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Orthomyxoviruses are negative-sense, RNA viruses with segmented genomes that 
are highly unstable due to reassortment. The highly pathogenic avian influenza 
(HPAI) subtype H5N8 emerged in wild birds in China. Since its emergence, 
it has posed a significant threat to poultry and human health. Poultry meat is 
considered an inexpensive source of protein, but due to outbreaks of HPAI H5N8 
from migratory birds in commercial flocks, the poultry meat industry has been 
facing severe financial crises. This review focuses on occasional epidemics that 
have damaged food security and poultry production across Europe, Eurasia, the 
Middle East, Africa, and America. HPAI H5N8 viral sequences have been retrieved 
from GISAID and analyzed. Virulent HPAI H5N8 belongs to clade 2.3.4.4b, Gs/GD 
lineage, and has been a threat to the poultry industry and the public in several 
countries since its first introduction. Continent-wide outbreaks have revealed that 
this virus is spreading globally. Thus, continuous sero- and viro-surveillance both 
in commercial and wild birds, and strict biosecurity reduces the risk of the HPAI 
virus appearing. Furthermore, homologous vaccination practices in commercial 
poultry need to be introduced to overcome the introduction of emergent strains. 
This review clearly indicates that HPAI H5N8 is a continuous threat to poultry and 
people and that further regional epidemiological studies are needed.
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Introduction

Avian influenza viruses (AIVs) belong to the Orthomyxoviridae family and contain a 
segmented genome with eight single-stranded RNA segments and have negative polarity 
(Webster et al., 1992). Hemagglutinin (HA) gene and neuraminidase (NA) gene, two of the 
envelope proteins of these viruses, are used to classify them into different subtypes (Kawaoka 
et al., 1988). To date, 16 HA and 9 NA subtypes of AIVs have been identified in poultry and wild 
birds (Wang et al., 2022).

Low-pathogenic avian influenza (LPAI) viruses are naturally found in wild water birds such 
as swans, ducks, gulls, geese, swans, shorebirds, and terns (Krammer et al., 2018; Verhagen et al., 
2021). LPAI viruses are transmitted to domestic birds, animals, and even humans from wild 
water birds. Influenza viruses with H5 HA have been circulating in wild birds and domestic 
poultry since 1995 (Harfoot and Webby, 2017). The Qinghai Lake-like H5N1 virus was first 
widely spread by migratory birds and caused huge damage to the poultry industry worldwide, 
but the origin of the virus remains unclear. The LPAI viruses of the H5 subtype, when infecting 
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poultry, can evolve into HPAI viruses, causing severe mortality 
(Alexander and Brown, 2009). During July and August 2005, HPAI 
H5 clade 2.2 viruses were detected in poultry farms in Russia and 
Kazakhstan, where they caused high mortality (Coulombier et al., 
2005). These viruses were genetically related to viruses detected in 
2005 in Qinghai Lake in China (Chen et al., 2005). From July 2005 
onward, HPAI H5 viruses were observed to cause outbreaks on 
poultry farms (Coulombier et al., 2005). The H5N1 virus became 
endemic in 2003 in Southern China, giving rise to several genotypes.

In mainland China, the H5N8 virus was detected in poultry 
between 2009 and 2010, which derived its HA gene from the Asian 
H5N1 lineage and its neuraminidase (NA), nucleoprotein (NP), and 
polymerase basic (PB1) genes from unidentified, non-H5N1 viruses. 
The H5N8 virus is highly pathogenic to chickens and moderately to 
extremely dangerous to mice (Zhao et al., 2013). In 2014, a novel 
reassortant HPAI H5N8 clade 2.3.3.4 virus with the HA gene was 
identified in South Korea (Jeong et al., 2014). Two types of H5N8 were 
found during these outbreaks, namely Gochang-like and Buan2-like. 
The predominant group, Buan2-like, afterward spread to Europe, East 
Asia, and North America by migratory waterfowl and formed three 
distinct subgroups (Jeong et al., 2014; Lee et al., 2014; Dalby and Iqbal, 
2015; Lee et al., 2015; Verhagen et al., 2021). In autumn 2016, another 
High pathogenic AI H5N8 virus of clade 2.3.4.4 spread across different 
continents (Li et al., 2017) and showed sustained prevalence in Africa, 
Europe, and the Middle East (OIE, https://www.oie.int/en/animal-
health-in-the-world/). In early 2020, HAPI H5N8 was continuously 
reported in Iraq, Kazakhstan, and Russia (Lewis et  al., 2021). 
Furthermore, in December 2020  in Russia, seven poultry farm 
workers were infected with a clade 2.3.4.4b H5N8 virus (Pyankova 
et al., 2021). In June 2021, 2,782 outbreaks of H5N8 were reported, 
causing the mortality or destruction of approximately 38 million 
poultry in more than 25 countries (Cui et al., 2022).1

In conclusion, the spread of High pathogenic AI H5N8 viruses has 
raised serious issues for the security and conservation of animals, 
poultry, and even public health (Shi and Gao, 2021). All this evidence 
suggests that H5N8 viruses are likely to spread worldwide; therefore, 
continuous surveillance and vaccination of poultry are highly 
recommended. In this review, we describe the emergence of sporadic 
infection continentally, and the impacts are briefly described.

Intra and inter-continental transmission 
patterns of sporadic infection of HPAI 
H5N8

Asia and Africa
A number of emergence and re-emergence studies of HPAI H5N8 

strains have been reported within & across Asia & Africa. One HPAI 
H5N8 virus (Dkk1203) was isolated from a poultry farm in mainland 
China during 2009–2010. The Dkk1203 isolate derived its HA gene 
from the Asian H5N1 lineage. Phylogenetic analysis of the HA gene 
revealed that this isolate was classified into the 2.3.4 clade. Compared 
to H5N5 viruses that were isolated between December 2008 and 
January 2009, this strain has longer branches. This strain was distantly 

1 http://empres-i.fao.org/eipws3g/

related to Eurasian N8 genotype viruses and clustered with three 
H3N8 viruses with an origin in Eastern Asia. Therefore, the N5 and 
N8 NA genes of the Dkk1203 isolate are derived from Asian viruses; 
however, the exact origin is not known (Zhao et al., 2013).

In a breeding duck farm on January 16, 2014, in the Jeonbuk 
Province of South Korea, High-pathogenic AI clinical signs, such as 
reduced egg production by about 60% and slightly increased mortality 
rates, were discovered. Moreover, on January 17 of the same year, a 
farmer was also diagnosed with HPAI from breeder ducks in the 
Donglim Reservoir (Lee et al., 2014). Also, the Donglim Reservoir had 
100 Baikal teal carcasses, all of which tested positive for the high 
pathogenic AI H5N8 virus (Lee et al., 2014).

A few months later, in April 2014, an outbreak of the HPAI virus 
with the genotype H5N8, A/chicken/Kumamoto/1–7/2014, occurred 
in Japan (Kanehira et al., 2015). The HA clade 2.3.4.4 membership of 
this virus was also made known. In particular, A/broiler duck/Korea/
Buan2/2014 and A/baikal teal/Korea/Donglim3/2014, HPAI H5N8 
that were isolated in Korea in January 2014, all eight genomic 
segments displayed substantial sequence similarity (Kanehira et al., 
2015). The experimental work delineated that this isolate from Japan 
was lethal in chickens when a higher titer of virus was used for 
infection; however, the chickens were unaffected when challenged 
with lower viral doses (Kanehira et al., 2015).

In the same year (2014), three H5N8 viruses were reported from 
domestic geese in mainland China. The selected strains’ sequence 
analyses revealed that all H5N8 viruses were direct progeny of the 
K1203 (H5N8)-like viruses discovered in China in 2010 and belonged 
to the Asian H5N1 HA lineage of clade 2.3.4.4. The recent common 
clade 2.3.4.4 H5N8 reassortants, which have severely damaged the 
poultry sector and pose a threat to public health, were created by 
K1203-like viruses, according to studies (Li et al., 2014).

Eight highly pathogenic H5N8 AIVs were discovered in Japan 
over the winter, particularly in a location where migratory birds 
overwinter. These isolates were divided into three groups based on 
genetic analysis, demonstrating that three genetic subgroups of H5N8 
HPAIs circulated in these migratory birds. These findings also suggest 
that the migration of these birds next winter may result in the 
redistribution of H5N8 HPAI globally (Ozawa et  al., 2015; Isoda 
et al., 2020).

In 2016 in Malard County of the Tehran Province and the Meighan 
wetland of Arak City, Markazi Province, the HA genes indicated 
categorization in the 2.3.4.4b subclade. Although being identified as an 
H5N8 2.3.4.4b virus, the A/Goose/Iran/180/2016 virus’s cluster was split 
from the A/Chicken/Iran/162/2016 virus. This suggests that the entry of 
these viruses in Iran occurred through more than one window. The most 
recent HPAI-H5 outbreak in Iran happened in 2015 and was entirely 
caused by viruses from clade 2.3.2.1c. These findings underscore the 
necessity to continue proper monitoring activities in the target wild and 
domestic bird species for early HPAI identification and show that Iran is 
at high risk of the importation of HPAI H5 of the A/Goose/
Guangdong/1/1996 lineage from East Asia. These activities would also 
allow the study of the genetic and antigenic evolution of H5 HPAI clade 
2.3.4.4.viruses in the region and the world (Ghafouri et  al., 2017). 
Furthermore, it appears that migrating wild aquatic birds carried these 
HPAI H5N8 strains into Iran via the West Asia-East African flyway 
(Motahhar et al., 2016).

An H5N8 influenza virus of clade 2.3.4.4 outbreak was reported 
in 2016 in the Republic of Tyva. The H5N8 clade 2.3.4.4 virus spread 
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over Europe in the fall. The reports provide a clear overview of the 
viral strains that were discovered in the Russian Federation during the 
spring and fall of 2016. The strains under investigation were extremely 
harmful to mice, and several of their antigenic and genetic 
characteristics were different from an H5N8 strain that was prevalent 
in Russia in 2014 (Marchenko et al., 2017).

The newly emerged H5N8 influenza virus was also isolated from 
green-winged teal ducks. The genomes of the HPAI H5N8 viruses 
from Egypt were also found to be  related to recently identified 
reassortant H5N8 viruses of clade 2.3.4.4 recovered from several 
Eurasian nations, according to analyses of the viruses’ genomes. The 
Egyptian H5N8 viruses had a number of genetic shifts that likely 
allowed for the spread and virulence of these viruses in mammals. 
Instead of human-like receptors, Egyptian H5N8 viruses prefer to 
bind to avian-like receptors. Likewise, amantadine and neuraminidase 
inhibitors had little effect on the Egyptian H5N8 viruses. It is 
important to continue monitoring waterfowl for avian influenza 
because it provides early warning of specific dangers to poultry and 
human health (Kandeil et al., 2017). The presence of this group and 
clade was also found in Qinghai Lake, China, in 2016, which resulted 
in the deaths of wild migratory birds (Li et al., 2017). An HPAI H5N8 
virus of clade 2.3.4.4b has been detected in Egypt. PA and NP gene 
replacement identified the strain as A/duck/Egypt/F446/2017. The 
Russian 2016 HPAI H5N8 virus (A/great crested grebe/Uvs-Nuur 
Lake/341/2016 (H5N8)) was likely the source of Egyptian H5N8 
viruses, according to Bayesian phylogeographic analysis and 
reassortment most likely took place prior to an incursion into Egypt 
(Yehia et al., 2018).

In Egypt, multiple introductions of different reassorted strains 
have been observed. The antigenic sites A and E of the HA gene have 
two new mutations. With various vaccination seeds, the HA nucleotide 
sequence identity ranges from 77 to 90%. To determine the main 
reassorted strain in Egypt, full-genome sequence analysis representing 
various governorates and sectors has been conducted. All viruses have 
been shown to be identical to the clade 2.3.4.4b reassorted strain that 
was discovered in Germany and other nations. Examination of these 
viruses revealed changes unique to Egyptian strains rather than the 
original virus identified in 2017 (A/duck/Egypt/F446/2017), and two 
strains of these viruses had the novel antiviral resistance marker 
V27A, which indicated amantadine resistance in the M2 protein. The 
findings showed that circulating H5N8 viruses were more variable 
than prior viruses analyzed in 2016 and 2017. An early 2017 strain 
served as the foundation for the main reassorted virus that circulated 
in 2017 and 2018. To track the development of circulating viruses, it 
is crucial to keep up this surveillance of AIVs (Yehia et al., 2020). The 
Democratic Republic of the Congo strains also belongs to the same 
clade, 2.3.4.4B. The emergence of this clade in central Africa threatens 
animal health and food security (Twabela et al., 2017).

The recovered HPAI A(H5N8) viruses in Pakistan during 2018–19 
belonged to clade 2.3.4.4b and were most closely related to the 
Saudi Arabian A(H5N8) viruses, which were most likely introduced via 
cross-border transmission from nearby regions about 3 months before 
the virus was discovered in domestic poultry. It was also found that, 
prior to the first human A(H5N8) infection in Russian poultry workers 
in 2020, clade 2.3.4.4b viruses underwent rapid lineage expansion in 
2017 and acquired significant amino acid mutations, including 
mutations correlated with increased hemagglutinin affinity to human-
2,6 receptors. Our findings demonstrate the necessity of routine avian 

influenza surveillance in Pakistan’s live bird markets in order to keep an 
eye out for any potential A(H5Nx) variants that might emerge from 
poultry populations (Ali et al., 2021). Every year, the Indus Flyway, also 
known as the Green Way, transports between 0.7 and 1.2 million birds 
from Europe, Central Asian countries, and India to Pakistan. 
[International Visitors: Birds Come Flying In. http://www.
wildlifeofpakistan.com/PakistanBirdClub/birdcomeflyingin.html].

A thorough investigation was conducted to track the evolution 
of influenza viruses in poultry during the years 2020–2022 in China. 
A total of 35 influenza viruses, including 30 H5N8 viruses, 3 H5N1 
viruses, and 2 H5N6 viruses, were isolated from chickens, ducks, and 
geese. The internal genes of H5N1 and H5N6 viruses shared different 
genetic heterogeneity with H5N8 viruses and had been reassorted 
with wild bird-origin H5N1 viruses from Europe. All HP H5N8 
isolates were derived from clade 2.3.4.4b. The fact that practically all 
H5N8 viruses in China and Korea showed just one phylogenic 
cluster with H5N8 viruses of wild bird origin suggests that the H5N8 
viruses in China were more stable. We also discovered that the main 
geographic source for the transmission of these H5N8 viruses to 
northern and eastern China is Korea. The majority of the 
co-circulation of H5N8 viruses took place within China, with central 
China serving as a seeding population during the H5N8 epidemic. 
Strong statistical evidence supported viral migration from wild birds 
to chickens and ducks, demonstrating that during 2020–2021, 
2.3.4.4b H5N8 viruses with poultry origins were borne by wild birds. 
Multiple gene segments were also discovered to be involved in the 
development of severe disease due to H5N8 HPAI viruses, in 
mallards birds, which explains why no viral gene was found to 
be solely responsible for reducing the high virulence of an H5N8 
virus but the PB2, M and NP segments significantly decreased 
mortality Our results give new insights into the dynamics of H5 
subtype influenza virus evolution and transmission among poultry 
following the almost one-year invasion of China by novel H5N8 
viruses (Leyson et  al., 2021; Ye et  al., 2022). In China, the 
re-emergence of the High Pathogenic H5N8 virus in domestic geese 
was also reported (Guo et al., 2021).

The establishment of novel H5N8 strains in China is frequently 
linked to the migration of migratory birds via the East Asian-
Australasian Flyway. This flyway connects Siberia to Australia and 
includes various stopover spots in China where wild birds gather 
throughout their annual migration. These locations allow diverse bird 
species to interact and exchange influenza viruses (Li et al., 2022).

During, May 2020  in Iraq, H5N8 was reported in poultry. 
Complete genome sequencing delineated that a noval H5 2.3.3.4b 
variant had emerged. Furthermore, the long branch lengths for all 
segments indicated that undetected isolate was circulating for some 
period and possibly in galliform poultry (Lewis et al., 2021).

After outbreaks in Iraq in July 2020, H5N8 was detected in ducks, 
geese, and backyard chickens of Chelyabinskaya Oblast (Chelyabinsk), 
in southern central Russia. During August and September 2020, a total 
of 11 cases were detected in the Tyumen, Omsk, and Kurgan regions 
of Russia (Lewis et al., 2021). Wild birds were described as the cause 
of the incursion.

Concurrent with the H5N8 outbreak in Russia, the outbreak of 
H5N8 was also confirmed in several regions of Kazakhstan, including 
Kostanay, Akmola, and Pavlodar (Lewis et  al., 2021). AI H5N8 
diagnosis was confirmed by subtype-specific quantitative RT–PCR 
(Nagy et al., 2021). The AI H5N8 virus from Iraq and Kazakhstan 
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shared a lot of genetic similarities, according to genetic analyses 
(Lewis et al., 2021).

Europe and the Americas

In 2014, European countries, such as Germany, the 
United  Kingdom, the Netherlands, and Italy, reported several 
outbreaks of H5N8  in poultry. Two different Highly pathogenic 
viruses, H5N2 and H5N8, were found in the United  States in 
December 2014  in wild birds and later in backyard birds in 
Washington State. This sparked concerns about potential connections 
with recent H5N2 outbreaks in Canada and H5N8 in Asia, which is 
now affecting poultry farms in Europe. The continuous spread of these 
Eurasian HPAI H5 viruses among wild birds has a significant impact 
that could arise and the ensuing consequences on American poultry 
and wildlife rehabilitation facilities. Tundra swans (C. columbianus), c 
ommon teal (A. crecca), spot-billed duck (A. poecilorhyncha), Eurasian 
wigeon (A. penelope) and mallard, that appeared to be in good health 
also tested positive for the HPAI H5N8 virus, which raises the 
possibility that wild birds may be contributing to the spread of this 
High Pathogenic H5 lineage in North America (Ip et al., 2014).

With a comprehensive review of the spatiotemporal expansion 
and genetic characteristics of HPAI Gs/GD H5N8 from Poland’s 
2019/20 epidemic, the Highly pathogenic H5 subtype of the Gs/GD 
lineage repeatedly invaded Poland from 2016 to 2020, posing a major 
threat to poultry globally. In nine Polish provinces during 2019 and 
2020, 35 outbreaks in backyard and commercial poultry holdings as 
well as 1 incidence in a wild bird were confirmed. The majority of the 
outbreaks were found in the meat of ducks and turkeys. All sequenced 
viruses belonged to a previously unidentified genotype of HPAI H5N8 
clade 2.3.4.4b and were closely related to one another. The main 
methods of HPAI dissemination were found to be human activity and 
wild birds. A review of current risk assessment techniques is necessary 
in light of the HPAI virus’s unusually delayed emergence (Shin et al., 
2019; Śmietanka et al., 2020).

Asia and Europe

A new wave of H5N8 outbreaks in domestic and wild birds was 
observed in several European nations in October 2020, including the 
United Kingdom, Denmark, Ireland, Germany, and the Netherlands. 
In August 2020, several outbreaks of the disease were confirmed from 
Russia in both domestic and wild birds, and the affected regions 
spread to Kazakhstan in mid-September. Moreover, H5N8 epidemics 
in domestic and/or wild birds appeared in East Asia (Japan and South 
Korea) and the Middle East (Israel). A unique variant between clade 
2.3.4.4b and Eurasian LPAI viruses in wild birds was described as well 
as two different forms of HPAI H5N8 variants, one of which only 
belonged to clade 2.3.4.4b. The geographical areas affected have been 
steadily expanding, and at least 46 nations have documented highly 
pathogenic H5N8. with one of the human cases being related to 
poultry workers during an outbreak in poultry (Pyankova et al., 2021).

An influenza A (H5N8) clade 2.3.4.4b strain was recovered from 
a poultry worker during an outbreak of highly pathogenic H5N8 in 
chickens at a poultry farm in the Astrakhan region on the Volga River 
in southern Russia in December 2020, according to a study of a similar 

nature. Nasopharyngeal swabs were collected from seven poultry 
workers that tested positive, and two were confirmed by RT–PCR and 
sequencing. The seven individuals, five of whom were female and two 
of whom were male, ranged in age from 29 to 60. The HA gene of all 
five viruses obtained from birds and one from humans shared a 
significant degree of genetic similarity with other clades. From 2016 
to 2021, viruses with the 2.3.4.4b gene were found in wild and 
domestic birds in Russia. human influenza A in some cases (H5) 
2.3.4.4. A potential public health hazard is infections (Pyankova 
et al., 2021).

H5N8 clade 2.3.4.4b outbreaks were observed in Russia, the 
Middle East, Central Europe, and Ukraine in 2016. In the southern 
part of Ukraine, close to areas where migrating waterfowl congregate 
in large numbers, especially mute swans (Cygnus olor), an outbreak of 
HPAI strains was documented in domestic backyard poultry between 
2016 and 2017. Upon sequence analysis, it was found that 2 novel 
H5N8 HPAI strains were isolated from domestic backyard chickens 
(Gallus gallus) and mallard duck (Anasplatyrhynchos). HPAI outbreaks 
in Ukraine underscore the ongoing need for AIV bio-monitoring, 
genomic sequencing, and mapping of wild bird flyways and their 
contacts with domestic poultry in Eurasia (Sapachova et al., 2021).

Long-distance migratory birds can play a significant role in the 
global spread of avian influenza viruses, notably through nesting 
regions in the sub-arctic. The investigation of H5N8 viral sequences, 
epidemiological studies, waterfowl migration, and chicken trade all 
revealed that wild birds can spread the virus to poultry via contact 
with infected water or surfaces. Furthermore, the chicken trade may 
contribute to the virus’s spread. Clade 2.3.4.4 viral hemagglutinin 
was discovered to be  extraordinarily promiscuous, producing 
reassortants with diverse subtypes and potentially boosting its ability 
to infect different species of birds and mammals. This promiscuity 
is likely to have a role in its ability to quickly adapt to various hosts 
and settings, potentially enhancing its pandemic potential (Lycett 
et al., 2009).

H5N8 evolution

Whole genome

Gammaviruses are characterized as low pathogenic (LP) viruses 
or highly pathogenic (HP) viruses based on virulence in chickens. HP 
viruses may emerge from LP viruses through genetic mutations in 
wild birds (Fouchier et al., 2005). In this context, AIV subtypes H5 
and H7 are characterized as HP viruses. To date, AI viruses have 16 
subtypes on the basis of the Hemagglutinin gene and 9 due to the 
Neuraminidase gene (Webster et al., 1992; Fouchier et al., 2005).

The entire genome of HPAI H5N8, is made up of eight single-
stranded RNA segments. Each segment encodes a distinct gene that is 
essential for the virus’s replication and infection. Polymerase Basic 
Protein 2 (PB2), which is roughly 2,341 nucleotides long and encodes 
the PB2 protein, is one of these segments. The Polymerase Basic 
Protein 1 (PB1) gene is approximately 2,341 nucleotides long and 
codes for the PB1 protein. The Polymerase Acidic Protein (PA) gene 
encodes the PA protein and is approximately 2,234 nucleotides long. 
The Hemagglutinin (HA) gene encodes the HA protein and is 
approximately 1,778 nucleotides long. The Nucleoprotein (NP) gene 
has a length of about 1,565 nucleotides and codes for the NP protein. 
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The Neuraminidase (NA) gene encodes the NA protein and is 
approximately 1,413 nucleotides long. The Matrix (M) gene encodes 
the M1 and M2 proteins and is approximately 1,027 nucleotides long. 
The Non-structural protein (NS) gene has around 890 nucleotides and 
encodes the NS1 and NS2 proteins. It is crucial to note that the lengths 
provided are approximations and may differ slightly across various 
H5N8 strains or isolates (Bouvier and Palese, 2008).

Hemagglutinin gene (HA)

HA gene sequence analysis was performed, and a phylogenetic 
tree was constructed by comparing sequences retrieved from the 
GISAID platform.2 These HPAI H5 strains belong to different groups 
and lineages. Sequence analysis was performed by following H5 
numbering, which uncovered the genetic diversity during evolution. 
The cleavage site motif of HPAI H5 includes the polybasic amino acids 
QGERRRKKR*GLF (Perdue et  al., 1997; Siddique et  al., 2012), 
whereas in the selected isolates reported globally during different 
years, maximum HPAI H5N8 evolved, and the cleavage site became 
LREKRRKKR*GLF. Studies have demonstrated that, although HPAI 
H5N8 attaches to avian-like receptors, it may also attach to human 
virus-like receptors in the human respiratory tract. HPAI showed 
more affinity for cats than dogs, which were more susceptible to 
HPAI. It is suggested that, due to its establishment in ducts, the 
transmission of HPAI H5N8 viruses may modify the genetic evolution 
of preexisting avian poultry strains (Kim et al., 2014).

On the basis of similarity, H5N8 viruses evolved into three groups 
(Li et al., 2014). Groups I and II contain the isolates belonging to clade 
2.3.4.4b and the Eurasian continent, whereas group III contains 
isolates from the North American lineage, with apparent divergence 
from those in groups I and II. Moreover, the transmission pattern of 
this subtype was observed in depth by reviewing the continent wide 
distribution in Africa (A), Asia (B & C), Europe (D), North America 
and Oceania (E). In this regard, HA gene sequences of selected HPAI 
H5N8 viruses were retrieved from the GISAID database. Initially, 
Bayesian evolutionary analysis was performed using BEAST version 
1.10.4, and then FigTree software (v1.4.4) was used for phylogenetic 
tree construction, as shown (Figure 1). Moreover, No isolation has 
been reported from Antarctica or South America. These continent-
wide sporadic infection, further clarify that the domestic birds are 
reassortant hosts for the emergence of novel virus subtypes and are 
thought to be the reservoir of AIV. The spread of these viruses could 
endanger the health of both humans and birds.

In addition, asparagine-linked glycosylation sites have been 
observed among HPAI H5 strains, revealing that some are common 
during evolution, whereas a number of substitutions and deletions are 
also seen. Siddique et al. in 2012 reported the same sites along with 
additional glycosylation sites at the globular head of the HA gene, 
which is responsible for the prediction of high efficiency of replication 
(Bender et al., 1999; Siddique et al., 2012). Moreover, the conserved 
amino acids at positions 222 glutamine and glycine at position 224 of 
the HA gene are responsible for avian-like receptors at the binding site 
that is common among all the HPAI H5 proteins selected for analysis, 

2 http://platform.gisaid.org/

and similar reports are available in this context (Matrosovich et al., 
1999; Smith et al., 2006; Siddique et al., 2012).

Furthermore, a number of amino acid mutations have been 
observed at antigenic sites, including at amino acid position 39, where 
glutamic acid has been shown to have mutated into glycine, S141P, 
K169R, D171N, A172T, R178I/R, P197S, R205N/K, and N268Y. These 
sites have been designated as crucial residues of the antigenic site 
(Kaverin et al., 2004).

In NA, PB1, PB2, PA, NP, PA, M, and NS, almost 29 molecular 
signatures are present that are associated with replication, virulence, 
transmission, and adaptation in mammals (Hiromoto et al., 2000; 
Shaw et al., 2001; Chen et al., 2007; Gabriel et al., 2008; Long et al., 
2008; Lycett et al., 2009; Spesock et al., 2011; Hui et al., 2017; Kamal 
et al., 2017; Yu et al., 2017; Pulit-Penaloza et al., 2020). In this regard, 
a maximum of 20molecular signatures were present in HPAI 
H5N1/483, whereas 4–6 were present in HPAI/LPAI H5N8 viruses. 
The PB2 gene contains the known marker 627 K for mammalian 
adaptation that has only been shown to be present in 2 HPAI H5 
human isolates, HPAI subtype H5N1/483 and H5N6/39715. There are 
a number of other mutations in the NA gene at the 96A amino acid 
position and the Matrix 2 gene at the S31N site that are responsible for 
dual resistance against antivirals, including oseltamivir and 
amantadine (Cheung et al., 2006; Ilyushina et al., 2010). However, 
some other mutations, such as R118K in the NA gene, are associated 
with additional resistance to zanamivir (Intharathep et  al., 2008; 
Orozovic et al., 2011). Due to these genetic changes, adamantanes and 
neuraminidase inhibitors may not be able to effectively prevent the 
replication of these viruses in the host in this situation.

The highly pathogenic AI H5 subtype has been spreading at an 
unprecedented rate since 2021, which is concerning given the disease’s 
high mortality rate in wild birds and poultry as well as cases that have 
been observed in mammals and people. This could potentially lead to 
a future pandemic. Along with causing mass demise in a number of 
wild mammal species, H5 HPAI has the capacity to switch from 
infecting avian to mammalian hosts and develop the necessary 
characteristics for effective transmission from mammal to mammal. 
Therefore, enhanced surveillance of wild animals, large-scale animal 
farms, and humans handling them is urgently needed, along with 
improved biosecurity measures, reduction of poultry farm size and 
density, vaccination of poultry against HPAI, and avoidance of areas 
rich in water birds as a location for poultry farms. In addition, the 
medical sector and society need to prepare for the emergence of the 
human-to-human spread of H5 HPAI. It is crucial to include the 
community, communicate about risks, and counter intentional 
disinformation. The next pandemic, which could result from this AIV, 
should be prepared for using the lessons learned from the COVID-19 
pandemic as a reference (Kuiken, 2023).

Risk assessment and mitigation strategies

During 2020–21, in Eurasia, Europe, and Africa, emergent strains 
were highly pathogenic subtypes of H5N8 belonging to clade 2.3.4.4b 
and had a significant impact on the poultry industry. In the current 
scenario, an emergency has been declared for the enhancement of 
sero-and viro-surveillance across the globe depending on the previous 
outbreaks in 2005 and 2016 (Alarcon et al., 2018; Adlhoch et al., 2020). 
For risk mitigation strategies, an effective risk assessment needs to 
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be  performed in terms of tissue/host tropism, pathogenesis, and 
disease transmission and dissemination. Influenza A virus poses a 
continuous threat to poultry and the public due to its evolutionary 
mechanism through reassortment.

HPAI are extremely risky to poultry if not properly vaccinated. 
The low pathogenic H7N9 virus which emerged in 2013, was 
converted into high pathogenic due to mutations in early 2017, caused 
the death of millions of chickens to control the outbreak (Shi et al., 
2017; Zeng et  al., 2018). The use of H7N9 vaccines effectively 
controlled the circulation of this virus both in poultry and humans 
(Zeng et al., 2020). Since 2004 vaccines are in in use against H5 avian 
viruses in China (Zeng et al., 2020). Since the emergence of H7N9 in 
2017, a bivalent inactivated vaccine against H5/H7 was developed to 
control both H5 and H7 in poultry in China (Shi et al., 2018; Zeng 
et  al., 2018). Currently, a trivalent vaccine-H5/H7 which contain 
Re-11, Re-12 and H7-Re3 vaccine seed viruses are in use. This 
trivalent vaccine was generated by reverse genetics, and HA genes 
were derived from A/duck/Guizhou/S4184/2017(H5N6) (DK/GZ/
S4184/17) (a clade 2.3.4.4 h virus), A/chicken/Liaoning/SD007/2017 
(H5N1) (CK/LN/SD007/17) (a clade 2.3.2.1d virus), and A/chicken/
Inner Mongolia/SD010/2019 (H7N9) (CK/IM/SD010/2019), 
respectively (Zeng et al., 2020; Cui et al., 2022). Although the newly 

emerged H5N8 viruses differ antigenically from currently used 
vaccines, poultry birds vaccinated in routine with current vaccines still 
completely protect against H5N8 virus challenge (Cui et al., 2022). In 
another recent study (Niqueux et  al., 2023), the efficacy of three 
vaccines was determined against the HPAI A/decoy duck/
France/161105a/2016 (H5N8), clade 2.3.3.4b. The first vaccine (Vac1), 
was derived from HA gene clade 2.3.4.4b A (H5N8) HPAI, the second 
vaccine (Vac2) used was a commercial bivalent adjuvanted vaccine 
that contained an expressed HA modified from clade 2.3.2 A (H5N1) 
HPAI. The third vaccine (Vac3) also incorporated a homologous 
2.3.4.4b H5 HA gene. Vac2 partly decreased the respiratory and 
intestinal excretion of challenge virus, Vac3 completely abolished 
cloacal shedding while Vac1 abolished oropharyngeal and cloacal 
shedding to almost undetectable levels. These results provided 
significant insights in the immunogenicity of recombinant H5 
vaccines in mule ducks (Niqueux et al., 2023). Since the H5N8 viruses 
have been detected in a wide range of wild birds across the globe, 
therefore it could spread worldwide and can be very lethal to poultry. 
Therefore, homologous vaccination practices need to be introduced 
for the control and transmission of the disease, as the exact 
information on the disease and transmission is still not clear. The 
Iraqi-like strains are dispersed through poultry or indirect 

FIGURE 1

Phylogenetic analysis of the hemagglutinin gene of AIV subtype H5N8 inferred with BEAST software (A) Africa (B) Asia-group B (C) Asia-group C 
(D) Europe (E) North America and Oceania.
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transmission in central Asia. In 2014–2017, there was little evidence 
of reassortment of HPAI H5N8 and H5N1 viruses in wild birds, as 
dispersal was unclear, but later, evidence of reassortment was found 
to be substantive, whereas in Europe in 2020, the emerging HPAI 
H5N8 strain was clearly a combination of sub-Saharan African viruses 
with a Eurasian LPAIV origin. Despite the implementation of 
biosecurity measures, several outbreaks of HPAI H5N8 strains were 
reported in France during 2016–2017, possibly due to airborne viral 
transmission. The area around the poultry facilities, almost 50–110 m, 
is considered contaminated with varied viral concentrations (Scoizec 
et  al., 2018). In case of outbreaks, depopulation methods need to 
be wisely implemented to further control the air-borne contamination 
of influenza viruses, which could result in instant mass culling.

Conclusions and future perspectives

This study backs up the hypothesis that asymptomatic migrating 
birds may have assisted viral development and reassortment as well as 
regional transmission of HPAI subtype H5N8. Another evidence that 
rapid and active mutation and reassortment of H5 subtypes may occur 
in these hosts comes from the HPAI subtypes H5N1 and H5N8 
coinfecting and cocirculating in migratory ducks. Therefore, 
intersectoral alliance and coaction for mitigating avian influenza 
outbreaks based on the One Health approach that is worthwhile and 
advisable. This review discusses knowledge of the disease’s nature, 
distribution, epidemiology, applied surveillance techniques, diagnosis, 
and control approaches as they related to Sahelian Africa and its 
surrounding suburbs. Understanding of the influenza virus and its 
footprint on the well-being of humans and animals would aid in better 
preparing for the erratic/capricious challenges posed by this 
infectious disease.

Continuous vigilance, strengthening biosecurity, and intensifying 
surveillance in wild birds are needed to better manage the risk of 
HPAI occurrence in the future. Moreover, high-risk countries should 
vaccinate their poultry birds to prevent further outbreaks of HPAI 
H5N8. This review clearly indicates that HPAI H5N8 is a threat from 
a poultry standpoint and public perspective and that continuous 
surveillance and further epidemiological studies are needed.
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