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All tangled up: interactions of the
fibrinolytic and innate immune
systems
Claire S. Whyte*

Aberdeen Cardiovascular and Diabetes Centre, The Institute of Medical Sciences, School of Medicine,
Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom

The hemostatic and innate immune system are intertwined processes.

Inflammation within the vasculature promotes thrombus development, whilst

fibrin forms part of the innate immune response to trap invading pathogens. The

awareness of these interlinked process has resulted in the coining of the terms

“thromboinflammation” and “immunothrombosis.” Once a thrombus is formed

it is up to the fibrinolytic system to resolve these clots and remove them from

the vasculature. Immune cells contain an arsenal of fibrinolytic regulators and

plasmin, the central fibrinolytic enzyme. The fibrinolytic proteins in turn have

diverse roles in immunoregulation. Here, the intricate relationship between the

fibrinolytic and innate immune system will be discussed.
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Introduction

Over the last two decades there is increasing awareness of immunothrombosis, where
components of the immune system promote coagulation to limit the action of invading
pathogens (1). Whilst thromboinflammation describes the inflammatory process induced by
pathogens leading to platelet-neutrophil and platelet-monocyte interactions and endothelial
dysfunction that promote a prothrombotic environment (2, 3). Activation of monocytes
and neutrophils induces release of tissue factor (TF) promoting the extrinsic coagulation
pathway, whilst intrinsic coagulation is triggered by binding of factor XII (FXII) to
neutrophils (4). Additionally, activated neutrophils degranulate and expel their nuclear and
cytoplasmic content to form neutrophil extracellular traps (NETs) during the neutrophil
death process, NETosis (4). NETs act as a surface for assembly of procoagulant proteins
including TF, FXII and von Willebrand factor (5). Furthermore, released neutrophil elastase
cleaves tissue factor pathway inhibitor, thereby dampening the anticoagulant effect and
contributing to fibrin persistence (6). The fibrinolytic system is responsible for limiting
ongoing fibrin formation and degrading the fibrin meshwork to resolve thrombi.

Fibrinolysis

Plasmin, the central enzyme responsible for fibrin degradation is formed after cleavage of
Arg561-Val562 of the zymogen form, plasminogen, via plasminogen activators (Figure 1). The
primary physiological activators are tissue plasminogen activator (tPA) and urokinase (uPA).
Efficient tPA-mediated plasminogen activation requires binding of both proteins to fibrin
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FIGURE 1

The fibrinolytic system in immune regulation. Plasminogen (Plg) is converted to the active enzyme plasmin (Pln) after cleavage by tissue
plasminogen activator (tPA) or urokinase (uPA). This step is regulated by plasminogen activator inhibitor-1 (PAI-1), which is the primary physiological
inhibitor, and plasminogen activator-2 (PAI-2). The active enzyme, plasmin, cleaves crosslinked fibrin into fibrin degradation products that can be
cleared from the circulation. Alpha2-antiplasmin (α2AP) directly inhibits plasmin by forming a non-covalent complex. Activated thrombin activatable
fibrinolysis inhibitor (TAFIa) exerts its effects by removal of C-terminal lysine required for plasminogen binding to fibrin. Boxes detail functions of the
fibrinolytic proteins in immune regulation.

or cellular surfaces. uPA-mediated activation can occur in solution,
although it can be localized to cellular surfaces via urokinase
plasminogen activator receptor (uPAR) (7). The fibrinolytic
system is normally tightly regulated by various inhibitors.
Plasminogen activation is primarily regulated by plasminogen
activator inhibitor-1 (PAI-1) which forms a 1:1 complex with
the activators (8). Plasminogen activator inhibitor-2 (PAI-2) is
not as efficient an inhibitor as PAI-1 but does function in uPA-
mediated extracellular activity (9). The principal plasmin inhibitor
is the serine protease inhibitor (SERPIN), α2-antiplasmin (α2AP)
which forms a non-covalent complex with the active enzyme (10).
Crosslinking of α2AP to fibrin by active transglutaminase factor
XIII (FXIIIa) enhances the ability of this SERPIN to inhibit plasmin
(11). Thrombin activatable fibrinolysis inhibitor (TAFI) further acts
as a fibrinolytic break by removing C-terminal lysines from fibrin
which are required for the binding of plasminogen and tPA.

Pathogen hijacking of the
fibrinolytic system

Invading pathogens take advantage of the fibrinolytic system,
activating plasminogen in order to remove the confines of
fibrin and extracellular matrix barriers and to evade the
innate immune system (12). Indeed, certain strains of bacteria
can produce plasminogen activators. Beta hemolytic strains of
Streptococci possess streptokinase which induces non-proteolytic
plasminogen activation by causing a conformational change that
exposes the catalytic site and this complex can hydrolytically
activate other plasminogen molecules (13). Staphylococcus aureus

produces staphylokinase which also non-proteolytically activates
plasminogen by forming a complex which generates plasmin (14).
Staphylokinase is considered to be fibrin specific and in the absence
of fibrin it is susceptible to inhibition by α2AP (15). Whilst
Yersinia pestis, are able to proteolytically activate plasminogen
and scuPA by the membrane protein Pla (16). Plasminogen
contributes to lethality of Y. pestis, promoting spread of the bacteria
and dampening immune cell recruitment to sites of infection
[reviewed in (17)].

Additionally, a plethora of plasminogen binding proteins
(e.g. α-enolase, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) and PAM) exist on bacteria, fungal pathogens,
protozoan and helminth parasites (12, 18, 19). Bacteria utilize
plasminogen to remove fibrin barriers and enable invasion through
extracellular matrices both directly and indirectly by activating
matrix metalloproteases (17, 19–21). Additionally, plasmin-
mediated cleavage of members of the complement system and
immunoglobulin facilitates immune evasion of some strains of
bacteria (22, 23). Bacteria also use plasminogen as a molecular
linker to enable interaction with host cells (23).

Binding of plasminogen to Cryptococcus neoformans may
facilitate the ability of this fungal pathogen to cross the blood
brain barrier (24). It has been suggested that the affinity for
plasminogen binding could reflect the observed strain differences
in virulence of C. neoformans (24). However, plasminogen may
not function in promoting virulence of all fungal pathogens.
Although Candida albicans binds plasminogen and can cleave
fibrin when in the presence of exogenous plasminogen activators,
this binding does not affect virulence or endothelial damage and
therefore the in vivo significance is not known (18). Multiple species
of helminth parasites possess plasminogen binding proteins that
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facilitate their invasion and immune evasion (19). Protozoans are
also considered to use plasminogen to support their host invasion
but binding varies with morphotype and age for Leishmania
mexicana (25). As not all pathogens can endogenously activate the
zymogen they therefore require interaction with host plasminogen
activators (18).

Immune cells as sources of
fibrinolytic proteins

Plasminogen activation is enhanced by assembly of
plasminogen and its activators on fibrin or cellular surfaces
(26–29) which also protect plasmin from inhibition by α2AP (30–
32). Plasminogen receptors are found on endothelial cells, platelets,
monocytes, macrophages and neutrophils [reviewed in (33)]. The
multitude of plasminogen receptors have the common feature of
availability of C-terminal basic residues (33). This includes binding
proteins that lack a transmembrane protein (e.g., α-enolase and
histone 2B), transmembrane proteins that require proteolysis to
expose the C-terminal basic residue (e.g., integrins αIIbβ3 and
αMβ2) and Plg-RKT a transmembrane protein synthesized with a
C-terminal lysine residue (33, 34).

Plg-RKT was first identified on the surface of monocytes
and macrophages and co-localizes with uPAR (35) and facilitates
plasminogen activation by tPA (35) and uPA (36). Monocyte-
derived uPA is required for incorporation of these cells into
thrombi for efficient thrombus resolution (37). Although uPA is
the predominant plasminogen activator in monocytes, stimulation
with lipopolysaccharide (LPS), interferon-γ (IFN-γ) interleukin-4
(IL-4) all induce tPA secretion (38). Monocytes also express PAI-
1 and are a major source of PAI-2 (39). Intracellular and secreted
PAI-2 can be induced by stimulation of monocytes with thrombin
and LPS (39, 40). Presence of PAI-2 in arterial and venous thrombi,
presumed to be from monocytes, inhibits uPA-mediated lysis (41,
42). Both PAI-1 and PAI-2 are decreased by targeted upregulation
of uPA which enhances fibrinolysis induced by monocyte-derived
macrophages (43).

Thrombin activatable fibrinolysis inhibitor is also expressed
by monocytes and macrophages with the level of expression
being dependent on the activation status (44). Stimulation of
macrophages with IL-4 downregulates TAFI expression whilst
the proinflammatory stimuli IFN-γ and LPS has no effect (44).
Additionally, monocytes and macrophages contain cellular FXIII-
A (45, 46) which is trafficked to the membrane in association
with golgi vesicles (47). IL-4 and IL-10-induced externalization of
FXIII-A on monocytes stabilizes thrombi against degradation (48).

Polymorphonuclear leukocytes, assumed to be neutrophils,
participate in endogenous thrombus lysis, mainly mediated by
uPA with small contributions from tPA, elastase and cathepsin G
(49). More recently neutrophils and their ability to form NETs
have gained attention for their antifibrinolytic function. NETs
consist of extruded nuclear and cytoplasmic content including
histones, DNA strands and granular proteins including neutrophil
elastase (4). The presence of DNA, histones and NETs inhibits
plasminogen activation in vitro which can be reversed by degrading
the chromatin with DNase (50, 51). Targeting DNA in vivo limits
DVT growth in mice (52) and enhances tPA-mediated ex vivo

thrombolysis of thrombi obtained from acute ischemic stroke
patients (53, 54).

Alongside their role in promoting coagulation, platelets also
regulate fibrinolysis and form part of the innate immune response.
These anucleate cell fragments are packaged with granular
content required for these multifaceted functions. Activated
platelets expose P-selectin which facilitates interaction with the
P-selectin glycoprotein ligand-1 (PSGL1) expressed on leukocytes
and endothelial cells. Platelet-leukocyte interactions also occur
via CD40-CD40L. These interactions allow platelets to direct
leukocytes to sites of inflammation and propagate the inflammatory
process (55, 56).

Platelet-rich thrombi are more resistant to lysis than
erythrocyte-rich thrombi (57, 58) and platelets have largely
been considered to be antifibrinolytic. Platelets are a major pool
of circulating PAI-1 which is contained within the α-granules
(59). Model thrombi formed at high shear rates contain elevated
PAI-1 and lower tPA and plasminogen (60). This is consistent
with the greater abundance of PAI-1 in platelet dense arterial
thrombi compared to venous thrombi (61, 62). Platelet-derived
PAI-1 is retained on activated platelet membranes, localizing to
the platelet “cap” or “body” on phosphatidylserine (PS)-exposing
procoagulant platelets or centrally over spread platelets (63, 64).
This platelet-derived PAI-1 is functional in conferring resistance to
lysis (63).

Additional anti-fibrinolytic factors contained within platelet α-
granules include TAFI (65, 66), PN-1 (67), and α2AP (68, 69) which
can downregulate fibrinolysis. The role of α2AP in maintaining
thrombus stability may be limited as addition of circulating platelet
concentration to α2AP-depeleted plasma does not protect against
degradation (70). However, platelets contain a cytoplasmic pool
of FXIII-A which crosslinks high molecular weight γ-dimers,
α-polymers and α2AP-fibrin (71–75). Platelets retain externalized
cellular FXIII-A in the “cap” region stabilizing thrombi against
lysis due to crosslinking of α2AP (70). FXIII-A is also observed in
platelet microparticles translocated via intracellular signaling that
is calcium-independent (76).

In contrast to this, platelets support fibrinolytic activity through
binding and exposure of plasminogen (28, 64, 77). Strong platelet
stimulation facilitates plasminogen binding by fibrin-dependent
and fibrin-independent mechanisms (64, 78). Plg-RKT accounts for
binding of approximately 40% platelet-derived plasminogen (28).
Plasminogen activators also localize to the platelet surface with
tPA binding being fibrinogen-dependent (65). Single chain uPA
is activated on the platelet surface in a mechanism of reciprocal
activation with plasminogen (77).

Platelet dense granules contain polyphosphate (polyP), a
biomolecule which functions in modulation of coagulation and
inflammation (79). PolyP delays fibrin polymerization altering clot
structure (80). The knotted fibrin structure downregulates tPA and
plasminogen binding thereby inhibiting tPA-mediated fibrinolysis
(81). The effect on uPA-mediated plasminogen activation may
depend on the contribution of other proteins as polyP accelerates
activation in a purified system (82) whilst inhibits it in a plasma-
based system (83). FXII has close structural homology to tPA
and uPA and as such can function as a plasminogen activator.
PolyP auto activates FXII to active single chain FXII (84) which
facilitates plasminogen activation (85). Platelet-derive polyP could
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therefore have differential roles in thrombus resolution and cellular
proteolytic process depending on the surrounding environment.

During vascular insult, many of the innate cell immune
responses require interaction with the endothelium. Endothelial
cells are the main source of circulating tPA, and secretion
occurs via both constitutive and regulated mechanisms (86). Both
plasminogen and tPA can bind to endothelial cells and therefore
have the potential to generate plasmin (87). Endothelial cells also
secrete uPA which bind to the cell surface uPAR (88). Additionally,
endothelial cells produce the fibrinolytic inhibitors PAI-1 (89, 90),
PAI-2 (91), and TAFI (92) which are upregulated in response to
inflammatory cytokines.

Interaction of innate immune cells within the thrombus
environment could influence resolution and stability. In
pulmonary thrombi, rolling neutrophils rip membrane fragments
from PS-exposing platelets facilitating formation of neutrophil
macroaggregates (93). It is interesting to speculate that this
could act to deliver platelet-derived fibrinolytic proteins
within these aggregates and may facilitate platelet-neutrophil
fibrinolytic crosstalk.

The role of the fibrinolytic system in
immunomodulation

Fibrinolytic proteins have a multitude of roles outside of
their primary function of fibrin degradation including regulating
the immune response. PAI-1 is an acute phase protein that is
upregulated in response to injury, infection and inflammation (90,
94, 95) (Figure 1). Upregulation of PAI-1 is considered to be
a protective mechanism important for early immune responses
against bacterial pathogens, including Haemophilus influenzae (96),
Pseudomonas aeruginosa (97). PAI-1 promotes bacterial clearance
and limits inflammation (96). Downregulation of PAI-1 by
Streptococcus pneumoniae pneumolysin is associated with increased
mortality which can be reversed by administering recombinant
PAI-1, protecting against alveolar haemorrhage (98).

Plasminogen activator inhibitor-1 facilitates neutrophil
migration and its inhibition or deletion reduces influx at the site
of injury in response to Pseudomonas aeruginosa, Escherichia coli,
and Klebsiella pneumoniae infections (97, 99, 100). PAI-1 regulates
IFN- γ in response to LPS and Staphylococcal enterotoxin B (101)
in a mechanism independent of the plasminogen activators. PAI-1
may also have a protective role in viral infections, due to inhibition
of proteases required for glycoprotein cleavage, therefore limiting
viral replication (102).

TAFIa modulates inflammation by removal of C-terminal
arginine or lysine residues from C3a, C5a, bradykinin osteopontin
and chenerin (103–105) (Figure 1). Cleavage of C5a by TAFI is
protective in inflammatory models of LPS induced acute lung
injury (106), bronchial asthma (107), and rheumatoid arthritis
(108). The development of post-traumatic sepsis is associated
with a reduction in TAFI and increased C5a (109). Additionally,
TAFI-deficient mice display enhanced neutrophil recruitment and
tumor necrosis factor-α (TNF-α) and IL-6 levels in the peritoneum
after Escherichia coli induced abdominal sepsis (110). This was
independent of its antifibrinolytic function (110). In contrast to
this, in Pseudomonas aeruginosa-induced sepsis, TAFI inhibition

potentiates the effects of the antibiotic, ceftazidime and reduces
organ dysfunction (111).

Plasmin(ogen) has multifaceted roles in the regulation of
proinflammatory processes [reviewed in (20)]. Plasminogen is
required for efficient recruitment of monocytes and lymphocytes
in response to inflammation (112) and promotes macrophage
phagocytosis and migration (113, 114) (Figure 1). Deficiency of
plasminogen alters the expression of phagocytic genes (113). Whilst
the fibrinolytic activity of plasmin is required for macrophage
migration in experimental peritonitis (114). Interestingly,
the absence of fibrinogen or the integrin αMβ2 reverses the
requirement for plasminogen suggesting fibrinolytic activity is
required to remove the physical restraint of macrophages by
fibrin(ogen) (114). Plg-RKT, is upregulated during differentiation
of monocytes to macrophages (35) and drives polarization to an
M2-like macrophage phenotype (115). Additionally, dendritic cell
phagocytosis is enhanced by plasmin which maintains these cells
in an immature phenotype an reduces migration to the lymph
nodes (116).

Plasminogen activators modulate the innate immune response,
in mechanisms both dependent and independent of their
fibrinolytic action. In a Escherichia coli-induced sepsis model, tPA
deficiency caused increased bacterial loads, reduced neutrophil
migration and was associated with increased mortality by a
plasmin-independent mechanism (117) (Figure 1). Consistent with
this, enzymatically inactive tPA blocks LPS induced increase in
proinflammatory cytokines such as TNF-α, and IL-6 via low density
lipoprotein receptor-related protein-1 (LRP1) and N-methyl-
D-aspartic acid receptor (NMDA-R) (118, 119). However, in
an ischemia/reperfusion model, tPA-mediated plasmin activity
was required for neutrophil transmigration and disruption
of endothelial junctions which allows further recruitment of
neutrophils (120). Plasmin does not directly activate neutrophils
and recruitment of these cells requires mast cell activation and
leukotriene generation (120). Whilst in a stroke model, tPA-
mediated plasmin generation decreased lymphocyte and monocyte
counts, elevated IL-10 and TNF-α and altered splenic dendritic cell
proportions (121).

Urokinase enhances monocyte differentiation into
macrophages (122) and promotes neutrophil activation and
migration (123). The uPA receptor, uPAR facilitates neutrophil
migration in response to LPS-induced peritonitis, but this was not
observed with Escherichia coli or in a polymicrobial sepsis model
suggesting a compensatory mechanism may occur (124, 125).
The function of uPAR on neutrophil migration is independent of
its role in plasminogen activation and requires toll-like receptor
signaling (125). Deficiency of uPAR promotes proinflammatory
cytokines and macrophage polarization towards M1 phenotype
and reduced phagocytosis in an experimental colitis model (126).

The varying roles of the fibrinolytic system in
immunomodulation highlights the complex interactions which
must be carefully balanced so as not exacerbate the inflammatory
response and promote a prothrombotic environment.

Dysregulation of fibrinolysis

Fibrinogen is an acute phase protein that dramatically
increases during infection due to enhanced hepatic synthesis (127).
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Fibrin films form on the outside of blood clots which limit
bacterial infiltration (128). However, aberrant fibrin accumulation
contributes to development of a prothrombotic environment.
During acute bacterial or viral infections, thrombotic complications
can arise including deep vein thrombosis (DVT) and pulmonary
embolisms (PE) (129, 130), acute myocardial infarction (AMI)
(131, 132) and strokes (132). Thrombotic events occurring after
infections affect various organ systems including respiratory,
urinary and oral (133). The risk of thrombosis is higher in
the first weeks succeeding infection and falls gradually after
the initial infection (129). Consistent with a prothrombotic
response to infection, seasonal variability in occurrence of
AMI has been observed (134). The underlying mechanisms
of the prothrombotic state are not fully understood. However,
derailment of the fibrinolytic system is often a contributing
factor to this.

Sepsis, a life-threatening response to infection, leads to tissue
and organ damage and has a mortality rate of approximately
30%, although this is higher with older age or pre-existing
conditions (135). As a result of the inflammatory state
development of disseminated intravascular coagulation (DIC)
can occur. This causes systemic dysregulation of coagulation
and fibrinolysis resulting in depletion of coagulation factors and
platelets and hemorrhaging. Platelet count is associated with
severity, being significantly reduced with development of septic
shock (136).

Plasmin(ogen) has a protective role in sepsis and levels are
reduced with disease severity (137). However, a hypofibrinolytic
state predominates in sepsis, largely due to elevated levels of
PAI-1. Indeed, PAI-1 is a potential biomarker of disease severity
and predictor of mortality (138). Initially, increased tPA and
plasmin generation may predominate peaking at 2 h at which
point TNF-α induces a steep increase in PAI-1 (139). Patients
with the PAI-1 polymorphism 4G/5G, which is associated with
elevated PAI-1 levels, are at increased risk of mortality from sepsis
(140, 141). NETs may contribute to the elevated PAI-1 in sepsis
as PAI-1 is downregulated in petidylarginine deiminase-4 (PAD-
4) deficient mice which are unable to form NETs (142). NETs
further contribute to a hypofibrinolytic state in sepsis due to the
presence of cell-free DNA, an effect that can be overcome by
DNase (143).

Hypofibrinolysis in sepsis may be further precipitated by
other antifibrinolytic proteins. PAI-2 is not normally detected in
healthy neutrophils but in patients with sepsis significant levels
are present (144). Activation of TAFI could also be a contributing
factor to the development of sepsis DIC (145). Interestingly, the
TAFI Thr325 Ile/Ile single nucleotide polymorphism, which
has increased antifibrinolytic potential, is associated with
increased risk of contracting meningococcal disease and risk
of mortality (146).

Acute respiratory distress syndrome (ARDS) is a
hyperinflammatory condition that occurs in response to infection
characterized by heightened alveolar-capillary permeability leading
to extrusion of plasma proteins and inflammatory cytokines. This
results in enhanced leukocytes and platelets recruitment to the
lung microvasculature (147–149). Respiratory dysfunction and
right heart failure develops, confounded by fibrin deposits which
are observed in the air spaces and lung parenchyma due to the

procoagulant environment along with hyaline-membranes and
fibrosis (150–153).

Fibrin persistence is exacerbated by the inflammatory
environment which promotes an imbalance in the fibrinolytic
factors. Of note, PAI-1 synthesis is upregulated by several
proinflammatory cytokines. Elevated levels of PAI-1 are observed
with respiratory infections including influenza (154), severe
acute respiratory syndrome coronavirus (SARS-CoV) (155) and
SARS-CoV2 which downregulates fibrinolytic activity (156).
Elevated PAI-1 is associated with worsening disease severity after
SARS-CoV2 infection (156, 157). IL-6 induces an upregulation in
PAI-1 gene expression and plasma levels of both PAI-1 and tPA
(158–160). In endothelial cells, trans-signaling by IL-6 causes a
circular amplification of IL-6 as well as IL-8, MCP-1 and PAI-1
synthesis (161). Additionally, endothelial cells release PAI-1 in
response to the acute phase reactant, C-reactive protein (CRP)
(150, 162, 163). Levels of uPA antigen are unaffected in ARDs
but the heightened levels of PAI-1 cause a downregulation in
fibrinolytic activity in the bronchoalveolar space (150).

Therapeutic potential of targeting
the fibrinolytic pathway

The appropriation of fibrinolytic system by pathogens to evade
the host immune response and the varied function of fibrinolytic
proteins in immunomodulation makes them potential therapeutic
targets. Plasmin(ogen) binding and subsequent proteolytic
activity are inhibited by lysine analogues. Lysine analogues
therefore have potential in modulating the proinflammatory
and immunosuppressive properties of plasmin. One such lysine
analogue, epsilon aminocaproic acid (εACA), has been shown
to reduce experimental Group B streptococcus meningitis and
neonatal mortality rates (164). Whilst tranexamic acid (TXA),
has shown promise at reducing rates of post-surgical infection
(165). Furthermore, plasmin inhibition by aprotinin, εACA or
TXA reduces neutrophil recruitment and may have potential to
ischemia-reperfusion reduced injury (166).

On the other hand, when aberrant fibrin(ogen) develops
during infection, promoting fibrinolysis is desirable. The use of
recombinant tPA as an adjuvant therapy in a small retrospective
study of infective endocarditis facilitated clearance of fibrin rich
vegetations that encase the bacteria (167). In trauma or sepsis
induced ARDS, uPA and streptokinase, were beneficial producing a
significant improvement in PaO2 (168, 169). Coronavirus disease-
19 (COVID-19) is caused by infection with severe acute respiratory
SARS-CoV2. Severely ill patients with COVID-19 are prone to
thrombosis and can develop ARDS, sepsis and multiorgan failure.
Thrombolytic therapy has therefore garnered interest for treatment
in severely ill COVID patients (170, 171). Initial studies indicate
that tPA improves PaO2/FiO2 ratio, however, larger studies are
required to establish treatment regimens and the safety profile
(172, 173). Targeting the inflammatory response also has potential
to correct fibrinolytic dysregulation. Indeed, blocking IL-6 with
Tocilizumab decreases PAI-1 levels and this was found to be
beneficial in SARS-CoV2 infection and is a recommended therapy
in ICU patients (161, 174).
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Summary

The fibrinolytic and innate immune systems work in concert to
protect from infection and inflammation and to regulate thrombus
resolution. Derailment of one system therefore influences the
other. Invading pathogens take advantage of plasminogen and its
activators to evade protective immune responses. Whilst immune
cells are a source of fibrinolytic proteins and act as a surface
for their assembly and function in thrombus resolution. The
fibrinolytic system participates in host immune responses, however,
dysregulation can precipitate in aberrant fibrin distribution or
impede immune cell function. There is much still to learn
on the interplay between the fibrinolytic and innate immune
systems. Improved understanding of these intricacies could
lead to development of more targeted immunothrombolytic or
immunomodulating therapies.
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