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WFS1 spectrum disorder (WFS1-SD) is a rare monogenic neurodegenerative

disorder whose cardinal symptoms are childhood-onset diabetes mellitus,

optic atrophy, deafness, diabetes insipidus, and neurological signs ranging

from mild to severe. The prognosis is poor as most patients die prematurely

with severe neurological disabilities such as bulbar dysfunction and organic brain

syndrome. Mutation of the WFS1 gene is recognized as the prime mover of the

disease and responsible for a dysregulated ER stress signaling, which leads to

neuron and pancreatic b-cell death. There is no currently cure and no treatment

that definitively arrests the progression of the disease. GLP-1 receptor agonists

appear to be an efficient way to reduce elevated ER stress in vitro and in vivo, and

increasing findings suggest they could be effective in delaying the progression of

WFS1-SD. Here, we summarize the characteristics of GLP-1 receptor agonists

and preclinical and clinical data obtained by testing them in WFS1-SD as a

feasible strategy for managing this disease.
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Introduction

Wolfram syndrome type 1 spectrum disorder (WFS1-SD, OMIM: 222300, 614296) is a

rare multi-systemic monogenic disease that comprises classic WFS1 spectrum disorder and

nonclassic WFS1 spectrum disorder. Classic WFS1-SD is an autosomal recessive

progressive neurodegenerative disorder characterized by the onset of diabetes mellitus

and optic atrophy before the age of 16 years. Additional manifestations may include

variable hearing impairment/deafness, diabetes insipidus, neurologic abnormalities,

neurogenic bladder, and psychiatric abnormalities. Nonclassic WFS1-SD is less common

than classic WFS1-SD and is autosomal dominant. Phenotypes that appear to be milder

than classic WFS1-SD include optic atrophy and hearing impairment; neonatal diabetes,

profound congenital deafness, and cataracts; isolated diabetes mellitus; isolated congenital

cataracts; and isolated congenital, slowly progressive, and low-frequency (<2000 Hz)
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sensorineural hearing loss (1). In both forms, the prognosis is poor

with a median survival between 30 and 40 years. Death occurs

usually as a consequence of severe neurological disabilities, mainly

from respiratory failure caused by brain stem atrophy (2).

The causative gene of WFS1-SD is WFS1, contrarily from the

less common Wolfram syndrome type 2 (WS2) which is caused by

autosomal recessive mutations of the CISD2 (CDGSH iron-sulfur

domain-containing protein 2) gene. The two diseases also differ in

symptoms, being WS2 characterized by bleeding, upper intestinal

ulcer, defective platelet aggregation, and absence of diabetes

insipidus and psychiatric disorders (3, 4).

WFS1 codes for wolframin (WFS1), a transmembrane protein

highly expressed in brain tissue, pancreatic b-cells, heart, lung, and
placenta (5), and localized in the membrane of the endoplasmic

reticulum (ER), where it plays a crucial role in maintaining ER

homeostasis (4, 6, 7). ER is a cellular organelle responsible for the

storage of Ca2+ ions, and for the correct folding and post-

translational modification of several proteins (secretory proteins,

ce l l sur face receptors , in tegra l membrane prote ins ,

neurotransmitters, and hormones) (8). WFS1 loss of function

causes an increase in the cytosolic concentration of Ca2+ ions,

resulting in the establishment of chronic ER stress and the

inappropriate activation of the unfolded protein response (UPR)

signaling pathway (9). These events drive the cell to irreversible

damage, which leads to apoptosis mainly in neuronal and

pancreatic b-cells, where WFS1 expression is higher (7).

Furthermore, it has been shown that WFS1 has a role in the

transport of Ca2+ from the ER to the mitochondria and can

therefore affect mitochondrial function (10).

Over 200 distinct mutations have been identified so far in

WFS1-SD patients and new variants continue to be reported over

time (11–13). Several attempts have been made to identify a

genotype-phenotype correlation. However, the main difficulty in

this regard relies on the existence of such a large number of variants

of the WFS1 gene and the small size of patient cohorts because of

the rarity of the disease (14–17).

Presently, no cure is available and until now patients with

WFS1-SD have only profited from substitutive therapies for

diabetes mellitus or diabetes insipidus (18). However, the

identification of pathological molecular mechanisms has inspired

new approaches, which mainly aim to restore Ca2+ homeostasis and

contain ER stress to slow down the progression of the disease (4).

Among the drugs tested in vitro and preclinical models, Valproate

(NCT03717909) and Dantrolene (NCT02829268) were selected to

undergo clinical trial investigation as possible therapeutic options

for WFS1-SD (18). Increasing evidence from preclinical tests and

off-label use suggests Glucagon-like peptide 1 receptor agonists

(GLP-1RAs) as another possible therapeutic option.
Glucagon-like peptide 1 and GLP-1
receptor agonists

Glucagon-like peptide 1 (GLP-1) is a hormone produced from

L-cells of the small intestine by alternative processing of the

proglucagon in response to nutrient ingestion (19, 20).
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GLP-1 exerts its action through the GLP-1 receptor (GLP-1R), a

member of G protein-coupled receptors (GPCRs). In particular,

GLP-1 binds and activates a class B GPCRs coupled to Gs protein,

leading to the activation of the enzyme adenyl cyclase and the

consequent production of cyclic adenosine monophosphate

(cAMP). Subsequently, several signal transduction pathways are

initiated, generally involving protein kinase A (PKA) and exchange

protein directly activated by cAMP (EPAC). Noteworthy, among

the GLP-1 receptor-mediated signaling events, there is an increase

in intracellular Ca2+ levels (19, 21).

GLP-1 is an incretin hormone and its main action is to improve

glycemic control by stimulating glucose-dependent insulin

secretion and promoting insulin synthesis (19, 20, 22).

Furthermore, it inhibits glucagon release from a-cells (23) and

preserves b-cell mass through the stimulation of their proliferation

and inhibition of apoptosis (24–27). Moreover, GLP-1 has

additional metabolic effects, namely delaying gastric emptying

thereby inducing satiety, inducing central appetite suppression,

and increasing natriuresis and diuresis (28–30). GLP-1 signaling

in the brain transmits metabolic information to the neurons

responsible for feeding behavior (31) but is also implicated in

cognitive functions, such as learning and memory (32). It was

likewise described a cardioprotective role for GLP-1, being capable

to decrease blood pressure, improving microvascular function, and

reducing inflammation (33). Notably, GLP-1 has a well-established

central role since GLP-1Rs are expressed in the postrema area,

hippocampus, accumbent nucleus, solitary tract nucleus, thalamus,

afferent vagal system, and some other regions of the brain (34).

GLP‐1 can be released from the intestine and pass through blood–

brain barrier and affect the brain, but also GLP-1-producing

neurons are present in several areas of the brain stem and

hypothalamus (35). It is currently of great interest that GLP-1 has

neuroprotective effects and can decrease inflammation and

apoptosis (36–39). Several in vivo and in vitro studies using

preclinical models of neurodegenerative diseases show that GLP-

1R activation reduces the production of pro-inflammatory

cytokines and immune cell infiltration in tissues (38, 40–42).

Furthermore , i t was determined that to induce the

neuroprotective effects, the GLP-1R must be activated in the brain

(38). Considering the numerous beneficial effects of GLP-1, this

pleiotropic hormone is an attractive candidate for the treatment of

obesity, diabetes, and neurodegenerative disorders. However, GLP-

1 cannot be used in its native form because it has a very short half-

life (1-2 min), being rapidly degraded by the enzyme dipeptidyl-

peptidase-4 (DPP-4) and undergoing renal elimination (19).

Therefore, biochemically modified forms of GLP-1, namely GLP-

1 receptor agonists (GLP-1RAs), were developed, capable to activate

the GLP-1R but having improved bioavailability and extended half-

life compared to the native hormone (43). GLP-1RAs were first

developed for treating type 2 diabetes and obesity and are now

considered an established class of hypoglycemic agents with a very

low risk of hypoglycemia (44). Nevertheless, consistent evidence

from in vitro studies and preclinical models suggests that GLP-

1RAs may have broader pharmacological potential. By activating

GLP-1R, they lead to cAMP production and consequently to an

increased expression and/or activity of receptor tyrosine kinases
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PI3K/AKT, epidermal growth factor receptor (EGFR), and hypoxia-

inducible factor 1-alpha (HIF-1a) (45). Thanks to these

mechanisms, GLP-1RAs promote pancreatic b-cell neogenesis,

stimulate cell growth and increase insulin synthesis in the b-cells.
It was demonstrated that GLP-1RAs reduce ER stress with different

mechanisms. In a mouse model with an excess of ER stress in

pancreatic b-cells, the mice treatment with the GLP1-RA exendin-4

reduced the expression levels of the ER stress- related molecules

immunoglobulin-binding protein (Bip) and C/EBP-homologous

protein (CHOP) (46). Similarly, other authors showed that

exendin-4 protects b-cells against ER stress by inducing the anti-

apoptotic protein JunB and also Bip (47). In addition, they

demonstrated that the GLP1-RA inactivated caspase 12 and

upregulated Bcl-2 and X-chromosome–linked inhibitor of

apoptosis protein, leading to the inhibition of mitochondrial

apoptosis. In addition, GLP-1RAs reduce ER stress (46, 47) and

lead to favorable metabolic reprogramming and redox homeostasis

(19, 48). Several data in the literature demonstrate that GLP-1R

activation can also positively affect autophagy (49–53), whose

defects have been shown to play a pathogenic role in both type 1

and type 2 diabetes, and in neurodegenerative diseases (54–57). In

addition, consistent evidence from in vitro studies and preclinical

models indicates that GLP-1RAs exert anti-inflammatory effects by

modulating the immune system (39). Bendotti et al. reported in

detail that GLP-1RAs can modulate the immune system both in

mice and humans, independently of the weight loss or glycemic

state of the subject. In particular, GLP-1RAs modify the

macrophage phenotype toward an anti-inflammatory phenotype

and therefore suppress the macrophage secretion of different

inflammatory cytokines. Moreover, as a consequence of GLP-

1RAs treatment, the inhibition of migration of CD4+

lymphocytes, the decrease in immune cell recruitment, the

reduction of monocytes migration and infiltration, and the

decrease in the expression of several pro-inflammatory cytokines

were determined (39). Hence, thanks to their pleiotropic properties,

GLP-1RAs are emerging as suitable for the treatment of diseases

associated with chronic inflammation, including type 1 and 2

diabetes, neurodegenerative diseases, atherosclerosis, diabetic

nephropathy, asthma, psoriasis, nonalcoholic steatohepatitis

(58, 59).
Uses and potential uses of GLP-1RAs in
human diseases

Diabetes
GLP-1RAs are recognized as a novel class of anti-diabetic drugs

for the treatment of type 2 diabetes and have been suggested as an

adjuvant treatment in type 1 diabetes as well (44, 60, 61). In

particular, among the GLP-1 RAs, exenatide and liraglutide have

been studied in patients with type 1 diabetes (61). GLP-1RAs induce

glucose-dependent insulin secretion from pancreatic b-cells,
enhance their growth and proliferation, increase their number,

inhibit apoptosis, and induce insulin synthesis (62). Another

focus of current studies is how non-insulin glucose-lowering

medications affect weight loss. Among several anti-diabetic
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medications, a systemic analysis reveals that GLP1-RAs and dual

GLP-1/Gastric inhibitory polypeptide (GIP) agonists such as

tirzepatide are most effective at causing weight loss in patients

with type 2 diabetes (63).

Cardiovascular
GLP-1R are abundantly expressed in the cardiovascular system

and by binding them GLP-1RAs may have direct or indirect

protective effects by improving cardiac function, increasing the

cardiomyocytes activity, decreasing intravascular oxidative stress,

inhibiting hepatocyte gluconeogenesis and oxidative stress, and

promoting vasodilation (64, 65). Several extensive clinical studies

have shown that GLP-1RAs may lower the incidence of

cardiovascular events. These studies have been carefully reviewed

elsewhere (83, 84), so we won’t go into greater detail about

them here.
Central nervous system
Recent research has focused on the GLP-1/GLP-1R axis’

protective role against ischemic brain injury. By improving cell

survival signaling pathways, lowering ischemia-reperfusion injury,

encouraging brain healing, and regulating inflammatory response

and oxidative stress, the activation of GLP-1R can decrease the

extent of cerebral infarction (66–68). By activating neuronal

receptors (69), GLP-1RAs exert beneficial effects on memory

function, motor activity, synapse morphology and synaptic

function, neurogenesis, apoptosis prevention, and minimizing the

chronic inflammation in the brains of various animal models, such

as Alzheimer’s Disease, Parkinson’s Disease, amyotrophic lateral

sclerosis, multiple sclerosis, or other neurodegenerative diseases (70,

71). However, GLP-1RAs are only studied and not yet used in

therapy for neurodegenerative diseases.
Asthma
Especially in its advanced phases, asthma is a relatively

prevalent chronic lung illness characterized by chronic persistent

airway inflammation and airway remodeling that cause

incompletely reversible airway blockage. Numerous studies have

demonstrated that GLP-1RAs reduce eosinophil production of IL-4,

IL-8, and IL-13 and inhibit the PKA/NF-B signaling pathway in

animal models of asthma (72). Therefore, for obese patients with

asthma, GLP-1RAs therapy may represent a novel add-on

therapy (73).
Preclinical and clinical use of GLP-1RAs
in WFS1-SD

The first use of a GLP-1RA in a mouse model of WFS1-SD was

reported in 2016 by Sedman et al. (74). In this study, the authors

showed that exenatide was capable to lower the blood glucose level

and to increase the insulin-to-glucose ratio during the glucose

tolerance test, demonstrating the ability of this GLP-1RA to

correct the impaired insulin secretion caused by wolframin

deficiency. Similar results were obtained by Kondo et al. in 2018,
frontiersin.org

https://doi.org/10.3389/fcdhc.2023.1171091
https://www.frontiersin.org/journals/clinical-diabetes-and-healthcare
https://www.frontiersin.org


Panfili et al. 10.3389/fcdhc.2023.1171091
which showed that exenatide could alleviate ER stress by increasing

and partially restoring the amount of phosphorylated AMP-

activated kinase (p-AMPK), and reducing thioredoxin interacting

protein (TXNIP) production in the b-cells of theWfs1−/− mice (75).

Furthermore, for the first time, these authors described the effect of

24 weeks of treatment with liraglutide in a woman with WFS1-SD,

reporting the ability of this GLP-1RA to modulate the b-cell
function and to improve glycaemic control in this rare disease. A

similar effect was obtained after the administration of the GLP-1RA

dulaglutide in a case report of a WFS1-SD patient (76).

In the meanwhile, a research group at the University of Tartu

constructed and validated a Wfs1-deficient rat. This model of

WFS1-SD was described to develop a prominent diabetic

phenotype and neurodegeneration of the brainstem and optic

nerve very similarly to human patients (77). By using it, it was

substantiated that the GLP-1RA liraglutide was effective in

preventing the development of glucose intolerance, improving

insulin and glucagon secretion control, and reducing ER stress in

Langerhans islets in Wfs1−/− rats (78). Moreover, the treatment

resulted capable to delay the onset of diabetes and protecting

against the development of optic nerve atrophy and vision loss,

even if it did not prevent progressive sensorineural hearing loss

(79). The effectiveness of liraglutide in theWfs1-deficient rat model

of WFS1-SD was detected not only after early treatment but also

when administrated after the onset of several symptoms to mimic a

relatively late diagnosis of WFS1-SD in patients (80). In the same rat

model, liraglutide has been shown to delay the progression of

hyperglycemia and exert neuroprotective effects. In particular, it

increased the number of neurons and the neuronal volume in

Wfs1−/− animals’ dorsal nuclei, and decreased ER stress and

neuroinflammation in the inferior olive. Finally, liraglutide

protected the optic nerve axons from degeneration and

counteracted retinal ganglion cell death (80). Recently it was

suggested a combination treatment with 7,8-dihydroxyflavone
Frontiers in Clinical Diabetes and Healthcare 04
(7,8-DHF) to further improve the liraglutide neuroprotective

effect in the rat model of WFS1-SD (81).

Considering the overall results obtained in preclinical models of

WFS1-SD and the case report data in a WFS1-SD patient (Table 1),

IRCCS San Raffaele Hospital in Milan, Italy, started an off-label

treatment of liraglutide in pediatric patients with WFS1-SD (18).

Recently and for the first time, Frontino et al. reported in detail the

follow-up of a small cohort of WFS1-SD patients treated with

1.8mg/day liraglutide for 8-27 months. In this study, four

genetically determined WFS1-SD pediatric patients with insulin-

dependent diabetes mellitus and optic atrophy were enrolled to

obtain preliminary data regarding the safety, tolerability, and

efficacy of daily treatment with liraglutide. The authors observed

a decrease in insulin requirement, stabilization of neuro-

ophthalmological and neurophysiological disease parameters, and

no onset of new WFS1-SD-related symptoms at the latest follow-up

(18). Accordingly, a very recent case report described the treatment

of a WFS1-SD patient with 0.6 mg per day liraglutide in association

with the chemical chaperone tauroursodeoxycholic acid (TUDCA)

to mitigate ER stress, reduce insulin requirements, and improve

glycemic control (82).
Discussion

The numerous beneficial properties of GLP-1RAs and the well-

recognized effect in type 2 diabetes encouraged testing GLP-1RAs in

animal models of WFS1-SD to investigate if these compounds could

be useful in the management of diabetes in this rare disease. All the

GLP-1RAs tested for this purpose so far in WFS1-SD, namely

exenatide, liraglutide, and dulaglutide (Table 1), improved the

glycemic control both in rodents and in patients. This effect may

depend on the fact that GLP-1 receptor-mediated signaling directly

modulates the ER response, leading to the promotion of b-cell
TABLE 1 Current effects of the GLP-1RAs use in WFS1-SD.

Species GLP1-RA Effects in WFS1-SD Reference

mouse exenatide improving of glycaemic control Sedman et al.
(74)

exenatide improving of glycaemic control Kondo et al.
(75)

rat liraglutide preventing development of glucose intolerance, improving insulin and glucagon secretion control, reducing ER stress in
Langerhans islets

Toots et al. (78)

liraglutide delaying onset of diabetes, protecting against optic nerve atrophy and vision loss Jagomäe et al.
(79)

liraglutide delaying progression of hyperglycaemia and neuroprotective effects Seppa et al. (80)

liraglutide neuroprotective effect Seppa et al. (81)

human dulaglutide improving of glycaemic control Scully et al. (76)

liraglutide improving of glycaemic control Kondo et al.
(75)

liraglutide decreasing of insulin requirement, stabilizating neuro-ophthalmological and neurophysiological disease parameters Frontino et al.
(18)

liraglutide improving of the glycaemic control Png et al. (82)
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adaptation and preventing their apoptosis (46, 83). In addition, it

was established an association of genetic variations in the WFS1

locus with reduced GLP-1-induced insulin secretion and a higher

risk of type 2 diabetes (84). Thus, alterations of ER homeostasis

deriving from WFS1 variants could be associated with impaired

incretin action and, consequently, b-cell dysfunction (84).

Therefore, it is possible to speculate that the activation of the

GLP-1 receptor signal using GLP-1RAs could restore the incretin

deficiency in WFS1-SD, alleviating insulin insufficiency and aiding

glycemic control.

However, in WFS1-SD diabetes is only one of the disease

manifestations, being the severe neurological disabilities

responsible for the poor prognosis (4). In this regard, evidence

highlighting the possible use of GLP-1RAs for the treatment of

diseases associated with chronic inflammation and progressive

neurodegeneration (38), raised the possibility that GLP-1RAs

could counteract also the neurological manifestations in WFS1-

SD by impairing neuronal inflammation. This appears a reasonable

hypothesis since small peptides GLP-1RAs, including liraglutide

and exendin-4, can play a central role and affect the brain because

they easily cross the blood-brain barrier upon peripheral

administration (19). In this regard, liraglutide protects against

optic nerve atrophy and vision loss in the Wfs1 -/- rats (79–81)

and WFS1-SD patients (18). These liraglutide-mediated

neuroprotective effects may derive from its ability in modulating

the ER stress response and eliciting ER proteostasis in brain cells

(85). Another possible mechanism explaining the beneficial effect of

GLP-1RAs in counteracting the progression of neurological

manifestations in WFS1-SD is the ability of these molecules to

modulate autophagy, whose defects have been shown to play a

pathogenic role in neurodegenerative diseases (50, 52).

Recent discoveries highlighted that WFS1-SD is associated with

chronic inflammation (11, 86). GLP-1RAs could be useful inWFS1-

SD also in this context, due to their ability to modulate the immune

system and inflammation by inducing a reduction in the production

of proinflammatory cytokines (39).

Overall, current data suggest that GLP-1RAs could effectively be

used as therapeutic agents in WFS1-SD. They can improve glycemic

control and are promising candidates for delaying neuronal-related

symptoms in patients with WFS1-SD. Future perspectives on this

regard will be: (i) to verify that liraglutide alters the progression or

improves the life expectancy of affected individuals by increasing

the number of patients treated with this GLP-1RA; (ii) to reduce the
Frontiers in Clinical Diabetes and Healthcare 05
number of administrations and increase the compliance of the

patients by investigating if the GLP-1RA with longer half-life

semaglutide may have the same effect; (iii) to investigate if the

dual GLP-1RA/GIP agonists may provide even more promising

results. In fact, other incretins, such as GIP, have also shown

neuroprotective effects in animal models of neurodegenerative

diseases. Newer dual GLP-1/GIP receptor agonists or so-called

twincretins have also shown protective effects in murine models

of AD and PD (87). These results are encouraging and suggest

that the development of such dual agonists for the treatment of

other neurodegenerative diseases such as WFS1-SD may be

very promising.
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