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Vibriosis is one of the most common bacterial diseases that cause high rates 
of mortality and considerable economic losses in aquaculture. Phage therapy 
has been considered as a promising alternative method to antibiotics in the 
biocontrol of infectious diseases. Genome sequencing and characterization 
of the phage candidates are prerequisites before field applications to ensure 
environmental safety. In this study, a lytic phage, named vB_VhaS-R18L (R18L), 
was isolated from the coastal seawater of Dongshan Island, China. The phage 
was characterized in terms of morphology, genetic content, infection kinetics, 
lytic profile, and virion stability. Transmission electronic microscopy indicated that 
R18L is siphovirus-like, comprising an icosahedral head (diameter 88.6 ± 2.2 nm) 
and a long noncontractile tail (225 × 11 nm). Genome analysis indicated R18L to 
be  a double-stranded DNA virus with a genome size of 80,965 bp and a G + C 
content of 44.96%. No genes that encode known toxins or genes implicated in 
lysogeny control were found in R18L. A one-step growth experiment showed that 
R18L had a latent period of approximately 40 min and a burst size of 54 phage 
particles per infected cell. R18L showed lytic activity against a wide range of at 
least five Vibrio species (V. alginolyticus, V. cholerae, V. harveyi, V. parahemolyticus, 
and V. proteolyticus). R18L was relatively stable at pH 6–11 and at temperatures 
ranging from 4°C to 50°C. The broad lytic activity across Vibrio species and the 
stability in the environment make R18L a potential candidate for phage therapy in 
controlling vibriosis in aquaculture systems.
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Introduction

Vibriosis is a major bacterial disease of aquaculture that is associated with high mortality rates 
among marine animals and considerable economic losses to the seafood industry (Lafferty et al., 
2015). Vibriosis can be caused by a number of Vibrio species, among which V. harveyi is a notifiable 
and highly prevalent pathogen in marine environments (Austin and Zhang, 2006; Zhang et al., 
2020). Marine vertebrates (mainly fish) and invertebrates (mainly penaeid shrimp) infected by 
V. harveyi show vasculitis, gastroenteritis, eye lesions, and luminous vibriosis. These diseases have 
severely affected seafood production in Asia and South America, including China, Japan, India, 
Thailand, Java Island, Philippines, Kuwait, northern Chile, etc. (Austin and Zhang, 2006; Defoirdt 
et al., 2007). Antibiotics and sanitizers have traditionally been used in the prevention and control 
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of vibriosis in aquaculture (Sano, 1998). However, the overuse of drugs 
has resulted in antibiotic resistance, chemical residues in aquatic 
products, a microecological imbalance, and environmental pollution 
(Defoirdt et al., 2007; Larsson and Flach, 2022). A variety of antibiotic-
resistant pathogens have been increasingly reported (Kang et al., 2014; 
Stalin and Srinivasan, 2016). The emergence of antimicrobial resistance 
in pathogens highlights the urgent need for alternative therapeutic 
methods to reduce mortality and minimize the impact on human health 
and the environment (Defoirdt et al., 2007).

Bacteriophage (or phage) therapy, which has the advantages of 
specific targeting, self-replication, and low inherent toxicity, has been 
historically employed as a biological control strategy and has been 
proposed as an eco-friendly method to control bacterial disease (Defoirdt 
et al., 2007; Nobrega et al., 2015; Wang et al., 2017; Yen et al., 2017; 
Gordillo Altamirano and Barr, 2019). To date, a number of studies have 
reported the use of phage therapy against V. harveyi pathogens (Vinod 
et al., 2006; Shivu et al., 2007; Crothers-Stomps et al., 2010; Wu et al., 
2021). Phages infecting V. harveyi have been isolated from various 
environments and tested in terms of their potential application (Vinod 
et al., 2006; Shivu et al., 2007; Crothers-Stomps et al., 2010; Wu et al., 
2021). For example, phage treatment of V. harveyi-infected Penaeus 
monodon larvae resulted in higher survival rates (80%) compared with 
the control larvae (25%) (Vinod et al., 2006). Lytic phages P4A and P4F, 
isolated from the seawater of an abalone farm, significantly reduced the 
population of pathogenic V. harveyi (Luo et al., 2016). It is now accepted 
that phage therapy, after careful selection and extensive studies of phage 
candidates, will eventually become an effective alternative to antibiotics 
(Defoirdt et al., 2007; Nobrega et al., 2015; Gordillo Altamirano and Barr, 
2019; Nachimuthu et al., 2021). However, comprehensive studies must 
be undertaken in selecting phage candidates because some phages may 
encode toxins and/or lead to altered bacterial virulence, and others may 
be  inefficient when applied in the field. One such example is 
bacteriophage VHML (V. harveyi myovirus-like), which was shown to 
confer virulence in various V. harveyi strains (Munro et  al., 2003). 
Similarly, two isolated myoviruses were reported to integrate as 
prophages into the host genome and induce bacteriocin production 
when infecting V. harveyi strains, which excludes their usage in phage 
therapy (Crothers-Stomps et al., 2010).

In general, the suitability of a particular phage to control bacterial 
pathogens is determined by the presence of toxic genes, the host range, 
the length of viral infection, the number of progeny produced, and, 
importantly, the stability of the phage in the environment (Hyman, 
2019). Considering the high degree of phenotypic and genotypic 
diversity among Vibrio pathogens, a phage with a wide host range is 
potentially valuable. When a disease is caused by a mixed bacterial 
infection, the use of a broad-host-range phage with the ability to kill 
multiple strains would be  preferable to a mixture of different 
therapeutic phages (Hyman, 2019). Taking this into consideration, the 
present study aimed to isolate bacteriophages with a broad host range 
and evaluate their efficiency as potential biocontrol agents against 
vibriosis. Different V. harveyi-specific phages (a total of 12 phages) 
were first isolated and screened to determine their host range. On the 
basis of its broad host range, one of these phages, vB_VhaS-R18L 
(hereafter, R18L), was selected for further analysis of its genomic and 
morphological properties, as well as its burst size and latent period. 
Furthermore, the virion stability of R18L was determined under 
different temperature and pH conditions to determine its suitability 
for potential therapeutic applications in the future.

Materials and methods

Phage isolation and purification

The host strain Vibrio harveyi BYK0632 used in this study was 
purchased from the National Pathogen Collection Center for 
Aquatic Animals, Shanghai Ocean University (Shanghai, China). 
V. harveyi BYK0632 was grown in rich organic (RO) medium (1 M 
peptone, 1 M yeast extract, 1 M sodium acetate, artificial seawater, 
pH 7.5) at 28°C with shaking at 180 rpm/min. Surface seawater 
samples for phage isolation were collected in April 2016 at the coast 
of Dongshan Island (Fujian, China) and filtered through a 0.2 μm 
membrane. Before being mixed with the host strain, the virus-
containing filtrate was concentrated using a 30 kDa cartridge 
(Millipore, MA, USA) by tangential flow filtration to improve the 
probability of successful phage infection (Cai et al., 2015, 2019). The 
concentrated seawater samples were mixed with exponentially-
growing V. harveyi BYK0632 (OD600: 0.1–0.2) using a double-layer 
agar method according to previous studies (Yang et al., 2017; Cai 
et  al., 2019). After 18–24 h incubation at 28°C, individual lytic 
plaques were picked from the agarose plate and dissolved in SM 
buffer (50 mM Tris–HCl, 0.1 M NaCl, 8 mM MgSO4, 0.1 g/L gelatin, 
pH 7.5). This double-layer agar plating was repeated five times to 
ensure the purity of the phage.

Preparation of high-titer phage 
suspensions

To obtain high-titer phage suspensions for morphological 
observation and genome sequencing, phages were propagated in one 
liter of V. harveyi BYK0632. After cell lysis, the culture was centrifuged 
at 10,000 × g for 10 min and filtered through 0.2 μm filters to obtain the 
phage-containing suspension. The phage suspension was precipitated 
with polyethylene glycol 8,000 (100 g L˗1 final concentration) overnight 
at 4°C and collected by centrifugation at 10,000 × g for 30 min at 
4°C. The phage pellet was re-suspended in SM buffer and then 
concentrated by CsCl (1.5 g/mL in SM buffer) gradient 
ultracentrifugation (200,000 × g, 4°C, 24 h). The clear phage band was 
extracted and dialyzed against SM buffer at 4°C.

Host range

The lytic profiles of purified vibriophages were determined using 
spot assay (Yang et al., 2017; Cai et al., 2019). Briefly, different phages 
were challenged against 28 Vibrio strains from 12 Vibrio species 
(V. alginolyticus, V. campbellii, V. cholera, V. harveyi, V. inhibens, 
V. mimicus, V. owensii, V. parahemolyticus, V. proteolyticus, V. tubiashii, 
V. vulnificus, and V. rotiferianus), which were originally isolated from 
the aquatic environment and diseased shrimp and fish (Table 1) and 
purchased from the National Pathogen Collection Center for Aquatic 
Animals (China). Each of these exponentially growing bacterial 
cultures was mixed with molten RO agar medium (0.5% w/v agar) and 
poured onto solid RO agar medium (1.5% w/v agar). After the agarose 
plates solidified, 5 μL of diluted phage lysate was added onto the 
surface of each bacterial plate and incubated at 28°C for more than 
12 h. The formation of clear plaques where lysates were added indicated 
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successful phage infection of the test strains. Tests were repeated at 
least three times. One of these isolated phages, R18L, showing a broad 
host range (see results below), was selected for further characterization.

Transmission electron microscopy (TEM)

The morphology of R18L was determined by TEM. In brief, 3 μL of 
high-titer phage was adsorbed onto a carbon-coated copper microscopy 
grid for 10 min, followed by negative staining with 2% (w/v) 
phosphotungstic acid for 1 min. After the grid was air-dried for 30 min, 
the sample was observed by TEM using a JEM-2100 microscope (JEOL, 
Tokyo, Japan) at 80 kV. Images were acquired by a CCD image 
transmission system (Gatan Inc., Pleasanton, CA, United States).

Lipid test

To determine whether the capsid of R18L contained lipids, a 
chloroform sensitivity test was conducted (Yang et al., 2017; Cai et al., 

2019). Briefly, 1 mL of phage lysate was incubated with 20 μL and 
200 μL of chloroform for 30 min at room temperature in the dark. 
Control aliquots were included without the addition of chloroform. 
After incubation, chloroform was removed by centrifugation at 
5,000 × g for 5 min. The titers of the phage were then determined by a 
spot assay. Each treatment was tested in triplicate.

One-step growth curve

The life cycle of R18L was examined by a one-step growth 
experiment (Middelboe et  al., 2010; Yang et  al., 2017). Briefly, the 
freshly prepared phage lysate was added to 1 mL of exponentially 
growing V. harveyi BYK0632 culture with a multiplicity of infection of 
0.001 in triplicate, then incubated for 5 min at room temperature (24°C) 
in the dark for phage adsorption. To remove unabsorbed phage 
particles, the culture was centrifuged for 5 min (10,000 × g, 4°C) and 
resuspended in RO medium. This procedure was repeated twice. The 
suspension was incubated at 28°C in the dark. Samples were taken 
every 10 min, and the viral abundance was determined by a plaque assay.

Thermal stability and pH sensitivity

The effects of environmental factors on the phage were determined 
by testing its thermal stability and pH sensitivity. For the thermal 
stability test, 1.5 mL of aliquots of freshly prepared phage lysate (~107 
plaque-forming units/mL) was incubated at different temperatures 
(4°C, 24°C, 37°C, 50°C, 55°C, and 60°C) in triplicate. Subsamples 
were collected at 3, 24, and 48 h, and the phage titer was determined 
by a plaque assay. For the pH stability test, SM buffer with a pH 
ranging from 2 to 12 was prepared using HCl or NaOH as required. 
Then, 100 μL of freshly prepared phage lysate was inoculated and 
incubated under different pH conditions at room temperature (24°C) 
in triplicate. Subsamples were collected at 3 h and 24 h, and the phage 
titer was determined by a plaque assay.

DNA extraction

Prior to DNA extraction, the high-titer phage concentrate was 
treated with DNase I and RNase A to remove possible contamination 
of free host DNA and RNA. The DNase was inactivated at 65°C for 
15 min. Phages were lysed with 1.5 μL of proteinase K (100 mg/mL), 
10 μL of EDTA (0.5 M, pH 8.0), and 100 μL of sodium dodecyl sulfate 
(SDS; 10% w/v) at 55°C for 3 h. The phage DNA was extracted with a 
phenol/chloroform/isoamyl alcohol mixture, which promotes the 
partitioning of cellular debris into the organic phase, leaving isolated 
DNA in the aqueous phase. The purified DNA was further precipitated 
with isoamyl alcohol. The quality of the DNA was checked via agarose 
gel electrophoresis and analysis using a NanoDrop  2000 
Spectrophotometer (Thermo Fisher Scientific, MA, United States).

Genome sequencing and analysis

The extracted DNA was sheared into 300-bp fragments in a 
Covaris ultrasonicator (KBiosciences, United  Kingdom) before 

TABLE 1 Host range of vibriophage R18L (+, infected; −, uninfected).

Species Strain Strain type Infectivity

V. alginolyticus BVA1 Pathogenic +

V. alginolyticus BVA2 Pathogenic −

V. alginolyticus 20,140,910–1 Pathogenic −

V. cholerae 20,161,020–5 Pathogenic +

V. cholerae 20,160,707–2 Pathogenic −

V. harveyi 20,160,918–11 Pathogenic −

V. harveyi 20,150,916–2 Pathogenic −

V. harveyi BYK0632 Pathogenic +

V. harveyi BVH1 Pathogenic +

V. inhibens 3,707 Nonpathogenic −

V. mimicus 20,150,901–2 Pathogenic −

V. mimicus 20,160,921–1 Pathogenic −

V. owensii 3,186 Nonpathogenic ˗

V. parahemolyticus BVP1 Pathogenic +

V. parahemolyticus BVP2 Pathogenic −

V. parahemolyticus 7D Pathogenic −

V. parahemolyticus 8D Pathogenic −

V. parahemolyticus 20,160,623–13 Pathogenic +

V. parahemolyticus 20,160,725–2 Pathogenic +

V. parahemolyticus 4F Pathogenic +

V. parahemolyticus 20,160,615–5 Pathogenic −

V. parahemolyticus 20,160,707–8 Pathogenic ˗

V. parahemolyticus 20,160,719–2 Pathogenic −

V. vulnificus 20,161,213–1 Pathogenic −

V. proteolyticu 3,562 Nonpathogenic +

V. campbellii 3,507 Nonpathogenic −

V. tubiashi 3,833 Nonpathogenic −

V. rotiferianus 3,557 Nonpathogenic −
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preparing the Illumina paired-end sequencing library using the 
NEBNext Ultra II DNA library prep kit. The quality and size of the 
libraries were analyzed using the Agilent 2,100 Bioanalyzer. The 
concentration of the libraries was determined using the Qubit 2.0 
dsDNA HS Assay kit (Life Technologies, Germany). Sequencing was 
performed on the MiSeq platform (Illumina, San Diego,  
CA, United  States). Raw reads were trimmed and filtered using 
Trimmomatic v0.36 to remove adaptor sequences and low-quality 
reads (Bolger et  al., 2014). The sequences were assembled using 
A5-miseq (version 20,150,522). Intergenomic similarities between 
phages were calculated using VIRIDIC (Moraru et al., 2020). The open 
reading frames (ORFs) were predicted using GeneMark (Besemer and 
Borodovsky, 2005) and ORF Finder (Rombel et  al., 2002). Gene 
annotation was performed using BLASTP against the NCBI 
nonredundant (nr) database1 with an e-value <10˗3. tRNA sequences 
in the R18L genome were analyzed by tRNAscan-SE (Chan and Lowe, 
2019). The spacer of the R18L genomic sequence was searched against 
the viral spacer database of IMG/VR (Roux et al., 2021). Phylogenetic 
analyses of specific genes were performed using the maximum-
likelihood method with 1,000 bootstrap replicates and MEGA 
software (Tamura et al., 2021). The complete genome sequence of 
vibriophage vB_VhaS-R18L has been deposited in the GenBank 
database under accession number MT451873.

Results and discussion

Biological features of R18L

In this study, a total of 12 phages against V. harveyi were isolated 
from the coastal surface seawater of Dongshan Island, China. A novel 
V. harveyi phage, designated vB_VhaS-R18L (R18L), showing a broad 
host range (see below), was selected for further detailed analysis. The 
lysis of R18L formed semitransparent plaques of 2.0 mm in diameter 
on host lawn plates (Figure 1A). As shown in the TEM micrograph, 
R18L has an icosahedral capsid (diameter 88.6 ± 2.2 nm) and a long 
noncontractile tail (225 ± 2.2 nm in length and 11 ± 1.0 nm in width), 
being a siphovirus-like phage (Figure 1B). Different vibriophages have 
been isolated and characterized using V. harveyi as the host, with most 
belonging to siphoviruses (Vinod et al., 2006; Wang et al., 2017; Wu 
et al., 2021; Droubogiannis and Katharios, 2022; Kang et al., 2022), 
followed by myoviuses (Surekhamol et al., 2014; Lal et al., 2017) and 
podoviruses (Thiyagarajan et al., 2011). The reason why siphoviruses 
are the predominant viral group infecting Vibrio is currently 
unknown. However, as more vibriophage genomes and features 
become available, we will be better able to assess the abundance and 
role of different vibriophage groups. The capsid size and tail length of 
R18L were relatively large compared with those previously reported 
for siphoviruses with diameters of 40–92 nm and tail lengths of 
60–277 nm (Vinod et  al., 2006; Crothers-Stomps et  al., 2010; 
Thiyagarajan et al., 2011; Raghu Patil et al., 2014; Stalin and Srinivasan, 
2017). The chloroform sensitivity test demonstrated that the infectivity 
of R18L was not affected by different concentrations of chloroform, 
suggesting the absence of lipids outside of the R18L capsid. To date, 

1 https://blast.ncbi.nlm.nih.gov/Blast.cgi

lipids have been considered to be a rare feature for bacteriophages, 
representing less than 5% of the published isolates (Atanasova et al., 
2015; Mantynen et al., 2019).

The latent period and burst size of R18L, as important 
characteristics of the phage infection process, were determined by the 
one-step growth curve (Figure 2). R18L exhibited a latent period of 
40 min and a rise period of 30 min. The burst size of R18L was 
calculated at approximately 54 phage particles per infected cell. Recent 
reports have shown that the latent period and burst size of other Vibrio 
phages were 10–70 min and 2–180 phage particles/cell (Baudoux et al., 
2012; Lal et al., 2017; Stalin and Srinivasan, 2017). The latent period 
and burst size of R18L were within the documented range 
for vibriophages.

The host range of R18L was tested on 28 Vibrio strains, including 
22 pathogenic strains isolated from diseased animals and six 
nonpathogenic strains from seawater (Table 1). Nine (32%) of the 28 
Vibrio strains tested were lysed by R18L, including strains from 
V. alginolyticus, V. cholerae, V. harveyi, V. parahemolyticus, and 
V. proteolyticus. Of these nine strains, eight were pathogenic. R18L 
could infect bacteria across at least five Vibrio species, even including 
V. proteolyticus and V. cholerae, which are not members of the Harveyi 
clade (Sawabe et al., 2007). Interestingly, two species that are closely 
related to V. harveyi (V. campbellii and V. rotiferianus), belonging to 
the Harveyi clade (Sawabe et al., 2007), were not susceptible to phage 
R18L. Therefore, the genetic similarity between Vibrio species does 
not necessarily correlate with the lytic spectrum of R18L. Previously 
reported vibriophages have shown different lytic abilities against 
Vibrio species. Phage PW2 infected different strains of V. harveyi but 
not 13 other Vibrio species (V. alginolyticus, V. cholera, V. campbelli, 
V. logei, etc.) (Phumkhachorn and Rattanachaikunsopon, 2010). 
Furthermore, phage SIO-2 could only infect two strains from relatively 
closely-related Vibrio species (V. harveyi and V. campbellii) when 
tested against 17 Vibrio species (Baudoux et  al., 2012). Whereas 
phages with a broad lytic spectrum have also been reported (Shivu 
et al., 2007; Thiyagarajan et al., 2011). For example, phages φVh1, 
φVh2, and φVh3 showed a relatively broad lytic spectrum involving 
four Vibrio species (V. harveyi, V. parahemolyticus, V. alginolyticus, 
and V. logei) (Thiyagarajan et  al., 2011). In phage therapy, when 
bacterial diseases are caused by polymicrobial infections, a therapeutic 
phage mixture or phages with a broader host range would be needed 
for treatment (de Jonge et al., 2019; Hyman, 2019). Given that phage 
cocktails (mixtures) require the individual phage targeting different 
pathogens to be  isolated and studied, broader-host-range phages 
might be preferable for complex vibriosis. Hence, R18L, possessing a 
broad spectrum of infectivity against different pathogenic Vibrio spp., 
provides a promising potential biocontrol agent for bacterial diseases 
in aquaculture. However, the estimation of the efficiency of R18L in 
treating different pathogens is needed before field applications in 
the future.

Genome features of R18L

The genome of R18L was a double-stranded DNA comprising 
80,965 bp and a G + C content of 44.96%. The R18L genome consisted 
of 118 putative ORFs, of which 31 ORFs (26.2%) have known 
functions, while the other 87 ORFs (73.7%) were assigned as genes 
with unknown functions (Figure 3). All of the predicted ORFs are 
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oriented on the positive strand (in a rightward direction). The total 
gene length of all coding sequences was 76,620 bp, comprising 
~94.6% of the genome. Gene annotation using BLASTP (e-value 
<10˗3) identified different functional clusters, including structural 
genes and genes involved in DNA metabolism, DNA replication, 
DNA packaging, cell lysis, and additional functions (see below). 
Among the 31 ORFs of known function, eight were related to the 
structure of R18L, while 15 were associated with DNA replication, 
metabolism, and packaging, cell lysis (ORF 93). In addition, seven 
uncategorized ORFs had a wide range of functions, including a serine 
protease XkdF (ORF 8), which is a protease frequently found in phage 
genomes. The function of virally encoded serine proteases is currently 
unknown, but they have been found to be strongly expressed during 
the late stage of viral infection, suggesting their potential role in 
virion assembly or maturation (Baum et  al., 2021). Tyrosine 
phosphatase (ORF 53) was involved in signaling by controlling the 
phosphorylation state of proteins (Walchli et  al., 2004). Pyruvate 
phosphate dikinase (ORF 51) and pyruvate decarboxylase (ORF 55) 

were two potential auxiliary enzymes that were involved in the host 
glycolytic metabolism (DelVecchio et al., 2002). No tRNA gene was 
detected in the R18L genome sequence, suggesting that R18L 
depended on the translation machinery of its host. Furthermore, 
R18L did not possess lysogeny-related genes (transposase or 
integrase, excisionase, and repressor), and no antibiotic resistance 
genes or virulence factor-related genes were detected in the genome 
of R18L using the ARDB (Liu and Pop, 2009) and VFDB (Chen et al., 
2005) databases, which is beneficial for its potential application in 
phage therapy.

A nucleotide-based genome comparison revealed that the 
genome of R18L shared the most similarity to that of Vibrio phage 
SIO-2 (Baudoux et  al., 2012), with an identity of 97.33% and a 
coverage of 99%, consistent with the intergenomic similarity of 
96.95% between them based on VIRIDIC calculation (Moraru et al., 
2020). However, R18L shows a broader host range than SIO-2. R18L 
could infect strains of V. harveyi, V. alginolyticus, V. cholerae, 
V. parahemolyticus, and V. proteolyticus among 12 Vibrio species, 
while SIO-2 only lysed strains of V. harveyi and V. campbellii among 
17 Vibrio species tested. The host range of phages might correlate 
with variations in their tail-related genes (de Jonge et al., 2019). Three 
ORFs (ORFs 14, 15, 18) of R18L were identified as tail-related genes, 
while ORF 15 (major tail protein) of R18L exhibited relatively low 
identity (93%) with the corresponding gene of SIO-2, which might 
explain the different host ranges of the two phages. Additionally, 
seven predicted proteins with unknown function (ORFs 48, 50, 78, 
79, 95, 117, 118) of R18L were distinct from those of SIO-2, with 
53–88% identity at the amino acid level, which may contribute to the 
difference in the lytic spectrum of these two phages.

Phylogenetic trees of DNA polymerase I  and terminase large 
subunit (TerL) were constructed to analyze the evolutionary 
relationships of R18L. As demonstrated in Figure 4, R18L clustered 
with three vibriophages, SIO-2 (NC_016567.1), vB_VhaS-a 
(KX198615.1), and ValSw4_1 (MH925091.1), which were all isolated 
using V. harveyi as the host, in both the DNA polymerase I and TerL 
trees. These four phages are clearly related to another branch, where 
four vibriophages were isolated from different Vibrio species. All eight 
vibriophages in the phylogenetic analysis were siphoviruses, with 
similar genome sizes (79.6–82.2 kb) and G + C contents (45.0–47.6%).

FIGURE 1

Plaques (A) and transmission electron microscopic image (B) of vibriophage vB_VhaS-R18L. Scale bar, 50 nm.

FIGURE 2

One-step growth curve of vibriophage vB_VhaS-R18L. Data points 
represent the mean values and standard deviations of three 
independent experiments.
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Virion stability of R18L

The thermal stability test showed that R18L was highly stable, 
with its activity remaining fairly constant at 4–40°C for 3 h 
(Figure  5A). Furthermore, greater than 50% of R18L phage 

remained active after incubation at 4–40°C for 24–48 h. The 
stability of R18L below 40°C simplifies the storage and transport 
requirements for this phage. Most phages become inactive when 
the temperature reaches 55°C, with survival percentages lower 
than 15% within 3 h. R18L did not show any activity when the 

FIGURE 3

Genome map of vB_VhsS-R18L. Colored arrows represent different putative functions predicted from BLASTP similarity. The direction of each arrow 
represents the direction of transcription.

FIGURE 4

Phylogenetic tree of Vibrio phage R18L-related phages based on the amino acid sequences of DNA polymerase I (A) and the terminase large subunit 
(B) using a maximum likelihood method with 1,000 bootstraps (percentage value given on nodes). The scale bar represents 0.2 fixed mutations per 
amino acid position. R18L isolated in this study is shown in bold.
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temperature increased to 60°C, showing better thermal tolerance 
than previously reported vibriophages IME271 (40°C) (Li et al., 
2019) and V-YDF132 (Kang et al., 2022). R18L exhibited stability 
over a wide range of pH (pH 6–11) for 3 h (Figure  5B). The 
survival percentage of phages decreased dramatically when  
the pH decreased to 5. When the incubation time reached 24 h, 
more than 60% of phages were still infective within the pH range 
6–9, which indicated that R18L was relatively stable under such 
pH conditions.

Conclusion

Vibrio is a major pathogen of various aquatic animals and 
causes vibriosis outbreaks in the aquaculture industry. Phage 
therapy is gaining increasing attention as a potentially effective 
strategy for controlling pathogenic bacteria. In this study, lytic 
phage R18L was isolated and characterized in terms of genomic 
organization, and phylogenetic and microbiological characteristics. 
R18L was able to infect bacteria across at least five pathogenic 
Vibrio species, thereby indicating its potential application as a 
biocontrol agent to control vibriosis. No antibiotic resistance, 
lysogeny-related, or virulence genes were detected in the R18L 
genome, suggesting the safety of this phage in biocontrol 
applications. Furthermore, R18L may be a good candidate for phage 
therapy because of its stability across a wide range of pH (6.0–11.0) 
and thermal (up to 55°C) conditions. In the field, one key feature of 
various Vibrio strains is their ability to form biofilm. Biofilm 
destruction by phages has been revealed to be more effective than 
antibiotics (Khalifa et al., 2016). Numerous experiments have been 
performed using single phages or phage cocktails against biofilms 
(Pires et  al., 2017). However, the demonstration of the  
biofilm removal ability of R18L is necessary to determine its 
application in the biocontrol of vibriosis. Furthermore, other 
crucial questions that remain to be  answered before field 
applications include testing the effectiveness of R18L in saline 
environments in future studies.
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FIGURE 5

Stability of vibriophage vB_VhaS-R18L under different temperature (A) and pH (B) conditions. Data points represent the mean values and standard 
deviations of three independent experiments.
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