū

û
N(ū,Σu)

Rm h−1 ◦ g Rn

h

X
x̄

x̂

Tx̄(X )

g
x

dΣ (x, h(û))

∼ N(x̄,Σx)

Figure 2.6: Geometric correction and parametric fitting on manifolds. The mea-
surement space manifold X in Rn is the image of the parameter space U through
h. Under assumptions of Gaussian noise, the optimal solution involves estimating a
corrected measurement x̂ from the noisy x as the perpendicular to the tangent space
of X at the true value x̄. This yields the maximum likelihood parameters û in Rm

which is a random variable with a local distribution on the tangent space of U at û.

The benefit of this approximation is that it allows the measurement residual error
to be modelled as a Gaussian distribution in the normal space of X , whereas the
measurement estimation error is a Gaussian distribution in the tangent space Tx̄(X ).
In the domain of computer vision, since image (or world) points are taken as measured
variables, typically one can safely write the estimation error as x̂− x̄. Analogously,
the parameter estimation error δu is, to a first approximation, constrained to be in
the tangent space Tū(U). In general terms, the assumption for this thesis shall be
that this local distribution approximation is valid for small errors whenever dealing
with the probability distribution of a variable constrained to a manifold (Kanatani,
1996). Let g : Rn → X map a point to the surface of the measurement space, as
defined in Equation (2.59). Assuming that h is invertible such that h−1 : X → Rm,
then the mapping h−1 ◦ g can be used to propagate the measurement noise covariance
Σx to obtain the covariance matrix of the MLE ū, which has the following form:

Σu = P Uū E
[
(u− ū)(u− ū)>

]
P Uū , (2.60)

where P Uū is the projection matrix onto Tū(U) and E[ • ] represents the expected
value. This implies that the null space of Σu coincides with the normal space of U
at ū.

Taking f(u) = dΣ(x, h(u))2, the general NLLS problem can be posed as:

50



2.4. ON ARTIFICIAL INTELLIGENCE

û = arg min
u∈U

f(u), (2.61)

where, in the particular case of Σ = σ2I and U being identical to the Euclidean
space, the update equations are given in Equation (2.57). Otherwise, one possible
solution is to nevertheless apply the correction via standard addition and then project
the result back to the parameter manifold U , which could introduce additional noise
in the system and drive the result away from the MLE û . An example of this would
be parametrising the attitude quaternion as a vector in R4, correcting it with vector
addition and then enforcing quaternion normalisation on the result (see § 2.3.2). A
more elegant alternative solution is to exploit the local Euclidean structure of U
around u(κ) at the current time-step τ = τκ to generate a new set of normal equations.
Taking U ∼= SE(3) and using the composition operator from Section 2.3.1, linearising
f(u) yields:

f(u) ≈ f
(
u(κ))+

(
u� u(κ))>∇f ∣∣∣

u	u(κ)=0
. (2.62)

Equation (2.62) thus motivates working with the pose estimation error δu = u� u(κ)

explicitly, which is an element of se(3). The generalised normal equations take the
form:

J(u)>ΣxJ(u)δu = −J(u)>Σxr(u), (2.63)

where r = h(u(κ))− x is the residual vector. The elementary building block for
on-manifold optimisation is the 12× 6 Jacobian of SE(3) (Blanco, 2019; Hertzberg,
2008). Taking ξ = δu, it has the form:

∂ exp(ξ∧)
∂ξ

∣∣∣∣
ξ=0

= ∂ vec [exp(ξ∧)]
∂ξ

∣∣∣∣
ξ=0

=


03×3 −e(1)∧

03×3 −e(2)∧

03×3 −e(3)∧

I3 03×3

 , (2.64)

where e(1)> = [ 1 0 0 ], e(2)> = [ 0 1 0 ], e(3)> = [ 0 0 1 ], and the vec( • ) operator
vertically stacks the column vectors of a matrix:

vec(A) :=


A:,1
...
A:,n

 , A ∈ Rn×m, vec(A) ∈ Rnm×1. (2.65)

The other advantage of Equation (2.63) is that the Jacobian matrix is computed
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Figure 2.7: Sequential feature matching in false-color composite overlay. The first
frame is shown as red and the second as cyan. Feature points are detected in both
frames and the matches are shown in yellow. (Left) 0 % outliers; all matches are
correct and the yellow lines represent accurately the motion of the target. (Centre)
25 % outliers; some features are matched incorrectly, but the overall motion can still
be discerned. (Right) 50 % outliers; the apparent trajectory becomes increasingly
garbled.

with respect to the basis of se(3):

J(u) :=
∂h
(
u(κ) � ξ

)
∂ξ

∣∣∣∣∣
ξ=0

(2.66)

This class of Jacobian matrices is solvable by resorting to Equation (2.64) and the
chain rule. At the end of each iteration, the updated parameter is obtained via the
exponential map (Eq. [2.27]), thus ensuring it naturally remains an element of U .

Robust Estimation

When the measurements are assumed to be equivariant with respect to scale, Equation
(2.61) falls back to the minimisation of the residual sum of squares, with the underlying
metric being the L2 distance, as the covariance matrix Σx vanishes. However, the
ordinary least squares problem is not robust to outliers, i.e. spurious data that may
contaminate the measurements. If measurements correspond to detected features,
outliers correspond in this case to gross 2D localisation errors in the image plane,
such that the true correspondences to the world points become compromised (cf.
Fig. 2.2). In the case that the world points are very accurately known (e.g. from
a model of the target), these errors can be assumed to be contained in the feature
matching process, and outliers correspond in effect to erroneous correspondences.
In the scope of this thesis, this can arise in a typical space rendezvous scenario, as
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imaged by a camera, from a solar panel which might resemble a repeating pattern
that yields many identically-looking features, or from intense illumination from the
Sun acting on the spacecraft, changing its local aspect with respect to a model image.
Consider Figure 2.7, where sequential frames of a simulated rendezvous sequence are
represented with a false-color overlay. Point feature matches are also represented
and connected by lines for several levels of outlier contamination. Whereas, from the
reader’s perspective, it may seem that for a 25 % outlier level (middle image) the
true trajectory can still be determined, in theory the presence of a single outlier is
enough to make the least squares estimate diverge (Rousseeuw and Leroy, 1987).

Robustness with respect to outliers can be achieved by generalizing Equation
(2.61) into an M-estimator:

û = arg min
u∈U

N∑
i=1

ρ
(ri
σ̂

)
, (2.67)

where ρ is a symmetric, positive-definite function with subquadratic growth, and σ̂2

is an estimate of the variance, or scale, of r. Solving Equation (2.67) implies

N∑
i=1

ψ
(ri
σ̂

) dri
du

1
σ̂

= 0, (2.68)

where ψ(x) := dρ(x)/ dx is defined as the influence function of the M-estimator.
This function measures the influence that a data point has on the estimation of the
parameter u. A robust M-estimator ρ(x) should meet two constraints: convexity in
x, and a bounded influence function (Z. Zhang, 1997). By acknowledging the latter
point, it becomes clear why the general least squares is not robust, since ρ(x) = x2/2
and therefore ψ(x) = x.

There are two possible approaches to define the normal equations for M-estimation
that avoid the computation of the Hessian (Holland and Welsch, 1977):4

J>Jδu = −J>ψ
(r
σ̂

)
σ̂, (2.69)

J>WJδu = −J>Wr, (2.70)

where W = diag(w(r1/σ̂), . . . , w(rn/σ̂)) and w(x) := ψ(x)/x. The first method was
developed by P. Huber (1977) and generalises the normal equations through the

4Holland and Welsch (1977) define a third formulation, which is based on Newton’s method, but
is difficult to implement since it requires the computation of dψ(x)/ dx and the Hessian risks being
negative definite.
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modification of the residuals via ψ and σ̂. Huber proposed a specific loss function,
the Huber M-estimator:

ρHub(x) =


x2

2 if |x| ≤ c,

c
(
|x| − c

2

)
otherwise,

(2.71)

where c is a tuning constant. Huber’s algorithm provides a way to jointly estimate
the scale σ alongside the parameter u with proven convergence properties. The
minimisation algorithm (e.g. LM) is simply appended with the procedure:

σ2
κ+1 = 1

(n− p)β

n∑
i

(
ri
σκ

)2

σ2
κ (2.72)

where β is a bias-correcting factor and p is the dimensionality of u. The second
method was developed by Beaton and Tukey (1974) and is commonly known as
iteratively reweighed least squares (IRLS), due to the inclusion of the weights matrix
W that assumes the role of Σx (cf. Eq. [2.63]). Tukey proposed an alternative robust
loss function:

ρTuk(x) =


c2

6

(
1−

(
1−

(x
c

)2
)3
)

if |x| ≤ c,

c2

6 otherwise,
(2.73)

Each robust loss function, ρHub(x) and ρTuk(x), can be compared regardless of
the formulation. The Huber M-estimator is considered to be adequate for almost
all situations, but does not eliminate completely the influence of large errors (Z.
Zhang, 1997). On the other hand, the Tukey M-estimator is non-convex, but is
a “hard redescender”, meaning that its influence function tends to zero quickly
so as to aggressively reject outliers, explaining its frequent use in computer vision
applications, where the outliers typically have small residual magnitudes (Stewart,
1999).

Remark 2.5: On Influence Functions
The advantage of M-estimators is perhaps better visualised by plotting their
response against the classical least squares. From Figure 2.8, it can be seen
that the Huber and Tukey functions behave like least squares in a local
neighbourhood around the origin. However, by looking at the influence function
ψ(x), it can be seen that when the residual grows too much away from zero,
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the derivative becomes constant. On the other hand, the influence function of
least squares grows continually away from zero, meaning that a single outlier
can have an unbounded influence on the estimation.

Figure 2.8: Comparison between the least squares cost function and the Huber
(Eq. [2.71]) and Tukey (Eq. [2.73]) M-estimators, and their respective influence
functions. The curves are plotted for cHub = 1.345 and cTuk = 4.6851, which
corresponds to 95 % asymptotic efficiency on the standard normal distribution
(Z. Zhang, 1997).

Remark 2.6: On RANSAC

One popular method for outlier rejection is Random Sample Consensus
(RANSAC; Fischler and Bolles, 1981), which works by iteratively sampling
random data points according to the minimum quantity needed to solve the
problem in closed form (i.e. four features in the case of PnP) and measuring the
quality of the derived model using the remaining points (e.g. the reprojection
error in pixels). The model providing the best fit is kept. By defining a
threshold for the allowable error in each point, a set of inliers can be defined.
These are then often used in a post-processing step based on iterative least
squares (LS) to refine the model.

RANSAC is non-deterministic and the probability of reducing the model error
increases with the number of allowed iterations. Conversely, M-estimation
combines the benefits of outlier rejection and optimality by iteratively finding
a cost function minimum. Therefore, when using M-estimation, RANSAC
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becomes unnecessary provided that a good initial estimate of the solution can
be assumed.

2.4.2 Deep Learning
Deep learning is a subset of ML in which a model learns directly from the raw data
as input, skipping the traditional custom feature extraction step. It is a term used
tantamount to artificial neural networks (ANNs), as the earliest iterations were
vaguely inspired by the biological brain’s functions (I. Goodfellow et al., 2016). The
basic ANN model is the multilayer perceptron (MLP; Bishop, 2006): to generate a
vector of outputs y = [ y1 . . . yK ]>, M linear combinations of the elements of the
input x = [ x1 . . . xD ] are established and the result is passed through a nonlinear
activation function h:

aj =
D∑
i=1

W
(1)
j,i xi + b

(1)
j , j = 1, . . . ,M (2.74)

zj = h(aj), (2.75)

where Wj,i, bj are learnable parameters of the network, i.e. weights and biases,5 and
the superscript (1) refers to the first layer of the MLP. For the simplest case in which
the ANN only has one hidden layer, the output activations are then directly obtained
from zj through another linear combination:

ak =
M∑
j=1

W
(2)
k,j zj + b

(2)
k , k = 1, . . . , K. (2.76)

Depending on the nature of the responses, the output activations can be passed
through another nonlinear activation unit, or taken as the identity yk = ak (see
Fig. 2.9). Due to the development of efficient optimisation techniques and advances
in consumer-grade computing capability, mainly regarding graphics processing units
(GPUs), models with a larger number of hidden layers (i.e. more depth) were capable
of being trained in reasonable timespans, prompting a resurgence of research in the
field occurring in the late 2000s, and hence popularising the use of “deep” learning,
or deep neural networks (DNNs), as a synonym for neural networks.

Like in classical ML, the training of a DNN is formulated in terms of minimising
a scalar loss function f(x,y,θ), where θ is the set of learnable parameters of the

5Note that Equation (2.74) is simply a linear regression, where bj corresponds to the y-intercept;
hence, the same ML terminology is conserved.
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Figure 2.9: Diagram for a two-layer artificial neural network (ANN). The open
nodes represent input (x), hidden (z), and output (y) variables, whereas weights
(W ) are represented by links connecting nodes. Biases (b) are also represented as
links which come from additional closed nodes (x0, z0). Cf. Equations (2.74) to (2.76).
Adapted from Bishop (2006).

network and the dependency on the inputs and outputs has been made explicit. As
a DNN is nonlinear by design (recall Eq. [2.75]), finding the optimal θ is achieved
through iterative methods by searching for critical points in f using the gradient
information; the simplest approach is taking a small step in θ-space in the direction
of the negative gradient, i.e. gradient descent (Bishop, 2006):

θ(κ+1) = θ(κ) − ακ∇θf, (2.77)

where ακ is the learning rate at time-step τ = τκ. The main advantage of Equation
(2.77) is that it does not require the computation of the Hessian (cf. Eq. [2.35]).

One forward pass through the DNN will yield the sufficient conditions to compute
the gradient of the loss with respect to the output, i.e. ∇yf . The gradient of f with
respect to the weights in each layer, necessary for the gradient descent optimisation
in Equation (2.77), can be found by successively chaining the local gradients of each
layer in the reverse direction until the desired layer is reached (backpropagation;
Rumelhart et al., 1985). If a unit j in one layer sends connections to k units in the
next layer, then the local gradient at j is given by:

∂f

∂aj
=
∑
k

∂f

∂ak

∂ak
∂aj

. (2.78)

Since the values of the gradient for the output units are known with a forward pass,
by recursive backpropagation the gradients for every hidden layer can be efficiently
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computed regardless of the DNN model.
As gradient-based parameter optimisation for large datasets is often prohibitive

from a memory standpoint, at each step a minibatch B = {x(1), . . . ,x(m)} of m
inputs can be sampled from the training data set and used instead. In this case,
the procedure becomes a stochastic gradient descent (SGD), and the gradient is
estimated as:

∇θf ≈
1
m

m∑
i=1
∇θf

(
x(i),y(i),θ

)
. (2.79)

An epoch passes once the SGD processes all minibatches comprising the entire dataset
of inputs. Typically, a DNN requires several epochs to train.

A linear output such as Equation (2.76) allows a neural network to learn regression
problems. However, much of the popularity exuded by deep learning today comes
from its potential performance for classification tasks (i.e. a discrete and generally
mutually exclusive output), namely in those where a selection is performed from a
large pool of choices. Whereas the sigmoid function (Figure 2.10, middle) is used
to model an output obeying a Bernoulli distribution (e.g. a coin toss, telling a dog
apart from a cat, or distinguishing between an operational and a failed satellite), the
softmax function, given by

softmax(a)k := exp(ak)∑
` exp(a`)

, (2.80)

is used to model categorical, or generalised Bernoulli, distributions (e.g. distinguishing
between several breeds of cat, or differentiating between multiple satellite models).

2.4.2.1 Activation Functions

The earliest ANNs generally made use of either sigmoid or hyperbolic tangents
(Figure 2.10, middle and left, resp.) as the activation function (I. Goodfellow et al.,
2016). The former saturate over most of their domain, being only sensitive to an
input near zero, which makes learning difficult through the phenomenon of vanishing
gradients during backpropagation. Despite their initial widespread use, they are
nowadays discouraged from being used, save in specific contexts (§ 2.4.2.5). The
latter is usually easier to train, but also relies on the activation inputs being small.

A common modern default choice for an activation function is the rectified linear
unit (ReLU), defined as:

relu(x) := max(0, x). (2.81)
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Figure 2.10: Typical artificial neural network (ANN) nonlinear activation functions.
Left: h(x) = tanh(x). Middle: h(x) = sigm(x). Right: h(x) = relu(x).

The function is characterised by outputting a value of zero when the input is negative,
and having a linear response otherwise (Figure 2.10, right), being for this reason
easy to optimise. Other advantages include sparse activation (approximately 50 %
of the hidden units will have a non-zero output for a randomly initialised ANN,
which is good to prevent overfitting and hence generalise well to new examples,
see § 2.4.2.6) and better gradient propagation when compared to the sigmoid and
hyperbolic tangent functions which saturate in both directions.

Remark 2.7: Dying ReLU Problem

Figure 2.11: Comparison between the rectified linear unit (ReLU) activation
function and the leaky ReLU activation function. The latter is plotted for two
distinct values of η, the parameter defining the slope of the response when
x < 0.

Despite its advantages, the ReLU activation can run into specific problems

59



2. THEORETICAL BACKGROUND AND TOOLS

during backpropagation, namely converging to states of inactivity regardless of
the input. This is known as the dying ReLU problem and can occur when the
network learns a large negative bias, driving the activations’ output to zero
(see Figure 2.10, right), effectively blocking the backward gradient flow. To
mitigate this, some generalisations of the ReLU function have been introduced.
The leaky ReLU (Maas et al., 2013), in particular, results in a small gradient
when the unit is not active:

leakyrelu(x, η) :=

x if x > 0,

ηx otherwise.
(2.82)

The function is illustrated in Figure 2.11. Other approaches exist, such as the
parametric ReLU, which treats η as a learnable parameter (He et al., 2015).

2.4.2.2 Optimisation

The beginning of Section 2.4.2 introduced SGD as the “default” learning method for
DNNs. Despite its simplicity, however, it usually leads to a slow learning process
(I. Goodfellow et al., 2016). To accelerate the optimisation, momentum can be
used to enhance SGD by introducing an additive variable taking the role of velocity
which defines the direction and speed of the motion through parametric space. The
parameter update approach becomes (cf. Eqs. [2.77] and [2.79]):

v(κ+1) = γv(κ) − α∇θ

(
1
m

m∑
i=1

f
(
x(i),y(i),θ

))
, (2.83)

θ(κ+1) = θ(κ) + v(κ+1). (2.84)

Equation (2.83) shows that SGD with momentum conserves the influence of past steps
by keeping a moving average of the previous gradients, where γ ∈ [0, 1[ determines
the rate of decay of their contributions. Momentum is useful for cases where the
Hessian matrix is poorly condition, e.g. the topology of the objective function is
highly varying in directions perpendicular to the path toward a minima, where
regular SGD would be highly affected by such.

Momentum does not, however, solve the problem of choosing the arguably most
important hyperparameter (i.e. the learning rate); in fact, it introduces an additional
one. An alternative approach consists in designing optimisation strategies which
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adapt the learning rates of model parameters. The RMSProp algorithm, unpublished
and introduced by Geoffrey Hinton in 2012 during his lectures,6 modifies the learning
rate of each individual parameter in θ by scaling them in inverse proportion to the
accumulated squared gradient of past steps. The accumulation process follows an
exponentially decaying average in order to neglect the influence from the distant past
to ensure fast convergence after finding a convex bowl (I. Goodfellow et al., 2016).
The update is given by:

g(κ+1)
acc = γg(κ)

acc + (1− γ)g(κ+1) � g(κ+1), (2.85)

∆θ(κ+1) = − α√
g

(κ+1)
acc + ε

� g(κ+1), (2.86)

θ(κ+1) = θ(κ) + ∆θ(κ+1), (2.87)

where the operator � denotes element-wise product, ε is a small constant to stabilise
division by potentially small numbers, the division and square root are applied
element-wise, and g denotes the gradient (continuing the notation introduced by
Eq. [2.37]).

The Adam7 algorithm (Kingma and J. Ba, 2014) goes one step further adds
another term, resembling momentum (cf. Eq. [2.83]) based on the non-squared
gradient. It also includes an estimation of the bias corrections to both gradient-
dependent terms. The full update is summarised as:

g
(κ+1)
1st = γ1g

(κ)
1st + (1− γ1)g(κ+1), (2.88)

g
(κ+1)
2nd = γ2g

(κ)
2nd + (1− γ2)g(κ+1) � g(κ+1), (2.89)

ĝ
(κ+1)
1st = g

(κ+1)
1st

1− γκ1
, (2.90)

ĝ
(κ+1)
2nd = g

(κ+1)
2nd

1− γκ2
, (2.91)

∆θ(κ+1) = −α ĝ1st√
ĝ2nd + ε

, (2.92)

where the divisions and square root are applied element-wise and the parameter
update is identical to Equation (2.87). Note that during the bias update steps the
decay parameters γ1 and γ2 are exponentiated by the current iteration value κ. In

6http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
7Not an acronym but a portmanteau of “adaptive” and “moment”.
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this way, Adam features added robustness to the choice of hyperparameters when
compared to SGD with momentum or RMSProp.

2.4.2.3 Convolutional Neural Networks

Classical ML strategies imply a pre-processing step to obtain the inputs to the
training algorithm, which are seldom raw, but are instead the product of some
feature detection and extraction algorithm that ultimately yields a set of observations
X = {x(1), . . . ,x(N)}. This step is of crucial importance as it must be ensured that
the chosen features are an adequate representation of the observed reality, and
often this adequacy can be highly dependent on the application. For instance, an
algorithm specialised in detecting interest points z(i) on the image plane that will
then be matched to solve a PnP problem (see § 2.1.4) or the on-manifold LM normal
equations (see Eq. [2.63]) must be robust to the extreme variability experienced in
on-orbit imaging due to sunlight hitting spacecraft’s materials. Additionally, there is
no guarantee that such algorithms, if developed for ground applications, will work
just as well for space operations.

The end-to-end training capability of DNNs, on the other hand, represents a vast
advantage for image-based applications as the optimal feature representation can be
optimally learned in an unsupervised fashion, a step which is painstakingly present
in classical ML. Autonomous vision-based spacecraft navigation, in particular, is one
key area with the potential of largely benefiting from DNN-based estimation methods.
Using such models would adequately capture the intrinsic nonlinearities between the
input sensor data and the 6-DOF pose estimates. The hidden layer model inherent
to the MLP depicted in Figure 2.9 has as a basis the linear combination between
every possible input and output; each layer is, as such, alternatively termed a fully
connected (FC) layer. Training an FC layer applied to an image input would be
prohibitively expensive due to the sheer number of pixels encompassed in even modest
resolutions by today’s standards (each pixel would be an input to the DNN). Instead,
convolutional neural networks (CNNs) are naturally tailored to process such image
inputs (LeCun et al., 1989).

A convolution operation slides a 2D kernel K (typically a relatively small, square
matrix, with odd dimensions) across a 2D input image Ī in to produce a 2D output,
Īout according to the operation:

Īout
i,j =

(
Ī in ∗K

)
i,j

=
∑
u

∑
v

Ī in
i+u,j+vKu,v, (2.93)
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Figure 2.12: Illustration of a two-dimensional convolution operation. A single
channel input image Ī in is convolved with a 2× 2 kernel K to produce a single
channel output image Īout. The example is restricted to the top left 3× 3 sub-matrix
of Ī in, where each input pixel has been abbreviated as {i1, . . . , i9}. Analogously, the
kernel elements are denoted by {k1, . . . , k4}. The colour of each element represents
the image intensity level, ranging from 0 (black) to 1 (white), which is also reflected
on the output image, or feature map. Adapted from I. Goodfellow et al. (2016).

where index notation has been used.8 Figure 2.12 demonstrates the convolution oper-
ation and the expected output. The advantage of convolutional layers is undoubtedly
the sparsity of learnable parameters, which dramatically decrease in number when
compared to an FC layer, lowering memory requirements. This is accompanied
inherently by a sharing trait, meaning that a single set of parameters is learned
regardless of the input location, since the kernel is slid over the whole image. This
has the same effect as looking for localised features in an image, where the resulting
output works takes the role of a feature map, representing the location and intensity of
the detected kernel features. Indeed, CNNs are frequently used as feature extraction
front-ends, where spatial information is sequentially reduced while additional feature
maps are generated. Here, the feature maps can be seen as images with multiple
channels (the first two dimensions corresponding to spatial ones) resulting from the

8Equation (2.93) actually denotes the operation of cross-correlation, which is related to convolu-
tion through the flipping of the kernel with respect to the input. However, most ML libraries do
implement convolution as such (I. Goodfellow et al., 2016), and hence this thesis shall follow the
same convention.
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convolution with an extension of the 2D kernel to a 4D tensor, K, with dimensions
given by:

dimK = Cin × F × F × Cout, (2.94)

where Cin is the number of input channels, Cout is the (desired) number of output
channels, and it has been assumed that the kernel is spatially square and of dimensions
F × F . Spatial reduction can be achieved by applying a pooling operation after the
convolution, where the feature map of spatial dimensions Win is subdivided into bins
to generate an output of dimension

Wout =
⌊
Win −Q

Q

⌋
+ 1, (2.95)

where Q is the pooling window size. Typical pooling operations take either the
maximum or average value of each bin. Modern DNNs, however, have mostly
abandoned pooling layers in favour of increasing the stride, S, of the convolution, i.e.
the number of skipped rows and columns of the input when sliding the kernel. In
this case, the spatial output size can be controlled according to the formula:

Wout = Win − F + 2P
S

+ 1, (2.96)

where P is the spatial padding applied to the input.

2.4.2.4 Transfer Learning

DNNs that translate into complex models may not only require large training times
but also vast training datasets. A possible approach towards mitigating these two
obstacles is transfer learning: the assumption that some factors responsible for
influencing the outcome of one task are relevant to the outcome of a different task.
Concretely, in the case of CNNs, it is expected that several of the learned kernels
converge towards detecting generalised visual features. In practice, it has been
verified experimentally in image classification tasks that the kernels of the first CNN
layers9 are optimised towards wide-domain, broad features such as corners and edges,
whereas the kernels of the last layers specialise in more problem-specific shapes (Zeiler
and Fergus, 2013). Thus, it is common to adopt a pre-existing CNN architecture as
the backbone of the model in which the early layers up to a point have been trained
on a large, general dataset. Then, the few last layers (or new added ones) can be
trained from the ground up using smaller domain-specific data.

9In the context of this thesis, the first layers of a DNN shall refer to the ones closest to the
input.
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A dataset commonly used in transfer learning for visual tasks is the ImageNet
dataset, which consists of more than 14 million images hand-annotated into bins of
more than 20 000 categories via crowd-sourcing. In the past decade, many advances
in CNN architecture design came from participations in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC),10 in which the objective is to build a ML
pipeline to correctly classify images into 1000 different classes of ImageNet. Notably,
the trampoline jump of DNNs into public view can be traced back to Krizhevsky
et al.’s (2012) performance on ILSVRC 2012, which it won with a top-5 classification
error of 15.3 %, more than almost 11 p.p. lower than the runner-up, using a variant
of LeCun et al.’s (1989) own CNN trained on a GPU, which massively accelerated
the process. Since then, new CNN designs have competed in the challenge each year,
resulting in successive dramatic improvements while showcasing new advances, such
as GoogLeNet (Szegedy, W. Liu, et al., 2015), which was characterised not only by
a very deep architecture, but also by parallel layers to detect features at different
scales; and ResNet (He et al., 2016), which introduced residual connections allowing
the breakthrough to even deeper architectures. Most of these state-of-the-art DNN
architectures have been open-sourced, with pre-trained ImageNet weights made
available, contributing to the rapid advancement of the field and the adoption of
such models as CNN front-ends.

2.4.2.5 Recurrent Neural Networks

The DNN architectures described so far include different, assumed unrelated, inputs
at each forward pass. A different type of architecture, the recurrent neural network
(RNN), explicitly attempts to model any existing temporal relationship between
inputs at each time-step, containing loops that allow information to be passed from
one to the next (see Figure 2.13). The basic RNN architecture learns an additional
set of parameters to weigh the contribution of a previous output (Rumelhart et al.,
1986):

a
(κ+1)
j =

D∑
i=1

W
(x)
j,i xi +

M∑
k=1

W
(z)
j,k z

(κ)
k , j = 1, . . . ,M (2.97)

z
(κ+1)
j = h

(
a

(κ+1)
j

)
, (2.98)

where the bias has been omitted for brevity (cf. Eq. [2.74]). This design is therefore
adequate to model information organised in lists or sequences, like image captioning,

10http://www.image-net.org/challenges/LSVRC.
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Figure 2.13: Diagram for a basic two-layer recurrent neural network (RNN). For
this type of network, the training of the parameters at time-step τ = τκ does not
depend only on the current input x(κ), but also on the previous output z(κ−1). The
unrolled representation of the network thus resembles a chain-like structure, and the
gradient computation involves a forward propagation pass moving along a temporal
axis. The network elements are represented with vector notation using single nodes.
Cf. Figure 2.13.

natural language processing, and time series data such as a space rendezvous trajec-
tory. The recurrent weights W (z) are obtained via backpropagation through time
(BPTT), which is similar to regular backpropagation to obtain W (x), except that
errors are summed at each time-step since the parameters are shared temporally. The
gradient with respect to the recurrent weights for the model in Figure 2.13 becomes
accordingly:

∂f

∂W (z) =
T−1∑
κ=1

κ∑
j=1

∂fκ
∂yκ

∂yκ
∂zκ

(
κ∏

k=j+1

∂zk
∂zk−1

)
∂zj

∂W (z) , (2.99)

where T is the total number of time-steps and fκ is the value of the cost function
computed at time τ = τκ.

The issue with traditional RNNs comes from the product
∏κ

k=j+1 ∂zk/∂zk−1 in
Equation (2.99) as successive matrix multiplications can lead to either vanishing or
exploding gradients, depending on the size of the gradient. In the former case, the
network eventually stops learning; in the latter, the model becomes unstable and
ends in numerical overflow. In practice, they also have problems in learning long-term
dependencies (I. Goodfellow et al., 2016). Different approaches have been proposed

66



2.4. ON ARTIFICIAL INTELLIGENCE

to modify the RNN and fix these issues, notably the long short-term memory (LSTM)
unit (Hochreiter and Schmidhuber, 1997), which features a gating system to control
a cell state (a form of “information motorway” that bypasses each unit save for some
minute interactions). LSTMs are explored in Chapter 6.

2.4.2.6 Regularisation

An implicit hyperparameter of DNNs is the number of its learnable parameters,
termed the capacity of the model. The larger the capacity, the better the potential
of the DNN to predict with lower error. However, too many parameters can lead
to overfitting, which occurs when the network actually stops learning and instead
memorises the training data, becoming unable to generalise to new, unseen test
data. For this reason, it is common during the training process to periodically
assessed the performance of the network on a validation set. A validation set is not
used for training itself, but simply to provide insight on the pipeline’s capability
for generalisation. In particular, when the validation error is much higher than
the training error, it could signify that the DNN is overfitting. Conversely, too
few parameters may lead to underfitting, characterised by both high training and
validation errors.

To combat overfitting, apart from reducing the number of parameters, early
stopping could be implemented, which consists in stopping the training process once
the validation error starts to increase away from the training error. Additionally,
regularisation procedures can be introduced, i.e. the addition of noise to the learning
process. Generally speaking, some form of regularisation should always be present
unless the training set contains a number of examples in the order of tens of millions
(I. Goodfellow et al., 2016). This subsection summarises a few popular regularisation
approaches for DNNs.

Weight Decay

Weight decay is one of the earliest forms of regularisation in machine learning, even
predating ANNs. It consists in adding a term to the loss function that is proportional
to each layer’s weights. A common type of weight decay is L2 regularisation, which
adds the squared sum of weights (typically, biases are ignored in weight decay). This
results in the following modification to the gradient of the i-th layer (I. Goodfellow
et al., 2016):

∇W fi
(
W (i),x,y

)
← λW (i) +∇W fi

(
W (i),x,y

)
, (2.100)

where λ is a hyperparameter typically chosen along a logarithmic scale, e.g. λ ∈
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{10−6, 10−5, . . . , 10−2}. Despite the long-standing history of weight decay in the
context of ML, for modern CNNs alternative strategies are typically employed
additionally or as a complete alternative.

Dropout

Dropout (Hinton et al., 2012) consists in randomly removing units from a network
by multiplying their output value by zero. Dropout attempts to emulate the ML
concept of bagging (i.e. training K different models for K different training data
subsets) for the case of very deep networks. For each minibatch step, a binary mask
is randomly sampled to apply to the hidden units of each layer with probability p.
This probability is fixed and treated as hyperparameter of each layer. Typical values
are p = 0.5 for FC layers and p ∈ [0.1, 0.2] for convolutional layers, placed before the
activation function.

Batch Normalisation

Batchnorm (Ioffe and Szegedy, 2015) normalises a layer’s inputs by calculating the
mean µB and variance σ2

B over each mini-batch m as:

a′(i) ← a(i) − µBm√
σ2
Bm + ε

, a(i) ⇐ x(i) ∈ Bm = {x(1), . . . ,x(M)}, (2.101)

where ε is a small numerically stabilising term. Furthermore, the outputs are modified
by a learnable scale and offset:

a′′(i) ← γBma
′(i) + βBm . (2.102)

Along the training procedure, the mean and variance of the full dataset is approxi-
mated by taking the moving average of each per-batch {µBm , σ

2
Bm}, which is then

used to normalise inputs at inference time. Batchnorm was originally devised to
improve DNN optimisation in general, but it introduces noise into the system that
can have a regularising effect.

Image Augmentation

Image augmentation is an effective regulariser that consists in simultaneously gener-
ating more (augmented) data and indirectly teaching a DNN which are the important
features to learn. In the case of CNNs, for instance, the performance of a classifier
could be improved simply by randomly rotating the input image in-plane, thus
improving the robustness towards rotation (e.g. a rotated satellite is still a satellite).
Image augmentation is typically performed online by defining a random probability
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for the application of some transformation to the input image before each training
iteration.

2.5 On Datasets

Datasets are a central piece in the evaluation of an algorithm. A dataset is not a
collection of separate, random information elements, but one of coherent ingredients
that accurately represent the reality in which the method aims to be validated
and tested. Better yet, an ideal dataset samples information directly from that
same reality, if the given circumstances do allow it. Well-structured datasets further
provide the possibility of programmatically assessing the performance of an algorithm
in comparison to others under the same conditions (benchmarking). With the recently
observed widespread adoption of machine learning techniques in both academia and
industry, particularly deep learning networks which feed directly on raw data as part
of the training procedure, the importance of accessing meaningful and ample datasets
is ever increasingly paramount. Furthermore, the data should ideally be labelled,
thus conferring on it the ground truth from which the algorithm can simultaneously
learn to classify or regress and be evaluated.

In the context of space operations, labelled relative pose estimation datasets are
scarce or non-existent. Real data from actual rendezvous missions are habitually the
product of development spanning many years and extensive funding, and hence are
held internally. Space agencies funded by taxpayers, on the other hand, typically do
release image sets acquired by the on-board scientific payload into the public domain,
but these are often sparse and unlabelled, not meant for six degrees-of-freedom
(6-DOF) pose estimation. Additionally, datasets must be acquired prior to the actual
mission as the whole guidance, navigation and control (GNC) subsystem is subject
to extensive testing campaigns before being deemed fit for flight. As such, research
efforts have turned towards the conception of synthetic datasets instead, i.e. images
generated by computer software that aim to recreate the conditions observed in
space. Generating a synthetic dataset involves a substantial initial investment in the
development of a realistic camera simulator engine that can accurately model not
only the imager’s physical properties but also the imaging conditions experienced
in space from the standpoint of shadows, planetary atmospheres, Sun and ambient
lighting, reflections, light glare, among others. Camera simulators must be capable
of faithfully replicating the positioning and relative motion of the celestial bodies in
the solar system, particularly the Sun and Earth. Other assets, such as spacecraft,
can be included through 3D computer-aided design (CAD) models which are capable
of emulating complex material properties and textures.
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2.5.1 Open-Source Datasets for Motion Estimation

The present section describes a number of publicly available computer vision datasets,
real and synthetic, with focus on motion estimation.

2.5.1.1 Autonomous Vehicles and Mobile Robotics

The KITTI dataset (Geiger et al., 2013) remarkably features six hours’ worth of
real traffic data recorded aboard a car driving around Karlsruhe, Germany. The
used sensor suite consists of 2 greyscale cameras, 2 red-green-blue (RGB) cameras,
1 rotating 3D laser scanner, and 1 inertial and Global Positioning System (GPS)
six-axis navigation system. Each driving sequence contains the raw data, object
annotations in terms of 3D bounding boxes and calibration files, placing the total
dataset size at 180 GB. The KITTI dataset has been used in an extensive collection
of applications such as visual odometry (VO; Boulekchour and Aouf, 2014), scene
segmentation (Wieszok et al., 2017), and sensor fusion (Courtois and Aouf, 2017).
With the recent growth in autonomous driving technology for road vehicles, car
manufacturers themselves such as Audi (Geyer et al., 2020) and Ford (Agarwal
et al., 2020) are also contributing towards open-access research by releasing their
own datasets. On the other hand, TU Munich’s Monocular Visual Odometry Dataset
(Engel, Usenko, et al., 2016) contains 50 real-world sequences amounting to over
100 min of hand-held video captured across different environments that span from
indoor spaces to wide outdoor scenes; the dataset enables the benchmarking of the
tracking accuracy of monocular VO and simultaneous localisation and mapping
(SLAM) methods. For further reading, Taketomi et al. (2017, §8) provide a synoptic
survey of datasets used for VO/SLAM.

2.5.1.2 Space Rendezvous

The first open-source image collection for spacecraft relative pose estimation was
the Spacecraft PosE Estimation Dataset (SPEED), which was used to benchmark
the entries of the 2019 European Space Agency (ESA) Satellite Pose Estimation
Challenge (SPEC; Kisantal et al., 2020). Overall, SPEED is a challenging dataset
based on images taken of the Mango spacecraft as viewed by Tango, both of which
flew in the Hyperspectral Precursor of the Application Mission (PRISMA); it is
composed of both synthetic and laboratory-acquired greyscale data divided into
train (SPEED/TRAIN, SPEED/REAL) and test (SPEED/TEST, SPEED/REAL-TEST) sets,
numbering 12 000, 5, 2998, and 300 images, respectively. Figure 2.14 displays some
sample images of the dataset, taken from the SPEED/TRAIN set. Contrary to the
train sets, the ground truth pose for the test ones used for the challenge is not made
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Figure 2.14: Characteristics of the Spacecraft PosE Estimation Dataset (SPEED;
Kisantal et al., 2020). (Left) Earth in the background. (Centre) Ambiguous shape.
(Right) Low lighting and noise, affecting segmentation.

publicly available, and the only way to acquire a performance metric is by submitting
the results on the SPEC website.11 At the time of this thesis’ writing, the website
featured a post-mortem version allowing the submission of results despite the ending
of the challenge.

Right after SPEC ended, Proença and Gao (2019), who achieved third place in
the competition, released their own Unreal Rendered Spacecraft On-Orbit (URSO)
dataset, featuring synthetic images of Earth-orbiting spacecraft using Unreal Engine
4. Three subsets — one with SpaceX’s Dragon and two with the Russian Soyuz — are
provided, each containing 5000 high-resolution RGB images.

2.5.2 Simulation of Multimodal Trajectories for Space Ren-
dezvous

The SPEED and URSO datasets do represent contributions in driving the task of
image-based spacecraft pose estimation towards the community and collaboration
facet of modern computer vision research. However, they are lacking in three distinct
fronts: 1) the data consist of images of the targets generated at random poses, when
spacecraft rendezvous is a continuous, time-correlated operation; 2) images are only
supplied for the sunlit portion of the orbit; and 3) data are only provided for the
visible modality.

In order to benchmark the algorithms developed in this thesis, a novel multimodal
image-based dataset for relative navigation which fulfils all three above-mentioned
points is developed. The generated images simulate a rendezvous approach with
Envisat, capturing realistic variations as expected from a real space scenario, i.e.
illumination, tumbling, and scale. The development of this dataset is the product of
a collaboration with ESA (Dubois-Matra, 2016), who have provided access to the
Astos Camera Simulator, a software capable of generating photo-realistic images
based on 3D graphics. For this reason, the developed images are dubbed the ASTOS

11https://kelvins.esa.int/satellite-pose-estimation-challenge.
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Figure 2.15: Characteristics of the ASTOS dataset. (Top Row) A continuous
sequence of red-green-blue (RGB) images in the visible wavelength of the target
Envisat as imaged by a chaser’s on-board camera. (Second Row) Earth contaminating
the background. (Middle Row) Imaging during eclipse periods. (Fourth Row) Relative
proximity changes. (Bottom Row) Imaging in long-wavelength infrared (LWIR).
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Figure 2.16: Envisat body reference frame.

dataset. Figure 2.15 illustrates some sample frames from the dataset. The following
subsections detail the characteristics, tools, and methodology followed for the creation
of the dataset.

2.5.2.1 Mission Scenario and Target Specifications

The ASTOS dataset simulates a rendezvous trajectory with Envisat (Louet and Bruzzi,
1999). Envisat is an Earth-observation satellite launched on 1st March 2002 by ESA
with the objective of enhancing Europe’s remote sensing capabilities from space and
being the successor of the European Remote Sensing 1 and 2 programmes launched
in the 1990s. It became non-functional in 9th May 2012.

Envisat is characterised by its large weight (over 8000 kg) and size; it is com-
posed of two main components: a bus measuring 2.750 m× 1.600 m× 10.020 m that
contains the instruments, and a solar array measuring 4.972 m× 0.01 m× 14.028 m.
The bus itself is subdivided into a service model which provides the satellite with
its basic functions (power, attitude and orbit control, communications, etc.), and a
payload module which is dedicated to housing the payloads and payload-dedicated
support systems. At the time of launch, Envisat was the largest free-flying object.
Currently, it poses a collision risk in low Earth orbit (LEO) and is the potential
target for the first active debris removal (ADR) mission to be carried out by ESA,
e.Deorbit (Biesbroek, Innocenti, et al., 2017).

Envisat Reference Frame Definition

Figure 2.16 depicts Envisat and a superposition of its body reference frame (Dubois-
Matra, 2016). It is a right-handed axis system with:

• The origin coincident with the service module’s centroid.

• The
~
t(1) axis aligned along the launch vehicle axis.
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Table 2.1: Envisat set of orbital elements at time τ = τ0 for the ASTOS dataset
generation.

Element Dimensions Symbol Value

Eccentricity −− e 7.6112× 10−4

Semimajor axis km a 7.1427× 103

Inclination deg i 98.2156
Right ascension of the ascending node deg Ω 343.0760
Argument of perigee deg $ 189.5264
True anomaly deg θ 3.0109

• The
~
t(2) axis aligned along the synthetic aperture radar (SAR).

• The
~
t(3) axis completing the right-handed triad.

When the satellite was still operational, the
~
t(1) axis was closely aligned to the orbit

normal, the negative
~
t(2) axis was closely aligned to Envisat’s velocity vector, and

the negative
~
t(3) axis was closely aligned to the downward local normal (nadir).

Envisat Orbit

The satellite’s orbit is derived from the two-line element (TLE) data corresponding
to its state on 30th October 2017, which corresponds to the beginning of the
collaboration to create the dataset. The TLEs were obtained from the publicly
accessible North American Aerospace Defense Command (NORAD) website12 and
converted to the orbital elements displayed in Table 2.1

Remark 2.8: Orbital Elements
The Cartesian position, r, and velocity, v, are convenient to use in compu-
tations, but do not necessarily provide an intuitive understanding of what
characterises an orbit (Wertz, 2001). Six parameters are required to fully
define the spacecraft’s three-dimensional position in orbit: two for the orbit
size and shape, two for the orientation of the orbital plane in space, one for the
orientation of the orbit within the plane, and one for the planar-constrained
displacement of the spacecraft. These are represented in Figure 2.17.

12http://www.celestrak.com/NORAD/elements.
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Figure 2.17: Classical orbital elements. The orbit is an ellipse with center C
with Earth at the focus F . The elements a, e, i, Ω,$, θ provide the physical
characterization of the orbit. Adapted from Rondao (2016).

The size and shape of a Keplerian orbit are defined by the semi-major axis,
a, and the eccentricity, e. The inclination, i, is the angle between the orbital
plane and a given reference plane (the equatorial plane for Earth-orbiting
satellites). The line of nodes is the intersection of the orbital and equatorial
planes and the ascending node designates the point on the line of nodes where
the orbit crosses the equatorial plane from the south to the north. The vector
γasc defines the position of the ascending node with respect to Earth’s centre
of mass. The second DOF to orient the orbital plane is defined by the right
ascension of the ascending node, Ω, which is the angle between γasc and the
vernal equinox.

The orientation of the orbit within the equatorial plane is specified through the
argument of perigee, $, which is the angle between γasc and the eccentricity
vector (vector defining the direction of perigee), e, measured in the direction
of the spacecraft’s motion.

Lastly, the true anomaly, θ, measures the angle between r and the direction
of perigee, e, in the direction of motion, and thus defines the position of the
spacecraft within the orbit.
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Table 2.2: The three rotation scenarios of the target Envisat considered in
the ASTOS dataset, defined in terms of the target body frame

~
F t and the target

local-vertical-local-horizontal (LVLH) reference frame
~
Fo (Dubois-Matra, 2016).

Scenario Spin axis in
~
F t Spin axis in

~
Fo Spin rate [deg s−1]

1 Aligned with the pos-
itive

~
t(2) axis

Aligned with the neg-
ative

~
o(2) (positive H-

bar) axis

3.5

2 Along a direction con-
tained in the

~
t(2)

~
t(3)

plane at 45 deg w.r.t.a
the positive

~
t(2) and

~
t(3) axes

Aligned with the neg-
ative

~
o(2) (positive H-

bar) axis

5

3 Aligned with the pos-
itive

~
t(3) axis

At an angle of 45 deg
w.r.t.a the negative

~
o(2) (positive H-bar)
axis and is fixed in an
inertial frame

5

a With respect to

H̄

V̄

R̄

~
ω

~
t(2)

~
t(1)

~
t(3)

(a) Scenario 1

H̄
~
ω
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~
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~
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~
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Figure 2.18: Schematic illustration of the three rotation scenarios of the target
Envisat considered in the ASTOS dataset. Entities are colour-coded. (Red) The target
local-vertical-local-horizontal (LVLH) reference frame

~
Fo. (Apricot) The target

body-fixed reference frame
~
F t. (Dark grey) The spin axis

~
ω =

~
ωot of

~
F t with respect

to
~
Fo.
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Envisat Rotational State Scenarios

Three different scenarios are considered for Envisat’s rotational state; these are
defined in Table 2.2 (Dubois-Matra, 2016). An illustration of these states is depicted
in Figure 2.18. A note is made relative to Scenario 3, in which the spin axis

~
ω =

~
ωot

in
~
Fo is configured at a 45 deg angle with H-bar but is simultaneously fixed in the

ECI frame
~
F i. Since Envisat’s orbit is approximately circular (e ≈ 0, see Table 2.1),

the inertial stabilisation of
~
ω draws out a cone when seen from the point of view of

~
Fo (see Figure 2.18c). In other words, the spin demonstrates an axial precession with
a period equal to the orbital period. Using the orbital parameters from Table 2.1
and Kepler’s third law (Wertz, 2001), this quantity can be calculated as:

Porb = 2π

√
a3

µEarth

≈ 1.67 hours,
(2.103)

where µEarth = 398 600.5 km3 s−2 is Earth’s gravitational constant (Boden, 1999).
This is equivalent to a precession rate of 3.59 deg min−1.

Active Debris Removal Mission Definition

The ADR phase considered for the purpose of the study is the rendezvous and forced
translation phase, defined as the segment where the chaser performs a rendezvous
with the target object, evaluates its attitude dynamics and centre of mass position
and if required performs a forced translation in order to reduce the relative motion
between chaser and target to levels adequate prior to the capture (Dubois-Matra,
2016).

In order to characterise this phase, three different chaser guidance profiles are
established in open-loop (Dubanchet, 2017):

(1) Forced translation along an axis of the target
~
Fo frame with cross-track

disturbances of 1 m amplitude. The trajectory begins at a relative distance
of 100 m and ends at a distance of 50 m. The axes considered are the target
V-bar and R-bar. The total trajectory length is 125 s.

(2) Observation from a hold point on an axis of the target
~
Fo frame. The relative

distance is constant and equal to 50 m. The axes considered are the target
V-bar and R-bar. The trajectory last for 3 full target rotations: 309 s for R1;
216 s for R2 and R3.

(3) Ellipse of inspection constrained to the V-bar/R-bar plane of the target
~
Fo
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frame. Both semi-major axes are equal to 50 m. The total trajectory length is
200 s.

Figure 2.19 illustrates the guidance profiles in terms of the resulting trajectory shapes,
and the position and velocity over time. A V-bar approach is exemplified in the case
of Profiles 1 and 2.

2.5.2.2 Synthetic Image Generation

Issue 1.4 (14th August 2014) of the Astos Camera Simulator13 was used to generate
the dataset. The 3D visible and thermal models of the targets are input as Wavefront
.obj and .mtl files, along with a text file containing the 6D pose of the chaser
and target at each time-step, specified either in the inertial or relative frames. The
simulator is also capable of automatically propagating the objects’ trajectories in
space given the initial orbital elements; however, these have been generated manually
for better control (see Fig. 2.19). A separate configuration file is also supplied,
specifying the Julian date for the start of the simulation, the frames of references
used, the camera parameters, and the graphical settings (reflections, light glare,
shadows, etc.). The frames are then rendered as imaged by the synthetic cameras
with the placement of Earth, Sun, and Moon defined from their true ephemeris and
the input date.

Object Modelling

The orbital states of both chaser and target, the camera parameters, and a 3D CAD
model of Envisat are used as inputs to the Astos Camera Simulator to generate the
dataset. The original textured model was obtained from the free astronomy software
Celestia14, a program which allows for the real-time 3D visualisation of space.

Visible Model The original Envisat model was heavily modified to guarantee
a realistic simulation in the visible spectrum. This included re-meshing the main
body of the spacecraft to emulate a “crumpled” effect for the multi-layer insulation
(MLI) in order to properly emulate the diffuse reflection of light, as well as adding
reflective properties to the solar panel; the differences between both models can be
seen in Figure 2.20. Additionally, an image of a laboratory mock-up of Envisat from
Cranfield University’s Unmanned Autonomous Systems Laboratory (UASL) is also
included for a qualitative comparison.

13http://www.astos.de.
14http://celestia.space.
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(a) Profile 1

(b) Profile 2

(c) Profile 3

Figure 2.19: Schematic illustration of the three guidance profiles of the chaser
rendezvous with the target Envisat considered in the ASTOS dataset. Quantities are
resolved in the target’s local-vertical-local-horizontal (LVLH) reference frame

~
Fo.

Profiles 1 and 2 are shown for the V-bar approach; an R-bar approach has also been
generated.
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(a) Original (b) Modified in simulator (c) Laboratory

Figure 2.20: Multimodal computer-aided design (CAD) models of Envisat for use
in the ASTOS dataset and qualitative comparison with laboratory data acquired from
the Unmanned Autonomous Systems Laboratory (UASL). (Top) Visible wavelength.
(Bottom) Long-wavelength infrared (LWIR). Laboratory thermal image reproduced
from Yılmaz (2018) with permission.

Thermal Model The creation of thermal spacecraft model involved a different
procedure. As part of Yılmaz’s (2018) doctoral project, a thermal testing campaign
was performed at ESA using a scaled-down replica of Envisat with surface coatings
of similar types to those used in the real spacecraft, from which the temperature
and emissivity of each component were obtained. Two steady-state profiles were
determined: one for the sunlit period of Envisat’s orbit, and another for the eclipsed
period; these profiles have been shared by the author for the purpose of generating
the synthetic dataset (Yılmaz, 2017).

The CAD model was then stripped of texture (see Fig. 2.20a) and the collected
data was incorporated as follows. First, the in-band radiance of each component was
calculated by integrating the spectral radiance, given by Planck’s law:
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Lc(λ, Tc, εc) = εc

∫ λ+δ

λ−δ

2hc2

(λ′)5
1

exp
(

hc

λ′kBTc

)
− 1

dλ′, (2.104)

where λ is the sampled wavelength; Tc, εc are the component’s temperature and
emissivity, respectively; kB is the Boltzmann constant; h is the Planck constant; c is
the speed of light in vacuum; and δ is a small neighbourhood around λ. The LWIR
band was sampled at λ = (8, 11 and 14) µm. Equation (2.104) can be integrated as a
series; see Widger and Woodall (1976) for details. Then, the computed radiances were
normalised to [0, 1] according to the modelled thermal camera’s scene temperature
range, yielding a 3-tuple analogous to the RGB values in the visible. Due to this
normalisation step, the obtained values become insensitive to the choice of δ. It was
found that for the given band and range of temperatures, the solution was stable for
any δ < 1 µm. Each 3-tuple was logged in an .mtl material file to accompany the
.obj mesh file as inputs to the camera simulator.

Finally, the spectral response coefficients {γλ1 , γλ2 , γλ3} of the camera for each of
the three sampled wavelengths are also added as inputs; the software then rendered
the single-channel thermal images with intensity equal to

Ic = γλ1L(λ1) + γλ2L(λ2) + γλ3L(λ3). (2.105)

The spectral response coefficients are obtained directly from the emulated thermal
camera’s datasheet.

The generation of synthetic thermal data according to the aforementioned process
entails some approximations, which are a reflection of the limitations of the software.
Concretely, a fixed thermal signature for each sequence and the assignment of a
solid colour to each component, instead of gradients, are assumed. Nonetheless, this
does not affect the validity of the generated dataset. The first approximation is
justified by the fact that the dataset considers short duration sequences in thermal
steady-state. The longest trajectory, for example, spans only approximately 5 min,
which represents only about 5.1 % of Envisat’s complete orbital period. The second
approximation is upheld based on the relatively large distances between chaser and
target. Figure 2.20 also features a synthetic image rendered by the Astos Camera
Simulator on the LWIR alongside a real thermal image of the mock-up as captured by
a thermal infrared camera in the laboratory. Despite the different thermal signatures,
it can be seen that the representation of the target in both images is comparable.
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Table 2.3: Technical data – mvBlueFOX-MLC 202b

Parameter Dimensions Value

Resolution px 1280× 960
Frame rate Hz 10
Focal length mm 5
Sensor width mm 4.8
Sensor height mm 3.6

Table 2.4: Technical data – FLIR Tau2

Parameter Dimensions Value

Resolution px 1280× 1024
Frame rate Hz 10
Focal length mm 13
Sensor width mm 10.875
Sensor height mm 8.7
Spectral band µm 8–14
Scene range °C −40–160
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Camera Modelling

Two cameras were reproduced within the Astos Camera Simulator software: 1) one
operating on the visible wavelength (0.39–0.70 µm), based on the mvBlueFOX-MLC
202b15 camera, and 2) one operating on the LWIR wavelength (8–14 µm) based on
the FLIR Tau216 camera with a scene temperature range from −40 °C to 160 °C.

Tables 2.3 and 2.4 summarise the properties of the emulated visible and LWIR
cameras, respectively. The choices were motivated by the fact that both have a
similar FOV. A frame rate of 10 Hz was fixed for both.

Dataset Key

In order to generate the complete dataset, the multiple guidance profiles and rotational
scenarios are combined, along with the LVLH approach vector, illumination condition,
and imaging modality. A total of 56 trajectories were synthesised. Figures (2.21) to
(2.23) illustrate the key arrays for each of the trajectories.

15https://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html.
16https://www.flir.co.uk/products/tau-2.
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Figure 2.21: Key for the generated trajectories of the ASTOS dataset for chaser Guidance Profile 1. Consult Figure 2.19 for an
illustration of the considered profiles. “Rotation” refers to the given target rotational state scenario (Fig. 2.18). “Hot” refers to a
sunlit trajectory. “Cold” refers to an eclipsed trajectory.
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Figure 2.22: Key for the generated trajectories of the ASTOS dataset for chaser Guidance Profile 2. Consult Figure 2.19 for an
illustration of the considered profiles. “Rotation” refers to the given target rotational state scenario (Fig. 2.18). “Hot” refers to a
sunlit trajectory. “Cold” refers to an eclipsed trajectory.
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Figure 2.23: Key for the generated trajectories of the ASTOS dataset for chaser Guidance Profile 3. Consult Figure 2.19 for an
illustration of the considered profiles. “Rotation” refers to the given target rotational state scenario (Fig. 2.18). “Hot” refers to a
sunlit trajectory. “Cold” refers to an eclipsed trajectory.
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CHAPTER 3

Benchmarking of Detectors and Descriptors for
Navigation

This chapter establishes a framework for the evaluation of low-level image
processing algorithms prior to the inclusion in high-level relative navigation
algorithms for space rendezvous. Twelve state-of-the-art point feature de-
tectors and descriptors are analysed in terms of common metrics from the
classical computer vision literature. A low resolution derivative of the ASTOS

dataset that maintains the depiction of expected image transformations (il-
lumination, rotation, and scale) while allowing a straightforward ground
truth definition is introduced. Furthermore, each method’s implementation
is assessed on a embedded platform with reduced computing capabilities.

3.1 Motivation

The increasing number of space objects orbiting Earth is a jeopardising factor
for current and future missions. The large proportion of bodies classified as

debris, which has now been estimated at more than 83 % (Andrenucci et al., 2011),
not only leads to hardship in mitigation from the point of view of detection and
avoidance, but also in terms of proliferation. Large, defunct spacecraft in low Earth
orbit (LEO) such as Envisat represent de facto ticking time bombs waiting for an
inexorable collision guaranteed to catalyse the problem. The existence of such bodies
justifies the implementation of swift and efficient remissive plans of action such as
active debris removal (ADR).

The e.Deorbit mission is set out to be the first ADR mission to be carried out
by the European Space Agency (ESA), demonstrating the removal of a large object
from its current orbit and performing a controlled re-entry into the atmosphere.
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As one of the few ESA-owned debris in LEO, Envisat is a possible target for the
mission (Biesbroek, Innocenti, et al., 2017). The mission is part of ESA’s Clean
Space Initiative, which is focused on outlining the required technology for this
domain, including advanced image processing (IP) for the relative navigation aspect
of the rendezvous operations. A smaller scale in-orbit demonstration mission using
CubeSats to test IP algorithms, e.Inspector, has been proposed to visually inspect
Envisat for the determination of its tumbling rate and axis. This data would then
be used for validation purposes in e.Deorbit (Biesbroek, Wolahan, et al., 2017).

Using low-power-low-cost camera-based systems, two-dimensional features of the
target image can be identified and extracted to yield a relative navigation solution
(Chap. 2). As the space environment may prove hostile to solutions in the visible
wavelength due to illumination, approaches to ADR in other spectra have been
proposed, such as the long-wavelength infrared (LWIR), or thermal infrared (Yılmaz,
Aouf, Checa, et al., 2017). Although studies comparing the general performance of
IP algorithms in the visible and in LWIR are present separately in the literature,
benchmarks performed in a space non-cooperative rendezvous (NCRV) context are
scarce. Furthermore, to the best of the author’s knowledge, no LWIR IP comparisons
for NCRV were found to exist. Therefore, the purpose of this chapter is to benchmark
the performance of IP techniques adjusted towards multimodal camera setups that
could be inserted in ADR missions using affordable, low performance computing.

Remark 3.1: Associated Publications
This chapter is based partly on the following published work:

[C2] D. Rondao, N. Aouf, and O. Dubois-Matra (Oct. 2018). “Multispectral
Image Processing for Navigation Using Low Performance Computing”. In:
69th International Astronautical Congress (IAC) 2018. Bremen, Germany:
IAF. url: https://dspace.lib.cranfield.ac.uk/handle/1826/
13558

[J1] D. Rondao, N. Aouf, M. A. Richardson, and O. Dubois-Matra (July
2020). “Benchmarking of local feature detectors and descriptors for
multispectral relative navigation in space”. In: Acta Astronautica 172,
pp. 100–122. doi: 10.1016/j.actaastro.2020.03.049
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3.2. RELATED WORK

3.2 Related Work
The evaluation of feature detectors goes back to before the turn of the century, when
interest points were reduced to any point in an image for which the signal changed
two-dimensionally, encompassing the traditional “L-corners”, “T-junctions”, and
“Y-junctions”; a small image patch (the template) around the detected corner would
then be extracted and matched for in the target image using correlation (Schmid
et al., 2000). By then, however, there was not yet a clear consensus on how a proper
evaluation framework should be set up. In fact, some authors resorted to subjective
visual inspection methods to evaluate the quality of detection (e.g. López et al.,
1999).

A few years later, with the advent of algorithms capable of detecting invariant
features, such as Scale Invariant Feature Transform (SIFT; Lowe, 2004), criteria such
as repeatability and matching scores became commonplace in evaluative frameworks.
These algorithms would automatically extract a support region around the feature
and encode it into a numerical descriptor, allowing it to be matched without searching
the whole image. Arguably, the most well-known examples in the computer vision
literature are the studies by Mikolajczyk, Tuytelaars, et al. (2005) on detectors and
Mikolajczyk and Schmid (2005) on descriptors. This change in paradigm potentiated
new developments in visual simultaneous localisation and mapping (VSLAM); hence,
the contemporary studies included benchmarks regarding transformations that one
would expect to experience in that context, such as scale, rotation, illumination,
among others (Gil et al., 2009).

With the onset of binary descriptors, the focus of study began to include the
computational advantage these and others presented in the face of the more tra-
ditional, already established, algorithms. One such notable study is the one by
Miksik and Mikolajczyk (2012), which highlights the speed of Features from Accel-
erated Segment Test (FAST; Rosten and Drummond, 2006) for detection, and of
Binary Robust Invariant Scalable Keypoints (BRISK; Leutenegger et al., 2011) and
Oriented FAST and Rotated BRIEF (ORB; Rublee et al., 2011) for detection and
description, in the face of the classical difference of Gaussians (DoG)/SIFT and Fast-
Hessian/Speeded-Up Robust Features (SURF; Bay et al., 2006). However, like their
preceding studies, the authors evaluate the methods on fixed, sparse image sequences,
each one benchmarking a different transform (e.g. the VGG Oxford dataset1), rather
than application-specific data. There have been some publications focused on the
latter, such as visual tracking for unmanned aerial vehicles (UAVs; Cowan et al.,
2016) and grid map matching (Blanco et al., 2010); regarding space NCRV, the

1http://www.robots.ox.ac.uk/~vgg/research/affine/.
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NCRV

Visible LWIR

Chapter
3

Figure 3.1: The domain of the present chapter. While literature exists on one or
the intersection of two domains represented by each circle, this study introduces a
connection between all three.

only reference in the literature found during the present survey was the study by
Takeishi et al. (2015) on the benchmarking of the aforementioned IP algorithms for
automatic landmark tracking on the Itokawa asteroid in the context of the Hayabusa
mission. In it, the authors analyse their performance on a tumbling target navigation
dataset in the visible wavelength, where they found that the algorithms suffer from
low recalls in terms of corresponding interest regions when the angle of the asteroid
shifts more than 20 deg and that the matching precision scores decline sharply after
10 deg.

Studies in the LWIR are certainly fewer in number, but they have been the object
of recent study. Ricaurte et al. (2014) evaluate the behaviour of classic descriptors in a
cross-modality outdoor dataset, finding that many of the algorithms are actually more
robust to changes in rotation and scaling in the LWIR than in the visible. Johansson
et al. (2016), and more recently Mouats et al. (2018), highlight the importance
of experimenting with different combinations of detectors and descriptors in the
LWIR, as these often outperformed the native setups. Yılmaz (2018) investigates the
performance of feature detectors on thermal images of specific spacecraft materials,
but lacks an analysis in the context of video sequences and NCRV.

In contrast, the analysis presented in this chapter intends to fill the gap in the
literature by benchmarking local point feature detectors and descriptors for space
NCRV, and ADR in particular, in both the visible and LWIR wavelengths (Figure 3.1).
More specifically, the performance of the Harris, GFTT, DoG, Fast-Hessian, FAST,
and CenSurE detectors and of the SIFT, SURF, LIOP, ORB, BRISK, and FREAK
descriptors is assessed under the same lens as the seminal work done in the pure
computer vision domain such as Mikolajczyk and Schmid’s (2005). The analysis is
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conducted not just in terms of the algorithm’s errors, distinctiveness, and robustness
to changes in viewing conditions, but also in terms of their computational efficiency;
the latter is carried out via processor-in-the-loop (PIL) simulations with an embedded
board that parallels the expected power for an on-board computer.2 The study is
tailored to the domain of this thesis as the methods are evaluated on a branch of the
ASTOS dataset. This smaller series, ASTOS-B, features a lower image resolution for
on-board processing and a different rendezvous approach. The latter preserves the
characteristics of NCRV but permits the computation of the two-dimensional feature
morphing that occurs from frame to frame, making the computation of the ground
truth possible.

3.3 Methodology

Each ADR application, or more generally rendezvous (RV) mission, using imaging
systems must consider performance figures to assess the viability of the IP algorithms
used. Feature detectors search an image for locations that are probable to match
well in other images, and feature descriptors convert each region around the detected
keypoint locations into a condensed vector that can be matched against other
descriptors (Szeliski, 2011). First, the theoretical background for these algorithms is
provided in Sections 3.3.1 and 3.3.2 for detectors and descriptors, respectively. Then,
the figures of merit used in the assessment framework are defined in Section 3.3.3.

3.3.1 Feature Detectors

The analysed detectors can be classified into two groups. The first group consists
of corner detectors, i.e. algorithms that extract points defined as the intersection
of two edges. Conversely, the second group considers blob detectors, which extract
points taking into account a supporting neighbouring region. This class of algorithms
attempts to tackle many of the drawbacks of simple corner detectors, such as
invariance to scale changes. The Laplacian of Gaussian (LoG) operator is often utilised
to this end as the resulting function is sensitive to corners and edges (Lindeberg,
1994). However, the LoG involves the computation of second-order derivatives which
are both sensitive to noise and computationally expensive.

2For the purposes of this chapter, these are defined as the major microprocessors used, or to be
used, in most European space applications. See https://www.esa.int/Enabling_Support/Space_
Engineering_Technology/Onboard_Computers_and_Data_Handling/Microprocessors for addi-
tional details.
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3.3.1.1 Harris Corner Detector

Harris and Stephens (1988) assembled their historically influential computer vision
algorithm from the mathematical formalisation of Moravec’s (1980) work through
the minimisation of the auto-correlation function that compares an image patch
against itself shifted for small increments:

E(u) =
∑
i

w
(
x(i)) [I (x(i) + u

)
− I

(
x(i))]2 , (3.1)

where I is the intensity of the greyscale image, x = [ x y ]> is the pixel position
vector in I, u = [ u v ]> is the displacement vector, and w(x) is a weighting function.
For small variations in position u = ∆u, it is shown that Equation (3.1) can be
written using a Taylor series approximation as

E(∆u) ≈ ∆u>A∆u, (3.2)

where A is the auto-correlation matrix defined as:

A = w(x) ∗
[
I2
x IxIy

IxIy I2
y

]
, (3.3)

with “∗” representing the convolution operator and Ix := ∂I/∂x, Iy := ∂I/∂y evalu-
ated at x. The matrix A contains the information on how stable the auto-correlation
function is at a given point. Consider the eigenvalues of A, the pair (λ1, λ2). If both
eigenvalues are small, that translates into an approximately constant intensity profile
within a window. A small and a large eigenvalue are equivalent to a unidirectional
texture pattern, i.e. the surface of E(∆u) is flat along that direction. If the two
eigenvalues are sufficiently large, it corresponds to a minimum in E(∆u) and to a
corner or other pattern that can be tracked reliably. Harris and Stephens (1988)
propose a corner response function given by:

R = det(A)− kTr(A)2 = λ1λ2 − k(λ1 + λ2)2, (3.4)

where k is an empirical constant. The region is then considered a corner based
whether the size of the response R is greater than a given threshold.

3.3.1.2 Good Features To Track

J. Shi and Tomasi (1994) attempt to further improve Harris and Stephens’s (1988)
work by proposing a different measure to determine what are Good Features To
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Track (GFTT). Since the larger uncertainty component in the location of a matching
patch is in the direction corresponding to the smallest eigenvalue, the proposed
corner response function is merely dependent on it:

R = min(λ1, λ2). (3.5)

3.3.1.3 Difference of Gaussians

Although invariant to rotation, corner detectors such as Harris and GFTT employ a
fixed window size which makes interest point detection sensitive to scale changes.
In his Scale Invariant Feature Transform (SIFT) algorithm, Lowe (2004) makes use
of scale-space filtering to tackle this issue. A difference of Gaussians (DoG) is used
to approximate the LoG; it is obtained by computing the difference between two
Gaussian blurs of the same image with different standard deviations separated by
a constant factor, i.e. σ and kσ. Successive blurrings are performed until the last
layer is transformed with a value of twice the initial σ. Once a complete octave
is processed, this layer is down-sampled by a factor of 2, marking the start of the
following octave. Once all the DoG are found, the resulting structure is searched
for extrema in space (x) and scale (σ): each sample point is compared to its eight
neighbours in the current image and nine neighbours in the scale (Figure 3.2). It is
selected as a potential feature if it is either larger or smaller than all of them.

As a further refinement, each potential feature is subjected to a rejection process
based on a contrast threshold value. Additionally, in order to reject edges, a process
similar to the Harris corner detector is employed by computing the 2× 2 Hessian
matrix Hessx,σ(D) of the difference image D at the location and scale of the interest
point

Hess
x,σ

(D) =
[
Dxx(x, σ) Dxy(x, σ)
Dyx(x, σ) Dyy(x, σ)

]
, (3.6)

and submitting its ratio of principal curvatures to an edge threshold. The quantities
Dxx(x, σ) := ∂2D(x, σ)/∂2x, etc. are estimated by taking differences of neighbouring
sample points.

3.3.1.4 Fast-Hessian

The Fast-Hessian detector was introduced as part of the Speeded-Up Robust Features
(SURF) algorithm (Bay et al., 2006), which aimed to provide a computationally faster
version of SIFT. The Fast-Hessian detector makes use of a further approximation of
the LoG by using box filters, which can be evaluated swiftly independently of size
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Figure 3.2: The difference of Gaussians (DoG) pyramid structure. Adjacent Gaus-
sian images are subtracted to produce the DoG images, each octave is characterised
by downsampling the previous one by a factor of 2. Features are selected in the DoG
images by comparing a candidate point (purple) to its neighbours (orange) in scale
and space.

using integral images. The box filters are used to compute approximations to the
derivatives Dxx, etc. For instance, 9× 9 box filters are approximations for Gaussian
second order derivatives with σ = 1.2. These approximations are consequently used
to produce an estimation of the determinant of the Hessian, which is used as a
threshold for candidate features.

3.3.1.5 Features from Accelerated Segment Test

The Features from Accelerated Segment Test (FAST) algorithm (Rosten and Drum-
mond, 2006) was developed with the purpose of creating a high-speed feature detector
for real-time applications, such as VSLAM. FAST first selects a pixel x(i) in the
image as an interest point candidate. A circle of 16 pixels around x(i) and a threshold
t are defined. If there exists a set of n contiguous pixels in the circle which are
all brighter than I(x(i)) + t or all darker than I(x(i))− t, then x(i) is classified as
a corner. The detection process is robustified through an offline machine learning
stage, where a decision tree is built from alternative training images that is used in
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deciding which pixels should be assessed first on the test images in order to exclude
a large number of non-corners, hence improving detection speed. The algorithm also
makes use of non-maximal suppression to avoid detecting multiple features adjacent
to one another. Bearing a greater resemblance to corner detectors rather than blob
detectors, FAST is not natively scale- or rotation-invariant.

3.3.1.6 Centre Surround Extrema

For SIFT and SURF, responses are not computed at all pixels for larger scales. At
each successive octave, the sub-sampling is increased, so the accuracy of features at
larger scales is sacrificed. One solution to tackle this problem in scale-space filtering
is to approximate the LoG using bi-level centre-surround filters, as proposed for the
Centre Surround Extrema (CenSurE) algorithm (Agrawal et al., 2008). This allows
for the achievement of full spatial resolution at every scale.

Bi-level filters multiply the image intensity value by either −1 or 1. The circular
bi-level filter is shown to be the most faithful to the LoG, but the hardest to compute.
Other filter shapes can be computed briskly with integral images, with decreasing
cost from octagon to hexagon to box filter. After computing the filter responses,
candidate features are subjected to a non-maximal suppression over the scale space
in a 3× 3× 3 neighbourhood. Lastly, the Harris measure from Equation (3.3) at the
particular scale is used to filter out edge-like responses.

3.3.2 Feature Descriptors

The research pursued throughout this chapter features three floating point type, or
distribution-based, descriptors and three binary type descriptors. Distribution-based
descriptors are called as such since they encode (in a floating point vector) how
certain elements of the support region to the feature point are distributed around
it. The second type of considered local feature descriptor differs from the previous
one in the sense that, instead of using a floating point vector representation, each
descriptor consists of a binary string. For each feature point, a binary descriptor
typically samples sets of pixel pairs {x(1),x(2)}i, i ≤ n from the support patch, and
performs a simple intensity comparison, where the result is 1 if I(x(1)) < I(x(2)),
and 0 otherwise, generating an n-dimensional bit string. Using binary descriptors is
advantageous as feature matching can be performed with resort to the Hamming
distance, which provides better runtime performance with respect to the Euclidean
distance test used with floating point descriptors.
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Table 3.1: Characteristics of feature descriptors (adapted from Miksik and Mikola-
jczyk, 2012).

Descriptor Data Type # Elements Size [bytes] Matching Type

SIFT Floating point 128 512 Euclidean norm
SURF Floating point 64 256 Euclidean norm
LIOP Floating point 144 576 Euclidean norm
ORB Binary 256 32 Hamming norm
BRISK Binary 512 64 Hamming norm
FREAK Binary 512 64 Hamming norm

Remark 3.2: Hamming Distance

The Hamming distance between two strings of equal length is defined as the
minimum number of substitutions required to convert one into the other. It is
an operation with an efficient implementation, consisting only of applying the
exclusive-OR (XOR) logical operator followed by a bit count.

Consider, for example, two binary vectors: s(1) = [ 1 0 1 1 1 0 1 ]> and
s(2) = [ 1 0 0 1 0 0 1 ]>. The XOR operation yields:

1 0 1 1 1 0 1 s(1)

1 0 0 1 0 0 1 s(2)

0 0 1 0 1 0 0 XOR

As such, one has:

XOR
(
s(1), s(2)) = 2.

Table 3.1 highlights the differences between the descriptor types. Note that many
of these algorithms were designed for detection as well as description. Indeed, DoG
and Fast-Hessian are part of SIFT and SURF, respectively, and ORB and BRISK both
use a FAST-based method for feature detection in their original implementations.

3.3.2.1 Scale Invariant Feature Transform

For the SIFT algorithm (Lowe, 2004), each keypoint is conferred an orientation by
sampling the gradient magnitude and direction in a neighbourhood around it with
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(a) SIFT (b) BRISK

Figure 3.3: Distribution-based description and binary description. (a, Left) In
Scale Invariant Feature Transform (SIFT), the gradient magnitude and orientation
at each subregion are weighted by a Gaussian window (pink). (a, Right) The result
is then accumulated into a histogram. (b) For Binary Robust Invariant Scalable
Keypoints (BRISK), sampling locations (green) and Gaussian kernels to smooth
intensity values (pink) for n = 60 points and some pairwise comparisons (purple)
between them are shown.

a size dependant on the scale. The creation of the descriptor itself starts with the
computation of the gradient magnitudes and orientations of a 16× 16 sample array
around the location of the detected interest point. The orientations are computed
with respect to the keypoint’s own orientation in order to achieve rotation invariance.
To avoid abrupt changes in the descriptor, the computed quantities are weighted by
a Gaussian window. Then, the samples of each 4× 4 subregion are aggregated into
an orientation histogram, each orientation weighted by the corresponding magnitude.
The descriptor is finally formed from a vector that holds the magnitudes of all the
orientation histogram entries. Each histogram has 8 bins, giving the descriptor vector
a size of 128 elements (Fig. 3.3a).

3.3.2.2 Speeded-Up Robust Features

For SURF (Bay et al., 2006), the orientation of each extracted region is assigned
by computing instead the Haar wavelet responses (Stanković and Falkowski, 2003)
in a circular neighbourhood of radius equal to six times the scale, which are then
weighted with a Gaussian window centred at the feature point. The first step in
building the descriptor itself is defining a square region of size twenty times the
scale centred around the interest point and oriented along the previously defined
direction. This area is divided into smaller 4× 4 subregions, and for each of them the
Haar wavelet responses are again computed, in the horizontal and vertical directions
with respect to the orientation, and weighed with a Gaussian function. The sum of
the wavelet responses and of their absolute values are stored in a four-dimensional
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descriptor vector for each subregion, making up for a total of 64 elements. The sign
of the Laplacian distinguishes bright blobs on dark backgrounds from the reverse
situation and is therefore conserved to allow for faster matching and an increase in
performance.

3.3.2.3 Local Intensity Order Pattern

Local Intensity Order Pattern (LIOP; Z. Wang et al., 2011) is an algorithm for feature
description designed to grant not only invariance to rotation and scale but also to
complex illumination changes. As indicated by its name, it is based on order patterns,
i.e. the order acquired by sorting the pixels of selected image patches by increasing
intensity. It operates on the principle that this relative order remains unaltered in the
case of monotonic intensity changes. First, the image is smoothed by a Gaussian filter
as the relative order is sensitive to noise. Then, the size of each feature is normalised
to a fixed diameter. The descriptor is constructed in an orientation-independent
fashion, making it inherently invariant to rotation; therefore, the local patch is
not rotated according to the local orientation as in SIFT. Afterwards, the overall
intensity order is used to divide the local patch into subregions labelled ordinal bins.
A LIOP of each point is defined based on the relationships among the intensities of
its neighbouring sample points inside each bin. Lastly, the descriptor for the patch
is constructed by concatenating the LIOPs of each bin together.

3.3.2.4 Oriented FAST and Rotated BRIEF

Oriented FAST and Rotated BRIEF (ORB) is a method supporting both feature
detection and description (Rublee et al., 2011). It applies a pyramidal representation
of FAST for multi-scale feature detection combined with a Harris corner filter for
edge rejection. An orientation is assigned to the feature through the intensity
centroid method, i.e. the assumption that a corner’s intensity is offset from its centre,
where the direction of the vector from the interest point to this centroid yields the
orientation. The feature description procedure is based upon the Binary Robust
Independent Elementary Features (BRIEF) mechanism (Calonder et al., 2010), i.e.
the pixel pairs are sampled from an isotropic Gaussian distribution. The original
BRIEF algorithm is not rotation-invariant though, so ORB first steers the computed
descriptor according to the feature orientation. However, this causes a loss of variance
in each descriptor string, which is undesirable as high variance makes a feature more
discriminative since it responds distinctively to inputs. In order to recover from the
loss of performance of steered BRIEF, a greedy search algorithm is employed to look
through all possible binary tests to find sets that both have high variance and are
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uncorrelated, resulting in a description processed coined “rBRIEF”.

3.3.2.5 Binary Robust Invariant Scalable Keypoints

As ORB, Binary Robust Invariant Scalable Keypoints (BRISK; Leutenegger et
al., 2011) also employs a scale-space modification of FAST for feature detection.
Likewise, the description process yields a binary string and is based on pixel intensity
comparison tests. The key concept of the descriptor is the sampling pattern used:
n locations equally spaced on circles concentric with the interest point (Fig. 3.3b).
Two subsets are defined in accordance with two scale-proportional thresholds: one of
short-distance pairings and another of long-distance pairings. The gradients of the
long-distance pairs are used to compute the overall characteristic pattern direction of
the feature. After that, the pattern is rotated accordingly and the binary descriptor
string is assembled by performing all the short-distance intensity comparisons of
pixel pairs. When sampling the image intensities for each pair, Gaussian smoothing
is applied with a standard deviation proportional to their distance.

There are three main distinctions between BRISK and ORB. Firstly, BRISK’s
uniform sampling pattern prevents accidental distortion of brightness comparison
between pairs after Gaussian smoothing. Secondly, in BRISK a single point takes part
in more comparisons, limiting the complexity the intensity values look-up process.
Lastly, the comparisons are restricted spatially such that the brightness variations
are only required to be locally consistent.

3.3.2.6 Fast Retina Keypoint

Fast Retina Keypoint (FREAK; Alahi et al., 2012) is a binary feature description
algorithm which takes inspiration in the design of the human retina. The method
adopts the retinal sampling grid as the sampling pattern for the pixel intensity
comparisons: it is a circular geometry where the density of points drops exponentially
from the centre outwards, mimicking the spatial distribution of ganglion cells in the
eye. These are segmented into four different areas; this is believed to result in a body
resource optimization, where a higher resolution is captured in the fovea (inner-most
circle), while lower acuity images are formed in the perifovea (outer-most circle). To
match this biological model, the algorithm uses different kernel sizes for the Gaussian
smoothing of every sample point in each receptive field, where these overlap for
added redundancy leading to increased discriminative power. To determine which
pairs of pixels to compare, the authors defend that a coarse-to-fine pair selection
yield the largest variance and uncorrelation between pairs, i.e. the first selected pairs
compare sampling points in the outer circles and the last pairs compare points in
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the inner circles. This is interestingly consistent with modern understanding of the
retina, where the perifoveal fields are first used to estimate the location of a point
of interest and the validation is then performed with the densely distributed foveal
receptive fields. Effectively, to describe a (even static) scene, the eye moves around
with discontinuous individual movements called saccades. As such, FREAK emulates
this process by parsing the computed descriptor in a way that the first 16 bytes
represent coarse information, which is applied as a triage in the matching process.
This way, a cascade of comparisons is performed, accelerating the procedure even
further. For rotation-invariance, the orientation of the feature is estimated using
local gradients similarly to BRISK.

3.3.3 Performance Metrics

In order to evaluate the algorithms, the concept of correspondence is first defined:
two regions, A and B, each from a different image, are said to be correspondences
if the second region, when mapped to the first image, has an overlap with the first
region higher than a defined threshold (Fig. 3.4). Formally, the following condition
must hold:

1−
RMA

∩R(H>MBH)

RMA
∪R(H>MBH)

< ε0, (3.7)

where RM represents the elliptic region defined by x>Mx = 1, with M being the
2× 2 symmetric matrix of ellipse coefficients, and ε0 is the overlap error threshold.
This mapping, the ground truth, can be given by a 3× 3 homography matrix H,
assuming a pinhole camera model and that the two related images represent same
planar surface in space.

Consequentially, the repeatability score for a given pair of images is calculated as
the ratio between the number of correspondences and the number of total features
presented in the reference image:

repeatability := C+

C
. (3.8)

A second type of testing performed is based on the matching score. This test
verifies how well the regions can be algorithmically matched, thus assessing the
distinctiveness of the detected regions. To this end, a descriptor for the regions is
computed and the total matches M∗ provided by it are checked to see if they agree
with the correspondences obtained withH . If a matched pair is also a correspondence,
then it is deemed a correct match M+, contributing to the matching score as
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I
(1)

I
(2)

H

Figure 3.4: The homography ground truth H maps the light green feature from
image I(2) to image I(1). The overlap area with the original purple feature from I

(1)

is shown in pink. If the amount of overlap is above a certain defined threshold, then
the two features correspond.

matching score := C+ ∩M∗

C
= M+

C
. (3.9)

Succinctly, features are desired to be repeatable, i.e. the same features should
be observed regardless of how the target is manipulated, but they should also be
distinctive enough so that they can be matched regardless of those transforms.

To evaluate the performance of feature descriptors, the figures of recall and
precision are used. Recall is defined as the ratio of correct matches to the number of
correspondences between a pair of frames:

recall := M+

C+ . (3.10)

On the other hand, precision is the ratio of correct matches to the total number of
matches:

precision := M+

M∗ . (3.11)

This performance metric is occasionally represented as its complement, i.e. 1 −
precision, the ratio of false matches to the total matches. For the ideal case, the
recall and the precision would both be close to 1, meaning that the descriptor would
return a great number of matches, all labelled correctly. A descriptor with high
recall and low precision would translate into a great number of matches but many
of them are false positives. Lastly, a descriptor with low recall and high precision
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would mean a small number of returned matches, but most of them are correct.
Note that the definition of a match is dependent on the chosen strategy. Miko-

lajczyk and Schmid (2005) define three different ones. The first one is termed
threshold-based matching, where two regions are matched if the distance between
their descriptors is below a certain threshold µ. The second one is the nearest-
neighbour (NN) based matching: regions A and B are matched if the descriptor d(b)

is the nearest neighbour to d(a) and

NN =
∥∥d(b) − d(a)∥∥ < µ. (3.12)

For the scope of this chapter, the third and last concept of nearest-neighbour
distance ratio (NNDR) is used: two regions are a match if the ratio of the distance
to the first and to the second nearest neighbouring descriptors is below a certain
threshold µ:

NNDR =
∥∥d(b) − d(a)

∥∥
‖d(c) − d(a)‖

< µ, (3.13)

where d(b),d(c) are the first and second nearest neighbours to d(a), respectively. While
for threshold-based matching a descriptor can have several matches — and several of
them might be correct — for the NN and NNDR-based techniques, a descriptor only
has one match. The former strategy can be attractive for real-time applications due
to low computational effort. However, setting the threshold value µ proves to be a
difficult task, as a fixed value may bias the results towards a given region of interest,
whereas for the other strategies, µ is relative to each pair. Results demonstrated by
Mikolajczyk and Schmid (2005) and Mouats et al. (2018) show that the NN strategy
results in high precision, as all matches below µ are rejected, diminishing the number
of false matches; using NNDR improves the precision even further.

The performance of different descriptors is often compared by generating for
each one sets of recall and 1-precision values with varying values of µ. The plotted
points result in a receiver operating characteristics (ROC) curve (Szeliski, 2011, see
Fig. 3.5).

Remark 3.3: Receiver operating characteristics curve

A ROC curve plots the recall, or true positive rate, versus the complement of
the precision, or false positive rate, for a given classification task. For a perfect
classifier, the recall is equal to 1 and the complement of the precision to 0.
The area under curve (AUC) is a scalar figure of merit derived from the ROC
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to evaluate a classifier’s performance: the larger the area under a descriptor’s
ROC curve, the better its performance in terms of assigning matches, providing
an intuitive way to benchmark descriptors.

R
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1− precision

ROC
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Figure 3.5: The receiver operating characteristics (ROC) curve and its related
rates. Adapted from (Szeliski, 2011).

The average computation times per extracted and described feature are bench-
marked, respectively, for each detection and description algorithm. This assumes
a proportionality between the required time and the computation burden, which
can then be of interest to make an informed choice on the algorithm for a given
application.

3.4 Experiments
In this section, the experimental setup arranged to evaluate the performance of the
IP algorithms is described. The generated datasets are delineated, and details of
the implementation of the algorithms are outlined. The outline of the performed
experiments is summarised in Table 3.2.

Table 3.2: Summary of experiments in Chapter 3.

Section Description Dataset

Section 3.4.5.1 Tuning of the parameters used in the benchmarked
algorithms

ASTOS-B

Section 3.4.5.2 Benchmarking of feature detectors ASTOS-B
Section 3.4.5.3 Benchmarking of feature descriptors ASTOS-B
Section 3.4.5.4 Timings of computational execution times ASTOS-B
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3.4.1 Dataset
A second multimodal dataset was designed specifically for the scope of the proposed
IP analysis framework. The dataset, ASTOS-B, was generated according to the same
methodology as the ASTOS dataset (see Chap. 2) but features a different, specific
trajectory to incorporate the necessary ground truth for the evaluation of 2D detectors
and descriptors.

ASTOS-B features images generated with two simulated cameras with parameters
specified in Table 3.3. One camera operates on the visible wavelength and the other
operates on the LWIR wavelength, with the difference that both cameras now share
the same field of view (FOV). This is to ensure that the scene is imaged similarly
in terms of perspective projection for both modalities. Additionally, both cameras
had their resolution scaled down to 320 px × 256 px and acquisition rate set to 1 Hz
to run the image processing functions on a low performance hardware board. The
generated images simulate a rendezvous approach with Envisat, capturing realistic
variations in illumination, rotation, and scale. Two mission scenarios are considered:

(1) A “Hot Case”, where the spacecraft is in a sunlit section of their orbit; and

(2) A “Cold Case”, where they are in eclipse, under no direct illumination from
the Sun.

This yields a total of four different imaging sequences for the benchmarking of the IP
algorithms, with 200 frames per sequence. The dataset hierarchical key is portrayed
in Figure 3.6.

3.4.2 Ground Truth
To evaluate the proposed performance metrics (see § 3.3.3), the ground truth relating
the changing of the scene between frames must be established. Generally, calibrating

Table 3.3: Simulated camera properties for the ASTOS-B dataset. The same param-
eters are used for acquisition in the visible and long-wavelength infrared (LWIR)
modalities.

Parameter Unit Value

Resolution px × px 320× 256
Focal length mm 5
FOV deg × deg 51× 40
Measurement rate Hz 1
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ASTOS-B

Sunlight

Visible

ASTOS-B/01/01

LWIR

ASTOS-B/01/02

Eclipse

Visible

ASTOS-B/02/01

LWIR

ASTOS-B/02/02

Figure 3.6: Key for the benchmarked trajectories of the ASTOS-B dataset.

a three-dimensional scene, or the motion of a 3D object as in the present case,
would require the back-projection of the detected features into rays, computing their
intersection with a 3D mesh of the target, and transferring the feature and its support
region to a differently rotated and translated scene, similarly to the work of Takeishi
et al. (2015), resulting in a highly complex and possibly time-consuming framework.

However, this can be greatly simplified by simulating a planar scene. This is
achieved by modelling a rendezvous approach such that the same facet of the target
is constantly visible. In this case, the ground truth can be computed just from the
dataset itself, without resorting to the computer-aided design (CAD) model of the
target, via a 3× 3 homography matrix H (Hartley and Zisserman, 2004). 2D points
x(i) in one frame are related to those x′(i) in another frame as:

x′(i) = Hx(i), (3.14)

where the points x(i) = [ x y 1 ]>, x′(i) = [ x′ y′ 1 ]> are expressed in homogeneous
coordinates.

The homography matrices can be computed directly from feature point corre-
spondences between each frame (see, for example, Hartley and Zisserman, 2004,
Chapter 4); however, a different approach is taken to avoid biasing the algorithms to
be tested, similarly to Mouats et al.’s (2018) work. First, putative feature matches
between the two frames are obtained using a detector and descriptor not included in
the benchmarks. This work uses Accelerated KAZE (AKAZE; Alcantarilla et al.,
2013)3 features for this purpose. Then, an initial homography Ĥ is estimated from
these matches using Random Sample Consensus (RANSAC; Fischler and Bolles,
1981) to reject outliers. Finally, Ĥ is used to initialise a forward additive enhanced
correlation coefficient (ECC) algorithm (Evangelidis and Psarakis, 2008) to compute
a refined H . Figure 3.7 illustrates the ground truth computation for a pair of frames

3Here, “kaze” is not an acronym, but the romanisation of the Japanese word “風”, meaning
“wind”, an allusion to the algorithm’s speed.
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(a) Source (b) Destination (c) H mapping (d) Difference

Figure 3.7: Homography computation example for a pair of wide baseline frames.
The source image is mapped to the destination image via H. The quality of the
transform is related to the residual difference image between the true and mapped
destination images.

in the dataset.

3.4.2.1 Planarity Assumption

The facet of the spacecraft’s main body that is constantly observed by the chaser is
approximately flat (cf. Fig. 3.7) and hence well modelled by a plane ΠH parallel to

~
t(2)-

~
t(3) in the target frame

~
F t (see the frames of reference defined in Fig. 3.8). This

represents the dominant plane based on which the planar homography in Equation
(3.14) is computed.

The solar panel is not contained in this plane, meaning that Equation (3.14)
would normally not model the ground truth adequately. However, for this particular
motion a valid planar assumption is upheld as follows. Since the motion of the
chaser is always parallel to ΠH (see § 3.4.3), the only apparent transformation
experienced by the solar panel not explained by H is due to perspective projection
(i.e. the dimension along

~
t(1) appears longer the closer the target is to the camera).

In the computation of the homography between consecutive frames, due to the
reduced motion the changes in the solar panel caused by perspective projection are
not observed, thus producing a stable H. When computing it for larger baselines,
the number of frames is limited so as to maximise the length of the sequence for
benchmarking while minimising the perspective projection deformations and hence
keeping the stability of H. In this way, features detected on both the main body
and the solar panel can be accurately benchmarked without violating the planarity
assumption and the validity of the ground truth.
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Figure 3.8: Scenario specifications for the ASTOS-B dataset trajectory generation,
centred in the chaser’s body frame

~
F b. The relative configurations of the target

frame
~
F t and of the local-vertical-local-horizontal (LVLH) frame

~
Fo are shown.

3.4.3 Orbital Dynamics

A chaser spacecraft is assumed to approach the target with the translational profile
relative to the local-vertical-local-horizontal (LVLH) reference frame illustrated in
Figure 3.8. The spin axis of the target in the target frame,

~
F t, is aligned with the

positive
~
t(1) axis, and the spin axis in the LVLH frame,

~
Fo, is aligned with the

positive H-bar axis; the rotation rate is 3.5 deg s−1. The chaser (
~
F b frame) assumes

a constant orientation with regards to
~
Fo. The sequence begins with the chaser

in a hold point (“PH”) 100 m away from the target. The rendezvous sequence is
performed through a forced translation H-bar approach (“FT”) with the target until
a stop point (“PS”) is reached at 20 m distance, after which the sequence ends.

The real orbit of Envisat is emulated using two-line element (TLE) data analo-
gously to the ASTOS dataset, see Chapter 2, Section 2.5.2 for details.

3.4.4 Implementation

The orbital states of both chaser and target, the camera parameters, and a 3D CAD
model of Envisat are used as inputs to the Astos Camera Simulator to generate the
dataset; see Chapter 2 for details.

The performance analysis framework was coded in the C++ programming lan-
guage. The OpenCV library (version 3) was used for computer vision and image
processing related functions. The implementations of every detector and descriptor
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Table 3.4: The BeagleBone Black (BBB) wireless single board computer.

Parameter Specification

System on a Chip AM3358/9
CPU Cortex-A8 1 GHz
Digital Signal Processor N/A
On-board storage 8 bit eMMC (running

Ubuntu 16.04), microSD
card 3.3 V supported

Memory 512 MB DDR3
Size 86.40 mm×53.3 mm
Power ratings 210–460 mA at 5 V

(a) Hardware properties (b) Image of the board

used are publicly available from OpenCV, except for LIOP, where the author’s
original open-source code4 was used. The implementation of DoG+SIFT is based
on the code of Rob Hess5. Fast-Hessian+SURF, Harris, and GFTT are direct adap-
tations of the original papers (Bay et al., 2006; Harris and Stephens, 1988; J. Shi
and Tomasi, 1994). FAST, FREAK, BRISK, and ORB are ports of the authors’
own implementations. Lastly, for CenSurE, the OpenCV implementation is termed
STAR and it is an altered version of the original algorithm (Agrawal et al., 2008) for
added computational stability and speed.

To verify the computing performance of the IP methods, these were implemented
and tested on a BeagleBone Black (BBB) single-board computer with a 1 GHz ARM
Cortex-A8 processor and 512 MB DDR3 RAM (Table 3.4). The board was listed by
Dubois-Matra (2016) as one of the ESA-approved microprocessors.

3.4.5 Results

In this section, the results of the adopted framework to determine the performance
of the algorithms on the multimodal dataset are delineated. The pipeline is based on
the works of Mikolajczyk and Schmid (2005), Mikolajczyk, Tuytelaars, et al. (2005),
and Mouats et al. (2018) with some modifications given the nature of the dataset.

The first one refers to the considered dataset itself. Unlike common studies
which consider scenes where the detected features are distributed over the whole
image, for the images in the present dataset the background is featureless and the
target may occupy a relatively small area. This imposes a limitation on the number
of features that can be extracted from each frame. Since it is desirable to have a

4https://github.com/foelin/IntensityOrderFeature.
5http://robwhess.github.io/opensift/.
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(a) DoG (b) Fast-Hessian (c) Harris

Figure 3.9: Examples of detected features (green) on hot case frames from the
dataset. (Top Row) visible wavelength. (Bottom Row) long-wavelength infrared
(LWIR).

(a) GFTT (b) FAST (c) CenSurE

Figure 3.10: Examples of detected features (green) on hot case frames from the
dataset. (Top Row) visible wavelength. (Bottom Row) long-wavelength infrared
(LWIR).
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Figure 3.11: Effect of contrast limited adaptive histogram equalisation (CLAHE)
on the visible cold case. (Left) The original image, where the foreground is virtually
indistinguishable from the background. (Right) The image after application of
CLAHE, where the intensity of the foreground pixels becomes more spread out over
the range of possible values, resulting in the enhancement of the target.

number of detections that is constant across frames and sequences for a balanced
basis of comparison, this implies adequately tuning the sensitivity thresholds of each
algorithm instead of relying on the default values. Samples of generated images and
of detected features are illustrated in Figures 3.9 and 3.10; the number of plotted
features is limited to 40 for clarity.

The second modification, also related to the dataset, considers the particular case
of the eclipse in the visible band. For this sequence, the target is barely visible, as
the only source of illumination is light reflected by the Earth’s atmosphere. This
is illustrated in Figure 3.11 (left), where it can be seen on the histogram of image
pixel intensities that the values are concentrated to the left of the spectrum, next
to the largest bar representing the background. This has a limiting effect on the
number of features that can be detected, which is a problem since it is intended to
compare the IP algorithms under similar conditions. To enhance the visualisation
of the target in these conditions, adaptive histogram equalisation is employed: the
image is automatically divided into different sections (the default in OpenCV is a
tile size of 8× 8) and a histogram is computed for each one. The pixel intensities in
each histogram are then equalised, improving the contrast and the edges (and hence,
corners). To prevent overshooting that could amplify noise, the output contrast is
limited, in what is called contrast limited adaptive histogram equalisation (CLAHE).
After equalisation, bilinear interpolation is used to cull artefacts on tile borders. The
result is displayed in Figure 3.11 (right).

The last aspect concerns the implementation of the algorithms. Apart from
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differing internal mechanics, the computational code of each algorithm has been
developed by different authors. As such, the parameters used to tune each one are
not uniform. Consider, for example, the non-maximum suppression functionality:
the process of removing multiple interest points that were detected in adjacent
locations, leaving only the most distinctive ones. For Harris, GFTT and CenSurE, it
is possible to set the suppression window size as an input parameter; for FAST it is
only possible to toggle the functionality on or off; whereas for DoG and Fast-Hessian
it is not controllable at all. In general terms, the smaller the suppression window, the
more features are obtained, but the less distinctive they will be. These differences
in interface make it difficult, to guarantee that each processed sequence will have
the same ratio of feature number to feature distinctiveness. During the testing
campaign upon which this chapter is written, it has been observed that turning off
non-maximum suppression on a feature detector, when given the option, leads to a
sharp drop in performance when compared to the others. Therefore, it is ensured
that non-maximum suppression is activated for a fair benchmark. Another aspect to
consider is the implementation performance of each algorithm.

3.4.5.1 Tuning of Benchmark Parameters

Firstly, the different parameters that have a potential influence on the algorithms’
benchmarking setup is analysed. A pair of common frames from each sequence, corre-
sponding to an original image and a transformed one, is selected. The resulting data
are averaged over all sequences for each feature detector and plotted in Figure 3.12.

Accuracy of the Detectors Figure 3.12a illustrates the repeatability as a function
of the overlap error threshold for the two considered bands. As the overlap error, i.e.
the requirement to qualify two regions as corresponding, is relaxed the repeatability
score goes up. For strict thresholds (10–20 %), the three corner detectors demonstrate
a null repeatability, but become the highest-ranking ones as the threshold is relaxed.
This shows that these detectors are less accurate than the others for this type of
scenario. CenSurE exhibits a similar behaviour but does not change its order relative
to the others, scoring below the remaining two blob detectors. An overlap error
threshold of 30 % is selected to ensure non-zero repeatability scores.

Normalised Region Size Secondly, the effect of the choice on the normalised
region size is studied; the results are displayed in Figure 3.12b. This test was
conducted with a fixed overlap error threshold of 30 %. The relative ordering of the
feature detectors remains the same, save for DoG: for the minimum considered radius,
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Figure 3.12: Repeatability scores as a function of different benchmark parameters.

it ranks first in repeatability score, but as soon as this parameter is increased, it is
surpassed by the corner detectors and begins to saturate beyond 12.5 px. Choosing
a normalised region size of 7.5 px will limit the bias in further evaluations.

Region Density For this test, the effect of increasing the number of features on
the repeatability of the detectors is considered. This is achievable by altering the
tuning parameters for each algorithm, allowing them to be compared when they
output a similar amount of interest points. This is plotted in Figure 3.12c, where the
overlap error threshold and the normalised region size were set to 30 % and 7.5 px,
respectively. It can be seen that the corner detectors (i.e. Harris, GFTT, and FAST)
tend to improve their repeatability scores when the number of features is increased,
whereas the opposite is observed for the blob detectors (i.e. DoG, Fast-Hessian, and
CenSurE). Note that the scores of DoG and CenSurE slightly increase towards the
maximum considered number of detections, which indicates that these algorithms
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could possibly be less robust to noise: the quality threshold of the extracted features
must be lowered to increase detections, which can lead to more false positives.

3.4.5.2 Benchmarking of Feature Detectors

For this test, the repeatability and number of correspondences obtained by each
detector for each full sequence is analysed. In addition, the matching scores and
number of matches is computed. This is done using the LIOP descriptor. This
descriptor was chosen as it is independent from all the detectors considered. Since
the goal is to study the performance of the different feature extraction processes,
this avoids any bias towards a specific detector, allowing for the examination of the
features’ distinctiveness regardless of the chosen descriptor. For added comparison,
the performance using the original descriptors for DoG and Fast-Hessian (SIFT and
SURF, respectively) is also showcased to benchmark the full original algorithms and
provide a baseline.

An overlap error threshold of 30 %, a normalised region size of 7.5 px, and a fixed
number of 75 extracted features for each detector are considered. The benchmarks
are plotted in Figures 3.13 to 3.20. As in Mouats et al. (2018), two plots are provided
for each sequence:

(1) The first benchmarks consecutive image transforms, which is commonly done
in structure from motion (SFM) and VSLAM algorithms; in this case, a value
pertaining to frame I(κ) in the plot is referent to the transformation between
frames I(κ) and I(κ+1); while

(2) The second plot demonstrates the behaviour of the detectors when faced
with large image transformations, which is usually the case encountered when
applying model-based navigation strategies; the number “0” is used to represent
the reference image (a frame from the middle of each sequence is chosen),
whereas positive numbers represent transformations in posterior frames with
respect to that reference and negative numbers represent those prior to it.

Visible Modality Hot Case Figures 3.13 and 3.14 showcase the performance of
the detection algorithms for the ASTOS-B/01/01 approach sequence. Harris, GFTT,
and FAST achieve the highest repeatability scores. However, in terms of matching
scores, they are comparable to Fast-Hessian and CenSurE, where the former actually
outperforms the rest towards the end of the sequence, showing a bias in favour of
shorter target ranges. Conversely, the correct matches when using GFTT and FAST
actually decrease as the chaser nears the target, meaning that the high number of
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Figure 3.13: Performance for ASTOS-B/01/01 rendezvous sequence: successive
transformations, visible band, hot case. The raw data is presented smoothed with
markers added for readability. The dashed lines show the results for DoG and
Fast-Hessian with their original descriptor.

obtained correspondences likely stems from accidental overlap. This could represent a
problem when using these detectors with visible imagery at close proximity. CenSurE
is the most consistent algorithm throughout. Note from Figure 3.13b that Fast-
Hessian shows a better performance when coupled with LIOP than when combined
with its native descriptor. From Figure 3.14 it can be seen that the detection
algorithms are in general less resilient to large image transformations. In spite of
a high repeatability for variations relatively close to the baseline, the number of
correct matches of the three corner detectors drops rapidly; for sufficiently large
transformations, they produce no correspondences at all. Interestingly, DoG when
used with its native SIFT is shown to be the most robust in terms of matching score
for large variations, when it performed the worst for small variations.

Visible Modality Cold Case Figures 3.15 and 3.16 represent the results obtained
for the ASTOS-B/02/01 trajectory. Generally, the repeatability scores are quite similar
to the hot case both in trend and magnitude. In opposition, the matching scores
are now seen to decrease with time; the exception is Fast-Hessian combined with
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Figure 3.14: Performance for ASTOS-B/01/01 rendezvous sequence: large trans-
formations, visible band, hot case. The dashed lines show the results for DoG and
Fast-Hessian with their original descriptor.

LIOP, which remains consistent, and the same detector use with SURF, which
actually increases performance with time. The decreasing number of matches when
the correspondences are increasing indicates that as the sequence progresses the
features are becoming less distinctive to be correctly matched. In terms of large
variations, the matching score decreases more sharply than in the hot case; this could
be explained by a decreased consistency in the target pixels’ intensity values due to
CLAHE between the reference and query frames.

Thermal Infrared Modality Hot Case Figures 3.17 and 3.18 show the results
attained for the ASTOS-B/01/02 rendezvous sequence. The algorithms suggest
robustness in this modality with high repeatability scores overall (notably in the
case of the blob detectors: DoG, Fast-Hessian, and CenSurE) and matching scores
increasing with time. Note that FAST shows significant declines in the matching
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Figure 3.15: Performance for ASTOS-B/02/01 rendezvous sequence: successive
transformations, visible band, cold case. The raw data is presented smoothed with
markers added for readability. The dashed lines show the results for DoG and
Fast-Hessian with their original descriptor.

score despite its high repeatability, illustrating lower feature distinctiveness when
compared with the other corner detectors. Fast-Hessian again scores one of the
highest benchmarks in general. From Figure 3.18 the behaviour of the detectors
is less consistent: FAST and DoG outperform the other algorithms in medium
transformations (up to ±10 m and ±90 deg baselines) with respect to matching score,
whereas Fast-Hessian provides the best performance for larger variations.

Thermal Infrared Modality Cold Case Figures 3.19 and 3.20 illustrate the
detector performance for the ASTOS-B/02/02 sequence. For both consecutive and
large transformations, the number of correct matches is generally lower than for the
hot case in the same band; in spite of that, the repeatability scores are similar, which
suggests that the cold case generates less distinctive features. This is more noticeable
in the case of FAST, whereas Fast-Hessian and CenSurE are more impervious to
the changes in temperature. It is however important to note that Harris and GFTT
recover greatly towards the end of the sequence in terms of correct matches for
successive transformations, outperforming the remaining detectors (Figure 3.19b).
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Figure 3.16: Performance for ASTOS-B/02/01 rendezvous sequence: large transfor-
mations, visible band, cold case. The dashed lines show the results for DoG and
Fast-Hessian with their original descriptor.

Discussion

Despite being imaged in two different modalities, the simulated sequences feature a
common relative motion. Therefore, some similarities in the results are expected.
The repeatability trend for the successive transformations, in particular, is similar for
all four sequences: corner detectors tend to be the most robust and for blob detectors
the score tends to increase with the inverse of the distance to the target. For large
transformations, the repeatability of corner detectors drops to zero after a certain
point, whereas blob detectors are resilient. The same cannot be said about the
matching scores, however: despite scoring generally lower than the repeatability, they
vary in trend and relative ranking between sequences. This highlights the importance
in using descriptors to compute matches instead of relying on the geometry overlap
only, and implies different degrees of distinctiveness in extracted features depending
on the detector, wavelength, and illumination condition considered.
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Figure 3.17: Performance for ASTOS-B/01/02 rendezvous sequence: successive
transformations, thermal infrared band, hot case. The raw data is presented smoothed
with markers added for readability. The dashed lines show the results for DoG and
Fast-Hessian with their original descriptor.

Despite their high repeatability, corner detectors are are often equalled or even
surpassed by the blob detectors in terms of matching score. Despite high repeatability,
FAST is one of the least distinctive algorithms across all tests. Fast-Hessian performs
well in terms of matching scores in most cases despite average repeatability; the
exception is the visible cold case, where there is a generalised loss of performance,
but it still maintains a good ranking in relative terms. This suggests an extraction of
quite distinctive features, which confirms what was stated in the LWIR analysis of
Mouats et al. (2018) and extends the conclusions to the visible spectrum. This is an
important finding as it is desirable to have a detector that works well in both spectra.
DoG shows low scores for successive transformations regardless of the wavelength and
illumination, but seems to perform worse on the LWIR cold case. On the other hand,
its performance is comparable to the other blob detectors when dealing with large
transformations. It performs better with SIFT than with LIOP in every situation,
whereas Fast-Hessian usually performs better with LIOP than SURF, the exception
for the latter being the visible cold case. This reiterates the importance of testing
detectors and descriptors separately to avoid any cause of bias.
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Figure 3.18: Performance for ASTOS-B/01/02 rendezvous sequence: large transfor-
mations, thermal infrared band, hot case. The dashed lines show the results for DoG
and Fast-Hessian with their original descriptor

In the benchmarking of successive transforms, corner detectors are shown to lose
in performance when the target is closer on the visible. This could signify that they
are more sensitive to noise inherent to the multi-layer insulation (MLI), for example,
as their matching scores are better on the textureless LWIR. In the latter case, the
actual corners are better defined and impervious to illumination changes. On the
same note, performance is generally better for the LWIR sequences: for the hot cases,
CenSurE and Fast-Hessian, in particular, are comparable to the visible case, but
the former performs better than its visible counterpart in the end of the sequence
where the latter does so in the beginning of it. In the visible eclipse sequence, the
efficiency of the algorithms is greatly diminished. This finding suggests that an
artificial solution such as CLAHE to tackle the cold case is not a feasible solution. It
does allow for the detection of more features, but these are not distinctive enough to
guarantee an acceptable matching score. The use of a thermal infrared camera is a
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Figure 3.19: Performance for ASTOS-B/02/02 rendezvous sequence: successive
transformations, thermal infrared band, cold case. The raw data is presented
smoothed with markers added for readability. The dashed lines show the results for
DoG and Fast-Hessian with their original descriptor.

better approach in this case according to the results.

Regarding the benchmarking of large transformations, the results show a quasi-
symmetrical pattern around the baseline. The matching scores are generally biased
towards the right, meaning that larger scales (shorter distances between chaser and
target) are favourable. This is a judicious hypothesis since, due to the low resolution
of the dataset, bigger distances quickly translate into less details. On the other
hand, there is a bias towards the left in repeatability, which is explained by the
fact that smaller scales with a constant region size lead to more overlaps. The
lack of scale invariance in the corner detectors is evident from the abrupt decline
of the associated number of matches when varying the distance to the target. In
general, the performance of the detectors is quite low for large baselines as opposed
to successive transformations, which can make their use difficult in model-based pose
estimation pipelines.
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Figure 3.20: Performance for ASTOS-B/02/02 rendezvous sequence: large transfor-
mations, thermal infrared band, cold case. The dashed lines show the results for
DoG and Fast-Hessian with their original descriptor.

3.4.5.3 Benchmarking of Feature Descriptors

For this test, the performance of the descriptors is assessed. To this end, a comparison
is done using the same feature detector for all the descriptors in order to reduce the
influence of the former on the results. Similar settings as in the previous experiments
were used, i.e. an error threshold of 30 % and a fixed number of 75 extracted features.
The regions are not normalised in the computation of the descriptors.

The efficiency of the algorithms is evaluated by computing their ROC, or recall/1−
precision, curves. For each of the four sequences, and similarly to Mouats et al.
(2018), two sets of results are shown: the first representing a descriptor benchmark
for short (successive) and large image transformations using the DoG detector; and
the second repeats the same experiment using Fast-Hessian. This allows insight into
if and how different detector-descriptor combinations affect the outcomes. These are
plotted in Figures (3.21) to (3.24).
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Figure 3.21: Descriptor ROC curves for ASTOS-B/01/01 rendezvous sequence:
visible band, hot case. (Top Row) With DoG as feature detector. (Bottom Row) With
Fast-Hessian as feature detector. (Left Column) For small image transformations.
(Right Column) For large image transformations.

However, a different procedure is adopted regarding which frames from the dataset
are used. Mouats et al. (2018) consider only the matching between features from two
frames (one pair with a short baseline, another pair with a large one) for this test.
This is because the authors benchmark image transform variations in an isolated
way, i.e. one test for rotation variation, one for scale change, and so on. For the
analysis presented within this chapter, the ASTOS-B sequences have in common a
fixed trajectory where more than one transform is present. Since the aim is to
assess the performance for the whole rendezvous manoeuvre, the ROC curves are
computed using the average values for every pair of frames; in particular, for the
large transformations set, the reference used is a frame located at the middle point of
the sequence, i.e. when the target is 60 m away from the chaser, and the test includes
variations in the range of ±20 m/±175 deg relative to the reference.

As mentioned in Section 3.3, a NNDR-based matching strategy is considered.
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Visible Modality Hot Case Figure 3.21 illustrates the attained ROC curves for
the visible modality during the sunlight period. It can be seen that the performance
of the descriptors depends on the feature detection algorithm used: Fast-Hessian
features are shown to yield better precision. It can also be seen that the performance
of the algorithms is degraded for large transformations comparatively to sequential
ones.

It is interesting to note that SIFT performs better with Fast-Hessian features
(Figure 3.21c) than with DoG features (Figure 3.21a) in the case of short transfor-
mations. However, the opposite is true for large transformations (Figures 3.21b and
3.21d). Indeed, when DoG features are used, SIFT performs best, followed by ORB
and BRISK. For small transformations, the performance of the three descriptors are
comparable, whereas for large transformations, BRISK obtains the best results if
1− precision < 0.35 but SIFT dominates for values above that.

For Fast-Hessian features, BRISK, FREAK, and LIOP give the best results in the
case of small variations; in the case of large variations the performance of the latter
one degrades considerably, which seems to agree with the observations of Mouats
et al. (2018) regarding the monotonic intensity changes of LIOP’s rotation invariant
sampling not holding for large angles. Overall the results obtained for SURF are
sub-par, showing that combining a feature detector with a non-native descriptor can
yield better results.

Visible Modality Cold Case Figure 3.22 shows the descriptors’ performance
for the visible in eclipse. The algorithms are affected by the low illumination case
more than the sunlit scenario for this spectrum. The precision can be shown to be
relatively lower, particularly for larger variations, which means the descriptors incur
more frequently in false matches. The relative ranking of the algorithms is similar
to the previous case, save for small variations computed on Fast-Hessian features,
where SIFT shows the best performance (close to FREAK and BRISK) and LIOP
performs the worst. This is in agreement with the plot of Figure 3.15, where there
is a drop in the matching score of Fast-Hessian + LIOP, but it still remains higher
than that of SIFT.

Thermal Infrared Modality Hot Case Here, the descriptors are compared for
the case of the thermal infrared imaging of the sequence during sunlight conditions;
the results are shown in Figure 3.23. The performance computed on DoG features
follows the same trend as for the visible case, albeit with a yielded precision lower
than the eclipse case.
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Figure 3.22: Descriptor ROC curves for ASTOS-B/02/01 rendezvous sequence:
visible band, cold case. (Top Row)With DoG as feature detector. (Bottom Row)With
Fast-Hessian as feature detector. (Left Column) For small image transformations.
(Right Column) For large image transformations.

On the other hand, when using Fast-Hessian features the descriptors perform
better than both visible cases. For short transform variations, FREAK obtains the
higher score, but as in the analogous visible case, it behaves quite similarly to BRISK,
SIFT, and LIOP. With respect to larger transformations, FREAK performs best by
a large margin. The other algorithms are also less affected by these variations than
in the visible case. This means that, for the same relative motion, the descriptors
are more affected by the dynamic effects present in the visible modality — such as
textural noise, glare, shadows — than by a textureless scene.

Thermal Infrared Modality Cold Case Lastly, Figure 3.24 illustrates the
benchmarking of the descriptors in the eclipse case for the thermal infrared sequence.
As in the visible case, the algorithms are more affected by these transformations
than in the hot case.

When DoG features are used, the descriptors perform worse than in the visible
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Figure 3.23: Descriptor ROC curves for ASTOS-B/01/02 rendezvous sequence:
thermal infrared band, hot case. (Top Row) With DoG as feature detector. (Bot-
tom Row) With Fast-Hessian as feature detector. (Left Column) For small image
transformations. (Right Column) For large image transformations.

cold case. The precision attained by the algorithms is quite low, which is in line with
the observations from Section 3.4.5.2 regarding the low number of correct matches
for this detector in the thermal infrared modality.

Conversely, descriptors computed on Fast-Hessian features in this scenario are
actually comparable to the performance attained for the visible hot case; for small
transformations, LIOP achieves the best performance, however it is again degraded
in the case of larger transform variations.

Discussion

The presented results suggest that the performance of the descriptors is dependent on
the feature they are applied on, regardless of descriptor type. Fast-Hessian performs
better in general both in terms of recall and precision scores, regardless of the
modality, although the gap is narrower in the benchmarking of large transformations.
As theorised by Mouats et al. (2018), a possible explanation for this could be the fact
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Figure 3.24: Descriptor ROC curves for ASTOS-B/02/02 rendezvous sequence:
thermal infrared band, cold case. (Top Row) With DoG as feature detector. (Bot-
tom Row) With Fast-Hessian as feature detector. (Left Column) For small image
transformations. (Right Column) For large image transformations.

that Fast-Hessian usually extracts larger blobs than DoG, so a larger support area
is considered in the computation of the descriptor, capturing in principle a larger
signal variation. In can be seen by inspecting Figure 3.9 that this is also the case for
the analysed dataset.

Overall, SIFT as a whole obtained very good scores. However, its performance
is degraded substantially in the case of large transformations (particularly on Fast-
Hessian features).

LIOP was shown to perform better when computed on Fast-Hessian features,
both on the visible, and as reported by Mouats et al. (2018) on the LWIR. It can
be ranked amongst the best descriptors when used with this type of feature for
successive transformations. The exception is the visible cold case, where it is ranked
last. Furthermore, when considering large transforms, its performance declines, which
is in line with the analysis made for the detectors in Section 3.4.5.2
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Table 3.5: Average detection times per feature.

Detector Time (ms) Speed-up

FAST 0.03 814
CenSurE 1.32 16
Harris 1.42 15
GFTT 1.49 14
F-Hess 2.63 8
DoG 21.22 1

Table 3.6: Average description times per feature.

Descriptor Time (ms) Speed-up

ORB 0.16 103
BRISK 0.21 81
SURF 0.77 22
SIFT 9.48 2
LIOP 14.54 1
FREAK 16.73 1

Overall, BRISK and FREAK are ranked among the best descriptors for all cases.

3.4.5.4 Computation Times

In this subsection, the IP algorithms are benchmarked in terms of their computational
performance. These tests are ran on the single board computer setup, allowing for
the examination of their real-time capacity on a low performance embedded system.
The recorded benchmarks account only for the core tasks of detection or description.
All values are averaged between the four sequences for each algorithm.

Table 3.5 portrays the average extraction time per feature for each detector.
This type of analysis is useful in shifting awareness towards the computation time,
which can be limiting depending on the application, and is particularly important
for those involving low performance computing. DoG scores the slowest detection
time, at 21.2 ms per feature. To better compare their performance, in addition to
the absolute computation times, the relative speed-up factors with respect to the
heaviest algorithm are also displayed. FAST is the quickest algorithm to run, being
almost three orders of magnitude swifter than DoG. As expected, CenSurE is faster
than Fast-Hessian, which is in turn faster than DoG. Surprisingly, GFTT is recorded
having a higher execution time than Harris.

Figure 3.25 displays the average computation times of the detectors per frame.
DoG is the clear outlier, being the only detector that does not fit in the computational
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Figure 3.25: Comparison of average feature detection times per frame.

budget of 1 Hz. In addition, the average execution time per frame for CLAHE in the
case of the visible cold case sequence are also shown (in red). This function does
not depend on the detector and the mean execution time was 19.22 ms, accounting
for less than 2 % of the allocated budget. Note, however, that the average detection
time per frame of FAST was 1.9 ms, which is faster than the preprocessing step by a
factor of 10.

Analogously, Table 3.6 shows the benchmarked computation times for the descrip-
tors averaged per feature. While the list is topped by two of the binary descriptors,
FREAK is actually the slowest algorithm, costing 16.7 ms per feature on average.
The high computation time is unusual for a binary descriptor and contradicts the
findings in the literature. LIOP is similar in performance, while SIFT is two times
faster. Surprisingly, the performance of SURF is in the same order of magnitude as
ORB and BRISK.

Figure 3.26 illustrates the average computation times of the descriptors per frame.
The matching times are represented in purple. As expected, the matching times for
the binary descriptors are the fastest, scoring and average of 2.5 ms per frame (75
features). ORB features are the fastest to be matched at an average of 1.9 ms per
frame. The distribution-based descriptors are on average one order of magnitude
slower in terms of matching speed, at 24 ms; SURF features are the fastest of the
kind, scoring 14.5 ms on average.

FREAK Results

Given that the previous experiments recorded abnormally high execution times for the
FREAK descriptor, the benchmarks are repeated, this time on a desktop workstation
with an Intel(R) Core(TM) i7-6700 processor (x64) at 3.40 GHz. Figure 3.27 compares
the speed-up times for the six descriptors and two processors relative to the heaviest
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frame.
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Figure 3.27: Comparison of descriptor speed-up factors in different processors.

test run. It can be seen that the relative ranking of the algorithm changes for the
x64 processor, where FREAK totals as the third fastest descriptor. It is almost two
orders of magnitude faster than LIOP, whereas the execution times are identical on
the ARM processor. The relative ranking of the distribution-based descriptors is the
same on both processors, and they maintain approximately the same proportions
in terms of runtime. However, BRISK is the fastest running descriptor for the x64
processor, being 243 % faster than ORB; for the ARM processor it was 21 % slower.
This seems to suggest implementation issues in the case of the binary descriptors, i.e.
the algorithms are optimised differently depending on the architecture.
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3.5 Conclusions and Future Work

In this chapter, several state-of-the-art feature detectors and descriptors have been
benchmarked in the context of an ADR application. To this end, a custom synthetic
dataset featuring a rendezvous with the defunct spacecraft Envisat was created. This
dataset, derived from the work presented in Chapter 2, encompasses two different
trajectories, one during a sunlight period and one during eclipse, imaged in two
different modalities, the visible and the LWIR, yielding four different scenarios. The
performance of the IP algorithms has then been benchmarked for these scenarios,
providing a multimodal evaluation of the low-level processes in computer vision
required for a further integration in a vision-based navigation system.

The presented benchmarks have shown that features in the LWIR domain are
generally more repeatable than in the visible. In terms of matching score, the
difference between the two modalities is smaller when the target appears small in
the FOV of the camera, and greater at shorter distances in favour of the LWIR,
meaning that the shadows and noise in the visible become more noticeable and the
algorithms become more sensitive, which could be a limitation of this modality for
short ranges. Conversely, this could mean an advantage of using LWIR imaging as a
way to bypass the difficulties of optical navigation relative to a complex spacecraft
bearing non-imaging-friendly components such as MLI.

In terms of the analysis of feature descriptors, it was found that the performance
depends on the type of feature used: when DoG features were used, the performance
is better on the visible, but the performance became better on the LWIR with
Fast-Hessian features. The latter were shown to be larger in radius than the former,
hence capturing a larger support region.

The results also shown the advantage of thermal imaging in eclipse sequences.
Using visible imaging, all detectors have shown a decline in matching score, and
the benchmarking of the descriptors resulted in a lower number of matches and
elevated false positives. Regardless of the sequence, the IP algorithms have performed
substantially worse when testing large baseline transformations, which could hinder
the development of model-based visual navigation pipelines when only feature points
are used.

With respect to computation times, it was found that, for a fixed number of
75 features per frame, only one of the detectors (DoG) and two of the descriptors
(LIOP, FREAK) exceed the computation budget of 1000 ms. FAST has shown the
largest speed-up factor (814) with respect to the traditional DoG, and in general the
corner detectors were faster to compute than the blob detectors. As expected, the
binary descriptors (ORB, BRISK) demonstrated lower running times with respect to
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SURF, SIFT, LIOP; the exception was FREAK, although its large processing time
was subsequently shown to be related to its current OpenCV implementation in the
ARM architecture.

The benchmarks have additionally provided an interesting insight into the state-
of-the-art baseline algorithms such as SIFT and SURF. The latter, for instance,
provided higher scores with Fast-Hessian features than with its native detector, DoG.
In general, the results have motivated combining different detectors and descriptors
to boost performance. Overall, a combination of Fast-Hessian with FREAK is
capable of providing adequate performance for a vision-based navigation in the
context of ADR. However, it is currently compromised by its current implementation
in the low-performance ARM processor. Fast-Hessian + BRISK offers similar
performance and is computationally efficient, as it was shown to run inside the
boundaries of the considered low acquisition frame-rate, taking up slightly over
20 % of the computational budget, leaving the remaining 80 % open for the relative
pose estimation tasks. Furthermore, the benchmark of Fast-Hessian + BRISK is
comparable in both spectra, meaning it could potentially be used for a multimodal
navigation algorithm, analysing a frame of each modality per cycle, and it would
still perform the detection and description tasks in less than half of the budget with
lower memory usage.

Given the conducted analysis, it should be noted that other detector/descriptor
combinations that comply with the hardware requirements are possible. Recommen-
dations for future work would include additional experimentation with algorithms
besides the ones tested herein, e.g. ORB with its native descriptor. An additional
direction to follow would involve an investigation of the improvement of the perfor-
mance of IP algorithms for model-based navigation. Lastly, a further future research
avenue could consist in analysing the embedded board performance when running
the full navigation algorithms, developed in Chapters 4 and 5, that make use of
feature detectors and descriptors.
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CHAPTER 4

Markerless Multi-View Monocular Pose
Estimation

In this chapter, a method of estimating the pose of a non-cooperative target
for spacecraft rendezvous applications employing exclusively a monocular
camera and a three-dimensional model of the target is proposed. This model
is processed to build an offline database of pre-rendered keyframes with
known poses. Then, an online stage solves the model-to-image registration
problem by matching two-dimensional point and edge features, detected by
the camera, to the database. The combination of these two types of features
is analysed in terms of robustness for large keyframe displacements and
computational efficiency.

4.1 Motivation

Active navigation sensors, such as lidar, have traditionally been the “go-to”
tool for proximity operations in space (J. Christian et al., 2011) by having the

advantage of being invariant to illumination changes and supplying range information.
The latter cannot be intrinsically recovered by a camera (unless paired with a second
one), and the basis of relative motion estimation for camera-based systems is rather
the extraction of two-dimensional features from the captured image of the scene. As
monocular systems slowly but surely gain the necessary traction to replace lidar due
to their attractive budgeting properties, wide-scale image processing (IP) techniques
are being explored to complement them.

Such techniques for pose estimation can be categorised into two main classes:
model-free and model-based. Model-free methods do not require previous knowledge
of the scene or target at hand, working by jointly estimating the camera’s motion
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through the unknown environment and a mapping of it, in a process termed visual
simultaneous localisation and mapping (VSLAM; Karlsson et al., 2005). For some
platforms, however, the overall uncertainty of the estimation could inordinately
grow in the event of rapidly-changing imaging conditions. In these cases, it can be
advantageous to exploit existing a priori information about the three-dimensional
structure of the scene. If a model of it exists, the camera motion can be evaluated
by matching the 2D features from the image with the 3D reference points. Then,
the camera can be localised with respect to the scene in terms of the position and
attitude that yield the best alignment between these matches, effectively solving
the model-to-image registration problem. This notion is naturally extensible to
spacecraft relative pose estimation: the scene becomes reduced to a single target
body (or potentially multiple, in the case of formation flying missions), with which
the frame of reference translates and rotates accordingly.

Furthermore, the nature of this model is directly related to the level of cooperation
of the mission: a target that is fitted with specialised artificial markers for model-
based solutions falls under cooperative rendezvous. These markers are placed at
known points on the surface of the target and facilitate detection by the camera
system through properties such as light emission (Junkins et al., 1999) or known
geometric patterns (G. Zhang et al., 2016). Conversely, non-cooperative rendezvous
(NCRV), by definition, does not rely on marker-based systems. In this case, a model
of the target can be provided in the form of a computer-aided design (CAD) that
provides textural and structural information with relatively high fidelity, which is a
reasonable assumption to make for manufactured objects such as satellites.

This chapter aims to investigate the feasibility of a model-based approach for
non-cooperative spacecraft relative pose estimation. The rationale is that, by shifting
most of the computational burden to an offline training phase, the advantages of
model-based estimation can be taken advantage of while bypassing the need for
complex rendering hardware. The limitations of point matching for wide baselines
are combatted with the introduction of edges. The iteratively reweighed least squares
(IRLS) formulation is utilised to efficiently combine both types of features based on
the estimated quality of the matching. Furthermore, it is shown how the covariance
of the IRLS solution can be used to reset the pose estimate in case of convergence
towards a local minimum. The proposed framework is tested on Simplesat, a modified
spacecraft model based on the design of Envisat where the size of each module has
been made more balanced and dynamic lighting has been removed. The goal is to
allow for a preliminary benchmark of the developed methods in terms of the tumbling
motion alone.
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Remark 4.1: Associated Publications
This chapter is based partly on the following published work:

[C1] D. Rondao and N. Aouf (Jan. 2018). “Multi-View Monocular Pose Esti-
mation for Spacecraft Relative Navigation”. In: 2018 AIAA Guidance,
Navigation, and Control Conference. Kissimmee, FL: American Institute
of Aeronautics and Astronautics. doi: 10.2514/6.2018-2100

4.2 Related Work

Recent work has shown VSLAM to be executable in real-time with good performance
using keypoint detectors and tracking features from frame to frame (Mur-Artal et al.,
2015) or even the raw image pixel intensities themselves (Engel, Schöps, et al., 2014).
VSLAM has also been demonstrated to be applicable to relative navigation with
an artificial target under certain conditions; however, developments for monocular
systems lack validation either on space environments (Augenstein and Rock, 2009) or
on tumbling cases (Dor and Tsiotras, 2018). Furthermore, a considerable disadvantage
is that the scale of the estimated trajectory cannot be recovered: the methodology
is reliant on the triangulation of features matched at different time-steps, but the
geometrical relationship between them obeys the epipolar constraint, of which the
essential matrix is a homogeneous quantity and hence only has five degree-of-freedom
(DOF) rather than six (Hartley and Zisserman, 2004).

Contrarily, model-based approaches assume that information about the three-
dimensional structure of the target is known a priori. In this case, IP algorithms
are employed to solve the model-to-image registration problem, i.e. the coupled
pose and correspondence problems, the latter which consists in establishing matches
between the target’s 3D structural information and the 2D features obtained by the
camera (i.e. perspective-n-point [PnP], thus avoiding the aforementioned issue of
scale ambiguity), and which is often overlooked in pure guidance, navigation and
control (GNC) literature. In the circumstances where the target is artificial, such
as in active debris removal (ADR), on-orbit servicing, or docking, it is justifiable to
assume that its structure, or at least part of it, is known.

Within this approach, two paths can be followed for non-cooperative systems
(Lepetit and Fua, 2005): tracking by recursion or tracking by detection. For the
former, the system is initialised with a pose estimate and propagated by tracking
features from one frame to the next. A prominent technique in this category is
edge-based tracking (Drummond and Cipolla, 2002) of industrial CAD models. It
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is assumed that the camera motion between frames is limited such that sampled
3D control points from these models are reprojected onto the image plane using an
expected pose accompanied by a one-dimensional scan to locate the corresponding
edge on the feature space. Additional control points can be rendered as the found
edge is subsequently tracked to the next frame. The motion estimation problem is
cast in terms of a Lie group formalism to recover the pose based on the minimisation
of the distance between corresponding features. This method has been successfully
applied to spacecraft pose estimation first by Kelsey et al. (2006) using a wireframe
model of the target. It would later form the basis for the Goddard Natural Feature
Image Recognition (GNFIR) algorithm, which was tested in-orbit during the SM4
mission to the Hubble Space Telescope (HST; Naasz et al., 2010). Neither application
tackled uncontrolled tumbling of the target.

Shortly after, Comport et al. (2006) introduced the virtual visual servoing (VVS)
pipeline, which re-purposed the problem in terms of a visual servoing control law, in
which the goal is to move a camera to observe a given object at a given position in
the image by minimising the error between the desired state of the image features
and the current state. This allowed the extension of Drummond and Cipolla’s (2002)
method towards the tracking of model straight lines, circles, cylinders, and spheres
through the definition of specific “interaction matrices” for each geometric primitive.
Later on, Petit et al. (2013, 2014) upgraded the VVS pipeline to include information
from colour and point features for tracking. It also used hardware acceleration
based on graphics processing units (GPU) for the real-time rendering of the target
spacecraft’s model, allowing it to tackle the tumbling problem. On the other hand,
this represents a significant drawback as it makes an implementation on current
flight-ready hardware unlikely. Nevertheless, advances in model-based methods for
the past decade have continued to focus on feature tracking either by disregarding
the initialisation stage (Zou et al., 2016) or by assuming that the chaser images the
scene from a constant viewpoint (Cai et al., 2015; Gansmann et al., 2017; Oumer,
2014), limiting their use for rendezvous when prior knowledge of the target’s attitude
is not known.

Tracking by detection consists in matching 2D image features to a database
of training features that have been pre-computed offline. In the case of three-
dimensional targets, this database is often obtained from a set of rendered viewpoints
of the object, i.e. keyframes (Vacchetti et al., 2003, 2004). Despite the popularity of
tracking methods for space applications, there have been proposals to apply detection
methods to the problem: a thorough search of the relevant literature yielded Cropp’s
(2001) doctoral thesis as the first of this kind for the recovery of the full 6-DOF
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pose of a spacecraft, where, based on Dhome et al.’s (1989) and Lowe’s (1991)
work, pre-generated 3D edge features of a model of the target were matched to
detected 2D image edges to retrieve the pose. Textureless features such as edges
(Abderrahim et al., 2005) or ellipses (C. Liu and Hu, 2014) gained popularity due to
their robustness, but the matching process is often complex and relies on multiple
hypotheses and long convergence times. This has recently shifted the focus towards
point features, which can be efficiently matched using descriptors. The challenge in
this case is in achieving robustness between test and train images (J.-F. Shi, Ulrich,
and Ruel, 2016), as these are often dissimilar in terms of baseline and illumination
conditions; this has been alternatively tackled by in situ keypoint triangulation to
shift the problem towards 3D descriptors (Post and J. Li, 2018).

The method introduced in this chapter takes inspiration from the work of Vacchetti
et al. (2003, 2004), who proposed the first tracking by detection system using more
than two keyframes, but with some important developments:

(1) Feature point matching is performed by resorting to invariant detectors and
descriptors (Chap. 3), as opposed to template matching supported by planar
homographies; and

(2) The solution is stabilised by relying only on the reprojected contour edges of
the model, rather than the full depth map.

The importance of these points for space systems is reflected on the fact that
they eliminate the need for specialised hardware for the rendering of complex models
such as in (Petit et al., 2013) or (Zou et al., 2016).

4.3 Methodology
The goal of the proposed method is to robustly estimate the camera pose relative to a
tumbling target solely from reference keyframes. The keyframes are generated offline
based on a CAD model and depict the target under different viewpoints and consist
of a textural pass and a depth map pass. The former is used to extract 2D features
and the latter to annotate them with 3D information. All the necessary renderings
are confined to this stage, dramatically reducing the computational requirements for
the online stage, where the structural information is conveyed by 2D-2D matching
of detected features to the current keyframe. An IRLS scheme is used to combine
information from the matching of the two used feature types and to recover the
the pose. The next keyframe is picked based on this estimate. Figure 4.1 depicts
the high level structure of the method. Section 4.3.1 summarises the used feature
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Figure 4.1: High level view of the proposed method. A three-dimensional model is
used to learn the structure of the target and to generate keyframes annotated with
two-dimensional features in an offline stage (red). During the online stage, detected
features on the target are matched to the current keyframe (blue). The relative
camera pose is recovered from the 2D-3D association.

detection and matching strategies. Section 4.3.2 reviews the IRLS method for pose
estimation. Lastly, Section 4.3.1 describes the complete algorithm.

4.3.1 Local Feature Detection and Matching

The model-to-image registration problem can traditionally be solved exclusively using
2D-3D point correspondences. In this case, the problem is specifically termed PnP.
Notwithstanding the many different approaches in the literature towards its solution
(e.g. Lepetit, Moreno-Noguer, et al., 2008, Kneip et al., 2014, or Ferraz et al., 2014),
point-based features are not free from drawbacks, and a relative motion solution
would benefit from combining different types of features. For the purpose of this
work, point and edge features are combined to estimate the pose.

4.3.1.1 Feature Point Detection in Scale-Space and Binary Description

The advent of the early feature point detectors (Harris and Stephens, 1988) did
not bring about any clear-cut method to match them. Patches of pixels centred on
the corner (templates) would be extracted and matched with others based on the
minimisation of their sum of squared differences (template matching; Szeliski, 2011,
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Chap. 8). This meant that corner matching was limited to differences in translation,
admitting only minute perspective distortion between templates. Approaches such
as the one by Vacchetti et al. (2003) have tackled this issue by registering the local
surface normal of each template and then warping it according to a plane-induced
homography recovered from the previously estimated pose.

The present method proposes instead to take advantage of the state-of-the-art
keypoint detectors and descriptors benchmarked in Chapter 3 which carry an innate
invariance (up to a limit) towards wide baseline matching. Based on the positive
matching score results obtained for the visible wavelength and its ability to extract
distinctive features, interest points are extracted using the Fast-Hessian detector
(Bay et al., 2006), which approximates the Laplacian of Gaussian (LoG) operator
with box filters, granting it a speed factor of 8× when compared to difference of
Gaussians (DoG; Lowe, 2004).

In the same manner, keypoint information is encoded into binary strings using the
Fast Retina Keypoint (FREAK) descriptor (Alahi et al., 2012), which was shown to
perform best for visible sequences in combination with Fast-Hessian. Furthermore, the
matching performed through Hamming distance minimisation makes this operation
fundamentally faster than most of its Euclidean distance-based counterparts.

4.3.1.2 Edge Detection with False Positive Control

The results from Chapter 3 suggest that state-of-the-art keypoint detectors and
descriptors suffer from some performance degradation during rendezvous sequences
when considerable transformations are experienced. To further robustify the approach,
the inclusion of edge features is proposed. Effectively, the former are not always
impervious to illumination changes, and matching failure due to partial occlusion is
a possibility. In contrast, the latter are typically less distinctive but carry an extra
degree of robustness by showing stability towards such conditions (Lepetit and Fua,
2005).

Standard IP edge detection techniques that rely almost exclusively on the gradient
computation of the intensity image are greatly affected by noise and rich, dense
textures. Approaches such as Canny’s (1987) introduce non-maximum suppression
and hysteresis thresholds to combat this at the expense of losing detail. Instead,
one step farther is taken and line segment features are computed for test images
with the Edge Drawing Lines (EDLines) detector (Akinlar and Topal, 2011). The
algorithm is divided into three main steps. First, the edge drawing method is applied:
the greyscale input frame is filtered to remove noise and the gradient magnitude
and orientation are computed at each pixel; peaks in this gradient map are marked
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as anchors due to their high probability of being edge elements; anchors are then
connected by drawing edges between them. Secondly, line segments are extracted
from the generated anchor chains using a least squares line fitting method. Lastly,
the segments are subject to a validation process: for each line segment, the gradient
orientation is computed for each pixel along it to assess the number of aligned pixels.
The number of false alarms for the segment is then evaluated as

NFA(n, k) = W 2H2
n∑
i=k

(
n

i

)
pi(1− p)n−i, (4.1)

where n is the length of the segment, k is the number of aligned pixels, p = 0.125 is
the accuracy of the line direction (the alignment computation is discretised into 8
bins), W,H are the width and height of the image, respectively, and the brackets
signify the binomial coefficient. The line segment is accepted as valid if NFA ≤ 1.

EDLines is tested in its inception manuscript against classic line feature detection
algorithms such as Canny combined with the Hough transform (Duda and Hart, 1972),
where more accurate, well-localised edges with considerably less false detections are
obtained while simultaneously reducing the computational effort.

Initial experimentation with state-of-the-art line segment feature descriptors (e.g.
line band descriptor; L. Zhang and Koch, 2013) for a matching strategy analogous
to point features did not produce satisfactory results, even for cases of very small
baselines. As such an alternative strategy was adopted, similar in spirit to Drummond
and Cipolla’s (2002), where the keyframe model edge features are projected onto the
image using the current pose estimate, and then matched to the detected EDLines
features by searching along the projected local normal vector, n(i). As this approach
can be prone to ambiguous matches, only the model edges corresponding to the
target’s contour (i.e. the “limb”) are kept in the database. This also provides a
natural way of working with complex spacecraft models without the need of explicitly
modifying the CAD.

4.3.2 Iteratively Reweighed Least Squares Minimisation

Given a frame of reference
~
F t attached to the target and the camera frame of

reference
~
F c connected to the chaser, the goal is to find the pose matrix Tct := T

that maps
~
F t to

~
F c. The Gold Standard algorithm (Hartley and Zisserman, 2004)

to recover an estimate T̂ from 2D-3D correspondences can be shown to be optimal
in the maximum likelihood sense, but it cannot inherently handle the presence of
spurious matches, i.e. outliers. Rather, the standard formulation is augmented with
a robust loss function ρ as:
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T̂ = arg min
T

n∑
i=1

ρ

(
ri (T )
σi

)
, (4.2)

where ri(T ) := ri and σ2
i are the residual and variance of the ith match, respectively,

and n is the total number of matches. A robust ρ(x) is one with a bounded influence
function ψ(x) := dρ(x)/ dx, in which case it is termed an M-estimator. Analogously,
T̂ becomes an M-estimate of T . The scale σi can be estimated from the data points
by assuming homoscedasticity (i.e. assumption of equal variances) and computing
the median absolute deviation (Stewart, 1999):

σ̂ = 1
Φ−1(0.75)

√
median

i∈n
r2
i (4.3)

where Φ−1 is the inverse of the cumulative normal distribution.
The iterative solution to Equation (4.2) can take multiple forms, as noted in

Chapter 2 (§ 2.4.1.1). Due to favourable results obtained by the state-of-the-art
(e.g. Petit et al., 2013; Zou et al., 2016), the proposed pipeline employs the IRLS
formulation, which can be solved with any of the classical least squares techniques,
with the additional step of calculating weighing factors wi = w(xi) := ψ(xi)/xi using
the pose estimate T̂ (κ) at time τ = τκ in the computation of the new T̂ (κ+1). The
Levenberg-Marquardt (LM) method is adopted for the IRLS minimisation, for which
the solution at each step is computed as (Eqs. [2.27], [2.28], and [2.70]):

ξ = −
(
J>WJ + µI

)−1
J>Wr, (4.4)

T̂ (κ+1) = T̂ (κ) � ξ, (4.5)

where ξ := [ρ> φ> ]> ∈ R6 is an element of se(3), J is the Jacobian matrix, W :=
diag(w1/σ̂, . . . , wn/σ̂) is the scale-normalised weights matrix, r := [ r1 . . . rn ]> is
the vector of residuals, µ is the LM weight factor, and I is an identity matrix of
appropriate dimensions. The “box-plus” operator, �, denotes composition of an
element of se(3) with one of SE(3) such that the result also belongs to SE(3), thus
guaranteeing that the estimated T̂ (κ+1) at each new time-step is a valid pose.

4.3.2.1 Point-based Features

By computing the corresponding feature descriptors of each detected point feature
z(i), these can be matched to other features in one of the views from the database, for
which the coordinates of the corresponding points Pi in

~
F t, p(i), have been registered

offline. Using the obtained set of 2D-3D correspondences, the following function is
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minimised:

∆p = 1
np

np∑
i=1

ρp

(
r

(p)
i

σ̂p

)
, (4.6)

where ρp is the Tukey M-estimator associated to the point features, r(p)
i is the residual

for the ith point match, and np is the number of point matches.
The definition of the residual function in the Gold Standard algorithm stems

directly from the manifold theory introduced in Chapter 2, Section 2.4.1.1. Since the
structural points p(i) are obtained via ground truth depth maps for keyframes with
perfectly known T , they are considered to be measured with maximum accuracy, and
the error is thus concentrated in the measured image points z(i). In other words, the
measurement space X (see Fig. 2.6, Chap. 2) is a manifold embedded in R2np (i.e. the
measurement x is construed by stacking the x and y components of all z(i)) and the
parameter space U is 6-dimensional (i.e. the dimensions of se(3)). Furthermore, as
each measured image point is obtained algorithmically with the same feature detector,
each z(i) is modelled as a random variable sampled from an isotropic (Gaussian)
distribution. The maximum likelihood estimate (MLE) of the pose is in this manner
obtained by minimising the Mahalanobis distance (see Eq. [2.59], Chap. 2) which is
reduced to the standard 2D geometric, or reprojection, error:

r
(p)
i = dπ

(
z(i),p(i))

:= π
(
KT̂ ⊕ p(i)

)
− z(i).

(4.7)

with r(p)
i := r

(p)
2i−1:2i,: defined as the 2× 1 ith sub-block of the residual vector,

decomposed into both image plane components. Each 2np × 6 block, J(p)
i = J(p)

2i−1:2i,:,
of the Jacobian matrix, J(p), corresponding to the residual of each match is known
from the VVS theory (Comport et al., 2006; Petit et al., 2014):

J
(p)
i =


f1

p
′(i)
3

0 −f1
p
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1

p
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p
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(4.8)

evaluated at T = T̂ , where p′(i) = [ p′(i)1 p
′(i)
2 p

′(i)
3 ]> = T ⊕ p(i) is taken to be

the mapped p(i) to
~
F c, and f1, f2 are the focal length normalised by the sensor’s

horizontal and vertical dimensions, respectively. The derivation of Equation (4.8) is
presented in Chapter 5.
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4.3.2.2 Edge-based Features

Registered model edges are sampled to a discrete number of 3D points, which are then
reprojected onto the image plane, yielding the following edge-based minimisation
function:

∆e = 1
ne

ne∑
i=1

ρe

(
r

(e)
i

σ̂e

)
, (4.9)

where ρe is the Tukey M-estimator associated to the edge features, r(e)
i is the residual

for the ith edge match, and ne is the number of sample edge point matches. The
residual function incorporates the normal distance between the detected and the
reprojected edge points:

r
(e)
i = d⊥

(
z(i),p(i))

= n(i)>dπ
(
z(i),p(i)) , (4.10)

where n(i) is the normal of the ith projected sampled edge point. The computation
of the edge Jacobian matrix is approximated by the product of Equation (4.8) with
the normal:

J
(e)
i ≈ n(i)>J

(p)
i . (4.11)

4.3.2.3 Combining Point and Edge Features

As stated by Petit et al. (2014), the IRLS framework provides a straightforward
mechanism to couple different types of features for the estimation of the relative
pose. The function to minimise becomes:

∆ = αp∆p + αe∆e, (4.12)

where αp, αe are weighing factors that measure the contribution of each feature type.
To compute these weights, the method of Zou et al. (2016) is followed, which states
that a larger number of features and a smaller residual vector should contribute
more towards the estimated solution. This philosophy leads to the combination of
the strong points of each feature type. Thus, the weight is increased proportionally
to the number of matches but decreased exponentially when the residual increases:
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αp = np√
∆p

exp (−∆p) , (4.13)

αe = ne√
∆e

exp (−∆e) , (4.14)

followed by a normalisation:

αp ←
αp

αp + αe
, (4.15)

αe ← 1− αp. (4.16)

Lastly, the factors λp = αp/np, λe = αe/ne are defined to build a global residual
vector and Jacobian matrix, respectively, via weighed stacking of the ones from each
feature type:

r> =
[√

λpr
(p)> √

λer
(e)>
]
, (4.17)

J> =
[√

λpJ
(p)> √

λeJ
(e)>
]
. (4.18)

A global weighing matrix is formed by arranging the respective matrices from each
feature type as:

W = blockdiag
(
W (p),W (e)) . (4.19)

Using the computed r, J , andW , Equations (4.4) and (4.5) can be used to iteratively
solve for the pose.

4.3.3 Biphasic Approach to Pose Estimation

The procedure for the adopted pose estimation architecture is now presented. This
architecture can be branched into two main aspects: the first one is the creation
of an offline database using the CAD model of the target, whereas the second one
is an online stage which compares information between the buffer images and this
database to yield the solution.
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Figure 4.2: Visual representation of the employed multi-view sampling for training.
Different viewpoints are obtained by changing the camera’s (in blue) elevation,
azimuth, and distance with respect to the target (red) in the

~
F t frame. The camera’s

front face is highlighted (green).

4.3.3.1 Offline Database Creation

Multi-View Sampling

The architecture of the offline database takes inspiration from the multi-view object
detection literature (Liebelt et al., 2008; Thomas et al., 2006), consisting in the
rendering of different views of the target model. To accomplish this, a

~
F t-centred

ring is defined with a minimum radius such that it encases the complete model. Then,
a virtual camera is positioned at a certain point on the ring pointing at the origin of

~
F t and an image of the target is rendered from that viewpoint. By changing the
position of the virtual camera along the ring, as well as the radius itself, a collection
of m keyframes K = {K(1), . . . ,K(m)} can be generated such that the target is covered
from multiple perspectives. Figure 4.2 is an illustrated example of such a sampling
strategy where the relative motion is expected to be mostly coincident with the

~
t(1) −

~
t(3) plane.

Each keyframe K(i) = {I(i),K(i),T (i),Z(i)
train,D

(i)
train,P

(i)
p ,P(i)

e } is in itself a set of
data structures: the rendered image I(i); the intrinsic and extrinsic camera matrices
K(i),T (i), respectively, which are derived automatically using the CAD software; the
set of detected Fast-Hessian training keypoints Z(i)

train = {z(train,1), . . . ,z(train,np)} and
corresponding FREAK descriptors D(i)

train = {d(train,1), . . . ,d(train,np)}; and lastly the
3D points and edges in the

~
F t frame P(i)

p = {p(p,1), . . . ,p(p,np)}, P(i)
e = {p(e,1), . . . ,

p(e,ne)}, respectively.
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Data training

There are several ways to extract the P(i)
p and P(i)

e required to train the keyframes
from the database. A simple method consists in backprojecting each point and edge
extrema onto the surface of the CAD model: this is achievable by first computing the
ray that passes through the detected features by inverting the reprojection equation,
π, as in Equation (2.8). Then, since each face in the CAD mesh can be decomposed
into triangles, the corresponding 3D model features can be found using a ray-triangle
intersection algorithm (e.g. Möller and Trumbore, 1997).

However, this method is not free from drawbacks. Despite the 3D registration
being meant to occur offline, the most simple ray-triangle intersection algorithms
can prove computationally costly as they require every mesh triangle to be tested.
This is particularly impactful when dealing with complex CAD models. Another
drawback is that the edge registration might fail for some cases, as these features
are located on the boundary of the model’s 2D projection.

As the proposed method does not seek to become encumbered by restrictions
such as the need to work with simplified CAD models, the alternative approach of
depth mapping is explored, i.e. the generation of training images containing encoded
information relating to the distance of the scene objects with respect to the camera
viewpoint. For each K(i) in K, a corresponding depth map M (i) ∈M, i ∈ {1, . . . ,m}
is generated in parallel using the same CAD software by exporting the z-buffer
output of the scene. Since the depth data is encoded in the image’s intensity values,
this means that for a 2D feature detected at image plane coordinate z(i), the scale of
the corresponding 3D point with respect to the origin of

~
F c is found by accessing

the same coordinates on the depth map. An image from the database and the
corresponding generated depth map are represented in Figure 4.3. The figure also
shows the corresponding 2D contour edge features obtained by applying Canny’s
(1987) method to M (i), which is an added benefit of the latter, as the lack of
texture yields a noiseless feature output, minimising their 3D registration and in
turn increasing the accuracy of the online matching process.

4.3.3.2 Online Pose Estimation

Nominal Estimation

The online pose estimation loop consists of the following steps:

(1) Point features Z(p,κ)
query and edge features Z(e,κ)

query are detected in the current camera
image at τ = τκ;

(2) The features are matched to features from the selected model keyframe K(κ);
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(a) Textured image I(i) (b) Depth map M (i) (c) Extracted edges

Figure 4.3: Offline training. For each textured training image, an equivalent depth
map is rendered, here normalised to an 8-bit depth image for visualisation where
darker tones indicate a nearer surface, allowing for the 3D registration of detected
features. The true contours are easily obtained from the latter.

(2-a) In the case of feature points, correspondences D(κ)
query ↔ D(κ)

train are obtained
directly via descriptor matching based on Hamming distance minimisation,
followed by a nearest-neighbour distance ratio (NNDR) test1 on the two
closest descriptor matches, i.e. the matching of the descriptors d(query,i)

and d(train,j) is accepted if the following condition is met:

dHam(d(query,i),d(train,j))
dHam(d(query,i),d(train,`)) < µ, (4.20)

where dHam is the Hamming distance, d(train,j),d(train,`) are the 1st and
2nd nearest neighbours to d(query,i) and µ is a threshold ranging from 0 to
1;

(2-b) In the case of edges, each template segment is sampled into 3D points
P(e,i) which are then reprojected onto the query image using the pose
estimate from the previous time-step T̂ (κ−1), and each point is tested for
a potential match by searching for the closest detected edge along a 1D
normal search path with an empirically defined length;

(3) The obtained set of 2D-3D feature correspondences is used in the LM minimi-
sation sub-loop of Equations (4.4) and (4.5) to solve the IRLS problem. The
sub-loop is initialised with the previous pose estimate T̂ (κ−1) and outputs a
current estimate T̂ (κ);

1Also termed the Lowe (2004) Test, after his work with SIFT descriptors for object recognition.
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(4) The reference keyframe for the next time-step K(κ+1), is selected such that the
Euclidean distance between T̂ (κ) and the registered T (train,κ+1) is minimised.
The loop returns to Point (1) and is repeated for the new acquired image.

Initialisation

In order to launch the nominal estimation loop, the initial pose estimate T̂ (0) and
database model keyframe K(0) are recovered. To perform this, a search is carried
out by matching the detected point features P(p,i)

query in the initial frame to the union
of all descriptor sets in K, i.e. {D(1)

query ∪ · · · ∪ D(m)
query}. By using a PnP algorithm

that does not require an initialisation, an approximate, initial pose hypothesis can
be computed for each set of correspondences. In the proposed method, the EPnP
(Lepetit, Moreno-Noguer, et al., 2008) method is used in combination with Random
Sample Consensus (RANSAC; Fischler and Bolles, 1981) to simultaneously obtain
a pose estimate and reject outlying matches. With the obtained T̂ (0), the initial
selected keyframe is chosen analogously to Point (4) of the nominal estimation
procedure.

It must be noted, though, that each descriptor is a multidimensional vector
and, consequently, solving the nearest-neighbour problem over the whole set K
simultaneously using a standard brute-force algorithm is not adequate for real-time
processing. In order to overcome this hurdle, a hierarchical k-means tree (Gifford,
2014) is built for D(1)

query ∪ · · · ∪ D(m)
query. First, a branching factor ktree that defines

the number of clusters at each level of the hierarchy is selected. Then, the set of
descriptors is grouped into ktree clusters using a standard k-means algorithm, cutting
the tree such that their variance is minimised. Lastly, each sub-cluster is recursively
clustered until a lower bound is reached. While this represents an approximation to
the exact brute-force searching, it can be performed in a fraction of the computation
time, being particularly useful when there is large inter-frame motion.

Reset

In order to prevent the degradation of the IRLS solution, a monitoring scheme of the
associated translation and rotation covariances is proposed to apply a reset if they
exceed a certain threshold. This reset consists in generating a new pose estimate
from the current 2D-3D point feature matches again with EPnP and RANSAC.
The new solution is only accepted if it yields a given minimum number of inliers,
after which the IRLS is resumed; otherwise the reset is rejected and a new one is
attempted after a cool-down period, i.e. after a fixed number of frames.
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Table 4.1: Simulated camera properties for the SIMPLESAT dataset.

Parameter Unit Value

Resolution px × px 640× 640
Focal length mm 16.5
FOV deg × deg 44× 44
Measurement rate Hz 10

4.4 Experiments
To validate the proposed method, the performance is evaluated in terms of the
position and attitude estimation errors for a continuous rendezvous sequence. The
method was implemented in C++, the OpenCV library (version 3.0) was used for
computer vision and image processing related functions. The native implementations
for the Fast-Hessian feature point detector, FREAK feature point descriptor, and
EDLines line detector were used. For the initialisation stage with hierarchical
clustering, the Fast Library for Approximate Nearest Neighbours (FLANN) library
was used (Muja and Lowe, 2009). Images of the camera sequence and keyframes are
generated using the open-source 3D computer graphics software Blender (version
2.78). All simulations are carried out on an Intel® CoreTM i7-6700 @ 3.40 GHz × 8
core central processing unit (CPU), 16 GB RAM system.

4.4.1 Dataset
Rather than testing directly on the ASTOS dataset, it is proposed instead that the
method developed in this chapter be tested first on a rendezvous sequence depicting an
ADR scenario involving former remote sensing satellite Envisat, but under less severe
conditions. Envisat is a complex object formed by several modules, namely a solar
panel array, a synthetic aperture radar (SAR), and several antennae, among others,
connected to a main body unit which is covered by multi-layer insulation (MLI). The
modified spacecraft, which has been termed Simplesat, attempts to approximately
equalise the size of each module in order to increase the quality of feature detection.
The resulting dataset, SIMPLESAT, features constant illumination only, minimising
specular lighting and shadows. However, each model part is still textured differently
and therefore looks and reacts to illumination differently. Ultimately, the point of
SIMPLESAT is to provide an initial analysis of the pose estimation algorithm mostly
in the face of tumbling motion.

SIMPLESAT is a continuous rendezvous trajectory synthetically generated by a
simulated chaser-mounted camera in the visible wavelength with properties shown in

149



4. MARKERLESS MULTI-VIEW MONOCULAR POSE ESTIMATION

Figure 4.4: Temporally equidistantly sampled frames from the SIMPLESAT dataset
(left to right, top to bottom). The target is a modified version of Envisat, tumbling
at a constant rate and mode such that self-occlusion is minimised, and maintaining
a fixed distance from the chaser spacecraft.

Table 4.1. The target, with body axes defined in Figure 4.2, is located at a fixed
position with respect to

~
F c measuring 8 m in distance, where the

~
c(3) and

~
t(3) axes

are aligned at time τ = τ0. The target rotates at a constant rate of 5 deg s−1 along
the

~
t(2) axis. The sequence lasts 72 s in total, representing a full revolution. The

trajectory is represented in Figure 4.4. A total of 19 keyframes are used to build
the database (see Figure 4.5). All keyframes are rendered at the same resolution as
SIMPLESAT.

4.4.1.1 Testing

The fine pose estimation results are presented in terms of the component-wise position
and attitude errors respectively:

δt̃ := t̂− t, (4.21)

δψ̃ := ψ̂ −ψ, (4.22)

where t = [ t1 t2 t3 ]> is the ground truth position vector, ψ = [ψ1 ψ2 ψ3 ]> is the
ground truth vector of Euler angles, and ( •̂ ) denotes an estimated quantity. The
errors are also presented in terms of their norm:

δt̃ := ‖δt̃‖, (4.23)

where, regarding the attitude, the error is given in terms of the error quaternion
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Figure 4.5: Offline-generated keyframes for validation of the proposed method with
the SIMPLESAT dataset. Note how these feature variance in scale, azimuth, elevation,
and FOV crop (cf. Fig. 4.4).

principal angle δq̃, obtained following the well-known relation (Shuster, 1993):

δq = q̂−1 ⊗ q =
[
δe δq

]>
, (4.24a)

δq̃ := 2 arccos (δq) , (4.24b)

4.4.2 Results

The results for the estimated relative pose of the target are portrayed in Figure 4.6
qualitatively and in Figure 4.7 quantitatively. It can be seen that most position and
attitude dimensions are in close agreement with the ground truth for the majority of
the sequence. The largest errors in the pose can be observed in two neighbourhoods
centred on frames 180 and 540; effectively, these correspond to the periods when
the target completes 90 deg and 270 deg rotations, respectively, showing the greatest
degree of self-occlusion in the sequence. This results in the projected surface area of
the target reaching a minimum, thus impacting the pose estimate. Figure 4.8 shows
the estimation error for the sequence. The translation is accurate up to 0.25 m and
the largest error is observed for the

~
c(3) axis, corresponding to the camera boresight,

thus highlighting the challenges of depth recovery in monocular applications. With
respect to rotational motion, the error is kept under 8 deg whereas the ones about
the

~
c(1) and

~
c(2) axes are the largest in magnitude; these are the axes corresponding

to out-of-plane rotation.
Both the position as well as the attitude error maxima occur around frame 470,
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(a) Frame 1 (b) Frame 2 (c) Frame 180

(d) Frame 338 (e) Frame 540 (f) Frame 657

Figure 4.6: Qualitative results for the SIMPLESAT dataset. The model mesh (in
green) is reprojected onto the camera image frames using the estimated pose for
each time-step. (a) Pose initialisation with hierarchical clustering. (b) Immediate
convergence of the solution for frame 2. (c–f) The pose estimate remains robust
throughout the sequence.
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Figure 4.7: Estimated and true values for the target relative position and orientation
per axis in

~
F c. (Top Row) Position error. (Bottom Row) Attitude error.
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Figure 4.8: Estimation error for the target relative translation and rotation.
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Figure 4.9: Standard deviation of the target estimated relative translation and
rotation.

as Simplesat nears the three-quarter turn, whereas the second and third largest
error spikes take place near frames 240 and 560, after the quarter and the three-
quarter turns are carried out, respectively. Moreover, the uncertainty of the IRLS
solution, obtained from the covariance matrix of the linearised solution ξ, is plotted
in Figure 4.9. The reset events as described in Section 4.3.3.2 are also represented:
in blue for accepted resets, and in red for rejected resets that did not produce the
minimum required number of RANSAC inliers. From these plots it can be seen
that the three aforementioned events correspond to successful pose resets. These
represent trade-offs where estimation accuracy is necessarily sacrificed in order to
prevent the Tukey M-estimator from converging to a local minimum. Note how the
uncertainty of the solution is brought down after each successful reset.

By analysing Figure 4.10, it can be observed that the number of inliers and the
minimisation function scores (i.e. the normalised residuals), respectively, tally with
the progression of the error in time. Indeed, an decrease in the number of inliers and
an increase in the residuals correlate with a degradation of the solution. The effect is
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Figure 4.10: Figures of merit for point (blue) and edge (red) features.

more noticeable for the point features, where the decrease in the number of inliers is
sharper and the normalised residuals suffer an increase of approximately 15 % when
compared to edges, for which the increase in residuals is barely noticeable. This
degeneration of the point features may be explained due to errors in the matching
process coming from the topography of Simplesat. The solar panel array consists of
a repetitive grid pattern, whereas the MLI in the main body produces noise in the
images when subject to changing illumination. For the former case, the computed
descriptors might lack sufficient distinctiveness, and for the latter case it is possible
that the features are too disparate from the ones in the database. Both cases will
contribute to a decay in the matching process. The edge features are therefore shown
to be more robust towards divergence between the camera images and the database.

Furthermore, Figure 4.10 also shows the evolution in time of the self-tuning
weights used in the IRLS minimisation process. For the beginning, middle, and
end parts of the sequence the weights favour both types of features nearly evenly,
showing a distribution of 40–60 % leaning towards the edges, which can be explained
by their lower normalised residual magnitude being generally 67 % lower than its
feature point counterpart, even though the latter demonstrates a larger number of
inliers. As the estimation error starts to increase, the weights begin to shift their
influence further towards the edges; in particular, in the vicinity of frame 180, a
weight of at least 90 % is attributed to the edge features, as the algorithm reacts
to the growth of the point features’ residuals and to the decrease in the number of
inliers. Thus, the edge features and the adaptive weighing mechanism prove to be
key in preventing the pose estimation from diverging.

The same effect is observed in the neighbourhood of frame 540, albeit slightly
more conservatively. The point features are seldom weighed more than the edges,
this occurring only for frames 398, 400, and 403, where the number of inliers of the
former peak at 350.

Lastly, Table 4.2 depicts the average computation times for the pose estimation
framework. The initialisation times were obtained by averaging the results of 1000
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Table 4.2: Average pose estimation computation times.

Module Time (ms) Relative (%)

Brute-force initialisation 82.90 -
Hierarchical clustering initialisation 46.71 56.34a

Point detection 17.03 21.68
Edge detection 3.52 4.49
Point description 5.56 7.09
Point matching 3.54 4.51
Edge matching 0.73 0.93
IRLS 48.13 61.30
Nominal total 78.52 100.00
a With respect to the brute-force search counterpart

trials where a random frame from the sequence was considered at each time. This
accounts for the descriptor matching, NNDR test, and pose extraction with RANSAC
+ EPnP. It can be seen that the proposed initialisation with the hierarchical clustering
search cuts the running time in almost half when compared to brute-force searching,
providing a solution with approximately 56 % of the cost with acceptable accuracy
(cf. Fig. 4.6). The nominal pose estimation times were attained by averaging the
results for each frame of the sequence. The mean nominal pose estimation time per
frame is approximately 78.5 ms, equivalent to a mean frame rate of around 12 frames
per second (FPS), where it is again emphasised the potential for real-time capability
as only the CPU is being utilised. This is an improvement of 4 FPS relative to
the work of Petit et al. (2014) which makes use of GPU processing power. The
IRLS module is clearly the costliest one, taking up approximately 61 % of the total
execution time. However, this could be limited by tuning the algorithm’s parameters,
such as the maximum number of input point and edge matches, and the maximum
number of LM iterations, possibly with a trade-off on accuracy, but ensuring the
frame rate is kept above a desired minimum.

4.5 Conclusions and Future Work
In this chapter, model-based solution for relative navigation by using a three-
dimensional model of the target and hybrid features was developed. The importance
of the proposed framework stands on the fact that it does not depend on convoluted
real-time model rendering techniques; instead, a select set of keyframes are rendered
a priori for which 3D points are registered on the surface, allowing the retrieval of the
pose based only on the matching of 2D point and edge features. The incorporated
adaptive weighing algorithm autonomously shifts the influence of both types of
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features based on the quality of their matching.
The method was tested on the SIMPLESAT dataset, a collection of synthetically

generated images of an adapted Envisat model undergoing a tumbling motion,
showing promising results for visual-based NCRV. The obtained solution shows an
attitude error limited to 8 deg and sub-metre translation accuracy for a full target
revolution at a high spin rate, relying only on the CPU. For future work, an inter-
frame tracking module can be added to the present algorithm to further reduce the
error and limit jitter. This idea is explored further in Chapter 5, where the algorithm
is robustified via the inclusion of an extended Kalman filter (EKF) and evaluated
on more challenging datasets. Additionally, the relationship between the number of
keyframes and the pose estimation performance could be investigated.
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CHAPTER 5

Robust On-Manifold Optimisation

This chapter builds upon the method developed in the previous one to reach
additional levels of robustness for satellite relative pose estimation. The
key offline-online dichotomy is maintained, and a coarse-to-fine estimation
philosophy is proposed. The observed facet of the target is tackled as a
classification problem, where the three-dimensional shape is learned a priori
using Gaussian mixture modelling, producing a rough pose estimate. Then,
the solution is refined by minimising two different robust loss functions
based on local feature correspondences. The resulting pseudo-measurements
are then processed and fused with an extended Kalman filter. The entire
optimisation framework is designed to operate directly on the SE(3) manifold,
uncoupling the process and measurement models from the global attitude
state representation. The method is validated on realistic synthetic and
laboratory datasets of rendezvous trajectories with complex targets. It is
demonstrated how it achieves an estimate of the relative pose with high
accuracy over full tumbling motions.

5.1 Motivation

The results attained in Chapter 4 have paved the foundation towards proposing
a fully autonomous, model-based spacecraft relative pose estimation pipeline for

rendezvous. However, two essential questions were left unanswered. The first one is
related to the keyframe selection procedure. The keypoint-based hierarchical k-means
tree proposed in Section 4.3.3.2 sufficed in the case of a restricted number of possible
keyframes and for the simplified SIMPLESAT dataset, but can a good initialisation be
guaranteed in a “lost-in-space” scenario, where no a priori information is available
about the relative pose? And how would it behave when the target is imaged under
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substantially different conditions with respect to the keyframes? The second one
pertains to the robustness of the iteratively reweighed least squares (IRLS) procedure.
The initial results were dependant on the reset mechanic to prevent the IRLS from
becoming stuck in a local minimum. Is this sufficient in the case of more complex
relative motion?

This chapter focuses on answering these two key questions in order to improve
the baseline method from Chapter 4 to propose a complete and innovative relative
navigation framework using a monocular setup on the visible wavelength. In particu-
lar, the role of the initialisation is given special attention, in which the objective is
not only to recognise the nearest keyframe, or viewpoint, from a single camera image,
with no prior assumptions about the pose, but also to provide a first, approximate
estimate of it. This is the first step of a coarse-to-fine approach which will then be
refined using local feature matching. The second step generates two different pose
hypotheses from matching point and edge features and generalised M-estimation.
The previous results showed a correlation between the acceptance of a solution and
its covariance, which suggest a formulation based on stochastic state estimation,
such as the extended Kalman filter (EKF). The classical conundrum of formulating
an (originally) linear filter for a nonlinear problem is the linearisation of the error
state, which can be performed in a seemingly variety of ways. This chapter will
explore the definition of the error on the tangent space of the special Euclidean
group SE(3) itself, providing a concise and elegant way to update the pose using the
exponential map and giving physical meaning to the attitude part of the estimation
covariance. This allows for a shared representation between the M-estimation block
and the EKF block, in which the covariance of the former is directly integrated as
the measurement noise of the latter, naturally extending the optimisation framework
to run continuously on the SE(3) manifold integration in a robust manner.

5.2 Related Work

The focal points of this chapter can be broadly condensed into two fronts: pose
initialisation and pose refinement. Existing work related to the latter has been
previously surveyed in Chapter 4, Section 4.2; this section thus reviews the literature
relevant to the former.

Regardless of either approach taken in model-based pose estimation strategies,
these always benefit from initialisation strategies for the incorporation of three-
dimensional information, either to propagate it in the case of tracking by recursion,
or to reduce the search space in the case of tracking by detection. In the computer
vision literature, this has been treated as a coarse, or viewpoint-aware, object pose
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estimation. Traditional solutions worked by discretising the object’s 3D appearance
into multiple views according to a viewsphere and characterising each bin according
to its projected shape using moment invariants (Breuers, 1999; Dudani et al., 1977;
Reeves et al., 1988). A viewsphere-based approach for relative pose estimation in
space was briefly studied by Chien (1992) and Grimm et al. (1992), but the procedure
relied on range sensors to extract the contour of the target and used local descriptors
to match the query and database views.

More recent methods adopt classification techniques by clustering local features
from each bin into a global representation combined with supervised learning models
such as Bayesian classification (Ozuysal et al., 2009) or support vector machines
(SVMs; Glasner et al., 2011), or with unsupervised ones such as kernel density
estimation (KDE; Mei et al., 2009), to recover the viewpoint. Except for singular
cases (Kanani et al., 2012), initialisers for spacecraft relative pose estimation have
generally not taken advantage of such formulations, resorting instead to local features
and either brute-force matching (Y. Zhang et al., 2015) or iterative methods (J.-F.
Shi and Ulrich, 2016); despite simplifications to the search space (Sharma, Ventura,
et al., 2018; J.-F. Shi, Ulrich, and Ruel, 2017), these methods still rely on testing
multiple hypothesis and discarding outliers, resulting in potentially long computation
times due to the volume of features involved in the process.

Recently, deep learning methods, in particular convolutional neural networks
(CNN), have shown significant improvements of the state-of-the-art for viewpoint
classification (Su et al., 2015; Tulsiani and Malik, 2015). In particular, CNN-based
methods have also begun to be adopted for the problem of spacecraft pose estimation,
fuelled mainly by the European Space Agency (ESA) Advanced Concept Team’s
Satellite Pose Estimation Challenge (SPEC; Kisantal et al., 2020). These approaches
are attractive as they shift the focus away from the feature modelling task, but bear
some disadvantages such as large amounts of required training data, lower robustness
to data outside the training regime, and the need of hardware acceleration (i.e.
graphics processing units [GPUs]) to run in real-time. Such methods are surveyed
in-depth in Chapter 6.

The method developed herein picks up on the concept of the viewring introduced
in Chapter 4 and expands it into a fully-formed viewsphere that encompasses the
full set of possible viewpoints under which a rendezvous target can be observed
from. The ample number of resulting viewing classes are appropriately modelled by a
Bayesian classifier model, which allows the lost-in-space scenario to be quickly solved
from a single monocular image. This initialisation provides a coarse estimate of the
relative pose with an associated keyframe, which is then refined using local feature
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matching. Different hypotheses generated by this refinement step are fused with
an EKF, where the error state is defined to lie on the tangent space of the special
Euclidean group SE(3), providing a concise and elegant way to update the attitude
using the exponential map. The prediction stage of the EKF is taken advantage of
to help predict the locations of the features in the next frame, greatly improving the
matching performance under adverse imaging conditions. The contributions of this
chapter are summarised below:

(1) The tackling of the spacecraft pose estimation for relative navigation as a
connected coarse classification to fine regression task;

(2) The development of a relative pose initialisation method modelling the global
feature distribution of each viewpoint as a mixture of Gaussians to account for
ambiguous shapes;

(3) The introduction of a predictive feature matching technique to reduce the
search space in tracking by detection, adding robustness to scenarios with
tumbling and reflective targets where it would otherwise fail; and

(4) The synergistic integration of geometric pose estimation methods with a navi-
gation filter via the proposed on-manifold optimisation framework, where the
measurement noise input of the latter is automatically computed as a byproduct
of the former, with a consistent representation of the error-states.

Remark 5.1: Associated Publications
This chapter is based partly on the following published work:

[J2] D. Rondao, N. Aouf, M. A. Richardson, and V. Dubanchet (2021).
“Robust On-Manifold Optimization for Uncooperative Space Relative
Navigation with a Single Camera”. In: Journal of Guidance, Control,
and Dynamics. Article in advance, pp. 1–26. doi: 10.2514/1.G004794

5.3 Methodology
Similarly to Chapter 4, the objective of the proposed method is to estimate the
camera pose relative to a tumbling target, making no prior assumptions about the
rendezvous mission other than the knowledge of the target’s 3D structure, as is the
norm with model-based approaches. Figure 5.1 presents a simplified flowchart of the
relative navigation framework’s structure.
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Figure 5.1: High level view of the proposed method. (Red) Offline training stage
where the 3D structure of the target is decomposed into tractable models. (Blue)
Online training stage where the learned models are used to recover the relative pose
for each incoming image (cf. Chap. 4, Fig. 4.1).

The offline training stage has as its objective to discretise, categorise, and represent
the three-dimensional structure of the target so that it can be utilised in the two-
dimensional environment of the online stage. Two sets of images are sampled from
different viewing angles of the target’s computer-aided design (CAD) model. The
first is a set of keyframes, each of which contains textural information from the target
as imaged from that viewpoint. The second is a set of depth maps, each of which
has the same scene structure as its corresponding keyframe, but the value of each
pixel represents the distance of that point in the target to the image plane. For
each keyframe, the shape of the target is mathematically represented using complex
Zernike moments (ZM). The distribution of the ZM feature vector elements per class
is learned using Gaussian mixture modelling (GMM), which will define the likelihood
probabilities in the training of a Bayesian classifier later employed to match the
target’s facet as observed by the on-board camera to the closest keyframe in the
database, defining the coarse pose classification module (§ 5.3.1).
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The keyframes are also processed with a feature point detector. The aim is to
identify keypoints distinguishable enough to be matched to the same keypoint in the
context of the online pipeline. Each keypoint is subjected to a feature descriptor,
and annotated with its position on the target’s structure using the keyframe’s depth
map, generating a 3D-to-2D keypoint catalog to be used with image processing
(IP) algorithms compatible with camera-based navigation. Additionally, the target’s
limb (or contour) in each keyframe is locally sampled into control points using edge
detection. The edge points are converted to 3D using the depth map and grouped
into 3D straight keylines; as in Chapter 4, keyline descriptors are not used, and
alternative strategies were instead designed. The offline training stage is illustrated
in red in Figure 5.1.

The online stage has the purpose of providing a fine pose estimate based on
local feature matching after the closest keyframe has been found using coarse pose
classification (§ 5.3.2). If no estimate of the pose û ∈ U ∼= SE(3) has been determined,
local features are matched by detection: keypoints from the database pertaining
to the current keyframe are matched by brute-force to the ones detected in the
camera image, whereas the edges are matched by aligning the keyframe contour
to the camera image contour in the least squares sense. Otherwise, the features
are matched by recursion. This is not meant in the typical sense that the features
are propagated from one camera image to the next, but instead the search space is
reduced by reprojecting them from 3D into 2D based on û.

The feature matches are processed separately and used to generate direct pseudo-
measurements of the six degrees-of-freedom (6-DOF) relative pose. This is achieved
by minimising the reprojection error using Levenberg-Marquardt (LM) in an M-
estimation framework, which implements the rejection of outlying matches. The
measurements are fused with an EKF to produce an estimate of the relative pose and
velocity (§ 5.3.3). Both the M-estimator and the filter are accordant in representing
the pose error as an element of se(3), meaning that the measurement covariance
determined from the former is used directly as the measurement noise in the latter,
avoiding the need for tuning. The pose predicted by the filter for the following
time-step is used to select the next keyframe and in the matching by recursion,
providing temporal consistency. The online stage is summarized in blue in Figure 5.1.

5.3.1 Coarse Pose Estimation

The concept of this module is to recover the viewpoint of the three-dimensional
target object imaged in a two-dimensional scene using its pre-computed and known
CAD model. The goal is to provide an initial, coarse, estimate of the appearance of
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the object based on its view classification so that then more precise pose estimation
algorithms can be used to refine its pose.

5.3.1.1 Viewsphere Sampling

In order to capture the full three-dimensional aspect of the target, sampled views
from the CAD are generated by resorting to the concept of the viewsphere: the
model is located at the centre of a sphere, on the surface of which several cameras are
placed, pointed at its centre of mass. The necessary viewpoints can be obtained by
varying the spherical coordinates of the camera’s position, i.e. the azimuth, elevation,
and distance. The aim of generating a sphere rather than a ring (cf. Chap. 4) is
to be able to coarsely cover all possible viewpoints of the target when the a priori
relative pose is not known. The viewsphere is illustrated in Figure 5.2 (cf. Fig. 4.2).

Each dot represents a camera position on the target body frame
~
F t that will

sample a view. Regarding the training of the sampled data, two different approaches
using this viewsphere can be outlined. The first approach involves treating each dot
on the viewsphere as a class. This has the immediate disadvantage that if a very fine
mesh is defined (low ∆mesh), the classes will not be distinctive enough, which could
affect the performance of the view classification. On the other hand, selecting a high
∆mesh does not solve the issue that each class will have only exactly one training
image to use for the classification scheme. In order to solve both problems, a second
approach is adopted in which dots are grouped into patches of width ∆class to form a
class, illustrated as the cyan patch in Figure 5.2.

5.3.1.2 Global Feature Description

The following step is to select a measure that mathematically describes each training
image obtained as explained above. Such a descriptor will be the basis to establish a
correspondence between two viewpoints. The choice for a descriptor for viewpoint
classification is motivated by by two main points: 1) it must be a global representation
of the target and 2) it must be robust to changes likely to be experienced during
a space imaging scenario. The first point is justified by the fact that the goal is a
classification of the aspect of the target, i.e. what is the view from the database that
most closely resembles what the camera is observing. While it is possible in theory
to use local descriptors for this task, when considering a spacecraft as the target,
the same local features can be expected to be present in multiple views (e.g. those
sampled from multi-layer insulation [MLI] or solar panels), which would make the
view classification harder. The second point refers to robustness against the model
and what is actually observed during the mission; since modelling all the expected
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Figure 5.2: The viewsphere for aspect sampling (not to scale). (Left) Each dot
represents a camera position on the target body frame

~
F t that will sample a view.

The cyan patch represents a set of views that will define a class for training. (Right) A
detailed view of the definition of the view mesh resolution ∆mesh, and class resolution
∆class.

cases would be intractable, the descriptors should be resilient towards these, namely:
translation, rotation, and scale changes (i.e. the expected 6-DOF in space), off-centre
perspective distortions, and illumination changes.

One type of descriptor that satisfies the above requirements are image moments,
which are reviewed below in Remark 5.2.

Remark 5.2: Image Moments

The 2D geometric moments of an image are defined as:

mpq =
+∞∫
−∞

+∞∫
−∞

xpyqIy,x dx dy, (5.1)

where Iy,x is the pixel intensity value of a greyscale image I at the row-
column coordinate pair {y, x} ∈

~
FΠ, and p, q are the order and repetition of

the moment, respectively. Geometric moments are frequently used in rigid-
body mechanics to describe mass distributions: m00 is the mass of the image,
{m10/m00,m01/m00} define the centre of gravity of the image, and so on.

Moment computation over a regular image is dependant on the intensity value
Iy,x of each pixel. This implies that the general moment computation (Eq. [5.1]) will
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not be robust to illumination changes. Normalising the image would provide global
illumination invariance, but not local, therefore another strategy is needed. To this
end, the viewpoint image is first binarised before computing the moments. This
involves processing the image such that the resulting pixel intensities are mapped to:

bin
(
Iy,x
)

:=

1 if Iy,x > 127,

0 otherwise.
(5.2)

where Iy,x ∈ [0, 255] originally. In this way, the target is analysed in terms of its
shape, independently of how each patch is illuminated.

Complex Zernike Moments

Binarising an image alone does not solve all purported challenges, in particular those
of invariance to rotation, translation, and scaling, as previously mentioned, and to
which and Equation (5.1) alone does not provide a solution.

Let z = [ x y ]> define a set of coordinates expressed in
~
FΠ whose elements

correspond to a given column and row, respectively, in I. It is first noted that
moments are projections of a general function b(z) onto a D-variable polynomial
basis χn, with n = [n0 . . . nD ]>, of the space of image functions defined on the
image plane Π (Flusser et al., 2016). Then, Equation (5.1) can be generalised to:

M (b)
n =

∫
Π
χn(z)b(z) dz, (5.3)

from which it can be seen, with some abuse of notation, that Equation (5.1) is
obtained by taking n = [ p q ]> and χn = zn. By varying the basis, other types of
moments with different or additional properties can be obtained.

Consider the Zernike moment of the nth degree with repetition `, defined in 2D
polar coordinates as (Flusser et al., 2016):

An` = n+ 1
π

2π∫
0

1∫
0

V ∗n`(r, θ)f(r, θ)r dr dθ, (5.4)

where

Vn`(r, θ) = Rn`(r)ei`θ,

Rn`(r) =
∑
s=0

(n− |`|)/2(−1)s (n− s)!
s!
(
n+|`|

2 − s
)

!
(
n−|`|

2 − s
)

!
rn−2s,
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with n = {0, 1, 2, . . .}, ` = {−n,−n+ 2, . . . , n}, and ( • )∗ denotes complex conjuga-
tion. ZMs have two main attractive properties. Firstly, they are circular moments,
meaning they change under rotation in a simple way which allows for a consistent
rotation invariant design. Secondly, they are orthogonal moments, which means
that they present significant computational advantages with respect to standard
moments, such as low noise and uncorrelation. Additionally, orthogonal moments
can be evaluated using recurrent relations.

Since they carry these two traits, ZMs are said to be orthogonal on a disk. Hence,
in order to compute the moments, the image must be appropriately pre-processed
so that it is fully contained in one. By taking this disk to be the unit disk, scale
invariance is achieved. Scale invariance is obtained when the image is mapped to the
unit disk before calculation of the moments. Translation invariance is obtained by
changing the coordinate system to be centred on the centroid. Regarding rotation
invariance, one option occasionally seen is to take the ZM as the magnitude |An`|.
This is not a recommended approach, as essentially the descriptor is cut in half,
leading to a likely loss in recognition power. Instead, this chapter considers explicitly
both real and complex parts of each ZM, in which case rotation invariance can be
achieved by normalising with an appropriate, non-zero moment An′`′ (typically A31):

An` ← An`e
−i`θ, θ = 1

`′
arctan Im(An′`′)

Re(An′`′)
, (5.5)

where Re(·) and Im(·) refer to the real and complex parts of the argument, respec-
tively.

A fast computation of the Zernike polynomials up to a desired order can be
obtained recursively since any set of orthogonal polynomials obeys a recurrent relation
for three terms; in the case of ZMs the following formula has been developed by
Kintner (1976):

k1Rn+2,`(r) = (k2r
2 + k3)Rn`(r) + k4Rn−2,`(r), (5.6)

where
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k1 = 2n
(
n+ `

2 + 1
)(

n− `
2 + 1

)
,

k2 = 2n(n+ 1)(n+ 2),

k3 = −`2(n+ 1)− n(n+ 1)(n+ 2),

k4 = −2
(
n+ `

2

)(
n− `

2

)
(n+ 2).

5.3.1.3 Training the Data

Given the process of generating the data and its descriptors, the final step is defining
the classification method. The classifier algorithm shall recognise the aspect of the
target given a database of ZM descriptor representation of viewpoints. Given the
large volume of data involved, a Bayesian classifier is considered for this task, where
the probability density function of each class is approximated using Gaussian mixture
models. Bayesian classification is reviewed below in Remark 5.3.

Remark 5.3: Bayesian Classification

In the context of supervised learning (Chap. 2, § 2.4), given a specific class
index y = {1, . . . , K}, where K is the total number of possible classes, and a
D-dimensional feature vector x = [ x1 . . . xD ]>, a Bayesian classifier works
by considering x as the realisation of a random variable x and maximising the
posterior probability p(y = k | x), i.e. the probability that the feature vector x
belongs to class k, 1 ≤ k ≤ K. This probability can be estimated using Bayes’
formula (Duda, Hart, and Stork, 2012):

p (y = k | x) = p (x | y = k) p (y = k)∑K
j=1 p(x | y = j) p(y = j)

. (5.7)

The denominator is constant regardless of the class label and hence can be
simply interpreted as a scaling factor ensuring p(y = k | x) ∈ [0, 1]. Therefore,
maximising the posterior is equivalent to maximising the numerator in Equation
(5.7):

ŷ = arg max
y

p(y) p(x | y). (5.8)

The prior probability, p(y = k), expresses the relative frequency with which the
class y = k will appear during the mission scenario; for a general case where
one has no prior knowledge of the relative motion, an equiprobable guess can
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be made and the term can be set to 1/K for any k. The challenge is therefore
to estimate the likelihood p(x | y = k) of class y = k, which is given by the
respective probability density.

Gaussian Mixture Modelling via Unsupervised Learning

The Gaussian distribution is frequently used to model the probability density of some
dataset. In the scope of the present work, it may prove overly optimistic to assume
that all elements of the ZM descriptor vectors for each class are independent.1 On the
other hand, it can be too restrictive to model a joint distribution using hard-clustering
techniques in case boundaries are not well defined. A more controllable approach to
approximate a probability density function, while keeping the tractability of a normal
distribution, is to assume the data can be modelled by a mixture of Gaussians:

p(x | θ) =
M∑
i=1

αi N
(
x;µ(i),Σ(i)) ,

N (x;µ,Σ) = 1√
(2π)D det Σ

exp
(
−1

2 (x− µ)>Σ−1 (x− µ)
)
,

(5.9)

where αi are scalar weighing factors, M is the number of mixture components, µ de-
notes the mean vector, and Σ the covariance matrix, and θ = {µ(1),Σ(1), α1, . . . ,µ

(M),

Σ(M), αM} is the full set of parameters required to define the GMM.
When the number of mixture components M is known, the “optimal” mixture

for each class, in the maximum likelihood estimate (MLE) sense, can be determined
using the classical expectation-maximisation algorithm. Expectation-maximisation
works on the interpretation that the set of known observations X = {x(1), . . . ,x(N)}
is part of a broader, complete, data set Xt = X ∪ Xu that includes unknown features
(Duda, Hart, and Stork, 2012). In the case of GMMs, or finite mixtures in general,
Xu = {x(u,1), . . . ,x(u,N)} can be defined as the set of N labels denoting which
component generated each sample in X. Each x(u,i) = [ x(u,i)

1 . . . x
(u,i)
M ]> is a binary

vector such that x(u,i)
p = 1, x(u,i)

q = 0 for all p 6= q if sample x(i) has been produced by
the pth component. The expectation, or E-step, calculates the conditional expectation
of the log-likelihood given X and the current best estimate of the model θ̂(κ), where
κ denotes the current time-step τ = τκ, by evaluating the Q-function:

Q(θ, θ̂(κ)) := E
[
log p (X,Xu | θ)

∣∣∣X, θ̂(κ)
]
. (5.10)

1This assumption leads to the so-called naive Bayes classifier (Duda, Hart, and Stork, 2012,
Chap. 3).
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The M-step updates the parameter estimates according to:

θ̂(κ+1) = arg max
θ

Q(θ, θ̂(κ)). (5.11)

However, the number of components is usually not known a priori. There are
several methods to iteratively estimate theM ; for this work the method of Figueiredo
and Jain (2002) is adopted. The algorithm provides an alternative to the generation
of several candidate models, with different numbers of mixture components, and
subsequent selection of the best fit, as this approach would still suffer from the
drawbacks of expectation-maximisation; namely, the fact that it is highly dependant
on initialisation, and the possibility of one of the mixtures’ weight αi approaching
zero (i.e. the boundary of the parameter space) and the corresponding covariance
becoming close to singular. Instead, Figueiredo and Jain’s (2002) method aims to
find the best overall model directly. This is achieved by applying the minimum
message length criterion to derive the following cost function for finite mixtures:

L (θ,X) = M ′

2

M∑
i=1

log
(
Nαi
12

)
+ M

2 logN12 + M (M ′ + 1)
2 − log p (X | θ) , (5.12)

where M ′ is the number of parameters specifying each mixture component. A
modified M-step is utilized to minimise Equation (5.12), estimating the parameters
of each component separately:

α̂
(κ+1)
i =

max
{

0,
(∑N

j=1w
(j)
i

)
− M ′

2

}
∑N

`=1 max
{

0,
(∑N

j=1w
(j)
`

)
− M ′

2

} ,
θ̂

(κ+1)
i = arg max

θi

Q(θ, θ̂(κ)).

(5.13)

for i = {1, . . . ,M}, and where w(j)
i := E[x(u,j)

i | X, θ̂(κ)] is the a posteriori proba-
bility that x(u,j)

i = 1 after observing x(j), computed as in the regular expectation-
maximisation.

The modified M-step performs explicit component annihilation, meaning that
when one of the M components becomes unsupported by the data (i.e. close to zero),
it is removed, thus impeding the algorithm from approaching the boundary of the
parameter space. On the other hand, robustness towards initialisation is achieved
by starting the procedure with a large M and iteratively removing the unnecessary
ones. If M is too large, it may occur that no component is granted enough initial
support, leading the α̂i to be underdetermined. This is avoided by performing a
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I(train,i) 1 2

34δϑ1

δϑ2

Figure 5.3: Creating a training population. (Left) The variation of the number of
necessary mixture parameters (M ′) to estimate in terms of the feature dimensionality
(D) for a number of mixture components M = 1. (Right) Artificial transformations
introduced to generate additional training data; clockwise direction: training image,
binarisation (including foreground/background segmentation), addition of noise to
segmentation outcome, projected target warping.

component-wise update, i.e. recomputing the w(j)
i values every time each element

αi,θi is updated, rather than doing it until the last i = M ; in this way, if one
component dies off, its probability mass is automatically redistributed to the other
components, increasing their chance of survival. The iteration loop is repeated until
the L-function (Eq. [5.12]) converges. The proposed modifications will allow the
modelling of each training class as a probability density in an unsupervised way.

Practical Remarks

This section is concluded with some practical observations on the training procedure.
Whereas there is no exact formula that says how much data should be used to train a
classifier, it is certainly an element to be considered to assure adequate performance
and even convergence. The number of free parameters on a GMM will depend on
the dimensionality of the data D, on the number of mixture components M , and
on the constraints placed on the covariance Σ. A “free” covariance matrix will have
1/2(D2 +D) independent elements, since it is symmetric, and hence the total number
of mixture parameters will be M ′ = (1/2D2 + 3/2D + 1)M − 1. On the other hand,
the covariance can be instead assumed to be diagonal, in which case the total number
of parameters to estimate becomes 2MD − 1. Figure 5.3 (left) plots the evolution of
the number of parameters to estimate for a free covariance matrix and for a diagonal
one in terms of the dimensionality of the features for M = 1. It can be considered as
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a lower bound for the number of samples N required for training. The quadratic
term in the free covariance case quickly reduces the tractability of the problem when
D is increased, which can pose a problem when training data is limited.

S. Li et al. (2009) have shown that the recognition power of complex ZMs for image
retrieval begins to plateau beyond moments of the tenth order, which corresponds to
approximately D = 60. This corresponds to 1890 parameters to be estimated for the
free covariance case, while only 120 are necessary if a diagonal covariance is assumed.
Since the ZMs are orthogonal, the correlation between moments is minimised and
a diagonal covariance is an acceptable approximation. However, even if adjacent
training images are grouped to form classes, the generated data might not be enough
in terms of training. To this end, each image I(train,k,i) belonging to the set I(k)

train that
composes class k is subjected to an image augmentation pipeline before the ZMs
are computed and added to the training pool (Fig. 5.3, right). This involves adding
perturbations to the closed contour (limb) of the binarised target shape and adding
small perspective distortions to the image.

5.3.2 Motion Estimation

It has been shown in Chapter 2 that the problem of solving the 2D-3D point
correspondences for the 6-DOF pose of a calibrated camera is termed perspective-n-
point (PnP) and has a well-known closed form solution for n = 3 points (perspective-
3-point [P3P]). Additional methods have been developed for n ≥ 4, such as EPnP
(Lepetit, Moreno-Noguer, et al., 2008), which are relatively fast to compute. However,
these methods are notwithstanding less robust to noise and fail in the presence of
erroneous correspondences. On the other hand, iterative approaches that take these
aspects into account, giving the best possible estimate of the pose under certain
assumptions are often called the “gold standard” algorithm (Hartley and Zisserman,
2004).

The application of the gold standard algorithm to spacecraft pose estimation
has been shown in Chapter 4 on the SIMPLESAT dataset with a set of keyframes
K = {K(1), . . . ,K(Nk)} computed offline, where each keyframe constitutes a collec-
tion K(i) = {I(i),M (i),K(i),T (i),Z(i)

train,D
(i)
train,P

(i)
p ,P(i)

e } containing, respectively: a
rendered image, the corresponding depth map, the intrinsic and extrinsic camera
matrices, the training keypoints and corresponding descriptors, and the 3D points and
edges in the target

~
F t frame. This was achieved in an IRLS context to reject outlying

matches between the keyframe features and the query frame features {Z(p,κ)
query,Z(e,κ)

query}
at time τ = τκ.

In this chapter, a comparable keyframe-based approach is implemented, for which
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the initial one is derived from the coarse evaluation of the relative pose described
in the previous section. Each class corresponds to one keyframe (Nk = K), where
the image I(i) ∈ K(i) corresponds to the centre of each mesh cell in the viewsphere
(yellow dots in Fig. 5.2). In this section, particularly, an iterative refinement of this
coarse estimate based on nonlinear manifold parameterisation is proposed.

5.3.2.1 Structural Model Constraints

From Visual Point Feature Correspondences

It was previously shown that the feature correspondence problem, characterised
by the inherent topological difference between measured image points Zquery =
{z(query,1), . . . ,z(query,Np)} in two dimensions and model points Pp = {p(1), . . . ,p(Np)}
in three dimensions, was solvable by offline annotating each p(i) with a 2D de-
scriptor d(train,i) computed from its reprojection z(train,i) with its corresponding
{I(i),M (i),K(i),T (i)} ∈ K(i). Then, computing a descriptor vector d(query,j) for the
z(query,j) detected online grants the equivalence {Zquery ↔ Pp} ⇔ {Zquery ↔ Ztrain},
reducing a 3D-2D correspondence problem to a 2D-2D one.

Under the assumption that the structural points are known far more accurately
than the image points detected online, which is a valid one for the context of the
developed methodology, since the CAD model of the target is given and hence accurate
depth maps are produced to register 3D information on the training keyframes with
virtually no error, the optimal cost function in the MLE sense was shown to be the
reprojection error (Eq. [4.7], Chap. 4), reproduced below for convenience:

T̂ = arg min
T∈SE(3)

Np∑
i=1

(
π
[
KT ⊕ p(i)]− z(i))2

, (5.14)

where for brevity one defined T = Tct as the relative pose in homogeneous form, and
z(i) = z(query,i) as the detected keypoint in the query image matched to p(i). Equation
(5.14) is solved iteratively via LM with the Jacobian J (p) denoted in Equation (4.8).

Defining the auxiliary function

π′(p) = π (Kp)

=

c1 + f1
p1

p3

c2 + f2
p2

p3

 (5.15)

where f1, f2 are the sensor dimensions-normalised focal lengths, and using on-
manifold optimisation theory (Chap. 2, § 2.4.1.1), in particular, the Jacobian of
SE(3) (Eq. [2.64]) and the chain rule, it can be seen that J (p) is the product of three
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terms:

J
(p)
i =

∂π
(
K(T � ε)⊕ p(i))

∂ε

∣∣∣∣∣
ε=0

=
∂π′
(
p′(i)

)
∂p′(i)

∣∣∣∣∣
p′(i)=T⊕p(i)

∂T ′ ⊕ p(i)

∂T ′

∣∣∣∣
T ′=T�ε=T

∂ exp(ε)T
∂ε

∣∣∣∣
ε=0

.

(5.16)

where ε ∈ se(3) is a small perturbation of the pose. The first term is obtained by
differentiating Equation (5.15) with respect to the elements of p′:

∂π′
(
p′(i)

)
∂p′(i)

=


f1

p
′(i)
3

0 −f1
p
′(i)
1

p
′(i)2

3

0 f2

p
′(i)
2
−f2

p
′(i)
2

p
′(i)2

3

 . (5.17)

The second term, recognising that T ⊕ p = T1:3,1:4 p̃, where p̃ := [p> 1 ]>, is
immediate from matrix calculus rules:

∂T ⊕ p(i)

∂T
= kron

(
p̃(i)> , I3

)
=
[
p

(i)
1 I3 p

(i)
2 I3 p

(i)
3 I3 I3

]
,

(5.18)

where kron( • , • ) is the Kronecker product, and I3 is the 3× 3 identity matrix. The
third and last term is dependant on the Jacobian of SE(3); as noted by Blanco
(2019):

∂ exp(ε)T
∂ε

∣∣∣∣
ε=0

= ∂AT

∂A

∣∣∣∣
A=I4=exp(ε)

∂ exp(ε)
∂ε

∣∣∣∣
ε=0

= kron
(
T>, I3

) ∂ exp(ε)
∂ε

∣∣∣∣
ε=0

=


03×3 −R∧:,1
03×3 −R∧:,2
03×3 −R∧:,3
I3 −t∧,


(5.19)

where R, t are the rotation matrix and translation vector composing T , respectively,
and ( • )∧ denotes a skew-symmetric matrix. The product of all terms yields the 2× 6
block corresponding to J (p)

i = J
(p)
2i−1:2i,:, previously illustrated in Equation (4.8):
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J
(p)
i =


f1

p
′(i)
3

0 −f1
p
′(i)
1

p
′(i)2

3
−f1

p
′(i)
1 p

′(i)
2

p
′(i)2

3
f1

(
1 + p

′(i)2

1

p
′(i)2

3

)
−f1

p
′(i)
2

p
′(i)
3

0 f2

p
′(i)
3
−f2

p
′(i)
2

p
′(i)2

3
−f2

(
1 + p

′(i)2

2

p
′(i)2

3

)
f2
p
′(i)
1 p

′(i)
2

p
′(i)2

3
f2
p
′(i)
1

p
′(i)
3

 .
(5.20)

From Visual Edge Feature Correspondences

The structural model constraints may also be formulated in terms of different types
of features, such as edges. This is likewise an important element to consider in space
relative navigation, as spacecraft often resemble cuboid shapes or are composed of
elements shaped as such; therefore it is expected to have detectable straight edge
features when imaging this kind of targets. Indeed, it has been shown in the previous
chapter that edges are actually more robust than points in terms of preventing the
estimation solution from diverging.

Chapter 4 saw the development of an approximate solution for edge features in
which the normal vector to each projected model edge point p(e,i) ∈ Pe was defined
by the projections of its two immediate neighbours (see Eqs. [4.10] and [4.11]).
Conversely, this chapter presents an exact solution by considering the complete
detected 2D straight edge features (i.e. keylines) rather than simply the discretised
points Z(e)

query along detected edges.

First, assume that the previously considered set of model edge points P(e) be-
longing to a certain keyframe can be further divided into subsets P(e,i) containing
Nei points which are discretised from a 3D line `(i) ∈ LL of the model. Each model
line in LL is matched to a detected keyline l(i) ∈ L in the query image, totalling
N` correspondences. In two dimensions, a point z lies on a line l = [ l1 l2 l3 ]>

if the condition z>l = 0 is verified. Then, from the correspondences {L ↔ LL},
a geometric distance for 2D-3D line matches can be formulated in terms of the
reprojection of a point p(i,j) ∈ P(e,i) onto the image plane:

T̂ = arg min
T∈SE(3)

N∑̀
i=1

Nei∑
j=1
l(i)>KT ⊕ p(i,j), (5.21)

The resulting 1× 6 Jacobian block J ( )̀
i = J

( )̀
i,: corresponding to each p(i,j) is found

analogously to Equation (5.16):
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J
( )̀
i =

∂
(
l(i)
>
K(T � ε)⊕ p(i,j)

)
∂ε

∣∣∣∣∣∣
ε=0

= l(i)>
∂
(
Kp′(i,j)

)
∂p′(i,j)

∣∣∣∣∣
p′(i,j)=T⊕p(i,j)

∂T ′ ⊕ p(i,j)

∂T ′

∣∣∣∣
T ′=T�ε=T

∂ exp(ε)T
∂ε

∣∣∣∣
ε=0

= l(i)>



f1

p
′(i,j)
3

0 −f1p
′(i,j)
1

p
′(i,j)2

3

0 f2

p
′(i,j)
3

−f2p
′(i,j)
2

p
′(i,j)2

3

0 0 0


[
I3 −p(i,j)

1 R∧:,1 − p
(i,j)
2 R∧:,2 − p

(i,j)
3 R∧:,3 − t∧

]
,

(5.22)

where the result is left in matrix product form for succinctness.
In practice, as it was seen previously for edges, matching keylines is not as

straightforward as matching keypoints, due to the former being typically less dis-
tinctive than the latter. For the scope of this chapter, again only the contour of the
target is considered, which is discretised into a finite number of edge points that are
assumed to belong to a (straight) keyline. Additionally, edge points can be registered
in the same way as structural keypoints through the use of depth maps.

5.3.2.2 Local Feature Processing

Detection

For the framework developed in Chapter 4, the Fast-Hessian keypoint detector (Bay
et al., 2006) was chosen based on the performance exhibited throughout the analysis
of Chapter 3. Despite demonstrating good metrics in terms of repeatability and
matching score, Fast-Hessian only ranked fifth out of six in terms of average detection
times (see Tab. 3.5).

In this chapter, to compensate for the added computational complexity (see
Fig. 5.1), the Oriented FAST and Rotated BRIEF (ORB) keypoint detector (Rublee
et al., 2011) is instead used. ORB is based on Features from Accelerated Segment
Test (FAST; Rosten and Drummond, 2006), which ranked first in average detection
times in the analysis of Chapter 3, but modifies it to allow for multi-scale feature
detection and assignment of an orientation to each one by defining a vector from its
origin to the intensity barycentre of its support region.

Similarly, for keyline detection, the Edge Drawing Lines (EDLines; Akinlar and
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Topal, 2011) algorithm previously used was found to be biased towards lengthier
features, missing smaller keylines when the target appears small in the camera field of
view (FOV), as in some trajectories of the ASTOS dataset (Chap. 2, § 2.5.2). Instead,
Lee et al.’s (2014) method is used instead on the Canny (1987) edge map of the
query frame to efficiently extract keylines by incrementally connecting edge pixels
in straight lines and merging those with small enough differences in overlap and
orientation.

Description

For each detected keypoint, the surrounding support region is encoded into a binary
string using the Fast Retina Keypoint (FREAK; Alahi et al., 2012) descriptor. This
stems directly from the analysis done in Chapter 3 and remains unaltered with
respect to the framework developed in Chapter 4.

Brute-Force Matching by Detection

In an initial stage, the features are matched using brute force, since no estimate of
the pose is yet available.

In the case of the point features, this implies that all those detected in the
initial frame are compared against those in the train keyframe. This is achieved by
computing the Hamming distance dHam( • , • ) between their corresponding descriptors
D(query,0),D(train,0) for time τ = τ0. For each query, the two closest train descriptor
matches are selected and subjected to a nearest-neighbour distance ratio (NNDR)
test alike Equation (4.20):

dHam(d(query,i),d(train,j))
dHam(d(query,i),d(train,`)) < µ, (5.23)

where d(train,j),d(train,`) are the 1st and 2nd nearest neighbours to d(query,i) and µ is a
threshold ranging from 0 to 1.

As descriptors for edge features are not employed, an alternative strategy was
devised to match them. Let Cquery denote the closed contour of the target in the
query image, defined by the set of detected edge points Z(e)

query = {z(e,1), . . . ,z(e,Ne)}
and their sequential ordering. Analogously, let Ctrain denote the contour of the initial
keyframe. Even though the query image and train keyframe represent the same
aspect of the target, there will be differences that are reflected on the contours. In
particular, Cquery and Ctrain will be different by a 2D affine transformation:

Λ =
[
βaff cosφaff −βaff sinφaff taff

1

βaff sinφaff βaff cosφaff taff
2

]
, (5.24)
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where βaff > 0 is the scaling factor, φaff ∈ [−180, 180[ deg is the angle of rotation,
and taff = [ taff

1 taff
2 ]> is the translation vector. The contour alignment problem is

posed in the least squares sense as

arg min
{taff∈R2,βaff ,φaff∈[−180,180[}

‖Cquery −ΛCtrain‖F, (5.25)

where ‖A‖F :=
√∑m

i=1
∑n

j=1|Ai,j|2 is the Frobenius norm of an n ×m matrix A.
Because of the multiplicative trigonometric terms of Λ, Equation (5.25) is nonlinear.
However, the problem can be converted into an equivalent linear one by a change of
variables (Markovsky and Mahmoodi, 2009):

arg min
{taff

1 ,taff
2 ,baff

1 ,baff
2 }∈R4

∥∥∥∥∥∥∥∥∥∥∥∥∥



z
(e,query,1)
1

z
(e,query,1)
2

...
z

(e,query,Ne)
1

z
(e,query,Ne)
2


−



1 0 z
(e,test,1)
1 −z(e,test,1)

2

0 1 z
(e,test,1)
2 z

(e,test,1)
1

... ... ... ...
1 0 z

(e,test,Ne)
1 −z(e,test,Ne)

2

0 1 z
(e,test,Ne)
2 z

(e,test,Ne)
1




taff
1

taff
2

baff
1

baff
2



∥∥∥∥∥∥∥∥∥∥∥∥∥
2

, (5.26)

where the change of variables is:

[
baff

1

baff
2

]
= βaff

[
cosφaff

sinφaff

]
⇔

[
φaff

βaff

]
=

arcsin
(
baff

2 /
√
baff2

1 + baff2
2

)
√
baff2

1 + baff2
2

 , (5.27)

where z(e) = [ z(e)
1 z

(e)
2 ]>. In this way, a global solution of the minimum can be

calculated using standard linear algebra. However, Equation (5.27) depends on the
correspondences between the query and train edge points, which are not known
a priori. To simultaneously solve for the edge point correspondence problem and
contour alignment, the algorithm is modified by solving Ne linear least squares
problems, each time shifting the order of the edge points in Ctrain by one, and
selecting the minimum of the Ne residual norms. Thus, the only necessary inputs
are two sets of sequential but not necessarily correspondent edge points.

The contour alignment algorithm is also used to generate an estimate of the pose
to initialise the nominal estimation module, once the first keyframe is output by
the coarse estimation module. If T (i) ∈ K(i) is the train pose registered to the ith
keyframe recovered at time τ = τ0, then, an initial estimate of the 6-DOF pose is
computed as:
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R(0) = R3
(
φaff)R(i), (5.28)

t(0) =

 ∆taff
1

∆taff
2

βafft
(i)
3

 , (5.29)

where R3( • ) is a rotation matrix applying a rotation about the 3-axis, and {∆taff
1 ,

∆taff
2 } is the centroid of the transformed ΛCtrain train contour from K(i).

Predictive Matching by Recursion

Once the algorithm has been initialised, knowledge of the current solution can be
used to improve the performance of the feature matching processes. In particular,
the predicted estimate of the pose output by the filtering module is used to help
anticipate where the features will be located in the next frame in time, in this
way introducing a temporal tracking constraint that improves the pose estimation
accuracy.

In the case of point features, recursive matching is achieved by fitting a grid of
p× q cells on the boundary of the target in the query camera image. The detected
keypoints are binned into the resulting cells. Then, the 3D structural points of the
currently selected database keyframe are reprojected onto the query image according
to the predicted pose and equally binned according to the grid. Lastly, descriptor-
based matching is applied on a per-cell basis, vastly reducing the number of possible
matching candidates. This step was found essential in order to maintain the accuracy
of the algorithm during sequences where ambiguous modules are imaged (e.g. MLI)
or when the query image is too distinct from the train one (e.g. due to reflections).

In the case of edge features, recursive matching is done by first detecting keylines
on the query edge image. Each query keyline is then drawn on the image plane with a
unique color. The 3D edge points and corresponding keylines from the train keyframe
are reprojected onto the image plane. Then, the matching algorithm iterates over
each reprojected edge point and a 1D search is performed perpendicularly to it
according to the corresponding keyline, obtained in the offline training stage, until
the closest coloured pixel is found. Hence, 3D edge points are matched to 2D keylines
satisfying the conditions to minimise Equation (5.21).

5.3.2.3 Preliminary Results: Effect of Scale in Robust Pose Estimation

In Section 2.4.1.1, two ways of defining the normal equations for M-estimation were
introduced for the robust estimation of the pose, derived from the form:
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û = arg min
u∈U∼=SE(3)

N∑
i=1

ρ
(ri
σ̂

)
, (5.30)

where the Tukey M-estimator, or IRLS (Beaton and Tukey, 1974), was used in
Chapter 4 due to its popularity in the computer vision (and classical spacecraft pose
estimation) literature due to its hard redescender properties.

However, the scale σ estimation step warrants special attention. In several
applications, it can be found that σ is often ignored and set to 1. This is erroneous
since Equation (5.30) is non-equivariant with respect to scale (Rousseeuw and Leroy,
1987). Whereas the Huber algorithm (Eq. [2.69], Chap. 2) grants a procedure
to jointly estimate the parameter and scale, convergence is not guaranteed when
applying the scale estimation step to IRLS (Eq. [2.70]; P. J. Huber, 2009). Instead,
a common method when resorting to IRLS is to recursively estimate σ using the
median absolute deviation (MAD) for the first few iterations, and then allowing the
minimisation to converge on u with fixed σ (Stewart, 1999; Z. Zhang, 1997).

In order to study the effect of scale estimation on the parameter estimation and to
compare the different possible approaches, the following experiment has been devised.
First, a number of 3D world points is randomly sampled from the volume of a cube.
These are subsequently projected onto the image plane according to a random pose.
Points that fall outside the image plane are culled. Matches between 3D world points
and 2D camera points are contaminated artificially with outliers. Then, the pose is
M-estimated with ρHub(x) according to the cost function of Equation (5.14), where
the initial guess is defined by contaminating the true pose with zero-mean, white,
Gaussian noise. Five distinct methods are benchmarked: (1) least squares (LS),
(2) Huber’s algorithm, (3) IRLS with σ = 1, (4) IRLS with σ estimated by one
iteration of MAD, (5) IRLS with σ estimated by three iterations of MAD, (6) IRLS
with σ estimated by Huber’s algorithm. The experiment is repeated for several trials.

The results are shown in Figure 5.4. The pose estimation error is decomposed
into translation and rotation normalised according to the initial guess. The evolution
of the scale estimation is also shown. The percentage of outliers present in the data
ranges from 10 % to 30 %. It can be seen that Huber’s algorithm yields the best
estimate for every case. The regular LS is able to somewhat reduce the attitude
error in the presence of outliers, but diverges in the case of translation. Interestingly,
all the IRLS methods that estimate the scale perform worse than the case where
the scale is ignored. These results show the impact on the solution of proper scale
estimation and the preference of Huber’s algorithm over others. This suggests that
robust estimation should be initiated with Huber’s algorithm until convergence; to
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Figure 5.4: Minimisation of the reprojection function from the images of a ran-
domly generated point cloud, averaged over 100 runs, with different amounts of
contamination by outlying correspondences.
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ensure that the rejection of outliers is maximised, some additional iterations can be
performed with IRLS and a hard redescender, such as Tukey’s function, using the
(fixed) previously obtained estimate of σ, as suggested by Z. Zhang (1997).

5.3.3 Filtering

In this section, the EKF developed to filter the IP-based measurements used in
the proposed framework is presented. The general Kalman filter equations are first
summarised below in Remark 5.4; then, the adopted modifications to achieve the
manifold EKF for spacecraft pose estimation are reported.

Remark 5.4: Kalman Filter Equations

The Kalman filter discrete-time model adopts the form of a general linear
stochastic filter (Grewal and Andrews, 2015):

x(κ) = Φ(κ−1)x(κ−1) +G(κ−1)w(κ−1), (5.31a)

y(κ) = H(κ)x(κ) + η(κ), (5.31b)

where x is the state vector, Φ is the state transition matrix, G is the noise
input matrix, y is the sensor measurement,H is the measurement matrix, w,η
are zero-mean, white random processes with covariances Γ and R, respectively,
and the superscript (κ) denotes evaluation at time-step τ = τκ. Equation
(5.31a) is termed the process, or motion, model, whereas Equation (5.31b) is
the measurement model.

The corresponding Kalman filter equations can be subdivided into a prediction
stage and correction stage, where the former consists in:

x̂(κ)[−] = Φ(κ−1)x̂(κ−1)[+], (5.32a)

P (κ)[−] = Φ(κ−1)P (κ−1)[+]Φ(κ−1)> +G(κ−1)Γ(κ−1)G(κ−1)> , (5.32b)

and the latter consists in:

x̂(κ)[+] = x̂(κ)[−] +K(κ) (y(κ) −H(κ)x(κ)[−]) = x̂(κ)[−] +K(κ)υ(κ), (5.33a)

K(κ) = P (κ)[−]H(κ)>
(
H(κ)P (κ)[−]H(κ)> +R(κ)

)−1
, (5.33b)

P (κ)[+] = P (κ)[−] −K(κ)H(κ)P (κ)[−], (5.33c)
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where P is the state covariance matrix, K is the Kalman gain matrix, υ is the
innovation vector, ( •̂ ) denotes an estimate, the [−] superscript denotes the a
priori values of the variables (i.e. before correction), and the [+] superscript
indicates the a posteriori values.

When the model is nonlinear, the extended Kalman filter (EKF) can be instead
adopted, which linearises about the current time-step’s state and covariance,
and applies the Kalman filter equations to the error state and error state
covariance.

5.3.3.1 Rigid Body Kinematics

Let cp, tp define one point in the target’s rigid body expressed in
~
F c and

~
F t,

respectively. Then, one has

cp = Rct
tp+ ctct, (5.34)

where ctct represents the origin of
~
F t with respect to

~
F c expressed in

~
F c. Differenti-

ating with respect to time yields

cṗ = Ṙct
tp+ c

ṫct

= cω∧ct
cp+ cνct, (5.35)

where cωct is the angular velocity of
~
F t with respect to

~
F c resolved in

~
F c, and the

relationship Ṙct = cω∧ctRct was used. The term cνct := c
ṫct − cω∧ct

ctct represents the
velocity of the point in

~
F t that corresponds instantaneously to the origin of

~
F c.

Defining Ṫct :=
[
Ṙct

c
ṫct

01×3 1

]
, one writes the kinematics equation for SE(3) in matrix

form (R. M. Murray et al., 1994):

Ṫct = c
$∧ctTct, (5.36)

where

c$ct :=
[
cνct
cωct

]
(5.37)

is the rigid body velocity of
~
F t with respect to

~
F c expressed in

~
F c. Dropping the

subscripts and superscripts for succinctness, Equation (5.36) is a first-order ordinary
differential equation, and hence admits a closed-form solution of the form:
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T (τ) = exp([τ − τ0]$∧)T (τ0). (5.38)

Equation (5.38) has the same form as Equation (2.28) (Chap. 2), implying that $
is an element of se(3). In agreement with the previous chapters, this fact suggests
that uncertainty can be introduced in the pose kinematics by modelling it as a local
distribution in se(3). As such, it is of interest to develop perturbation equations in
terms of the kinematics in se(3) so that these can be included as additive noise in a
filtering scheme.

Following the approach of Barfoot (2017), the first two terms of Equation (2.13)
are used to linearise Equation (2.28) as T ′ ≈ (I + δξ∧)T , where T is the nominal
pose, δξ is a small perturbation in se(3), and hence T ′ is the resulting perturbed
pose. Since $ ∈ se(3), this generalised velocity can be written directly as the sum of
a nominal term with a small perturbation $′ = $ + δ$. Substituting in Equation
(5.36), one has:

d
dτ ([I + δξ∧]T ) ≈ ($ + δ$)∧ (I + δξ∧)T . (5.39)

Expanding,

δξ̇∧T + δξ∧Ṫ + Ṫ = $∧T + δ$∧T +$∧δξ∧T + δ$∧δξ∧T(
δξ̇∧T + δξ∧Ṫ + Ṫ

)
T−1 = ($∧T + δ$∧T +$∧δξ∧T )T−1

Ṫ + δξ̇∧ = $∧T + δ$∧ + ($∧δξ∧ − δξ∧$∧) ,

where after the first step the product of small terms was ignored, and after the
second step the identities TT−1 = I and T−1Ṫ = $∧ were used. Noting that the
last term is the Lie bracket of se(3), subtracting Equation (5.36), and applying
the ( • )∨ operator on both sides, the perturbation kinematics equation for SE(3) is
obtained:

δξ̇ = ad($∧)δξ + δ$, (5.40)

which is linear in both δξ and δ$.

5.3.3.2 Extended Kalman Filter Formulation

Motion Model

Equation (5.40) describes effectively the linearisation of the rigid body kinematics
around a nominal pose. Since it is defined with respect to elements of se(3), pertur-
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bations in the motion can be modelled stochastically in terms of a local distribution.
The mean of this distribution may be injected into the nominal values via the expo-
nential map. Under the assumption of Gaussian noise, this equation can therefore be
regarded as the first step in defining an error-state to model how the motion evolves
in time in the framework of an extended Kalman filter.

The kinematics of the target’s motion with respect to the chaser spacecraft are
correctly modelled by Equations (5.36) and (5.40). Modelling the relative dynamics,
however, is not a clear-cut task. In the case of an asteroid mission, for example,
the chaser could be considered to be inside the sphere of influence of the target and
then Newton’s second law of motion and Euler’s rotation equation could be applied.
However, in the case where both chaser and target are under the influence of the
same primary, the relative dynamics cannot be shaped as such.

In order to design a filter exclusively with relative states, and inspired by Davison
et al.’s (2007) method, a broader constant generalised velocity motion model is
adopted:

$̇(τ) = η$(τ), η$(τ) ∼ N(0,Q[τ ]δ[τ − τ ′]), (5.41)

where η$(τ) is a 6× 1 zero-mean, white (uncorrelated) process noise, Q(τ) is a
6× 6 dynamic disturbance noise covariance, and δ(τ) is the Dirac delta function.
Note that, as stated by Davison et al. (2007), this model does not assume that
the chaser moves at a constant velocity over the entire sequence, but instead that
undetermined accelerations with a Gaussian profile are expected to occur on average.
In other words, one assumes that sizeable (relative) accelerations are unlikely to be
experienced, which is a valid expectation for a space rendezvous.

Integrating Equation (5.41) yields:

$(τ) = $(τ0) +
∫ τ

τ0

η($)(τ ′) dτ ′. (5.42)

The relation $′ = $ + δ$ was assumed earlier, meaning that one can admit:

δ$(τ) =
∫ τ

τ0

η($)(τ ′) dτ ′. (5.43)

Defining the error state δx := [ δξ> δ$> ]>, the continuous-time error kinematics
are written directly:
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d
dτ δx(τ) = F (τ)δx(τ) +G(τ)w(τ)

=
[

ad($∧) I6

06×6 06×6

][
δξ

δ$

]
+
[
06×6

I6

][
06×1

η($)

]
,

(5.44)

which shows that process noise is introduced in the system through the error gener-
alised velocity vector. Equation (5.44) has the familiar solution (Grewal and Andrews,
2015):

δx(τ) = Φ(τ, τ0)δx(τ0) +
∫ τ

τ0

Φ(τ, s′)G(s′)w(s′) ds′ (5.45)

Φ(τ, s) := exp
∫ τ

s

F (τ ′) dτ ′ (5.46)

Setting τ0 = τκ−1 and τ = τκ, the error-state transition matrix has a known closed
form (Barfoot, 2017):

Φκ−1 := Φ(τκ, τκ−1)

=
[

Ad(exp
[
∆τ$∧κ−1

]
) ∆τ B(∆τ$κ−1)

03×3 I3

]
,

(5.47)

where ∆τ := τκ − τκ−1 is the discrete time-step increment, ξ := [ρ> φ> ]>, and
φ := ‖φ‖, plus the additional definitions:

B(ξ) :=
[
M (φ) N (ξ)
03×3 M(φ)

]
, (5.48a)

M (ξ) := 1
2ρ
∧ +

(
φ− sinφ

φ3

)
(φ∧ρ∧ + ρ∧φ∧ + φ∧ρ∧φ∧)

+
(
φ2 + 2 cosφ− 2

2φ4

)
(φ∧φ∧ρ∧ + ρ∧φ∧φ∧ − 3φ∧ρ∧φ∧)

+
(

2φ− 3 sinφ+ φ cosφ
2φ5

)
(φ∧ρ∧φ∧φ∧ + φ∧φ∧ρ∧φ∧) ,

(5.48b)

and N(ξ) is given by Equation (2.17). A closed-form of the discrete-time error
process noise covariance matrix is found by directly solving the integral (Grewal and
Andrews, 2015):

Γκ−1 := Γ(τκ, τκ−1) =
∫ τκ

τκ−1

Φ(τκ, s)G(s)Q(s)G>(s)Φ>(τκ, s) ds, (5.49)
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The derivation is monotonous but a matter of integrating each matrix element. From
Equation (5.47), Equation (2.21), and Equation (2.16), Φ(τ, s) can be written in
block matrix form as:

Φ(τ, s) =


A EA Z Θ

03×3 A 03×3 Z

03×3 03×3 I3 03×3

03×3 03×3 03×3 I3

 , (5.50)

with

A = A([τ − s]$) = exp([τ − s]ω∧), (5.51a)

E = E([τ − s]$) = [N ([τ − s]ω)[τ − s]ν]∧ , (5.51b)

Z = Z([τ − s]$) = [τ − s]M([τ − s]ω), (5.51c)

Θ = Θ([τ − s]$) = [τ − s]N ([τ − s]ω), (5.51d)

and $ = [ν> ω> ]> are taken to be evaluated at time s. Assuming that:

Q(τ) = Q =
[
σ2
νI3 03×3

03×3 σ2
ωI3

]
, (5.52)

where σ2
ν , σ

2
ω are the linear and angular velocities variances, respectively. Equation

(5.49) can then be simplified:

Γκ−1 =

∫ τκ

τκ−1


σ2
νZZ

> + σ2
ωΘΘ> σ2

ωΘZ
> σ2

νZ σ2
ωΘ

σ2
ωZΘ> σ2

ωZZ
> 03×3 σ2

ωZ

σ2
νZ
> 03×3 σ2

νI3 03×3

σ2
ωΘ
> σ2

ωZ
> 03×3 σ2

ωI3

 ds, (5.53)

depending only on Z,Θ, and on the variances. The small angle approximation
(sinφ ≈ φ, cosφ ≈ 1− φ2/2) is applied to these two matrices in terms of (τ − s)ω to
produce a simplified expression for them:

Z ≈ (τ − s)I3 + (τ − s)2

2 ω∧, (5.54a)

Θ ≈ (τ − s)2

2 ν∧ − (τ − s)3

4ω
(
ω∧ν∧ω∧2 + ω∧2ν∧2ω∧

)
(5.54b)

with ω := ‖ω‖. This is a valid assumption for small inter-frame rotational motion,
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i.e. (τ − s)ω � 1. Replacing the quantities in Equation (5.53), integrating each entry
is a lengthy task, but it only depends on the coefficient (τ − s). The obtained closed,
approximate form of the discrete-time process noise covariance is thus:

Γκ−1 ≈



(∆τ)3

3 σ2
νI3 03×3

(∆τ)2

2 σ2
νI3 + (∆τ)3

6 σ2
νω
∧ (∆τ)3

6 σ2
ων
∧

03×3
(∆τ)3

3 σ2
ωI3 03×3

(∆τ)2

2 σ2
ωI3 + (∆τ)3

6 σ2
ωω
∧

(∆τ)2

2 σ2
νI3 − (∆τ)3

6 σ2
νω
∧ 03×3 (∆τ)σ2

νI3 03×3

− (∆τ)3

6 σ2
ων
∧ (∆τ)2

2 σ2
ωI3 − (∆τ)3

6 σ2
ωω
∧ 03×3 (∆τ)σ2

ωI3


,

(5.55)

where terms with coefficients (∆τ)k for k > 3 have been dropped.

Measurement Model

The correction stage of the EKF admits pseudo-measurements of the relative pose
yi ∈ Y ∼= SE(3) as obtained through the refinement scheme of visual features cor-
respondence from Section 5.3.2. These pseudo-measurements are acquired at each
sampling time and modelled as being corrupted by a zero-mean white Gaussian noise
term. One can thus write directly in discrete-time and matrix form:

Y = exp
(
η(y)∧)T , η(y) ∼ N(0,R), (5.56)

where Y ∈ SE(3) is the homogeneous form of y. To linearise Equation (5.56),
similarly to the motion model, the elements of SE(3) are rewritten as a small
perturbation around a nominal term, i.e.:

Y ′ = exp(δy∧)Y , (5.57a)

T ′ = exp(δξ∧)T . (5.57b)

Replacing in Equation (5.56), and approximating the exponential map by its first-
order expansion, yields:

(I + δy∧)Y ≈ (1 + η∧y )(I + δξ∧)T .

Expanding and neglecting the product of small terms, the following linearised
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relationship is obtained:

Y = T , (5.58a)

δy = δξ + η(y). (5.58b)

The full linearised measurement model is therefore:

δy(i) = Hδx+ η(y,i)

=
[
I6 06×6

] [ δξ
δ$

]
+ η(y,i), η(y,i) ∼ N(0,R(i))

(5.59)

where i = {p, e} refers to measurements derived from either point- or edge-based
M-estimates, respectively. The covariance matrices of each pseudo-measurement are
obtained as a product of the minimisation scheme. In the case of the structural
model constraints, the Jacobians J (i) are of rank 6, so the covariance of the solution
is given by backpropagation of the visual feature correspondences’ own covariance
(Hartley and Zisserman, 2004):

R(i) =
(
J (i)>Σ(z,i)J (i)

)−1
, (5.60)

with Σ(z,i) = σ2
z,iI and σ(z,i) is the scale obtained via M-estimation. The EKF

innovation term at time τ = τκ is:

υ(i,κ) = y(i,κ) � û[−]
κ , υ(i,κ) ∈ se(3), (5.61)

where û[−]
κ is the predicted pose at τκ.

Data Fusion

Both measurements can be modeled as coming from two different synchronous sensors.
In order to perform the correction stage in a single step, the inverse-covariance form
of the EKF is employed (Durrant-Whyte, 2001; Maybeck, 1979). This avoids a
double computation of the Kalman gain matrix (if a sequential-sensor correction
method were adopted) or the inversion of an innovation covariance matrix of size
proportional to the number of sensors (group-sensor method).

In the linear Kalman filter, the inverse-covariance method involves reorganising
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the prediction and observation equations to yield the relations:

K(κ) = P (κ)[+]HR−1, (5.62a)

I −K(κ)H = P (κ)[+] (P (κ)[−])−1
, (5.62b)

where K is the Kalman gain matrix, P [−],P [+] are the predicted and corrected
covariance matrices, respectively, and the superscript (κ) denotes evaluation at
time-step τκ. Substituting Equations (5.62a) and (5.62b) into Equation (5.33a), and
noting from the group-sensor method (Durrant-Whyte, 2001) that, for an S number
of sensors:

H>R(−1)y(κ) =
[
H(1)> · · · H(S)>

]
R(1)−1 · · · 0

... . . . ...
0 · · · R(S)−1

[y(1,κ) · · · y(S,κ)
]

=
S∑
i=1

H(i)>R(i)−1
y(i,κ),

(5.63)

the correction equations are reworked as follows:

x̂(κ)[+] = P (κ)[+]

[(
P (κ)[−])−1

x̂(κ)[−] +
S∑
i=1
H(i)>R(i)−1

y(i,κ)

]
, (5.64a)

P (κ)[+] =
[(
P (κ)[−])−1 +

S∑
i=1
H(i)>R(i)−1

H(i)>

]−1

, (5.64b)

where the summation in Equation (5.64b) is obtained similarly to Equation (5.63).
Equation (5.64a) cannot be directly applied to the manifold EKF due to the dimension
mismatch between the error covariance matrix and the full state vector, since the
rotation part of the former is defined on se(3). However, it can be reworked to yield
instead the a posteriori error state vector using the EKF correction equation:

δx[+](κ) = K(κ)υ(κ). (5.65)

This relation can be used to replaceK(κ) in one of the previously derived expressions
by multiplying both sides by υ(κ):
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K(κ) = P [+](κ)H>R−1 ⇔

⇔ δx[+](κ) = P [+](κ)H>R−1υ(κ).
(5.66)

Then, the a posteriori error can be computed as a linear combination of each sensors’
quantities:

δx[+](κ) = P [+](κ)

[ 2∑
i=1
H(i)>R(i)−1

υ(i,κ)

]
. (5.67)

Measurement Gating

An additional step is employed prior to the correction to ensure the accurate function-
ing of the filter. This involves subjecting the incoming measurements to a validation
gate, thus discarding potential spurious data. The validation gate is a threshold on
the root mean squared error (RMSE) of the stacked residuals r as obtained by the
M-estimation:

RMSE(r) :=

√∑N
i=1 r

2
i

N
, (5.68)

where N is the number of correspondences. The RMSE provides an objective and
clear interpretation of how close, in pixels, does the feature matching agree with the
estimate of the pose.

5.3.3.3 Manifold State Prediction and Correction

The nominal state is construed, with some abuse of notation, as:

x =
[
u

$

]
, (5.69)

with u ∈ U ∼= SE(3) representing the relative pose mapping
~
F t →

~
F c and $ ∈ R6

is the generalised velocity satisfying the kinematics equation for SE(3) (Eq. [5.36]).
The nominal state estimate is updated via pose composition (Eq. [2.27], Chap. 2)
with a linearised error state estimate:

δx =
[
δξ

δ$

]
, (5.70)

with δξ ∈ se(3) × R6 , ensuring that u remains an element of U ∼= SE(3). The
algorithm’s equations are valid for any chosen representation of u provided the
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appropriate composition � is used. State prediction is performed as:

û(κ)[−] = û(κ−1)[+] � ∆τ$̂(κ−1)[+], (5.71)

$̂(κ)[−] = $̂(κ−1)[+]. (5.72)

The state correction is given by:

û(κ)[+] = û(κ)[−] � δξ̂(κ)[+], (5.73)

$̂(κ)[+] = $̂(κ)[−] + δ$̂(κ)[+] (5.74)

The covariance is calculated using the standard EKF equations.
In terms of the parametrisation of u, the unit quaternion is adopted due to its

popular choice for attitude representations, particularly in aerospace applications, as
it is both compact and singularity-free (see § 2.3.2, Chap. 2). In this case, the state
vector becomes:

x =

 tq
$

 , (5.75)

which has dimensions 13× 1.

5.4 Experiments

Experiments were conducted on both synthetic and laboratory datasets to validate
the proposed method. Table 5.1 summarises the experiments conducted in this
chapter.

The coarse pose estimation module was built in MATLAB and the GMM Bayesian
classifier was implemented using the GMMBayes toolbox.2 The fine pose estimation
module was developed in C++, the OpenCV library (version 3.0) was used for
computer vision and image processing related functions. Keyframes are generated
using the open-source 3D computer graphics software Blender (version 2.78). All
simulations are carried out on an Intel® CoreTM i7-6700 @ 3.40 GHz × 8 core central
processing unit (CPU), 16 GB RAM system.

2http://www.it.lut.fi/project/gmmbayes
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Table 5.1: Summary of experiments in Chapter 5.

Section Description Dataset

Section 5.4.3 Evaluation of the coarse pose estimation
module

BLENDER, SPEED

Section 5.4.4.1 Evaluation of the fine pose estimation
module

ASTOS, UASL,
SPEED

Figure 5.5: Randomly sampled images from the BLENDER dataset.

5.4.1 Datasets
The datasets used to evaluate the performance of the proposed method are described
below.

Blender Dataset The BLENDER dataset (Fig. 5.5) is a series of synthetic images
of Envisat using the open-source 3D computer graphics software Blender by uni-
formly sampling the viewsphere with a mesh step ∆mesh equal to 1 deg, a class step
∆class equal to 10 deg, at a constant radius equal to 50 m, yielding 648 classes with
approximately 100 samples per class and over 64 400 in total.3 For each rendered
image, two illumination sources are added: a constant, uniform, low-intensity lighting
emulating Earth’s albedo; and a high-intensity lighting with a randomly varying
direction to emulate different Sun angles. All images feature a black, deep-space
background, where the target is the only object present in the FOV. This is to allow
for a straightforward binary segmentation of the shape prior to the computation of
the ZMs. Images are rendered at a resolution of 640 px × 640 px. The same CAD
model and camera characteristics used in the ASTOS dataset were used (Chap. 2,
§ 2.5.2).

SPEED Dataset The Spacecraft PosE Estimation Dataset (SPEED) is a collec-
tion of images emulating the Hyperspectral Precursor of the Application Mission

3On the poles (0 deg and 180 deg elevation) a change in azimuth only produces an in-plane
rotation and not a change in viewpoint, leading to fewer renderings in these cases and resulting in
a total sample number lower than the expected 648× 100 = 64 800.
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(PRISMA) rendezvous (RV) of the Tango and Mango spacecraft which was used to
benchmark the entries of the ESA SPEC (Kisantal et al., 2020, Chap. 2). Overall,
SPEED where the target is characterised by a cuboid shape, albeit much more compact
in comparison to Envisat, leading to more ambiguous viewpoints, which could prove
to be limiting for shape-based classifiers. SPEED is composed of both synthetic and
laboratory-acquired data divided into train (SPEED/TRAIN, SPEED/REAL) and test
(SPEED/TEST, SPEED/REAL-TEST) sets, numbering 12 000, 5, 2998, and 300 images,
respectively. The images were scaled to a size of 640 px × 400 px.

Astos Dataset ASTOS (Chap. 2) consists of 28 different multimodal rendezvous
trajectories with Envisat, featuring three distinct guidance profiles, three tumbling
modes, and two approach vectors. The tests in this chapter focus on the visible-
imaged ASTOS/G2/R1/VBAR and ASTOS/G1/R2/VBAR trajectories which do not contain
Earth in the FOV. Long-wavelength infrared (LWIR) images are not considered
in this chapter since the methodology relies on feature detectors and descriptors
that are affected by local changes in pixel intensities, and thus a model would only
be feasible if the target’s thermal signature at inference time were known, which
is unrealistic in practice.. The sequences are acquired at 10 Hz and processed at a
resolution of 640 px × 480 px.

UASL Dataset The Unmanned Autonomous Systems Laboratory (UASL) dataset
is a RV trajectory with a 1:17 scaled down mock-up of Envisat acquired at Cranfield
University (Chap. 1). The camera acquires images in a similar configuration to
ASTOS/G2/R1/VBAR, at a constant relative distance of approximately 1.95 m. The
mock-ups initial relative attitude is shifted 90 deg around the

~
t(2) axis, displaying

the radar-bearing face to the camera in the initial frame. The target’s rotation rate
is constant and equal to 5.73 deg s−1. The background is masked using the ground
truth to eliminate illumination artefacts on the blackout-curtains. For training, the
mock-up is modelled in Blender and textured with real images to generate the offline
keyframe database.

5.4.2 Testing

The coarse pose estimation results are presented in terms of the integer difference
between the true class, y, and the predicted class, ŷ:

∆ỹaz := mod (|ŷaz − yaz|, yhem) ,

∆ỹel := |ŷel − yel|,
(5.76)

193



5. ROBUST ON-MANIFOLD OPTIMISATION

where yhem corresponds to the class the hemisphere at 180 deg. The fine pose
estimation results are presented in terms of the position and attitude error metrics,
respectively:

δt̃ := ‖t̂− t‖, (5.77)

δq̃ := 2 arccos
(
q̂−1 ⊗ q

)
4 . (5.78)

For the filtering results, the velocity errors are defined as:

δν̃ := ‖ν̂ − ν‖, (5.79)

δω̃ := ‖ω̂ − ω‖. (5.80)

When evaluating on SPEED, a combined pose score is computed across all N test
images according to the SPEC competition rules:

δT̃SPEC := 1
N

N∑
i=1

δt̃i
‖t(i)‖

+ δq̃i. (5.81)

5.4.3 Evaluation of Coarse Pose Estimation
5.4.3.1 Simulations on Blender Dataset

Table 5.2 summarises parameters used in the current analysis. Images from the
BLENDER dataset are grouped into bins of 10 deg in azimuth and elevation, thus
defining the minimum achievable accuracy for the coarse pose classifier. This reduces
the classification problem to 648 possible classes. To expand the size of the training
population, an image augmentation campaign is performed, consisting in post-
processing the renders by randomly applying some transformations; variations are
introduced in terms of scale, in-plane rotation, perspective transforms, and binary
segmentation threshold, yielding 500 images per class. To test the performance of
the algorithm, a stratified k-fold cross-validation is then performed on a 80–20 %
train-test split.

In order to have a comparative insight of how the algorithm performs, two
competitor methods are additionally benchmarked. The first competitor method is
similar in the sense that it also relies on the ZM-based description of the target’s
shape but follows a naive Bayes classification strategy, i.e. a single Gaussian is used
to model each feature in the ZM vector in each class. The second competitor method
uses local features rather than a global descriptor and is based on the bags-of-visual-
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Table 5.2: Settings used for k-folds validation of the coarse pose classification
module on the BLENDER dataset.

Parameter Symbol Units Value

Viewsphere azimuth mesh step ∆az
mesh deg 1

Viewsphere elevation mesh step ∆el
mesh deg 1

Viewsphere azimuth class step ∆az
class deg 10

Viewsphere elevation class step ∆el
class deg 10

Total classes −− −− 648
Training images per class −− −− 500
ZM vector dimension −− −− 60
Folds k −− 5

words (BoVW) method (Csurka et al., 2004). BoVW is briefly summarised below in
Remark 5.5.

Remark 5.5: Bags-of-visual-words

BoVW (Csurka et al., 2004) is an image classification and scene recognition
algorithm inspired on the bags-of-words model from the field of natural language
processing. First, feature extraction is performed on the images from each
class. The full set of keypoints is then iteratively clustered using k-means
into a pre-defined number of compact, non-overlapping groups, forming the
visual vocabulary (the bag-of-keypoints) of the full domain. Each cluster
center is therefore a word of the vocabulary. The features from each image
are binned according to the cluster centres of the vocabulary, yielding one
fixed-size histogram of visual word occurrences per image. The histograms
belonging to each class are then used to train a classifier.

The BoVW model for this analysis considers ORB+FREAK features. Since the
latter is a binary keypoint descriptor, the clustering is performed using k-medoids
instead. Due to the large number of classes considered, rather than clustering the full
set of features directly, 10 clusters are extracted for each class and then concatenated
to form the global vocabulary as done by J. Zhang et al. (2006). For similar reasons,
a Bayesian classifier is used rather than an SVM. Both competitor methods are also
implemented in MATLAB and trained with the same number of images.

The results are illustrated in Figure 5.6 for azimuth and elevation classification
performance in terms of the histogram probability mass function (PMF) of the
∆ỹaz,∆ỹel class distance errors (a value of zero in the horizontal axis represents a
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(c) ZM + GMM Bayes

Figure 5.6: Histogram of results of the k-folds validation for the coarse pose
classification on the BLENDER dataset.

Table 5.3: Average expected attitude error for the coarse pose classification on the
BLENDER dataset.

Metric Units BoVW +
Naive Bayes

ZM +
Naive Bayes

ZM +
GMM Bayes

δq̃
Mean deg 76.86 14.21 9.35
Median deg 70.62 0.00 0.00
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Figure 5.7: Cumulative performance of the k-folds validation for the coarse pose
classification on the BLENDER dataset.

correct classification, see Eq. [5.76]). An alternative representation of the errors
is shown is Figure 5.7 in terms of the (discrete) cumulative distribution function
(CDF) for a better comparison of the three methods. The average expected combined
attitude error is also showcased (Tab. 5.3); this is calculated by converting the
azimuth and elevation from the center of each class into the equivalent predicted
relative attitude quaternion q̂ (the roll angle is assumed the same for each class).
The error quaternion is then computed from the ground truth and Equation (5.78).

The overall performance of the BoVW classifier is poor and vastly outperformed
by the two shape-based methods. The correct classification rate for the azimuth
is approximately 15 %. A cumulative score of 50 % is only achieved for a distance
of 5 classes, i.e. a maximum average expected error of 45 deg. The results for the
elevation classification are improved, which is expected, as it involves fewer classes
(19 as opposed to 35 for the azimuth); this is the case for all benchmarked methods.
However, the performance in this case remains far below the rest. The mean average
expected attitude error is over 75 deg, making it unfit for coarse pose classification,
and demonstrating that local features are not distinctive enough for the viewpoint
classification of the spacecraft.

The performance of both shape-based classifiers is comparable. However, the
details on Figure 5.6 expose the presence of multiple modes in the case of the naive
Gaussian modelling. This phenomenon is more prominent for the azimuth error (also
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Table 5.4: Mean computational execution times per image for the coarse pose
classification on the BLENDER dataset.

Operation Units BoVW +
Naive Bayes

ZM +
Naive Bayes

ZM +
GMM Bayes

Feature detection ms 81.99 62.78 62.78
Inference ms 87.75 545.58 138.93
Total ms 169.73 608.36 201.71

present on the BoVW) and stems from the ambiguous projected shape of the target
when imaged from opposing viewpoints. There is an additional error peak around
the 90 deg difference in azimuth; overall this profile is consistent with a target of
cuboid shape, such as the main bus of Envisat. The effect is also observable, to
an extent, for the elevation error. On the other hand, these peaks have practically
been mitigated in the case of the GMM. The correct classification rate is 71.35 % for
azimuth and 75.86 % for elevation. These represent gains of approximately 10 % and
5 %, respectively, comparatively to the naive Gaussian modelling. In terms of average
expected attitude error, this translates into an mean improvement of 5 deg. Overall,
the GMM leads to 90.41 % of the data being classified with a bin distance less than
or equal to 1, i.e. with a maximum expected error of 20 deg, and equivalently 92 %
for the elevation.

Table 5.4 displays the computational times of the three benchmarked methods.
The feature detection cost is comparable for all; note that the feature detection
is the same for both the naive Bayes and GMM Bayes classifiers. For these two,
the inference cost is superior, particularly in the case of the former. However, this
could be attributed to the fact that a different MATLAB toolbox was used for
the classification process of each. The total computational cost of the proposed
GMM-based classifier is comparable to that of the BoVW, averaging 200 ms. This
does not represent a significant bottleneck to the fine pose estimation module as it is
only ran once, and the runtime is expected to decrease even more when implemented
on a lower level programming language.

5.4.3.2 Simulations on SPEED Dataset

To offer some degree of comparison with the current state-of-the-art, the proposed
coarse pose classification module is also tested on the publicly available SPEED
dataset. Since the absence of a ground truth does not allow for an in-depth analysis
of the performance for the coarse pose classification pipeline, the method is tested
exclusively on the SPEED/TRAIN set.
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Figure 5.8: Histogram of results of the k-folds validation for the coarse pose
classification on the SPEED/TRAIN dataset.

Table 5.5: Average expected attitude error for the coarse pose classification on the
SPEED/TRAIN dataset.

Metric Units Value

δq̃
Mean deg 34.81
Median deg 10.00

Furthermore, the dataset contains some aspects related to the extraction of
the target’s shape that had to be adapted in order for the current analysis to
be performed. Firstly, synthetic SPEED images partly contain cases where Earth
is present in the background. The proposed pipeline does not include a target-
background segmentation strategy, and therefore these images have been removed
prior to testing. Secondly, all images are contaminated by Gaussian noise, making
image binarisation non-trivial, which leads to noisy extracted shapes and more than
often to deficient segmentations, which will affect the quality of the classifier. As
such, prior to binarisation, the images have to be pre-processed in an impromptu way,
under which some errors still remain. This is not meant to be an optimal process,
and future work will include the development of a target segmentation module to
cope with these limitations.

Similarly to the analysis for BLENDER, a k-folds cross validation is performed on
datasetSPEED/TRAIN using same settings from Table 5.2. The results for the
proposed method in terms of the classification PMF are presented in Figure 5.8. The
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Table 5.6: Pose estimation pipeline configuration and numerical settings used for
the experiments on the ASTOS and UASL datasets.

Parameter Symbol Units Value

Viewsphere azimuth mesh step ∆az
mesh deg 1

Viewsphere elevation mesh step ∆el
mesh deg 1

Viewsphere azimuth class step ∆az
class deg 9

Viewsphere elevation class step ∆el
class deg 9

Total keyframes −− −− 800

average expected attitude error is shown in Table 5.5. As expected, the benchmarked
performance is inferior to that attained for the BLENDER dataset. Notably, there is
a clear presence of a second azimuth mode at 180 deg which is not fully tackled by
the GMM. Additionally, it can be seen that the elevation PMF tail also flattens
out at a higher value. The correct classification rates for azimuth and elevation
are approximately 50 % and 60 %, respectively. However, 75 % of the data azimuth
accuracy is concentrated at a bin distance less than or equal to 1, equivalently
85 % for the elevation. The overall mean attitude error is situated at 34.81 deg.
This represents a lower performance than the current state-of-the-art deep learning
methods which competed in SPEC, but despite not explicitly tackling the target
segmentation problem, the proposed classifier still obtains good enough results to be
used as an initialisation method, as it is meant, to the fine estimation module, at a
fraction of the required training and inference computational times.

5.4.4 Evaluation of Fine Pose Estimation

5.4.4.1 Simulations on Astos Dataset

In this section, the performance of the full spacecraft relative pose estimation
pipeline is assessed. This includes the initialisation procedure with the coarse pose
classifier followed by the pose refinement using local features. Tests are ran on
the ASTOS/G2/R1/VBAR and ASTOS/G1/R2/VBAR to benchmark the robustness of the
method towards two different tumbling modes and changes in relative distance.

Table 5.6 shows the parameters employed in the test. A step of 9 deg both in
azimuth and elevation was chosen to build the offline database, resulting in 800
keyframes. Note that, for the simulated motions, a far lower number of keyframes
would be required since the rotation is periodic; however, to stress the algorithm, the
full set of possible keyframes to choose from is kept. The EKF is run with a timestep
of 0.1 s (the sampling rate of the camera). The initial filter pose state t̂(0), q̂(0) is
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Figure 5.9: Nominal pose estimation errors for the ASTOS/G2/R1/VBAR/VIS/HOT
trajectory.

initialised with the result of the coarse pose estimation, while the velocity state $̂(0)

is pessimistically assumed to be equal to zero. The initial covariance P̂ (0) and the
process noise covariance σ2

ν , σ
2
ω are tuned empirically, whereas the measurement noise

covariance is automatically determined via M-estimation.
Four different methods are compared: 1) EPnP with feature point matches

(Lepetit, Moreno-Noguer, et al., 2008) and Random Sample Consensus (RANSAC)
for outlier rejection; 2) the method developed in Chapter 4, using M-estimation
fusing point and edge features; 3) the model-free ORB-SLAM2 (Mur-Artal et al.,
2015); and 4) the framework proposed in this chapter. In the case of the first two
methods, the next keyframe is determined by the pose estimated in the previous
time-step. As ORB-SLAM2 is a model-free method, the first built keyframe is
arbitrarily oriented and scaled; as such, for the context of this analysis, it is scaled
with the corresponding trajectory ground truth.

ASTOS/G2/R1/VIS/HOT Sequence

The results of the relative pose estimation for ASTOS/G2/R1/VIS/HOT are shown
in Figure 5.9. It can be seen that EPnP+RANSAC is not able to converge at all.
The pure M-estimator yields a decent estimate for the first few frames, but the
error quickly begins to grow until the algorithm diverges completely at time τ = 5 s.
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Figure 5.10: Feature statistics for nominal pose estimation sequence of the
ASTOS/G2/R1/VBAR/VIS/HOT trajectory.

ORB-SLAM2 is only capable of providing a pose estimate for three segments of
the trajectory, corresponding to the parts where the radar-side is facing the camera
and the number of keypoints is maximal and relatively stable. Nevertheless, the
estimate quickly drifts in the case of the position, and it is entirely wrong in the case
of the attitude. On the other hand, the proposed framework converges at around
τ = 10 s. The steady state error is bounded at approximately 2 m for position, which
corresponds to 4 % of the range distance, whereas the attitude error is bounded at
1.5 deg. Figure 5.10 exhibits some figures of merit pertaining to the point and edge
features in the simulation run, namely the number of matches and inliers, the RMSE
of the M-estimation, and the feature visibility with respect to the validation gating
applied prior to the filtering. A threshold of 2.5 px was applied for the points and
5 px for the edges. The number of matches fluctuates more in the case of edges;
this is due to the relative circular trajectory in which the imaging area of the target
changes. The peaks correspond to the sections where the

~
t(1) −

~
t(2) plane ∈

~
F t is

imaged by the chaser, whereas the valleys correspond to an imaging of the
~
t(2) −

~
t(3)

plane (see Chapter 2, Fig. 2.16). However, the RMSE of the point features is on
average greater than that of the edges, which results in fewer periods of visibility
for the former. The periods of higher RMSE correspond to images of the

~
t(1) −

~
t(2)
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Figure 5.11: Nominal velocity estimation errors for the ASTOS/G2/R1/VBAR/VIS/-
HOT sequence for the proposed framework.

(a) Initial pose at
τ = 0 s

(b) τ = 50 s (c) τ = 115 s (d) τ = 285 s

Figure 5.12: Qualitative results of the relative pose estimation for the
ASTOS/G2/R1/VBAR/VIS/HOT sequence. The edges of the radar and solar panel
are reprojected in green using the estimated pose.

plane, where the image of the target is dominated by the MLI coverage and the
solar panel. Despite this, the guided feature matching algorithm prevents the point
features’ visibility from being constantly null during these periods.

The relative velocity estimation errors as output by the filter are also shown
(Fig. 5.11). The linear velocity steady-state error does not exceed 0.3 m s−1, whereas
the angular velocity is bounded at 2 deg s−1. The latter quantity is much noisier
than the former, since there are two out-of-plane dimensions, compared to one for
the linear velocity, highlighting the challenge of depth estimation with a monocular
setup. Lastly, Figure 5.12 illustrates the some frames of the synthetic dataset with
the estimated pose superimposed.
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Figure 5.13: Nominal pose estimation errors for the ASTOS/G1/R2/VBAR/VIS/HOT
sequence.

Figure 5.14: Nominal velocity estimation errors for the
ASTOS/G1/R2/VBAR/VIS/HOT sequence for the proposed framework.
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(a) Initial pose at
τ = 0 s

(b) τ = 15 s (c) τ = 32 s (d) τ = 55 s

(e) τ = 72 s (f) τ = 90 s (g) τ = 104 s (h) τ = 120 s

Figure 5.15: Qualitative results of the relative pose estimation for the
ASTOS/G1/R2/VBAR/VIS/HOT sequence. The edges of the radar and solar panel
are reprojected in green using the estimated pose.
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ASTOS/G1/R2/VIS/HOT Sequence

The pose estimation results for the ASTOS/G1/R2/VIS/HOT trajectory are portrayed
in Figure 5.13. This trajectory is more challenging due to the change of position depth
and more complex tumbling mode. EPnP+RANSAC and the pure M-estimator,
again, quickly diverge. ORB-SLAM2 is now only capable of briefly providing a
solution for two sections and with unsatisfactory quality. The proposed method takes
slightly longer to converge (at around time τ = 15 s). From the 3σ standard deviation
envelope estimated by the filter, the uncertainty is noticeably higher comparatively to
the previous ASTOS/G2/R1/VBAR sequence. The steady state position error behaves
similarly, not exceeding 4 % of the range. The attitude error is slightly worse, reaching
a peak of 5 deg right after the transient, but remaining bounded at 3.8 deg from
thereon. The introduced variations in the relative motion drive the velocity errors
considerably higher (Fig. 5.14): while the linear velocity error appears to decrease
along with the range, the angular velocity error converges to a steady state value
of 4 deg s−1. In spite of this, the predictive matching module that relies on the
EKF prediction remains robust enough to provide an accurate solution of the pose.
Qualitative results are exhibited in Figure 5.15.

ASTOS/G2/R1/VBAR/VIS/COLD Sequence

In this section, the robustness of the proposed algorithm is evaluated during eclipse,
in particular, on the ASTOS/G2/R1/VBAR/VIS/COLD sequence. For this sequence, the
target spacecraft is not under direct sunlight, meaning that less light enters the
camera’s sensor, in turn reducing the signal-to-noise ratio. To simulate this effect,
the images are corrupted with white, zero-mean Gaussian noise with a standard
deviation σ = 1× 10−2 (equivalent to 2.5 on a pixel range of 0–255 ). Then, to
facilitate the segmentation process and increase the visibility of the target, contrast
limited adaptive histogram equalisation (CLAHE) is applied as in the analysis
done in Chapter 3. Since this step also now increases the sensor noise, a denoising
step must be added before applying a threshold-based segmentation; the function
fastNlMeansDenoising readily available on OpenCV is used for this purpose. The
outcomes of these preprocessing steps are illustrated in Figure 5.16, along with the
result of the segmentation, for the initial frame at time τ = τ0.

The pose and velocity estimation results are shown in Figure 5.17 (cf. Figs.
5.11 and 5.9). The corresponding feature statistics are illustrated in Figure 5.18
(cf. Fig. 5.10). It can be observed that the point feature matching volume now
follows a cycle entailing a much larger amplitude when compared to the hot case,
where the valleys correspond to periods where the apparent area of the target in the
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(a) CLAHE (b) Denoising (c) Segmentation

Figure 5.16: Image processing for the ASTOS/G2/R1/VBAR/VIS/COLD trajectory.

camera’s FOV is minimised. In general, fewer points are detected and matched due
to the degradation from the denoising step. Despite this, the predictive matching
component still manages to keep the number of inliers on par with the matches, and
the RMSE-based gating successfully rejects any spurious pose pseudo-measurements.
Despite the loss of quality in the segmentation process, the behaviour of the edge
features remains stable as in the hot case, with no significant differences.

The position estimation error does not change much with respect to the hot
case, yielding a mean value of approximately 2.75 % of range in steady-state. The
maximum attitude error now reaches 2.5 deg, and showcases a mean value slightly
over 0.90 deg, compared to a mean of 0.78 deg for the hot case. The linear and angular
velocities also perform similarly. Overall, the proposed method is shown to be robust
to eclipse conditions as long as the silhouette of the target can still be extracted. It
was noted, however, that the denoising step took on average 570 ms per frame on its
own to run, which represents 446 % of the complete algorithm’s runtime in nominal
sunlight conditions (see Tab. 5.7), deeming such an implementation impractical as-is.
Potential solutions could include running the denoising step at lower resolutions to
increase speed and then upscaling the result in exchange for some performance loss,
or exploring less computationally-intensive denoising algorithms, which are left as
future work.

Computation Times

The mean computational cost per image of the four methods is benchmarked in
Table 5.7. ORB-SLAM2 is by far the fastest method. Note, however, that for most
of the benchmarking, the algorithm was unable to initialise, and thus the majority
of the heavy-lifting was avoided. Conversely, the proposed method (non-optimised
code) exhibits the highest cost, which is broken down in Table 5.8. It is clear that
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Figure 5.17: Nominal pose and velocity estimation errors for the
ASTOS/G2/R1/VBAR/VIS/COLD trajectory.

Table 5.7: Mean computational execution times per image for the fine pose estima-
tion on the ASTOS dataset.

EPnP+RANSAC M-estimation ORB-SLAM2 Proposed Units

63.32 72.81 20.00 127.72 ms

the bottleneck resides in the feature extraction and M-estimation tasks. Notably,
the computation of the FREAK descriptors takes approximately 40 ms, and the
combined M-estimation routines take 55 ms to run; both make up almost 75 % of
the total runtime. By limiting the number of detected features, both of these figures
of merit can be decreased on one go. Future work will include a trade-off analysis on
the influence of limiting the number of features on the accuracy of the pipeline.

5.4.4.2 Validation on UASL Dataset

In this section, the framework is validated in laboratory; in particular, on the UASL
dataset.

Figure 5.19 displays the pose estimation errors as achieved by the framework;
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Figure 5.18: Feature statistics for nominal pose estimation sequence of the
ASTOS/G2/R1/VBAR/VIS/COLD trajectory.

Figure 5.20 shows the velocity estimation errors; Figure 5.21 depicts a set of frames
from the lab sequence including initialisation and reprojection of the pose. The
magnitude of the attained errors is analogous to that obtained for the synthetic
dataset: a maximum of 5 % position estimation error with respect to the range,
whereas the attitude error in steady-state does not exceed 2.5 deg (while remaining
generally under 1.5 deg). As expected, the angular velocity error estimation is more
noisy than the linear velocity one.

5.4.4.3 Validation on SPEED Dataset

Despite the analysis of the coarse pose estimator done on the synthetic SPEED/TRAIN
dataset, it would be interesting to obtain a more direct comparison with the state-of-
the-art by assessing the pose estimation performance of the proposed method on the
actual test data through the SPEC score (see Eq. [5.81]).

When submitting the results on the website, the score is computed automatically
for both SPEED/TEST and SPEED/REAL-TEST sets, although only the former was
used to decide the winners of the competition; the latter was shown for reference
and to evaluate the transferability of the algorithm to laboratory data. During
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Figure 5.19: Pose estimation errors for the UASL dataset.

Figure 5.20: Velocity estimation errors for the UASL dataset.

(a) Initial pose at
τ = 0 s

(b) τ = 37 s (c) τ = 87 s (d) τ = 137 s

Figure 5.21: Results of the relative pose estimation for the UASL dataset. The
edges of the radar and solar panel are reprojected in green using the estimated pose.
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Table 5.8: Breakdown of mean computational execution times per image for the
proposed fine pose estimation method on the ASTOS dataset.

Operation Time (ms) Time (%)

Point detection 7.84 6.14
Point description 39.14 30.65
Image binarisation 0.15 0.11
Edge detection 2.54 1.99
Point matching 0.53 0.42
Edge matching 2.32 1.82
Point M-estimation 7.83 6.13
Edge M-estimation 56.98 44.61
Keyframe selection 10.24 8.02
EKF prediction 0.06 0.05
EKF correction 0.09 0.07
Total 127.72 100.00

the competition, submissions were evaluated on a subset of all test images (also
undisclosed) in order to avoid overfitting. At the end of the competition, the
submissions were re-evaluated on the complete test sets and ranked accordingly. It is
still possible to obtain a score on this subset by submitting the estimated 6-DOF pose
values on the SPEC website. Since SPEED/TEST also contains images having Earth
in the background, which the present algorithm does not tackle, the performance is
assessed for SPEED/REAL-TEST alone (i.e. the “real image score”).

The CAD model of Tango has not been provided for SPEC. Therefore, for this
section, the 3D structure of the spacecraft was first reconstructed using a few selected
images from SPEED/TEST using multi-view triangulation from manually selected
keypoints and the provided 6-DOF relative pose (Hartley and Zisserman, 2004).
This was achieved using the MATLAB Computer Vision Toolbox, yielding the
corresponding set of 3D structural points, which were then imported to Blender
and used as the reference to model Tango’s geometric primitives and to texture the
object. The reconstructed model was then used to render a number of keyframes
covering the attitude range of the train set, SPEED/REAL. Figure 5.22 illustrates
some sample keyframes rendered from this reconstructed model. As the resulting
viewsphere is much more reduced compared to the evaluations in Section 5.4.3, values
of ∆az

class = ∆el
class = 5 deg are used instead (cf. Tab. 5.2), yielding a total of 12 possible

classes for coarse pose determination.
The complete framework achieves a real image score δT̃SPEC = 0.2692. A qualita-

tive illustration of the results can be observed in Figure 5.23. Despite featuring a black
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Figure 5.22: Sample keyframes rendered from the reconstructed target spacecraft
of the Spacecraft PosE Estimation Dataset (SPEED).

Table 5.9: Achieved SPEED/REAL-TEST subset δT̃SPEC score in the context of the
scores obtained by the SPEC top-5 rankers in this metric.

Method Username Score SPEC Final Rank

EPFL EPFL_cvlab 0.1040 2
University of Surrey pedro_fairspace 0.1476 3
Proposed dr_uasl 0.2692 n/a
Stanford University stanford_slab 0.3221 4
University of Adelaide UniAdelaide 0.3634 1
Motoki Kimura motokimura1 0.5714 6

background, the images from SPEED/REAL-TEST were found to contain some artefacts
that made a typically straightforward threshold-based segmentation sub-optimal.
Nonetheless, the algorithm is shown to generate a robust estimate of the relative
pose (figure 5.23a). In some cases, the algorithm converges to a local minimum due
to the target being partially outside of the FOV, which affects either the performance
of the coarse module or the fine module, or both (figure 5.23b). However, these are
a minority, and the attained δT̃SPEC is well below the Pytorch and Keras baseline
scores of 2.6636 and 3.5359, respectively, provided by the SPEC organisers using
deep learning.

The obtained score is set side-by-side to those achieved by the top-5 SPEC
participants on the same dataset in Table 5.9; details about the methods can be
found in (Kisantal et al., 2020). It is clear that the proposed framework is comparable
to the best scores on the SPEED/REAL-TEST subset, ranking third place. Notably,
it is better than that achieved by the University of Adelaide (0.3634), the winners
of the competition based on their SPEED/TEST score. It is reiterated that only
synthetic data has been used for training, which demonstrates the robustness of the
algorithm to the domain gap. For context, note that four out of the five competitor
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(a) Optimal fits

(b) Sub-optimal fits

Figure 5.23: Results of the relative pose estimation for the SPEED/REAL-TEST
subset. The edges of the solar array are reprojected in green using the estimated
pose.

methods illustrated in Table 5.9 are confirmedly based on deep learning frameworks.
Additionally, teams UniAdelaide, EPFL_cvlab, and stanford_slab all rely also on
the ground truth 3D structural points of the target, which are used to train neural
networks that detect their 2D coordinates in images; the actual pose is solved using
PnP. At the time of submission, the result ranked fourth place on the post-mortem
leaderboard in terms of real image score, although no details about the competing
submissions are known.

5.5 Conclusions and Future Work

In this chapter, a robust, innovative model-based solution for spacecraft relative
navigation using a single visible wavelength camera has been developed. The proposed
contribution stands on the fact that the relative navigation solution is achieved using
a set of discrete keyframes rendered in an offline stage from a three-dimensional
model of the target spacecraft, where a 3D-2D problem is converted into a 2D-2D
approach relying only on computer vision methods which do not require hardware
acceleration such as GPUs. The proposed method was validated using synthetic
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datasets closely simulating the imaging conditions experienced in-orbit, including
scale changes and tumbling motion of the target, and a real dataset generated in
laboratory featuring the complex spacecraft Envisat. The aspect of the target in each
keyframe is learned using shape features and GMMs that are used to train a Bayesian
classifier; the coarse viewpoint as seen by the camera was identified approximately
90 % of the time with an error under 20 deg on the showcased synthetic dataset. The
classifier was also tested on synthetic images from the open-source SPEED dataset,
where it was found that a combination of sensor noise and low lighting conditions
negatively affect the target shape extraction, bringing the performance down to 75 %
for 20 deg bounds.

The pose estimate is refined by matching hybrid features between the current
query image and train keyframe. Automatic outlier rejection is assured via M-
estimation. An EKF is employed to fuse the pose hypotheses generated by each
feature type; it is designed to operate on the tangent space of SE(3), allowing it
to seamlessly integrate the previous stage by assimilating the covariance matrices
generated by the M-estimation directly as the measurement noise, independently of
the pose parametrisation. The attained solutions for both synthetic and laboratory
datasets targeting Envisat under sunlit orbits showcase rapid convergence and yield
a maximum error of 5 % of the range distance in position and 3.8 deg in attitude; on
average, steady-state errors are observed in the order of 2.5 % of the range in position
and 1 deg in attitude. A novel matching strategy by predicting feature locations
using the EKF, alongside a RMSE-based validation gate, assures the stability and
accuracy of the solution is maintained, even in the face of highly discrepant frames
with respect to the database keyframes caused by light-scattering MLI and solar
array reflections. This stability was also ascertained for eclipse periods, although
the noise removal processing for low-light images significantly increased the overall
execution runtime.

Lastly, the proposed pipeline was validated on laboratory test images of SPEED,
obtaining a pose score calculation of 0.2693, which demonstrates its robustness in
bridging the domain gap between synthetic and real data and is comparable to
the best scores obtained in the SPEC competition with deep learning. While the
advances in the latter field towards computer vision tasks such as image classification
are undeniable, the results achieved herein cast doubts on the belief that any deep
learning-based technique is automatically capable of achieving a lower error than
classical spacecraft relative pose estimation methods. It is noted, though, that the
method is dependent on a proper extraction of the shape of the target and hence the
score for synthetic images featuring Earth in the background could not be computed,
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something that could be easily surpassed using deep learning. Future work will
thus focus on the development of a dedicated segmentation module to enhance the
framework.
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CHAPTER 6

Pose Estimation for Multimodal Sequences via
Deep Recurrent Convolutional Learning

This chapter presents a method to estimate the relative pose of a spacecraft
by incorporating the temporal information from a rendezvous sequence into
a deep learning pipeline. It leverages the performance of long short-term
memory (LSTM) units in modelling sequences of data for the processing of
features extracted by a convolutional neural network (CNN) backbone. To
improve end-to-end pose estimation by regression, a difficult problem due to
the vast response domain (especially for SO(3)), the complete framework,
dubbed ChiNet, combines three distinct training strategies along a coarse-
to-fine funnelled approach, facilitating feature learning. The capability of
CNNs to automatically ascertain feature representations from images is used
to fuse infrared data with red-green-blue (RGB) inputs.

6.1 Motivation

With recent advances in computing power, neural network-based algorithms
have evolved from traditional networks containing one to three hidden layers

toward deep networks capable of having hundreds. As each layer includes nonlinear ac-
tivation functions, building deeper networks allows for more accurate approximations
to the intricacies of complex environments. This stands as a clear advantage with
respect to more traditional approaches involving the linearisation of systems, which
demands significant resources in terms of modelling and is limited to particularly
favourable conditions.

Autonomous vision-based spacecraft navigation is one key area with the potential
of largely benefiting from deep neural network (DNN) estimation methods. Since the
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introduction of compact and lightweight passive optical sensors as feasible on-board
instruments, the focus has been on the development of robust image processing (IP)
and machine learning (ML) techniques to accurately estimate the target spacecraft’s
relative state, typically through the six degrees-of-freedom (6-DOF) pose. Deep
learning can be considered the natural next step in this regard, as such methods
would adequately capture the intrinsic nonlinearities between the input sensor data
and the state estimates (see Chap. 2). Additionally, convolutional neural networks
(CNNs; LeCun et al., 1989) are naturally tailored to process such image inputs. To
cope with the harsh conditions that are characteristic of on-orbit operations and
the space environment in general, and also to provide redundancy to the guidance,
navigation and control (GNC) system, other sensors capable of producing image-like
inputs such as thermal cameras and lidar can be fused in the solution and fully
availed using CNNs.

As researched in Chapters 3 and 4, and ultimately demonstrated in Chapter 5,
applying traditional IP methods to space scenarios is a fruitful, albeit arduous, task
as algorithms must be carefully crafted and adapted to cope with challenges such as
a tumbling target and unfavourable illumination conditions. A further advantage
of applying DNNs translates into bypassing this step; the image processing task
is shifted completely to the network, and the effort becomes concentrated towards
parameter optimisation and data modelling, potentially allowing for the generalisation
of the model to a wider swath of imaging conditions. Despite deep learning models
requiring large amounts of data to yield an acceptable accuracy, existing data can
be artificially augmented to increase the sample size while simultaneously optimising
for robustness; in the space domain specifically, synthetic imaging datasets can be
created using physics rendering engines that adequately simulate the environment.
On the other hand, while for traditional ML-based models performance with respect
to amount of training data eventually reaches a plateau, research suggests that for
deep learning methods this relationship increases logarithmically (C. Sun et al.,
2017).

The popularity of deep learning for computer vision tasks exploded in the early
2010s due to the admirable performance of the newly rediscovered CNN-type ar-
chitecture for image classification in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) relative to classical ML-based techniques (Krizhevsky et al.,
2012). Since then, the state-of-the-art has advanced in the direction of increasingly
deeper CNNs, which nowadays often reach tens of millions of parameters (He et al.,
2016; Szegedy, W. Liu, et al., 2015). Near the end of the decade, it permeated
onto the field of spacecraft relative pose estimation for rendezvous, mainly due to
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the Satellite Pose Estimation Challenge (SPEC), which ran in 2019, where the vast
majority — if not all — of the competitors used some kind of deep learning-based
approach. Despite traditional techniques outperforming most of such approaches
under the right conditions, as the results from Chapter 5 have shown, the competition
did highlight clear advantages of using deep learning in relative navigation for space
(Kisantal et al., 2020). For instance, if trained well, a CNN will almost certainly
learn to extract features from the target and ignore the background, eliminating the
need for a specialised segmentation block if Earth appears in the field of view (FOV)
of the chaser’s camera.

SPEC benchmarked the participating algorithms on the Spacecraft PosE Estima-
tion Dataset (SPEED; see Chap. 5), which consists of images of the Tango satellite
generated under randomised poses. As such, most candidate approaches tackled the
problem with CNNs. However, during a rendezvous sequence, it is expected that
the pose of the observed target continually varies as the operation progresses, i.e.
the poses are correlated through time. This chapter proposes the use of a recurrent
neural network (RNN) module to process the features extracted by a CNN front-end
model and exploit this temporal correlation between acquired image frames in the
rendezvous sequence. The resulting deep recurrent convolutional neural network
(DRCNN) architecture, dubbed ChiNet,1 is shown to provide a smoother and lower-
error estimate of the 6 degree-of-freedom (DOF) pose when compared to a single
CNN. Furthermore, ChiNet proposes a three-step training regimen to learn features
in a coarse-to-fine manner, which is inspired from the approaches of Chapters 4 and
5 in traditional ML. Lastly, ChiNet also explores the impact of multimodal sensing
in the pose estimating by augmenting the number of input channels to the network
with images from a long-wavelength infrared (LWIR) camera, thus exploiting the
natural ability of CNNs to autonomously extract features from images.

Remark 6.1: Associated Publications
This chapter is based partly on the following published work:

[J3] D. Rondao, N. Aouf, and M. A. Richardson (2021). “ChiNet: Deep
Recurrent Convolutional Learning for Multimodal Spacecraft Pose Esti-
mation”. In: IEEE Transactions on Aerospace and Electronic Systems.
Manuscript in submission

1Pronounced “kai-net”, the first term is an abbreviation of “chimera” (from the Greek “Χιµαιρα”),
meaning “something made up of parts of things that are different from each other”.
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6.2 Related Work

Deep learning-based computer vision techniques applied to space relative navigation
saw a modest and deferred beginning when compared to the drastic revamp of the
more general research field brought about by Krizhevsky et al.’s (2012) AlexNet: early
practices focused on entry, descent and landing (EDL) employing DNN architectures
varying from two-layer multilayer perceptrons (MLP) to CNNs with a limited number
of layers to tackle problems such as selecting optimal landing sites for spacecraft
(Campbell et al., 2017; Lunghi et al., 2016) or predicting the fuel-optimal control
actions to perform the landing itself (Furfaro et al., 2018). Eventually, more modern
CNN architectures started to be adopted (Silburt et al., 2018).

The first use of DNNs for spacecraft relative pose estimation, concretely, was
proposed by Sharma, Beierle, et al. (2018), who leveraged a pre-trained AlexNet
to approach the determination of the SO(3) state as a classification rather than
regression. The last fully connected (FC) layers were retrained using synthetic images
of the Tango spacecraft flown in the Hyperspectral Precursor of the Application
Mission (PRISMA) mission by acquiring snapshots of the target at different azimuths
and elevations, with the addition of zero mean Gaussian white noise. The method
was shown to yield a better accuracy than a baseline method using classical pose
estimation from 2D-3D point correspondences through EPnP (Lepetit, Moreno-
Noguer, et al., 2008) and Random Sample Consensus (RANSAC; Fischler and
Bolles, 1981), but deemed not fine enough for any application other than a coarse
initialisation. Later on, the authors improved their original work by introducing the
Spacecraft Pose Network (Sharma and D’Amico, 2019), which used a five-layer CNN
backbone taking 224 px × 224 px image inputs, connected to three different output
branches: the first one used the Faster R-CNN architecture (Ren et al., 2017) to
detect the bounding box of the target; the second classified the relative attitude in
terms of a probability distribution over discrete classes; and the last branch took
the top-rated candidates from the previous to learn a weighed combination that
refined the attitude. A coarse estimate of the relative position was obtained from the
bounding box and refined using a Gauss-Newton algorithm and four control points
reprojected from the target model onto the image. The network was initially trained
on the ImageNet dataset, and then the branch layers were retrained on the SPEED
dataset, which was also introduced in the paper (see Chaps. 2 and 5).

Around the same time, the authors open-sourced the SPEED dataset through a
collaboration with the European Space Agency’s (ESA) Advanced Concepts Team
which culminated in SPEC. As reported by Kisantal et al. (2020), the majority
of the participating teams developed architectures that predict the relative pose
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of the target in an end-to-end, regressive fashion, i.e. the input is an image and
the output is directly in SO(3) oR3. This is a desirable design decision since it
minimises the modularity of a DNN, facilitating both training and testing processes.
However, the top scorers embarked on alternative approaches to achieve a lower
estimation error. Namely, four teams trained CNNs to predict, in each image, the
2D locations of 3D pre-selected model points, and then used a perspective-n-point
(PnP) technique to retrieve the pose from the correspondences (Chap. 2, § 2.1.4). On
average, this approach yielded an improvement of 74.7 % for the position estimation
and 86.5 % for the attitude estimation. A second procedure consisted in using a
separate localisation step to predict a bounding box around the target and processing
only the sub-image. This, in turn, was shown to improve the attitude estimation, but
not the position. The winners of the competition, Chen et al. (2019), combined both
approaches: the localisation was performed using an HRNet (K. Sun et al., 2019)
and Faster-RCNN combination; the processing of the cropped and resized region of
interest was done with a pure HRNet trained by minimising a mean squared error
(MSE) loss between the predicted heatmaps and ground truth heatmaps of the visible
landmarks in each image. An initial pose hypothesis was then extracted via PnP
and RANSAC and refined with Levenberg-Marquardt (LM). The runner-up, a team
from the Swiss Federal Institute of Technology in Lausanne who did not publish their
results, followed a similar approach. Interestingly, the team that achieved third place
investigated the potential of end-to-end deep pose estimation (Proença and Gao,
2019). The authors employed a ResNet architecture with some of the higher layers
replaced with additional convolutions to keep spatial feature resolution, where the
position was learned through the minimisation of the relative error, as the they allege
it allows the loss weights to better generalise to other datasets. Regarding attitude
estimation, the authors compared a direct regression on the quaternion angular error
against a classification approach, similar to Sharma and D’Amico (2019), with an
extra probabilistic Gaussian mixture modelling (GMM) step to resolve potentially
ambiguous outputs. Initial testing demonstrated that the attitude classification
method outperformed the regression-based one, and the team went with the former
as their submission. After SPEC, published work continued to focus on individual
images, either greyscale or RGB, and did not stray too far from the competition’s
findings in terms of innovation (Cassinis et al., 2020; Harvard et al., 2020; Oestreich
et al., 2020).

Indeed, spacecraft relative pose estimation solutions have mostly not ventured
beyond the visible wavelength either. Yılmaz, Aouf, Majewski, et al.’s (2017) model-
free solution used simultaneous localisation and mapping (SLAM) based on interest
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point tracking on thermal imagery for active debris removal (ADR). However, the
lack of texture, variations in temperature, and complex relative motion makes long
term feature tracking and navigation very difficult. Additionally, supplementary
information must be given to solve the scale ambiguity inherent to monocular systems
(Chap. 2, §. 2.1.3). Model-based approaches are also challenging under the scope of
classical ML techniques since the local aspect of an object in the LWIR band depends
on the temperature of its components, which is time-variant in-orbit due to changing
exposure to sunlight. Added to the fact that these are difficult to model accurately,
thermal signatures are not a reasonable choice for model-based estimation and hence
particular attention must be paid to which features to select. J.-F. Shi, Ulrich,
Ruel, and Anctil (2015) applied the SoftPOSIT algorithm (David et al., 2004) for
simultaneous feature correspondence and pose estimation of corners from a simplified
3D model of the target, as these are a constant property of its shape. However, the
proposed algorithm is dependant on a good initialisation and no consistency between
frames is enforced. Gansmann et al. (2017) minimised the distance between the
reprojected edge contour of a training image and the one detected by the thermal
camera, but it assumed the target faced the chaser in a constant way and hence
could only track translational motion. Both of these techniques only make use of
shape information, and hence do not fully exploit the benefit of using the LWIR
band over or in conjunction with the visible. None of these techniques make use of
deep learning.

The processing of time-series data in deep learning saw its origin with the so-
called “vanilla” RNN (Rumelhart et al., 1986, Chap. 2, § 2.4.2.5). However, the
propensity of these cells towards vanishing and exploding gradients made them unable
to learn long-term sequences. The introduction of the LSTM cell by Hochreiter
and Schmidhuber (1997), designed in terms of a gated architecture with a bypass
system along the temporal axis, help solve this issue, and today they are ubiquitous
in many sequence modelling tasks, including handwriting and speech recognition,
machine translation, and image captioning (I. Goodfellow et al., 2016). LSTMs have
recently been combined with features extracted by CNN front-ends to model the
intrinsic motion dynamics from sequences of imaging data rather than individual
inputs. Concretely, VINet (Clark et al., 2017) and DeepVO (S. Wang et al., 2017)
have proposed DRCNNs for visual odometry (VO) to estimate a car’s egomotion
from image sequences from the KITTI autonomous driving dataset (Geiger et al.,
2013). The output of the networks is the inter-frame Lie algebra element ξ∧ ∈ se(3)
of the tangent space to the pose, trained on an MSE loss, which is then chained
with previous estimates to track the global estimate of SE(3). The latter network
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works with raw images only, while the former combines them with the output of
inertial measurement units (IMU). Kechagias-Stamatis et al. (2020) introduced
DeepLO, which followed the same philosophy for lidar-based relative navigation with
an uncooperative space target. The authors pre-process lidar data by quantising and
projecting it into each plane in the

~
F t frame of reference, thus creating three 2D

depth images that can be processed by a regular CNN. Due to the rich information
contained in the depth images, the full pipeline avoided a large number of layers.
The SO(3) representation was chosen to be the rotation matrix minimised directly
over an MSE loss.

The research developed in this chapter is similar in spirit to that of Proença
and Gao (2019) as a DNN is used to directly compute the relative pose of a target
spacecraft, and to that of Kechagias-Stamatis et al. (2020) as the network is a
combined DRCNN pipeline. However, the resulting architecture is trained exclusively
on image inputs, and hence the following contributions are proposed, to the best of
the knowledge yielded by the current literature survey:

(1) This work represents the first use of RNNs, in particular LSTMs, to tackle the
problem of spacecraft pose estimation for rendezvous using on-board cameras
as the sole sensor;

(2) It is also the first to explore the potential benefit of a multimodal sensor input
for the task, in particular in the visible and LWIR modalities; and its influence
in challenging orbital illumination conditions; and

(3) A three-step approach to DNN training is devised to facilitate the learning and
reduce the overall estimation error.

6.3 Methodology
The goal of this chapter is to train an end-to-end deep neural network to learn the
relative pose of a target spacecraft from on-board image sequence inputs provided
by a chaser. The results from SPEC (Kisantal et al., 2020) have shown promising
results in the use of CNNs for the task; however, the current literature treats each
incoming image as a separate input, thus ignoring the intrinsic temporal correlation
between them. Therefore, the main focus is the investigation of the feasibility of a
DRCNN for estimating the pose in rendezvous sequences. The problem has been
previously studied by Kechagias-Stamatis et al. (2020) for lidar map inputs, but not
for images. A second oversight of SPEC — and of SPEED in particular — is that
the data does not feature reflective satellite materials (e.g. multi-layer insulation
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[MLI]) or low lighting conditions, such as eclipse crossings; two conditions that can
highly affect the performance of visible wavelength cameras. This work does not
only discuss these factors, but additionally proposes its own multimodal advance
to tackle them through the integration of LWIR images with the traditional RGB
input. Recent contributions have also highlighted the benefit of transfer learning to
initialise the deep CNN layers that are typically used as front-end feature extractors
and benefit from being trained on large datasets. However, the habitual go-to means
to achieve this, ImageNet, consists of RGB images, and as such is not extensible to
multimodal problems. To bridge this gap, an initial domain-specific stage trained on
an artificial oversampling of the dataset and a coarse form of the objective loss is
proposed. Conversely, in an attempt to reap the benefits of keypoint-based estimation,
a post-processing refinement stage trained on a reformulation of the loss in terms of
feature reprojection error is implemented.

Figure 6.1 illustrates the approach at a high level. The resulting architecture is
described in detail in Section 6.3.1. The proposed multistage optimisation strategy
is presented in Section 6.3.2. Lastly, data augmentation techniques are illustrated in
Section 6.3.3.

6.3.1 Architecture

Whereas previous CNN-based approaches focus on retrieving the spacecraft rela-
tive pose from a single image, ChiNet realigns the problem back into the classical
formulation of sequence-based approaches while concurrently leveraging recent ad-
vances in deep learning to achieve simultaneous feature extraction and time series
modelling. Mathematically, previous methods focus on maximising p(T (κ) | x(κ)),
where T (κ),x(κ) are the relative pose and features extracted by a CNN, respectively,
at time τ = τκ, and this work proposes instead to maximise the conditional prob-
ability of the current pose given features extracted from all previous inputs, i.e.
p(T (κ) | x(1), . . . ,x(κ)).

The pipeline receives a monocular four-channel red-green-blue-thermal (RGBT)
image sequence as input. At each time-step, the pixel intensity values of the
multimodal frame are normalised per-channel to the interval {−1, 1}, and fed to a
CNN that autonomously learns an optimal, reduced-dimension feature representation.
These features are then passed to a RNN module for time series modelling: during
training, temporally-ordered sequences of features are fed to the recurrent cells, and
at inference time, each cell processes one frame at a time using the learned recurrent
and non-recurrent weights to build and propagate an internal state representation
that takes all previous inputs into account to return the pose. The details on the
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Figure 6.1: ChiNet system overview. The proposed deep recurrent convolutional
neural network (DRCNN) architecture performs end-to-end spacecraft pose estimation
from a sequence of multimodal red-green-blue-thermal (RGBT) image inputs. The
training is structured into a funnelled coarse-to-fine three-stage procedure, where the
convolutional neural network (CNN) front-end first learns singly a rough estimate of
the pose. The remaining two phases, encompassing both the CNN and a recurrent
neural network (RNN), focus on refining the previously learned objective to produce
a more accurate solution.

CNN and RNN modules are described in this section.

6.3.1.1 Deep Feature Extraction with CNNs

CNN front-ends for feature extraction are typically chosen to be large but powerful
architectures, such as ResNet (He et al., 2016) or Inception-v3 (Szegedy, Vanhoucke,
et al., 2016) and the submissions to SPEC were no exception. On the other hand,
these networks are also characterised by elevated processing times and are potentially
prone to overfitting due to their high number of parameters. More recently, Redmon
and Farhadi (2017, 2018) have proposed the YOLO object detector, which introduced
a backbone termed Darknet, a CNN reportedly faster than ResNet while being on
par with it for object classification tasks. The Darknet architecture is schematically
illustrated in Figure 6.2. The Darknet-53 variant (here the suffix denotes the number
of convolutional layers) in particular (represented on the left) is more efficient than
ResNet-101 and ResNet-152 with similar classification performance to the latter. For
reference, Proença and Gao (2019) use ResNet-50.

To further reduce the likelihood of overfitting, ChiNet adopts the Darknet-19

225



6. POSE EST. FOR M’MODAL SEQS. VIA DEEP R. C. L’ING

H × W × C
1, 3 × 3, C, 32

Convolution

BatchNorm

LeakyReLU

Input image (height, width, channels)

2, 3 × 3, 32, 64
64, 32

1, 1 × 1, Cin, Cout

1, 3 × 3, Cout, Cin

+

2, 3 × 3, 64, 128
128, 64
128, 64

2, 3 × 3, 128, 256
256, 128
256, 128
256, 128
256, 128
256, 128
256, 128
256, 128
256, 128

2, 3 × 3, 256, 512
512, 256
512, 256
512, 256
512, 256
512, 256
512, 256
512, 256
512, 256

2, 3 × 3, 512, 1024
1024, 512
1024, 512
1024, 512
1024, 512

Global Average Pooling

H × W × C
2, 7 × 7, C, 32
2, 3 × 3, 32, 64

64, 128
2, 3 × 3, 64, 128

128, 256
2, 3 × 3, 128, 256

256, 512
256, 512

2, 3 × 3, 256, 512
512, 1024
512, 1024

2, 3 × 3, 512, 1024
1, 1 × 1, 1024, 1000

Dropout
Global Average Pooling

Residual block (input/output channels, intermediate channels)

Convolution block (stride, kernel size, input channels, output channels)

Figure 6.2: The Darknet convolutional neural network (CNN) architecture from
the YOLO object detector (Redmon and Farhadi, 2017, 2018). (Left) Darknet-53
variant. (Right) Modified Darknet-19 variant adopted in ChiNet.

architecture (Fig. 6.2, right), with some modifications. First, most CNN-based
pipelines rescale their image inputs to some constant, canonical size as the number of
input channels of a FC layer placed directly at the end will depend on the spatial size
of the last activation maps. Secondly, this canonical size is typically relatively small
(as low as 224 px × 224 px) since for ground based applications inputs are expected to
be feature-rich. The former is not necessary, since Darknet features a global average
pooling layer at the end, meaning that it could be trained on inputs with one size
and deployed for use with inputs with different sizes. The latter assumption is not
transferable to the space rendezvous domain, since the relative pose is dependant
on the target only and not on the background. Therefore, the number of available
features is already limited, and the estimation performance is affected considerably
by the resolution, as demonstrated by Proença and Gao (2019). To adapt Darknet-19
to higher resolution images, the 3× 3 kernel size on the first convolutional layer is
replaced by a 7× 7 one.

Furthermore, the network is modernised (bringing it closer to Darknet-53) by
replacing all max pooling layers with a stride of 2 in the preceding convolution.
Whereas the former is a fixed operation, the latter is learned, which further contributes
to the adaptability of the network to the task at hand. In addition, residual
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connections are introduced but only in the channel expansion-contraction layers
(residual blocks in Fig. 6.2), thus avoiding the need to add 1× 1 convolutions to
keep the dimensions consistent. Lastly, the final convolution uses a 1× 1 kernel (i.e.
it behaves like a FC layer), so a dropout layer (Hinton et al., 2012) with probability
p = 0.5 is added to further prevent overfitting.

Optimal Low-Level Sensor Fusion

Sensor data fusion for the processing of multimodal images can be tackled in multiple
manners. A tracking solution (or high-level) fusion applies parallel relative navigation
solutions on features extracted separately from each modality and the results are
combined to form a new, fused solution. The outcome should aim to produce directly
a lower pose estimation error than the solutions attained from each individual
counterpart.

Another approach entails feature (or mid-level) fusion: features are detected
separately in images produced in each modality and then combined to form new
features, with which pose estimation is performed. The scheme should aim to produce
new features with enhanced properties (e.g. extra repeatability, better matching
scores, see Chap. 3) when compared to its individual counterparts.

ChiNet opts instead to adopt a third approach consisting in pixel (or low-level)
fusion, where images are acquired separately by each camera and then combined
to form a new, multimodal image, upon which feature extraction, target detection,
and pose estimation are performed. The scheme aims to produce new images
with enhanced properties (e.g. extra robustness to noise, less sensitive to lighting
changes, etc.) when compared to its individual counterparts. This philosophy has
been previously explored in VO applications using traditional IP techniques such as
intensity level thresholding and discrete wavelet transforms, showing promising results
(Poujol et al., 2015). For the CNN-based approach, the visible and LWIR images
are concatenated along the channel dimension, forming a four-channel RGBT image
which is then fed to the network. The first convolutional layer entails a weighted
sum of the pixels in each channel, outputting new activation maps that effectively
encompass the fused information. Furthermore, these weights are not predefined but
learned in the context of the network training procedure, thus being optimal in the
sense of minimising the objective loss. This approach therefore bypasses the need of
manually developing a potentially sub-par weighing strategy to combine the multiple
input modalities.
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Figure 6.3: Block diagram of a long short-term memory (LSTM) recurrent memory
unit. Units, or cells, are connected recurrently through their hidden state h and cell
state c. Input features x are combined with h and subject to four different gates
(linear layers followed by an activation): the forget gate f controls the information
that is kept in c; the input i and modulation g gates define the new information
that will be added to c; the output gate o filters the cell state information that will
be transmitted.

6.3.1.2 Temporal Sequence Modelling with LSTMs

The features learned by the CNN are post-processed by a deep RNN module that
models the intrinsic temporal correlations coming from an ordered sequence of image
inputs. This addition is expected to be beneficial to the problem of spacecraft pose
estimation due to the inherent relative motion dynamics entailed, and the estimate of
the solution for the current frame can benefit from the knowledge of previous frames:
even more than in ground-based applications, the perceived motion of a space target
during rendezvous is not likely to change abruptly but is a smooth function of the
previous states. An analogy could be traced in reference to the Kalman filter’s
motion model and sensor update, which then persist onto the next time-steps via
the Kalman gain (Chap. 5), except that a RNN’s hidden state is learned and not
explicitly modelled.

As introduced in Chapter 2, LSTMs (Hochreiter and Schmidhuber, 1997) were
designed in an attempt to combat vital flaws in the capability of vanilla RNNs to
model long sequences, as they suffered from vanishing and exploding gradients. The
LSTM’s ability to learn long-term dependencies is owed to its gated design that
determines which sectors of the previous hidden state should be kept or discarded
in the current iteration. This is achieved not only in combination with the current
input, processed by four different units, but also by a cell state which acts as an
“information motorway” that bypasses the cells. The LSTM structure is illustrated
in Figure 6.3. The update equations can be compactly written as:
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Figure 6.4: ChiNet recurrent module design. The features previously extracted
by the convolutional neural network (CNN) front-end are processed by two long
short-term memory (LSTM) stacks with 1000 hidden units each. The module is
enhanced with residual connections, allowing gradients to flow through it directly,
mitigating exploding or vanishing events. The recurrent layers are appended with
two fully connected (FC) layers that produce an estimate of the relative position
and a six-dimensional attitude representation.


f (κ)

i(κ)

o(κ)

g(κ)

 = W hh(κ−1) +W xx(κ) + b, (6.1)

c(κ) = f (κ) � c(κ−1) + i(κ) � g(κ), (6.2)

h(κ) = o(κ) � tanh
(
c(κ)) , (6.3)

where f , i,o, g are the forget, input, output, and modulation gates, respectively,
h is the hidden state, x is the input, W h> = [W hf> W hi> W ho> W hg> ] is the
recurrent weights matrix, W x> = [W xf> W xi> W xo> W xg> ] is the input weights
matrix, b> = [ bf> bi> bo> bg> ] is the bias vector, sigm is the sigmoid nonlinear
activation function, tanh is the hyperbolic tangent activation function, the superscript
(κ) denotes a variable at time-step τ = τκ, and � denotes an element-wise product
operation.

Recurrent Module Design

The design of the recurrent feature post-processing module is schematically depicted
in Figure 6.4. The CNN features are fed to two stacked LSTM layers with 1000
hidden states each, which then branch off into two FC layers of output size equal to
3 and 6 that produce position and attitude estimates, respectively. Stacked LSTM
layers have been previously adopted for architectures such as DeepVO (S. Wang
et al., 2017) and DeepLO (Kechagias-Stamatis et al., 2020) and shown empirically
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to help in modelling complex motion dynamics.
Due to the internal workings of the LSTM cell, pre- and post-processing operations

common in FC or convolutional layers are not directly applicable. For instance, data
normalisation must be performed inside the cell to establish coherence with respect
to the gates’ activation functions. Since the incoming data is sequential, ChiNet
relies not on batch normalisation to centre the inputs of the LSTM, but on layer
normalisation (J. L. Ba et al., 2016):

LN
(
a(i)) = γi

a(i) − µi√
σ2
i + ε

+ βi, (6.4)

where the mean µi and variance σ2
i are computed across all the features of the i-th

layer rather than the batch dimension (cf. the batch normalisation Eq. 2.101 in
Chap. 2, § 2.4.2.6), and ε is a small numerically stabilising term. Applying batch
normalisation to a RNN would require fitting one layer per time-step and storing
the statistics of each one during training, which would be impractical both in terms
of time and memory consumption.

A second nuanced aspect pertains to dropout, typically applied as a binary mask
to randomly nullify some of a layer’s activations. In the case of LSTMs, however,
stochasticity should be applied in the recurrent loop. More than that: rather than
following a potentially naive dropout philosophy, ChiNet employs zoneout (Krueger
et al., 2017), which was specifically designed for RNNs. In zoneout, the values of the
hidden state h(κ) and memory cell c(κ) are randomly expected to either maintain
their previous value or are updated in the usual manner according to Equations (6.2)
and (6.3).

The modified LSTM equations thus become:


f (κ)

i(κ)

o(κ)

g(κ)

 = LN
(
W hh(κ−1); γ1, β1

)
+ LN

(
W xx(κ); γ2, β2

)
, (6.5)

c(κ) = dc,(κ) � c(κ−1) +
(
1− dc,(κ))� (f (κ) � c(κ−1) + i(κ) � g(κ)) , (6.6)

h(κ) = dh,(κ) � h(κ−1) +
(
1− dh,(κ))� (o(κ) � tanh

(
LN
(
c(κ); γ3, β3

)))
. (6.7)

where dc,dh are the binary cell and hidden state zoneout masks, respectively, and 1

is a vector of ones of appropriate length.
The final design choice for the recurrent module pertains to the inclusion of
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residual connections, drawing inspiration from the CNN front-end itself (§ 6.3.1.1).
Since these connections allow, by definition, gradients to flow directly though the
network, bypassing the activation functions (which are contributors to the exploding
or vanishing gradient problem), LSTMs and RNNs in general can presumably benefit
from them. During preliminary experiments, it was found that the addition of
residual connections to the LSTMs in ChiNet resulted in faster training convergence
and overall lower pose estimation error.

6.3.2 Multistage Optimisation
Instead of pursuing an indirect approach in which a DNN is used to localise keypoints
on the target which are then subject to a PnP procedure to extract the relative pose,
ChiNet provides an end-to-end, direct method to retrieve it. The former, though,
has been shown to produce the lowest error estimates in SPEC, suggesting that
the latter may be harder to train. To mitigate this and lower the overall error in
end-to-end approaches, a multistage, coarse-to-fine approach is proposed, taking
inspiration from the classical ML strategies presented in the previous chapters. This
section describes the optimisation strategy.

6.3.2.1 Stage 1

Stage 1 stems directly from the concept introduced in Chapter 4, and later consoli-
dated in Chapter 5, in which the attitude space SO(3) is divided into a spherical grid
of discrete azimuth ∆az

class and elevation ∆el
class steps, centred on the target, which is

imaged at a fixed distance r (i.e. a 2-sphere S2(r), or viewsphere). This effectively
simplified the attitude estimation problem in the previous chapters by reducing the
search to a discrete set YS2 = {1, . . . , K}, with each K possible class corresponding
to an ordered pair {θaz, θel} of azimuth and elevation angles in S2(r) that could then
be used to provide a coarse solution and retrieve the closest viewpoint model image.
The latter was then used to provide a rough value for the position as well.

ChiNet picks up on this approach and first trains the CNN on a simpler task
to learn coarse features in terms of the discrete attitude yS2 ∈ YS2 and the position
depth ‖t‖ from a RGBT image I. The RNN module is bypassed and the two FC
layers are connected directly to the CNN’s output (cf. Figure 6.4). Denoting y(S2)

as the one-hot vector encoding of yS2 , Stage 1 thus maximises the joint conditional
probability:

θ(S1)∗ = arg max
θ(S1)

p
(
‖t(κ)‖,y(S2,κ)

∣∣∣ I(κ);θ(S1)
)

(6.8)

i.e. the training thus far depends only on each individual input at time τ = τκ, not
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yet exploiting the temporal correlation in the data. The objective is to emulate the
benefits of transfer learning (I. Goodfellow et al., 2016), in which the network is
pre-trained on a set of tasks involving a large dataset — typically a subset of the
1000 ImageNet (Deng et al., 2009) object categories — and then used to initialise
a same-sized network to solve the purported task that generally has fewer training
examples. Transfer learning is advantageous for CNNs as these normally entail
millions of parameters and thus may converge towards a suboptimal solution if the
training data is not diverse enough.

However, ImageNet is only composed of RGB images and thus cannot be expanded
for use with multimodal data. As such, a strategy to pre-train a CNN by artificially
augmenting the number of samples based only on the nominal dataset is proposed,
consisting of the following steps:

(1) Discretise the attitude space into a set YS2 of K possible viewsphere classes
according to a defined mesh resolution {∆az,∆el}. Keep only the subset of
classes Y′S2 = {1, . . . , K ′} ⊆ YS2 that are represented in the dataset;

(2) Define a number of desired observations per attitude class, NS2 ;

(3) Discretise the position into a set Yt comprised of M bins of depth values ‖t‖
of width ∆t, selecting the edges according to the minimum and maximum
observations in the dataset;

(4) For each represented attitude class k in Y′S2 :

(4-a) Identify the subset Y′t ⊆ Yt of M ′ depth bins containing at least one
observation;

(4-b) Randomly sample NS2/M ′ observations with attitude label yS2 = k equally
for each of the M ′ depth bins according to the position ground truth.
Oversample if necessary.

The resulting Stage 1 dataset will have a total of NS2K ′ observations with equal
representation according to the coarse pose bins {∆t,∆az,∆el}. Preliminary analysis
showed that having balanced attitude classes was paramount to prevent overfitting,
even when resorting to oversampling, i.e. duplicating examples from minority classes
to achieve a balanced number of observations. In this case, a more aggressive data
augmentation procedure is employed to increase the variance of the inputs (see
§ 6.3.3). Both procedures are performed online and hence do not affect memory
requirements.
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The attitude estimation is formulated as a classification task and hence minimises
the cross-entropy loss:

L
(S1)
S2 = −

∑
i

log softmax
(
y(S2,i), ŷ(S2,i)

)
= −

∑
i

K′∑
k=1

y
(S2,i)
k log

(
ŷ

(S2,i)
k

)
,

(6.9)

where ŷ(S2) is the predicted attitude class. Similarly to Proença and Gao (2019), the
position estimation is formulated as a regression task in terms of the relative depth
error and minimises:

L
(S1)
t =

∑
i

‖t(i) − t̂(i)‖
‖t(i)‖

, (6.10)

where t̂ is the predicted position. The complete Stage 1 loss will be a linear
combination of L(S1)

S2 and L
(S1)
t . The result is a multi-task learning problem that has

traditionally involved the empirical tuning of the linear combination weights; this was
the approach followed by S. Wang et al. (2017) for VO and by Proença and Gao (2019)
for spacecraft pose estimation. This presents a difficult and expensive task, even
when both objectives encompass a regression, since the position and attitude errors
can be characterised by very disparate orders of magnitude. In contrast, ChiNet
adopts Kendall, Gal, et al.’s (2018) approach which models each weight {σS2 , σt}
as learnable task-specific variances of a Boltzmann distribution and a Gaussian2

distribution, respectively, yielding the combined loss:

L(S1) = 1
2L

(S1)
t σ−2

t + L
(S1)
S2 σ−2

S2 + log σt + log σS2 . (6.11)

The additive terms act as regularisers to prevent the network from predicting infinite
uncertainty and thus zero loss. In practice, as proposed in the original work, the
indirect quantities log σ2 are learned instead in Equation (6.11) as the training is
more numerically stable and robust to initialisation.

6.3.2.2 Stage 2

Stage 2 represents ChiNet’s nominal training phase on the normal, non-modified
dataset. The full DRCNN pipeline is trained to maximise the conditional probability
of a series of time-sequential poses u(1), . . . , u(κ), u ∈ U ∼= SE(3) given a sequence of
RGBT images, where the CNN weights are initialised with the results of Stage 1:

2Despite Equation (6.10) not strictly representing the L2 component of a Gaussian PDF due to
the division by ‖t(i)‖, the formulation of Equation (6.11) yields good results in practice.

233



6. POSE EST. FOR M’MODAL SEQS. VIA DEEP R. C. L’ING

θ(S2)∗ = arg max
θ(S2)

p
(
u(1), . . . , u(κ)

∣∣∣ I(1), . . . , I(κ);θ(S2)
)

(6.12)

θ(S2,CNN)(0) = θ(S1,CNN). (6.13)

Rather than estimating a joint representation of the pose, the problem is for-
mulated again in terms of multi-task learning, maintaining the dual FC branches
at the end of the network, where one regresses the position and the other the atti-
tude. A common approach to regressing the attitude is to admit a unit quaternion
representation q ∈ SU(2) (Kendall and Cipolla, 2017; Kendall, Grimes, et al., 2015;
Proença and Gao, 2019). However, the quaternion representation is not necessarily
continuous due to antipodal ambiguity, and the network is not capable of intrinsically
learning the unit norm constraint, instead relying on brute-force normalisation to
bring the output back to SU(2). Both issues can prevent the network from properly
fitting Equation (6.12). Kechagias-Stamatis et al. (2020) use a rotation matrix repre-
sentation which does not suffer from this issue, but imposes instead an orthogonality
constraint.

Instead, ChiNet learns a 6D continuous representation of the attitude proposed by
Zhou et al. (2020) which has been shown to be more suitable for training, by making
use of an orthogonalisation process in the representation itself to ensure that the
network’s output remains in SO(3). The mapping f6D from the 6D representation,
r, to SO(3) is given by:

f6D : R3×2 → SO(3) | |
r1:3 r4:6

| |

 7→
 | | |
R:,1 R:,2 R:,3

| | |

 =

 | | |
〈r1:3〉 〈r4:6 − (R>:,1r4:6)R:,1〉 R:,1 ×R:,2

| | |

 ,
(6.14)

where 〈 • 〉 denotes vector normalisation. The inverse mapping simply entails removing
the last column of the rotation matrix R:

f−1
6D : SO(3)→ R3×2

R 7→

 | |
R:,1 R:,2

| |

 . (6.15)

The attitude is thus learned by minimising a regression loss based on the predicted
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Figure 6.5: Model points P of the ASTOS dataset for use with ChiNet’s refinement
stage, reprojected onto two test images using the ground truth pose (green). N = 16
points corresponding to structural corners were manually selected.

values of r:

L(S2)
r =

T∑
κ=1
‖r̂(κ) − r(κ)‖, (6.16)

where the temporal component has been highlighted in terms of the training sequence
length T . Similarly, for the position:

L
(S2)
t =

T∑
κ=1
‖t̂(κ) − t(κ)‖, (6.17)

The combined Stage 2 loss follows a similar rationale to Equation (6.11) in terms of
Kendall, Gal, et al.’s (2018) formulation for two Gaussian distributions:

L(S2) = L
(S2)
t σ−2

t + L(S2)
r σ−2

r + 2 (log σtσr). (6.18)

Stage 2 (and 3) trains the complete pipeline using backpropagation through time
(BPTT; Chap. 2). However, training very long sequences involves high memory
requirements, so a truncated BPTT procedure is adopted instead. This entails
unfolding the sequence for a predefined number of time-steps T smaller than the
full sequence length, performing one training iteration, and then moving on to the
next partition. In order to keep continuity while still allowing the network to learn
long sequences, ChiNet follows Clark et al.’s (2017) approach whereby the training is
carried out with a sliding window over the sequence, where consistency is established
by appropriately initialising the LSTMs’s hidden states with those computed in the
previous iteration.
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6.3.2.3 Stage 3

The final training stage consists in a geometric refinement of the output from Stage 2,
following the reprojection of 3D model points using the ground truth and predicted
relative pose first proposed by Kendall and Cipolla (2017) for camera pose estimation
in urban scenarios:

θ(S3)∗ = arg max
θ(S3)

p
(
u(1), . . . , u(κ)

∣∣∣ I(1), . . . , I(κ),P;θ(S3)
)
, (6.19)

θ(S3)(0) = θ(S2), (6.20)

where P = {p(1), . . . ,p(N)} is a manually selected set of N target model points ex-
pressed in

~
F t. For the ASTOS dataset, N = 16 points were selected that corresponded

to corners on the model of the target. Figure 6.5 illustrates the reprojection of the
set P onto the image plane. The loss is straightforwardly defined as:

L(S3) =
T∑
κ=1

N∑
i=1

∥∥z(i,κ) − π
(
K
(
u(κ) ⊕ p(i)))∥∥ , (6.21)

where Zκ = {z(1,κ), . . . ,z(N,κ)} is the set of projected keypoints corresponding to
P at time τ = τκ, K is the dataset camera intrinsic matrix, ⊕ denotes pose-point
composition, and π( • ) is the projection operator as seen in Equation (2.7) (Chap. 2,
§ 2.7). Similarly to Stage 2, the 6D representation of the attitude is used. Equation
(6.21) thus learns the pose implicitly via the minimisation of the reprojection error,
which naturally balances the contributions of the position and attitude branches, and
does not require defining explicit weights unlike Stages 1 and 2. This is advantageous
for datasets in which the position depth has a high variance, since each contribution
is weighed differently due to parallax, as reported by Kendall and Cipolla (2017). On
the other hand, the loss formulation requires a good initialisation of the parameters
θ(S3) to converge, hence why it is used as a refinement stage.

6.3.3 Data Augmentation

Data augmentation is a form of pre-processing whereby the inputs are randomly
enhanced to increase the training set variance and consequently the generalisation
error of a DNN model. For CNNs specifically, this enhancement is applied directly
to the images. Most data augmentation techniques focus on IP-based transforms,
modifying the pixel values but leaving the labels intact. However, it is also possible
to augment an image such that the labels are altered as well. Either way, both
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(a) Original image (b) Channel shift (c) Gaussian blur (d) Gaussian noise

(e) JPEG compres-
sion

(f) Median blur (g) Patch dropout (h) Random bright-
ness and contrast

(i) CLAHE (j) Random gamma (k) Camera rotation (l) Image rotation

Figure 6.6: Image augmentation transform operations in use with ChiNet, ex-
emplified on a red-green-blue (RGB) frame of the ASTOS dataset (a). A total of
11 transforms are employed: (b–j) image processing-based augmentations; (k–l)
pose-based augmentations.

approaches result in the creation of “fake data” that increases the pool of available
inputs for training.

Space rendezvous sequences, in particular, can benefit from image augmentation
due to the slow relative motion between chaser and target and the periodicity intrinsic
to target tumbling modes, which results in many frames looking comparatively similar
and hence lower data variance. ChiNet makes use of 11 image augmentation transform
operations; these are illustrated in Figure 6.6. Of these transforms, 9 are IP-based
ones, which corrupt the aspect of the target to lead the network to focus on learning
invariant features. This is particularly important to generalise for test sequences
which have been imaged under different illumination conditions, or for real data when
testing on synthetic sets, for example. Additionally, 2 pose-based augmentations are
employed. In this case, the image is warped according to a homography H induced
by a pure rotation of the camera embodied in R (Hartley and Zisserman, 2004):

H = KRK−1. (6.22)
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Table 6.1: Summary of experiments in Chapter 6.

Section Description Dataset

Section 6.4.4 Comparison of each stage’s contribution in the
multistage optimisation framework for the CNN
with RGB inputs.

ASTOS

Section 6.4.6 Comparison of the CNN performance on RGB and
RGBT inputs.

ASTOS

Section 6.4.5 Comparison of the performance between the vanilla
CNN and the full DRCNN on RGB inputs.

ASTOS

Section 6.4.7 Summary of ChiNet’s performance on the complete
set of test data.

ASTOS

Section 6.4.8 Evaluation of ChiNet’s performance on real data. CITY

These introduce the network to random perturbations in the labels, injecting poses
which might not usually be seen in a smooth, periodic rendezvous sequence.

Data augmentation is performed online for ChiNet, meaning that images are
modified on-the-go and not prior to training, therefore not altering memory require-
ments for the training set. Multiple transforms can be applied to the same image
and are controlled by a predefined probability of occurrence. These probabilities
are tuned according to the current phase in the multistage optimisation pipeline:
Stage 1 utilises oversampling to balance the attitude classes, hence augmentation is
more frequent; in contrast, Stage 3 is a refinement stage, and therefore the image
enhancement is lessened. Furthermore, transforms are applied consistency in between
frames of the same training sequence.

6.4 Experiments
Experiments were conducted on both synthetic and laboratory datasets to validate
each module of the proposed pipeline. Table 6.1 summarises the experiments
conducted in this chapter.

6.4.1 Datasets
The datasets used to benchmark the performance of ChiNet are described below.

Astos Dataset The ASTOS dataset (Chap. 2) consists of 28 different rendezvous
trajectories with the failed satellite Envisat, featuring three distinct guidance profiles,
three tumbling modes, and two approach vectors, divided into sunlit and eclipsed
sequences, imaging the target with both a visible camera and a thermal camera at a
frequency of 10 Hz, thus making it ideal to benchmark the different contributions
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that make up the ChiNet pipeline. The visible and LWIR images are aligned and
resized to a resolution of 640 px × 512 px for both training and testing.

City Dataset The CITY dataset consists of a collection of four rendezvous trajecto-
ries with a 1:4 scale mock-up of the National Aeronautics and Space Administration
(NASA; United States) and National Centre for Space Studies (CNES; France)
satellite Jason-1, acquired at City, University of London’s Autonomous Systems Lab-
oratory. The mock-up rotates along its vertical axis at a constant rate of 6 deg s−1.
Despite having a different form factor, Jason-1 contains is similar to Envisat in
terms of components (i.e. main bus coated in MLI, thermal radiators, solar array,
radiometric instruments). In total, four trajectory types are considered:

(1) CITY/FAR: The chaser observes the target at a fixed distance of 3.8 m. The
target performs two revolutions during this period. The sequence lasts 2 min.

(2) CITY/NEAR: The chaser observes the target at a fixed distance of 1.1 m. The
target performs two revolutions during this period. The sequence lasts 2 min.

(3) CITY/APPROACH-FAST: The chaser performs a translation along the line connec-
tion both centres of mass from an initial distance of 3.8 m to a final distance of
1.1 m, at a constant velocity of 9 cm s−1. The target performs half a revolution
during this period. The sequence lasts 30 s.

(4) CITY/APPROACH-SLOW: The chaser performs a translation along the line connec-
tion both centres of mass from an initial distance of 3.8 m to a final distance of
2 m, at a constant velocity of 6 cm s−1. The target performs half a revolution
during this period. The sequence lasts 30 s.

Trajectories are acquired for simulation of both sunlight and eclipse conditions. On
the visible spectrum, this is controlled respectively by aiming a floodlight directly at
the target, or by aiming it at a nearby wall, creating a dimly lit environment. On the
LWIR spectrum, the model’s temperature is controlled by internal resistor heaters
in the main bus and by an external heater. The thermal signature of the model is
made to coarsely match that of Envisat in both illumination conditions. Images
are acquired at a resolution of 744 px × 490 px and frequency of 10 Hz (software
synchronised); the visible and thermal cameras are aligned and set up in a stereo
configuration with a very short baseline to minimise disparity. The ground truth
is recorded with an Optitrack motion caption system. Using the ground truth and
the computer-aided design (CAD) model of the target, the background is digitally
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Figure 6.7: Sample images from the CITY/APPROACH-SLOW sequence imaged from
the same pose under different modalities and illumination conditions. The images
have been cropped for visualisation purposes. (Top row) Sunlight, visible modality.
(Second row) Sunlight, long-wavelength infrared (LWIR) modality. (Third row)
Eclipse, visible modality. The images have been exaggeratedly enhanced for better
visualisation. (Bottom row) Eclipse, LWIR modality.

masked out to simulate a deep space background. Figure 6.7 depicts some sample
frames of the dataset.

6.4.2 Training

In order to stress the pipeline, all models are trained exclusively on sunlit rendezvous
sequences. Table 6.2 depicts the train/test data split for ASTOS, where seven sequences
are used for training. This is equivalent to approximately 13 200 images. For the
CITY dataset, CITY/FAR, CITY/NEAR, CITY/APPROACH-FAST are used for training,
equivalent to 2760 images; CITY/APPROACH-SLOW is used for testing.

The performance of the training process is monitored by further extracting a
validation dataset from the training sequences according to a 80–20 % partition. To
accomplish this, all sequences of the training dataset are split into smaller sequences,
where the length is randomly sampled from a range of powers of two. In the case of
ASTOS, the possible subsequence lengths are {64, 128, 256, 512}; for CITY, these are
{32, 64, 128, 256}, as the original sequences are shorter.

Clark et al.’s (2017) method is used to train the RNN module whereby each
sequence is fed to the network according to a sliding window. In the present
experiments, a window length of 8 frames with a stride of 4 was utilised.
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Table 6.2: Train/test data split on the ASTOS dataset. All train sequences depict sun-
lit sequences, whereas the testing campaign includes both sunlit and eclipsed periods.
Consult Chapter 2, Section 2.5.2, Figures (2.21) to (2.23) for the nomenclature.

Sequence Train Test

G1/

R1/ VBAR/ ×
RBAR/ ×

R2/ VBAR/ ×
RBAR/ ×

R3/ VBAR/ ×
RBAR/ ×

G2/

R1/ VBAR/ ×
RBAR/ ×

R2/ VBAR/ ×
RBAR/ ×

R3/ VBAR/ ×
RBAR/ ×

G3/ R1/ ×
R2/ ×

Table 6.3: Base learning rates used in the training of the complete multimodal
deep recurrent convolutional neural network (DRCNN) pipeline.

Dataset Stage 1 Stage 2 Stage 3
CNN CNN RNN CNN RNN

ASTOS 2.0 × 10−2 3.0 × 10−4 8.0 × 10−5 4.1 × 10−4 5.0 × 10−6

CITY 2.0 × 10−2 2.0 × 10−4 8.0 × 10−5 1.0 × 10−4 1.0 × 10−4

Image augmentation is performed online on the training data as depicted in
Section 6.3.3 and according to a probability value. The probability is set to its
highest during Stage 1 and successively lowered until Stage 3. When training the
RNN module, the augmentations are applied consistently for each sequence.

Stages 1 and 2 are trained for 100 epochs with a cyclical learning rate decay of 5
cycles (Smith, 2017), whereas Stage 3 is trained for 66 epochs with early stopping
and a step learning rate decay every 9 epochs. Stage 1 samples the dataset for a
total of 10 000 images. The CNN and RNN modules are trained separately, but
sequentially. The Adam optimiser (Kingma and J. Ba, 2014) is used. The final
pipeline uses a dropout probability of 0.2, and hidden and cell states zoneout factors
of 0.15 for both. The learning rates used in the training of the final pipeline are
summarised in Table 6.3.

The DRCNN is implemented from the ground up on MATLAB version R2019b.
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The pipeline is trained on Cranfield’s high performance computing facility Delta
using one NVIDIA® Turing® V100 Tensor Core graphics processing unit (GPU).

6.4.3 Testing
The test results are presented in terms of the position and attitude error metrics,
respectively:

δt̃ := ‖t̂− t‖, (6.23)

δq̃ := 2 arccos
(
q̂−1 ⊗ q

)
4 . (6.24)

Additionally, the position error is also assessed in terms of the relative range:

δt̃r := δt̃

‖t‖
. (6.25)

6.4.4 Evaluation of Multistage Optimisation
To assess the contribution of each stage in the proposed multistage optimisation
scheme, the CNN module is trained according to four different schemes: 1) Stage 2
only for 100 epochs [S2-100]; 2) Stage 2 only for 200 epochs [S2-200]; 3) Stages 1 and
2 [S1,S2]; and 4) Stages 1, 2, and 3 [S1,S2,S3]. The comparison tests are performed
for two sample test sequences of the ASTOS dataset: G2/R1/VBAR and G3/R2. The
former represents the baseline case, where the only relative motion is the tumbling
of the target, whereas the latter adds complexity not only in terms of the additional
rotation mode but due to the elliptical relative translation and the manifestation of
Earth in the background.

Figure 6.8a depicts the results of the benchmark on ASTOS/G2/R1/VBAR. From
the overall shape of the plot lines, the periodicity of the tumbling motion can be
clearly discerned. An initial period approximately covering the interval τ ∈ [0 ; 60[ s
is first noted, during which the target performs slightly over half a revolution and the
errors are overall higher, culminating in a local peak at which the solar array reflects
Earth’s rim. It is then followed by a second period covering τ = [60 ; 103[ s where
the main bus comes back into view and both shadows and reflections are minimised,
hence driving down the errors. This pattern is repeated twice more throughout the
plot as the target performs a total of three revolutions.

Regarding the position error, the S1,S2 strategy is essentially on par with S2-100
and S2-200 for the first period, and performs better than both on the second period.
Notably, the benefit of the dual-stage training can be observed specifically at times
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(a) G2/R1/VBAR/HOT/VIS

(b) G3/R2/HOT/VIS

Figure 6.8: Comparison of estimated position and attitude errors over time on two
sample ASTOS dataset rendezvous sequences in terms of training stages used. All
models are trained on a convolutional neural network (CNN) taking red-green-blue
(RGB) inputs. (S2-100) Stage 2 trained for 100 epochs. (S2-200) Stage 2 trained for
200 epochs. (S1,S2) Stage 1 and Stage 2. (S1,S2,S3) Stage 1, Stage 2, and Stage 3.
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(a) S2-100 (b) S2-200

(c) S1,S2 (d) S1,S2,S3

Figure 6.9: Effect of multistage optimisation. Illustrated on the
ASTOS/G2/R1/VBAR/HOT/VIS sequence at time τ = 59.4 s. Each stage progressively
improves the pose estimate in the presence of spurious reflections, as shown by the
model reprojection in green. (S2-200) Stage 2 trained for 200 epochs. (S1,S2) Stage
1 and Stage 2. (S1,S2,S3) Stage 1, Stage 2, and Stage 3.

τ = {60, 160, 260} s, where a mitigation of the error spikes is seen. Training on the
three stages (S1,S2,S3) reduces these peaks even further. This is shown in Figure 6.9

The gains of adopting the proposed method become clearer looking at the attitude
error plot. S2-100 exhibits the higher error throughout, followed by S2-200. The
dual-stage S1,S2 approach further reduces the error, except for peaks at {45,147,250}
s, where it is comparable to the previous mode; this corresponds to the segments
where the target nearly completes half a revolution and the solar array begins to
cover the main bus. The triple-stage approach can be seen to provide the steadiest
performance. It is also noted that the highest error peaks for the attitude correspond
to those identified for the position, which S1,S2,S3 mitigates, but does not completely
eliminate.

Table 6.4 summarises the errors numerically for each approach, validating the
analysis done above. S1,S2 improves the attitude error on average relative to training
directly through S2 at the cost of a slight increase in the mean and median position
errors. S1,S2,S3 provides the best result overall, providing a mean sub-metre position
accuracy and mean attitude error below 1.5 deg. The former is equivalent to a
position error of 1.34 % of range.

Figure 6.8b performs the same comparison, this time on the ASTOS/G3/R2 se-
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Table 6.4: Comparison of position and attitude error statistics on two sample
ASTOS dataset rendezvous sequences in terms of training stages used. All models
are trained on a convolutional neural network (CNN) taking red-green-blue (RGB)
inputs. (S2-100) Stage 2 trained for 100 epochs. (S2-200) Stage 2 trained for 200
epochs. (S1,S2) Stage 1 and Stage 2. (S1,S2,S3) Stage 1, Stage 2, and Stage 3. The
best results are highlighted in bold.

Model δt̃ (m) δt̃r (-) δq̃ (deg)
Mean Median Mean Median Mean Median

G2/R1/VBAR/HOT/VIS
S2-100 0.90 0.78 0.0180 0.0156 4.90 4.61
S2-200 0.93 0.64 0.0186 0.0128 2.77 2.57
S1,S2 1.23 0.95 0.0245 0.0189 1.95 1.43
S1,S2,S3 0.67 0.30 0.0134 0.0059 1.40 1.17

G3/R2/HOT/VIS
S2-100 0.95 0.81 0.0190 0.0162 7.34 6.40
S2-200 0.98 0.67 0.0196 0.0135 5.13 3.65
S1,S2 2.18 0.98 0.0436 0.0197 5.56 4.89
S1,S2,S3 1.75 0.41 0.0349 0.0082 3.55 2.45

quence. It can be observed that the single-stage training schemes actually perform
better for the initial period of [0 ; 80[ s in terms of position error. An initial peak can
be observed around 60 s, which corresponds to the period in the trajectory where the
solar array is angled such that the light reflected from the sun witnesses its maximal
intensity. The dual- and triple-stage strategies are able to lessen the impact of this,
but fail to avoid a spike shortly after, which corresponds to the period where the
sunlight is still directly hitting both the solar array and the MLI facing the camera.
During this period, most of Envisat’s main bus is covered by the solar array, which
could explain the fact that S1,S2,S3 performs slightly worse than S1,S2 (i.e. there
are fewer corner points visible, cf. Fig. 6.5).

The two approaches recover at 80 s, after which the solar array ceases to occlude
the spacecraft. Beyond this point, S1,S2,S3 becomes the best-performing strategy,
save for a peak around 165 s, where the panel once again dominates the FOV. Imme-
diately after, the error is reduced but both S2-only strategies worsen, corresponding
to a point where the array once again reflects Earth’s rim. The results for this
trajectory therefore suggest that the proposed multistage optimisation robustifies
the estimate of the position against aggressive illumination-induced artefacts but
suffer when the target is self-occluded by the solar array. At this point, Earth is no
longer present on the FOV, which could explain the fact that the spike is less intense
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Table 6.5: Comparison of position and attitude error statistics on two sample ASTOS
dataset rendezvous sequences in terms of recurrence, benchmarking the plain convo-
lutional neural network (CNN) against the complete deep recurrent convolutional
neural network (DRCNN). All models are trained on Stages 1 and 2 and RGB inputs.
The best results are highlighted in bold.

Model δt̃ (m) δt̃r (-) δq̃ (deg)
Mean Median Mean Median Mean Median

G2/R1/VBAR/HOT/VIS
CNN 1.23 0.95 0.0245 0.0189 1.95 1.43
DRCNN 0.70 0.58 0.0140 0.0117 3.03 2.47

G3/R2/HOT/VIS
CNN 2.18 0.98 0.0436 0.0197 5.56 4.89
DRCNN 1.00 0.78 0.0199 0.0156 6.09 5.72

compared to the one at 60 s.
The attitude estimation performance for ASTOS/G3/R2 largely follows the same

trend, where once more S1,S2,S3 performs better overall. The initial increase in
attitude errors, though, appears to persist for ten additional seconds, after which
it decreases, corresponding to the point in the trajectory where Earth is mostly no
longer present in the FOV, indicating that the attitude estimate is more sensitive to
this factor.

Interestingly, despite having a higher mean position error relative to Stage 2 only,
the complete multistage approach provides the best performance in terms of the
median value (0.41 m against 0.81 m for S2-100, see Tab. 6.4).

6.4.5 Evaluation of Recurrent Module

Spacecraft pose estimation using DNNs has been exclusively tackled as a classification
or regression task operating on each image individually. To study the benefit of
modelling the problem as one dealing with a sequence of time-correlated images, two
separate models are trained: one consisting solely in the plain CNN, and another
consisting in the complete DRCNN pipeline using LSTMs. Both models are trained
on Stages 1 and 2, and on RGB inputs.

Figure 6.10 plots the estimation results over time for the two sample trajectories,
and Table 6.5 summarises them in terms of mean and median values. The DRCNN
is successful in overwhelmingly mitigating the localised position error peaks for
both trajectories, which correspond to points in the trajectory where the solar array
reflections are most intense or it occludes the main bus, as mentioned in the previous
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(a) G2/R1/VBAR/HOT/VIS

(b) G3/R2/HOT/VIS

Figure 6.10: Comparison of estimated position and attitude errors over time on two
sample ASTOS dataset rendezvous sequences in terms of recurrence, benchmarking
the plain convolutional neural network (CNN) against the complete deep recurrent
convolutional neural network (DRCNN). All models are trained on Stages 1 and 2
and RGB inputs.
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(a) CNN

(b) DRCNN

Figure 6.11: Effect of recurrent module illustrated on the ASTOS/G3/R2/HOT/VIS
sequence at times τ = {61, 62, 63} s (left to right). The effect of the recurrent neural
network (RNN) is mostly observed in the mitigation of position estimation errors,
especially in terms of the range.

section. This is due to the LSTM states taking into account the preceding images,
thus preventing sudden jumps in the solution. Figure 6.11 illustrates this for a triad
of frames. The mean position error is reduced approximately by half, bringing the
mean range-normalised error to approximately 1.40 % and 2 % for each trajectory,
respectively.

The mean values for the attitude errors, however, are slightly worse for the RNN-
based architecture. Overall, an increase of 0.5–1 deg in the mean error and 1 deg
in the median error is observed. It can be argued that this is an acceptable loss in
performance given the benefit seen for the position estimation. However, the pipeline
can be easily modified to output an attitude estimate from the CNN alone while
processing the position with the RNN; this is left as future work. Nonetheless, the
perhaps more substantial trade-off to consider is whether peak mitigation (e.g. the
one observed at 165 s on ASTOS/G3/R2/HOT) is preferred over average performance.

6.4.6 Evaluation of Multimodal Inputs
In this section, the influence of augmenting the RGB input produced by regular
camera with an image in the LWIR, thus creating a four channel multimodal
RGBT input, is evaluated. Two models are trained for comparison, one with
inputs exclusively on the visible modality, and another with multimodal inputs. Both
models are trained on Stages 1 and 2. The results are depicted in Figure 6.12 and
Table 6.12.

The contribution of the multimodality can be seen immediately in Figure 6.12a,
where the plots of both position and attitude errors in time for ASTOS/G2/R1/VBAR
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(a) G2/R1/VBAR/HOT

(b) G3/R2/HOT

Figure 6.12: Comparison of estimated position and attitude errors over time
on two sample ASTOS dataset rendezvous sequences in terms of imaging modality,
benchmarking red-green-blue (RGB) inputs against the multimodal red-green-blue-
thermal (RGBT). All models are trained on a convolutional neural network (CNN)
and Stages 1 and 2.

249



6. POSE EST. FOR M’MODAL SEQS. VIA DEEP R. C. L’ING

Table 6.6: Comparison of position and attitude error statistics on two sample
ASTOS dataset rendezvous sequences in terms of imaging modality, benchmarking
red-green-blue (RGB) inputs against the multimodal red-green-blue-thermal (RGBT).
All models are trained on a convolutional neural network (CNN) and Stages 1 and 2.
The best results are highlighted in bold.

Model δt̃ (m) δt̃r (-) δq̃ (deg)
Mean Median Mean Median Mean Median

G2/R1/VBAR/HOT
RGB 1.23 0.95 0.0245 0.0189 1.95 1.43
RGBT 0.23 0.17 0.0046 0.0034 0.98 0.88

G3/R2/HOT
RGB 2.18 0.98 0.0436 0.0197 5.56 4.89
RGBT 0.61 0.31 0.0122 0.0063 2.37 1.40

exhibit more stability for RGBT inputs compared to RGB inputs. Notably, not
only are the reflection-induced peaks mitigated, but the errors corresponding to the
approximate first half of the tumbling period (refer again to § 6.4.4) are as well.
Overall, the mean position error is reduced in almost 80 % by using multimodal
inputs, granting a mean range-normalised position error below 0.5 %, compared to
2.5 % for visible only. The mean attitude error is halved, becoming slightly lower
than 1 deg.

Figure 6.12b plots the estimation errors over time for the more complex sequence
ASTOS/G3/R2. The RGBT position error is lower than the baseline throughout the
entire sequence, save for the peak centred at τ = 60 s, which is not present in
the baseline (cf. Fig. 6.8a). Because, at this point, the solar array is blocking the
line-of-sight (LOS) to the bus, which appears essentially featureless hot body in the
LWIR band, the network is in error. Nevertheless, immediately after, the error is
brought down again; this is posited because as the main body becomes visible again
the highly-contrasting cold radiators do too, generating features for the network,
which are otherwise not intense enough in the RGB.

Despite the general degradation in performance for this trajectory, the position
error metrics are better in all aspects for the multimodal approach, with a reduction
in the mean error of more than 70 %. The improvements in the attitude error are
also notable (more than halved for the mean, reduced by more than two thirds for
the median). Figure 6.13 qualitatively shows this effect.
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(a) RGB (b) RGBT

Figure 6.13: Effect of multimodality. Illustrated on the ASTOS/G3/R2/HOT trajec-
tory at time τ = 88.5 s. The RGBT-trained (red-green-blue-thermal) model (here
represented as a thermal image) generally improves the pose with respect to the
RGB-trained (red-green-blue) one.

6.4.6.1 Evaluation on Eclipse Sequences

The addition of the LWIR was shown above to greatly reduce the pose estimation
errors under nominal conditions. Additionally, it would also be interesting to evaluate
its performance under low illumination conditions: not being under direct sunlight
means that a visible camera’s gain must be increased to boost the signal, which in turn
also boosts noise, but despite lower temperatures in general the target is still emitting
heat. As such, the benchmarks conducted in the beginning of Section 6.4.6 are now
repeated for sample eclipse trajectories of the ASTOS dataset. This is an extremely
complex test since the networks have only been trained on sunlit trajectories.

Despite the image augmentation module, it was found that testing the network
directly on eclipse sequences directly did not produce a converging solution. As
such, the images are adjusted manually in terms of gamma to make the darker areas
lighter. The same adjustment is applied globally regardless of the sequence and the
process involves very little supervision. Note that localised sections in the image are
not being selectively manipulated, as the transformation is global. Furthermore, the
thermal signature of the target in the LWIR is still different than the one seen during
training. To compensate for a higher ISO setting on the visible camera associated to
the lack of light, the pixels are corrupted with random values drawn from a zero-mean
Gaussian distribution to emulate sensor noise. The noise is then also amplified by
the gamma correction.

The tests are performed for two different noise levels: low-intensity noise (abbrevi-
ated “N-L”) with a standard deviation σ = 4× 10−3 (equivalent to 1 on a pixel range
of 0–255 ), and high-intensity noise (“N-H”) with a standard deviation σ = 1× 10−2

(equivalent to 2.5).
Figure 6.14 illustrates the pose estimation errors over time for the ASTOS/G2/R1/-
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Figure 6.14: Comparison of estimated position and attitude errors over time on the
G2/R1/VBAR/COLD rendezvous sequence from the ASTOS dataset in terms of imaging
modality, benchmarking red-green-blue (RGB) inputs against the multimodal red-
green-blue-thermal (RGBT). All models are trained on a convolutional neural network
(CNN) and Stages 1 and 2. Note that the sequence depicts an eclipse period. (N-L)
Noise, low intensity. (N-H) Noise, high intensity.

Table 6.7: Comparison of position and attitude error statistics on two sample
ASTOS dataset rendezvous sequences in terms of imaging modality, benchmarking
red-green-blue (RGB) inputs against the multimodal red-green-blue-thermal (RGBT).
All models are trained on a convolutional neural network (CNN) and Stages 1 and
2. The best results are highlighted in bold. Note that all sequences depict an
eclipse period. (N-L) Noise, low intensity. (N-H) Noise, high intensity. (D) Solution
diverges.

Model δt̃ (m) δt̃r (-) δq̃ (deg)
Mean Median Mean Median Mean Median

G2/R1/VBAR/COLD (N-L)
RGB 0.99 0.94 0.0198 0.0188 2.53 2.19
RGBT 0.44 0.31 0.0088 0.0063 2.79 2.48

G2/R1/VBAR/COLD (N-H)
RGB 1.02 0.99 0.0205 0.0197 2.70 2.21
RGBT 0.45 0.30 0.0089 0.0060 2.88 2.56

G3/R2/COLD (N-L)
RGB 1.42 1.06 0.0285 0.0212 20.56 16.55
RGBT 2.11 1.99 0.0423 0.0399 D D
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(a) ASTOS/G2/R1/VBAR/COLD: RGBT success

(b) ASTOS/G3/R2/COLD: RGBT fail

Figure 6.15: Effect of multimodality illustrated on eclipse sequences. (Left Column)
red-green-blue (RGB) model. (Right Column) red-green-blue-thermal (RGBT) model.

VBAR/COLD sequence. Table 6.7 summarises the errors numerically. Figure 6.15a
displays a qualitative version of these results. Both RGB and RGBT models are
largely impervious to the sensor noise levels (a result of the image augmentation
module), especially the latter. The visible band model actually produces a slightly
improved mean position error since extreme lighting effects are mitigated; note the
absence of the spike in position error at time τ = 165 s. The attitude error, on
the other hand, rises by 0.5–0.8 deg on average. The multimodal model provides a
position accuracy with half the mean error relative to the visible, and twice as large
as its hot case counterpart. Still, the range-normalised accuracy is kept below 1 %.
Surprisingly, the attitude estimate is not improved, and even marginally worsens.

The models were also tested on the ASTOS/G3/R2/COLD sequence. For the RGB
model, whereas the position error is lower than its hot case counterpart in terms of
the mean, at nearly 3 % of the range (but worse in terms of median), the attitude
estimation performance is over 3.5 worse, scoring an average error of approximately
20.5 deg. The RGBT model, while capable of providing an estimate of the position
with a mean range-normalised error of around 4 %, does not converge for the attitude.
This represents a limitation of the thermal imaging when Earth is also present in
the FOV. It is postulated that this is due to the lower intensity thermal signature of
the target which is too similar to that of Earth’s. Since the network has only been
trained on high-contrasting images for the LWIR band originating from the hot cases,
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Table 6.8: Summary of position and attitude error statistics on all ASTOS dataset
rendezvous test sequences for the complete deep recurrent convolutional neural
network (DRCNN) pipeline, trained on Stages 1, 2, and 3. Only sunlit sequences
have been used for training. All tests use multimodal red-green-blue-thermal (RGBT)
inputs unless otherwise stated. (N-L) Noise, low intensity. (N-H) Noise, high intensity.
(D) Solution diverges.

Sequence δt̃ (m) δt̃r (-) δq̃ (deg)
Mean Median Mean Median Mean Median

G1/
R1/ RBAR/ HOT 3.45 3.51 0.0468 0.0473 7.49 4.80
R2/ VBAR/ HOT 4.05 4.23 0.0547 0.0581 8.67 4.53
R3/ RBAR/ HOT 3.09 3.12 0.0437 0.0437 14.12 8.63

G2/
R1/ VBAR/ HOT 0.24 0.23 0.0049 0.0046 1.85 1.80
R2/ RBAR/ HOT 0.33 0.24 0.0065 0.0048 2.09 1.26
R3/ VBAR/ HOT 0.67 0.63 0.0134 0.0126 10.61 9.02

G3/ R2/ HOT 0.29 0.21 0.0058 0.0041 3.52 2.77

G1/

R1/ RBAR/ COLD (N-L)* 5.33 3.53 0.0676 0.0589 16.82 9.47
R1/ RBAR/ COLD (N-H)* 5.85 4.72 0.0757 0.0729 17.14 7.84
R2/ VBAR/ COLD (N-L) 4.00 3.80 0.0549 0.0534 23.26 10.98
R2/ VBAR/ COLD (N-H) 3.95 3.72 0.0542 0.0519 23.66 10.80
R3/ RBAR/ COLD (N-L)* 4.96 4.42 0.0693 0.0642 D D
R3/ RBAR/ COLD (N-H)* 5.16 4.43 0.0718 0.0637 D D

G2/

R1/ VBAR/ COLD (N-L) 0.36 0.33 0.0071 0.0067 3.04 2.86
R1/ VBAR/ COLD (N-H) 0.35 0.33 0.0070 0.0066 3.13 3.01
R2/ RBAR/ COLD (N-L)* 0.95 0.83 0.0190 0.0167 22.38 20.93
R2/ RBAR/ COLD (N-H)* 0.94 0.87 0.0188 0.0174 22.99 20.96
R3/ VBAR/ COLD (N-L) 0.93 0.82 0.0186 0.0164 21.98 11.01
R3/ VBAR/ COLD (N-H) 0.94 0.83 0.0188 0.0166 22.18 11.20

G3/ R2/ COLD (N-L)* 1.11 0.73 0.0221 0.0146 16.63 14.19
G3/ R2/ COLD (N-H)* 1.16 0.77 0.0232 0.0154 18.47 15.51
* Evaluated on red-green-blue (RGB) inputs.

it has difficulties identifying features on that band during eclipse. The comparative
resilience on the visible band could in turn be explained by the fact that colour-based
salient features can still be extracted. This is exemplified in Figure 6.15b.

6.4.7 Summary of Performance on Astos Dataset

Table 6.8 compiles the error statistics for the performance of the complete multimodal
DRCNN framework on the entire ASTOS dataset. For completeness, the performance
on the nominal sample sequences is also benchmarked in Figure 6.16, and illustrated
on sample frames in Figure 6.17.

Looking at the metrics for G2/R1/VBAR/HOT, the performance of ChiNet can be
directly compared with the algorithm developed in Chapter 5 (herein referred to
as “classical”). It can be seen that ChiNet provides an estimate of the position
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(a) G2/R1/VBAR/HOT

(b) G3/R2/HOT

Figure 6.16: Estimated position and attitude errors over time on two sample
ASTOS dataset rendezvous sequences for the complete multimodal deep recurrent
convolutional neural network (DRCNN).
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(a) ASTOS/G2/R1/VBAR/HOT

(b) ASTOS/G3/R2/HOT

Figure 6.17: Qualitative pose estimation performance on frames of two sample
ASTOS dataset rendezvous sequences for the complete multimodal deep recurrent
convolutional neural network (DRCNN). Illustrated on red-green-blue (RGB) images,
with the model reprojected in green.

with an error bound at 0.6 m, scoring on average a mean δt̃r = 0.49 %; the classical
solution, on the other hand, was seen to have reached maximum values of 2.5 m. For
this trajectory, ChiNet presents an improvement of around 2.2 percentage points
in terms of mean range-normalised position error. The classical solution performs
better in terms of mean attitude error (0.78 deg). Still, ChiNet produces a solution
not exceeding 2 deg in error.

Considering the remaining sequences within guidance profile G2 (fixed relative
range), it can be seen that the quality of the solution degrades as more challenging
rotation modes are considered. The estimation of the attitude appears to be more
affected by this factor. For mode R2 (two-axis rotation), the pose errors are compa-
rable to R1, even despite the benchmark of the former being performed on an RBAR
approach vector (i.e. with Earth in the FOV). Mode R3 (precession) experiences by
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far the largest degradation, with the mean attitude error exceeding 10.5 deg. On
sequences featuring this rotation mode, the edge of the solar array leaves the FOV
for a considerable amount of time, which could explain the higher error.

The G1 profile (forced translation) exhibits reduced performance when compared
to G2. This was expected, however, since the network sees far more examples of
the relative pose at a distance of 50 m than at larger distances. Nevertheless, for
this profile ChiNet produces estimates of the position with mean δt̃r not exceeding
5.5 %. The mean attitude error is less affected by the change in guidance profile,
being 1.5–4× higher with respect to G2. Taking G1/R2/VBAR/HOT as an example,
the mean δt̃r = 5.47 % is approximately 2.7 percent points higher than the output of
the classical algorithm. The mean attitude error is also higher (3.4×).

Table 6.8 also illustrates the results obtained for the cold cases. RBAR trajectories
are tested on RGB inputs to account for the limitations of the LWIR band in those
conditions (see § 6.4.6.1). An overall increase in error is observed for all sequences
when compared to the nominal hot cases. Comparing both illumination conditions
for G2/R1/VBAR, it can be seen that, for the scenario where Earth is not present in
the FOV and the tumbling is limited to one axis, the hot and cold solutions are
comparable. Changing the approach vector (G2/R2/RBAR) or the tumbling mode
(G2/R3/VBAR) widens the gap comparatively to the hot case. Both position and
attitude are shown to be more affected by the eclipse for RBAR sequences.

When relative translation changes are active (guidance profile G1), both position
and attitude estimates increase in the cold case (with the latter more affected). ChiNet
is able to produce a solution for all proposed sequences except for G1/R3/RBAR/COLD,
where the attitude does not converge. This is arguably the hardest sequence,
combining large variations in range, the precession tumbling mode, presence of Earth
in the FOV, and low illumination. Nevertheless, the pipeline is still able to coarsely
estimate the position with a mean range-normalised position error of approximately
7 %.

6.4.8 Evaluation on Laboratory Data

Lastly, the performance of the complete ChiNet pipeline is assessed on data from the
CITY dataset. This test provides insight on how well the deep learning framework
can adapt to data captured by actual sensors, and to the sources of error a laboratory
setup brings, namely: 1) camera calibration; 2) ground truth measurement; 3) camera
misalignments; 4) camera synchronisation; and 5) sensor noise. It also evaluates
how the network fares against previously unseen motion when trained on reduced
amounts of data.
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(a) CITY/APPROACH-SLOW/HOT

(b) CITY/APPROACH-SLOW/COLD

Figure 6.18: Estimated position and attitude errors over time on the CITY dataset
laboratory test rendezvous sequences. Both models are trained on the full deep
recurrent convolutional neural network (DRCNN) pipeline with multimodal red-
green-blue-thermal (RGBT) inputs and on Stages 1, 2, and 3.
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Table 6.9: Summary of position and attitude error statistics on the CITY dataset
laboratory test rendezvous sequences. Both models are trained on the full deep
recurrent convolutional neural network (DRCNN) pipeline with multimodal red-
green-blue-thermal (RGBT) inputs and on Stages 1, 2, and 3.

Sequence δt̃ (m) δt̃r (-) δq̃ (deg)
Mean Median Mean Median Mean Median

CITY/APPROACH-SLOW/HOT 0.17 0.17 0.0634 0.0630 5.52 3.97
CITY/APPROACH-SLOW/COLD 0.32 0.31 0.1144 0.1084 10.86 11.13

Figure 6.18a illustrates the evolution in time of the position and attitude estima-
tion errors for the test sequence CITY/APPROACH-SLOW/HOT under simulated sunlight
conditions. Table 6.9 summarises these results numerically, whereas Figure 6.19a
does it qualitatively. It can be observed that the position error is bounded at 35 cm
throughout the trajectory, save for the initial transient period. The mean error is
shown to be approximately half of that, which corresponds to a figure below 6.5 %
of range. The attitude error is kept below 10 deg for the first 85 % of the sequence,
demonstrating that the network is mostly able to separate the translational motion
from the rotational one; a degradation of the estimate is observed during the last
4 s, when the target reaches a rotation of 180 deg around the spin axis and the error
peaks at about 20 deg, which can be explained by the fact that the training data is
biased towards an observation of that specific attitude for larger relative distances.
The mean error is approximately 5.5 deg.

Figure 6.18b portrays the attained results for the same trajectory when under
simulated eclipse conditions. Similarly to the synthetic tests on ASTOS, the input
corresponding to the RGB image is adjusted to increase the visibility of the target.
As expected, a general degradation of the solution is observed, but ChiNet is able
to keep the errors bounded. As in the previous case, the attitude estimation error
increases towards the end of the sequence; however, this is also observed in this case
for approximately the first 8 s. It is reminded, though, that the pipeline has not
been trained with eclipsed data. Both position and attitude errors are 2× higher
compared to the hot case both in terms of the mean and median (the latter slightly
more so in the case of the attitude). Figure 6.19b qualitatively shows the obtained
solution.

6.5 Conclusions and Future Work
This chapter presented ChiNet: this thesis’ contribution towards deep learning-based,
end-to-end spacecraft pose estimation. The proposed method employs a CNN as a
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front-end feature extractor and applies an LSTM-based RNN back-end to model the
temporal relationship between incoming frames from an optical camera. Furthermore,
images on the visible spectrum are augmented with those captured in the LWIR
band, granting a feature-rich multimodal input. The full pipeline is trained according
to a multistage optimisation scheme that categorises the learning process in a coarse
to fine fashion.

Each of the proposed contributions was individually tested on realistic synthetic
data. The addition of the coarse training stage was demonstrated to mitigate spikes
in the pose estimation errors originating from sharp reflections of both Earth and
sunlight on the solar array, particularly for the estimation of the relative position.
Including the keypoint-based refinement stage was shown to improve the median
position error, as well as the mean and median attitude error, at some cost of the
mean position performance in the case where Earth is present in the background. The
recurrent module eliminated sharp jumps in the estimate of the position, reducing
the mean error by half. The attitude estimate did also become more stable, at a
slight cost in the mean and median error values. The inclusion of multimodal RGBT
image inputs was shown to improve the mean position error in 70–80 % and to reduce
the mean attitude error in half on nominal cases. Some limitations of the LWIR
band were identified, however, namely when a module largely uniform in terms of
temperature such as the solar array dominates the FOV. Overall, ChiNet was shown
to generalise well to unseen trajectories, benchmarking a mean range-normalised
position error of 2.5 % per average trajectory and a mean attitude estimation error of
6.9 deg per average trajectory on the sequences of the ASTOS dataset under nominal
illumination conditions. The simplest case was shown to be comparable to the
classical solution developed in Chapter 5, even surpassing it in terms of position
estimation performance. The pipeline required no localisation or segmentation
preprocessing to produce an accurate solution.

The network was further stressed by subjecting it to tests on eclipse sequences
of the ASTOS dataset which had not been seen during training, including a different
target thermal signature. This highlighted some limitations of the method in the
sense that the image intensity values of the test images had to be adjusted to produce
a working solution; the use of RGBT inputs was also shown to fail in the presence
of Earth as the thermal signature of the target in eclipse made it too difficult to
distinguish it from the background in the LWIR band. Despite generally lower
performance, ChiNet still produced feasible pose estimate solutions that could be
complemented by additional on-board sensors, save for a single case where multiple
hampering factors were at play. Lastly, the proposed work was benchmarked on

260



6.5. CONCLUSIONS AND FUTURE WORK

a laboratory dataset, demonstrating the capability of the network to learn novel
situations under a reduced training regime.

Future work might tackle additional image augmentation strategies, such as
localised IP-based manipulation of the target in the FOV, or background replacement,
to robustify the pipeline towards the highlighted cases where the presence of Earth
affects the perception of the target, particularly in the LWIR modality during
eclipse. Another potential avenue to investigate could be the contribution of domain
adaptation (Csurka, 2017) in the context of spacecraft pose estimation, whereby a
deep network is trained with synthetic images and tested on real data, as the latter
are typically scarce prior to the actual mission, but the former can be generated in
large quantities.
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(a) CITY/APPROACH-SLOW/HOT

(b) CITY/APPROACH-SLOW/COLD

Figure 6.19: Qualitative pose estimation performance on frames of the CITY dataset
laboratory test rendezvous sequences for the complete multimodal deep recurrent
convolutional neural network (DRCNN). Illustrated on red-green-blue (RGB) images,
with the model reprojected in green. The eclipse images have been enhanced for
visibility.
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CHAPTER 7

Conclusion

7.1 Overview

Vision-based relative navigation has been used for over four decades to guide man-
made vessels throughout deep space towards the exploration of other worlds in
our solar system. Due to their cheapness, small form factor, and capability of on-
board processing, cameras are nowadays almost always considered a necessity when
performing an autonomous far-range rendezvous (RV) with a celestial body, be it a
planet, a moon, or an asteroid. In addition, cameras can serve a dual purpose as
sensor for both navigation and scientific objectives.

However, for close range RVs, expensive active sensors such as lidar are still
the norm, and vision is traditionally reserved for supporting functions regarding
cooperative targets. Nonetheless, the ongoing democratisation of space might soon
shift the current paradigm towards generalised, but inexpensive, autonomy as new
solutions are required to manage both new and current satellite missions.

This dissertation recognised this as a motivator and sought to advance the state-
of-the-art in vision-based non-cooperative rendezvous (NCRV), with a particular
focus on active debris removal (ADR) applications. This task was endeavoured by
focusing on narrowing the gap between the computer vision and space domains, while
acknowledging the challenging and specific conditions of an NCRV operation. Such
challenges were tackled in a structured approach through the investigation of model-
based methods for the estimation of the six degrees-of-freedom (6-DOF) pose of an
artificial, known target relative to a camera mounted on a chaser spacecraft, and by
looking not only at the visible modality, but beyond it, incorporating long-wavelength
infrared (LWIR) measurements into the solution.
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7.2 Summary and Discussion
In Chapter 1, the objectives of this thesis were formulated in the form of three
research questions, which are now revisited as the work closes with a summary of
novel contributions brought by each chapter and a discussion of envisaged future
work.

The first contribution of this thesis was done in the form of data generation.
Unlike for ground or aerial applications, image-based datasets for space RV are
limited or non-existent, and real images are very expensive to obtain. As such, the
Astos dataset, presented at the end of Chapter 2, was created, consisting in a series
of simulated trajectories with Envisat under various configurations. In total, 14
different trajectories were devised, where the target was imaged during sunlit and
eclipsed periods with a visible and thermal camera, generating 56 different sequences.
The Astos dataset was fundamental for appropriately characterising the task at hand,
and was used for validation in all subsequent experiments.

Chapter 3 presented, for the first time, a multimodal analysis of state-of-the-art
keypoint detectors and descriptors in the context of an NCRV with an artificial body.
Several key findings were identified that demonstrated the benefits of the LWIR
modality relative to the visible, namely a generalised increase in feature repeatability,
and a better matching score during eclipse sequences. The analysis also showed
some limitations in terms of using keypoints in model-based strategies, as the overall
performance decreased on tests of wide baseline transformations. Observed results
motivated the combination of certain detectors with non-native descriptors. The
algorithms were benchmarked on an embedded board with low processing power to
emulate the limited resources of an on-board guidance, navigation and control (GNC)
system, where good trade-offs were identified while leaving 80 % of the computational
budget for other tasks. Given the swath of the conducted analysis, unprecedented
for its domain, the first proposed research question [RQ1], which read:

How do low-level image processing algorithms behave on images acquired
during a space rendezvous?

is considered to be answered.
The first contribution towards the task of pose estimation in the visible band

was offered in Chapter 4, where the problem was decomposed into two parts: an
offline training phase, where images of the target were rendered using a computer-
aided design (CAD) model and annotated with local 3D information; and an online
estimation phase, where point and edge contour features of the target were detected
during the rendezvous sequence and matched to the training images. The resulting
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7.2. SUMMARY AND DISCUSSION

2D-3D constraints were then jointly minimised under an M-estimation framework
to simultaneously reject outlying correspondences and estimate the pose. The
importance of the findings stands on the fact that it was shown that a solution
could be obtained for a tumbling target based on a limited number of keyframes
and CPU-bound (central processing unit) processing, in opposition to alternative
methods which rely on GPU-based (graphics processing unit) hardware-accelerated
renderings of the target model in real-time to deal with complex motions.

In Chapter 5, two main improvements to the earlier algorithm were proposed. The
first one tackled the problem of keyframe initialisation through the development of a
coarse viewpoint classification method based on global Zernike moment (ZM) features
of the target’s shape. The second one employed an extended Kalman filter (EKF)
to improve the nominal solution by fusing the individual M-estimates generated
by each feature type. Both the M-estimation and filtering schemes were linearised
on the tangent space of SE(3), which served two predominant purposes: 1) the
internal update equations were formulated in terms of the 6-DOF error state and
then converted to the nominal state via the exponential map, naturally adhering to
the constraints of higher-dimensional representations of the attitude such as the unit
quaternion; and 2) because the error states followed the minimal representation of
the attitude, the covariance obtained as a by-product of the M-estimation solution
could be directly input as the measurement noise to the EKF, providing a natural
way to balance the contributions of each feature type. The filter prediction was in
turn used to reduce the search space of features for the following time-step, further
improving the solution.

This revamped method was validated on synthetic and laboratory-generated
NCRV sequences with Envisat, featuring different tumbling modes, guidance profiles,
and detrimental illumination effects, where average error values of 2.5 % of the range
for the position and 1 deg for the attitude were obtained. These metrics, attained
with only a digital camera as a sensor, are extremely close to Fehse’s (2003) “1 % of
range” rule of thumb, and are well within the accuracy requirements of established
cooperative systems (cf. Tab. 1.2, Chap. 1). The proposed approach was compared
to existing alternatives (including model-free ones) and shown to perform better,
but dependant on the segmentation between target and background; in particular, it
was benchmarked on the Spacecraft PosE Estimation Dataset (SPEED), where it
was demonstrated to be competitive with state-of-the-art CNN-based (convolutional
neural network) methods on laboratory data — even better than most of the Satellite
Pose Estimation Challenge (SPEC) entrants. In this light, the second research
question [RQ2], originally stated as:
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7. CONCLUSION

Can a contribution be made towards model-based spacecraft relative pose
estimation in the visible wavelength?

is taken to be positively answered.
The final novelty proposed by this dissertation explored the realm of deep learning

through the introduction of ChiNet in Chapter 2 as an end-to-end data-driven
spacecraft pose estimation approach. The architecture combined the power of CNNs
to process raw images with an LSTM-based (long short-term memory) back-end
to model the temporal relations arising from sequential inputs, thus introducing
the first deep recurrent convolutional neural network (DRCNN) for vision-based
target-centred navigation in space. Taking inspiration from the work done in previous
chapters, an optimisation framework comprising a coarse to fine multiple stage scheme
was used to train the network. Each of the proposed contributions was demonstrated
individually on models trained on a dataset split of the Astos collection.

Primarily, the framework was used to evaluate the contribution of the LWIR band
by training two models: one with red-green-blue (RGB) inputs and a second with red-
green-blue-thermal (RGBT) inputs. The multimodal solution showed a generalised
improvement in the estimated pose relative to the visible alone. In average terms,
the performance of ChiNet was comparable to the earlier presented classical-based
approach in terms of position estimation, with an inferior but acceptable benchmark
in attitude estimation. ChiNet was also able to natively perform in cases where Earth
was present in the camera’s field of view (FOV), which the previous method could
not do. Potential limitations of using RGBT inputs were clearly identified, namely
when sections of the target appearing featureless in the thermal spectrum occlude the
rest of the body. An additional test was made by subjecting the network to eclipse
sequences, which it had not seen during training. Despite an expected degradation
in the overall performance, the method was demonstrated to work on a previously
unseen thermal signature of the target; it did not produce, however, a valid solution
when Earth was visible due to comparable intensity values, though an RGB-based
estimate was still accomplishable. Lastly, ChiNet’s resilience towards training with
limited available data was validated on laboratory sequences of the Jason-1 satellite.
The conducted testing campaign exhaustively studied the contribution of LWIR
features towards the estimation of the full 6-DOF pose, thus providing an answer to
[RQ3]:

Can the long-wavelength infrared modality improve vision-based six
degrees-of-freedom relative navigation? If so, how?

which was considered to be the final research question.

266



7.3. FUTURE WORK

Through a structured approach and rigorous experimentation, this dissertation
has illustrated the capability of vision-based sensing for close-range rendezvous with
non-cooperative targets, both in the visible domain alone and following a multimodal
approach with support of the thermal band, publishing several papers in the process
with the aspiration of pushing orbital vehicles in the direction of robust, long-term
autonomous navigation adequate for today’s modern Space Age.

7.3 Future Work

This thesis proposed several model-based insights and solutions towards the ad-
vancement of the vision-based spacecraft relative pose estimation problem. However,
research remains to be done in order to thoroughly cover all expected hurdles. In
this section, some potential future avenues for investigation are briefly covered.

Foreground-Background Segmentation

One of the key limitations of the method proposed in Chapters 4 and 5 was the
reliance on a correct extraction of the target’s shape. While mostly simple in
the case of a black, deep space background, this becomes a non-trivial task when
Earth is in the background. The addition of a dedicated foreground-background
segmentation module could therefore allow the extension of the presented method to
such challenging cases. Gaussian mixture modelling (GMM), which was used in this
thesis, has been previously employed in segmentation problems (Azzam et al., 2016),
but is normally reserved for cases where the camera is static. In the case of space
RVs, a more adequate approach could involve explicitly accounting for the camera’s
egomotion (Peleg and Rom, 1990).

Generative Adversarial Networks

Generative adversarial networks (GANs; I. J. Goodfellow et al., 2014) are a framework
for estimating models — typically implemented using deep neural networks (DNN) —
for synthesising images. It involves the training of two subnetworks: a generator,
which creates samples by inputting random noise through the pipeline; and a
discriminator, which detects whether the sample came from the model distribution
or the data distribution. Recently, Khan et al. (2018) have proposed the use of
GANs to artificially boost the number of channels in an input image, thus improving
the diversity representation of the data. This could be seen as an extension of the
multimodal imaging concept.

A particular type of generative architecture is the CycleGAN (Zhu et al., 2017),
which allows for the unsupervised training of image-to-image translation models
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7. CONCLUSION

without paired examples. Yun et al. (2019) have recently investigated the use of
CycleGANs for visible-IR (infrared) image translation. Such a model could potentially
be used to synthesize new views of a RV sequence under different wavelengths to
serve as training samples for a multimodal framework, such as the one proposed in
this thesis, when available data is limited.

Domain Adaptation

Chapter 5 explored the use of synthetic images to derive a model which was then
tested on real data according to a knowledge-driven logic. However, this remains
a challenging feat for data-driven methods (i.e. deep learning), as synthetic images
are only similar to real images up to a certain point. DNN models for space RV
applications would greatly benefit from solving this problem of domain adaptation
since real training images are quite burdensome and expensive to obtain, whereas
synthetic images have the potential to yield essentially unlimited training samples.
Domain adaptation has been investigated for deep learning-based object pose esti-
mation by learning mappings from the synthetic feature space to the real feature
space (Rad et al., 2018). The author is currently exploring the extent of the domain
gap specifically for spacecraft pose estimation, as noted in Chapter 1 under paper
[C3] (Hogan et al., 2021).
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