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Introduction: Obsessive–compulsive disorder (OCD), characterized by the 
presence of obsessions and/or compulsions, is often difficult to diagnose and 
treat in routine clinical practice. The candidate circulating biomarkers and primary 
metabolic pathway alteration of plasma in OCD remain poorly understood.

Methods: We recruited 32 drug-naïve patients with severe OCD and 32 
compared healthy controls and applied the untargeted metabolomics approach 
by ultra-performance liquid chromatography-quadrupole time-of-flight mass 
spectrometry (UPLC-Q-TOF/MS) to assess their circulating metabolic profiles. 
Both univariate and multivariate analyses were then utilized to filtrate differential 
metabolites between patients and healthy controls, and weighted Correlation 
Network Analysis (WGCNA) was utilized to screen out hub metabolites.

Results: A total of 929 metabolites were identified, including 34 differential 
metabolites and 51 hub metabolites, with an overlap of 13 metabolites. Notably, 
the following enrichment analyses underlined the importance of unsaturated 
fatty acids and tryptophan metabolism alterations in OCD. Metabolites of 
these pathways in plasma appeared to be promising biomarkers, such as 
Docosapentaenoic acid and 5-Hydroxytryptophan, which may be biomarkers 
for OCD identification and prediction of sertraline treatment outcome, 
respectively.

Conclusion: Our findings revealed alterations in the circulating metabolome and 
the potential utility of plasma metabolites as promising biomarkers in OCD.
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1. Introduction

Obsessive–compulsive disorder (OCD) is a common, chronic and severe neuropsychiatric 
disorder characterized by the presence of obsessions and/or compulsions that lead to various 
degrees of the subjective experience of anxiety (Veale and Roberts, 2014). About 2–3% of the 
population suffer from OCD (Fontenelle et al., 2006), and their social relations, quality of life, and 
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occupational functioning were disturbed, costing heavy burdens for their 
families and society (Yang et al., 2021). Patients with OCD have distinctly 
heterogeneous obsessive–compulsive symptom dimensions, including 
contamination, symmetry, checking and unacceptability (Mataix-Cols 
et  al., 2005), which are often obscured by symptoms of anxiety or 
depression, contributing to the difficulty of OCD diagnosis in routine 
clinical practice. Whereas up to 40–60% of patients are unable to have a 
satisfactory outcome through selective serotonin reuptake inhibitors 
(SSRIs) monotherapy, the proven first-line treatment of OCD (Pallanti 
and Quercioli, 2006), but may benefit from the combination therapy, 
cognitive-behavioral therapy or other treatment options. So, it would 
be helpful if patients who would respond to SSRIs could be identified. 
Given that, the demand for reliable biomarkers of OCD identification 
and prediction of sertraline treatment outcome has always been pressing.

Integrating existing neurobiology, genetics and neurochemistry 
findings, the perturbation of serotonergic (Goddard et  al., 2008), 
dopaminergic (Koo et al., 2010) and glutamatergic (Pittenger et al., 2011) 
neurotransmitter systems, oxidative imbalance (Maia et  al., 2019; 
Mohammadi et al., 2021) as well as neuroinflammation (Attwells et al., 
2017; Gerentes et al., 2019) have been regarded as the underlying neural 
and pathophysiological underpinnings of OCD (Pauls et  al., 2014). 
Magnetic Resonance Spectroscopy (MRS) studies has revealed 
glutamatergic dysfunction in cortico-striatal-thalamo-cortical (CSTC) 
circuit in OCD (Brennan et al., 2013) and SSRIs might act by modulating 
cortico-striatal glutamatergic activity(Lázaro et al., 2012). But to date, the 
details of the metabolic pathways and peripheral biomarkers in OCD 
remain poorly understood. A preceding study applied mendelian 
randomization design to data of genome-wide association studies 
(GWAS) to screen blood metabolome among psychiatric disorders but 
failed to identify any significant biomarker in OCD (Jia et al., 2022). 
Whilst, a couple of transmitters and their precursors and primary 
metabolites were probed in blood and Cerebrospinal Fluid (CSF) 
samples of OCD patients(Benkelfat et al., 1991; Hollander et al., 1992; 
Swedo et al., 1992; Leckman et al., 1995; Zohar et al., 2000; Chakrabarty 
et al., 2005; Delorme et al., 2005; Bhattacharyya et al., 2009). Among 
them, CSF glutamate level (Chakrabarty et al., 2005; Bhattacharyya et al., 
2009), plasma homovanillic acid level (the major terminal metabolite of 
dopamine) (Benkelfat et al., 1991; Hollander et al., 1992) and whole-
blood serotonin level (Delorme et al., 2005) were detected to be different 
in drug-naïve patients compared to healthy controls in some cases. 
However, these findings were either equivocal or conflicting. To discover 
biomarkers of OCD, more precise studies will be needed.

High-throughput sequencing technologies have revolutionized 
medical research. Varieties of omics technologies have been utilized 
for biomarkers detection and potential pathogenesis interpretation 
(Hasin et al., 2017). Metabolomics, the newest generation of omics 
technology, presents the profiles of small molecular compounds in 
biological samples and reflects directly the underlying biochemical 
activity and state, as a result of high-throughput characterization of 
metabolites (Rinschen et  al., 2019; Wishart, 2019). The most 
commonly used metabolomics method is Ultra-performance liquid 
chromatography-quadrupole time-of-flight mass spectrometry 
(UPLC-Q-TOF/MS), developed from Liquid Chromatography-Mass 
Spectrometry (LC–MS), which provides accurate mass information 
and high mass resolution; helps the analysis of trace compounds in 
complex multicomponent mixtures like plasma (Alseekh et al., 2021).

Nowadays, metabolomics technologies have been widely applied 
to discover biomarkers and key pathways in many mental diseases, 
such as schizophrenia, bipolar disease and depression. However, there 

has been no study directly and systematically detecting the plasma 
metabolome in OCD patients yet. In the present study, we aimed to 
identify the disturbing profile of metabolome in OCD. Consequently, 
we applied the untargeted metabolomics approach based on UPLC-
Q-TOF/MS technology to disclose the primary metabolic pathway 
alteration in OCD compared with healthy control, and then discovered 
the candidate biomarker for OCD diagnosis and outcome prediction 
of sertraline monotherapy.

2. Method

Figure 1 depicted the integrated workflow of our research. All 
analyses were conducted by IBM Statistical Product and Service 
Solutions (SPSS) for Windows, version 26.0 (IBM Corp., Armonk, 
N.Y., United States), R software, version 4.2.2 and MetaboAnalyst 5.0 
Web Server.1 The networks were visualized by Cytoscape version 3.9.1.

2.1. Participants and procedure

Patients with OCD were recruited at psychiatric clinics of 
Shanghai Mental Health Center (Shanghai, China) from January 2021 
to October 2022 (based on “A Pragmatic Trial of Pharmacotherapy 
Options Following Unsatisfactory Initial Treatment in OCD” 
(NCT04539951)). All participants were assessed by experienced 
psychiatrists who received regular training to ensure consistency. The 
study was approved by the Institutional Review Board.

Individuals were included in the current study if they: (1) met the 
Diagnostic and Statistical Manual of Mental Disorder, fifth Edition 
(DSM-5) criteria for OCD as the primary diagnosis(American 
Psychological Association, 2013); (2) were OCD patients with a Yale-
Brown Obsessive–Compulsive Scale (Y-BOCS) (Goodman et al., 1989) 
total severity score of ≥24; (3) were 18–65 years old; (4) neither had been 
exposed to any psychiatric medication nor had received any form of 
psychotherapy; and (5) had provided written informed consent.

Individuals were excluded if they: (1) met the DSM-5 diagnostic 
criteria for Schizophrenia Spectrum and Other Psychotic Disorders, 
or Bipolar and Related Disorders; (2) ever had moderate to severe 
suicidal ideation or suicide attempts; (3) had psychoactive substance 
use; (4) had comorbid other medical disorders that may impact on 
metabolites; (5) were pregnant or lactating females.

Healthy controls, without any DSM-5 diagnosis, were recruited by 
advertisements. Other inclusion criteria included: (1) between the age 
of 18 and 65 years; (2) neither had been exposed to any psychiatric 
medication nor had received any form of psychotherapy; and (3) had 
provided written informed consent. Individuals were excluded if they: 
(1) had psychoactive substance abuse; (2) had medical disorders that 
may impact metabolites; (3) had a family history of mental disorders; 
or (4) were experiencing pregnancy or lactation.

From January 2021 to October 2022, 58 patients were recruited in 
the Pragmatic Trial of Obsessive–compulsive Disorder at Shanghai 
Mental Health Center. Among them, 19 were excluded because their 
Y-BOCS scores were under 24; 5 were excluded because they received 
psychiatric medicine before; 2 were excluded because their plasma 
samples appeared to show signs of hemolysis. As a result, 32 patients 

1 https://www.metaboanalyst.ca/
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with OCD and 32 matched healthy controls (HCs) were included in 
the present study.

Besides, according to the protocol of “A Pragmatic Trial of 
Pharmacotherapy Options Following Unsatisfactory Initial Treatment 
in OCD” (Wang et al., 2022), all included patients with OCD received 
sertraline (a commonly used SSRIs drug) monotherapy in 12 weeks, 
initially at 50 mg/d, with a weekly 50 mg/d further increase, to the 
maximum recommended dosage (200 mg/d) or the maximum 
tolerated dosage (less than 200 mg/d). Patients would be  on their 
maximum dose by week 4, so allowing an assessment of response at 
12 weeks. Till October 2022, there were 28 out of 32 included patients 
with OCD received 12-week sertraline treatment and finished 
follow-up visits. Three patients withdrew because of side effects; one 
patient dropped out because she had an unexpected pregnancy.

As for assessments, the OCD symptom severity of the patient was 
assessed using the Y-BOCS(Goodman et  al., 1989); the Mini 
International Neuropsychiatric Interview (MINI) was used to screen 
history of comorbid DSM-5 psychiatric disorders; moreover, the 

Obsessive–Compulsive Inventory-Revised (OCI-R) (Foa et al., 2002) 
assesses distress associated with common OCD symptoms, including 
washing, checking, ordering, obsessing, hoarding, and neutralizing. 
The Beck Depression Inventory-II (BDI-II) (Beck et al., 1961) and the 
Beck Anxiety Inventory (BAI) (Beck et al., 1996) were employed to 
assess the severity of depression and anxiety symptoms, respectively. 
The details of their clinical characteristic and assessments at baseline 
were shown in Table 1. The assessments of patients with OCD at the 
12-week follow-up visit were shown in Table  2. Responders were 
defined as patients with the reduction rate of Y-BOCS ≥35%.

2.2. Plasma samples and metabolomics 
measurement

All participants were asked to fast for up to 8 hours before blood 
sampling. About 2 mL venous blood samples were collected from all 
participants in Ethylenediaminetetraacetic acid (EDTA) anticoagulant 

FIGURE 1

The workflow of the current research.
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polypropylene tubes from an antecubital vein between 9 am and 4 pm. 
Blood samples were centrifuged at 3,000 rpm at 4°C for 15 min for the 
separation of blood cells and plasma. The separated plasma then was 
pipetted into respective vials and stored at −80°C until thawed 
for analysis.

To extract metabolites, 64 plasma samples (100 μL each) were 
individually mixed with prechilled methanol (400 μL) by well 

vortexing. The samples were incubated on ice for 5 min and then were 
centrifuged at 15,000 rpm, 4°C for 5 min. Then the supernatant was 
diluted to a final concentration containing 53% methanol by LC–MS 
grade water. The samples were subsequently transferred to a fresh 
Eppendorf tube and then were centrifuged at 15000 g, 4°C for 10 min. 
Finally, the supernatant was injected into the UPLC-Q-TOF/
MS system.

UPLC-Q-TOF/MS analyses were performed using a Vanquish 
UHPLC system (Thermo Fisher, Germany) coupled with an 
Orbitrap Q Exactive™ HF mass spectrometer (Thermo Fisher, 
Germany) in Biozeron Co., Ltd. (Shanghai, China). Samples were 
injected onto a Hypesil Gold column (100 × 2.1 mm, 1.9 μm) using 
a 17-min linear gradient at a flow rate of 0.2 mL/min. The eluents 
for the positive polarity mode were eluent A (0.1% FA in Water) and 
eluent B (Methanol). The eluents for the negative polarity mode 
were eluent A (5 mM ammonium acetate, pH 9.0) and eluent B 
(Methanol). The solvent gradient was set as follows: 2% B, 1.5 min; 
2–100% B, 12.0 min; 100% B, 14.0 min; 100–2% B, 14.1 min; 2% B, 
17 min. Q Exactive™ HF mass spectrometer was operated in 
positive/negative polarity mode with a spray voltage of 3.2 kV, 
capillary temperature of 320°C, sheath gas flow rate of 40 arb and 
aux gas flow rate of 10 arb.

To ensure data quality, pooled quality control (QC) samples were 
first prepared by mixing all of the plasma samples and were analysed 
throughout the run every 10 injections. Plasma samples were run 
alongside QC samples to identify impurities of either the solvents or 
extraction procedure and for checking carryover contamination from 
intense analytes.

TABLE 1 Baseline clinical information of participants.

Group OCD HC t.stat p.value

Number, n 32 32 / /

Gender, (male:female) 21:11 21:11 / /

Age, years 29.84 ± 8.47 30.41 ± 5.65 −0.31 0.756

Education,years 15.5 ± 2.53 14.84 ± 3.65 0.84 0.406

Onset, years 20.91 ± 7.56 / / /

Duration, years 7.43 ± 7.85 / / /

Assessment

BDI-II, mean ± std. 18.97 ± 9.95 8.69 ± 9.21 4.29 0.000

BAI, mean ± std. 17.69 ± 11.19 3.84 ± 5.25 6.34 0.000

Y-BOCS, mean ± std. 27.75 ± 2.50 / / /

Obsession, mean ± std. 14.06 ± 1.32 / / /

Compulsion, mean ± std. 13.69 ± 1.69 / / /

OCI-R, mean ± std. 27.16 ± 11.57 8.78 ± 6.95 7.70 0.000

Washing, mean ± std. 4.34 ± 3.92 1.44 ± 1.56 3.89 0.000

Checking, mean ± std. 5.84 ± 3.07 1.5 ± 1.50 7.19 0.000

Ordering, mean ± std. 4.13 ± 2.89 1.88 ± 1.68 3.80 0.000

Obsessing, mean ± std. 6.34 ± 2.34 0.91 ± 1.15 11.82 0.000

Hoarding, mean ± std. 2.5 ± 2.65 2 ± 1.80 0.88 0.381

Neutralizing, mean ± std. 4 ± 3.16 1 ± 1.39 4.91 0.000

BDI-II, the Beck Depression Inventory-II; BAI, the Beck Anxiety Inventory; Y-BOCS, Yale-Brown Obsessive–Compulsive Scale; OBSESSION, subscale of obsession in Y-BOCS; 
COMPULSION, subscale of compulsion in Y-BOCS; OCI-R, Obsessive–Compulsive Inventory-Revised; Washing, subscale of washing symptoms in OCI-R; Checking, subscale of checking 
symptoms in OCI-R; Ordering, subscale of ordering symptoms in OCI-R; Obsessing, subscale of obsessing thoughts in OCI-R; Hoarding, subscale of hoarding symptoms in OCI-R; 
Neutralizing, subscale of neutralizing symptoms in OCI-R.

TABLE 2 Clinical information of patients who received sertraline and 
12-week follow-up visit.

Baseline visit 12-week 
follow-up visit

Number, n 28

Gender, (male: female) 20: 8

Age, mean ± std. (years) 29.79 ± 8.65

Education,mean ± std. (years) 15.39 ± 2.60

Y-BOCS, mean ± std. 27.54 ± 2.12 14.14 ± 6.29

OBSESSION, mean ± std. 14.00 ± 1.25 7.07 ± 3.15

COMPULSION, mean ± std. 13.54 ± 1.45 7.07 ± 3.31

BDI-II, mean ± std. 17.79 ± 9.55 6.04 ± 6.4

BAI, mean ± std. 16.89 ± 11.00 6.86 ± 6.89

Responder, n (%) 18 (64%)

BDI-II, the Beck Depression Inventory-II; BAI, the Beck Anxiety Inventory; Y-BOCS, Yale-
Brown Obsessive–Compulsive Scale; OBSESSION, subscale of obsession in Y-BOCS; 
COMPULSION, subscale of compulsion in Y-BOCS; Responser, patients with a reduction 
rate of Y-BOCS ≥ 35%.
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2.3. Dataset annotation and preprocess

The raw data files generated by UPLC-Q-TOF/MS were 
processed using Compound Discoverer 3.1 (CD3.1, Thermo Fisher) 
to perform peak alignment, peak picking, and quantitation for each 
metabolite. Core parameters were set as follows: retention time 
tolerance, 0.2 min; actual mass tolerance, 5 ppm; signal intensity 
tolerance, 30%; signal/noise ratio, 3; and minimum intensity, 
100,000. After that, peak intensities were normalized to the total 
spectral intensity, and metabolites with the Coefficient of Variance 
(CV) less than 30% in QC samples were retained. The normalized 
data were used to predict the formula based on additive ions, 
molecular ion peaks and fragment ions. And then peaks were 
matched with the mzCloud,2 mzVault and MassList databases to 
obtain accurate and relative quantitative results. These metabolites 
were annotated by the Human Metabolome Database (HMDB, 
https://hmdb.ca/metabolites).

Afterward, the dataset was normalized by Probabilistic Quotient 
Normalization (HC group), log transformation and auto-scaling to 
reach optimal normal distribution (Chen et al., 2017). The principal 
component analysis (PCA) and heatmaps were first used to observe 
possible outliers in both data of positive and negative polarity modes; 
as well as the QC presentation on PCA plots was used for 
analytical validation.

2.4. Data analysis

2.4.1. Metabolic profiling and differential 
metabolites

Metabolic profiling and differential metabolites between the OCD 
group and HC group were performed by MetaboAnalyst. After outlier 
exclusion and normalization, the metabolic profiling was presented by 
PCA and orthogonal partial least-squares-discriminant analysis 
(OPLS-DA). Meanwhile, OPLS-DA enables to model separately 
multivariate data (X-predictors) correlated and uncorrelated to the 
group labels (Y-responses) and thus the first component of OPLS-DA 
containing group information is suitable for biomarkers detection. To 
address the overfitting issue, a 2000-time permutation test of the 
OPLS-DA model was conducted.

As for differential metabolites, we  performed both univariate 
(t-test and fold change, FC) and multivariate level statistical analysis 
(OPLS-DA) to screen out. The selection was according to the following 
criteria: (1) False Discovery Rate (FDR) adjusted p-value<0.05; (2) FC 
(OCD/HCs) > 2.0 or < 0.5; and (3) variable importance in the 
projection value from the OPLS-DA model (VIP) >1.5.

2.4.2. Weighted gene correlation network 
analysis

Weighted Correlation Network Analysis (WGCNA) (Langfelder 
and Horvath, 2008), a systems biology method, has been applied in 
many high-dimensional data sets, including metabolomics. Briefly, 
WGCNA constructs a weighted metabolites correlation network and 
identifies several modules of highly interconnected metabolites. We can 

2 https://www.mzcloud.org/

relate these modules to sample traits, to filter biologically interested 
modules and hub metabolites of each interested module. Hub 
metabolites were defined as the metabolites with almost the highest 
connectivity in the metabolite interaction network, which are more 
likely to be biologically relevant markers according to prior studies.

In the current study, we  conducted a weighted metabolite 
correlation network and related it with dichotomous grouping 
variables, Y-BOCS scores and other clinical information accessed 
at baseline. To be  specific, soft thresholding power β was 
estimated based on the criterion of approximate scale-free 
topology (R2 fit >0.9), aiming to calculate the adjacency matrix. 
To minimize the effects of noise and spurious associations, 
adjacency values were then transformed into a signed topological 
overlap matrix (TOM). We used the dissimilarity matrix (1-TOM) 
to produce the hierarchical clustering trees (dendrogram) of 
metabolites, and module identification was based on the 
identification of individual brunches by the Dynamic Tree Cut. 
Each module’s expression profile was summarized into a module 
eigengene (ME) using the matched module’s first principal 
component. After constructing the metabolite correlation 
network and identifying modules, we  selected biologically 
interested modules from module-trait relationship plots. Hub 
metabolites were then filtrated according to Module Membership 
(MM) which measured how correlated each metabolite was to the 
ME of the related module, and Gene Significances (GS) which 
was defined as the correlation of a metabolite profile with 
grouping variables in this case. Metabolites in interesting 
modules with MM > 0.8 or < −0.8 and GS >0.2 or < −0.2 were 
considered as hub metabolites.

2.4.3. Pathway analysis and biomarker analysis
After filtering differential and hub metabolites, we performed 

enrichment analysis on the basis of the KEGG (Kyoto Encyclopedia 
of Genes and Genomes, https://www.genome.jp/kegg/) database 
(Kanehisa and Goto, 2000).

Potential biomarkers for diagnosis were selected from 
metabolites that were both differential and hub metabolites. To 
avoid multicollinearity, we  used stepwise logistic regression to 
filtrate and remain solid significant predictor variables. A 
nomogram was then established by combining screened-out plasma 
metabolites based on the logistic regression model. The multivariate 
receiver operating characteristic (ROC) curve and the area under 
the curve (AUC) was also calculated to evaluate the discriminative 
ability of the model. Additionally, the Hosmer–Lemeshow test was 
performed to further evaluate the consistency between the 
predicted efficacy and the actual response rate (p > 0.05 was 
considered a good consistency).

To filtrate potential biomarkers of sertraline monotherapy, the 
dataset of 28 patients with OCD who had finished 12-week follow-up 
visits with all detected metabolites was enrolled for the least absolute 
shrinkage and selection operator (LASSO) regression. LASSO is a 
penalization method that shrinks all regression coefficients and sets 
the coefficients of many irrelevant features that have no 
discriminatory power between the classes exactly to zero. It is suitable 
for high-dimensional data with large features but small samples and 
also avoids overfitting. To provide a robust generalized performance 
of a model that best fitted our data, 10-fold cross-validation with a 
minimum criterion was applied, with these folds being randomly 
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picked. The minimum lambda value was then defined as a cut-off 
point to minimize the mean cross-validated error and was utilized to 
filtrate metabolites.

Subsequently, the selected metabolites were used to perform an 
outcome prediction nomogram based on the logistic regression 
model. Similar to the diagnostic nomogram mentioned before, 
we conducted a ROC curve to evaluate the predictive discriminative 
performance of the model and the Hosmer–Lemeshow test to describe 
its consistency.

3. Results

3.1. Metabolic profiling and differential 
metabolites

Through the untargeted UPLC-Q-TOF/MS metabolomics 
analysis, 430 metabolite features in positive polarity mode and 499 in 
negative polarity mode were extracted. Integrating each sample’s 
performance in the PCA scores plots and heatmaps 
(Supplementary Figures S1A–D), 3 samples (X1177, X1202 in the HC 
group and X89 in the OCD group) were excluded from the following 

analysis. Besides, the PCA scores plots revealed a close clustering of 
all QC samples, indicating that the analytical system performance 
was of good quality.

In total, among 929 detected metabolites, there were 475 
metabolites showed higher levels in the OCD group and 454 
counterparts in the HC group. Metabolic profiling comparing the 
OCD group with the HC group was first presented in the PCA scores 
plot (Figure  2A). We  can observe an overlap between these two 
groups, and the HC group seemed to have a more concentrated cluster 
than the OCD group. A clearer discrimination of metabolic profiling 
between the OCD and HC groups was presented in Figure  2B, 
suggesting a better separation with OPLS-DA. The result of the 
permutation test showed that the classification of the OCD group and 
HC group was significantly better than any other random classification 
in two arbitrary groups (Figure 2C; Q2 = 0.796, p < 5e-04; R2Y = 0.985, 
p < 5e-04).

According to the univariate and multivariate analysis, 177 
metabolites were significantly altered after FDR correction; 88 
metabolites met the criterion of FC >2/<0.5. The volcano plot was 
shown in Figure 2D. There were 141 metabolites detected from the 
OPLS-DA model. As illustrated in the Venn diagram (Figure 2E), 
we identified 34 differential metabolites listed in Table 3.

FIGURE 2

The metabolic profiling between the OCD and HC group and the selection of differential metabolites. (A) The scores plot of the principal component 
analysis between the OCD group and the HC group. (B) The scores plot of the orthogonal partial least-squares-discriminant analysis between the OCD 
and HC group. (C) The result of the 2000-time permutation test in the orthogonal partial least-squares-discriminant analysis. (D) The volcano plot. 
(E) The Venn diagram of the selection of differential metabolites.
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3.2. Weighted metabolite correction 
network and hub metabolites in all 
participants

To construct the weighted metabolite correction network, power 
3, which was the lowest power for which the scale-free topology fit 
index reaches 0.90, was chosen (Figures 3A,B). Subsequently, there 
were 11 distinct modules clustered and labeled with colors (Figure 3C) 
in the weighted metabolite correction network. The grey module was 
reserved for unassigned metabolites.

As the plot of the module-trait relationship (Figure  3D) 
showed, grouping variables (namely “OCD” in the plot) and 
Y-BOCS scores had the highest correction with turquoise 
(cor = 0.46, p = 2e-04; cor = 0.46, p = 2e-04, respectively), yellow 
(cor = −0.46, p = 2e-04; cor = −0.47, p = 1e-04, respectively), red 
(cor = −0.38, p = 0.002; cor = −0.39, p = 0.002, respectively), green 
(cor = 0.38, p = 0.002; cor = 0.37, p = 0.003, respectively) and blue 
modules (cor = −0.34, p = 0.007; cor = −0.33, p = 0.009, 
respectively). With regard to OCI-R, it turned out to be similar but 
slightly different. The total scores of OCI-R saw significant 

TABLE 3 List of differential metabolites.

Metabolites HMDB_ID FC t.stat p.value FDR VIP

Uridine 5’ Diphospho N-Acetylgalactosamine HMDB0000304 2.325 −3.648 0.000561 0.006587 1.725

Rutin HMDB0003249 2.193 −5.576 6.46E-07 7.51E-05 2.317

Pregnenolone HMDB0000253 2.439 −4.459 3.76E-05 0.000997 1.973

PC (21:2/20:4) / 2.896 −4.474 3.56E-05 0.000997 2.079

PC (18:0/18:0) / 2.255 −6.396 2.82E-08 7.15E-06 2.534

PC (17:0/18:1) / 2.003 −3.848 0.000295 0.004255 1.893

Palmitic acid HMDB0000220 2.270 −3.682 0.000503 0.00607 1.781

o-Veratraldehyde / 2.102 −3.522 0.000833 0.008694 1.640

Methyl EudesMate / 2.657 −3.218 0.002102 0.016002 1.540

Melatonin HMDB0001389 0.435 4.367 5.16E-05 0.001144 2.024

Hypoxanthine HMDB0000157 0.251 3.715 0.000454 0.005777 1.788

Glycolithocholic acid HMDB0000698 0.411 3.645 0.000567 0.006587 1.787

FAHFA (18:1/20:3) / 2.558 −4.025 0.000164 0.002898 1.974

Elaidic acid HMDB0000573 2.655 −3.842 0.000301 0.004255 1.868

Docosapentaenoic acid HMDB0246621 2.539 −3.863 0.000281 0.004255 1.846

Dihydroartemisinin HMDB0242686 3.297 −5.108 3.67E-06 0.000284 2.249

Decanoylcarnitine HMDB0000651 2.218 −4.556 2.67E-05 0.000855 2.152

Capric acid HMDB0000511 2.049 −4.877 8.51E-06 0.000395 2.234

all-cis-4,7,10,13,16-Docosapentaenoic acid / 2.063 −3.211 0.002141 0.016169 1.593

Adrenic acid HMDB0002226 2.444 −3.097 0.002988 0.020413 1.557

ACar 7:0 / 2.058 −4.921 7.26E-06 0.000395 2.202

ACar 15:0 / 2.228 −4.024 0.000165 0.002898 1.918

ACar 13:0 / 2.120 −4.569 2.55E-05 0.000855 2.081

ACar 12:1 / 2.149 −5.268 2.04E-06 0.000172 2.381

ACar 11:0 / 2.145 −4.343 5.60E-05 0.00121 2.033

8Z,11Z,14Z-Eicosatrienoic acid HMDB0002925 2.243 −3.732 0.00043 0.005623 1.797

4-Hydroxybenzoic acid HMDB0000500 2.236 −3.429 0.00111 0.011022 1.639

3-Hydroxybutyric acid HMDB0000011 2.057 −3.852 0.000291 0.004255 1.812

2-Mercaptobenzothiazole HMDB0030524 0.144 7.061 2.13E-09 1.98E-06 2.736

13,14-dihydro 15-keto Prostaglandin A2 HMDB0001244 2.217 −3.889 0.000258 0.004002 1.790

11(Z),14(Z)-Eicosadienoic Acid HMDB0005060 2.189 −3.537 0.000796 0.0085 1.742

11(E)-Eicosenoic Acid / 2.651 −4.403 4.55E-05 0.001113 2.067

(R)-3-Hydroxy myristic acid / 2.442 −4.434 4.08E-05 0.001054 2.029

(2S) 4-oxo-2-phenyl-3,4-dihydro-2H-chromen-7-yl 

beta-D-glucopyranoside

/ 0.364 3.368 0.001339 0.012289 1.751

HMDB_ID, The Human Metabolome Database accession number; FC, fold change; FDR, The False Discovery Rate-adjusted p-value, VIP, variable importance in the projection value.
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associations with turquoise (cor = 0.34, p = 0.007) and red modules 
(cor = −0.28, p = 0.02) rather than the other three mentioned 
modules. The results in each subscale of OCI-R also differed. 
Subscales of ordering, hoarding and neutralizing were uncorrected 
with any module, while the subscale of obsessing was relevant with 
red (cor = −0.37, p = 0.003), yellow (cor = −0.38, p = 0.003) and 
turquoise (cor = 0.37, p = 0.003) modules. In addition, the turquoise 
module was closely related to the BDI-II (cor = 0.45, p = 2e-04) and 
BAI (cor = 0.46, p = 2e-04) scores; the green module also 
represented a prominent positive correlation with BDI-II scores 
(cor = 0.39, p = 0.002).

In the light of this, red, blue, yellow, green and turquoise modules 
were considered as interested modules. Figures 4A–E presented the 
correlation between MM and GS of all metabolites in each selected 
module. 51 hub metabolites were filtrated, on the basis of the standards 
mentioned above in the method, listed in Table 4. None was screened 
out in the blue module. The correlation network of these hub 
metabolites was in Figure 4F.

Interestingly, as Figure  4D illustrated, most of the hub 
metabolites in the turquoise module were fatty acids, which 
included polyunsaturated fatty acids (PUFAs) such as Arachidonic 
acid, Docosahexaenoic acid (DHA), Docosapentaenoic acid 
(DPA), all-cis-4,7,10,13,16-Docosapentaenoic acid, 8Z,11Z,14Z-
Eicosatrienoic acid, 11(Z),14(Z)-Eicosadienoic Acid, 11(Z),14(Z), 
17(Z)-Eicosatrienoic acid, Punicic Acid, Adrenic acid and 
Docosatrienoic Acid; saturated fatty acids such as Palmitic acid, 
Stearic acid and Capric acid. In red module (Figure 4A), several 

eicosanoids, such as tetranor-12(R)-HETE, Thromboxane B1, 
13,14-dihydro Prostaglandin E1 and (+/−)8(9)-DiHET were 
screened as hub metabolites. In the yellow module (Figure 4B), 
there were several amino acids, such as L-Tryptophan (Trp), 
L-Tyrosine (Tyr) and Leucine, and related precursors or 
primary metabolites.

3.3. Enrichment analyses of differential and 
hub metabolites

72 metabolites in total were selected as interested metabolites. The 
heatmap was shown in Figure  5A and the Venn diagrams were 
illustrated in Figure 5B. While only 19 differential metabolites and 32 
hub metabolites were annotated by HMDB (Tables 3, 4) and were 
included in the following enrichment analysis (Figures 5C,D). As 
Table 5 listed, in both pathway analysis of differential metabolites and 
hub metabolites, biosynthesis of unsaturated fatty acids and 
tryptophan metabolism were detected.

3.4. Biomarker analyses: diagnostic and 
outcome prediction nomogram

As Figure 5B and Tables 3, 4 illustrated, there were 13 potential 
biomarkers which were both differential metabolites and 
hub metabolites. After stepwise regression, 8 of them were 

FIGURE 3

Weighted correlation network analysis and the selection of hub metabolites. (A) Scale-free fitting index analysis and mean connectivity of soft 
threshold power from 1 to 20. (B) Checking the scale free topology (power = 3). (C) Clustering dendrograms. (D) Correlation heatmap between module 
eigengenes and clinical traits.
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selected as predictor variables which were Uridine 5’-Diphospho-N-
Acetylgalactosamine, Palmitic acid, all-cis-4,7,10,13,16-
Docosapentaenoic acid, DPA, 8Z,11Z,14Z-Eicosatrienoic acid, 
11(Z),14(Z)-Eicosadienoic Acid, Dihydroartemisinin, and 
11(E)-Eicosenoic Acid. The nomogram was illustrated in the 

Figure 6A. The diagnostic performance was evaluated by the ROC 
curve (Figure  6B), with the AUC value of 96.7% and the 95% 
confidence interval (CI) ranging from 83.9 to 100%. Besides, the 
Hosmer–Lemeshow test (p-value = 0.676, Figure  6C) showed the 
goodness of fit for this model.

FIGURE 4

Hub metabolites. Correlation between module membership and gene significance of all metabolites in (A) red, (B) yellow, (C) green, (D) turquoise and 
(E) blue module. (F) correlation network of 51 selected hub metabolites.
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TABLE 4 List of hub metabolites.

Metabolites HMDB_ID MM GS FC t-stat p-value FDR VIP

Red module

Estriol HMDB0000153 0.811 −0.210 0.574 2.292 0.025507 0.094721 1.069

tetranor-12(R)-HETE / 0.800 −0.212 0.473 2.338 0.022811 0.087207 1.107

13,14-dihydro Prostaglandin E1 HMDB0002689 0.832 −0.214 0.378 2.451 0.017245 0.074514 1.171

(+/−)8(9)-DiHET HMDB0002311 0.832 −0.218 0.368 2.517 0.014569 0.066115 1.188

Thromboxane B1 / 0.806 −0.246 0.527 2.238 0.029013 0.10327 1.052

16-(Hexopyranosyloxy)-7-hydroxy-8,9-epoxypimaran-

18-oic acid

/ 0.819 −0.263 0.520 2.011 0.048879 0.15604 0.921

Vitamin B2 HMDB0000244 0.806 −0.300 0.779 2.339 0.022747 0.087207 1.075

Yellow module

L-Tryptophan HMDB0000929 0.827 −0.266 0.972 0.785 0.43583 0.61815 0.396

Indole HMDB0000738 0.815 −0.284 0.960 1.065 0.29125 0.48752 0.568

gamma-Glutamyltyrosine HMDB0011741 0.818 −0.317 0.881 2.072 0.042603 0.14237 1.012

Asp-Phe methyl ester / 0.822 −0.318 0.918 1.712 0.092167 0.24256 0.881

Leucine HMDB0000687 0.832 −0.333 0.852 2.285 0.02595 0.094913 1.134

Coumarin HMDB0001218 0.801 −0.344 0.855 2.461 0.016812 0.073327 1.206

3,4-Dihydroxyphenylpropionic acid HMDB0000423 0.827 −0.371 0.843 2.896 0.005296 0.031948 1.428

L-Tyrosine HMDB0000158 0.830 −0.372 0.839 2.903 0.005189 0.031505 1.436

N-Formylkynurenine HMDB0060485 0.808 −0.439 0.854 2.838 0.006219 0.035247 1.406

6-Methoxyquinoline N-oxide / 0.836 −0.525 0.883 3.355 0.001391 0.012549 1.593

Green module

Uridine 5’ Diphospho N-Acetylgalactosamine* HMDB0000304 0.880 0.362 2.325 −3.648 0.00056 0.00659 1.725

ACar 13:0* / 0.844 0.362 2.120 −4.569 2.6E-05 0.00085 2.081

4-Hydroxybenzoic acid* HMDB0000500 0.907 0.320 2.236 −3.429 0.00111 0.01102 1.639

2,4,5-Trimethoxybenzaldehyde HMDB0029648 0.817 0.318 1.873 −3.223 0.002069 0.015886 1.555

4-Butylresorcinol / 0.821 0.288 2.236 −3.429 0.00111 0.011022 1.639

Asp-glu HMDB0028752 0.866 0.267 2.233 −2.738 0.008152 0.043277 1.372

Turpuoise module

Dihydroartemisinin* HMDB0242686 0.919 0.457 3.297 −5.108 3.7E-06 0.00028 2.249

3-Hydroxydecanoic acid HMDB0010725 0.938 0.447 1.962 −4.396 4.67E-05 0.001113 2.000

(R)-3-Hydroxy myristic acid* / 0.931 0.445 2.442 −4.434 4.1E-05 0.00105 2.029

Docosahexaenoic acid HMDB0002183 0.863 0.441 1.897 −4.132 0.000115 0.002137 1.902

Docosapentaenoic acid* HMDB0246621 0.940 0.419 2.539 −3.863 0.00028 0.00425 1.846

Stearic acid HMDB0000827 0.870 0.415 1.952 −4.289 6.75E-05 0.001426 1.997

ACar 14:1 / 0.834 0.413 1.941 −4.170 0.000101 0.001956 2.041

N-Oleoyl Glycine HMDB0241916 0.892 0.410 1.892 −4.366 5.17E-05 0.001144 2.070

11(Z),14(Z)-Eicosadienoic Acid* HMDB0005060 0.937 0.401 2.189 −3.537 0.0008 0.0085 1.742

8Z,11Z,14Z-Eicosatrienoic acid* HMDB0002925 0.937 0.397 2.243 −3.732 0.00043 0.00562 1.797

Palmitic acid* HMDB0000220 0.934 0.396 2.270 −3.682 0.0005 0.00607 1.781

Elaidic acid* HMDB0000573 0.928 0.391 2.655 −3.842 0.0003 0.00425 1.868

11(E)-Eicosenoic Acid* / 0.858 0.388 2.651 −4.403 4.6E-05 0.00111 2.067

11(Z),14(Z),17(Z)-Eicosatrienoic acid / 0.870 0.365 1.479 −3.427 0.001118 0.011022 1.700

ACar 14:0 / 0.835 0.364 1.508 −3.673 0.000518 0.006167 1.774

Adrenic acid* HMDB0002226 0.939 0.364 2.444 −3.097 0.00299 0.02041 1.557

Acetyl-L-carnitine HMDB0240773 0.850 0.354 1.509 −3.768 0.000382 0.005216 1.755

(Continued)
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TABLE 4 (Continued)

Metabolites HMDB_ID MM GS FC t-stat p-value FDR VIP

all-cis-4,7,10,13,16-Docosapentaenoic acid* / 0.864 0.346 2.063 −3.211 0.00214 0.01617 1.593

1-(2,4-diphenyl-2,3-dihydro-1H-1,5-benzodiazepin-1-

yl)propan-1-one

/ 0.883 0.343 1.785 −3.142 0.002621 0.018304 1.575

Arachidonic acid HMDB0001043 0.921 0.343 1.593 −3.013 0.003807 0.024864 1.493

PC (20:3/20:3) / 0.877 0.340 1.554 −3.309 0.001601 0.01305 1.706

FAHFA (18:2/20:4) / 0.876 0.322 1.540 −2.833 0.006298 0.035247 1.511

MGDG (22:1/18:2) / 0.861 0.316 1.624 −2.290 0.025592 0.094721 1.276

Docosatrienoic Acid HMDB0002823 0.854 0.314 1.462 −2.984 0.004136 0.026684 1.482

FAHFA (16:1/18:3) / 0.851 0.302 2.165 −2.272 0.026765 0.097128 1.115

Punicic Acid HMDB0030963 0.806 0.285 1.457 −2.659 0.010068 0.051673 1.425

15-OxoEDE / 0.810 0.279 1.311 −2.925 0.004879 0.030017 1.522

16-Hydroxyhexadecanoic acid HMDB0006294 0.804 0.265 1.201 −3.334 0.001482 0.012671 1.651

HMDB_ID, The Human Metabolome Database accession number; MM, Module Membership; GS, Gene Significances; FC, fold change; FDR, The False Discovery Rate-adjusted p-value, VIP, 
variable importance in the projection value. 
*Differential metabolites.

FIGURE 5

Heatmap and enrichment analyses of differential and hub metabolites. (A) Heatmap of differential and hub metabolites. (B) The Venn diagram of 
differential and hub metabolites. (C) Enrichment analyses of differential metabolites. (D) Enrichment analyses of hub metabolites.
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TABLE 5 Enrichment analyses of differential and hub metabolites.

Metabolite set Total 
Compound

Hits Hit metabolites Statistic 
Q

Expected 
Q

Raw 
p

Holm 
p

FDR

Differential metabolites

Tryptophan metabolism 41 1 Melatonin 27.224 1.587 0.000 0.000 0.000

Steroid hormone 

biosynthesis

85 1 Pregnenolone 13.127 1.587 0.003 0.029 0.008

Mucin type O-glycan 

biosynthesis

10 1 Uridine diphosphate-N-

acetylgalactosamine;

12.947 1.587 0.003 0.029 0.008

Fatty acid biosynthesis 47 2 Palmitic acid; Capric acid 11.799 1.587 0.005 0.038 0.008

Fatty acid elongation 38 1 Palmitic acid 11.798 1.587 0.005 0.038 0.008

Fatty acid degradation 39 1 Palmitic acid 11.798 1.587 0.005 0.038 0.008

Biosynthesis of 

unsaturated fatty acids

36 2 Palmitic acid; 8,11,14-Eicosatrienoic 

acid

11.789 1.587 0.005 0.038 0.008

Purine metabolism 65 1 Hypoxanthine 9.348 1.587 0.014 0.042 0.018

Synthesis and 

degradation of ketone 

bodies

5 1 (R)-3-Hydroxybutyric acid 2.333 1.587 0.228 0.456 0.228

Butanoate metabolism 15 1 (R)-3-Hydroxybutyric acid 2.333 1.587 0.228 0.456 0.228

Hub metabolites

Biosynthesis of 

unsaturated fatty acids

36 5 Palmitic acid; Stearic acid;Arachidonic 

acid; 8,11,14-Eicosatrienoic acid; 

Docosahexaenoic acid

16.795 1.667 0.001 0.009 0.006

Fatty acid biosynthesis 47 1 Palmitic acid; 15.704 1.667 0.002 0.024 0.006

Fatty acid elongation 38 1 Palmitic acid; 15.704 1.667 0.002 0.024 0.006

Fatty acid degradation 39 1 Palmitic acid; 15.704 1.667 0.002 0.024 0.006

Tryptophan metabolism 41 2 L-Tryptophan; L-Formylkynurenine 13.835 1.667 0.003 0.038 0.010

Mucin type O-glycan 

biosynthesis

10 1 Uridine diphosphate-N-

acetylgalactosamine;

13.130 1.667 0.004 0.045 0.011

Arachidonic acid 

metabolism

36 2 Arachidonic acid; 8,9-DiHETrE 11.673 1.667 0.007 0.067 0.012

Aminoacyl-tRNA 

biosynthesis

48 3 L-Leucine; L-Tryptophan; L-Tyrosine 10.032 1.667 0.009 0.079 0.012

Ubiquinone and other 

terpenoid-quinone 

biosynthesis

9 1 L-Tyrosine 11.063 1.667 0.009 0.079 0.012

Tyrosine metabolism 42 1 L-Tyrosine 11.063 1.667 0.009 0.079 0.012

Phenylalanine 

metabolism

10 1 L-Tyrosine 11.063 1.667 0.009 0.079 0.012

Phenylalanine, tyrosine 

and tryptophan 

biosynthesis

4 1 L-Tyrosine 11.063 1.667 0.009 0.079 0.012

Riboflavin metabolism 4 1 Riboflavin 9.005 1.667 0.019 0.079 0.023

Valine, leucine and 

isoleucine degradation

40 1 L-Leucine 7.079 1.667 0.038 0.115 0.041

Valine, leucine and 

isoleucine biosynthesis

8 1 L-Leucine 7.079 1.667 0.038 0.115 0.041

Steroid hormone 

biosynthesis

85 1 Estriol 4.407 1.667 0.104 0.115 0.104

FDR, The False Discovery Rate-adjusted p-value.
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As for the outcome prediction of the sertraline therapeutic effect, 
a dataset of 28 patients with OCD who received 12-week sertraline 
monotherapy and finished follow-up visits was utilized for the LASSO 
analysis (Figures  7A,B). Among a total of 929 recognizable 
metabolites, three kinds of plasma metabolites were selected, namely 
5-Hydroxytryptophan, 11-dehydro Thromboxane B2, 2,3-Bisphospho-
D-glyceric acid. The heatmap (Figure 7C) illustrated the level of the 
selected metabolites in patients with OCD and their reduction rates 
of Y-BOCS scores.

The nomogram (Figure 7D) visualized the effect of each metabolic 
predictor. By adding up points of every metabolic predictor, the total 
points were then calculated and positioned in the bottom line to 
evaluate the probability of response to sertraline monotherapy in 
patients with severe OCD. The predictability and consistency of this 
nomogram were also verified. The accumulated points summarized 
by the nomogram presented the possibility of the sertraline treatment 
response. The predictive ability of this model was, evaluated by the 
AUC value, 88.3% (CI: 77.8–90.0%) (Figure 7E). Meanwhile, we also 
conducted the Hosmer–Lemeshow test (p-value = 0.323), which 
showed the goodness of fit for this model. The calibration curve was 
shown in Figure 7F.

4. Discussion

To our knowledge, this article was the first application of the 
untargeted metabolomics approach based on UPLC-Q-TOF/MS 
technology to analyze the plasma metabolic signature of OCD 
patients. Our analyses indicated that some amino acids and fatty 
acids, particularly in the biosynthesis of unsaturated fatty acids and 
tryptophan metabolism, were significantly different in OCD 
patients compared with HCs, and may play important roles in the 
pathogenesis of OCD. Besides, to explore the utility of circulating 
metabolites as biomarkers, we conducted nomograms of selected 
metabolites for diagnosis and sertraline treatment prediction based 
on the logistic regression model and achieved great 
discriminative abilities.

4.1. PUFAs and inflammation in OCD

PUFAs, comprising 25–30% of the fatty acids in the human brain, 
have been shown to fulfill vital roles in regulating brain inflammation 
(Janssen and Kiliaan, 2014). Among them, omega-6 PUFAs (n-6) and 

FIGURE 6

Diagnostic biomarker analysis. (A) Diagnostic nomogram. (B) The receiver operating characteristic (ROC) curve and the area under the curve (AUC) of 
diagnostic model. (C) The Hosmer–Lemeshow test and calibration plot of diagnostic model.
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FIGURE 7

Selection of metabolic predictors and nomogram for predicting the therapeutic effect of sertraline. (A–B) Feature selection by the least absolute 
shrinkage and selection operator (LASSO) regression model. (C) The heatmap of metabolic predictors. (D) The outcome prediction nomogram. (E) The 
receiver operating characteristic (ROC) curve and the area under the curve (AUC) of outcome prediction model. (F) The Hosmer–Lemeshow test and 
calibration plot of outcome prediction model.

https://doi.org/10.3389/fnins.2023.1148971
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1148971

Frontiers in Neuroscience 15 frontiersin.org

omega-3 PUFAs (n-3) are two predominant kinds of PUFAs in the 
brain but play different roles. Omega-6 PUFAs, such as Arachidonic 
Acid, Docosatrienoic Acid and Eicosatrienoic Acid, produce n-6 
eicosanoids (including prostaglandins, leukotrienes, thromboxanes, 
etc.) which mediate broadly pro-inflammatory effects. Omega-3 
PUFAs, such as DHA, Eicosapentaenoic Acid (EPA) and DPA, 
produce n-3 eicosanoids (including resins and resolvins) which are 
generally anti-inflammatory (Haag, 2003). Hence, lower levels of 
omega-6 PUFAs and higher levels of omega-3 PUFAs might have 
particular importance in maintaining brain inflammation and 
functioning. Besides, PUFAs cannot be synthesized de novo and are 
mainly supplied by the blood; therefore, levels of circulating PUFAs 
might reflect on levels of counterparts in the brain and serve as 
potential biomarkers of several psychiatric diseases (Spector, 2001). 
Deficiency of circulating omega-3 PUFAs has been found in patients 
with Major Depression Disorder, Bipolar Disease, Schizophrenia and 
Alzheimer’s disease and has been seen to be closely associated with 
mood and cognitive function (Gao et al., 2022).

In the current study, we observed an alteration of unsaturated fatty 
acids and eicosanoids network (turquoise and red module) among 
patients with OCD. As shown in the turquoise module, both omega-6 
PUFAs (Arachidonic acid, 11(Z),14(Z)-Eicosadienoic Acid, all-cis-
4,7,10,13,16-Docosapentaenoic acid, Adrenic acid, 8Z,11Z,14Z-
Eicosatrienoic acid, Docosatrienoic Acid) and omega-3 PUFAs (DHA, 
Docosapentaenoic acid, 11(Z),14(Z),17(Z)-Eicosatrienoic acid) were 
selected as hub metabolites and tended to be elevated compared to 
HCs. Whilst, levels of several omega-6 PUFAs (11(Z),14(Z)-
Eicosadienoic Acid, all-cis-4,7,10,13,16-Docosapentaenoic acid, 
Adrenic acid, 8(Z),11(Z),14(Z)-Eicosatrienoic acid) significant 
increased comparing with HCs. These results suggested that patients 
with OCD have higher levels of circulating PUFAs but a relatively 
lower ratio of omega-3 to omega-6, consistent with the inflammatory 
hypothesis of OCD.

The unbalanced omega-3/omega-6 and pro- and anti- 
inflammatory processes might be  new treatment targets in 
OCD. According to a randomized double-blind clinical trial, when 
taking celecoxib as an adjuvant to fluoxetine to inhibit 
cyclooxygenase-2 (COX-2), an enzyme converts arachidonic acid to 
eicosanoids, it presents rapid-onset anti–obsession and –compulsion 
effects in patients with OCD (Sayyah et  al., 2011). Whereas, a 
preliminary placebo-controlled crossover trial adjunctive Omega-3 
PUFAs (EPA in this case) failed to bring improvement in obsessive–
compulsive, anxiety and depressive symptoms in patients with OCD, 
unlike its therapeutic benefit in other psychiatry diseases (Janssen and 
Kiliaan, 2014). What needs to be  emphasized is that there were 
insufficient participants in the two trials mentioned above and more 
associated studies are called for in the future.

4.2. Tryptophan, neurotransmitters and 
inflammation in OCD

Tryptophan metabolism might be  a key driver of the 
neurobiological mechanism of OCD. As we mentioned before, in the 
yellow module, Trp, N-Formylkynurenine were screened as hub 
metabolites and decreased compared with HCs. Trp, the essential 
amino acid, is a key precursor of serotonin (5-hydroxytryptamine or 
5-HT), which is transported into the brain via the transporter located 

in capillaries of the blood–brain barrier and thus different plasma 
levels of Trp can affect cerebral 5-HT levels (Carneiro et al., 2018). In 
parallel to existing studies, we found lower but inapparent plasma Trp 
levels in OCD than HCs (Lucca et al., 1992). Furthermore, acute Trp 
depletion, which might lead to a short-term increase in presynaptic 
5-HT availability, fails to improve the core impulsive-compulsive 
symptom in a short time (Berney et al., 2006; Külz et al., 2007), but 
cause a significant decrease perceived control and increase in 
interfering thoughts at the time of provocation (Hood et al., 2017).

Whereas, only a minor fraction of Trp is utilized for 5-HT 
synthesis; nearly 95% of the Trp pool enters the kynurenic pathway 
(Platten et al., 2019). The first stage of the Trp-kynurenic pathway is 
catalyzed by the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) 
and the extrahepatic enzyme indoleamine 2,3-dioxygenase (IDO), 
enzymes that are induced by glucocorticoids and pro-inflammatory 
cytokines, respectively. Thus, chronic stress and infections can shunt 
available Trp toward the kynurenic pathway and thereby lower 5-HT 
synthesis (Sorgdrager et al., 2019), which in combination with the 
neuroinflammatory hypothesis may contribute to the hyposerotonin 
status in people with OCD.

Melatonin, which can be biosynthesized by Trp or serotonin and 
is involved in the control of the sleep–wake cycle, saw significantly 
lower plasma levels in patients with OCD. Previous studies have also 
demonstrated a decreased 24-h production of melatonin compared 
patients with OCD to HCs (Catapano et al., 1992; Millet et al., 1998), 
contributing to disruptions in circadian rhythms of the sleep–wake 
cycle. In particular, Delayed bedtimes are associated with more severe 
OCD symptoms (Coles et al., 2020; Nota et al., 2020).

Notwithstanding, these mentioned metabolites might not 
be suitable as biomarkers for diagnosis. Melatonin was one of the 
differential metabolites, but was not a stable predictor variable in our 
diagnostic nomogram model. Therefore, we proposed that there were 
wide, subtle and mostly poorly detectable (in separate comparisons) 
alterations in tryptophan metabolism in the plasma of patients with 
OCD, but drive an important role through the perturbation of 
serotonergic neurotransmitters and neuroinflammation in OCD.

4.3. Metabolites as promising biomarkers

We performed the logistic regression model using a combination 
of several selected metabolites to evaluate the discriminative ability of 
metabolites as promising biomarkers for diagnosis and outcome 
prediction of sertraline treatment efficacy. The results seemed 
promising. Both diagnostic and predictive nomogram model had 
impressive discrimination (AUC value) and calibration (p-value from 
the Hosmer–Lemeshow test) performances.

We discovered, for the first time, the capacity of fatty acids as 
potential biomarkers for OCD diagnosis. Four out of eight predictor 
variables of the diagnostic nomogram model are PUFAs. Thereinto, 
decreased circulating DPA, omega-3 PUFAs, was associated with a 
lower risk of OCD. Similarly, the protective effects of omega-3 PUFAs 
have been also found in other psychiatric diseases, such as attention 
deficit hyperactivity disorder, bipolar disorder, and schizophrenia 
(Bozzatello et al., 2016).

5-Hydroxytryptophan (5-HTP), meanwhile, was a significant 
predictor variable of the predictive nomogram model for sertraline 
treatment. A lower plasma level of 5-HTP was related to higher odds 
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of response after receiving sertraline according to the predictive 
nomogram model. Also, recent studies revealed the potential benefits 
of 5-HTP as an augmentative medication of SSRIs (Yousefzadeh et al., 
2020). 5-HTP is the intermediate metabolite of the Trp-serotonin 
pathway and can rapidly be converted to 5-HT. Since 5-HTP passively 
crosses the blood–brain barrier while 5-HT does not, the low plasma 
level of 5-HTP might present the hyposerotonin state in the brain 
which could be reversed by SSRIs.

5. Limitations

There were some limitations in our research. Firstly, we only 
included patients with severe obsessive–compulsive symptoms, 
because we assumed that the metabolomic profile alterations would 
be more prominent and typical in patients with severe OCD. But 
the metabolomic profile of patients with mild to moderate OCD is 
still unknown; comparisons between patients with severe OCD and 
mild OCD need to be explored, which might offer fresh and novel 
insights into the mechanisms of OCD. Secondly, OCD is a 
heterogeneous disorder with distinct symptom dimensions and the 
pathological profiles of OCD may differ across symptom 
dimensions. Dimension-based analysis would be  meaningful in 
future studies with larger sample sizes. As for biomarker analyses, 
we only validated our diagnostic and predictive model within the 
given dataset. We lack large-scale, multi-center data and external 
validation to access models’ reproducibility and generalizability, 
and therefore, our models should be interpreted with caution. The 
last but not the least, we did not control the body’s dietary intake, 
Body Mass Index or other Nutritional Status Indicators 
during studies.

6. Conclusion

Based on untargeted UPLC-Q-TOF/MS analysis, we discovered 
unsaturated fatty acids and tryptophan metabolism as key metabolic 
pathways alteration in OCD, and circulating metabolites of these 
pathways, such as DPA and 5-HTP, appeared to be  promising 
biomarkers for OCD identification and sertraline treatment prediction.
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