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The supragenic organization of
glycoside hydrolase encoding
genes reveals distinct strategies
for carbohydrate utilization in
bacteria

Renaud Berlemont*

Department of Biological Sciences, California State University – Long Beach, Long Beach, CA,

United States

Glycoside hydrolases (GHs) are carbohydrate-active enzymes essential for

many environmental (e.g., carbon cycling) and biotechnological (e.g., biofuels)

processes. The complete processing of carbohydrates by bacteria requires many

enzymes acting synergistically. Here, I investigated the clustered or scattered

distribution of 406,337 GH-genes and their association with transporter genes

identified in 15,640 completely sequenced bacterial genomes. Di�erent bacterial

lineages displayed conserved levels of clustered or scattered GH-genes, but

overall, the GH-genes clustering was generally higher than in randomized

genomes. In lineages with highly clustered GH-genes (e.g., Bacteroides,

Paenibacillus), clustered genes shared the same orientation. These codirectional

gene clusters potentially facilitate the genes’ co-expression by allowing

transcriptional read-through and, at least in some cases, forming operons. In

several taxa, the GH-genes clustered with distinct types of transporter genes.

The type of transporter genes and the distribution of the so-called GH:TR-genes

clusters were conserved in selected lineages. Globally, the phylogenetically

conserved clustering of the GH-genes with transporter genes highlights the

central function of carbohydrate processing across bacterial lineages. In addition,

in bacteria with the most identified GH-genes, the genomic adaptations for

carbohydrate processing also mirrored the broad environmental origin of the

sequenced strains (e.g., soil and mammal gut) suggesting that a combination

of evolutionary history and the environment selects for the specific supragenic

organization of the GH-genes supporting the carbohydrate processing in

bacterial genomes.
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1. Introduction

Bacteria are essential for the processing of carbohydrates across ecosystems and thus
contribute greatly to global carbon cycling (Berlemont and Martiny, 2016; López-Mondéjar
et al., 2022). Although both autotrophic and heterotrophic bacteria have evolved ways to
process endogenous carbohydrates (e.g., starch/glycogen), some heterotrophs, frequently
referred to as the “carbohydrate degraders,” have evolved many enzymes to degrade the
polysaccharides in their environment (Talamantes et al., 2016; Berlemont, 2017; Terrapon
et al., 2018).
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The complete deconstruction of carbohydrates requires many
interacting carbohydrate-active enzymes (CAZymes). For example,
regarding the cellulose, some extracellular enzymes cleave the
polysaccharides, such as cellulases from the glycoside hydrolase
family 6 (GH6), and release short oligosaccharides (e.g., cellobiose)
(Berlemont and Martiny, 2013; Nguyen et al., 2018). Then, these
products can be further processed outside or inside the cell,
after translocation, by specific ‘osidases’ such as the GH3 β-
glucosidases releasing monosaccharides (Berlemont and Martiny,
2013). Inside the cell, monosaccharides are then channeled through
glycolysis or other catabolic and anabolic pathways. Bacteria and
fungi with a high potential for carbohydrate deconstruction are
associated with a large repertoire of CAZymes. This includes many
single-domain GHs sometimes associated with accessory non-
catalytic domains (e.g., carbohydrate-binding modules—CBMs)
(Talamantes et al., 2016; Nguyen et al., 2018), complex non-covalent
multi-proteins assemblies combining several catalytic domains
acting synergistically (i.e., cellulosome) (Ravachol et al., 2014; Artzi
et al., 2016), and a few multi-activity proteins (MAPs) with several
catalytic domains (Brunecky et al., 2013; Zhang et al., 2014; Kim
et al., 2017; Nguyen et al., 2019).

CAZymes, and their corresponding gene, can be identified
in sequenced genomes datasets and the functional potential for
carbohydrate processing of a sequenced organism correspond
to its predicted ability to process polysaccharides based on the
repertoire of identified CAZymes (Berlemont and Martiny, 2015).
As the processing of carbohydrates requires multiple activities, the
corresponding genes are often co-regulated (Amore et al., 2013;
Tani et al., 2014). Genes in a “regulon” (i.e., sets of genes that share
the same regulation) have similar cis-regulatory elements or share
the same cis-regulatory element in operons. The identification of
regulons in sequenced microbial genomes is not trivial (Hiard
et al., 2007; Bouyioukos et al., 2016) since transcription factors are
often poorly conserved across lineages, thus limiting the regulon
prediction at large (Madan Babu et al., 2006; Junier and Rivoire,
2016). However, besides well-characterized regulons, genome-wide
analyses revealed that the co-expression of independent genes
is affected by their physical distance, expressed in nucleotides,
or sometimes as the number of genes (Pál and Hurst, 2004).
Compared to genes located in distant regions of the chromosome,
closely located genes tend to be co-expressed (Junier and Rivoire,
2016). Thus, beyond tightly regulated supragenic structures (e.g.,
operon), the physical clustering of genes encoding functionally
coupled proteins (i.e., functional coupling) fosters their co-
expression, potentially improving the fitness of their host, and thus
might be selected under specific environmental conditions (Fang
et al., 2008). In this context, clusters of independent genes might
represent an evolutionary intermediate between scattered genes
and operons (Junier and Rivoire, 2016).

As the complete deconstruction of carbohydrates requires
multiple functionally coupled enzymes, the corresponding genes
are predicted to be clustered. Interestingly, the identification
of “polysaccharide utilization loci” (PULs) in members of the
Bacteroides highlighted the clustered distribution of GH-genes
targeting polysaccharides (Terrapon et al., 2018). In PULs, many
of the predicted GH-genes and other CAZymes were associated
with sugar transporters (Larsbrink et al., 2014) together forming

some clustered GH-genes with transporter genes (GH:TR-cluster).
In Bacteroides, these sugar transporters, referred to as SusCD
or SUS transporters, are generally TonB-dependent transporter
(TBDT, SusC) that interact with SusD lipoproteins although some
TBDTs are involved in the uptake of other nutrients (Pollet
et al., 2021). TBDTs are multi-domain proteins with a central
barrel domain (PF00593) in the outer membranes connected to
a “plug” domain (PF07715) in periplasmic space. In Bacteroides,
additional domains such as the N-terminal extension domain
(NTE, PF13715), also identified as DUF4480 domain (PF13715)
and, in some cases, a short N-terminal domain (STN, PF07660),
are sometimes associated with the “core” TBDT. Although the
functional coupling of GHs and Sus-transporters in some PULs
has been biochemically confirmed (e.g., Larsbrink et al., 2014;
McKee et al., 2021), most PULs were predicted bioinformatically
(Terrapon et al., 2015, 2018; Ausland et al., 2021). In addition,
PULs identified in Bacteroidetes are the CAZyme gene clusters
(CGCs) consisting of “physically linked genes clusters that encode
at least one CAZyme, one transporter, one transcriptional regulator,
and one signaling transduction protein” (Zhang et al., 2018). Some
CGCs have been predicted in lineages other than Bacteroidetes,
mainly using a curated literature search (Ausland et al., 2021).

The completely sequenced Bacteroides genomes contain the
highest proportion of GH-genes (up to ∼7.5% of the PEGs) but
PULs have been predicted in other Bacteroidetes, where both
the number of identified GHs and the frequency of GHs within
PULs vary extensively. According to the PulDB, none of the 10
predicted GHs in Alistipes putredinis DSM17216 were in a PUL,
whereas 35% of 119 predicted GHs from Tannerella sp. were in
PULs. Finally, 51% of the 399 predicted GHs (out of 5,244 PEGs)
in B. cellulolysiticus DSM14838 are located in PULs (Terrapon
et al., 2018). This raises some questions about the genomic features
supporting the carbohydrate deconstruction (e.g., clustering of the
GH-genes) in Bacteroides genomes and in other lineages.

First, besides functional coupling, what are the factors affecting
the physical clustering of GH-genes in bacterial genomes? I
predicted that the amount (or the frequency) of GH-genes
would be a determining factor supporting the formation of
clusters. Although having more genes of interest could increase
the frequency of observed clusters, it is unclear how these
numbers change with varying overall genome size and the
number of GH-genes. Second, is the GH-gene clustering (with
transporter gene) conserved across bacterial lineages? Just like
the distribution of GH-genes is conserved across bacterial genera
(Berlemont and Martiny, 2013, 2015), I predicted that the
physical distribution (clustered or scattered) of GH-genes would
be conserved in discrete bacterial lineages. Finally, I was interested
in elucidating the association of GH-genes with the various
types of sugar transporters (i.e., ABC, PTS, MFS, and SUS)
across completely sequenced bacterial genomes. Since, transporter
genes are not evenly distributed across microbial lineages (e.g.,
McKee et al., 2021; Wang et al., 2022), I predicted that the
association between GH- and transporter genes is phylogenetically
constrained and mirrored the organism’s potential to respond to
the carbohydrate supply.

The increasing number of publicly accessible sequenced
microbial genomes (Wattam et al., 2017), and the development
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of the precise annotation system for GHs (e.g., Huang et al.,
2018; Nguyen et al., 2018, 2019; Zhang et al., 2018) provided an
unprecedented opportunity to investigate the physical clustering
of GH-genes across bacteria. Hence, I first generated randomized
genomes to investigate how the number of GH-genes and the
overall genome size affect the clustering of GH-genes, in the
absence of selection. In addition to highlighting the factors affecting
the GH-genes clustering in randomized genomes, this simulation
provided a baseline to estimate the likelihood that an observed
clustering, in an actual genome, is random. Next, I identified the
GH-genes in 15,640 completely sequenced and publicly accessible
genomes retrieved from the BV-BRC (formerly known as the
PATRICbrc) database (Wattam et al., 2017). This data was used
to investigate the physical clustering of GH-genes (and transporter
genes) across bacterial lineages.

2. Materials and methods

2.1. Genome randomization

Bacterial genomes with 1,000 to 15,000 protein-encoding genes
(PEGs) which contained 0.5% to 10% of GH-genes (from 5 to
750) were simulated in the R statistical environment (Script in
Supplementary Data). For each condition, random distributions of
5,000 GH-genes were generated.

The synteny score (SSc), for each GH-gene, was defined as
the shortest distance (upstream or downstream) expressed in the
number of PEGs, between two successive GH-genes. Then, the
number (NSSc) and frequency (FSSc) of GH-genes with synteny
scores ranging from 1 to 20 were obtained for each genome.
Finally, for each set of conditions, the normality of NSSc and FSSc
was tested using the Shapiro–Wilk test implemented in the R
statistical environment.

2.2. Gene identification and mapping

In June 2022, I retrieved the protein sequences and the
complete taxonomy of 15,640 bacterial genomes from the BV-
BRC database, formerly known as the PATRICbrc database (https://
www.bv-brc.org) (Wattam et al., 2014, 2017). To avoid missing
GH-genes and bias introduced by sequence fragmentation in
draft genomes, I focused on the “complete” genomes only (i.e.,
genomes with no ambiguous bases and in which the contigs
equal the number of chromosomes). The genes of interest
encoded protein with at least one glycoside hydrolase domain
(GHs, Supplementary Table 1) and transporter domains (TRs,
Supplementary Table 2). The precise identification of the genes of
interest was achieved using GeneHunt (Talamantes et al., 2016;
Nguyen et al., 2019) and HMM-profiles retrieved from the Pfam
database (35.0, Supplementary Tables 1, 2) (Finn et al., 2014).
A tailored version of GeneHunt designed to mine completely
sequenced genomes from the BV-BRC database is available at
https://doi.org/10.6084/m9.figshare.22207552.v1. In addition, the
“protein encoding gene” (PEG) number and the orientation of the
coding strand, provided by the BV-BRC database, were used as
a proxy to identify the position and orientation of the genes of

interest. Next, the SSc was computed for each pair of sequential
GH-genes, in all the genomes, as described for the simulation data.

2.3. Data processing

All the data analytics, statistics, and visualization were done
using the R environment with the vegan (v2.5-6), ggplot2 (v3.3.2),
dplyr (v1.0.1), reshape2 (v1.4.3), and splitstackshape (v1.4.8).

3. Results

3.1. Bacterial genome randomization

In order to elucidate how the genome size (expressed as the
number of protein-encoding genes—PEGs) and the number of the
genes of interest, in this case, GH-genes affected the clustering
of these genes, I simulated GH-genes distributions in randomized
bacterial genomes (Supplementary Figure 1). First, when the GH-
genes accounted for <1% of the PEGs, the average distance
between successive GH-genes (average synteny score—SSc) was
highly variable and not normally distributed (Shapiro–Wilk test,
p < 0.01 and W < 0.98). Conversely, when the frequency of
GH-genes increased, the average SSc decreased and approached
the normal distribution (Shapiro–Wilk, p > 0.01 and W >

0.98) (Supplementary Figure 1A). Next, when focusing on random
bacterial genomes with 5,000 PEGs (Supplementary Figure 1B),
the number of GH-genes with low SSc (i.e., more clustered
distribution) increased non-linearly with the number of GH-genes.
Thus, in genomes with few genes of interest, most of the GH-genes
are expected to be scattered. Next, as the number of GH-genes
increased, the frequency of clustered genes increased as well. For
example, in a purely random genome with 5,000 PEGs and 300
GH-genes (6%), one should expect to identify up to ∼35 clustered
GH-genes (i.e., SSc = 1). However, this number increased quickly,
not linearly, when also considering separated GH-genes (i.e., SSc
> 1) (Supplementary Figure 1B). Thus, both the number of GH-
genes and the size of the genomes, as well as the synteny score used
to define the clusters affect the expected number of clustered genes.
In actual microbial genomes, change in the GH-genes frequency
mirror variation in the GH-genes repertoire and the genome size
(expressed in PEGs). This suggests that in genomes enriched in
GH-genes, such as some Bacteroides, the observation of clusters
could, at least partially, mirror some stochastic processes resulting
from the high frequency of GH-genes.

3.2. GH-genes identification and mapping
in sequenced bacterial genomes

As of June 2022, the predicted protein sequences from 15,640
“complete” bacterial genomes were retrieved from the BV-BRC
database and analyzed using GeneHunt to identify the genes
encoding proteins with at least one GH domain.

The dataset was strongly biased toward pathogens and other
microbes relevant to human health including 929 Escherichia,
864 Salmonella, 710 Streptococcus, and 697 Staphylococcus, among
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others. This dataset also included 194 Streptomyces, 29 Bacteroides,
and a few other well-known polysaccharide degraders including 9
Caldicellulosiruptor, 7 Cellulomonas, and 5 Ruminococcus, among
others. Finally, many taxa were associated with only a few
“complete” genomes.

In total, GeneHunt identified 406,337 proteins for a total
of 754,960 protein domains (Supplementary Data 1). Although
202,258 proteins consisted of single-domain GHs (SDGHs),
204,079 were multi-domain proteins (MDGHs) with some
proteins containing more than 10 domains. For example,
fig|113107.26.peg.548 from Streptococcus australis strain
NCTC5338, encoded a GH2 (i.e., β-galactosidase) with 15
predicted discrete protein domains.

Across genomes, the most abundant GH domains identified
were 55,091 predicted GH13 α-amylases (PF00128), 32,825
predicted GH1 β-glucosidases (PF00232), and 27,813 predicted
GH3 β-glucosidases (PF00933). Domains for enzymes targeting
structural polysaccharides such as cellulose and xylan were less
abundant. Specifically, the most abundant GH domains endowed
with predicted cellulolytic activity were 8,276 GH5 (PF00150),
5,572 GH8 (PF01270), and 1,695 GH6 (PF01341), whereas 2,677
GH10 (PF00331) and 703 GH11 (PF00457) encoding putative
xylanases were identified. Regarding domains for predicted
chitinases, 13,745 and 2,893 domains for GH18 (PF00704) and
GH19 (PF00182) were identified. Regarding the proteins with
multiple domains, many non-GH domains including CBMs,
dockerin domain, and some domains of unknown function
(DUFs), among others, were found associated with the GHdomains
(Supplementary Data 1).

Across genomes, the average frequency of GH-genes was
low (0.6%) but ranged from ∼0.03% to ∼6% of the PEGs
(Figure 1). Overall, the number of identified GH-genes correlated
with the genome size (rPearson = 0.38, p < 0.001 and slope
= 0.005, p < 0.001, Table 1). Although conserved in many
genera (e.g., Streptomyces and Bacteroides), this trend was not
systematic. For example, among the Actinobacteria, variation of
the genome size was strongly associated with the number of GH-
genes in Clavibacter, Cutibacterium, and Streptomyces, whereas
in Bacteroidetes, variation in the genome size of Bacteroides,

Flavobacterium, andHymenobactermirrored the GH-gene content.
In the Firmicutes phylum, Leuconostoc and Paenibacillus were the
lineages with the highest correlation between the number of GH-
genes and the overall genome size. Finally, in proteobacteria, the
genome size of most genera weakly reflected the variation in the
GH-gene content (Table 1 and Supplementary Table 3).

Next, for each GH-genes in each genome, I identified the
SSc and created graphical representations of the corresponding
genome to highlight the protein-domain architecture (Figure 2A),
as well as their localization and orientation (i.e., forward vs.
reverse strand, Figure 2B). The provided data also contain the
domain-specific identification of transporter proteins and genes
and their co-localization with GH-genes (Figure 2C, discussed
below). For example, among the 7,069 predicted protein-encoding
genes (PEGs) in Paenibacillus cellulositrophicus strain KACC
16577 (Genome ID:562959.3), 160 were predicted to be GH-
genes (2.2% of the PEGs, Figure 2). In this bacterium, many GH-
genes were scattered over the entire genome. However, although
mostly scattered, the orientation of the GH-genes was uneven

with the coding DNA strand of most GH-genes in the first
half of the chromosome located on the forward strand, whereas
GH-genes on the second half of the chromosome were located
on the opposite strand (Figure 2B). On the contrary, most of
the 179 identified GH-genes (3.7%) in Bacteroides dorei strain
HS2 L 2 B 045b (4,817 predicted PEGs) appeared in clusters
(Supplementary Figure 2).

3.3. GH-genes clustering

I next investigated the frequency of clustered GH-genes,
defined as the sequential GH-genes with SSc≤5, across 15,640
genomes (Figures 1A, B). This value was selected to identify
clusters of closely linked but non-contiguous GH-genes. The
clustering of GH-genes was highly variable across genomes and
most genomes with no clustered GH-genes, including some
Clostridia, Vibrio, and Salmonella as well as some Mycoplasma,
Burkholderia, and Mycobacteria, were generally small genomes
with a reduced number of GH-genes (<1% of PEGs, Figure 1A).
Most autotrophs such as members of the Cyanobacteria phylum
(n = 153) were also associated with reduced frequency of
generally scattered GH-genes. However, several genomes, with
reduced potential for polysaccharide utilization, displayed a high
proportion (i.e., >50%) of clustered GH-genes (Figure 1A). In
these genomes, large variations in the frequency of clustered GH-
genes eventually mirrored minor changes in the actual number of
clustered GH-genes.

Next, I evaluated the GH-genes clustering within selected
bacterial genera with many completely sequenced genomes and/or
associated with a high potential for carbohydrate processing
(Table 1 and Supplementary Table 3). At large, and as expected,
the GH-gene clustering increased with the frequency of GH-genes
(Figure 1). In some lineages, such asVibrio and Salmonella, the GH-
gene clustering varied extensively (from 0 to >75% clustered GH-
genes) although the GH-gene frequency displayed little variation
(Figure 1A). In these bacteria with few (mostly scattered) GH-
genes, the number of GH-genes correlated with the number of
PEGs but the actual number of GH-genes and the genome size only
marginally explained their clustering (Table 1).

In the phylum Actinobacterium, Streptomyces (n = 199
genomes), mostly derived from soil, were associated with 33 (S.
cattleya NRRL 8057) to 282 (S. chartreusis NRRL 3882) identified
GH-genes. In this genus, the number of GH-genes correlated
with the overall genome size (Figure 1B and Table 1). However, as
most characterized Streptomyces had large genomes ranging from
∼5,600 to ∼12,300 PEGs, the frequency of GH-genes remained
relatively low compared to other lineages with less GH-genes
(e.g., Bifidobacterium). The majority of analyzed Streptomyces

displayed mostly scattered GH-genes (average FSSc≤5 = 35.2 ±

11.1%, Figure 1B). Yet, in this group, the variation of the GH-
gene clustering was significantly explained by both the number
of GH-genes (40.7% of the variance) and the genome size (19.3%
of the variance, Table 1). Unlike Streptomyces, members of the
Bifidobacterium genus (n = 146 genomes), mostly derived from
the gastrointestinal tract of mammals, had small genomes ranging
from ∼1,400 to ∼2,750 PEGs associated with 21 to 107 identified
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FIGURE 1

Frequency of GH-genes and clustered GH-genes (SSc ≤ 5) in completely sequenced bacterial genomes (gray) and in selected lineages with (A)

reduced or (B) high potential for carbohydrate utilization. Frequency of codirectional genes in the identified GH-gene clusters (SSc ≤ 5) in

completely sequenced bacterial genomes (gray) and in selected lineages with (C) reduced or (D) high potential for carbohydrate utilization.

GH-genes. Although having less GH-genes than Streptomyces,
Bifidobacteria contained a higher proportion of these genes and
displayed a higher frequency of clustered GH-genes (average FSSc≤5

= 49.3 ± 16%, Figure 1B and Table 1). Like Streptomyces, the
clustering of GH-genes in Bifidobacterium was mostly explained by
variation in the number of GH-genes.

In Clostridia (n = 127 genomes, phylum Firmicutes),
the number of PEGs, the frequency of GH-genes, and
their clustering varied extensively (Figure 1A and Table 1).
Specifically, mostly pathogenic strains of C. tetani had small
genomes (<3,000 PEGs) with a reduced number of GH-genes

(∼10) whereas C. phytofermentans, C. cellulovorans, and C.

saccharoperbutylacetonicum, with larger genomes (∼5,000 PEGs),
were associated with more than 100 GH-genes each. As expected,
this disproportionated enrichment in GH-genes (i.e., >10×)
relative to the overall increase in the total number of PEGs
(∼1.6×) explained the increased number of clustered GH-genes
in some Clostridia (Figure 1A and Table 1). The same trend was
observed in Paenibacillus (n = 79 genomes) although both the
frequency of GH-genes (1.9± 0.7%) and the frequency of clustered
GH-genes (44 ± 13%) was higher, on average, than in Clostridium

(Figure 1B).
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TABLE 1 Relationship between the total number of PEGs and the number of identified GH-genes in selected microbial lineages using Pearson’s

correlation and linear regression.

Pearson (r) Slope % Variance explained by

#PEGs #GHs #PEGs x #GHs Res.

Eubacteria (15,378) 0.377∗∗∗ 0.005 <0.01∗ 1.9∗∗∗ (NS) 98.1

Actinobacterium (1,700) 0.663∗∗∗ 0.011 23.6∗∗∗ 58.8∗∗∗ (NS) 17.6

Bifidobacterium (146) 0.447∗∗∗ 0.02 16.6∗∗∗ 61.1∗∗∗ 1.0∗ 21.3

Streptomyces (199) 0.622∗∗∗ 0.018 19.3∗∗∗ 40.7∗∗∗ (NS) 39.9

Bacteroidetes (489) 0.649∗∗∗ 0.029 27.8∗∗∗ 67.7∗∗∗ (NS) 4.4

Bacteroides (30) 0.792∗∗∗ 0.071 57.5∗∗∗ 41.9∗∗∗ (NS) 0.6

Flavobacterium (40) 0.845∗∗∗ 0.049 65.6∗∗∗ 33.9∗∗∗ 0.1∗∗ 0.4

Cyanobacteria (169) 0.871∗∗∗ 0.004 24.4∗∗∗ 21.7∗∗∗ (NS) 53.8

Firmicutes (3,884) 0.381∗∗∗ 0.007 5.8∗∗∗ 74.7∗∗∗ 0.0∗∗ 19.4

Clostridium (127) 0.459∗∗∗ 0.015 17.2∗∗∗ 42.2∗∗∗ (NS) 40.5

Paenibacillus (79) 0.683∗∗∗ 0.043 39.5∗∗∗ 56.0∗∗∗ 0.3∗ 4.2

Percentages of the estimated variation in GH-gene clustering (SSc ≤ 5) explained by the total number of PEGs, a proxy for the genome size, the number of GH-genes, and their interaction.

Estimates were derived from the ANOVAmodel (GH-genesSSc≤5∼PEGs×GH-genes). Significance levels ∗∗∗P< 0.001<
∗∗P< 0.01<

∗P< 0.05< non-significant (NS). For complete statistics

of all bacterial genera with ≥10 completely sequenced genomes, see Supplementary Table 3.

In the Bacteroidetes phylum, Bacteroides (n = 30 genomes)
and Flavobacterium (n = 40 genomes) genera were compared.
These two groups contain genomes highly enriched in GH-genes
and in which the GH-genes content was strongly correlated
with the genome size (Figure 1B and Table 1). Flavobacterium

had variable genome sizes ranging from 2,563 to 4,606 PEGs
and containing between 11 and 312 GH-genes. Specifically,
14 F. psychrophilum and 2 F. columnare with small genomes
(∼2,500 PEGs) contained very few scattered GH-genes, whereas
F. sp. PK15 (3,262 PEGs) had 86.2% of 302 identified GH-
genes in clusters (Figure 1B). Next, although being also highly
variable in their genome size (from ∼3,000 to ∼6,300 PEGs),
the analyzed Bacteroidetes displayed consistently high GH-gene
frequency (3.5 ± 0.9%). In both Bacteroides and Flavobacterium,
the variation in the number of clustered GH-genes, although
being significantly explained by the number of GH-genes, was
also strongly affected by the genome size (Table 1). In most
genera, the clustering of GH-genes was best explained by their
abundance. However, the overall genome size explained a large
fraction of the GH-gene clustering in several lineages including
Cutibacterium (Actinobacterium), Bacteroides (Bacteroidetes),
Lactobacillus (Firmicutes), and Cronobacter (γ-proteobacteria),
among others (Table 1 and Supplementary Table 3).

Finally, I investigated the GH-gene codirectional orientation,
on the forward or reverse strand. Briefly, in the absence of
selection, the odds that two sequential GH-genes share the same
orientation are described as a random binomial distribution, and
thus 50% of the pair of sequential GH-genes should share the
same orientation. When considering all the GH-genes, scattered
or clustered, identified in all the genomes, and without accounting
for potential bias resulting from uneven lineage distribution, 57.8
± 17.3% of the sequential pairs of GH-genes shared the same
orientation. This value was higher than expected for a perfectly
random distribution. Among others, this can be attributed to the
gene codirectionality, relative to the origin of replication, observed
in some lineages such as Paenibacillus (Figure 2B). However, when

focusing on the clustered GH-genes (i.e., SSc≤5), 70.0 ± 32.2% of
the pairs of sequential GH-genes shared the same orientation thus
suggesting that colocalized genes involved in the same process (i.e.,
carbohydrate processing) tend to form codirectional gene clusters. I
next investigated this trend in previously selected bacterial lineages
(Figures 1C, D). In Clostridium and Vibrio, on average, 95.3 ±

11.8% and 89.9 ± 14.6% of the pairs of clustered and sequential
GH-genes shared the same orientation, respectively. In Salmonella,
few identified pairs of clustered GH-genes were colinear (<50%,
Figure 1C). In Cyanobacteria, with few clustered GH-genes, 62.2
± 42.7% of the clustered and sequential pairs of GH-genes shared
the same orientation. In selected lineages with high potential
for polysaccharide utilization, most clustered and sequential GH-
genes shared the same direction (Figure 1D). More specifically,
on average, 76.2 ± 15.4%, 91.7 ± 7.6%, 81.7 ± 9.4%, and 86.9
± 3.0%, of the clustered GH-genes identified in Bifidobacterium,
Flavobacterium, Paenibacillus, and Bacteroides shared the same
orientation, respectively. Interestingly, in Streptomyces, only 54.4
± 17.1% of the clustered and sequential GH-genes identified
shared the same orientation (Figure 1D). This suggested that in
most lineages, except in Streptomyces, there is a strong selection
for clustered GH-genes to share the same orientation. Although
codirectional gene cluster are a prerequisite to the formation of
bacterial operons, it is to be noted that this is also necessary for
the transcriptional read-through leading to the co-expression of
independent genes.

3.4. GH-genes clustering in bacteria with
high potential for carbohydrate
deconstruction

I next focused on the 128 genomes most enriched in GH-genes
(i.e., >130 GH-genes) (Figure 3, Supplementary Figure 3, and
Supplementary Table 4). The genomes included some Streptomyces
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FIGURE 2

Paenibacillus cellulositrophicus strain KACC 16577 (7,069 PEGs) analysis. (A) Domain-specific identification of the GH-proteins (partial). The gene ids

correspond to the PEG number as provided by the BV-BRC database. Similar figures were created for the MFS, ABC, PTS, and SUS transporters. (B)

Localization and orientation of the identified GH-genes on the completely sequenced genome from P. cellulositrophicus strain KACC 16577.

Numbers, when displayed, correspond to the PEG number. (C) Transporter identification and GH-gene colocalization. The vertical lines connecting

the GH-genes (orange) and the transporter genes highlight GH:TC clusters with SSc≤10. Numbers, when displayed, correspond to the PEG number.

Similar figures, in high resolution, detailed statistics, and sequences, for 15,640 fully sequenced bacterial genomes are publicly available at https://

figshare.com/account/home#/projects/161209.

(n = 28), Paenibacillus (n = 26), and Bacteroides (n = 18).
Some less abundant lineages with high potential for carbohydrate
deconstruction were also identified (e.g., Actinoplanes derwentensis
DSM43941, Mariniflexile sp. TRM1-10, and Paraprevotella

xylaniphila YIT 11841) (Figure 3 and Supplementary Table 4).
I manually retrieved the information about the environmental
origin of these strains, and the environments were grouped into
broad categories. For example, the genome from microbes derived
from the human gut, feces, and mouth were all combined in
the mammal gastro-intestine tract (i.e., mammal GIT) category

(Figure 3 and Supplementary Table 4). The genomes with
more scattered GH-genes were generally large genomes and were
associated with a stable number of GH-genes, whereas the genomes
with more clustered GH-genes had smaller genomes associated
with a large but variable repertoire of GH-genes (Figure 3 and
Supplementary Figure 3). In these genomes, the frequency of
contiguous GH-genes (SSc = 1) was the most variable and ranged
from <20% to more than 60% of the GH-genes. The frequency of
GH-genes with 1<SSc ≤ 5 and 5 < SSc ≤ 10 displayed reduced
variation (Figure 3). Interestingly, all the Bacteroides, derived
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FIGURE 3

Frequency of GH-gene clusters, with SSc ranging from 1 to 10, in 128 selected bacteria with the highest potential for carbohydrate deconstruction

(i.e., >130 identified GH-genes). Triangles represent the median value of 5,000 genome randomizations with the same number of PEGs and

GH-genes. For detailed information about the strains, see Supplementary Table 4.

from the mammal GIT, and the Flavobacteria, from aquatic
environments and soil, had more than 50% of their GH-genes in
clusters (SSc ≤ 5). On the contrary, most Streptomyces, from soil,
displayed scattered GH-genes (Figure 3). Finally, Paenibacillus

derived from multiple environments displayed intermediate
GH-gene clustering. In this group, genomes from the GIT and
biological fluids (i.e., milk) displayed more clustered GH-genes
than genomes derived from soil and sediment (Figure 3). Finally,
for each of these 128 genomes, I generated some random genomes
(n = 5,000 iterations) with the same number of GH-genes and
overall genome size. Regardless of the microbe’s affiliation or
environmental origin, the GH-genes in the actual genomes were
systematically more clustered than their randomized counterpart
(Figure 3). Thus, even in the most scattered genomes (e.g.,
Streptomyces), the co-localization of the GH-genes is not random
thus suggesting that, to some degree, the clustering of GH-genes is
an overarching theme affecting most bacterial lineages.

3.5. GH-genes colocalization with
transporter genes

Finally, I identified and localized genes encoding potential
transporters (i.e., MFS, ABC, PTS, and SUS) and analyzed
their association with previously identified GH-genes in
completely sequenced genomes. I used SSc≤10 to identify
the clustered distribution of transporter genes with GH-
genes (GH:TR-clusters, Figure 4 and Supplementary Figure 4).
Globally, 57.4% of the identified GH-genes were colocalized

with at least one transporter gene. However, across
lineages, the number of GH:TR-clusters (SSc ≤ 10) and
the type of transporter (i.e., MFS, ABC, PTS, or SUS) were
highly variable.

Briefly, only 106 genomes had all their GH-genes colocalized
with transporter genes. However, 97 of these genomes had
<10 GH-genes (4.7 on average). Lactobacillus brevis ATCC 367
(2,271 PEGs and 26 GH-genes) was the strain with the most
GH-genes all being colocalized with a transporter gene (i.e.,
MFS and ABC only). Next, the type of transporter genes and
their colocalization with GH-genes fluctuated across lineages. For
example, four types of transporters were detected in the phylum
Bacteroidetes, and some GH-genes were found clustered with each
type (Supplementary Figure 4). However, in this phylum, most
GH-genes were associated with SUS transporter gene although
some were associated with ABC and MFS transporter genes.
Only a few genomes, but no member of the Bacteroidales order
had GH-genes associated with the PTS transporter gene. This
uneven distribution of transporter genes and their association
with GH-genes was further highlighted when considering the
phylum Actinobacterium. In this group, no SUS transporter gene
was identified, and the three remaining transporter types were
unevenly associated with GH-genes (Supplementary Figure 4).
Specifically, ∼50% of the GH-genes were colocalized with ABC
and MFS transporter genes, whereas <10% were colocalized with
PTS transporter genes, except in the Coriobacteriales order (e.g.,
Coriobacterium glomerans_PW2). This uneven distribution and
association of transporter genes with GH-genes were also identified
among the most abundant orders of Firmicutes and Proteobacteria
(Supplementary Figure 4).
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FIGURE 4

Distribution of GH-genes in GH:TR clusters or isolated in completely sequenced bacterial genomes (in gray) and in selected lineages with (A)

reduced or (B) high potential for carbohydrate utilization. Frequency of the GH-genes in GH:TR clusters in 128 selected bacteria with the highest

potential for carbohydrate deconstruction (i.e., >130 identified GH-genes, C). For detailed information about the strains, see Supplementary Table 4.

Next, the investigation of GH:TR-clusters in previously selected
lineages revealed that in Cyanobacteria variation in the GH-
genes content was mostly independent of the transporter genes
(Figure 4A). In all the other selected lineages, but in selected
Actinobacteria, variation in the GH-gene repertoire mostly
mirrored fluctuation in the number of GH:TR-clusters (Figure 4).
In Streptomyces and Paenibacillus (phylum Actinobacterium), the
overall increase in the number of GH-genes was evenly distributed
between scattered GH-genes and GH:TR-clusters (Figure 4B).

Finally, when focusing on the 128 genomes with the
most identified GH-genes, <2% of the identified GH-genes
were colocalized with different types of transporter genes
(Figure 4C). The genomes with the highest frequency of GH-genes
in GH:TR-clusters, were Bacteroidetes (e.g., Bacteroides and

Flavobacteria). In these genomes, although some GH-genes were
clustered with some ABC MFS transporters, >50% of the
GH:TR-clusters involved SUS transporters. In Streptomyces and
Paenibacilli, the frequency of GH:TR-clusters was reduced and
involved mostly ABC andMFS transporters. Few of these genomes,
including some Paenibacilli and one Clostridium, had GH:TR-
clusters with PTS-transporters.

4. Discussion

In the absence of selection, it is the frequency of the gene
of interest, in this case, the GH-genes that best describes their
clustering in random bacterial genomes. However, in actual
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genomes, variation in the frequency of GH-genes results from the
interplay between the composition of the GH-gene repertoire and
the overall genome size.

In most phyla, several lineages have evolved a rich and diverse
GH-genes repertoire although <1% of the analyzed PEGs are GH-
genes. As predicted, this enrichment in GH-genes correlates with
the fluctuation of the genome size and the frequency of clustered
GH-genes. In several lineages, frequently referred to as specialized
carbohydrate degraders (Stursová et al., 2012; Berlemont and
Martiny, 2015; Talamantes et al., 2016; López-Mondéjar et al.,
2022), a disproportionate increase in the number of GH-genes is
observed. In these genomes, the frequency of observed clustered
GH-genes vastly exceeds the prediction. However, this higher-
than-expected frequency of clustered GH-genes is also common
in genomes with a reduced number of GH-genes. This suggests
that the colocalization of GH-genes in clusters is an overarching
principle affecting the structure of most bacterial genomes. The
physical clustering of these genes facilitates their co-expression
(Junier et al., 2012), which might be beneficial to the cell when the
coregulated genes support the same overall process, in this context
the carbohydrate processing.

Many clustered GH-genes form codirectional segments, which
could further their co-expression via transcriptional readthrough
(Junier and Rivoire, 2016; Svetlitsky et al., 2020), or produce some
operon. However, at least in some lineages (e.g., Paenibacillus
see Figure 1), the uneven distribution of the GH-gene orientation
can also mirror the overall chromosome organization. Indeed,
having the coding strand of these GH-genes corresponding to the
leading strand could prevent the occurrence of “transcription–
replication conflicts” and allow for the simultaneous replication
and transcription of the DNA (Wang et al., 2007; Hamperl and
Cimprich, 2016). This process applies to the overall chromosome
structure, not just to the GH-genes, and creates a slight bias in the
number of codirectional pairs of sequential GH-genes when all the
pairs of GH-genes are investigated (i.e., 57.8 vs. 50% in perfectly
random genomes).

In selected lineages with a high potential for carbohydrate
utilization, different trends emerged. First, most Flavobacterium,
Bacteroides, and Bifidobacterium are strongly enriched in GH-
genes, most of which are found in colinear clusters. Moreover,
in Bifidobacterium, the high frequency of GH-gene mirrors both
the increase in the number of GH-genes and the decrease
in the total number of PEGs. In these genera, many of the
identified GH-gene clusters are associated with some predicted
transporter genes. The type of transporter in these GH:TR clusters
is conserved within lineages, suggesting the functional coupling
of the transporters with the colocalized GH-genes as described in
several lineages (Terrapon et al., 2015; Ausland et al., 2021). Overall,
these genomes can be considered highly clustered regarding the
potential for carbohydrate processing. Next, Paenibacillus genomes
display only some of the aforementioned genomic traits. Among
others, these genomes are enriched in GH-genes, many of which
are found in clusters and some of the clustered GH-genes are
codirectional. However, as discussed before, this could mirror
some other processes affecting the overall structure of the bacterial
chromosome. In Paenibacilli, the frequency of GH:transporter
gene cluster was intermediate. Finally, many GH-genes are also

identified in Streptomyces although their overall frequency remains
relatively low in these large genomes. In this group, most GH-genes
are scattered, although some clusters are also identified. Besides the
scattered GH-genes, clustered GH-genes do not display significant
codirectionality. In addition, in these genomes, the frequency of
GH:TR clusters was not significantly affected by the enrichment
in GH-genes. Overall, these genomes can be considered scattered
regarding the potential for carbohydrate processing.

In conclusion, in addition to having an enriched repertoire
of GH-genes (Berlemont and Martiny, 2015; López-Mondéjar
et al., 2022), bacterial carbohydrate degraders display distinct
phylogenetically constrained genomic adaptations supporting
carbohydrate processing. However, the distribution of these
adaptations also mirrors the environmental origin of the bacterial
strain. Indeed, mostly scattered genomes are associated with soil
ecosystems, whereasmostly clustered genomes are derived from the
mammal GIT and aquatic environments. Thus, microbes with the
highest potential for carbohydrates adopted different strategies in
their respective environment.
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