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Abstract: The present work deals with the mathematical investigation of some generalizations
of the Szász operators. In this work, the multiple Sheffer polynomials are introduced. The gener-
alization of Szász operators involving multiple Sheffer polynomials are considered. Convergence
properties of these operators are verified with the help of the universal Korovkin-type result and
the order of approximation is calculated by using classical modulus of continuity. Further, the
convergence of these operators are also discussed in weighted spaces of functions on the positive
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1 Introduction

The positive approximation processes discovered by Korovkin [16] play a central role and arise
in a natural way in many problems connected with functional analysis, harmonic analysis, mea-
sure theory, partial differential equations and probability theory. In 1953, P. P. Korovkin [16]
discovered perhaps, the most powerful and at the same time, simplest criterion in order to de-
cide whether a given sequence (Kn)n∈N of positive linear operators on the space C[0, 1] is an
approximation process, i.e. Kn(f) → f uniformly on [0, 1] for every f ∈ C[0, 1]. Starting with
this result, a considerable number of mathematicians have extended Korovkin’s theorem to other
function spaces or, more generally, to abstract spaces, such as Banach lattices, Banach algebras,
Banach spaces and so on. Korovkin’s work, in fact, delineated a new theory that may be called
Korovkin-type approximation theory.

One of the well-known examples of positive linear operators is Szasz operators [20]. Szász
[20] introduced the following positive linear operators:

Sn(f ;x) := e−nx
∞∑
k=0

(nx)k

k!
f

(
k

n

)
, (1.1)
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where x ≥ 0 and f ∈ C[0,∞) whenever the above sum converges. In recent years, there is
an increasing interest to study linear positive operators based on certain polynomials, such as
Appell polynomials, Sheffer polynomials, and Boas-Buck polynomials.

Appell polynomials pk(x) are defined as:

d

dx
pk(x) = k pk−1(x)

and by the following generating function:

g(t)ext =

∞∑
k=0

pk(x)
tk

k!
,

where g(t) =
∞∑
k=0

ak
tk

k! , with a0 6= 0.

Jakimovski and Leviatan [11] obtained a generalization of Szasz operators by means of the
Appell polynomials as follows:

Pn(f ;x) :=
e−nx

g(1)

∞∑
k=0

pk(nx)f

(
k

n

)
, (1.2)

under the conditions |t| < R, R > 1 and g(1) 6= 0. For g(t) = 1, we obtain the Szász operators
(1.1).

The Sheffer polynomials sk(x) are defined by

g(t)exH(t) =

∞∑
k=0

sk(x)
tk

k!

where g(t) =
∞∑
k=0

ak
tk

k! , with a0 6= 0 and H(t) =
∞∑
k=0

hk
tk

k! , with h1 6= 0.

Ismail [10] presented a generalization of Szasz and Jakimovski and Leviatan operators by
using the Sheffer polynomials sk(x) as

Tn(f ;x) :=
e−nxH(1)

g(1)

∞∑
k=0

sk(nx)f

(
k

n

)
, n ∈ N, (1.3)

where sk(x), k ≥ 0 are the Sheffer polynomials under the conditions |t| < R, R > 1 and g(1) 6= 0;
H ′(1) = 1. For g(t) = 1 and H(t) = t, (1.3) reduces to (1.1).

In the last few years, the interest in Sheffer polynomials and their applications in different
fields has significantly increased. A unified matrix representation for the Sheffer polynomials is
proposed in [1]. The recurrence relations, differential equations for the Hermite-Sheffer poly-
nomials using matrix approach have been obtained in [14]. In 2014, Costabile and Longo [5]
obtained an algebraic approach to Sheffer polynomial sequences. Dattoli and his co-workers have
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shown that by using operational techniques, many properties of ordinary and multi-variable spe-
cial functions are simply derived and framed in a more general context, see for example [6]. The
hybrid special polynomial families related to the Appell and Sheffer polynomial sequences are
first introduced and studied by Khan and her co-authors, see for example [15].

In the recent past, many studies have been carried out on approximation by positive linear
operators involving Sheffer polynomials; see, for example, [4, 12, 13, 19] for details. In addition,
research has been undertaken in an attempt at generalization of the Szász operators associ-
ated with multiple polynomial sets [2, 21]. By a multiple polynomial system we mean a set of
polynomials {pk1,k2(x)}∞k1,k2=0 with degree k1 + k2, k1, k2 ≥ 0.

In [18], Lee defined the multiple Appell polynomials and found several equivalent conditions
for this class of polynomials. A multiple polynomial set {pk1,k2(x)}∞k1,k2=0 is called multiple
Appell if there exists a generating function of the form:

A(t1, t2)e
x(t1+t2) =

∞∑
k1=0

∞∑
k2=0

pk1,k2(x)
tk11 t

k2
2

k1! k2!
, (1.4)

where A(t1, t2) is defined as

A(t1, t2) =
∞∑
k1=0

∞∑
k2=0

ak1,k2
tk11 t

k2
2

k1! k2!
. (1.5)

The generalization of the Szász operators involving multiple Appell polynomials has been studied
in [21]. The Jakimovski-Leviatan-Durrmeyer type operators involving multiple Appell polyno-
mial are introduced in [2] and investigate Korovkin type approximation theorem and rate of
convergence. Some properties of the generalized Szász operators by multiple Appell polynomi-
als are given in [3] taking into consideration the power summability method.

Inspired by the above works, we construct the generalization of the Szász operators involving
the multiple Sheffer polynomials. The paper is organized as follows: In Section 2, the multiple
Sheffer polynomials are introduced and the positive linear operators Gn(f ;x) involving multiple
Sheffer polynomials are constructed. In Section 3, some auxiliary results for the operators
Gn(f ;x) are given. Section 4 is discusses approximation properties of the operators Gn(f ;x)
and the convergence theorem. In Section 5, the convergence of these operators are also discussed
in weighted spaces of functions on the positive semi-axis and estimate the approximation with
the help of weighted modulus of continuity.In order to show the relevance of the results, in the
last section some numerical examples are given.

2 Multiple Sheffer polynomials

In this section, we introduce the multiple Sheffer polynomials as follows:

Definition 2.1 The multiple Sheffer polynomials set {Sk1,k2(x)}∞k1,k2=0 possesses the following
generating function:

A(t1, t2)e
xH(t1,t2) =

∞∑
k1=0

∞∑
k2=0

Sk1,k2(x)
tk11 t

k2
2

k1! k2!
, (2.1)
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where A(t1, t2) and H(t1, t2) have series expansions of the form

A(t1, t2) =

∞∑
k1=0

∞∑
k2=0

ak1,k2
tk11 t

k2
2

k1! k2!
(2.2)

and

H(t1, t2) =

∞∑
k1=0

∞∑
k2=0

hk1,k2
tk11 t

k2
2

k1! k2!
, (2.3)

respectively with the conditions that

a0,0 6= 0, h1,1 6= 0. (2.4)

For A(t1, t2) = e
δ
2
(t1+t2)2+α1t1+α2t2 and H(t1, t2) = δ(t1 + t2), the multiple Sheffer polyno-

mials Sk1,k2(x) become the multiple Hermite polynomials H
(α1,α2)
k1,k2

(x) defined by the generating
function [17]:

e
δ
2
(t1+t2)2+α1t1+α2t2+δ(t1+t2)x =

∞∑
k1=0

∞∑
k2=0

H
(α1,α2)
k1,k2

(x)
tk11 t

k2
2

k1! k2!
, (2.5)

with δ < 0 and α1 6= α2. Note that if we take t2 = 0, we get the generating function for the
classical Hermite polynomials.

For A(t1, t2) = 1
(1−t1−t2)α+1 and H(t1, t2) = β1t1+β2t2

1−t1−t2 , the multiple Sheffer polynomials

Sk1,k2(x) become the multiple Laguerre polynomials L
(α;β1,β2)
k1,k2

(x) defined by the generating func-
tion [17]:

1

(1− t1 − t2)α+1
e

(
β1t1+β2t2
1−t1−t2

)
x

=
∞∑
k1=0

∞∑
k2=0

L
(α;β1,β2)
k1,k2

(x)
tk11 t

k2
2

k1! k2!
, (2.6)

with α > −1 and β1 6= β2. Note that if we take t2 = 0, we get the generating function for the
classical Laguerre polynomials.

Now, we construct the positive linear operators involving multiple Sheffer polynomials
Sk1,k2(x). Throughout the paper, the following abbreviations for the partial derivatives will
be used:

∂A

∂ti
= Ati ,

∂H

∂ti
= Hti (2.7)

and
∂2A

∂ti∂tj
= Ati,tj ,

∂2H

∂ti∂tj
= Hti,tj , i, j = 1, 2. (2.8)

Let us consider the following conditions on Sk1,k2(x):

(i) Sk1,k2(x) ≥ 0, k1, k2 ∈ N,
(ii) A(1, 1) 6= 0, Ht1(1, 1) = 1, Ht2(1, 1) = 1,

(iii) (2.1), (2.2) and (2.3) converge for |t1| < R1, |t2| < R2 (R1, R2) > 1.

(2.9)

4



Under the above conditions, we construct a positive linear operator involving multiple
Sheffer polynomials for x ∈ [0,∞) as follows:

Gn(f ;x) =
e−

nx
2
H(1,1)

A(1, 1)

∞∑
k1=0

∞∑
k2=0

Sk1,k2(nx2 )

k1! k2!
f

(
k1 + k2
n

)
, (2.10)

provided that the right-hand side of (2.10) exists.

Remark 2.1 It is to be noted that if we consider H(t1, t2) = t1 + t2, the multiple Sheffer poly-
nomials Sk1,k2(x) become the multiple Appell polynomials pk1,k2(x) defined by (1.4). Therefore,
for H(t1, t2) = t1 + t2 the operators (2.10) reduce to the operators involving multiple Appell
polynomials defined by Varma [21].

Remark 2.2 For A(t1, t2) = 1, H(t1, t2) = t1 + t2 and then t2 = 0, the multiple Sheffer
polynomials Sk1,k2(x) reduce to xk. Therefore, the operators (2.10) reduce to the Szász operators
(1.1).

3 Auxiliary results

Note that throughout the paper we will assume that the operators Gn(f ;x) are positive and we
use the following test functions:

ei(x) = xi; i ∈ {0, 1, 2}.

Lemma 3.1 From (2.1), the following hold:

∞∑
k1=0

∞∑
k2=0

Sk1,k2(nx2 )

k1! k2!
= A(1, 1)e

nx
2
H(1,1),

∞∑
k1=0

∞∑
k2=0

(k1 + k2)
Sk1,k2(nx2 )

k1! k2!
= [nxA(1, 1) +At1(1, 1) +At2(1, 1)] e

nx
2
H(1,1),

∞∑
k1=0

∞∑
k2=0

(k1 + k2)
2Sk1,k2(nx2 )

k1! k2!
=

[
n2x2A(1, 1) + nx

(
A(1, 1)Ht1,t1(1, 1) +A(1, 1)Ht2,t2(1, 1)

2

+A(1, 1)Ht1,t2(1, 1) + 2At1(1, 1) + 2At2(1, 1) +A(1, 1)

)
+At1,t1(1, 1) +At2,t2(1, 1) + 2At1,t2(1, 1)

+At1(1, 1) +At2(1, 1)

]
e
nx
2
H(1,1).

Proof. Taking the partial derivatives of the generating function (2.1) with respect to t1 and t2
and then letting t1 = 1, t2 = 1, we obtain Lemma 3.1.
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Lemma 3.2 The operators Gn defined by (2.10) satisfy

Gn(e0;x) = 1 (3.1)

Gn(e1;x) = x+
At1(1, 1) +At2(1, 1)

n A(1, 1)
(3.2)

Gn(e2;x) = x2 +
x

n

(
1 +

Ht1,t1(1, 1) +Ht2,t2(1, 1)

2
+

2At1(1, 1) + 2At2(1, 1)

A(1, 1)
+Ht1,t2(1, 1)

)
+
At1,t1(1, 1) +At2,t2(1, 1) + 2At1,t2(1, 1) +At1(1, 1) +At2(1, 1)

n2 A(1, 1)
. (3.3)

Proof. In view of operators (2.10) and Lemma 3.1, the proof of Lemma 3.2 is straightforward.

By using the linearity property of the operators (2.10) and Lemma 3.2, it follows that:

Gn((e1 − x);x) =
At1(1, 1) +At2(1, 1)

n A(1, 1)
(3.4)

Gn((e1 − x)2;x) =
x

n

(
1 +

Ht1,t1(1, 1) +Ht2,t2(1, 1)

2
+Ht1,t2(1, 1)

)
+
At1,t1(1, 1) +At2,t2(1, 1) + 2At1,t2(1, 1) +At1(1, 1) +At2(1, 1)

n2 A(1, 1)
.(3.5)

4 Approximation results

In this section, we state our main theorem with the help of the universal Korovkin-type result
and calculate the order of approximation by modulus of continuity.

P. P. Korovkin [16] has proved some remarkable results concerning the convergence of
sequences (Kn(f, x))∞n=1, where Kn(f, x) are positive linear operators. For example, if for
f ∈ C[0,∞), Kn(f, x) converges uniformly to f in the particular cases f(t) ≡ 1, f(t) ≡ t,
f(t) ≡ t2, then it does so for every continuous real f . First, we recall the following definitions
and lemmas:

Definition 4.1 Let f ∈ Ĉ[0,∞) and δ > 0. The modulus of continuity w(f ; δ) of the function
f is defined by

w(f ; δ) := sup
x,y∈[0,∞)
|x−y|≤δ

|f(x)− f(y)|, (4.1)

where Ĉ[0,∞) is the space of uniformly continuous functions on [0,∞). Then, for any δ > 0
and each x ∈ [0,∞), it is well known that one can write

|f(x)− f(y)| ≤ w(f ; δ)

(
|x− y|
δ

+ 1

)
. (4.2)

If f is uniformly continuous on [0,∞), then it is necessary and sufficient that

lim
δ→0

w(f, δ) = 0.
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Definition 4.2 The second modulus of continuity of the function f ∈ CB[0,∞) is defined by

w2(f ; δ) := sup
0<t≤δ

||f(.+ 2t)− 2f(.+ t) + f(.)||CB , (4.3)

where CB[0,∞) is the class of real-valued functions defined on [0,∞), which are bounded and
uniformly continuous with the norm

||f ||CB = sup
x∈[0,∞)

|f(x)|. (4.4)

We denote by CE [0,∞) the set of all continuous functions f on[0,∞) with the property
that |f(x)| ≤ βeαx for all x ≥ 0 and some positive finite α and β.

For h > 0, the function

fh(t) =
1

h

t+h
2∫

t−h
2

f(u) du

as well as the iteratively defined functions

fh,r(t) =
1

h

t+h
2∫

t−h
2

fh,r−1(u) du, r = 2, 3, · · ·

fh,1(t) = fh(t)

are known as Steklov functions.

Lemma 4.1 (Gavrea and Raşa [9]). Let g ∈ C2[0, a] and (Kn)n≥0 be a sequence of positive
linear operators with the property Kn(1;x) = 1. Then,

|Kn(g;x)− g(x)| ≤ ||g′||
√
Kn((e1 − x)2;x) +

1

2
||g′′|| Kn((e1 − x)2;x). (4.5)

Lemma 4.2 (Zhuk [22]). Let f ∈ C[a, b] and h ∈ (0, a−b2 ). Let fh be the second-order Steklov
function attached to the function f. Then, the following inequalities are satisfied:

(i) ||fh − f || ≤
3

4
w2(f ;h), (4.6)

(ii) ||f ′′h || ≤
3

2h2
w2(f ;h). (4.7)

Theorem 4.1 Let f ∈ CE [0,∞). Then

lim
n→∞

Gn(f ;x) = f(x) (4.8)

uniformly on each compact subset of [0,∞).
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Proof. In view of Lemma 3.2, it follows that

lim
n→∞

Gn(ei, x) = xi, i = 0, 1, 2 (4.9)

uniformly on each compact subset of [0,∞). Application of Korovkin’s theorem to (4.9) then
establishes the desired result.

Next, we obtain the order of approximation of the operators Gn(f ;x).

Theorem 4.2 Let f ∈ CE [0,∞). Then the operators Gn(f ;x) satisfy the following inequality:

|Gn(f ;x)− f(x)| 6 {1 +
√
λn(x)}w(f ;

1√
n

), (4.10)

where

λn(x) = x

(
1 +

Ht1,t1(1, 1) +Ht2,t2(1, 1)

2
+Ht1,t2(1, 1)

)
+
At1,t1(1, 1) +At2,t2(1, 1) + 2At1,t2(1, 1) +At1(1, 1) +At2(1, 1)

n A(1, 1)
.

Proof. In view of the modulus of continuity (4.2), we have

|Gn(f ;x)− f(x)| 6
e−

nx
2
H(1,1)

A(1, 1)

∞∑
k1=0

∞∑
k2=0

Sk1,k2(nx2 )

k1! k2!

∣∣∣∣f (k1 + k2
n

)
− f(x)

∣∣∣∣
6 w(f ; δ)

1 +
1

δ

e−
nx
2
H(1,1)

A(1, 1)

∞∑
k1=0

∞∑
k2=0

Sk1,k2(nx2 )

k1! k2!

∣∣∣∣k1 + k2
n

− x
∣∣∣∣
(4.11)

By considering the Cauchy-Schwarz inequality, we find

∞∑
k1=0

∞∑
k2=0

Sk1,k2(nx2 )

k1! k2!

∣∣∣∣k1 + k2
n

− x
∣∣∣∣

6
√
A(1, 1)exH(1,1)


∞∑
k1=0

∞∑
k2=0

Sk1,k2(nx2 )

k1! k2!

(
k1 + k2
n

− x
)2


1
2

= A(1, 1)exH(1,1)

{
x

n

(
1 +

Ht1,t1(1, 1) +Ht2,t2(1, 1)

2
+Ht1,t2(1, 1)

)
+
At1,t1(1, 1) +At2,t2(1, 1) + 2At1,t2(1, 1) +At1(1, 1) +At2(1, 1)

n2 A(1, 1)

} 1
2

. (4.12)

Use of (4.12) in (4.11) then leads to

|Gn(f ;x)− f(x)| 6 w(f ; δ)

{
1 +

1

δ

[
x

n

(
1 +

Ht1,t1(1, 1) +Ht2,t2(1, 1)

2
+Ht1,t2(1, 1)

)
+
At1,t1(1, 1) +At2,t2(1, 1) + 2At1,t2(1, 1) +At1(1, 1) +At2(1, 1)

n2 A(1, 1)

] 1
2

}
.

(4.13)
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On choosing δ = 1√
n

, assertion (4.10) follows.

Theorem 4.3 For f ∈ C[0, α], the following inequality is satisfied:

|Gn(f ;x)− f(x)| ≤ 2

α
||f || l2 +

3

4
(α+ 2 + l2)w2(f ; l), (4.14)

where
l := ln(x) = 4

√
Gn((e1 − x)2;x)

and the second-order modulus of continuity is given by w2(f ; l) with the norm ||f || =
maxx∈[a,b] |f(x)|

Proof. Let fl be the second-order Steklov function attached to the function f . In view of the
identity (3.1), we have

|Gn(f ;x)− f(x)| ≤ |Gn(f − fl;x)|+ |Gn(fl;x)− fl(x)|+ |fl(x)− f(x)|
≤ 2||fl − f ||+ |Gn(fl;x)− fl(x)|, (4.15)

which on using inequality (4.6) becomes

|Gn(f ;x)− f(x)| ≤ 3

2
w2(f ; l) + |Gn(fl;x)− fl(x)|. (4.16)

Taking into account that fl ∈ C2[0, α], from Lemma 4.1, it follows that

|Gn(fl;x)− fl(x)| ≤ ||f ′l ||
√
Gn((e1 − x)2;x) +

1

2
||f ′′l || Gn((e1 − x)2;x), (4.17)

which in view of inequality (4.7) becomes

|Gn(fl;x)− fl(x)| ≤ ||f ′l ||
√
Gn((e1 − x)2;x) +

3

4l2
w2(f ; l)Gn((e1 − x)2;x). (4.18)

Further, the Landau inequality

||f ′l || ≤
2

α
||fl||+

α

2
||f ′′l ||,

and Lemma 4.2 gives

||f ′l || ≤
2

α
||f ||+ 3α

4l2
w2(f ; l). (4.19)

Using inequality (4.19) in inequality (4.18) and taking l = 4
√
Gn((e1 − x)2);x, we find

|Gn(fl;x)− fl(x)| ≤ 2

α
||f || l2 +

3

4
(α+ l2)w2(f ; l). (4.20)

Use of the inequality (4.20) in (4.16), then establishes the assertion (4.14).

9



5 Weighted Approximation

In this section, the approximation properties of the operators Gn(f ;x) of the weighted spaces
of continuous functions are given with exponential growth on R+

0 = [0,∞) with the help of the
weighted Korovkin type theorem established in [7, 8]. First, we consider the following weighted
spaces of functions which are defined on the [0,∞).

Let ρ(x) be the weight function and Mf be a positive constant, then we define

Bρ(R+
0 ) = {f : R+

0 → R : |f(x)| < Mfρ(x)}
Cρ(R+

0 ) = {f ∈ Bρ(R+
0 ) : f is continuous}

Ckρ (R+
0 ) =

{
f ∈ Cρ(R+

0 ) : lim
n→∞

f(x)

ρ(x)
= Kf <∞

}
.

It should be noted that Ckρ (R+
0 ) ⊂ Cρ(R+

0 ) ⊂ Bρ(R+
0 ). The space Bρ(R+

0 ) is a linear normed
space with the following norm:

||f ||ρ = sup
x∈R+

0

|f(x)|
ρ(x)

.

The following results on the sequence of positive linear operators in these spaces are given
[7, 8].

Lemma 5.1 [7,8] The sequence of positive linear operators (Ln)n≥1 which act from Cρ(R+
0 ) to

Bρ(R+
0 ) if and only if there exists a positive constant k such that

Ln(ρ, x) ≤ kρ(x), i.e.

||Ln(ρ, x)||ρ ≤ k.

Theorem 5.1 [7, 8] Let (Ln)n≥1 be the sequence of positive linear operators that act from
Cρ(R+

0 ) to Bρ(R+
0 ) such that

lim
n→∞

||Ln(ti, x)− xi||ρ = 0, i ∈ {0, 1, 2}.

Then for any f ∈ Ckρ (R+
0 )

||Lnf − f ||ρ = 0.

Now prove the following lemma:

Lemma 5.2 Let ρ(x) = 1 + x2 be a weight function. If f ∈ Ckρ (R+
0 ), there exists a positive

constant M such that
||Gn(ρ;x)||ρ ≤ 1 +M.

10



Proof. From Lemma 3.2, it follows that

||Gn(ρ;x)||ρ = sup
x≥0

{
1

1 + x2

(
1 + x2 +

x

n
Θt1,t2 +

1

n2
Φt1,t2

)}
6 1 +

x

n
Θt1,t2 +

1

n2
Φt1,t2 ,

where

Θt1,t2 = 1 +
Ht1,t1(1, 1) +Ht2,t2(1, 1)

2
+

2At1(1, 1) + 2At2(1, 1)

A(1, 1)
+Ht1,t2(1, 1)

and

Φt1,t2 =
At1,t1(1, 1) +At2,t2(1, 1) + 2At1,t2(1, 1) +At1(1, 1) +At2(1, 1)

A(1, 1)
.

Since limn→∞
1
n = 0 and limn→∞

1
n2 = 0 there exists a positive constant M such that

Gn(ρ;x) 6 1 +M.

This completes the proof.

From Lemma 5.2, it is easily verified that the operators Gn defined by (2.10) act from
Cρ(R+

0 ) to Bρ(R+
0 ).

Theorem 5.2 Let ρ(x) = 1 + x2. Then, for each f ∈ Ckρ (R+
0 ),

lim
n→∞

||Gn(f ;x)− f(x)||ρ = 0.

Proof. It is sufficient to show the conditions of the weighted form of Korovkin type approxima-
tion theorem proved in Theorem 5.1, are satisfied. From (3.1), it is immediately seen that

lim
n→∞

||Gn(e0;x)− e0||ρ = 0. (5.1)

Using (3.2), we have

||Gn(e1;x)− e1||ρ =
At1(1, 1) +At2(1, 1)

n A(1, 1)
,

which implies that
lim
n→∞

||Gn(e1;x)− e1(x)||ρ = 0. (5.2)

By means of (3.3), we get

||Gn(e2;x)− e2(x)||ρ 6
x

n
Θt1,t2 +

1

n2
Φt1,t2 ,

where

Θt1,t2 = 1 +
Ht1,t1(1, 1) +Ht2,t2(1, 1)

2
+

2At1(1, 1) + 2At2(1, 1)

A(1, 1)
+Ht1,t2(1, 1)

11



and

Φt1,t2 =
At1,t1(1, 1) +At2,t2(1, 1) + 2At1,t2(1, 1) +At1(1, 1) +At2(1, 1)

A(1, 1)
.

Therefore,
lim
n→∞

||Gn(e2;x)− e2(x)||ρ = 0. (5.3)

From equations (5.1), (5.2) and (5.3), it follows that

lim
n→∞

||Gn(eν ;x)− eν(x)||ρ = 0, ν ∈ {0, 1, 2}.

In view of Theorem 5.1, we obtain the desired result.

6 Examples

Example 6.1 The case {(x + 1)k1+k2}∞k1,k2=0

By taking A(t1, t2) = et1+t2 and H(t1, t2) = t1 + t2, the multiple Sheffer polynomials
Sk1,k2(x) reduce to the polynomials {(x+ 1)k1+k2}∞k1,k2=0 defined by the generating function:

e(x+1)(t1+t2) =
∞∑
k1=0

∞∑
k2=0

(x+ 1)k1+k2
tk11 t

k2
2

k1! k2!
. (6.1)

It is clear that (x + 1)k1+k2 ≥ 0 for x ∈ (0,∞], A(1, 1) = e2 6= 0 and Ht1(1, 1) = Ht2(1, 1) = 1.
Therefore, the conditions (2.9) are satisfied.

The generalized Szász operators (2.10) involving the function {(x + 1)k1+k2}∞k1,k2=0 are
obtained as follows:

Gn(f ;x) = e−2−nx
∞∑
k1=0

∞∑
k2=0

(
nx
2 + 1

)k1+k2
k1! k2!

f

(
k1 + k2
n

)
. (6.2)

Lemma 6.1 For the operators Gn(f ;x) given by (6.2) and x ∈ [0,∞), we have

Gn(e0;x) = 1 (6.3)

Gn(e1;x) = x+
2

n
(6.4)

Gn(e2;x) = x2 +
5x

n
+

6

n2
. (6.5)

Lemma 6.2 For the operators Gn(f ;x) given by (6.2) and x ∈ [0,∞), the following identities
are satisfied:

Gn((e1 − 1);x) =
2

n
, (6.6)

Gn((e1 − x)2;x) =
x

n
+

6

n2
. (6.7)
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For n = 20, 30, 50, the convergence of the operators (6.2) to the functions

f(x) =

(
x− 1

2

)(
x− 1

3

)
(6.8a)

f(x) = −4x3 (6.8b)

is illustrated in Figs. 1 and 2, respectively.
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Figure 1: Convergence of the operators (6.2) to f(x) =
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Figure 2: Convergence of the operators (6.2) to f(x) = −4x3

We now compute the error estimation by using modulus of continuity for operators (6.2)
to functions (6.8a) and (6.8b) with the help of Matlab. Making use of the expression (6.7) in
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Lemma 4.1, we find that

|Gn(f ;x)− f(x)| ≤ ||f ′||
√
x

n
+

6

n2
+

1

2
||f ′′||

(
x

n
+

6

n2

)
. (6.9)

From inequality (6.9), the error bounds for the approximation by the operators (6.2) to functions
(6.8a) and (6.8b) are obtained using Matlab. These error bounds are given in Tables 1 and 2.

Table 1: Error bounds by operators (6.2) to
(
x− 1

2

) (
x− 1

3

)
n error bound at x = 0.2 error bound at x = 0.5 error bound at x = 0.8

20 0.0885 0.0608 0.2148

30 0.0600 0.0405 0.1600

50 0.0391 0.0260 0.1144

Table 2: Error bounds by operators (6.2) to −4x3

n error bound at x = 0.2 error bound at x = 0.5 error bound at x = 0.8

20 0.1169 0.7025 1.9651

30 0.0748 0.5066 1.4795

50 0.0462 0.3535 1.0728

Example 6.2 The case {(k1 + k2)(x)k1+k2−1}∞k1,k2=1

The multiple Sheffer polynomials Sk1,k2(x) reduce to the polynomials {(k1 +
k2)(x)k1+k2−1}∞k1,k2=1 if we consider A(t1, t2) = t1 + t2 and H(t1, t2) = t1 + t2, defined by
the generating function:

(t1 + t2)e
x(t1+t2) =

∞∑
k1=1

∞∑
k2=1

(k1 + k2)(x)k1+k2−1
tk11 t

k2
2

k1! k2!
. (6.10)

It is clear that (k1 + k2)(x)k1+k2−1 ≥ 0 for x ∈ (0,∞], A(1, 1) = 2 6= 0 and Ht1(1, 1) =
Ht2(1, 1) = 1. Hence, the restrictions (2.9) are satisfied. The operators (2.10) involving {(k1 +
k2)(x)k1+k2−1}∞k1,k2=1 are given as:

Gn(f ;x) =
e−nx

2

∞∑
k1=1

∞∑
k2=1

(
nx
2

)k1+k2−1
k1! k2!

f

(
k1 + k2
n

)
. (6.11)

Lemma 6.3 The operators Gn(f ;x) given by (6.11) and x ∈ [0,∞), satisfy

Gn(e0;x) = 1 (6.12)

Gn(e1;x) = x+
1

n
(6.13)

Gn(e2;x) = x2 +
3x

n
+

1

n2
. (6.14)
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Lemma 6.4 For the operators Gn(f ;x) given by (6.11) and x ∈ [0,∞), the following hold:

Gn((e1 − 1);x) =
1

n
, (6.15)

Gn((e1 − x)2;x) =
x

n
+

1

n2
. (6.16)

In Figs. 3 and 4 the convergence of the operators (6.11) to the functions (6.8a) and (6.8b),
respectively, is illustrated.
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(
x− 1

2

) (
x− 1

3

)

0 0.2 0.4 0.6 0.8 1
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Convergence of G
n
(f;x) to f(x)=−4x

3

 

 

G
20

(f;x)

G
30

(f;x)

G
50

(f;x)

function

Figure 4: Convergence of the operators (6.11) to f(x) = −4x3

The following holds for (6.11):

|Gn(f ;x)− f(x)| ≤ ||f ′||
√
x

n
+

1

n2
+

1

2
||f ′′||

(
x

n
+

1

n2

)
(6.17)
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From inequality (6.17), the error bounds for the approximation by operators (6.11) are
given in Tables 3 and 4. Inspection of Tables 1 – 4 shows that the absolute error decreases with
increasing n.

Table 3: Error bounds by operators (6.11) to
(
x− 1

2

) (
x− 1

3

)
n error bound at x = 0.2 error bound at x = 0.5 error bound at x = 0.8

20 0.0559 0.0426 0.1806

30 0.0427 0.0317 0.1422

50 0.0311 0.0224 0.1066

Table 4: Error bounds by operators (6.11) to −4x3

n error bound at x = 0.2 error bound at x = 0.5 error bound at x = 0.8

20 0.0647 0.5250 1.6273

30 0.0483 0.4150 1.3040

50 0.0348 0.3133 0.9954

Note: It can be seen that when the values of n are increasing, the graph of operators Gn(f ;x)
are converging to the graph of the function f . Graphical and numerical results have shown us
that the proposed operators provide better approximation properties and good convergence
behavior with the increased value of n.
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