
   
 

   
 

An investigation of online multiplayer game development 

within the context of novice development team with the 

help of a generic multiplayer framework 

 

 

 

 

 

 

 

 

 

 

 

A thesis submitted for the degree of Masters by Research 

(MbR) 

 

by 

 

Animesh Sharma 

School of Design and Informatics 

Abertay University 

supervised by 

Dr. Robin Sloan 

Mr. Martin Lynagh 

 

August 2022 

 

 

  



   
 

2 | P a g e  
 
 

 

 

 

 

Declaration 
 

Candidate’s declarations: 

I, Animesh Sharma, hereby certify that this thesis submitted in partial fulfilment of the 

requirements for the award of Masters by Research (MbR), Abertay University, is my 

own work unless otherwise referenced or acknowledged. This work has not been 

submitted for any other qualification at any other academic institution. 

 

Signed …Animesh Sharma……………………………………………………. 

Date……08/08/2022……………………………………………………………. 

 

Supervisor’s declaration: 

We, Robin Sloan, and Martin Lynagh hereby certify that the candidate has fulfilled 

the conditions of the Resolution and Regulations appropriate for the degree of 

Masters by Research (MbR) in Abertay University and that the candidate is qualified 

to submit this thesis in application for that degree. 

 

Signed ……Robin Sloan…………………...……………...…………….……… 

Date………08/08/2022………………………………………………………….. 

 

Certificate of Approval 
 

I certify that this is a true and accurate version of the thesis approved by the 

examiners, and that all relevant ordinance regulations have been fulfilled. 

 

Supervisor………………………………………………………………….……. 

Date………………………………………………………………………………. 

 



   
 

3 | P a g e  
 
 

 

 

 

 

Table of Contents 
 

Declaration ............................................................................... 2 

Certificate of Approval ............................................................ 2 

Abstract .................................................................................... 6 

Acknowledgements ................................................................ 7 

List of Figures and Tables ...................................................... 9 

Figures ................................................................................................. 9 

Tables ................................................................................................ 10 

1. Introduction ....................................................................... 11 

1.1 - Research Hypothesis ................................................................. 14 

1.2 - Research Problem ..................................................................... 14 

1.3 - Research Questions .................................................................. 14 

1.4 - Objectives .................................................................................. 15 

2. Background ....................................................................... 16 

2.1 – History of Multiplayer Games and Genres ................................. 16 

2.2 – eSports Market and Titles ......................................................... 18 

3. Contextual Review ............................................................ 24 

3.1 – Technology and Challenges for Multiplayer Game Development

 ........................................................................................................... 24 

3.1.1 – Technology/Game Engine Review .................................................................................... 24 

3.1.2 - Challenges/Technical Assessment ..................................................................................... 28 

4. Methodology ...................................................................... 35 

4.1 - Deciding a Genre to Build the Game Upon ................................ 37 

4.1.1 - Choosing a game engine .................................................................................................... 37 

4.1.2 - Choosing a game type/genre ............................................................................................. 38 



   
 

4 | P a g e  
 
 

 

 

 

 

4.1.3 - Generic Multiplayer Pipeline Development ...................................................................... 38 

4.2 - Game Development case study ................................................. 40 

4.2.1 - Participants ........................................................................................................................ 41 

4.2.2 - Role of the Researcher ....................................................................................................... 42 

4.2.3 - Materials ............................................................................................................................ 42 

4.2.4 - Procedure and Data Collection .......................................................................................... 43 

4.2.5 - Timeline ............................................................................................................................. 44 

4.2.6 - Analysis .............................................................................................................................. 44 

4.3 - Testing and Evaluation............................................................... 44 

4.3.1 - Participants ........................................................................................................................ 44 

4.3.2 - Materials ............................................................................................................................ 45 

4.3.3 - Procedure ........................................................................................................................... 45 

4.3.4 - Analysis .............................................................................................................................. 45 

5. Results/Findings ............................................................... 47 

5.1 – Multiplayer Framework Development ........................................ 47 

5.2 - Production .................................................................................. 55 

5.3 - Team Questionnaires Analysis................................................... 58 

5.3.1 - Knowledge and Understanding of Multiplayer Games Design and Development ............ 58 

5.3.2 - Experience of Game Development .................................................................................... 64 

5.4 - Testers Questionnaire Analysis .................................................. 67 

6. Discussion ......................................................................... 73 

6.1 - Multiplayer Framework ............................................................... 74 

6.2 - Multiplayer Game Development ................................................. 75 

6.3 - Multiplayer Game Testing .......................................................... 77 

7. Conclusion and Future Work ........................................... 79 

8. Glossary ............................................................................. 81 

9. Appendices ........................................................................ 83 

Appendix A – Multiplayer Framework ................................................. 83 



   
 

5 | P a g e  
 
 

 

 

 

 

Appendix B – Ethics Approval ............................................................ 84 

Appendix C – Production Timeline ..................................................... 85 

Appendix D – Questionnaires ............................................................. 88 

Appendix D.1 Questionnaire before development ....................................................................... 88 

Appendix D.2 Questionnaire after development .......................................................................... 95 

Appendix D.3 Testers Questionnaire .......................................................................................... 104 

Appendix E – Multiplayer Game Artefact .......................................... 108 

10. References ..................................................................... 110 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

  



   
 

6 | P a g e  
 
 

 

 

 

 

Abstract 
 

The multiplayer games have constantly evolved over the years to incorporate 

numerous elements such as competitiveness, synchronised gameplay, ranking 

system, leader boards, etc, to propel the multiplayer games and eSports industry. 

Online multiplayer games are a popular form of entertainment, and their 

development can be a complex and challenging task.  

This study investigates the process of developing an online multiplayer game within 

the context of a novice development team, with the help of a generic multiplayer 

framework. The research aims to identify the key challenges and issues faced by 

novice developers when creating an online multiplayer game, and to explore the 

ways in which a generic multiplayer framework can support the development process 

and team involved in the development of the multiplayer game. The context here is 

the novice development team. With the increasing difficulty in the development of 

video games for novice developers with new mechanics, features and trends in 

game development, there is a need to understand the challenges faced by novice 

developers and their possible solutions during the development of a multiplayer 

game. Unreal Engine was chosen as the engine to develop the framework and the 

game in based on the papers and sources comparing the most popular game 

engines in the market. Rychkova et. al’s (2020) Orbital Battleship and Buckley’s 

(2021) Choosing a game engine suggested that Unreal Engine is more suitable for 

multiplayer games development. Cedric Neukirchen’s (2021) Unreal Engine 4 

network compendium was utilised for the purpose of understanding the architecture 

of the multiplayer API and the development of the multiplayer framework. The study 

employed a mixed-methods approach, including both qualitative and quantitative 

data collection methods. The framework was deployed and utilised by the 

development team to build a fully functional multiplayer game.  

The findings suggest that the use of a generic multiplayer framework can facilitate 

the development process for novice game developers, by providing a ready-made 

foundational structure for implementing common multiplayer game features and 

functions. However, the study also identified several key challenges faced by novice 

developers, including the technical issues encountered and the need for specialised 

technical skills and the importance of effective teamwork and communication. 

Overall, the results of this research highlight the potential value of using a generic 

multiplayer framework for supporting the development of an online multiplayer game 

by a novice team.  

 



   
 

7 | P a g e  
 
 

 

 

 

 

Acknowledgements 
 

First of all, I would like to thank my supervisors, Dr. Robin Sloan, and Mr. Martin 

Lynagh, for all the help and impeccable guidance they have provided me throughout 

the year. They have made my time for this program quite enjoyable. They have also 

recognized my interest in eSports and kept my mental intact with extra motivation 

throughout the program. I’ve been able to receive the Abertay Futures Scholarship 

with the help from them. My principal supervisor, Robin has provided extremely 

useful feedback and very helpful advice with subtle and minute details at each small 

step. I’ve learned so much about the strategies and planning in this research. He has 

guided me in writing the thesis and carrying out the research in an elegant way with 

detailed feedback and comments. 

My other supervisor, Martin has guided me throughout the MbR and previously in 

MProf with in-depth emphasis on general game development and multiplayer 

development along with genres of multiplayer game to develop. With his help, I’ve 

been able to learn and apply the elegant networking practices to develop a 

multiplayer framework in Unreal Engine. Martin was also responsible for assigning 

me a fantastic undergraduate game development team to work with. Both Martin and 

Robin have provided me with extremely useful sources and references to be utilised 

in the process of thesis writing and other relevant purposes. They have guided me in 

coping and mitigating with delays in this research project as well. Words are not 

enough to describe the support both my supervisors have given me. I would also like 

to thank the Graduate School Staff for providing me help and support throughout the 

year. 

I would like to thank all the participants and my team members with whom I worked 

to develop the turn-based multiplayer game called Land of Morphie and the testers 

who tested the game and provided useful feedback and response for the game. The 

team members maintained excellent team harmony and fun environment to work in, 

with occasional joking and motivational moments to brighten up the mood. 

I would like to thank Dr. Dayna Galloway and my colleague Alexander Tarvet 

(Sandy) who have deployed me as a lab assistant for the module DES205 which in-

turn has given me first-hand experience in teaching. With the help of Sandy, I’ve 

been able to engage in extensive engagement with second year undergraduate 

students for their Level Design and Scripting module in Unreal Engine. The students 

have been extremely fun to work with, for their insightful projects in the module. 

Lastly and most importantly, I would like to thank my family and close friends who 

have thoroughly supported me to pursue this program. I would not have been able to 



   
 

8 | P a g e  
 
 

 

 

 

 

do this course without my parents in the first place. They supported me to register for 

this course in a very tight situation in order to continue my studies in the UK. They 

have talked to me and guided me on a day-to-day basis to keep my motivation up 

top throughout my time here.  

 

 

 

 

 

 

 

  



   
 

9 | P a g e  
 
 

 

 

 

 

List of Figures and Tables 
 

Figures 
 

Figure 1. Impact of COVID-19 on the frequency of playing multiplayer games 

worldwide as of June 2020 (Simon-Kucher and Partners, 2020) ............................. 12 
Figure 2. Global Online Games Revenue (Statista, 2022b, table 1) ......................... 19 
Figure 3. eSports Market Revenue Worldwide in 2021 (PocketGamer.biz, 2021) ... 20 
Figure 4. Most Watched eSports Games in 2021 ..................................................... 22 
Figure 5. Methodology Flow Diagram....................................................................... 36 
Figure 6. Link between Research Questions and Procedure ................................... 37 
Figure 7. Server Session Life Cycle ......................................................................... 49 
Figure 8. First iteration of the framework main menu ............................................... 50 
Figure 9. Modified version of the framework main menu .......................................... 51 
Figure 10. Custom host menu screen ...................................................................... 51 
Figure 11. Server browser menu/Join menu screen ................................................. 52 
Figure 12. Find Friend Session function in Unreal Engine 4.26 source code ........... 52 
Figure 13. Implementation of Find Server Session of Friends (Steam) .................... 53 
Figure 14. Chat system visual representation .......................................................... 53 
Figure 15. Comparison of responses about how networked games are developed 

(before and after development) ................................................................................ 59 
Figure 16. Comparison of knowledge of multiplayer architecture (before and after 

development) ........................................................................................................... 60 
Figure 17. Comparison of understanding the concept of replication (before and after 

development) ........................................................................................................... 61 
Figure 18. Comparison of understanding the concept of RPCs (before and after 

development) ........................................................................................................... 62 
Figure 19. Comparison of familiarity with technical issues during development of 

multiplayer games (before and after development) .................................................. 63 
Figure 20. Comparison of the experience in working in Unreal Engine 4 (before and 

after development) ................................................................................................... 64 
Figure 21. Comparison of the experience in working on blueprints in UE4 (before and 

after development) ................................................................................................... 65 
Figure 22. Comparison of the understanding of source control (before and after 

development) ........................................................................................................... 66 

Figure 23. Response of overall structure of the multiplayer features ....................... 68 
Figure 24. Response of hosting and joining sessions in the game ........................... 69 



   
 

10 | P a g e  
 
 

 

 

 

 

Figure 25. Response of using friend’s sessions feature and steam subsystem 

support feature ......................................................................................................... 70 
Figure 26. Response of using in-game menu in the game ....................................... 70 
Figure 27. Response of player experience traversing through the menus ............... 71 
Figure 28. Response of player experience traversing through the menus ............... 72 
Figure 29. Typical class hierarchy to drive the game loop ........................................ 76 
Figure 30. Framework Outline Image ....................................................................... 83 
Figure 31. Online Game Artefact – Land of Morphie .............................................. 109 
 

Tables 
 

Table 1. Comparison between Game Engines ......................................................... 25 

Table 2. Timeline Table ............................................................................................ 88 

 

  



   
 

11 | P a g e  
 
 

 

 

 

 

 1. Introduction 
 

Online video games engagement is increasing (Clement, 2022). Individuals with or 

without real interest in outdoor games are devoting their time to playing video 

games. The increasing popularity of online games and their eSports business 

models have made the games even more engaging with more online players (Figure 

1), more professional players (Khromov et. al., 2018), and viewers (Gough, 2022) 

along with the rise in revenue generated (PwC, 2021). In these complex video 

games, the players themselves play either as individuals against their opponents in a 

1v1 match or as teams to compete in order to climb the rank ladder. Additionally, the 

players play for their pleasure in quick matches or unranked matches, making those 

games even more playable and enjoyable. The features of voice chat and text chat 

have allowed these games to be played with friends and family. Online games have 

become a ground of social interaction and fun for gaming enthusiasts. Most of the 

online games have these common aspects which highlight their uniqueness 

compared to other game genres. 

More recently, the COVID-19 pandemic has further impacted on the number of video 

games players due to availability of time devoted to only home stay. The industry 

has taken a new turn with the community engaging with online games in a new and 

different style. Interestingly, some professionals of sports such as Sergio Aguero, 

retired and former player of Manchester City FC (Lawless, 2020), Diogo Jota of 

Liverpool FC themselves were found engaging in live video games activities during 

this time (Jones, 2022). As a result of the COVID-19 pandemic, many people turned 

to video gaming as a form of entertainment during long periods of being locked down 

at home. During a global survey in June 2020, around 60 percent of respondents 

stated that they were playing more multiplayer games during the pandemic (Figure 

1), no doubt in part to replace the face-to-face interaction that was severely 

restricted, or even banned entirely, during parts of the crisis (Clement, 2021). 

 



   
 

12 | P a g e  
 
 

 

 

 

 

 

Figure 1. Impact of COVID-19 on the frequency of playing multiplayer games 
worldwide as of June 2020 (Simon-Kucher and Partners, 2020) 

Online remote tournaments have been organized consisting of teams of professional 

players and professional athletes rather than on-site tournaments to spread the 

publicity of these competitive games and even further promoting the engagement 

from players around the globe with large fan followings (Hawkins, 2020). According 

to IDC data (International Data Corporation), global videogame revenue was 

expected to surge by 20% to $179.7 billion in 2020, making the videogame industry 

a bigger revenue generator than the global movie and North American sports 

industries combined (Witkowski, 2020). The current global video game market 

revenue is $208.6 billion as of July 2022 (Statista, 2022a) and the current global 

eSports market revenue is $1.384 billion (Newzoo, 2022, graph). 

With the increasing popularity of online video games, the general interest in 

thoroughly studying and understanding video games with the help of research has 

also increased (von der Heiden et. al., 2019). Much of the attention to video game 

research has been negative while some research has also focused on the positive 

sides of video games along with technical research projects (American Psychological 

Association, 2010).  



   
 

13 | P a g e  
 
 

 

 

 

 

Some crucial areas of video game research are yet to be focused on despite the 

increasing focus on games as a subject of study in academic research. There is a 

need for more research to focus on production studies with a support for 

development of games as it is increasing in complexity in terms of the skills, 

knowledge. For example, the difficulties faced by developers freshly starting out on 

making games. All experienced developers in the industry were all beginners when 

they started to learn how to develop video games. Video games are really complex 

to develop, especially for a team starting out i.e., a novice team. Furthermore, 

multiplayer games are even more difficult to work on (Morgan, 2009). Every 

multiplayer game is required to have a common multiplayer pipeline which governs 

the traversing of players in lobbies and matches. Some bugs and issues in online 

games can be tremendously difficult to even reproduce, let alone fix them. That is 

because online games don’t run on a single instance but rather each connected 

player/client has its own instance of the game running with the governance from a 

remote server (Chen, 2015). To implement functionalities, programmers are required 

to write remote function calls which are basically called from another machine in 

each different scenario of gameplay. Aspects such as slow internet or lower system 

specifications can also cause anomalies in the gameplay. Even in published 

multiplayer games on the market, there remain bugs which are yet to be fixed by the 

developer or take longer than expected to be fixed. For example, in Valorant, Riot’s 

tactical FPS Shooter, there was a bug (now fixed) when an observer watching the 

agent/character ‘Chamber’ pop his ultimate ability, ‘Tour De Force’ which is basically 

a fast-shooting sniper rifle, the gun laterally rotates giving the observer a view of 

incorrect gun orientation (Riot Games, 2020). This brings us to the question of what 

these issues are exactly and how they can be fixed, especially when a novice team 

is working on a multiplayer game, since a novice team is more likely to run into more 

issues than a fully experienced team of developers. There is a need to understand 

these complex technical issues faced by a novice team and also developing a 

multiplayer pipeline to aid the team for better technical knowledge of the online 

games and the solutions to the problems encountered during development. This 

study proposes to explore how an online multiplayer game is developed by a novice 

team with the help of a generic multiplayer pipeline keeping the aspects such as 

resources, team-size, market, players response, technologies in mind. The intended 

application of this research is to inform future support for novice teams or developers 

entering game development from education into industry. 

 

  

  



   
 

14 | P a g e  
 
 

 

 

 

 

1.1 - Research Hypothesis 
 

The foundation and the development of a generic multiplayer framework will have 

positive impact on the development of a multiplayer game by a novice team. 

 

1.2 - Research Problem 
 

The project aims to investigate and understand the design and development of 

competitive online multiplayer games. The problem at hand lies in finding the 

problems encountered both technically and conceptually by small-sized novice team 

(with about 2-12 members) and their solutions during a development of a multiplayer 

game. The research then proposes to investigate, to what extent, a team with limited 

experience, knowledge, and time can develop a fully functional multiplayer game 

prototype when provided with targeted support and resources. 

 

 1.3 - Research Questions 
 

To address the research problem, test the research hypothesis and investigate the 

technicalities of multiplayer games including the challenges faced during 

development and the technologies available to support a team of novice developers, 

this research leads to the formation of the following research questions -  

RQ1: What challenges, knowledge gaps, and risks do novice development teams 

face when working on concepts for competitive multiplayer games? 

RQ2: What multiplayer development pipelines, workflows, and tools exist that can 

support novice teams, and how can a generic multiplayer pipeline be developed for 

use by teams working on a self-directed multiplayer game concept?  

RQ3: How will a generic multiplayer pipeline impact on the design process and 

knowledge development of a novice team, what are its limitations, and how will the 

end product be received by players? 

The research question 2 and research question 3 are directly linked to the research 

hypothesis testing the impact of a generic multiplayer framework on the development 

process. 

 



   
 

15 | P a g e  
 
 

 

 

 

 

 1.4 - Objectives 
 

To address the above formulated research questions, this research project 

established the following objectives. 

1. Study the background of multiplayer games and analyse the market for 

multiplayer and eSports games. 

2. Study the literature around multiplayer games, technical challenges, and novice 

developers along with game production studies and teaching development to 

novice developers. 

3. Develop a generic multiplayer framework for a novice team which they can use 

order to develop their own multiplayer game prototype. 

4. Work with a novice team to study the live development of a multiplayer game 

prototype considering factors such as team knowledge, skills, technical 

challenges, and issues faced. 

5. Evaluate the framework with the help of feedback provided by testers playing the 

multiplayer game. 

  



   
 

16 | P a g e  
 
 

 

 

 

 

2. Background 
 

The purpose of the following sections is to review the academic literature, industry, 

and market sources pertinent to multiplayer games development, inclusive of the 

history of multiplayer games, the market trends in the industry, along with the 

revenue generated by online and esports games. This chapter provides an 

underpinning rationale for the need for focus on multiplayer development in the 

context of games education and novice teams. 

 

2.1 – History of Multiplayer Games and Genres 
 

Multiplayer games have come a long way along with eSports through the 

development of technology in terms of both hardware and software (Semanova, 

2020). The evolution of multiplayer games is attributed to the new functionalities and 

features available in the networking systems (Chikhani, 2015). 

The origin of multiplayer games dates back to the early games, the first commercially 

released video game, Computer Space in 1971. Next year, the first commercially 

successful video game was released, Pong. Pong is popular even to this day 

(Pearce and Artemesia, 2009). The inspiration for multiplayer games were drawn 

from these games. Later, we witnessed the golden age in the late ’70s with the 

release of Space Invaders, Asteroids, and Pac-Man (CDW, 2021).  

In the year 1984, the game Islands of Kesmai was released which supported up to 

one hundred players via the CompuServe online service (Stephenson, 2008, p. 115). 

It is considered a predecessor of modern Massive Multiplayer Online RPGs (Swain, 

2013, p. 156). The very first version of a LAN game supporting up to 4 players came 

in 1993, with the name, Doom, one of the earliest first-person shooters (Sabadello, 

2006). The Doom series has been developed along with the advancement of 

graphics and gameplay with multiple successfully released titles (Sabadello, 2006). 

It is worth noting that these MMORPG and FPS titles laid the foundation of the world 

of multiplayer games, i.e., they were one of the first established digital multiplayer 

games responsible for the onset of the further development of multiplayer games. 

Furthermore, the release of an RTS title (Real Time Strategy), Warcraft: Orcs & 

Humans in 1994 set the facilities for future RTS games (Sabadello, 2006). Warcraft 

allowed only two players to play in a multiplayer battle by Lan/modem or local 

networks (CDW, 2021). Similarly, in the same era, The Lost Vikings laid the idea of 

cooperative multiplayer because it had the player having the ability to control 



   
 

17 | P a g e  
 
 

 

 

 

 

different characters, though only one at a time to solve puzzles for game progression 

(Weiss, 2014).  In 1997, Goldeneye 007 became one of the first split-screen 

multiplayer games allowing up to four players to play against each other (Karhulahti 

and Grabarczyk, 2021). 

In the ’90s, several other titles were released for up to 4 players simultaneously, 

such as Mario Kart, Counterstrike, Marvel against Capcom, Contra, Street Fighter II, 

etc  (Yuzyk and Seidner, 2022). 

The last two decades of the 20th century were the beginning of the multiplayer era of 

video games along with the foundation of the eSports industry. Although, in 1972, 

Stanford University organized the first video game competition for Spacewar (Yuzyk 

and Seidner, 2022). Later in 1980, Atari’s Space Invaders tournament was held 

which is known as one of the most popular first-recorded competitive gaming events  

(Yuzyk and Seidner, 2022). Since multiplayer games began to evolve later in the 

‘1990s and ‘2000s with more titles and genres such as FIFA, Half-Life, Mario Kart, 

etc, the eSports industry adjusted along with the newly coming online games with the 

networking framework, i.e., the framework or the API supporting networked games 

(Yuzyk and Seidner, 2022). 

With the help of the two multiplayer architectures, i.e., the multiplayer modules to 

support networking (Spurling, 2005) directly applied to single player games to 

develop them into online multiplayer games, there has been several genres divided 

further into several types of multiplayer games such as seamless multiplayer, 

winless multiplayer, goalless multiplayer, always online, asynchronous multiplayer, 

and asymmetrical gameplay multiplayer games (Forehand et al., 2014). 

Seamless multiplayer is a type of co-operative multiplayer where players can join 

each other in their respective worlds such as Genshin Impact, Watch Dogs, etc 

(Forehand et al., 2014). Winless multiplayer does not have any winner, the players 

fight together to survive and the game ends when all players are dead (Chahat, 

2020). Examples of such games or modes are Call of Duty: Zombies Mode, Halo 3: 

ODST – Firefight Mode, etc (Chahat, 2020). Goalless multiplayer games are games 

with no goals or objectives, the players make their own goals such as Minecraft, 

Animal Crossing, etc (Jesper, 2007).  

Some games or game modes such as FIFA Ultimate Team or Genshin Impact 

cannot be played without an internet connection also fall under the category of 

always online games, this feature benefits social interactions between the players 

(Mirowski and Harper, 2019). This has also led to a new idea of a game genre 

named asynchronous multiplayer where players do not have to play at the same 

moment to play against each other, turn-based multiplayer games fall under this 

category (Kelly, 2011).  



   
 

18 | P a g e  
 
 

 

 

 

 

Finally, the game genre of asymmetrical gameplay multiplayer game has attracted a 

lot of audiences from all over the world. This type of game is a multiplayer game in 

which several players can play the game together in diverse ways like different 

maps, goals/objectives, abilities, etc (Bycer, 2019). Games such as Dota, 

Overwatch, Valorant, League of Legends fall under this category (Bycer, 2019). This 

category is currently shaping the eSports world and drawing audience in terms of 

both players and viewers. 

Currently, multiplayer games and video games in general with their current potential 

and rising interest, the streaming services such as Twitch, YouTube, etc. will 

continue to facilitate the development of emergent multiplayer games and other 

video games (Wodarczyk and von Mammen, 2020). These streaming platform 

services have led to increase in engagement and popularity of the multiplayer games 

along with the rise of eSports (Wodarczyk and von Mammen, 2020). 

In summary, multiplayer games have evolved in terms of the features, genres, and 

graphics with the smallest and simplest forms of video games to highly complex and 

competitive video games along with different categories and their wide application in 

the eSports industry. Additionally, the multiplayer games continue to grow in 

popularity and engagement with the help of streaming platforms such as Twitch, 

YouTube and through eSports events. 

 

 2.2 – eSports Market and Titles 
 

The aim of this section is to review the international market for competitive online 

games, and the roles of the top eSports countries in the market. The top eSports 

countries in the market are the countries with the most engagement in eSports in 

terms of viewership, revenue, and professional players, etc. They have the highest 

consumer activity around eSports. 

The market of the eSports games (games with an eSports model or eSports ready 

games) and online games industry in top eSports countries is widespread in terms of 

various game genres, which means the eSports market is highly segmented 

between the various game genres (Research and Market, 2021). Various consoles 

and devices have generated distinct revenues in the recent years. The eSports 

market by platforms is divided into consoles, PC, mobile, and others (Research and 

Market, 2021). With the ongoing digitalization and the overtaking of the games 

industry compared to the other media industries such as the music and the film 

industry in terms of revenue (Rama, Fernandez, and Camacho, 2020), eSports has 



   
 

19 | P a g e  
 
 

 

 

 

 

attracted more even more professional players and spectators from the regions 

around the world (Geyser, 2022). 

According to Statista (2022b), China has generated the most revenue among all 

countries in 2021 with a total of $ 5.87 billion for online games alone (Statista, 

2022b, table 1). At second place, the US stands with $ 4.84 billion and Japan, South 

Korea and UK follow with a total generated revenue of $ 3.7, 1.34, 1.33 billion 

respectively . The total global revenue generated by online games alone in 2021 is $ 

23.71 billion (Statista, 2022b, bar chart 1). 

 

Figure 2. Global Online Games Revenue (Statista, 2022b, table 1) 

It is important to note that, the population, GDP and popularity of online games play 

a role in generating revenues in the countries around the world. For example, as 

mentioned above, China, USA, Japan, etc are among the top countries in generating 

revenues for video games and online games. Although, there is an exception as well, 

this is because of the value of currencies in different countries, GDP, their respective 

market, lack of sponsorships by brands and recognition of eSports as a sporting 

discipline by their respective government (Esports Insider, 2022). For example, India 

has only generated 0.79 billion dollars of revenue in online games in 2021 despite 

having 1.366 billion population (Statista, 2022b, table 1), as the market in India is 

largely occupied by mobile games (Basuroy, 2022). The same platform, mobile 



   
 

20 | P a g e  
 
 

 

 

 

 

phone has led to increase in revenue and users in China (Thomala, 2022). This is 

because the revenues generated is dependent on the GDP of a country, gaming 

market, ARPU or the average revenue per user (Gupta, 2022). Recently, popular 

games’ genres like battle royale have also attracted more users (Clement, 2022).  

On the other hand, the eSports market revenue generated worldwide has top 3 

regions (Figure 3), China with $ 360.1 million, United States with $ 243 million USD 

and the entire of Western Europe with $ 205.8. This means that eSports has grown 

the most in these 3 regions with widespread engagement in the eSports industry 

(PocketGamer.biz, 2021). 

 

Figure 3. eSports Market Revenue Worldwide in 2021 (PocketGamer.biz, 2021) 

The total number of registered players in online games in 2021 are reported to be 

1.1 billion players while the user penetration rate is 14.6 percent (Clement, 2022). 

Mentioning user penetration rate is more important because players registered per 

targeted audience is the key to understanding the revenue generated as well as the 

number of players registered. Although 1.1 billion players doesn’t mean 1.1 billion 

people, it actually means 1.1 billion accounts created. Unsurprisingly, China has also 

registered most players of online games in 2021 with 382.8 million in number with 



   
 

21 | P a g e  
 
 

 

 

 

 

user penetration rate of 26.4 percent. South Korea, Japan, US, and Australia follow 

China with user penetration rate of 23.7, 23.0, 22.6 and 21.2 percent, respectively 

(Clement, 2022).  Additionally, the projected users and revenue in all countries is 

projected to increase till 2025 and further on (Research and Markets, 2021). 

Although, the projected revenue growth is projected to decrease after 2020 (Statista, 

2022b, graph 1). Because of the global pandemic of COVID-19, the year 2020 has 

registered a large number of online players (Statista, 2022b, graph 3) with vast 

amount of revenue all over the world (Statista, 2022b, graph 2). 

“Thanks to high smartphone penetration across the globe, gaming is increasingly 

happening on the go. Mobile games of all kinds are becoming more and more popular 

and attract players with additional premium contents or functionalities. Thus, traditional 

online games slowly lose attractiveness to its usual audience. Only recent phenomena 

like the Battle Royale hits Fortnite and PUBG are still driving the market’s growth and 

shape online gaming in general.” (Clement, 2022) 

Coming to the popular online games in the world, there are several titles with distinct 

genres. Some of these genres include shooters, fighting, sports, MOBA, battle 

royale, etc (Research and Markets, 2021). Reports also suggest that multiplayer 

online battle arena (MOBA) was the biggest segment of eSports market with a total 

of 40.9 % of the total segment in 2020 (Research and Markets, 2021). Topmost 

popular games in terms of awarding prize money include Dota 2, Counterstrike: 

Global Offensive, Fortnite, League of Legends, Arena of Valor (Esports Earnings, 

2022). 

In-terms of most watched eSports titles, the top games in 2021 (Figure 4) were 

League of Legends, Counterstrike : Global Offensive, Mobile Legends : Bang Bang, 

Dota 2, PUBG Mobile (Markov, 2022). 



   
 

22 | P a g e  
 
 

 

 

 

 

 

Figure 4. Most Watched eSports Games in 2021 

Lastly, the top 10 most played (total hours played) eSports games are (Syakah, 

2021) – 

1. Counterstrike: Global Offensive 

2. League of Legends 

3. Dota 2 

4. Fortnite 

5. Overwatch 

6. Arena of Valor 

7. Apex Legends 

8. FIFA 

9. Player Unknown’s Battlegrounds (PUBG) 

10. Valorant 

 



   
 

23 | P a g e  
 
 

 

 

 

 

Summarising the data and analysis above, we’ve seen the market trends, top 

revenue generating regions and countries by eSports and online games. We’ve seen 

the top eSports multiplayer games in terms of watch hours and playtime. We’ve 

understood the genres of games that are the most popular in the eSports industry 

which include shooters, MOBA, sports, battle royale, fighting, etc. This provides us 

useful information for the basis of the genre of the game to be chosen for this 

research and that means games which have team vs team or player vs player 

feature with goals/objectives, i.e., asymmetrical gameplay online games (section 2.1) 

are the most popular genres of multiplayer games in the market. These are dissimilar 

to co-operative multiplayer games or goalless multiplayer games. 

 

  



   
 

24 | P a g e  
 
 

 

 

 

 

3. Contextual Review 
 

This chapter builds up the foundation of the research and reviews the literature 

accumulated to help in answering the research questions or possibly understanding 

the limitations in the literature failing to answer all the research questions. It assists 

in gathering the non-proprietary materials, assets, and tools available in order to 

support a novice team in developing a multiplayer game.  

Firstly, section 3.1.1 helps in reviewing the technology required and involved in the 

development of online multiplayer games which also include the game engines and 

the middleware solutions available for integration in these game engines. This 

addresses research question 2. Secondly, section 3.1.2 helps in understanding the 

common technical problems of multiplayer development and their possible solutions 

along with the issues faced by novice developers or programmers which further 

addresses research question 1. 

 

 3.1 – Technology and Challenges for Multiplayer Game 

Development 
 

 3.1.1 – Technology/Game Engine Review 
 

The first stage of technology review for online multiplayer game development 

concerned an evaluation of available game engines, their features, and capabilities. 

Technology selection in terms of reviewing an engine best available to develop an 

online multiplayer game was extensive research in itself. Additionally, there was a 

need to search for the tools and plugins available to readily develop multiplayer 

games. Not only that, but the game engine available should also be capable of 

creating a generic framework for the development of multiplayer games. Initially, the 

best way to start selecting from options was to look out for the best and most popular 

engines in the market with a wide variety of functionalities and modularity. This 

means that the strategy to review the engines for the development of multiplayer 

games was to look out for aspects such as – 

1. Readily available multiplayer modules/functionalities 

2. Free to use 

3. Wide documentation, support, and community 



   
 

25 | P a g e  
 
 

 

 

 

 

4. Wide range of application in multiplayer games 

Currently, there are some game engines that allow the development of games to be 

applied for wide variety of browsers and platforms from single development instance 

in some cases (Marín-Vega et al., 2016). The most common options found were 

Unity, Unreal Engine, Godot, Game Maker Studio, etc (Vohera et al., 2021). Given 

the wide functionalities of Unreal Engine and Unity and their tremendous application 

in the industry (Tyler, 2017), it was best to first investigate the features of the 

remaining engines. The table below differentiates all the popular engines in terms of 

different functionalities provided by them. 

 

ENGINE PRICE PLATFORMS TARGETS 3D LANGUAGES 

 

MULTIPLAYER 

FEATURES 

Unity Free Windows, 

MacOS, Linux 

Windows, 

Mobile, 

MacOS, 

Linux, 

Consoles 

Yes C#, Bolt Yes (obsolete) 

Requires third 

party plugins 

Unreal 

Engine 

Free Windows, 

MacOS, Linux 

 

Windows, 

Mobile, 

MacOS, 

Linux, 

Consoles 

Yes C++, BPs Yes 

Godot Free Windows, 

MacOS, Linux 

 

Windows, 

MacOS, 

Mobile 

Yes GDScript, 

C++, C# 

Yes 

Game Maker 

Studio 

Paid 

 

Windows, 

MacOS 

Windows, 

MacOS, 

Mobile, 

Consoles 

Yes Game Maker 

scripting 

language 

Yes 

RPG Maker Free Windows Windows, 

Consoles 

No Drag and Drop 

- DnD 

Yes (requires extra 

plugin) 

 

Table 1. Comparison between Game Engines 

Starting out with RPG Maker, as the name implies RPG Maker was primarily 

designed to develop RPG Games quickly with less effort (Azmi, 2016). RPG Maker’s 

functionality is only limited to 2D Games (Azmi, 2016), which limits the overall 

potential of this research. Developers can develop multiplayer games with an extra 



   
 

26 | P a g e  
 
 

 

 

 

 

plugin, Alpha Netz, but with limited functionality, genre. An MMO (massive 

multiplayer online) game cannot be developed with this plugin (Kagedesu, 2018), it 

would not have been best to choose this engine. Likewise, Game Maker Studio has 

similar features as the RPG Maker. It is one of the most recommended engines for 

beginners, mainly for the development of 2D games but is not limited to it (Eugene 

Public Library, 2021). It is possible to export games to multiple platforms with a 

purchased license and there are additional features such as drag and drop visual 

scripting and custom Game Maker Language (GML) for advanced programming 

(Eugene Public Library, 2021). The engine is proprietary for exporting 

(building/packaging) in different platforms and only provides GX.games exporting for 

the free version (GameMaker, 2021). GX.games is a platform for games to be 

directly played in Opera GX (Opera Team, 2021). The exporting of games to merely 

GX.games in the free version alone limits the overall freely available functionalities 

for this research. 

Moving forward with the options, Godot is an engine that provides support for 

developing 2D/3D games with multiplayer features with the help of its High-Level 

Multiplayer API (Liniestsky et al., 2019). The Godot Engine documentation points out 

in the direction of some disadvantages with Godot networking API and its bullet 

objects system. For example, implementing bullets mechanics for a gun in any 

shooter game requires one of the methods having each bullet calculate its own path 

and handle its own collision for a lot of flexibility, this comes at the cost of 

performance (Liniestsky et al., 2019). There are some additional performance hits 

along with additional synchronisation of positions needed with the connected clients 

on the server (Liniestsky et al., 2019). Though, the documentation does provide a 

very detailed explanation and steps to work in the multiplayer API of Godot. This 

means, Godot is one of the engines in the list that can aid in the development of a 

generic multiplayer pipeline to support a novice student team. Unfortunately, Godot 

is a fresh new engine with low community support and deleterious for continuous 

development (Kritskiy et al., 2022). The nature of its limited number of published 

games, limited community, and assets in comparison to Unity and Unreal Engine 

allowed us to cross it off the list. 

Considering modern game engines, Unity and Unreal Engine are the most advanced 

game engines and well supported, providing good capabilities for the purpose of 

both 2D/3D Game Development (Kritskiy et al., 2022). The most common and 

popular middleware solutions to tackle development of multiplayer games are 

compatible with Unity and Unreal Engine along with their own inbuilt integrated 

networking module (Eden, 2020). Both Unity and Unreal Engine have a large 

community with extensive documentation, tutorials, support, and free assets 

(Eugene Public Library, 2021), which is why these are the two most popular game 



   
 

27 | P a g e  
 
 

 

 

 

 

engines in the market with wide utilisation in the games industry. This is an important 

factor in choosing game engines for novice teams. Both engines support multiplayer, 

although Unreal Engine is the only with integrated support. Unity’s integrated 

multiplayer is still in-development although there are many 3rd-party frameworks 

such as photon which can aid in the development of multiplayer games in Unity 

(Buckley, 2021). Unity’s own framework for multiplayer games is being deplored in 

the current version (Kritskiy et al., 2022). 

Considering the factors of detailed documentation, technical support, large 

community, free to use, and support for multiplayer development, the options for 

developing an online multiplayer game narrowed down to the two most popular 

engines in the market, i.e., Unity and Unreal Engine. With Unity, some companies 

have recently started to develop and publish multiplayer games such as Fall guys, 

Genshin Impact (Murray, 2021) but they are not developed with features of the 

current multiplayer module in the engine itself as it is currently obsolete and still in 

beta for the upcoming update (Buckley, 2021). A game as basic as Pong can be 

developed with Unity’s multiplayer but to develop online games with more features, 

developers still require extra support from other frameworks (Stagner, 2013). As 

mentioned previously, the middleware solutions for multiplayer games are 

compatible with both Unity and Unreal Engine such as third-party frameworks such 

as photon (Eden, 2020). Photon provides support for both Unity and Unreal Engine 

(Photon, 2021a). Although, the free solution provided by photon has some limits to it, 

such as, only 20 connected users at the same time, 16 peers per room or per lobby, 

60 GB traffic per month (Photon, 2021b). The proprietary paid versions of this 

framework increase these limits according to the pricings. This means that to 

develop a multiplayer game in Unity, it is necessary to have solutions or framework 

like Photon which is also provides support in Unreal Engine but is limited to features 

according to the pricing, be it free or paid. Additionally, it would require extra 

knowledge and understanding of the SDK (Software Development Kit) to integrate 

with the game engine. Since, Unreal Engine has inbuilt and integrated multiplayer 

module to support developers to create multiplayer games. It provides a robust 

multiplayer framework (Arora, 2021). This means, to build an online game in Unreal, 

the developers are just required to have the knowledge of working in Unreal Engine 

along with basic knowledge of the client-server architecture widely used for 

multiplayer games. It is an ideal starting point for multiplayer games given its 

reputation with widely published and popular multiplayer games that are also 

operating successfully in the esports industry (Buckley, 2021).  

Summarising the review above, many factors had to be considered when choosing 

the game engine for development. Which engine is the best, is rather very subjective 

and depends on the requirement of the project (Freiknecht, 2016). The requirement 



   
 

28 | P a g e  
 
 

 

 

 

 

of this research project was to have a game engine with the most readily available 

networking support with wide documentation, tutorials, and community to create a 

multiplayer framework for the development of a multiplayer game by a novice team. 

The options in this review section narrowed down to Unity and Unreal Engine. Unreal 

proved to be more promising for this project due to the requirement of multiplayer 

support (Rychkova, 2020). More sources have chosen Unreal as the winner for 

multiplayer games (Burleson, 2021). This review helps in choosing the game engine 

and the game type/genre for this research project as discussed in the methodology 

(section 4.1.1).  

 

3.1.2 - Challenges/Technical Assessment 
 

The challenges or technical inspection involves identification of the common 

technical problems faced by teams while developing multiplayer games and their 

possible solutions. It is important to note that some common problems found in the 

lower engine level are already fixed in some of the middleware or frameworks, for 

example, the inbuilt networking module of Unreal Engine (Levchenko et. al, 2020). 

This section reviews the technical issues related to multiplayer game development. 

This aspect is crucial and directly links to the research question 1. Additionally, the 

section is framed to help in understanding the knowledge gaps faced by novice 

teams developing games, software or even applications as first-hand experience. 

This helps in gaining useful insight for investigation required to answer research 

question 1 as well. 

 

3.1.2.1 - Common Technical Multiplayer Problems and Solutions 
 

Every online game belongs to a specific genre and the development of each genre 

brings different types of challenges that developers face during development with it. 

Every research paper has reported different mechanical problems with the 

development of multiplayer games and each problem is case specific.  

Madhav and Glazer (2015) in their book, Multiplayer Game Programming: 

Architecting Networked Games identify these common challenges which occur 

during development are –  

1. Correctly formatting game data for efficient internet data relaying. 

2. Synchronizing states in order to correctly share the same world across all 

players. 



   
 

29 | P a g e  
 
 

 

 

 

 

3. Mitigating issues with latency and jitter problems causing delays or loss of 

data or simply lag compensation (Lee and Chang, 2018). 

4. Scaling the game code base without any loss in performance. 

5. Cheat protection. 

Wang et al. (2008) identified the common problems as – 

1. Player’s positions being incoherently represented. 

2. Player object movement being jagged. 

3. Player objects and environment missing collision detection. 

4. Player objects wrongly missing or simply missing collision detection. 

The possible solutions to each problems listed above are tackled case by case and 

researchers have reported the solutions or workarounds to these problems as 

following – 

1. Correctly transmitting data for efficient data transmission involves serialisation 

of data for faster, effective, and lossless transmission that saves the state of 

the objects (Ignatchenko, 2016). 

2. The major problem of a multiplayer game is to maintain the same instance of 

the game across all the clients (Spurling, 2005). To tackle this, methods such 

as State Synchronization and Input Synchronization are utilised, usually in a 

hybrid form like using input synchronization for aspects that are not governed 

by time and state synchronization for random features such as traffic position 

on the road (Spurling, 2005). One example can be, a player in an MMORPG 

doesn’t need to know the location of the monsters 500 meters away which 

another player is fighting. 

3. Network Latency or lag refers to the time taken for a data packet sent from its 

source to its destination. It is impossible to eliminate the lag completely, but a 

range of latency is defined as accepted values for different games which 

means that acceptable latency depends on the genre or type of the game 

(Spurling, 2005). A good solution to compensate lag would be the use of 

interpolation to prevent jumps between positions. 

4. Usually, when the game projects increase in size with a greater number of 

scripts or classes, it is best to follow the best programming practices such as 

design patterns, object-oriented design, and SOLIDS to minimise loss in 

performance and avoid code breaks (Gamma et. al., 1994).  

5. Mostly, cheat protection is ensured with the help of server authorising almost 

all of the gameplay. This ensures that a client never communicates with the 



   
 

30 | P a g e  
 
 

 

 

 

 

other clients, or it doesn’t govern its own gameplay (Levchenko et. al, 2020). 

Some examples are Vanguard, VAC (Valve Anti Cheat), Global eye Anti-

Cheat.  

 

The player character or object problems discussed by Wang et al. (2008) have 

solutions which can be described as (Wang et al., 2008)  - 

1. Misrepresentation of players objects can mostly happen because of the 

collision either with the other players or the environment. The correct solution 

to deal with the collision has been described in point 3. 

2. Player object movement is programmed in a smooth way through interpolation 

which means if a player object client is supposed to move, the movement 

occurs by the server with interpolation from the previous position in order to 

eliminate the jerky movement. 

3. Handling collisions in any way is usually carried out by the server detecting 

the collisions and governing the position or the movement of the players 

based on the collision. Each player object client is then moved based on the 

force calculated from the collision. 

There are some additional issues that have never been completely eliminated from 

multiplayer games such as peeker’s advantage (advantage for players seeing their 

opponent first while peeking if their ping is higher than the opponent’s) which is 

attributed to the nature of the internet (Donlon and Ziegler, 2020). Online games are 

affected by people with high latency client as well because their player data reaches 

the server slower than the one with low latency client. The high ping/latency players 

never get an overall gameplay advantage but, in some instances, they see low ping 

players earlier than the low ping players see them (Donlon and Ziegler, 2020). In a 

fully gameplay driven game like EA Sports FIFA or NBA 2K, the high ping players 

cause lag in the overall gameplay because the positions of all players on the level 

field have to be correctly replicated. Therefore, most of the eSports tournaments are 

held on LAN where each computer/console system has the same specifications and 

is on the same network as others, so that the pings are all the same and very low 

(Jansz and Marten, 2016). Furthermore, there are issues of Client FPS drops 

because of overload on the Server. Clients also get forcefully disconnected from a 

server session when too many reliable RPCs (Remote Procedural Calls) are called 

in the codebase (Unreal Engine, 2021a). 

Research papers have also addressed the multiplayer model presented to this date 

which are – Peer-to-peer or P2P model and Client-Server model (Spurling, 2005). 

The most popular and most utilised model in today’s world of multiplayer gaming is 



   
 

31 | P a g e  
 
 

 

 

 

 

the Client Server model because it is easier to implement than the P2P model. The 

game publisher gets more administrative control meaning it can perform 

authentication, copy protection, billing, and accounting along with easy update or 

patch updates of the client copy (Spurling, 2005). Unreal Engine also uses the 

Client-Server model (Levchenko et. al, 2020). Similarly, PUN (Photon Unity 

Networking) also supports this model (Jetsonen, 2016). 

In summary, development of different types of multiplayer games comes up with 

different types of technical problems and different solutions. Throughout the section, 

we have seen common technical problems and issues encountered with online 

games and their possible solutions. 

 

3.1.2.2 – Knowledge Gaps and Issues Faced by Novice Teams and 

Solutions 
 

It is important to note that we are investigating the knowledge gaps faced by novice 

teams when development multiplayer games which means most of the technical 

issues teams face and the knowledge they lack is specifically related to 

multiplayer/network programming. It is crucial to first understand the challenges 

novice programmers face in general when first programming in a proper project and 

their workarounds. That is because novice programmers may tend to make a 

relatively worse technical design choices or initially adopt worse programming 

practices (Agrahari and Chimalakonda, 2020).  Furthermore, the common 

professional programming practices are also applied in game programming as well. 

Thus, this section primarily reviews the knowledge gaps and issues programmers 

face when encountering a new environment or problems and finding the solutions to 

those problems.  

Some of the common issues encountered by novice programmers are – 

a) Proposing an optimal and formal solution to a programming problem without 

bugs or issues (Sim and Lau, 2018). 

b) Implementing a solution using a new tool, i.e., a new programming 

environment such as Unity, Visual Studio or Unreal Engine (Sim and Lau, 

2018). 

c) Bad choices or bad programming practices adopted by novice programmers 

(Agrahari and Chimalakonda, 2020). 

d) Implementing solutions to problems efficiently, i.e., faster code (Agrahari and 

Chimalakonda, 2020). 



   
 

32 | P a g e  
 
 

 

 

 

 

The workaround or the optimal solutions for these problems mentioned above 

involve planning, designing the solution, implementing the efficient solution along 

with testing, documentation, and deployment (Sim and Lau, 2018). This is called an 

optimal software development cycle, that also includes one of the earliest methods 

called waterfall method which was the base model for other development like 

prototyping, agile development, and rapid software or application development (Sim 

and Lau, 2018). In this case, the similar methodology can be applied to game 

development or game programming in addition to implementation of new 

programming environments to simplify the problems and enhance students 

understanding on the code via visualisation (Sim and Lau, 2018). This type of 

visualisation environment is built in Unreal Engine called blueprints to aid developers 

implement mechanics and features faster (Boyd and Barbosa, 2017). A Siggraph 

paper has defined this visualisation language environment as KPL or Kids 

Programming Language (Schwartz et al., 2006). Unreal Engine does add an 

abstraction networking layer to the scripting languages for the developers in support 

of multiplayer Games (McEachen, 2004). 

Novice game developers can very easily miss game-breaking issues such as clunky 

controls and puzzling game play mechanics (Darby, 2011). This is because the 

developers are already used to these issues and know how to mitigate them. These 

game breaking issues can be solved through testing and feedback from external 

testers (Darby, 2011). 

Several sources and papers mention the most challenging part of game 

development, i.e., engineering (Blow, 2004). Writing code that should run quickly on 

target systems with clever optimisation is quite a challenging task and is mainly case 

dependent. Additionally, the technical challenges include getting the code to work to 

produce a desired functionality (Blow, 2004). Many novice programmers are able to 

learn the basics of programming, but they may struggle to apply these skills to solve 

non-routine problems and develop a level of fluency in programming. This can be a 

challenge for novice developers when working on complex projects, such as the 

development of online multiplayer games (Bachu and Bernard, 2012). This problem 

can be solved through collaboration which allows knowledge and skills sharing in a 

faster and efficient way.  

The most common problem faced by novice programmers learning programming 

languages is the need to gain practical experience in order to become more 

proficient at programming. This often involves a significant amount of practice and 

repetition in order to develop and hone their skills. As a result, many students find it 

difficult to gain the level of proficiency required to effectively apply their programming 

skills to real-world projects. This also involves memorising the syntax in the muscle 

memory to be used constantly throughout the project (Khaleel et al., 2017). 



   
 

33 | P a g e  
 
 

 

 

 

 

Therefore, frameworks/APIs such as the Unreal Engine Blueprints have been 

implemented for novice programmers to tackle such problems. This further brings 

the idea of implementation of multiplayer framework to support novice developers.  

Additional challenges faced by novice developers include the need to adapt to 

changes in the project plan and scope, as well as difficulties in maintaining a  

consistent work pace as the project grows in complexity. These challenges can be 

particularly difficult for novice developers, who may lack the experience and 

resources needed to effectively manage and overcome them (Westerdahl, 2019). In 

the area of communication, the challenges faced by novice developers may not be 

as clearly defined. However, some issues may arise when agile development 

methodologies are not fully implemented, which can lead to difficulties in effectively 

communicating with team members and managing the project as a whole (Al-azawi, 

Ayesh and Obaidy, 2014). The team lead plays an important role in overcoming the 

technical challenges while developing a multiplayer game or simply video games. 

This include prioritising the important mechanics, fixing game breaking bugs with 

effective communication. 

Specific to multiplayer development, Graham Morgan’s (2009) journal, Simulation 

and Gaming, describes a review about the challenges of online game development. 

Some challenges attribute to the diverse skill set required to develop multiplayer 

games such as networking, databases, graphics, clustered computing, etc (Morgan, 

2009). There is a need to balance the graphical and physical representation of the 

objects with optimisation to achieve maximum performance across all client 

machines. Furthermore, the developers are required to carry out the client-side 

prediction to reduce delay in the actions of the players such as movement, shooting, 

jumping, etc (Fiedler, 2018). The difficulty is in properly synchronising the state of the 

game between the client and server. This involves reconciling any discrepancies that 

may arise when the client and server disagree about the position and actions of 

player characters (Fiedler, 2018). The solution is that when the client and the server 

disagree, the client must accept the update for the state from the server. When this 

happens, the client discards the previous state stored and replays the state starting 

from the corrected state from the server to the predicted client state (Fiedler, 2018). 

The client essentially ‘rewinds and replays’ the last few frames of local player 

character movement, while keeping the rest of the game world fixed. Novice 

developers are more likely to run into these issues than experienced ones while 

developing multiplayer games.  

Online multiplayer games have gained widespread popularity in recent years, and 

their development can be a complex and challenging task. Novice game developers, 

in particular, may face a variety of challenges when attempting to create an online 



   
 

34 | P a g e  
 
 

 

 

 

 

multiplayer game. Gathering from the literature and text found above, the common 

challenges faced by novice developers can be described as -  

1. A common challenge faced by novice developers is the need for specialized 

technical skills. Multiplayer game development requires a deep understanding 

of programming languages and frameworks, as well as networking and server 

architecture. Novice developers may struggle to acquire these skills or to 

apply them effectively in a real-world development context. 

2. Another challenge faced by novice developers is the need for effective 

teamwork and communication. Multiplayer game development often involves 

a large and diverse team of developers, designers, and artists, who must work 

together to create a cohesive and enjoyable experience for players. Novice 

developers may struggle to effectively communicate their ideas or to 

coordinate their efforts with those of other team members. 

3. A third challenge faced by novice developers is the need to balance the 

demands of the development process with the limitations of their resources 

and expertise. Multiplayer game development can be a time-consuming and 

resource-intensive task, and novice developers may struggle to allocate their 

resources effectively or to meet the demands of the project within the 

constraints of their available time and budget. 

Overall, the challenges faced by novice developers while developing online 

multiplayer games can be significant, and they may require significant effort and 

resources to overcome. However, by addressing these challenges through effective 

learning and collaboration, novice developers can successfully create good quality 

online multiplayer games. 

In summary, novice programmers and developers face several knowledge gaps 

which might lead to inelegant code base and inefficient game build. This is because 

a novice developer might try to implement features without extra emphasis on 

professional and elegant practices for the project. The general procedure for novice 

developers can sometimes be carrying out implementation via brute force method to 

complete the delegated tasks in order to progress towards finishing the project. 

 

  



   
 

35 | P a g e  
 
 

 

 

 

 

4. Methodology 
 

The aim of this project was to develop an original generic multiplayer pipeline for a 

novice multi-disciplinary team so that the team could utilise it to develop a game 

artefact with multiplayer features. This was to retrieve crucial insights of the issues in 

the development of multiplayer games along with the mitigated knowledge gaps of 

the members of the team.  

Following the previous review of the current state of the art and the literature on 

multiplayer game development, the following research questions were posed: 

RQ1: What challenges, knowledge gaps, and risks do novice development teams 

face when working on concepts for competitive multiplayer games? 

RQ2: What multiplayer development pipelines, workflows, and tools exist that can 

support novice teams, and how can a generic multiplayer pipeline be developed for 

use by teams working on a self-directed multiplayer game concept?  

RQ3: How will a generic multiplayer pipeline impact on the design process and 

knowledge development of a novice team, what are its limitations, and how will the 

end product be received by players? 

To address these research questions, a research methodology composed of three 

steps was developed (as shown in Figure 5): 

(i) Development of generic multiplayer pipeline (reported in 4.1) 

(ii) Game development case study (reported in 4.2) 

(iii) Play testing of the original multiplayer game artefact (reported in 4.3) 

 



   
 

36 | P a g e  
 
 

 

 

 

 

 

Figure 5. Methodology Flow Diagram 

Figure 6 illustrates the link between the research questions and the procedure along 

with the literature that has been reviewed. Initially, a review of the technical details of 

the multiplayer game development was carried out with emphasis on the technical 

challenges of the development which provided useful insights for research question 

1. Then, a middleware review was carried out to find out possible tools, pipelines in 

game engines available to develop a generic multiplayer framework for the team to 

use it to develop a multiplayer game which helped in answering research question 2. 

The response of the questionnaires from the team are each linked with the 

multiplayer game development which provided data to help in answering research 

question 1. Finally, the framework used by the team and the response received by 

the testers helped in answering research question 3. 



   
 

37 | P a g e  
 
 

 

 

 

 

 
Figure 6. Link between Research Questions and Procedure 

To answer the research questions stated above, the plan to fulfil the objective has 

been described in the following sections.  

 

 4.1 - Deciding a Genre to Build the Game Upon  
 

The first phase of the research involved the development of a generic multiplayer 

game development pipeline that could be used by a novice development team. This 

research was informed by the literature on existing tools, technologies, and 

developer knowledge as discussed in section 2.2, and sought to address the second 

aspect of the research question 2 identified above. 

 

4.1.1 - Choosing a game engine 

 

The extensive review earlier covered a number of game engines with their 

advantages and disadvantages along with the multiplayer support in the engines. 

Most of the sources suggested that Unreal Engine would be an ideal choice for 

multiplayer games with extensive integrated multiplayer support without any need to 



   
 

38 | P a g e  
 
 

 

 

 

 

have external tool or plugin to use. Some extra sources such as Game Ace Creative 

Studio compared the two most popular game engines in the market, i.e., Unreal 

Engine and Unity and clearly concluded Unreal Engine as the better engine for 

multiplayer games owing to the fact that it offers robust networking tools that lets the 

developers achieve peak performance (Game Ace, 2021).  

The combination of blueprints and C++ scripting provides the developers with 

multiple departments to collaborate easily. The only drawback of having C++ 

compiler is that the compilation time is slower. Although, blueprints compile much 

faster than C++ scripts in Unreal Engine (Forsythe, 2021) and developers can use it 

with the provided integrated multiplayer support to use it for implementing multiplayer 

features. It is more optimal to blend C++ and blueprints for the projects to achieve 

implemented mechanics. Therefore, it was concluded that Unreal Engine would be 

the starting point for this research to first develop a generic multiplayer framework for 

the team to use it for further development of a multiplayer game.  

 

4.1.2 - Choosing a game type/genre 
 

The first step was to identify a game type to serve as the focus of the multiplayer 

development pipeline. Considering the limitations of the assets available and the 

need to account for the skillset of a novice team, it was deemed appropriate to 

ensure that the game type was limited in complexity. Choosing a complex 

multiplayer type could result in extra responsibilities for the team, and thus have an 

impact on the quality of the results.  

Therefore, a turn-based genre rather than a real-time multiplayer was selected so 

that this mitigated the risk of technical issues for the team. Turn-based multiplayer 

games are less challenging to develop than real-time multiplayer games (Apple 

Developer, 2016). With turn-based games, the team would not have to deal with any 

client-side prediction or lag issues that are typically found in real-time multiplayer 

games. 

 

4.1.3 - Generic Multiplayer Pipeline Development  
 

Development research was then carried out with a view to creating a multiplayer 

framework within Unreal Engine 4. The purpose of the generic multiplayer pipeline 

was to support a novice team in the creation of a turn-based multiplayer game where 

the team would retain creative freedom over design decisions.  



   
 

39 | P a g e  
 
 

 

 

 

 

This method included review of existing tools, pipelines, and frameworks that support 

a generic multiplayer architecture to develop any multiplayer game upon. Some of 

the popular tools and repositories found that satisfied this criteria were, Advanced 

Sessions Plugin utilised to develop Cardinal Menu System (Metahusk, 2016), 

Advanced Server Manager (Reverse Winter Studios, 2021), Puzzle Platform 

repository (Hunt, 2021). 

All of the plugins or frameworks found above were useful, although all had identified 

strengths and weaknesses. Cardinal Menu System provided by Metahusk was a 

versatile framework with a lot of useful features such as server browser (with steam 

and LAN support), internet and LAN hosting menu, steam friends list with avatars, 

customisable graphics settings, player control mapping with controller support and 

game settings. The only issue with this framework is that its repository is not 

thoroughly linked on its official website but only on GitHub. On top of that, the project 

is outdated and not concurrent with latest Unreal Engine versions such as 4.26 and 

4.27. 

Advanced Server Manager was also a versatile plugin with extensive features such 

as creating and finding match, player queueing, server browser, region search, 

adjustable settings, access to all servers and easy customization but it was a 

proprietary plugin published by Reverse Winter Studios costing around £ 90.  

Puzzle Platform repository was a free to use repository with basic minimal features 

such as menus, hosting and joining of sessions (LAN and steam), server browser, 

etc. On the other hand, it missed some important features such as the in-game menu 

to end and clean up server sessions (auto clean up), chat system, friend server 

sessions, etc. 

On review of existing documentation and solutions for multiplayer pipelines 

(including several assets on the Unreal Engine marketplace and online repositories) 

it was assessed that some were blueprints scripting based while some were 

proprietary and not free to use. Some frameworks mentioned had some limitations 

such as the engine version support and no chat system. While the pipeline provided 

by Reverse Winter Studios is the best among the mentioned pipelines with updated 

support in the latest engine versions, the others lack some features or are outdated 

with the latest engine versions. Puzzle Platform repository could be the best free to 

use plugin for this research, but it needs have its feature voids filled in order to be an 

optimal and fully functional multiplayer framework. Furthermore, the free to use 

framework such as the Advanced Sessions Plugin is mainly for blueprints scripting 

and is not very customizable, this is not an optimal solution to develop a multiplayer 

game on. An elegantly developed multiplayer game in Unreal Engine should be well 

balanced between C++ and blueprints with C++ objects (variables, functions) 



   
 

40 | P a g e  
 
 

 

 

 

 

exposed to blueprints so that the designers can make use of those functionalities. 

Additionally, it is not ideal to develop the entire project in blueprints while parallelly 

working with multiple departments since it is harder to maintain the version control 

with blueprints only.  

The first phase of the research therefore involved the development of a new pipeline, 

incorporating existing resources and knowledge with bespoke steps and producing 

documentation to assist a development team. The outcomes of this process are 

reported in chapter 4. 

Two extremely useful sources from Cedric Neukirchen (Neukirchen, 2021) and 

Unreal Engine documentation (Unreal Engine, 2021a) have provided an insight of a 

robust built multiplayer game architecture.   

Regardless of the type of genre chosen to build the game upon, the multiplayer 

game framework in Unreal Engine was supposed to be independent of the genre. 

Additionally, the framework did not depend on whether the game is a real time 

multiplayer or turn-based multiplayer. The documented resource provided by Cedric 

Neukirchen (Co-Founder of Salty Panda Studios) well described the complete 

working architecture of client-server model in Unreal Engine with detailed steps.   

The document further helped in creating lobby session functionality along with a 

basic placeholder user interface and basic features such as custom server creation, 

joining, etc. Additionally, a basic game architecture with high-level managerial 

classes such as Game Mode Base, Game Instance, etc., were written to synchronize 

the Game States following the Object-Oriented Design. 

  

 4.2 - Game Development case study  
 

The primary research method to address the research questions of the project was a 

game development case study, where a team of novice developers were tasked with 

producing a multiplayer game supported by the multiplayer game framework. 

This research was conducted in collaboration with undergraduate students at 

Abertay University of game development belonging to disciplines such as 

Programming, Art, Design, and Production, who were studying for their third-year 

module ‘Professional Project,’ which tasks students working with multidisciplinary 

teams to deliver game prototypes and associated materials according to set briefs. 

A well-documented, extensible, maintainable, and readable framework was laid out 

as foundation with the help of ‘Unreal Engine 4 Network Compendium’ and several 

other sources such as blog and YouTube channel of Sneaky Kitty Game Dev. 



   
 

41 | P a g e  
 
 

 

 

 

 

But to develop a solid online multiplayer game artefact, a well composed student 

team with members of multiple disciplines was deployed.  

The development of the online multiplayer game artefact was the crucial aspect for 

answering the research questions since it helped in addressing both of them 

(research questions 1 and 3) by finding potential problems that the team ran into 

while working on a multiplayer game with the generic multiplayer pipeline 

developed. Furthermore, the success/failure of the project eventually helped in 

answering the research question 3 addressing the utilising of a generic multiplayer 

pipeline to support and impact the design process and knowledge development of a 

novice team.  

An important part of this research was taking input and collecting data from the team 

members and their workflow during the development of the game. This was carried 

out with the help of initial input from the members through documents such 

as the Game Design Document (GDD). Going on further, a scheduled plan to note 

down weekly meetings log, daily work updates log in the team’s discord server was 

laid out. The team was prompted to adopt the agile development methodology or 

scrum which proved to be fruitful in the long run as it is widely practiced in the 

industry (Lemarchand, 2021). This also helped in collecting data regarding any 

challenges and problems the team ran into while developing the artefact. A 

production plan covering milestones such as the first playable demo, 

Alpha, Beta, and the Gold Master, was laid out to ensure the integral progress of the 

team.  

Additionally, periodic testing of the builds after developing playable features was 

carried out to find any game breaking bugs such as level A or level B bugs. This 

process was carried out via collaboration between third year undergraduate DES310 

students and first year students. The DES310 module is organised in such a way 

that the builds of the games developed by the DES310 students are tested by the 

students of first year GDP (Game Design Production) undergraduate program before 

every vital milestone. The students from the first year have a Quality Assurance and 

User Experience module, DES103. These particular testers weren’t part of the 

research but part of the module DES103 collaborating the two batches of the 

undergraduate program. This also ensured periodic bug fixing and removal of 

unwanted issues from the project.  

 

 4.2.1 - Participants 

 

The participants were a team of 9 students enrolled in the following programmes– 



   
 

42 | P a g e  
 
 

 

 

 

 

1. Game Design and Production 

2. Computer Arts 

3. Computer Games Technology 

4. Computer Games Application Development 

The participants were organized into a team by the module leaders and selected for 

the brief of development of turn-based multiplayer game. All participants were above 

18 years of age and were provided with the Participant Information Sheet and 

Research Consent form. 

 

 4.2.2 - Role of the Researcher 
 

The role of the researcher in this project was initially providing the team with generic 

multiplayer framework and interacting closely with the team to observe and note 

issues and challenges faced by the team. It is important to note that the researcher 

was not a core member of the team. The researcher was at a critical distance from 

the team so that he could credibly observe and ask questions about the development 

of the game. Additionally, the researcher adapted the framework to tackle specific 

issues related to the game while maintaining the network layer overall. 

 

 4.2.3 - Materials 

 

The materials required and utilised for this research method were the software/game 

engine for the development of the game, the repository of the framework, 

documentation provided by Cedric Neukirchen, some additionally links referred for 

the development of the framework and the assets provided freely on Unreal Engine 

marketplace for free along with some free audio assets. 

1. Game Engine/Software : Unreal Engine 4.26 

2. GitHub Repository :  https://github.com/animeshsharma1996/MbR-eSports-

Multiplayer (Appendix A) 

3. Multiplayer Framework : Standard Unreal Engine 4 framework using UE4 

Network Compendium (by Cedric Neukirchen - https://cedric-

neukirchen.net/Downloads/Compendium/UE4_Network_Compendium_by_Ce

dric_eXi_Neukirchen.pdf) 

4. Additional Resources/Links : 

https://github.com/animeshsharma1996/MbR-eSports-Multiplayer
https://github.com/animeshsharma1996/MbR-eSports-Multiplayer
https://cedric-neukirchen.net/Downloads/Compendium/UE4_Network_Compendium_by_Cedric_eXi_Neukirchen.pdf
https://cedric-neukirchen.net/Downloads/Compendium/UE4_Network_Compendium_by_Cedric_eXi_Neukirchen.pdf
https://cedric-neukirchen.net/Downloads/Compendium/UE4_Network_Compendium_by_Cedric_eXi_Neukirchen.pdf


   
 

43 | P a g e  
 
 

 

 

 

 

a. https://docs.unrealengine.com/4.27/en-

US/ProgrammingAndScripting/Online/Steam/  

b. https://mediacbl.com/menu-widget-unreal-engine/ 

c. https://www.youtube.com/c/SneakyKittyGameDev  

5. Assets/Resources :   

a. Free Assets provided by Epic Games on UE marketplace 

b. Free Sound assets (https://mixkit.co/free-sound-effects  ; 

https://www.zapsplat.com ) 

 

 4.2.4 - Procedure and Data Collection 
 

The procedure and data collection were carried out in three ways in the form of 

questionnaire, researcher observation, and development data. 

1. Questionnaire: A questionnaire was given to the participants before and after 

the development of the game. Questionnaire was given before, to assess their 

skills, knowledge, and understanding of multiplayer game design and 

development, etc. Questionnaire was given after, to interrogate what they 

learned from working on a multiplayer project, extent to which framework 

helped for the development, strengths, weaknesses, improvements needed, 

their reflection etc. The questionnaire given to the team before and after the 

production of the game are mentioned in Appendix D.1 and Appendix D.2 

respectively. 

2. Researcher Observation: Observation notes were collected by participating 

in two meetings per week. Meeting 1 was a general project update meeting, 

meeting 2 was a targeted meeting focusing on the framework and its 

utilisation in the project. The data was collected in the form of anonymized 

notes. 

3. Development Data: Materials were gathered from development logs, 

documentation, source code, build, other pitching/evaluation materials. The 

communication server of team’s discord was utilised for coherent 

communication within the team. This helped in noting down both minor and 

major challenges faced by the team and individuals anonymously. 

 

https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Online/Steam/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Online/Steam/
https://mediacbl.com/menu-widget-unreal-engine/
https://www.youtube.com/c/SneakyKittyGameDev
https://mixkit.co/free-sound-effects
https://www.zapsplat.com/


   
 

44 | P a g e  
 
 

 

 

 

 

 4.2.5 - Timeline 
 

This phase of the research took place between January 31st and May 17th, 2022. 

Overall development took place over 14 weeks, with final work submitted in the 

fourteenth week. Teams scheduled two meetings per week that the researcher 

participated in; one weekly update with the module tutor which covered general 

project progress, and one targeted meeting with the researcher where the team 

focused on issues specifically related to development and implementation of 

multiplayer features utilising the framework. 

 

 4.2.6 - Analysis 
 

The data collected before the development of the game, during the development and 

after the development of the game was analysed. The three types of data collection 

were combined and analysed to determine the strengths and weaknesses of the 

multiplayer framework along with the extent to which the team was benefited by the 

support and the knowledge gaps of the technicalities of the multiplayer game 

development. Additionally, the notes taken during development determined clear 

barriers encountered during development of the game, the risks taken and mitigated 

by the team.  

 

 4.3 - Testing and Evaluation  
 

To assess the success of the multiplayer implementation and determine whether the 

developed game satisfied player expectations of online multiplayer game, the last 

research method was to conduct playtesting with participants. This method sought to 

address research question 3, while also offering an opportunity to explore questions 

more specifically targeted towards the player experience using the framework’s 

features in the game, and the feasibility of novice teams working towards the 

development of competitive play experiences in this context.  

 

 4.3.1 - Participants 
 

6 Participants for three test groups of 2 were recruited from the community discord 

servers to test out the game and report the player experience. The community 

discord servers had several candidates for testing the game because of their 



   
 

45 | P a g e  
 
 

 

 

 

 

experience in playing competitive games on a regular basis. The potential 

candidates were prompted to take part in research and 6 candidates agreed to 

participate in the research. These participant testers are separate from the first-year 

testers who tested the game before each vital milestone. These 6 testers are 

participants of this research with given consent form before agreeing to take part in 

the research. The testers belonged to diverse regions and played against each other 

in their respective groups. The data collected based on the questionnaire is 

mentioned in detail in Appendix D.3. 

  

 4.3.2 - Materials 
 

The materials required and utilised for this research method were the turn-based 

multiplayer game artefact developed by Stormy Night Games and the testers’ 

questionnaire specifically targeting towards the framework utilised for the 

development of the game. 

1. Turn-based multiplayer game (Appendix E) 

2. Multiplayer Game Testing Questionnaire (Appendix D.3) 

 

 4.3.3 - Procedure 

 

The participant testers were be given an opportunity to test the fully functional 

multiplayer turn-based game developed by the student development team as 

outlined in 4.2. As explained earlier in 4.3.1, the 6 participants were recruited from 

the community discord server, and they agreed to take part in the research and test 

the game. They were provided with the copy of the game build and clear instructions 

on how to play the game. The testers were then asked to complete the questionnaire 

after they tested the game. The questions were related to the generic multiplayer 

framework utilised for developing the game which contained features such as menu 

interface for creating and finding custom server sessions, steam friend sessions, 

chat system, etc.  

 

 4.3.4 - Analysis 
 

The data was analysed after the testers responded to the questionnaire given to 

them after testing the game. The data helped in determination of the player 

https://stormynightgames.itch.io/
https://forms.office.com/r/7AuLBWRcRh


   
 

46 | P a g e  
 
 

 

 

 

 

experience of the game developed based on multiplayer framework. The questions 

tracked back to the framework used as a foundation for the game. This in-turn 

reported the adequateness or inadequateness of the framework and helped in 

answering research question 3. Each question was related to the player experience 

when using each feature of the framework and how convenient or inconvenient it 

was to use the framework’s features. 

 

 

 

 

 

 

 

 

  



   
 

47 | P a g e  
 
 

 

 

 

 

5. Results/Findings 
 

 5.1 – Multiplayer Framework Development 
 

To carry out the development of a generic multiplayer framework for development of 

any genre of multiplayer game, the basic minimum features required for multiplayer 

games were implemented. This helped in answering research question 2. 

The implementation carried out was to find out, how can a generic multiplayer 

framework be developed to support a student team with limited knowledge working 

towards the production of a multiplayer game. As already stated earlier, Unreal 

Engine was chosen as the game engine which provides support for steam 

subsystem. Additionally, Unreal Engine supports multiplayer development and gives 

the developer an opportunity to develop features involving customized server 

sessions (creation, update, joining, and destruction, etc.).  

The development team was to be provided with the basic framework as a foundation 

to build the game upon. Based on the common features that are present in the 

multiplayer games in the market, a list was made to implement features in 

chronological order.  

The list of common features implemented to aid the development of the game are as 

listed follows – 

1. Menu Interface 

a. Main Menu 

b. Custom Host Menu 

c. Join Menu 

d. In-Game Menu 

2. Creating and Finding Server Sessions 

3. Steam Support 

4. Creating and Finding Friend Sessions 

5. Registering and Unregistering players 

6. End and Destroy sessions 

7. Chat System 



   
 

48 | P a g e  
 
 

 

 

 

 

To fully understand how the framework was developed, there was a need to 

understand the life cycle of a server session for a listen server as explained by 

Cedric Neukirchen (Neukirchen, 2021) and on the webpages, Epic wiki (Olsson, 

2015) and Unreal Community Wiki (Gamibt, 2021). The life cycle of a server session 

is shown in the flow diagram (Figure 7). The server session is created by a client or a 

player which is also the host (as how it works in a listen server). Once the server is 

created, it needs to be initiated or started through SessionInterface-

>StartSession(FName sessionName) function call. After the start of the server 

session, the host player needs to be registered with the session so that the session 

shows a player in the lobby when the session data is retrieved for the purpose of the 

server browser information.  After the server session is running, the other clients or 

players can find the server session on the server browser. If the session is found, the 

clients can join the session to get inside the lobby and further get registered with the 

server session.  

The server settings can be modified with the help of UpdateSession function if the 

configuration of the server needs to be modified. The host player can also close the 

lobby by the ending the session (on the host and all the clients which is an RPC 

function) and further cleaning the server session by destroying the session. 

It is crucial to understand that each of the functions mentioned in the light blue colour 

(Figure 7) are functions that have post function call delegates and are supposed to 

be linked with custom delegate functions inside the Game Instance class. Each time 

one of these functions are called, their respective post functions (for e.g., 

OnStartSessionCompleteDelegate) are called when the primary function is 

successfully run. These post function calls can be customised or overridden with 

custom delegates to implement new functionalities.  

Once the server session life cycle was thoroughly understood, there was a need to 

link or bind the server session functionalities with a user interface or in specific 

terms, menus. An optimal and elegant technique to design and implement a UI 

manager or menu system has been explained on the webpage by Media CBL (Media 

CBL, 2021). Additionally, the youtuber Sneaky Kitty Game Dev (Sneaky Kitty Game 

Dev, 2020) has explained one of the optimal ways of linking or binding the session 

functionalities with the user interface through both C++ and Blueprints. 



   
 

49 | P a g e  
 
 

 

 

 

 

 

Figure 7. Server Session Life Cycle 

The task at hand was to implement the whole menu system in C++ and link or bind it 

with the session functionalities.  This was done by creating a Main Menu Widget 

class from the base C++ class. The Main Menu widget class contains the button 

variables, text block variables, input block variables composing the whole main menu 

screen. Each variable is bound to its design element in the child blueprint class. The 

main menu screen is shown in figure 8.  

 



   
 

50 | P a g e  
 
 

 

 

 

 

 

Figure 8. First iteration of the framework main menu 

The first iteration of the main menu only had the programmer art (Figure 8). It was 

modified and reskinned with the help of some button assets, text fonts, and 

background to give it a professional visual (Figure 9). The main menu blueprint 

class’s designer layout has several layers to allow transition between screens. The 

host screen (Figure 10) and server browser screen (Figure 11) are all linked together 

with the main menu through the buttons. It can be seen from figure 11 that the 

number of players shown in the hosted lobby by a host is zero. This is because the 

RegisterPlayer function wasn’t initially implemented. This bug was then fixed by 

inserting the register player functionality for the host and also the clients that join the 

sessions in the correct sequence as shown in the life cycle of a server session in 

figure 7. The players were also supposed to be unregistered when they leave the 

lobby or the server session which was carried out with the help of UnregisterPlayer 

function. Additionally, the server information row as displayed in figure 11 is actually 

a User Widget created under the name, Server Slot Widget which was implemented 

to contain the information of created server to be displayed on the server browser. 

The whole menu system was governed and manager by the class UI Manager 

derived from the base HUD class to initialise the lower hierarchical classes in the 

beginning of the level initialisation. 



   
 

51 | P a g e  
 
 

 

 

 

 

 

Figure 9. Modified version of the framework main menu 

 

Figure 10. Custom host menu screen 



   
 

52 | P a g e  
 
 

 

 

 

 

 

Figure 11. Server browser menu/Join menu screen 

The friend button shown in figure 9 is used to retrieve and the servers hosted by 

friends on steam. Implementing the friend’s session functionality was the most 

challenging part of the framework. This is because Unreal Engine’s documentation 

(Unreal Engine, 2021b) mentions the friend session functionality, but it is not actually 

implemented in the lower engine level in the source code (Figure 12). The function 

always returns false and doesn’t find a friend session.  

 

Figure 12. Find Friend Session function in Unreal Engine 4.26 source code 

This problem was solved with the help of retrieving the friends list (from steam) and 

using it to iterate and find friend session of each friend, if the friend actually hosts the 

server (Figure 13).  



   
 

53 | P a g e  
 
 

 

 

 

 

 

Figure 13. Implementation of Find Server Session of Friends (Steam) 

Furthermore, the framework was required to have an in-game menu which would 

allow the host to end the session on the host server and all the clients and also allow 

the clients to leave the lobby mid-game. This was carried out with the help of a 

multicast RPC (Remote Procedural Call) inside the Player Controller class which 

basically ends the server session on all clients and the server (if called from the host 

which is the server in this case) or only on the respective client if called from the 

client. 

The Player Controller class is an actor class which receives input from the player 

and is replicated. This type of class follows the definition of RPC functions and thus 

was also utilised in implementing the chat system. The chat system implementation 

was carried out with the help of a text box layout containing the rows for text 

messages sent by the player and an input text box to send these messages (Figure 

14). In this way, the chat messages upon typing are sent to the server with the help 

of a server RPC and then sent to all the clients with the help of the player controller 

iterators which contained all the player controllers of each connected clients. The 

chat box gets expanded and reduced in size depending upon the number of active 

messages being sent. If the messages are increased in number, the chat box 

expands to a certain threshold and after certain time delay, it gets reduced in size. 

 

Figure 14. Chat system visual representation 

 



   
 

54 | P a g e  
 
 

 

 

 

 

Finally, the chat system was integrated with a toxicity prevention system which was a 

relatively easy task. The toxicity prevention system basically regulates the messages 

sent by client and matches against a list of offensive words, if the messages have 

any of these words, it will send a warning to the client and won’t send the message 

to all clients. The client will be kicked and disconnected after 3 warnings. 

The framework follows the definition of generic architecture to serve as a base 

foundation for any multiplayer game, i.e., any genre of multiplayer game can be 

developed using the framework and the features implemented for the framework will 

always be required for any multiplayer game. Although, it is worth noting a crucial 

point here, that the framework creates sessions of a listen server which means the 

host is a client and also the server. Usually in multiplayer games published by 

authoritative publishers have dedicated servers where none of the clients is the host. 

That is how matchmaking works. But in this case, the game was developed by a 

student team and thus the framework did not require the need to have dedicated 

servers. The development of the framework required around 6 to 8 weeks of initial 

time with additional time involved in updating framework during development of the 

game. The deployment of the framework had some important key takeaways 

observed –  

1. The framework was developed to fill in all the gaps of features left void by the 

free to use framework on the Puzzle Platform repository (Hunt, 2021) with 

features such as friends’ session, in-game menu to end server session and an 

elegant chat system. 

2. The framework isn’t as advanced as the Cardinal Menu (Metahusk, 2016) in 

terms of customisation of settings (graphics, controller-support) but it has 

options for developers to customise and modify the framework with extended 

blueprint support derived from C++ classes along with the additional chat 

system, easy access, and compatibility with the current Engine’s versions. 

3. As mentioned before, Advanced Server Manager would be the best plugin to 

utilise for the multiplayer game development, but it is proprietary and costs 

around £ 90. The framework developed for this research is a good free to use 

replacement for Advanced Server Manager which also doesn’t have the chat 

system. 

4. The framework does not implement dedicated server which is a limitation for 

overall authoritative control for the developers, but this isn’t really needed for 

novice developers or student teams.  

In summary, the framework is on its own is customisable, expandable, and 

modifiable following Unreal Engine’s object-oriented design with applied optimal 

programming principles and higher hierarchical classes governing the loop for the 



   
 

55 | P a g e  
 
 

 

 

 

 

running of the framework. The overall adequateness of the framework was clearly 

determined through the usage by the team and playtesting by the testers as 

observed and reported in the sections below. The framework was modified during 

development (of the game) to implement the required and missing features to fulfil 

the criteria of a complete generic multiplayer framework, this has been reported in 

the production section below.  

 

 5.2 - Production  
 

The findings of the game development case study have been presented in two ways, 

the observation notes about the production process in a timeline and second, 

through the questionnaire data provided by team before and after the development 

of the game. The production or the development of the turn-based multiplayer game 

provided data on the issues/challenges faced by the team while developing a fully 

functional multiplayer game. This directly helped in answering research question 1. 

The challenges or the barriers faced by the team have been described in 

chronological order in a timeline. Additionally, the timeline is mentioned in a table 

format in Appendix C. 

The crucial point here is to note the initial game overview proposed by the team 

upon the commencement of the project and how the iterations have modified the 

structure of the game throughout the development cycle. The initial game mechanics 

proposed have been mentioned below -  

• A turn-based, online multiplayer game of 4-8 players. 

• The main objective was to get to the other side of the map and destroy the 

enemy base while trying to prevent your own base from being destroyed. 

• Ways of obtaining points were by killing bosses which will spawn throughout 

the map, killing enemies, completing class objectives, and surviving the 

day/night cycle. 

• Players can also win the game by having the most points within so many 

turns/a specific time. 

• Players will be able to choose from 4 different characters with different stats. 

As the team commenced the production of the multiplayer game, one of very first 

issues encountered was the syntax of the Unreal Engine C++ language. Unreal 

Engine C++ is quite a different language than the original C++ with the variables and 

classes starting with a prefix such as struct data structure is written as FStruct, array 



   
 

56 | P a g e  
 
 

 

 

 

 

data structure is written as TArray<> and it is case specific with each class.  The 

programmers initiated the project in Unreal Engine 4.27 in C++ where it was 

supposed to be initiated in Unreal Engine 4.26 as that was the version in the 

systems in the campus of the University. Switching back to 4.26 created delays in 

production with initial work to be redone. 

During the first few weeks of production, the procedure followed by the programmers 

involved one programmer handling the networking of the movement of a character 

on a grid system, while the other two programmers handling minor tasks and waiting 

for the other programmer to finish the networked movement. Since following such a 

procedure can cause delays in production and they were already working in C++ 

which can be a tedious task with slower compile time, the programmers switched to 

Blueprints for faster development, compile time, and fewer engine crashes.   

Although the trade-off here is that integrating progress can be complicated since 

version control does not support merging of blueprint files as they are binary files, 

and it is a risk of having worse performance of the game. But to speed up production 

with faster compilation time and faster debugging, the team resorted to this 

methodology.   

The team also required additional features from the framework along with some 

mandatory features such as in-game menu, chat system and friend’s server session 

for global servers in order for the multiplayer game to be generic and globally 

playable.  

The initial prototype only saw mechanics implemented such as the assignment of 

teams to the players, turn-based networking system and the joining of players in the 

same server session/lobby. The prototype was missing features such as turn-based 

movement on a grid system.  

In the first playable demo phase, the team implemented the missing features and 

full-game loop along with the A-star pathfinding for correct tile to tile movement. One 

crucial feature was the turn-based replicated movement and the team was faced with 

the issue of the movement being very incoherent and clunky. A workaround was 

utilising the inbuilt replicated movement (utilising AddMovementInput) and 

customising it to have the turn-based movement upon clicking of the mouse button 

on a desired tile.   

This feature hindered progress in production and caused a delay of 1-2 weeks. Once 

the issue was fixed, the team was able to quickly implement the remaining features 

such as the combat system with attack, damage intake and death of the player 

character, RNG (Random Number Generator) dice sprite, HUDs (Heads Up Display), 

and menus.   



   
 

57 | P a g e  
 
 

 

 

 

 

Additionally, there were some issues encountered while updating the framework 

such as implementation of steam friend’s sessions. Unreal Engine has documented 

the functionality, but it is not fully implemented in the source code (discussed in 

section 5.1). The other issue was the functionality of End Session since most of the 

code of networking sessions is supposed to be written in Game Instance class, but it 

is not a replicated actor and thus an RPC (Remote Procedural Call) cannot be called 

inside it. Thus, the Player Controller was needed to implement this functionality.   

Tackling the issues towards alpha and implementing features saw most of the crucial 

features implemented in the game, the delays in production saw some features cut 

from the potential implementation such as the number of players, the game was 

made to be one vs one, the day-night cycle, bosses’ system, and win condition by 

points were scrapped.  

Post alpha was the integration of the framework update including the chat system 

and toxicity prevention system in chat. The chat system introduced a bug with Player 

Controller class and the end session was not thoroughly removing the player pawn 

from the scene. This was because the Player Controller class’s Begin Play should be 

called from the blueprint rather than C++ if the blueprint is chosen as the main class 

in Game Mode class’s settings. 

Beta only had two weeks after alpha and to make the game content and feature 

complete, the framework update was integrated with additional integration of audio, 

art assets (UI, animations) and replaced 2D dice with 3D dice.  

Finally, the last framework update was integrated with a fully functional in-game 

menu and registering and unregistering of players for correct update of the number 

of players in the lobby. The 3D dice had to be removed from the game due to the 

lack of time and the dice causing unintended break in the game.  

In summary, the production process of the turn-based multiplayer game provided 

critical assessment of the utilisation of the framework and the framework itself. The 

key takeaways from this case study about the framework are outlined as follows – 

1. The framework saved around 6-8 weeks of time (as mentioned in 5.1) of the 

team to setup basic multiplayer functionalities which was effectively handled 

by the framework. Additionally, the team didn’t have to address and fix any 

issues related to the framework during development. In short, the team was 

free of any development work required for the framework.  

2. The framework was fully independent of the type of the game and thus any 

modifications required in the framework didn’t interfere with the mechanics 

and features of the game. 



   
 

58 | P a g e  
 
 

 

 

 

 

3. The framework had to be iterated on several times during development to 

include the missing features such as friends’ servers, in-game menu for 

ending and destroying session, registering-unregistering players, and the chat 

system. 

4. The implementation of the framework in pure C++ allowed the team to 

develop the game independently and implement mechanics in blueprints 

without needing to worry about any break or disruption in the framework or the 

game. 

5. Any changes, modifications carried out in the implementation of the gameplay 

or encounter of any breaks in the code base of the main game was 

independent of the framework. 

6. The framework didn’t directly impact or fill the knowledge or skill gaps of the 

members of the team (as observed in 5.3) but only to a degree of 

understanding basic multiplayer architecture along with the common classes 

utilised for development in Unreal Engine. 

 

 5.3 - Team Questionnaires Analysis 
 

The questionnaire given to the team before the commencement of development of 

the game resulted in collection of initial insight of the knowledge of the team about 

development of multiplayer games and the questionnaire given to the development 

team after the completion of the project resulted in collection of upgraded knowledge 

and skills of the team about the development of multiplayer games and video games 

in general as well. The image before in the figures in the following sections is the 

image of response of the team members before the start of the project and the 

image after, is the image of response of the team members after the end of the 

project. 

 

 5.3.1 - Knowledge and Understanding of Multiplayer Games Design 

and Development 
 

The first responses provided by the team members indicated that, about one-third of 

the team belonged to the programming discipline. Furthermore, only one member 

agreed with the understanding about how networked games are developed, while 

two strongly disagreed and three responded neutrally. This means that most of the 

team members were not fully confident with the development of multiplayer games. 



   
 

59 | P a g e  
 
 

 

 

 

 

Post completion, five members agreed on having an understanding of development 

of multiplayer games, only one member strongly disagreed, two disagreed and one 

member remained neutral while no member strongly agreed even after development 

(Figure 15).  

 

 

Figure 15. Comparison of responses about how networked games are developed 
(before and after development) 

The majority of the team reported to have no knowledge of the client-server model 

utilised in the development of multiplayer games. Only two programmers had 

knowledge about this architecture. Post completion, two programmers strongly 

agreed with having the knowledge of the multiplayer architecture while the two 

members including a programmer and a designer agreed with having the knowledge 

of the architecture, two members stayed neutral, one disagreed and two strongly 

disagreed (Figure 16).  



   
 

60 | P a g e  
 
 

 

 

 

 

 

 

Figure 16. Comparison of knowledge of multiplayer architecture (before and after 
development) 

 

The programmers, the audio designer and the animators agreed with having an 

understanding of the concept of replication, while the artists, the designer and the 

producer lacked the knowledge of replication (Figure 17). On the other hand, the 

majority of the team members weren’t familiar with RPCs (Remote Procedural Calls). 

This means that initially, the team wasn’t fully familiar with the implementation of 

multiplayer features for the project. Post completion, the three programmers fully 

understood the applied concept of replication while the designer understood 

moderately. The artists and the animator along with the audio designer only 

disagreed with understanding the concept of replication. The programmers and the 

designers agreed with understanding the concept of RPCs with two strong 

agreement while the rest of the team disagreed with 4 strong disagreement (Figure 

18). 



   
 

61 | P a g e  
 
 

 

 

 

 

  

 

 

Figure 17. Comparison of understanding the concept of replication (before and after 
development) 

 



   
 

62 | P a g e  
 
 

 

 

 

 

 

 

Figure 18. Comparison of understanding the concept of RPCs (before and after 
development) 

Tackling issues and bugs in multiplayer game development can be a tedious and 

unpredictable task. A start is usually understanding the potential technical issues that 

could occur during development. The programmers and the designers reported to 

have an understanding of the issues with the development of multiplayer games 

such as high latency, FPS drops, disconnections, etc. Post completion, majority of 

the team reported to have a good understanding of the issues in the development of 

multiplayer games. Only the two artists and the animator disagreed with having an 

understanding of the issues (Figure 19). 



   
 

63 | P a g e  
 
 

 

 

 

 

 

 

Figure 19. Comparison of familiarity with technical issues during development of 
multiplayer games (before and after development) 

Overall, the responses in all of the categories of networking knowledge and skills 

have changes, especially around the programming side of the team. Meanwhile, 

some responses also changed for the other departments of the team as well. This 

means that the team was able to overcome most of the knowledge gaps regarding 

the networking technicalities through the development of this turn-based multiplayer 

game. No pie chart in particular recorded no change at all, which is quite expected 

because team members, especially the programmers are expected to implement and 

learn the specified aspects of the multiplayer programming. Additionally, it links back 

to research question 1 in finding about the knowledge gaps teams face in general 

while developing a multiplayer game. 

 

  

  



   
 

64 | P a g e  
 
 

 

 

 

 

5.3.2 - Experience of Game Development 

 

The responses provided by the team members in this section in possessing the 

general experience, knowledge and skills in game development before and after the 

development of the turn-based multiplayer game, Land of Morphie.  

 

 

Figure 20. Comparison of the experience in working in Unreal Engine 4 (before and 
after development) 

Based on the responses about experience of game development, majority of the 

team strongly agreed with having experience working in Unreal Engine 4. Only one 

member (belonging to the art department) did not have experience working in Unreal 

Engine 4 and only one member (also belonging to the art department) had some 

experience working in Unreal Engine 4. Regardless of that, the programming and 

design side had valuable experience in Unreal Engine 4. Post completion, majority of 



   
 

65 | P a g e  
 
 

 

 

 

 

the team strongly agreed with having the experience of working in Unreal Engine 4, 

only the artists stayed neutral (Figure 20).  

 

 

 

Figure 21. Comparison of the experience in working on blueprints in UE4 (before and 
after development) 

Secondly, all the programmers and designers had valuable experience with 

blueprints in Unreal Engine. Meanwhile, only the artists and the animator had no 

experience of blueprints. After the completion of the project, most of the team 

strongly agreed with working in blueprints in UE4, only the animator and the artists 

disagreed with the experience in blueprints (Figure 21).  



   
 

66 | P a g e  
 
 

 

 

 

 

 

 

Figure 22. Comparison of the understanding of source control (before and after 
development) 

Furthermore, the producer and the programmers excluding only one programmer 

understood the concept of source control. While three members including the 3D 

artist, designer and one programmer responded neutrally on the concept of source 

control. Two members including the 2D concept artist and animator did not 

understand the concept of source control. After the completion, most of the members 

understood the concept of source control with only one neutral response and one 

artist didn’t understand the concept at all (Figure 22). 

Lastly, no member had ever published a single player or multiplayer game on any of 

the games platforms such as itch.io, steam or epic games store. After the project, 

they were able to publish the game on games platforms such as itch.io. 

In summary, this provides useful information about the team’s general knowledge of 

game development mostly relevant to Unreal Engine and source control. Similar to 

networking knowledge gap section above, all of the pie charts have recorded 

movement in dials meaning that the team was able to overcome the knowledge gaps 

in regard to general game development while using Unreal Engine. The members of 

the team overcame the knowledge and skill gaps through the implementation of the 



   
 

67 | P a g e  
 
 

 

 

 

 

multiplayer gameplay mechanics with the help of tutorials, documentation by Unreal 

Engine and documentation of the framework. As above, it links back to research 

question 1 in finding about the knowledge gaps the teams face in general while 

developing a multiplayer game.  

 

 5.4 - Testers Questionnaire Analysis 

  

Post-production of the turn-based multiplayer game, Land of Morphie (Appendix E) 

and receiving final responses from the members of the team, it was deployed and 

shared with the testers who played it thoroughly against each other to further provide 

responses of the questionnaire designed to further understand the adequateness of 

the multiplayer framework. 

The testers questionnaire helped in better understanding the player experience in 

terms of the basic multiplayer features of the framework utilised for the development 

of the game. The framework had visible and usable features in the game itself and 

this helped in answering the research question 3. It is important to note that all the 

questions in the questionnaire linked back to the framework, which was developed 

as a base foundation for the game. The testers were not recruited from a specific 

region but from regions of Europe, the US and Asia. Since this is a turn-based game 

and the framework is meant to run global servers as well, the testers were 

anticipated not to deal with any issues of lag or regional servers only restrictions.  

Most of the testers responded with a positive response for the overall structure of the 

multiplayer features in the game. The overall structure refers to the overall 

multiplayer framework around the game. Only one tester had some issues with some 

features of the framework, while one tester found the overall framework very user 

friendly (Figure 23). 



   
 

68 | P a g e  
 
 

 

 

 

 

 

Figure 23. Response of overall structure of the multiplayer features 

Most of the testers responded with a positive response for hosting and joining 

sessions in the game. Only one tester responded negatively owing to having vague 

idea about Steam sub-system being utilised for hosting and joining long distance 

servers. Two testers found it extremely easy hosting sessions in the game and three 

testers found it extremely easy joining session in the game (Figure 24). 

 



   
 

69 | P a g e  
 
 

 

 

 

 

 

Figure 24. Response of hosting and joining sessions in the game 

The friend’s session feature was specifically developed for the players to deal with 

issues of finding servers from distant regions. Since one tester particularly reported 

issues with hosting and finding session with normal search feature. The testers used 

the friend’s session with the steam support feature to easily find sessions over long 

distance, which they were having trouble finding using the normal search feature. 

Only one tester found it inconvenient using the steam support feature owing to the 

fact that the game had to be restarted to open steam first and then open the game to 

properly initialise steam for the game. Meanwhile, no testers had any issue using the 

friend’s sessions feature in the game (Figure 25).  

 



   
 

70 | P a g e  
 
 

 

 

 

 

 

Figure 25. Response of using friend’s sessions feature and steam subsystem 
support feature 

The in-game menu was developed merely for the purpose of leaving the game to go 

back to the main menu or exiting the game. Most of the testers did not have any 

issue using the in-game menu, while one tester in particular found it uneasy to use 

the in-game menu and one tester was neutral in using the in-game menu (Figure 

26). 

 

Figure 26. Response of using in-game menu in the game 

All the testers found the player experience traversing through the menus, smooth 

while two testers found the experience very smooth (Figure 27).  



   
 

71 | P a g e  
 
 

 

 

 

 

 

Figure 27. Response of player experience traversing through the menus 

Finally, the testers responded for the last feature of the framework, i.e., the chat 

system. Most of the testers found it easy to use the chat while two testers were 

neutral about the use of the chat system. Additionally, two testers were unsure about 

the chat system hindering the gameplay experience due to using the feature in the 

game and playing it the very first time (Figure 28).  

 



   
 

72 | P a g e  
 
 

 

 

 

 

 

Figure 28. Response of player experience traversing through the menus 

 

Summarising the findings above, the testers mostly reported positive experience 

while using the features of the framework during the testing of the game. This 

provides useful information linking back to the research question 3. Additionally, this 

adds extra value to the research in terms of the utilisation of the framework for the 

development and deployment of the multiplayer game.  

 

  



   
 

73 | P a g e  
 
 

 

 

 

 

6. Discussion  
 

The results or findings gathered from the observations above seek to brief the 

objectives of this technical research – 

I. Understand the development pipelines, tools available for novice teams and 

how a multiplayer pipeline can be developed to support them. 

II. Explore and understand the issues or challenges and knowledge gaps, the 

novice teams face when working on a multiplayer game and the impact of a 

generic multiplayer framework on the team’s knowledge and development 

process. 

III. Investigate the feedback received from testers playing the developed 

multiplayer game artefact, to find out the adequateness and limitations of the 

framework.  

Each of the objectives provided area of focus to understand and investigate the 

development of complex multiplayer games and the technical issues faced during 

development. Additionally, the development of framework, it’s utilisation by the team 

and receival by the testers, highlighted its strengths and weaknesses. This chapter 

will also discuss about how the framework and the overall process of deployment of 

the framework can be improved to develop any multiplayer game by a novice team. 

Section 3.1.1 reviewed the literature about game engines, tools, and technologies 

with proper comparison between the best and the popular game engines in the 

market. Not every source or paper highlighted the multiplayer functionality of the 

game engines in detail. Although some papers and sources confirmed the versatile 

usage of Unreal Engine for multiplayer games and declared it as the winner for the 

development of the multiplayer games. After the full development of the multiplayer 

framework and the turn-based multiplayer game, one question arises, was Unreal 

Engine the right choice? and the answer would be, yes, but to an extent. This is 

because Unreal Engine has its pros and cons, but it provides a smooth development 

support with a contingency measure of having blueprint support for easy and fast 

method of implementation of features which proved to be valuable for this research 

project as reported in section 5.2. Development in Unreal Engine is not about 

implementing classes from scratch to create a fully functional game loop but 

customising and populating the inbuilt classes which are linked by default following 

the object-oriented design to implement features and create a fully functional game 

loop. 

 



   
 

74 | P a g e  
 
 

 

 

 

 

 6.1 - Multiplayer Framework 
 

The development of the multiplayer framework helps us understanding the 

multiplayer architecture of the Unreal engine and how it can be utilised to develop a 

generic pipeline to aid the foundation of any multiplayer game. This also highlights 

the strengths and weaknesses of the framework and its comparison with other 

frameworks or middleware out there. This section will revisit the previous sections 

related to framework and discuss the overall outcomes of the methods.  

Section 4.1.3 reviewed the most commonly used and popular plugins or frameworks 

available for Unreal Engine in the market, which were, Advanced Sessions Plugin 

utilised to develop Cardinal Menu (Metahusk, 2016), Advanced Server Manager 

(Reverse Winter Studios, 2021) and Puzzle Platforms repository (Hunt, 2021). It also 

reviewed these frameworks in detail with their pros and cons. Section 5.1 reported 

the full and thorough development process of the framework in detail along with the 

comparisons with the framework mentioned above.  

Given the time and the scale of this research, there is a limitation to which a 

framework can be developed. If the limitation can be exceeded, there are a lot of 

elements that can be improved in the framework to make it a completely generic 

framework, which means that the missing features from the framework can be 

implemented. This includes all the features that are also usually present in most of 

the games in general, such as the settings tabs or menu to drive the general settings 

of the game along with the audio system to drive the sound effects of button clicks, 

music volume, etc. This is similar to the features in the Cardinal Menu (Metahusk, 

2016) as discussed in section 5.1. In this manner, the framework would be able to 

overcome the limitations that makes it worse than the Cardinal Menu (Metahusk, 

2016). At the same time, the question is, is it really crucial? and the answer would 

be, no. Since these features would only help in easy the extra effort needed by the 

developers using the framework to implement them, they are not a necessity 

because they have nothing to do with networking and are mainly local. On the other 

hand, the features needed to overcome the limitations of Puzzle Platform repository 

(Hunt, 2021) such as the chat system and the in-game menu with End Session 

functionality are indeed necessities because they are the basics of any multiplayer 

game, and the End Session functionality completes the life cycle of a server session 

as described in section 5.1 (Figure 7).  

The other features missing in this research framework are, a proper matchmaking 

system with dedicated servers. These features would make a multiplayer framework 

a professional framework with less or even no limitations. But again, are they really 

needed or crucial? the answer would be, no. This is because these features would 



   
 

75 | P a g e  
 
 

 

 

 

 

not at all help the novice developers in any extra way owing to the fact that custom 

listen server hosting can fulfil the purpose of creating a server session lobby and 

allowing other clients to join. A proper matchmaking system is mainly needed for the 

games with large scale and potential in the market which are effectively the 

multiplayer games with eSports potential backed up by large publishers. The 

Advanced Server Manager (Reverse Winter Studios, 2021) has all these features 

present. The limitation of this framework as discussed before is that it’s costly and 

not a viable option for novice or student developers. These developers mostly look 

for free to use solutions for development, which is there was a need to have an 

optimal free to use solution for the team.  

 

 6.2 - Multiplayer Game Development  
 

The game development case study along with the response to the questionnaires 

help us understanding the issues encountered by the team during development and 

their solutions. Additionally, we are able to investigate the utilisation of framework for 

the game and the upgradation of skills and knowledge of the novice developers to fill 

the gaps when they first started out developing the multiplayer game. 

In hindsight, it might be easier to summarise and outline the technical issues 

encountered by the team developing a game. But the code preparation and proper 

planning or technical design is a must for any type of game or multiplayer game 

development. This also includes better deployment of framework for the team to use 

without any difficulties in laying out the basic architecture for the game. On top of 

that, there are several factors with novice development team on how they will carry 

out the development process such as usage of blueprints throughout the 

development.  Couch Learn Tutorials (Matt, 2019) explain the creation of multiplayer 

sessions in Unreal Engine with Blueprints. But that wouldn’t be the most optimal 

method to implement and deploy the framework to help the team, which is why, 

usage of C++ with an option to extend to blueprints is the one of best ways to 

implement any framework in order to help the developers. This is similar to writing 

code just above the lower engine level to improve workflow for Engine users. On the 

other hand, Unreal Engine provides the game framework overview for both 

blueprints and C++ to understand the basic classes system inside the engine for 

multiplayer development (Unreal Engine, 2021c) as also discussed in the section 

above. The rules of classes for C++ and Blueprints are the same. Because of this, 

the team was able to utilise the documentation of blueprints and the C++ source 

code of the framework to find a workaround for faster development of the multiplayer 

game. Coming back to the point of elegant technical design for planning and easy 



   
 

76 | P a g e  
 
 

 

 

 

 

maintenance, modification, expansion and readability of the code base, the 

principles remain the same for both C++ and blueprints. This would typically mean 

setting up of higher-level classes to run the game loop and manage the lower-level 

classes. All game engines commonly have the concept of Begin Play and Tick 

(Unreal Engine) or Start and Update (Unity) to drive the game loop. It is a common 

and elegant practice to have one highest level class (typically a Game Manager) to 

run these custom functions and drive the game loop. A typical game loop 

architecture with high level classes composing the code architecture has been 

demonstrated below (figure 29). The Game Manager initialises and ticks or updates 

the other managerial classes managing the responsibility assigned to them. For 

example, UI Manager will manage all the User Interface and the smaller classes 

related to it, Audio Manager will manage the Audio in the game, Turn Manager will 

manage the Turns and so on. But again, this obviously depends on the type of the 

game. Turn Manager wouldn’t be a class in the code base for real-time games.  

 

Figure 29. Typical class hierarchy to drive the game loop 

In this case, Unreal Engine has already done the work of creating these classes as 

default, the programmers are merely supposed to create custom classes deriving 

from these base classes, for example, as reported in section 5.1, UI Manager was 

created deriving from inbuilt HUD class or AHUD governing the HUD of the game 

along with the User Interface. A Game Manager in Unreal Engine would be the same 

as the Game Mode or Game Mode Base. But an important lesson learnt here during 

the development of the framework was that this class only runs on the server and 

never on any client. This means for multiplayer games; the Game Mode class cannot 

be a Game Manager and is mainly responsible for writing rules of the games. 

Therefore, it was necessary to move the program to initialise the basic structure of 

the framework to UI Manager as it was previously implemented in the Game Mode.  



   
 

77 | P a g e  
 
 

 

 

 

 

On the other hand, usage for blueprints for implementing features isn’t as risky as 

having no architecture for the game loop, because blueprints only cost performance 

and no support from source control for parallel programming. The switching of 

method of implementation from blueprints to C++ simply outweighs the risk of 

performance (mainly FPS, smoothness, etc.) as this is a game developed by a 

student team. The team had to worry about getting the basic mechanics 

implemented before even thinking about the performance. Performance is no doubt 

important but if a fully functional game isn’t there, the performance itself is 

redundant. Additionally, an Unreal Engine developer can never avoid Blueprints, this 

is because all C++ classes are supposed to be extended to blueprints in order to be 

customised in the editor.  

Overall, there are a lot of elements to be considered in terms of risk, challenges, and 

knowledge gaps when it comes to development of multiplayer games or even normal 

games within the context of student teams or novice teams. In this case, a fully 

functional multiplayer framework does help in providing support to a novice team by 

forming a foundation at a lower engine level and saving time required to implement 

the basic and common features. Although, it’s not enough in providing support 

throughout the development process because it’s generic and meant to be a 

foundational support for all multiplayer games.   

 

 6.3 - Multiplayer Game Testing 
 

The response to the testers’ questionnaire established that most of testers found it 

convenient and easy to use the features originating from the framework. Although 

one tester in particular had issues with the features of the framework due the fact 

that connecting to server session over longer distances must need the steam 

subsystem initialised and friends’ servers search feature. This is a limitation to the 

framework, and it tells us, that the game artefact built on the framework, when 

opened should automatically open steam and initialise it internally, so that the player 

doesn’t get an issue of not finding and connecting to the server sessions. 

In specific terms, the testers found it easy to use most of the features of the 

multiplayer framework such as the hosting and joining of sessions including 

traversing through the menus. This means that the deployment of the game utilising 

the framework was relatively easier for the testers. The framework was fairly elegant 

to aid the testers feel comfortable with the structure of the basic multiplayer features 

of the game. However, the framework can be thoroughly improved in terms of 

smoothness when initiating lobbies in the game and have the missing feature of auto 

initialising of steam as mentioned above. The clients are able to join the lobbies but 



   
 

78 | P a g e  
 
 

 

 

 

 

with a delay. This means that the join button should be disabled once the players 

press the join button, this will avoid any breaks or crashes in the server sessions. 

The framework also doesn’t familiarise the players with the rules of the game, and 

this isn’t possible since it’s a generic framework and is supposed to support any 

genre of multiplayer game. As mentioned in section 6.1, the framework should 

demonstrate the feature of customisation of settings such as the volume of the music 

or sound effects. This would ease the load on the developers using the framework 

and aid the testers playing the game in providing better player experience. In the 

end, the framework cannot directly impact the main gameplay experience of the 

players because the core gameplay doesn’t depend on the framework.  

Overall, the framework does come up with some limitations failing to impact the 

game in certain areas even when it comes to players testing the games. However, 

the framework is fairly capable of providing elegant player experience to the players 

in areas such as basic multiplayer features of creating, joining, and ending the 

lobbies along with an in-game chat system.  

 

 

 

 

 

 

 

 

 

 

  

  



   
 

79 | P a g e  
 
 

 

 

 

 

7. Conclusion and Future Work 
 

The research aimed to address the research questions (section 1.2) and investigate 

the development of a generic multiplayer framework and how it can support a novice 

student development team working towards the production of a multiplayer game 

along with the challenges, knowledge gaps, risks faced by the team. It also reviewed 

the literature on multiplayer development pipelines, workflows, and tools that exist to 

support a novice team. Finally, the research also investigated the limitations of the 

generic multiplayer framework and the feedback, the game received while it was 

played by the testers which in turn links back to the framework. With help of this 

research conducted, the challenges, knowledge gaps and risks faced by novice 

development teams can be described as follows – 

Challenges : The challenges faced by the novice development team involve the 

implementation of features involving complex networking problems with game 

engines and their unique language syntaxes. The team face issues of implementing 

features correctly in one go. Moreover, in order to achieve tasks of deploying 

features in the game, the team usually resort to easier methods. The team may 

overlook the best practices followed for the development of the games. 

Knowledge Gaps : The knowledge gaps are usually crucial for the programmers 

since developing multiplayer games require additional networking programmatic 

knowledge. Thus, the programmers are required to have knowledge of the following - 

I. Client Server Model 

II. Deep understanding of server sessions 

III. Applied concept of replication 

IV. Applied concept of RPCs 

V. Understanding of solutions to issues such as Client FPS drops, 

disconnections, etc. 

Risks : The risks faced by the teams are usually the success of the implementation 

of the projected features in the game which are cut out due to the lack of time. In 

order to deploy features, developers resort to methods which may not be optimal. 

Additionally, implementing features this way can cause level A bugs, which means 

breaks in the game. 

Some development pipelines available for free in the market for novice teams are 

plugins such as the Advanced Sessions Plugin, Puzzle platform repository, etc. A 



   
 

80 | P a g e  
 
 

 

 

 

 

generic multiplayer pipeline can be developed with Unreal Engine with inbuilt 

features and classes to support networking heavily emphasized by Unreal Engine.  

Additionally, the conclusion derived, and the entire research process revolved 

around the impact of the framework on the development process. The research has 

concluded that the development and the foundation of a generic multiplayer 

framework indeed positively impacts the multiplayer development process. 

The pipeline can be developed with help of some detailed documentation and guides 

provided by useful sources such as Unreal Engine documentation, compendium 

provided by Cedric Neukirchen, etc. The generic multiplayer pipeline assists the 

development team to tackle basic features which are compulsory in every multiplayer 

game and thus saves time. Although, the pipeline assists the team but doesn’t 

directly impact the knowledge of the novice team. The team is upskilled as the 

project goes through the development cycle. The limitations of the generic 

multiplayer pipeline can be – 

I. Lack of presence of dedicated servers 

II. Lack of customisation in menus for a general game options menu 

The end product is received positively by the players using the features of the 

multiplayer framework to play the game. 

As explained in chapter 6, the generic multiplayer framework developed comes up 

with some limitations discussed in detail. On top of that, the framework does need to 

be elegantly deployed to aid a novice development team in fully understanding the 

importance of a meticulous game loop architecture which is crucial for optimal 

development of any kind of a game. This leads to more work in the future with 

research questions in mind such as – 

1. How can a generic multiplayer framework be improved to fully satisfy a 

professional pipeline and aid any developer working towards the development 

of a multiplayer game.  

2. How can dedicated servers be integrated within a basic multiplayer framework 

with proper matchmaking system, ranking system, leader boards, etc.  

Finally, the framework developed for this research project can be directly 

downloaded from the repository (Appendix A) and used for real-world multiplayer 

game development inside Unreal Engine 4. It is a free to use framework and can be 

utilised, especially by students for any multiplayer game.  

 

 



   
 

81 | P a g e  
 
 

 

 

 

 

 

8. Glossary 
 

Actor Class – Actor class or AActor in Unreal Engine is the base class for an object 

that can be placed or spawned in a level. 

Add Movement Input – Add Movement Input adds movement input along with the 

given world direction vector (usually normalized) scaled by a scale value. This is a 

replicated function inbuilt in Unreal Engine. 

A-star pathfinding – A-star or A* path finding algorithm is a graph traversal and 

path search algorithm to find the shortest path between two points. 

Begin Play – An event in Unreal Engine called on an actor when play begins for the 

actor. 

Blueprint – The blueprint visual scripting system in Unreal Engine is a complete 

gameplay scripting system based on the concept of using a node-based interface to 

create gameplay elements from within the Unreal Editor. As with many common 

scripting languages, it is used to define object-oriented classes or objects in the 

engine. 

Client-Server Model – In a client-server model, one computer in the network acts as 

a server and hosts a session of a multiplayer game, while all of the other players' 

computers connect to the server as clients. The server then shares game state 

information with each connected client and provides a means for them to 

communicate with each other. In case of dedicated servers, the main server (without 

being a client) will fulfil the purpose of being a host. 

FStruct – FStruct is the Unreal Engine 4 syntax for the struct data structure. 

Game Instance Class – Game Instance class or UGameInstance is a high-level 

manager object for an instance of the running game in Unreal Engine. 

Game Mode Class – Game Mode class or AGameMode is a subclass of 

AGameModeBase in Unreal Engine, that has extra functionality to support 

multiplayer matches and legacy behaviour. It contains a state machine that tracks 

the state of the match or the general gameplay flow.  

Game Mode Base Class - Game Mode Base class or AGameModeBase is the 

class that defines the game being played in Unreal Engine. It governs the game 

rules, scoring, what actors are allowed to exist in this type of game, and who may 

enter the game. It is only instanced on the server and will never exist on the client. 



   
 

82 | P a g e  
 
 

 

 

 

 

HUD (Heads Up Display) – A heads-up display (HUD) is the display area where the 

players can see useful information related to their game such as health, abilities, 

armour level, ammunition, etc. 

Latency/Ping – Latency is a time delay between the cause and the effect of some 

physical change in the system being observed. This is typically a term in multiplayer 

games where high ping or high latency means more delay and less ping or low 

latency means less delay. 

MOBA – MOBA or Multiplayer online battle arena is a subgenre of strategy video 

games in which two teams of players compete against each other on a predefined 

battlefield. 

Player Controller Class – The Player Controller class or APlayerController  in 

Unreal Engine implements functionality for taking the input data from the player and 

translating that into actions, such as movement, using items, firing weapons, etc. 

Player Pawn – The player pawn or the pawn is the physical representation of a 

player within the game world. 

Replication – Replication is a term used to describe mirroring properties, actors, 

functions between clients and the server.  

RNG (Random Number Generator) – RNG or Random number generator 

generates a sequence of numbers or symbols in a random fashion. 

RPC (Remote Procedural Call) – RPCs are functions that are called locally but 

executed remotely on another machine (separate from the calling machine). 

Rubber banding – A phenomenon that is caused because of an undesirable effect 

of the latency in which a moving actor or object appears to jerk or leap from one 

place to another without interpolating or traversing through the space in between the 

places. This is similar to unwanted teleporting.  

Server Session – A server session is basically an instance of the game running on 

the server with a given set of properties so that it can be found and joined by players 

wanting to play the game. 

Source Control – Source control or version control is the practice of tracking, 

managing and merging changes to code. 

TArray – TArray is the Unreal Engine syntax of the array data structure. 

Turn-Based – Turn-based is a type of genre of game where players take turns when 

playing.  

 



   
 

83 | P a g e  
 
 

 

 

 

 

 9. Appendices 

 

Appendix A – Multiplayer Framework 
 

Link - https://github.com/animeshsharma1996/MbR-eSports-Multiplayer  

 

 

Figure 30. Framework Outline Image 

 

 

 

 

 

 

 

 

https://github.com/animeshsharma1996/MbR-eSports-Multiplayer


   
 

84 | P a g e  
 
 

 

 

 

 

 

Appendix B – Ethics Approval 
 

 

 



   
 

85 | P a g e  
 
 

 

 

 

 

 

Appendix C – Production Timeline 
 

The production timeline below highlights the keynotes recorded from meetings each week. 

The focus has been on the technical aspect of the development of the game. 

 
Week Notes Data Collection 

Week 1 Informed consent of all 

participants confirmed 

Introduction to the Team – 

• Multidimensional team with programmers, 

animator, artists, designers, and producer 

• 3 Programmers with good programming 

background and networking experience 

• 1 animator 

• 1 producer and designer 

• 1 sound producer and designer 

• 1 designer and level designer 

• 1 concept artist 

• 1 3D artist 

Week 2 Pitch and Project 

Commencement  

Game Style and Mechanics Proposal – 

• Turn-based MOBA style game 

• Characters/classes with different stats 

• Tile based character movement 

Week 3 Team introduced with 

framework and 

documentation 

Roles assigned for programming team (Main focus) – 

• Networking  

• Turn based mechanics 

Game start and to do – 

• Designed hex map basic version 

• Mechanic of player taking damage/doing 

damage 

• Dice roll RNG 

• Destroy Base and game end 

Week 4 Updated Project  Mechanics Implementation – 

• Synchronized movement on multiple clients 

• Grid creation for players to click on tiles to 

move 

• The horizontal movement is a priority over the 

vertical movement.  



   
 

86 | P a g e  
 
 

 

 

 

 

To do for the programmers – 

• Template for a player class with HP, attack, 

and movement.  

• Mechanic of base destruction leading to game 

over. 

• Setting up teams and turn-based system 

Week 5 Updated Project and 

More requirements for 

the framework 

Mechanics – 

• The programming team switched from C++ to 

Blueprints for faster production, compile time 

and less engine crashes 

• Movement code shifted to Blueprints 

Framework requirements – 

• In-game menu 

• Steam Friend’s session  

• Chat System 

Week 6 First Playable Demo Mechanics and Delivery – 

• Turn-based networking system  

• Team assignment to player and only one 

moves at a time 

• Instructions for playing the game 

Week 7 Core Mechanics 

(Replicated Turn-based 

Movement) 

Mechanics Implementation, Issues/Bugs and their 

fixing – 

• Clunky and incoherent turn-based replicated 

movement  

• Full game loop 

• A* pathfinding for correct tile movement 

• Combat System – Attack, damage intake and 

death 

• Project branches merging 

Week 8 Framework Update 1 Mechanics Implementation – 

• UI/UX assets 

• Integration of playing cards UI 

• Timer text 

Framework Features Implementation – 

• Steam friend sessions 

• In-game menu interface 

• End server session 

Week 9  Features pre-alpha Mechanics Implementation – 

• 4 Classes of characters 



   
 

87 | P a g e  
 
 

 

 

 

 

• Two players controlling four characters 

• RNG Dice Sprite 

• HUD 

• Environment map and 3D assets 

Week 10 Alpha Mechanics Implementation – 

• Fully functional A* path finding (with no issues) 

• Interactable features 

• Menus 

• Audio 

o SFX integration 

o Music integration 

o Directional sound integration 

Week 11  Framework Update 2 Mechanics Implementation and bug fixing– 

• Timer fix 

• Menu assets updated 

• Dice roll feature merged 

• Spawns feature updated 

• Tile by tile movement on client side 

• Tile color highlight mechanic 

Framework Features Implementation – 

• Chat system 

• Toxicity prevention system in chat 

• Fixing of end session bug due to player 

controller class 

Week 12 Beta Mechanics Implementation – 

• Integration of the updated framework (with chat 

system hidden) 

• Integration of full audio system 

• Integration of all art assets (UI assets, 

animations) 

• Implementation of 3D Dice to govern the turns  

Week 13 Final Framework 

Integration and Bug 

fixes 

Integration – 

• Integration of chat system with the main project 

• Integrating of fully functional in-game menu 

with correct end server session feature 

• Register/Unregister players in server session 

Bug Fixing -  



   
 

88 | P a g e  
 
 

 

 

 

 

• Fixing of bug involving client not being able to 

move or end turn for the game to progress 

further 

• Removal of 3D Dice from the game causing 

break in the game 

Week 14  Gold Master • Fully functional multiplayer game with 

networking features 

• Turn-based Game 

 

Table 2. Timeline Table 

 

Appendix D – Questionnaires 
 

Appendix D.1 Questionnaire before development 
 

1. PLEASE TICK BOX :  

2. I have read the above statements. 

Yes, I do consent 

I consent to take part in this study conducted   by 

ANIMESH SHARMA   who intend to   use my data for … 

I consent to take part in this study  conducted   by 

ANIMESH  SHARMA   who intend to   use screenshots … 



   
 

89 | P a g e  
 
 

 

 

 

 

 
 

 

3. Please enter your participant ID number. This will have been provided to you by the 

researcher. Please contact the researcher if you are unsure and before continuing. 

 

 

4. What type of degree programme are you studying for? 

 

5. I am confident that I understand how networked games are developed 

Yes 9 

BA / Arts programme (e.g. GDP,  … 6 

Bsc / Science programme (e.g. C … 3 

Other 0 



   
 

90 | P a g e  
 
 

 

 

 

 

 

 

 

6. I have knowledge of multiplayer architecture such as the client-server model. 

 
 

 

7. I understand the concept of game sessions and lobbies. 

 

Strongly agree 0 

Agree 1 

Neither agree nor disagree 3 

Disagree 3 

Strongly disagree 2 

Strongly agree 0 

Agree 2 

Neither agree nor disagree 0 

Disagree 2 

Strongly disagree 5 

Strongly agree 1 

Agree 2 

Neither agree nor disagree 2 

Disagree 3 

Strongly disagree 1 



   
 

91 | P a g e  
 
 

 

 

 

 

8. I understand the concept of replication. 

 

 

9. I understand the concept of RPCs (Remote Procedural Calls). 

 
 

 

 

10. I am familiar with how to develop games and content for online services such as Steam OSS, 

Epic Games OSS, etc. 

Strongly agree 1 

Agree 4 

Neither agree nor disagree 0 

Disagree 2 

Strongly disagree 2 

Strongly agree 0 

Agree 1 

Neither agree nor disagree 2 

Disagree 2 

Strongly disagree 4 



   
 

92 | P a g e  
 
 

 

 

 

 

 

11. I understand the concept of synchronous states such as Game States, Player States, etc. 

 

12. I am familiar with the issues with the development of multiplayer games such as high latency, 

disconnections, rubber-banding, etc. 

 
 

13. I am familiar with the types of servers such as dedicated servers, listen servers, etc. 

Strongly agree 1 

Agree 0 

Neither agree nor disagree 0 

Disagree 4 

Strongly disagree 4 

Strongly agree 0 

Agree 4 

Neither agree nor disagree 0 

Disagree 3 

Strongly disagree 2 

Strongly agree 0 

Agree 5 

Neither agree nor disagree 0 

Disagree 1 

Strongly disagree 3 



   
 

93 | P a g e  
 
 

 

 

 

 

 

 

14. I am familiar with object relevancy and priority (for example, players apart in large maps are 

irrelevant at long distances) 

 

15. I am familiar with the working and implementation of multicast RPCs. 

 

16. I have experience working with Unreal Engine 4 

Strongly agree 1 

Agree 4 

Neither agree nor disagree 0 

Disagree 2 

Strongly disagree 2 

Strongly agree 0 

Agree 2 

Neither agree nor disagree 2 

Disagree 1 

Strongly disagree 4 

Strongly agree 0 

Agree 1 

Neither agree nor disagree 1 

Disagree 1 

Strongly disagree 6 



   
 

94 | P a g e  
 
 

 

 

 

 

 

17. I have worked on blueprints in Unreal Engine 4. 

 

 

 

18. I understand the concept of source control. 

 

Strongly agree 5 

Agree 2 

Neither agree nor disagree 1 

Disagree 0 

Strongly disagree 1 

Strongly agree 4 

Agree 1 

Neither agree nor disagree 1 

Disagree 1 

Strongly disagree 2 

Strongly agree 3 

Agree 1 

Neither agree nor disagree 3 

Disagree 1 

Strongly disagree 1 



   
 

95 | P a g e  
 
 

 

 

 

 

 

19. Have you published a single player game on a games platform? List all that apply 

 

20. Have you published a multiplayer game on a games platform? List all that apply 

 
 

Appendix D.2 Questionnaire after development 
 

9 

Responses 

04:29 

Average time to complete 

Active 

Status 

 

1. PLEASE TICK BOX :  

 Yes, I do consent 

Online store such as Itch.io 0 

Steam 0 

Epic Games Store 0 

Other 9 

Online store such as Itch.io 0 

Steam 0 

Epic Games Store 0 

Other 9 



   
 

96 | P a g e  
 
 

 

 

 

 

 

2. I have read the above statement. 

 

3. Please enter your participant ID number. This will have been provided to you by the 

researcher. Please contact the researcher if you are unsure and before continuing. 

Latest Responses 

 9 "6" 

 Responses "1900655" 

"7" 

 

4. What type of degree programme are you studying for? 

 

I consent to take part in this study conducted   by 

ANIMESH SHARMA   who intend to   use my data for … 

Yes 9 

BA / Arts programme (e.g. GDP,  … 5 

Bsc / Science programme (e.g. C … 2 

Other 2 



   
 

97 | P a g e  
 
 

 

 

 

 

5. I am confident that I understand how networked games are developed 

 

6. I have knowledge of multiplayer architecture such as the client-server model. 

 

 

 

7. I understand the concept of game sessions and lobbies. 

Strongly agree 0 

Agree 5 

Neither agree nor disagree 1 

Disagree 2 

Strongly disagree 1 

Strongly agree 2 

Agree 2 

Neither agree nor disagree 2 

Disagree 1 

Strongly disagree 2 



   
 

98 | P a g e  
 
 

 

 

 

 

 
 

 

 

8. I understand the concept of replication. 

 

9. I understand the concept of RPCs (Remote Procedural Calls). 

 

10. I am familiar with how to develop games and content for online services such as Steam OSS, 

Epic Games OSS, etc. 

Strongly agree 2 

Agree 5 

Neither agree nor disagree 2 

Disagree 0 

Strongly disagree 0 

Strongly agree 3 

Agree 1 

Neither agree nor disagree 1 

Disagree 4 

Strongly disagree 0 

Strongly agree 2 

Agree 2 

Neither agree nor disagree 0 

Disagree 1 

Strongly disagree 4 



   
 

99 | P a g e  
 
 

 

 

 

 

 
 

 

 

11. I understand the concept of synchronous states such as Game States, Player States, etc. 

 

12. I am familiar with the issues with the development of multiplayer games such as high latency, 

disconnections, rubber-banding, client FPS drops, etc. 

 

13. I am familiar with the types of servers such as dedicated servers, listen servers, etc. 

Strongly agree 1 

Agree 3 

Neither agree nor disagree 3 

Disagree 2 

Strongly disagree 0 

Strongly agree 2 

Agree 2 

Neither agree nor disagree 2 

Disagree 3 

Strongly disagree 0 

Strongly agree 1 

Agree 5 

Neither agree nor disagree 0 

Disagree 1 

Strongly disagree 2 



   
 

100 | P a g e  
 
 

 

 

 

 

 
 

 

14. I am familiar with object relevancy and priority (for example, players apart in large maps are 

irrelevant at long distances) 

 

15. I am familiar with the working and implementation of multicast RPCs. 

 

 

16. I have experience working with Unreal Engine 4 

Strongly agree 2 

Agree 3 

Neither agree nor disagree 3 

Disagree 0 

Strongly disagree 1 

Strongly agree 2 

Agree 2 

Neither agree nor disagree 2 

Disagree 3 

Strongly disagree 0 

Strongly agree 1 

Agree 3 

Neither agree nor disagree 0 

Disagree 4 

Strongly disagree 1 



   
 

101 | P a g e  
 
 

 

 

 

 

 
 

 

 

17. I have worked on blueprints in Unreal Engine 4. 

 

18. I understand the concept of source control. 

 

 

19. Have you published a multiplayer game on a games platform? List all that apply 

Strongly agree 6 

Agree 1 

Neither agree nor disagree 2 

Disagree 0 

Strongly disagree 0 

Strongly agree 6 

Agree 0 

Neither agree nor disagree 0 

Disagree 1 

Strongly disagree 2 

Strongly agree 3 

Agree 4 

Neither agree nor disagree 1 

Disagree 0 

Strongly disagree 1 



   
 

102 | P a g e  
 
 

 

 

 

 

 

 

20. The framework has greatly assisted in the development of the game. 

 

21. How adequate has the framework been for the development of the game 

 

 

22. Is there anything missing from the framework?   

Would you have any extra features included in the framework? 

Online store such as Itch.io 3 

Steam 1 

Epic Games Store 0 

Other 5 

Strongly agree 2 

Agree 2 

Neither agree nor disagree 5 

Disagree 0 

Strongly disagree 0 

Greatly adequate 0 

Moderately adequate 4 

Neither adequate nor inadequate 5 

Moderately inadequate 0 

Greatly inadequate 0 



   
 

103 | P a g e  
 
 

 

 

 

 

Latest Responses (9 Responses) 

"I am a 3D artist and I have no knowledge of how the framework works.” 

"No opinions " 

"I’m not sure." 

“As 2D artist I know nothing about this topic”. 

“Unsure” 

“Perhaps a lobby screen allowing players to ready up before starting the game”. 

“No” 

“Maybe a little extra documentation but with Animesh's hands on approach with the team  

we didn't need to look back on the documentation”. 

“No” 

 

 
 

 

 

  



   
 

104 | P a g e  
 
 

 

 

 

 

Appendix D.3 Testers Questionnaire 
 

 

1. PLEASE TICK BOX :  

2. I have read the above statements. 

 

3. How user friendly is the overall structure of the multiplayer features in this game? 

 

Yes 6 

Very user friendly 1 

Somewhat  user friendly 3 

Neutral 1 

Not user friendly 1 

Not very user friendly 0 

Yes, I do consent 

I consent to take part in this study conducted   by 

ANIMESH SHARMA   who intend to   use my data for … 

I consent to take part in this study conducted   by 

ANIMESH SHARMA   who intend to   use response … 



   
 

105 | P a g e  
 
 

 

 

 

 

4. How convenient is it to host sessions in this game? 

 

5. How convenient is it to join sessions in this game? 

 

6. How convenient is it to use the friend's sessions feature in this game? 

 

 

 

Very convenient 2 

Somewhat convenient 3 

Neither convenient nor inconve … 0 

Somewhat inconvenient 1 

Very inconvenient 0 

Very convenient 3 

Somewhat convenient 2 

Neither convenient nor inconve … 0 

Somewhat inconvenient 0 

Very inconvenient 1 

Very convenient 2 

Somewhat convenient 2 

Neither convenient nor inconve … 2 

Somewhat inconvenient 0 

Very inconvenient 0 



   
 

106 | P a g e  
 
 

 

 

 

 

7. How convenient is it to use the steam support feature in this game? 

 

8. How convenient is it to use the in-game menu in this game? 

 

9. How smooth is the player experience traversing through the menus to host/join/leave 

session? 

 

 

 

Very convenient 3 

Somewhat convenient 2 

Neither convenient nor inconve … 0 

Somewhat inconvenient 1 

Very inconvenient 0 

Very convenient 2 

Somewhat convenient 2 

Neither convenient nor inconve … 1 

Somewhat inconvenient 1 

Very inconvenient 0 

Very smooth 2 

Somewhat smooth 4 

Neither convenient nor clunky 0 

Somewhat clunky 0 

Very clunky 0 



   
 

107 | P a g e  
 
 

 

 

 

 

10. How easy is it to use the chat system? 

 

11. Does the chat system hinder the gameplay experience? 

 

12. Do you feel if there is a need to improve the multiplayer framework in this game?  

Latest Responses (6 responses) 

"Check below" 

"Ability to generate random names and bot players." 

"No " 

"No, it’s enough”. 

“Yes, the game needs a bit of a debug just to get things running smooth.” 

"I am not a programmer and therefore I have no knowledge of the technical aspects.” 

 

 

 

 

 

 

Extremely easy 3 

Somewhat easy 1 

Neutral 2 

Somewhat difficult 0 

Extremely difficult 0 

Yes 0 

No 4 

Maybe 2 



   
 

108 | P a g e  
 
 

 

 

 

 

 

 

13. Do you have any feedback for the game?  

Latest Responses (6 responses) 

"The art style of the game could definitely be improved.” 

"Yes I do." 

“Play dragon-age inquisition and it will help you see all the things this game lacks”. 

 

“Health bar graphics look odd to me; I would make them somewhat prettier than a red       bar. 

Game should tell when it’s your turn and the opponents turn because it gets confusing at times 

whose turn it is. Game joining and hosting system really buggy atm. after attacking I kept 

forwarding and I kept missing my last character’s turn.” 

 

“There are a few bugs within the game itself: -an extra ralpie character model would sometimes 

appear in the water area, 2 appeared in a game I played. -attacking with a character and pressing 

the green skip button while the character was in an attack animation would skip the next 

characters turn. -clicking on tiles through characters would not work. some feedback on overall UI 

and mechanics: -clicking characters cards to select them would be nice. -character movement and 

attack range could need explaining better e.g., is the attack range the tile your character is on +1 

+2?” 

“The game needs a bit of a de bug because sometimes it skips your turn. Having a more clear 

character selection would be an advantage, as the green arrows can make you skip your turn easily 

if pressed more than once. Having an attack button on the screen would also be an advantage 

because sometimes when trying to attack you will move instead. The game is overall quite good, 

and I enjoyed the concept of it, also the sound effects are good/funny and add to the experience. I 

believe this would be a really cool game when some of the bugs are sorted out. I also like the fact 

that if you are too toxic in the chat, it will kick you out of the game to help people have a more 

positive experience. Thanks for the chance to see it! Houdini” 

 

                            

 
 

 

Appendix E – Multiplayer Game Artefact 
 

Link - https://stormynightgames.itch.io/land-of-morphie  

https://stormynightgames.itch.io/land-of-morphie


   
 

109 | P a g e  
 
 

 

 

 

 

 

 

Figure 31. Online Game Artefact – Land of Morphie 

 

 

 

 

 

 

 

 

 

  



   
 

110 | P a g e  
 
 

 

 

 

 

 

10. References 
 

Agrahari, V. and Chimalakonda, S. (2020) ‘Refactor4Green: A Game for Novice 

Programmers to Learn Code Smells’, in Proceedings of the ACM/IEEE 42nd 

International Conference on Software Engineering: Companion Proceedings. New 

York, NY, USA: Association for Computing Machinery (ICSE ’20), pp. 324–325. 

Available at: https://doi.org/10.1145/3377812.3390792. 

Al-azawi, R., Ayesh, A. and Obaidy, M.Al. (2014) ‘Towards Agent-based Agile 
approach for Game Development Methodology’, in 2014 World Congress on 
Computer Applications and Information Systems (WCCAIS). 2014 World Congress 
on Computer Applications and Information Systems (WCCAIS), pp. 1–6. Available 
at: https://doi.org/10.1109/WCCAIS.2014.6916626. 

American Psychological Association (2010) ‘Violent video games may increase 

aggression in some but not others, says new research’, American Psychological 

Association [Preprint]. Available at: 

https://www.apa.org/news/press/releases/2010/06/violent-video-games.  

Apple Developer (2016) Turn-Based Matches, Game Center Programming Guide. 

Available at: 

https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conce

ptual/GameKit_Guide/ImplementingaTurn-BasedMatch/ImplementingaTurn-

BasedMatch.html#//apple_ref/doc/uid/TP40008304-CH15-SW30 (Accessed: 25 

October 2021). 

Arora, S. (2021) ‘Unity vs Unreal Engine: Which Game Engine Should You Choose?, 

Hackr.io’. Available at: https://hackr.io/blog/unity-vs-unreal-engine (Accessed: 15 

December 2021). 

Azmi, M. (2016) ‘Developing Game Based on Historical Event with RPG Maker MV’, 

in International Conference on Learning Innovation and Quality Education. 

Bachu, E. and Bernard, M. (2012) ‘An Online Multiplayer Game for Collaborative 
Problem Solving’, Semantic Scholar [Preprint]. Available at: 
https://www.semanticscholar.org/paper/An-Online-Multiplayer-Game-for-
Collaborative-Bachu/55685f1d463df3f58196b54e569ecddf431ef6b2 (Accessed: 7 
January 2023). 

https://doi.org/10.1145/3377812.3390792
https://doi.org/10.1109/WCCAIS.2014.6916626
https://www.apa.org/news/press/releases/2010/06/violent-video-games
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/GameKit_Guide/ImplementingaTurn-BasedMatch/ImplementingaTurn-BasedMatch.html#//apple_ref/doc/uid/TP40008304-CH15-SW30
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/GameKit_Guide/ImplementingaTurn-BasedMatch/ImplementingaTurn-BasedMatch.html#//apple_ref/doc/uid/TP40008304-CH15-SW30
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/GameKit_Guide/ImplementingaTurn-BasedMatch/ImplementingaTurn-BasedMatch.html#//apple_ref/doc/uid/TP40008304-CH15-SW30
https://hackr.io/blog/unity-vs-unreal-engine
https://www.semanticscholar.org/paper/An-Online-Multiplayer-Game-for-Collaborative-Bachu/55685f1d463df3f58196b54e569ecddf431ef6b2
https://www.semanticscholar.org/paper/An-Online-Multiplayer-Game-for-Collaborative-Bachu/55685f1d463df3f58196b54e569ecddf431ef6b2


   
 

111 | P a g e  
 
 

 

 

 

 

Basuroy, T. (2022) India - value of the gaming industry 2007-2022, Statista. 

Available at: https://www.statista.com/statistics/235850/value-of-the-gaming-industry-

in-india/ (Accessed: 15 June 2022). 

Blow, J. (2004) ‘Game Development: Harder Than You Think: Ten or twenty years 
ago it was all fun and games. Now it’s blood, sweat, and code.’, Queue, 1(10), pp. 
28–37. Available at: https://doi.org/10.1145/971564.971590. 

Boyd, R.A. and Barbosa, S.E. (2017) ‘Reinforcement Learning for All: An 

Implementation Using Unreal Engine Blueprint’, in, pp. 787–792. Available at: 

https://doi.org/10.1109/CSCI.2017.136. 

Buckley, D. (2021) ‘Unity vs. Unreal – Choosing a Game Engine’. Available at: 

https://gamedevacademy.org/unity-vs-unreal/ (Accessed: 28 June 2021). 

Burleson, H. (2021) ‘Unity vs. Unreal Engine 2022—Which is Better?, Rigor Mortis 

Tortoise’. Available at: https://www.rigormortistortoise.com/unity-vs-unreal-which-is-

better-2022/ (Accessed: 15 December 2021). 

Bycer, J. (2019) ‘Asymmetrical Game Design, SUPERJUMP’, 25 February. Available 

at: https://medium.com/super-jump/asymmetrical-game-design-2d3ccbc2b4ab 

(Accessed: 8 September 2021). 

C.D.W. (2021) History of Esports. Available at: 

https://www.cdw.com/content/cdw/en/articles/hardware/history-of-esports.html 

(Accessed: 7 December 2021). 

Chahat (2020) ‘The Evolution of Multiplayer Mobile Games - Game App Studio’, 6 

July. Available at: https://gameappstudio.com/the-evolution-of-multiplayer-mobile-

games/ (Accessed: 19 July 2021). 

Chen, T.T. (2015) ‘Online Games: Research Perspective and Framework’, 

Computers in Entertainment [Preprint]. Available at: 

https://doi.org/10.1145/2582193.2633445. 

Chikhani, R. (2015) ‘The History Of Gaming: An Evolving Community, TechCrunch’. 

Available at: https://social.techcrunch.com/2015/10/31/the-history-of-gaming-an-

evolving-community/ (Accessed: 7 July 2021). 

Clement, J. (2021) COVID-19 impact on multiplayer video games 2020, Statista. 

Available at: https://www.statista.com/statistics/1188549/covid-gaming-multiplayer/ 

(Accessed: 15 June 2022). 

Clement, J. (2022) Online gaming - statistics & facts, Statista. Available at: 

https://www.statista.com/topics/1551/online-gaming/ (Accessed: 1 June 2022). 

https://www.statista.com/statistics/235850/value-of-the-gaming-industry-in-india/
https://www.statista.com/statistics/235850/value-of-the-gaming-industry-in-india/
https://doi.org/10.1145/971564.971590
https://doi.org/10.1109/CSCI.2017.136
https://gamedevacademy.org/unity-vs-unreal/
https://www.rigormortistortoise.com/unity-vs-unreal-which-is-better-2022/
https://www.rigormortistortoise.com/unity-vs-unreal-which-is-better-2022/
https://medium.com/super-jump/asymmetrical-game-design-2d3ccbc2b4ab
https://www.cdw.com/content/cdw/en/articles/hardware/history-of-esports.html
https://gameappstudio.com/the-evolution-of-multiplayer-mobile-games/
https://gameappstudio.com/the-evolution-of-multiplayer-mobile-games/
https://doi.org/10.1145/2582193.2633445
https://social.techcrunch.com/2015/10/31/the-history-of-gaming-an-evolving-community/
https://social.techcrunch.com/2015/10/31/the-history-of-gaming-an-evolving-community/
https://www.statista.com/statistics/1188549/covid-gaming-multiplayer/
https://www.statista.com/topics/1551/online-gaming/


   
 

112 | P a g e  
 
 

 

 

 

 

Darby, J. (2011) Wizards and Warriors: Massively Multiplayer Online Game 

Creation. Boston, UNITED STATES: Course Technology. Available at: 

http://ebookcentral.proquest.com/lib/abertay/detail.action?docID=3136474. 

Donlon, A. and Ziegler, J. (2020) ‘04: ON PEEKER’S ADVANTAGE & RANKED’, 04: 

ON PEEKER’S ADVANTAGE & RANKED, 13 May. Available at: 

https://playvalorant.com/en-us/news/game-updates/04-on-peeker-s-advantage-

ranked/ (Accessed: 21 December 2021). 

Eden, M. (2020) ‘Top 5 Back-End Solutions For Multiplayer Games, Melior Games’, 

Melior Games. Available at: https://meliorgames.com/game-development/back-end-

solutions-multiplayer-games/ (Accessed: 15 September 2021). 

e-Sports Earnings (2022) Leading eSports games worldwide in 2021, by cumulative 

tournament prize pool (in million U.S. dollars). Statista, Statista. Statista. Available 

at: https://www.statista.com/statistics/501853/leading-esports-games-worldwide-

total-prize-pool/ (Accessed: 22 July 2022). 

Esports Insider (2022) ‘Esports Around The World: India’, ESI Esports Insider, 29 

March. Available at: https://esportsinsider.com/2022/03/esports-around-the-world-

india/ (Accessed: 15 June 2022). 

Eugene Public Library (2021) All Guides: Game Design and Development: Game 

Engines, Eugene Public Library. Available at: 

https://eugene.libguides.com/gamedesign/engines (Accessed: 28 October 2021). 

Fiedler, G. (2018) What Every Programmer Needs To Know About Game 
Networking | Gaffer On Games. Available at: 
https://web.archive.org/web/20180823014024/https://gafferongames.com/post/what_
every_programmer_needs_to_know_about_game_networking/ (Accessed: 7 
January 2023). 

Forehand, R. et al. (2014) ‘Evolution of Multiplayer’. Available at: 

https://web.cse.ohio-

state.edu/~crawfis.3/cse5912/ReferenceMaterial/TechTeams/2014/EvolutioMultiplay

er.pdf (Accessed: 30 August 2021). 

Forsythe, A. (2021) Blueprints vs. C++, Alex Forsythe. Available at: 

http://awforsythe.com/unreal/blueprints_vs_cpp/#perf_comparison (Accessed: 7 

August 2021). 

Freiknecht, J. et al. (2016) Game Engines. Springer, Cham. Available at: https://link-

springer-com.libproxy.abertay.ac.uk/chapter/10.1007/978-3-319-40612-1_6 

(Accessed: 28 June 2022). 

http://ebookcentral.proquest.com/lib/abertay/detail.action?docID=3136474
https://playvalorant.com/en-us/news/game-updates/04-on-peeker-s-advantage-ranked/
https://playvalorant.com/en-us/news/game-updates/04-on-peeker-s-advantage-ranked/
https://meliorgames.com/game-development/back-end-solutions-multiplayer-games/
https://meliorgames.com/game-development/back-end-solutions-multiplayer-games/
https://www.statista.com/statistics/501853/leading-esports-games-worldwide-total-prize-pool/
https://www.statista.com/statistics/501853/leading-esports-games-worldwide-total-prize-pool/
https://esportsinsider.com/2022/03/esports-around-the-world-india/
https://esportsinsider.com/2022/03/esports-around-the-world-india/
https://eugene.libguides.com/gamedesign/engines
https://web.archive.org/web/20180823014024/https:/gafferongames.com/post/what_every_programmer_needs_to_know_about_game_networking/
https://web.archive.org/web/20180823014024/https:/gafferongames.com/post/what_every_programmer_needs_to_know_about_game_networking/
https://web.cse.ohio-state.edu/~crawfis.3/cse5912/ReferenceMaterial/TechTeams/2014/EvolutioMultiplayer.pdf
https://web.cse.ohio-state.edu/~crawfis.3/cse5912/ReferenceMaterial/TechTeams/2014/EvolutioMultiplayer.pdf
https://web.cse.ohio-state.edu/~crawfis.3/cse5912/ReferenceMaterial/TechTeams/2014/EvolutioMultiplayer.pdf
http://awforsythe.com/unreal/blueprints_vs_cpp/#perf_comparison
https://link-springer-com.libproxy.abertay.ac.uk/chapter/10.1007/978-3-319-40612-1_6
https://link-springer-com.libproxy.abertay.ac.uk/chapter/10.1007/978-3-319-40612-1_6


   
 

113 | P a g e  
 
 

 

 

 

 

Game Ace (2021) How to Make a Multiplayer Game in Unreal Engine, Game-Ace, 

Game-Ace. Available at: https://game-ace.com/blog/multiplayer-game-in-unreal/ 

(Accessed: 10 September 2021). 

GameMaker (2021) GameMaker Subscriptions Products, GameMaker. Available at: 

https://gamemaker.io/en/get (Accessed: 15 August 2021). 

Gamibt (2021) OnlineSubsystemNull | Unreal Engine Community Wiki, Unreal 

Engine Community Wiki. Available at: https://unrealcommunity.wiki/online-

multiplayer-vkje2zyn (Accessed: 29 November 2021). 

Gamma, E. et al. (1994) Design Patterns: Elements of Reusable Object-Oriented 

Software. Addison-Wesley Professional. 

Geyser, W. (2022) The Incredible Growth of eSports [+ eSports Statistics], Influencer 

Marketing Hub. Available at: https://influencermarketinghub.com/esports-stats/ 

(Accessed: 15 June 2022). 

Gough, C. (2022) Worldwide eSports viewer numbers 2020-2025, by type, Statista. 

Available at: https://www.statista.com/statistics/490480/global-esports-audience-

size-viewer-type/ (Accessed: 31 July 2022). 

Gupta, A. (2022) ‘The Rise of the Indian Gaming Market - Deep Dive’, Product 

Growth, 4 April. Available at: https://www.aakashg.com/2022/04/04/rise-of-the-

indian-gaming-market/ (Accessed: 7 July 2022). 

Hawkins, B. (2020) ‘Watch FIFA 20 ePL best bits as Liverpool ace loses final to 

Wolves star’, talkSPORT, 27 April. Available at: 

https://talksport.com/football/699487/epremier-league-invitational-liverpool-esports/ 

(Accessed: 8 July 2022). 

Hunt, L. (2021) ‘C++ Modular Menu System’. Available at: 

https://github.com/lhurt51/UE4-CppMenuSystem (Accessed: 16 November 2021). 

Ignatchenko, S. (2016) Unity 5 vs UE4 vs Photon vs DIY for MMO, IT Hare on 

Soft.ware, IT Hare on Soft.ware. Available at: http://ithare.com/unity-5-vs-ue4-vs-

photon-vs-diy-for-mmo/ (Accessed: 30 August 2021). 

Jansz, J. and Martens, L. (2016) ‘Gaming at a LAN event: the social context of 

playing video games’, New Media & Society [Preprint]. Available at: 

https://doi.org/10.1177/1461444805052280. 

Jesper, J. (2007) ‘Without a Goal: on open and expressive games’, in Videogame, 

Player, Text. Manchester University Press, pp. 191–203. Available at: 

https://www.jesperjuul.net/text/withoutagoal/ (Accessed: 26 August 2021). 

https://game-ace.com/blog/multiplayer-game-in-unreal/
https://gamemaker.io/en/get
https://unrealcommunity.wiki/online-multiplayer-vkje2zyn
https://unrealcommunity.wiki/online-multiplayer-vkje2zyn
https://influencermarketinghub.com/esports-stats/
https://www.statista.com/statistics/490480/global-esports-audience-size-viewer-type/
https://www.statista.com/statistics/490480/global-esports-audience-size-viewer-type/
https://www.aakashg.com/2022/04/04/rise-of-the-indian-gaming-market/
https://www.aakashg.com/2022/04/04/rise-of-the-indian-gaming-market/
https://talksport.com/football/699487/epremier-league-invitational-liverpool-esports/
https://github.com/lhurt51/UE4-CppMenuSystem
http://ithare.com/unity-5-vs-ue4-vs-photon-vs-diy-for-mmo/
http://ithare.com/unity-5-vs-ue4-vs-photon-vs-diy-for-mmo/
https://doi.org/10.1177/1461444805052280
https://www.jesperjuul.net/text/withoutagoal/


   
 

114 | P a g e  
 
 

 

 

 

 

Jetsonen, T. (2016) Development of online game prototype with Unity engine. JAMK 

University of Applied Sciences. Available at: 

https://www.theseus.fi/bitstream/handle/10024/108970/Jetsonen_Timo.pdf;jsessionid

=D18B711D79BDDC0274181B7A8EABF826?sequence=1 (Accessed: 9 September 

2021). 

Jones, P.K. (2022) ‘Diogo Jota laughs as Man United are knocked out of the FA Cup 

whilst he plays FIFA on Twitch’, The Empire of The Kop, 5 February. Available at: 

https://www.empireofthekop.com/2022/02/05/video-diogo-jota-laughs-as-man-united-

are-knocked-out-of-the-fa-cup-whilst-he-plays-fifa-on-twitch/ (Accessed: 4 June 

2022). 

Kagedesu, P. (2018) ‘Alpha NET [MV] – KageDesu Workshop’, 6 March. Available 

at: https://kdworkshop.net/plugins/alpha-net/ (Accessed: 27 June 2022). 

Karhulahti, V.-M. and Grabarczyk, P. (2021) ‘Split-Screen: Videogame History 

Through Local Multiplayer Design’, Design Issues, pp. 32–44. Available at: 

https://doi.org/10.1162/desi_a_00634. 

Kelly, T. (2011) Opinion: Synchronous or Asynchronous Gameplay, Game 

Developer. Available at: https://www.gamedeveloper.com/design/opinion-

synchronous-or-asynchronous-gameplay (Accessed: 8 August 2021). 

Khaleel, F.L. et al. (2017) ‘Gamification-based learning framework for a programming 
course’, in 2017 6th International Conference on Electrical Engineering and 
Informatics (ICEEI). 2017 6th International Conference on Electrical Engineering and 
Informatics (ICEEI), pp. 1–6. Available at: 
https://doi.org/10.1109/ICEEI.2017.8312377. 

Khromov, N. et al. (2018) ‘Esports Athletes and Players: A Comparative Study’, IEEE 

Pervasive Computing, 18(3), pp. 31–39. Available at: 

https://doi.org/10.1109/MPRV.2019.2926247. 

Kritskiy, D. et al. (2022) ‘Development of a Collaborative Platform for Education in 

Virtual Reality’, in Integrated Computer Technologies in Mechanical Engineering - 

2021. Springer, Cham. Available at: https://doi.org/10.1007/978-3-030-94259-5_25. 

Lawless, J. (2020) Sergio Aguero’s Reaction To Missing A Chance With Himself On 

FIFA Is Priceless. Available at: https://www.sportbible.com/football/news-sergio-

agueros-reaction-to-missing-a-chance-with-himself-on-fifa-20200426 (Accessed: 14 

August 2021). 

Lee, S.W.K. and Chang, R.K.C. (2018) ‘Enhancing the experience of multiplayer 

shooter games via advanced lag compensation’, in Proceedings of the 9th ACM 

https://www.theseus.fi/bitstream/handle/10024/108970/Jetsonen_Timo.pdf;jsessionid=D18B711D79BDDC0274181B7A8EABF826?sequence=1
https://www.theseus.fi/bitstream/handle/10024/108970/Jetsonen_Timo.pdf;jsessionid=D18B711D79BDDC0274181B7A8EABF826?sequence=1
https://www.empireofthekop.com/2022/02/05/video-diogo-jota-laughs-as-man-united-are-knocked-out-of-the-fa-cup-whilst-he-plays-fifa-on-twitch/
https://www.empireofthekop.com/2022/02/05/video-diogo-jota-laughs-as-man-united-are-knocked-out-of-the-fa-cup-whilst-he-plays-fifa-on-twitch/
https://kdworkshop.net/plugins/alpha-net/
https://doi.org/10.1162/desi_a_00634.
https://www.gamedeveloper.com/design/opinion-synchronous-or-asynchronous-gameplay
https://www.gamedeveloper.com/design/opinion-synchronous-or-asynchronous-gameplay
https://doi.org/10.1109/ICEEI.2017.8312377
https://doi.org/10.1109/MPRV.2019.2926247
https://doi.org/10.1007/978-3-030-94259-5_25
https://www.sportbible.com/football/news-sergio-agueros-reaction-to-missing-a-chance-with-himself-on-fifa-20200426
https://www.sportbible.com/football/news-sergio-agueros-reaction-to-missing-a-chance-with-himself-on-fifa-20200426


   
 

115 | P a g e  
 
 

 

 

 

 

Multimedia Systems Conference. New York, NY, USA: Association for Computing 

Machinery (MMSys ’18). Available at: https://doi.org/10.1145/3204949.3204971. 

Lemarchand, R. (2021) A Playful Production Process: For Game Designers (and 

Everyone). Cambridge, MA, USA: MIT Press. Available at: 

https://mitpress.mit.edu/books/playful-production-process. 

Levchenko, B., Chukhray, A. and Chumachenko, D. (2020) ‘Development of Game 

Modules with Support for Synchronous Multiplayer Based on Unreal Engine 4 Using 

Artificial Intelligence Approach’, in Integrated Computer Technologies in Mechanical 

Engineering. Springer, Cham. Available at: https://doi.org/10.1007/978-3-030-37618-

5_43. 

Liniestsky, J., Manzur, A. and Godot community (2019) ‘Godot Engine 

Documentation Release 2.1’. Available at: 

https://www.academia.edu/42256850/Godot_Engine_Documentation_Release_latest 

(Accessed: 12 July 2022). 

Madhav, S. and Glazer, J. (2015) Multiplayer Game Programming: Architecting 

Networked Games. 1st edn. Addison-Wesley Professional. Available at: 

https://www.informit.com/store/multiplayer-game-programming-architecting-

networked-

9780134034300?w_ptgrevartcl=Overview+of+Networked+Games_2461064 

(Accessed: 29 June 2022). 

Marín-Vega, H. et al. (2016) ‘Analyzing Proprietary Games Engines for Developing 

Educational and Serious Games’, Research in Computing Science [Preprint]. 

Available at: https://doi.org/10.13053/rcs-129-1-3. 

Markov, R. (2022) Most watched esports disciplines in 2021, Esports Charts. 

Available at: https://escharts.com/news/most-watched-esports-disciplines-2021 

(Accessed: 28 May 2022). 

Matt (2019) ‘Multiplayer Sessions in Unreal Engine 4’, Couch Learn, 31 July. 

Available at: https://couchlearn.com/multiplayer-sessions-in-your-unreal-engine-4-

game/ (Accessed: 18 September 2021). 

McEachen, J.C. (2004) ‘A Self-Similarity Traffic Analysis of an Internet-Based 

Multiplayer Online Game’, in Proceedings of 3rd ACM SIGCOMM Workshop on 

Network and System Support for Games. New York, NY, USA: Association for 

Computing Machinery (NetGames ’04), p. 170. Available at: 

https://doi.org/10.1145/1016540.1016565. 

https://doi.org/10.1145/3204949.3204971
https://mitpress.mit.edu/books/playful-production-process
https://doi.org/10.1007/978-3-030-37618-5_43
https://doi.org/10.1007/978-3-030-37618-5_43
https://www.academia.edu/42256850/Godot_Engine_Documentation_Release_latest
https://www.informit.com/store/multiplayer-game-programming-architecting-networked-9780134034300?w_ptgrevartcl=Overview+of+Networked+Games_2461064
https://www.informit.com/store/multiplayer-game-programming-architecting-networked-9780134034300?w_ptgrevartcl=Overview+of+Networked+Games_2461064
https://www.informit.com/store/multiplayer-game-programming-architecting-networked-9780134034300?w_ptgrevartcl=Overview+of+Networked+Games_2461064
https://doi.org/10.13053/rcs-129-1-3
https://escharts.com/news/most-watched-esports-disciplines-2021
https://couchlearn.com/multiplayer-sessions-in-your-unreal-engine-4-game/
https://couchlearn.com/multiplayer-sessions-in-your-unreal-engine-4-game/
https://doi.org/10.1145/1016540.1016565


   
 

116 | P a g e  
 
 

 

 

 

 

Media CBL (2021) ‘Menu Widgets & C++’, CBL Media. Available at: 

https://mediacbl.com/menu-widget-unreal-engine/ (Accessed: 7 December 2021). 

Metahusk (2016) Community Project | Cardinal Menu System Instructions, Help, and 

Discussion | Metahusk’s Community Discussion, Metahusk. Available at: 

https://community.metahusk.com/topic/26/community-project-cardinal-menu-system-

instructions-help-and-discussion (Accessed: 16 September 2021). 

Mirowski, A. and Harper, B.P. (2019) ‘Elements of Infrastructure Demand in 

Multiplayer Video Games’, Media and Communication, 7(4), pp. 237–246. Available 

at: https://doi.org/10.17645/mac.v7i4.2337. 

Morgan, G. (2009) ‘Challenges of Online Game Development: A Review’, Simulation 

& Gaming, 40(5). Available at: https://doi.org/10.1177/1046878109340295. 

Murray, S. (2021) Unity Will Support Nvidia DLSS Natively By The End Of 2021, 

TheGamer. Available at: https://www.thegamer.com/unity-dlss-support-nvidia-2021/ 

(Accessed: 28 August 2021). 

Neukirchen, C. (2021) ‘UE4 Multiplayer Sessions in C++’, An Unreal Engine Blog, 27 

June. Available at: https://cedric-neukirchen.net/2021/06/27/ue4-multiplayer-

sessions-in-c/ (Accessed: 18 November 2021). 

Newzoo (2022) eSports market revenue worldwide from 2019 to 2025 (in million U.S. 

dollars), Statista. Available at: https://www.statista.com/statistics/490522/global-

esports-market-revenue/ (Accessed: 29 July 2022). 

Olsson, K. (2015) ‘Unreal engine and Online Multiplayer with the OnlineSubSystem’, 

Madebykrol, 21 May. Available at: 

https://madebykrol.wordpress.com/2015/05/21/unreal-engine-and-online-multiplayer/ 

(Accessed: 11 November 2021). 

Opera Team (2021) Meet GXC, the new gaming platform that lets you play and 

compete for weekly prize challenges directly in Opera GX, Opera Desktop. Available 

at: https://blogs.opera.com/desktop/2021/11/gxc-open-beta/ (Accessed: 19 

December 2021). 

Pearce, C. and Artemesia (2009) Communities of play: emergent cultures in 

multiplayer games and virtual worlds. Cambridge, Mass: MIT Press. 

Photon (2021a) Multiplayer Game Development Made Easy | Photon Engine. 

Available at: https://www.photonengine.com/en-US/Photon (Accessed: 28 August 

2021). 

https://mediacbl.com/menu-widget-unreal-engine/
https://community.metahusk.com/topic/26/community-project-cardinal-menu-system-instructions-help-and-discussion
https://community.metahusk.com/topic/26/community-project-cardinal-menu-system-instructions-help-and-discussion
https://doi.org/10.17645/mac.v7i4.2337
https://doi.org/10.1177/1046878109340295
https://www.thegamer.com/unity-dlss-support-nvidia-2021/
https://cedric-neukirchen.net/2021/06/27/ue4-multiplayer-sessions-in-c/
https://cedric-neukirchen.net/2021/06/27/ue4-multiplayer-sessions-in-c/
https://www.statista.com/statistics/490522/global-esports-market-revenue/
https://www.statista.com/statistics/490522/global-esports-market-revenue/
https://madebykrol.wordpress.com/2015/05/21/unreal-engine-and-online-multiplayer/
https://blogs.opera.com/desktop/2021/11/gxc-open-beta/
https://www.photonengine.com/en-US/Photon


   
 

117 | P a g e  
 
 

 

 

 

 

Photon (2021b) Photon Realtime Pricing Plans | Photon Engine. Available at: 

https://www.photonengine.com/en-US/Realtime/Pricing (Accessed: 28 August 2021). 

PocketGamerbiz (2021) eSports market revenue worldwide in 2021, by region (in 

million U.S. dollars), Statista. Available at: 

https://www.statista.com/statistics/443147/estimate-of-global-market-revenue-of-

esports-by-region/ (Accessed: 25 July 2021). 

PwC (2021) Global eSports market revenue 2025, Statista. Available at: 

https://www.statista.com/statistics/1129596/esports-revenue/ (Accessed: 28 May 

2022). 

Rama, A.M., Fernandez, V.R. and Camacho, D. (2020) ‘Finding Behavioural 

Patterns Among League of Legends Players Through Hidden Markov Models’, in. 

Springer. Available at: https://doi.org/10.1007/978-3-030-43722-0_27. 

Research and Markets (2021) ‘Global Esports Market Report 2021 Featuring 

Activision Blizzard, Modern Times Group, Tencent, Valve, Electronic Arts’, Cision PR 

Newswire, 12 October. Available at: https://www.prnewswire.com/news-

releases/global-esports-market-report-2021-featuring-activision-blizzard-modern-

times-group-tencent-valve-electronic-arts-301398111.html (Accessed: 26 June 

2022). 

Reverse Winter Studios (2021) Advanced Server Manager in Code Plugins - UE 

Marketplace, Unreal Engine. Available at: 

https://www.unrealengine.com/marketplace/en-US/product/server-manager/reviews 

(Accessed: 25 November 2021). 

Riot Games (2020) Valorant [Video Game]. Riot Games 

Rychkova, A. et al. (2020) ‘Orbital Battleship: A Multiplayer Guessing Game in 

Immersive Virtual Reality’, Journal of Chemical Education, 97(11), pp. 4184–4188. 

Available at: https://doi.org/10.1021/acs.jchemed.0c00866. 

Sabadello, M. (2006) History of electronic games. (Doctoral dissertation, Master’s 

Thesis). Institute of Computer Graphics and Algorithms, Vienna University of Techn. 

Available at: 

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.478.4522&rep=rep1&type

=pdf. 

Schwartz, J., Stagner, J. and Morrison, W. (2006) ‘Kid’s Programming Language 

(KPL)’, in ACM SIGGRAPH 2006 Educators Program. New York, NY, USA: 

Association for Computing Machinery (SIGGRAPH ’06), pp. 52-es. Available at: 

https://doi.org/10.1145/1179295.1179348. 

https://www.photonengine.com/en-US/Realtime/Pricing
https://www.statista.com/statistics/443147/estimate-of-global-market-revenue-of-esports-by-region/
https://www.statista.com/statistics/443147/estimate-of-global-market-revenue-of-esports-by-region/
https://www.statista.com/statistics/1129596/esports-revenue/
https://doi.org/10.1007/978-3-030-43722-0_27
https://www.prnewswire.com/news-releases/global-esports-market-report-2021-featuring-activision-blizzard-modern-times-group-tencent-valve-electronic-arts-301398111.html
https://www.prnewswire.com/news-releases/global-esports-market-report-2021-featuring-activision-blizzard-modern-times-group-tencent-valve-electronic-arts-301398111.html
https://www.prnewswire.com/news-releases/global-esports-market-report-2021-featuring-activision-blizzard-modern-times-group-tencent-valve-electronic-arts-301398111.html
https://www.unrealengine.com/marketplace/en-US/product/server-manager/reviews
https://doi.org/10.1021/acs.jchemed.0c00866
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.478.4522&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.478.4522&rep=rep1&type=pdf
https://doi.org/10.1145/1179295.1179348


   
 

118 | P a g e  
 
 

 

 

 

 

Semanová, M. (2020) Emerging Technologies and Video Game Industry. Bachelor’s 

Thesis. JAMK University of Applied Sciences. Available at: 

https://core.ac.uk/download/pdf/326045969.pdf. 

Sim, T.Y. and Lau, S.L. (2018) ‘Online Tools to Support Novice Programming: A 

Systematic Review’, in 2018 IEEE Conference on e-Learning, e-Management and e-

Services (IC3e), pp. 91–96. Available at: https://doi.org/10.1109/IC3e.2018.8632649. 

Simon-Kucher and Partners (2020) Impact of COVID-19 on the frequency of playing 

multiplayer video games worldwide as of, Statista Inc. Available at: 

https://www.statista.com/statistics/1188549/covid-gaming-multiplayer/ (Accessed: 22 

July 2021). 

Sneaky Kitty Game Dev (2020) Unreal Engine Online Subsystem (steam). Available 

at: https://www.youtube.com/playlist?list=PLnHeglBaPYu9Iyr5jwiCEdKopTq0zvuK7 

(Accessed: 15 November 2021). 

Spurling, A. (2005) ‘QoS Issues for Multiplayer Gaming’, Semantic Scholar, p. 7. 

Available at: https://www.semanticscholar.org/paper/QoS-Issues-for-Multiplayer-

Gaming-Spurling/71e8f8aca6d6a1ebe33a8636175851fae4e1aeb9#paper-header. 

Stagner, A.R. (2013) Unity Multiplayer Games. Packt Publishing. Available at: 

https://www.packtpub.com/product/unity-multiplayer-games/9781849692328  

Statista (2022a) Video Games - Worldwide | Statista Market Forecast, Statista. 

Available at: https://www.statista.com/outlook/dmo/digital-media/video-

games/worldwide (Accessed: 29 July 2022). 

Statista (2022b) Online Games - Worldwide | Statista Market Forecast, Statista. 

Available at: https://www.statista.com/outlook/dmo/digital-media/video-games/online-

games/worldwide (Accessed: 29 July 2022). 

Stephenson, N. (2008) ‘A Sense of Wonder: Speculative.’, in Virtual Worlds, Real 

Libraries: Librarians and Educators in Second Life and Other Multi-user Virtual 

Environment. Information Today, Inc., p. 115. Available at: 

https://books.google.co.uk/books?hl=en&lr=&id=jlOPKr9W61QC&oi=fnd&pg=PA113

&dq=Stephenson,+N+2008.+A+Sense+of+Wonder:+Speculative.+Virtual+Worlds,&o

ts=AGtTW8q_n_&sig=V6qkVRaJWnnCqe-LNOKqJsNfwmc. 

Sneaky Kitty Game Dev (2020) Unreal Engine Online Subsystem (steam). Available 

at: https://www.youtube.com/playlist?list=PLnHeglBaPYu9Iyr5jwiCEdKopTq0zvuK7 

(Accessed: 15 November 2021). 

Swain, L. (2013) ‘MMO: Massive micro-transactions online’, Computers for 

Everyone, p. 156. Available at: https://doi.org/10.1.1.867.2936. 

https://core.ac.uk/download/pdf/326045969.pdf
https://doi.org/10.1109/IC3e.2018.8632649
https://www.statista.com/statistics/1188549/covid-gaming-multiplayer/
https://www.youtube.com/playlist?list=PLnHeglBaPYu9Iyr5jwiCEdKopTq0zvuK7
https://www.semanticscholar.org/paper/QoS-Issues-for-Multiplayer-Gaming-Spurling/71e8f8aca6d6a1ebe33a8636175851fae4e1aeb9#paper-header
https://www.semanticscholar.org/paper/QoS-Issues-for-Multiplayer-Gaming-Spurling/71e8f8aca6d6a1ebe33a8636175851fae4e1aeb9#paper-header
https://www.packtpub.com/product/unity-multiplayer-games/9781849692328
https://www.statista.com/outlook/dmo/digital-media/video-games/worldwide
https://www.statista.com/outlook/dmo/digital-media/video-games/worldwide
https://www.statista.com/outlook/dmo/digital-media/video-games/online-games/worldwide
https://www.statista.com/outlook/dmo/digital-media/video-games/online-games/worldwide
https://books.google.co.uk/books?hl=en&lr=&id=jlOPKr9W61QC&oi=fnd&pg=PA113&dq=Stephenson,+N+2008.+A+Sense+of+Wonder:+Speculative.+Virtual+Worlds,&ots=AGtTW8q_n_&sig=V6qkVRaJWnnCqe-LNOKqJsNfwmc
https://books.google.co.uk/books?hl=en&lr=&id=jlOPKr9W61QC&oi=fnd&pg=PA113&dq=Stephenson,+N+2008.+A+Sense+of+Wonder:+Speculative.+Virtual+Worlds,&ots=AGtTW8q_n_&sig=V6qkVRaJWnnCqe-LNOKqJsNfwmc
https://books.google.co.uk/books?hl=en&lr=&id=jlOPKr9W61QC&oi=fnd&pg=PA113&dq=Stephenson,+N+2008.+A+Sense+of+Wonder:+Speculative.+Virtual+Worlds,&ots=AGtTW8q_n_&sig=V6qkVRaJWnnCqe-LNOKqJsNfwmc
https://www.youtube.com/playlist?list=PLnHeglBaPYu9Iyr5jwiCEdKopTq0zvuK7
https://doi.org/10.1.1.867.2936


   
 

119 | P a g e  
 
 

 

 

 

 

Syakah (2021) Top 10 Most Played eSports Games (2021), Counter Arts. Available 

at: https://medium.com/counterarts/top-10-most-played-esports-games-2021-

c5a8cfc56532 (Accessed: 3 March 2022). 

Thomala, L.L. (2022) Mobile game sales revenue share in China’s gaming market 

2012-2021, Statista. Available at: https://www.statista.com/statistics/1058001/china-

mobile-game-share-in-gaming-industry/ (Accessed: 11 June 2022). 

Tyler, D. (2017) ‘How to Choose the Best Video Game Engine’, 11 March. Available 

at: https://www.gamedesigning.org/career/video-game-engines/ (Accessed: 15 

September 2021). 

Unreal Engine (2021a) Networking Overview, Unreal Engine. Available at: 

https://docs.unrealengine.com/4.26/en-

US/InteractiveExperiences/Networking/Overview/ (Accessed: 28 November 2021). 

Unreal Engine (2021b) FindFriendSession, Unreal Engine API Reference, Unreal 

Engine API Reference. Available at: https://docs.unrealengine.com/4.26/en-

US/API/Plugins/OnlineSubsystem/Interfaces/IOnlineSession/FindFriendSession/ 

(Accessed: 5 January 2022). 

Unreal Engine (2021c) Multiplayer in Blueprints, Unreal Engine API Reference. 

Available at: https://docs.unrealengine.com/4.26/en-

US/InteractiveExperiences/Networking/Blueprints/ (Accessed: 28 November 2021). 

Vohera, C. et al. (2021) ‘Game Engine Architecture and Comparative Study of 

Different Game Engines’, in 2021 12th International Conference on Computing 

Communication and Networking Technologies (ICCCNT). Available at: 

https://doi.org/10.1109/ICCCNT51525.2021.9579618. 

von der Heiden, J.M. et al. (2019) ‘The Association Between Video Gaming and 

Psychological Functioning’, Frontiers in Psychology, 10. Available at: 

https://doi.org/10.3389/fpsyg.2019.01731. 

Wang, A.I. et al. (2008) ‘Issues related to mobile multiplayer real-time games over 

wireless networks’, in 2008 International Symposium on Collaborative Technologies 

and Systems. Irvine, CA, USA: IEEE, pp. 237–246. Available at: 

https://doi.org/10.1109/CTS.2008.4543937. 

Weiss, B.A. (2014) The Lost Vikings, All Game. Available at: 

https://web.archive.org/web/20141114232128/http://www.allgame.com/game.php?id

=11754 (Accessed: 8 August 2021). 

https://medium.com/counterarts/top-10-most-played-esports-games-2021-c5a8cfc56532
https://medium.com/counterarts/top-10-most-played-esports-games-2021-c5a8cfc56532
https://www.statista.com/statistics/1058001/china-mobile-game-share-in-gaming-industry/
https://www.statista.com/statistics/1058001/china-mobile-game-share-in-gaming-industry/
https://www.gamedesigning.org/career/video-game-engines/
https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/Networking/Overview/
https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/Networking/Overview/
https://docs.unrealengine.com/4.26/en-US/API/Plugins/OnlineSubsystem/Interfaces/IOnlineSession/FindFriendSession/
https://docs.unrealengine.com/4.26/en-US/API/Plugins/OnlineSubsystem/Interfaces/IOnlineSession/FindFriendSession/
https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/Networking/Blueprints/
https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/Networking/Blueprints/
https://doi.org/10.1109/ICCCNT51525.2021.9579618
https://doi.org/10.3389/fpsyg.2019.01731
https://doi.org/10.1109/CTS.2008.4543937
https://web.archive.org/web/20141114232128/http:/www.allgame.com/game.php?id=11754
https://web.archive.org/web/20141114232128/http:/www.allgame.com/game.php?id=11754


   
 

120 | P a g e  
 
 

 

 

 

 

Westerdahl, M. (2019) Challenges in video game development - What does Agile 
management have to do with it? Malmo University. Available at: 
https://doi.org/10.1177/1046878109340295. 
 
Witkowski, W. (2020) Videogames are a bigger industry than movies and North 

American sports combined, thanks to the pandemic, MarketWatch. Available at: 

https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-

and-movies-combined-thanks-to-the-pandemic-11608654990 (Accessed: 28 May 

2021). 

Wodarczyk, S. and Mammen, S. (2020) ‘Emergent Multiplayer Games’, in 2020 IEEE 

Conference on Games (CoG). Osaka, Japan, pp. 33–40. Available at: 

https://doi.org/10.1109/CoG47356.2020.9231834. 

Yuzyk, M. and Seidner, P. (2022) ‘E-Sports Development’, in N. Kryvinska and M. 

Greguš (eds) Developments in Information & Knowledge Management for Business 

Applications: Volume 5. Cham: Springer International Publishing, pp. 615–648. 

Available at: https://doi.org/10.1007/978-3-030-97008-6_28. 

 

https://doi.org/10.1177/1046878109340295
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://www.marketwatch.com/story/videogames-are-a-bigger-industry-than-sports-and-movies-combined-thanks-to-the-pandemic-11608654990
https://doi.org/10.1109/CoG47356.2020.9231834
https://doi.org/10.1007/978-3-030-97008-6_28

