
Early Cretaceous trachytes and
basement rocks from
northeastern Mongolia: a
Sr-Nd-Pb isotope study

Maksim V. Kuznetsov1*, Valery M. Savatenkov1,2,
Thomas C. Sheldrick3 and Lidiya V. Shpakovich1

1Laboratory of Geochronology and Geochemistry of Isotopes, Institute of Precambrian Geology and
Geochronology (Russian Academy of Sciences), St. Petersburg, Russia, 2Department of Geochemistry,
Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, Russia, 3School of Geography,
Geology and the Environment, University of Leicester, Leicester, United Kingdom

KEYWORDS

Early Cretaceous, Sr-Nd-Pb isotopes, northeastern Mongolia, trachytes, intraplate, cover
volcanic complex

1 Introduction

The territory of northeastern Mongolia (Figure 1) forms part of the Central Asian
intraplate volcanic province, which formed in the Late Mesozoic—Cenozoic between the
Siberian and North China platforms (Yarmolyuk et al., 1995). Within northeastern
Mongolia, volcanism was most active in the first half of the Early Cretaceous (~120 Ma),
when a thick lava cover known as the Cover Volcanic Complex (CVC) occurred (Yarmolyuk
et al., 2020; Kuznetsov et al., 2022). The complex consists mostly of trachybasalts, basaltic
trachyandesites, trachyandesites, and trachytes (Yarmolyuk et al., 2020; Kuznetsov et al.,
2022). Geochemical and isotope (Sr, Nd, Pb) data from the CVC basalts indicates that the
magmatism had a lithospheric mantle source, which possibly consisted of peridotite, eclogite,
and pyroxenite lithologies (Dash et al., 2015; Bars et al., 2018; Sheldrick et al., 2020;
Yarmolyuk et al., 2020; Kuznetsov et al., 2022). According to Kuznetsov et al. (2022) and Bars
et al. (2018), the trachyandesites formed from a basaltic melt which underwent fractional
crystallization processes. However, to date, the origin of the most felsic volcanism remains
unclear. For example, do the CVC trachytes reflect fractional crystallization processes with,
or without, mixing of mantle- and crust-derived melts? Thus, the felsic magmatism provides
the opportunity to understand mantle–crust interaction processes in Mongolia during the
Early Cretaceous volcanic activation period. This study aims to evaluate the significance and
extent of any continental crust input via a Sr-Nd-Pb isotope study of Early Cretaceous CVC
trachytes and basement rocks.

2 Geological background

The formation of the CVC in northeastern Mongolia occurred in a post-collisional
environment, in the Early Cretaceous, after the eruption of shoshonitic rocks (Sheldrick
et al., 2020; Stupak et al., 2020; Yarmolyuk et al., 2020).

The formation of the CVC coincided with the formation of linear graben structures and
horst systems with a northeastern strike (Kovalenko, 2010; Yarmolyuk et al., 2020). By
~120 Ma, basaltic lava eruptions formed a cover of great thickness (>1,000 m) (Kovalenko,
2010; Yarmolyuk et al., 2020). This complex contains highly porous and massive glassy
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basalts which alternate along sections. Globular lavas and
hyaloclastites are also common among the basalts, likely a
consequence of eruptions occurring under lakes.

The basaltic volcanism phase ended during the Early Cretaceous
(125—120 Ma) with trachytic volcanism in the form of short lava
flows, large extrusions, small central volcanoes, and lava domes
(Yarmolyuk et al., 2020). The trachytes predominantly occur
alongside basaltic bedding, although elements of unconformable
overlapping are observed occasionally. Dark gray vitrophyre
horizons can be traced at the base of the felsic rocks, and
agglomerate varieties predominate in their upper parts.

The volcanic rocks of northeastern Mongolia lie on a
peneplainized basement composed of different-age pre-Late
Mesozoic complexes. The rocks of the Ereendavaa terrane mainly
form the basement of the CVC rocks. The Ereendavaa terrane is a
microcontinent composed of Paleoproterozoic granite gneisses,
amphibolites, schists, and marbles (Bardach et al., 2002).
According to Miao et al. (2017) and Miao et al. (2020), the
Precambrian rocks of Ereendavaa could have been significantly
reworked by Paleozoic and Mesozoic granitic magmatism.

3 Methods

3.1 Sampling

Trachytes (5 samples) and basement rocks of the Ereendavaa
microcontinent (2 samples) were sampled during a Russian-
Mongolian expedition in July—August 2017. The rock sampling
sites are shown in Figure 1. A list of samples with coordinates is
presented in Supplementary Table S2.

The first sample of basement rock is an amphibole gneiss (AG).
The sample’s chemical composition (Supplementary Table S1) is
close to the average composition of lower crustal granulite xenoliths

found in Mongolia’s Mesozoic—Cenozoic lava fields (Stosch et al.,
1997; Barry et al., 2003; Ancuta, 2017). Sample AG has a
Mesoproterozoic (~1.6 Ga) Sm-Nd model age utilizing a depleted
mantle model composition (Dickin, 2014). Thus, sample AG is likely
a good compositional proxy for the continental crust of the ancient
Ereendavaa microcontinent, within which the Early Cretaceous
volcanic fields are located. The second sample of basement rock
is a porphyritic granitic gneiss (GG), similar in composition to
S-type granites (Supplementary Table S1). The formation of these
granitic gneisses was associated with the accretionary stage of the
Mongol-Okhotsk belt (Yarmolyuk et al., 2019). The Sm-Nd model
age of this sample (~1.3 Ga) indicates that this granite was a partial
melting product of the Ereendavaa ancient crust.

3.2 Isotope analyses

Isotopic compositions (Sr, Nd, and Pb) were determined on a
Triton TI (Thermo Finnigan, Germany) multicollector solid-phase
mass spectrometer at the Institute of Precambrian Geology and
Geochronology (Russian Academy of Sciences, St. Petersburg).

Rb, Sr, Sm, and Nd concentrations and ratios (87Rb/86Sr and
147Sm/144Nd) were determined by isotopic dilution. Chemical
extraction of Rb, Sr, Sm, and Nd was performed using methods
described by Savatenkov et al. (2020). Analytical errors for Rb, Sr,
Sm, and Nd concentrations were calculated based on multiple
analyzes of standard BCR-1 and are ±0.5%. The total laboratory
blank was 0.05 ng for Rb, 0.2 ng for Sr, 0.3 ng for Sm, and 0.5 ng for
Nd. Averaged results for BCR-1 standard (50 measurements) was:
[Sr] = 336.7 ppm, [Rb] = 47.46 ppm, [Sm] = 6.47 ppm, [Nd] =
28.13 ppm, 87Rb/86Sr = 0.4062, 87Sr/86Sr = 0.705035 ± 5, 147Sm/
144Nd = 0.1380, and 143Nd/144Nd = 0.512643 ± 3. Isotopic analysis
repeatability was controlled by determining the composition of
certified standards JNdi-1 (143Nd/144Nd = 0.512117) (Tanaka

FIGURE 1
Schematic geological map of northeastern Mongolia with sampling sites. Abbreviations: AG, amphibole gneiss; GG, granitic gneiss.
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et al., 2000) and SRM-987 (87Sr/86Sr = 0.710240). Over the period of
measurements, the resulting 87Sr/86Sr value for SRM-987 was
0.710245 ± 5 (2σ, 50 measurements), and the 143Nd/144Nd value
for JNdi-1 was 0.512105 ± 3 (2σ, 50 measurements). The Sr isotopic
composition was normalized to 88Sr/86Sr = 8.37521, and the Nd
composition was normalized to 146Nd/144Nd = 0.7219.

Since U loss likely occurred in the Late Mesozoic rocks due to
post-magmatic alteration, age corrected Pb isotope estimates
might not reflect initial compositions. To minimize this risk,
fresh rocks with minimal secondary alteration were selected
based on petrographic observations. Loss-on-ignition values
for these samples did not exceed 1.71 wt%. Next, the rock
fraction of 0.25—0.5 mm was treated in 2.2 N HCl on a hot
plate (60 °C) for 1 h before the decomposition stage. Mineral
decomposition and extraction of U and Pb were performed
utilizing the method described by Manhes et al. (1984). The
total laboratory blank for Pb and U did not exceed 0.1 and
0.01 ng, respectively. Correction for fractionation for the Pb
isotopic ratios was performed using a double isotope dilution
technique with a235U–204Pb–207Pb tracer (Melnikov, 2005). The
inaccuracies (2σ) of the 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb
isotope ratios were determined from a series of parallel analyzes
of rock standard BCR-1 (206Pb/204Pb = 18.820 ± 0.005, 207Pb/
204Pb = 15.6406 ± 0.0017, 208Pb/204Pb = 38.737 ± 0.010, n = 10)
and did not exceed 0.03%, 0.03%, and 0.05%, respectively.

4 Data description

4.1 Sr and Nd isotopic compositions

The results of the Rb-Sr and Sm-Nd isotope study are presented
in Figure 2A, Supplementary Table S2, and Supplementary Table S3,
respectively.

Isotopic characteristics for the trachytes, for Sr and Nd, show
minor variations. The range of values for 87Sr/86Sr is
0.707545—0.709554, and for 143Nd/144Nd is 0.512517—0.512559.
Before plotting, the isotope ratios were age corrected to 120.7 Ma.
This was based on an 40Ar–39Ar age obtained from the CVC
trachybasalts which are associated with the trachytes (Sheldrick
et al., 2020). On the diagram εNd(t)—87Sr/86Sr(t), trachytes are slightly
shifted to the EM-II source composition area relative to the other
rocks of the CVC (Figure 2A). The Nd isotopic composition of the
trachytes does not differ from that of the basic and intermediate
rocks of the CVC. The trachytes have a more radiogenic
composition for Sr, though. This may indicate that assimilation
processes, together with fractional crystallization, played a role in
forming the trachytic melts. Nevertheless, the highly radiogenic
composition of the Ereendavaa basement rocks indicates that the
trachytes could not have formed only by melting of continental
crust, as proposed by Yarmolyuk et al. (2020).

4.2 Pb isotopic compositions

Like the Sr isotopic compositions, the trachyte Pb isotopic
characteristics show clear differences when compared to other
CVC rocks. The range of values for 206Pb/204Pb is 18.603—18.653,
and for 207Pb/204Pb is 15.593—15.600 (Supplementary Table S4).
Utilizing a207Pb/204Pb(t)—

206Pb/204Pb(t) diagram (Figure 2B), the
trachytes plot closer to the EM-II source area and are shifted to
the right, relative to the CVC basaltic rocks. It is also worth noting
that the trachytes form a slight trend, which begins near the basaltic
rocks andmoves towards the composition of the granite gneiss of the
Ereendavaa microcontinent. This may indicate that the trachytic
melts were formed from basaltic melts, but then underwent late-
stage fractional crystallization and assimilation. There may have
even been some mixing between a basaltic melt with a melt derived
from the ancient continental crust.

5 Conclusion

A combination of new Nd, Sr, and Pb isotope results from
trachytes and basement rocks from the Ereendavaa microcontinent
indicate that:

(1) The trachytes of the CVC formed from fractional crystallization
and differentiation of more primitive basaltic
trachyandesite—trachyandesite melts.

(2) The trachytic magma may have been contaminated by granitic
crustal material. However, a further study utilizing detailed
numerical modeling of assimilation processes, combined with
thermodynamic modeling, is warranted to test crustal
contamination processes.

FIGURE 2
Sr, Nd (A), and Pb (B) isotope composition of the CVC rocks and
basement rocks (northeastern Mongolia). The basaltic rocks and
trachyandesites are from Bars et al. (2018); Kuznetsov et al. (2022);
Sheldrick et al. (2020); Yarmolyuk et al. (2020). The trachytes and
basement rocks of the Ereendavaa microcontinent are original data.
All rocks are age corrected to 120.7 Ma (Sheldrick et al., 2020). The
compositions for EM-1 and EM-2 are from Hofmann (2014).
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