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Deep learning-based left
ventricular segmentation
demonstrates improved
performance on respiratory
motion-resolved whole-heart
reconstructions
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Introduction: Deep learning (DL)-based segmentation has gained popularity for
routine cardiac magnetic resonance (CMR) image analysis and in particular,
delineation of left ventricular (LV) borders for LV volume determination. Free-
breathing, self-navigated, whole-heart CMR exams provide high-resolution,
isotropic coverage of the heart for assessment of cardiac anatomy including
LV volume. The combination of whole-heart free-breathing CMR and DL-
based LV segmentation has the potential to streamline the acquisition and
analysis of clinical CMR exams. The purpose of this study was to compare the
performance of a DL-based automatic LV segmentation network trained
primarily on computed tomography (CT) images in two whole-heart CMR
reconstruction methods: (1) an in-line respiratory motion-corrected (Mcorr)
reconstruction and (2) an off-line, compressed sensing-based, multi-volume
respiratory motion-resolved (Mres) reconstruction. Given that Mres images
were shown to have greater image quality in previous studies than Mcorr
images, we hypothesized that the LV volumes segmented from Mres images
are closer to the manual expert-traced left ventricular endocardial border
than the Mcorr images.
Method: This retrospective study used 15 patients who underwent clinically
indicated 1.5 T CMR exams with a prototype ECG-gated 3D radial phyllotaxis
balanced steady state free precession (bSSFP) sequence. For each
reconstruction method, the absolute volume difference (AVD) of the
automatically and manually segmented LV volumes was used as the primary
quantity to investigate whether 3D DL-based LV segmentation generalized
better on Mcorr or Mres 3D whole-heart images. Additionally, we assessed
the 3D Dice similarity coefficient between the manual and automatic LV
Abbreviations

DL, deep learning; Mres, motion-resolved; Mcorr, motion-corrected; AVD, absolute volume difference; Mid-
SA, middle-short-axis; LV, left ventricular; bSSFP, balanced steady state free precession
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masks of each reconstructed 3D whole-heart image and the sharpness of the LV
myocardium-blood pool interface. A two-tail paired Student’s t-test (alpha = 0.05) was
used to test the significance in this study.
Results & Discussion: The AVD in the respiratory Mres reconstruction was lower than the
AVD in the respiratory Mcorr reconstruction: 7.73 ± 6.54 ml vs. 20.0 ± 22.4 ml,
respectively (n = 15, p-value = 0.03). The 3D Dice coefficient between the DL-
segmented masks and the manually segmented masks was higher for Mres images
than for Mcorr images: 0.90 ± 0.02 vs. 0.87 ± 0.03 respectively, with a p-value = 0.02.
Sharpness on Mres images was higher than on Mcorr images: 0.15 ± 0.05 vs. 0.12 ±
0.04, respectively, with a p-value of 0.014 (n = 15).
Conclusion: We conclude that the DL-based 3D automatic LV segmentation network
trained on CT images and fine-tuned on MR images generalized better on Mres
images than on Mcorr images for quantifying LV volumes.

KEYWORDS

free-breathing, whole-heart CMR, motion compensation, deep learning 3D segmentation, LV volume
Introduction

The left ventricle (LV) acts as a pump to send oxygenated blood

from the heart to the rest of the body. Many cardiac pathologies

including heart failure, valvular disease, and congenital

abnormalities involve LV remodeling that changes the shape and

function of the LV (1–3). 3D segmentation of LV volume has an

important role as a clinical metric as well as in 3D printing to

make image phantoms (4) and computational fluid dynamics

simulations (5). Cardiac magnetic resonance (CMR) is the current

standard for assessing ventricular volume in both adults and

pediatric patients; CMR provides more accurate and reproducible

ventricular volume quantifications when echocardiography images

are ambiguous (2, 6). Accurate volume measurement with CMR

requires precise contouring of the endocardial borders. Due to the

variability of the heart shape and myocardial motion patterns

across patients and within the same patient at different time points,

ventricular segmentation is a nontrivial task (6).

Currently, expert manual segmentation is often used to delineate

the endocardial borders, usually based on a set of short-axis slices (7,

8). However, manual segmentation is cumbersome, time-consuming,

and subject to inter- and intra-observer variability (9). There are

continuous efforts to develop automated processes to meet the

clinical need for faster and more accurate segmentation. In

addition to the model-based semi-automatic segmentation

methods (10–14), machine learning (ML)- and deep learning

(DL)-based methods have been developed that utilize large labeled

data sets to train a deep neural network for automatic

segmentation of 2D or 3D image sets (6, 8). Segmentation

accuracy can be greatly reduced in the presence of motion that

degrades image quality, causes artifacts, or results in blurring of the

blood-myocardial boundaries (8, 15, 16). Thus, there is a need to

reduce motion artifacts in underlying images in order to improve

the performance of ML- or DL-based LV segmentation.

Current CMR methods to compensate for respiratory motion

include breath-holding for 2D imaging or highly accelerated 3D

imaging, and free-breathing approaches for 3D whole-heart imaging

using navigators for respiratory gating or respiratory motion
02
correction (17, 18, 19). More recently, respiratory motion has been

extracted from the acquired data and used to resolve the acquired k-

space data into different respiratory motion-resolved bins and

perform reconstruction using compressed sensing (CS) [i.e., XD-

GRASP (20)]. To our knowledge, there are no studies evaluating the

performance of DL-based networks on images from these different

reconstruction methods used to compensate for motion artifacts.

Thus, in this study, we evaluated the performance of a previously

validated DL-based automatic segmentation to assess the accuracy of

LV segmentation for two kinds of respiratory motion-compensated

images: (1) in-line, motion-corrected (Mcorr) (19), and (2) off-line,

compressed sensing-based, multi-volume motion-resolved (Mres)

(20). The 3D DL-based automatic segmentation network used in this

study was not trained on Mcorr or Mres images but primarily on

computed tomography (CT) images. Therefore, another goal in this

study was to investigate the generalizability of a network trained

primarily on cardiac CT images to be applied on motion-corrected

and motion-resolved MR images.

The difference between the automatically segmented LV volumes

andmanually segmented LV, or the absolute volume difference (AVD),

is the primary metric for accuracy assessment. We also calculated the

3DDice coefficients and edge sharpness for the two LV reconstruction

methods as more traditional metrics to assess and interpret

segmentation accuracy. It was shown in previous studies (20, 21)

that Mres images have greater subjective image quality than Mcorr

images, meaning the endocardial borders could be more accurately

delineated in Mres vs. Mcorr. Therefore, we hypothesized that the

use of an off-line, compressed sensing-based, Mres XD-GRASP

reconstruction method would provide more accurate DL-based LV

segmentation than an in-line Mcorr method, as assessed by the

AVD between the DL-based model and expert manual segmentation.
Methods

Image acquisition

The study was performed on 15 patients undergoing a clinically

indicated CMR scan at Emory University Hospital on a 1.5 T
frontiersin.org
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scanner (MAGNETOM AvantoFIT, Siemens Healthcare, Erlangen,

Germany). The study cohort included seven adult patients with

congenital abnormalities, four patients with heart failure, and

four patients with valvular disease. The study was approved by

the Institutional Review Board of Emory University and patients

provided informed consent. Images were acquired using an 18-

channel body array coil in combination with the spine array coil

and a saturation slab at the level of the anterior chest wall. Data

were acquired with a prototype ECG-gated 3D golden-angle

radial phyllotaxis interleaved balanced steady state free precession

(bSSFP) sequence with fat saturation, T2 preparation, and 10

ramp-up pulses to achieve steady states over 220 mm × 220

mm × 220 mm field of view with matrix size of 192 × 192 × 192

per readout, giving an isotropic spatial resolution of 1.14 mm ×

1.14 mm × 1.14 mm (Figure 1A). Excitation used a 115° flip

angle, and a total of 12,224 radial lines were acquired with 32

segments per interleaf. Acquisition of each interleaf occurred

over 200 ms with a TE of 1.55 ms and a bandwidth of

1000 Hz/pixel.
Motion compensation and image
reconstruction

The reconstruction pipeline for the Mcorr and Mres images is

shown in Figure 2. Mcorr images are 1D respiratory motion

corrected in the superior-to-inferior (SI) direction and

reconstructed in-line on the scanner, as previously described

(19). Briefly, the repeatedly acquired SI projections are each

cross-correlated with the reference SI projection to find the phase
FIGURE 1

Overview of the acquisition, segmentation, and analysis pipeline. (A) Left: 3D m
angle radial phyllotaxis trajectory in mid-diastole gated by a synchronously acq
the scanner after acquisition and the raw data are exported for motion-resol
corresponds to a distinctive respiratory phase. (B) Top right: After recons
segmentation network for automatic segmentation of all cardiac chamber
Automatic (yellow) and manual (red) segmented masks overlaid on one mot
the Dice coefficient and quantify LV volumes.
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shift needed to correct for respiratory motion in the free-

breathing acquisition. The raw data were exported off-line for

respiratory motion extraction and binning into four respiratory

bins for under-sampled reconstruction of the Mres images

(20, 22) on MATLAB (R2020b, MathWorks Inc., Matick, MA,

United States). After reconstruction, a single static phase 3D

whole-heart image was reconstructed per patient using Mcorr

image reconstruction and four distinct 3D whole-heart images

were reconstructed, each from a different respiratory phase bin

using Mres reconstruction. Contrast limited adaptive histogram

equalization (CLAHE) filtering was added after reconstruction

for both Mcorr and Mres images to ensure their contrast

variation would be treated equally in both image sets.
LV segmentation

The respiratory Mcorr and four Mres whole-heart image

volumes were segmented using a 3D image-to-image DL network

combined with a conditional variational autoencoder (I2I-cVAE)

(23), trained through transfer learning (24). The network

architecture is shown in Figure 3. The I2I network and cVAE

networks were trained simultaneously with a combined cross

entropy loss (standard segmentation loss) and Kullback–Leibler

divergence loss. Such a training approach enables the network to

not only learn a mapping from image to segmentation, but also

to learn a latent space, encoding the joint distributions of images

and possible segmentations. A latent space dimension of six was

observed to provide optimal results. During inference, the

algorithm uses only the encoder block of the cVAE network, also
otion-corrected data is acquired using a bSSFP sequence using a golden-
uired ECG signal. The motion-corrected image is reconstructed in-line on
ved reconstruction resulting in four whole-heart volumes, each of which
truction, five volumes are exported to the I21-CVAE 3D whole-heart
s, and the manual segmentation is done on Mimics. (C) Bottom right:
ion-corrected and four motion-resolved images per patient to compute
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FIGURE 2

Pipeline for in-line motion-corrected and off-line motion-resolved reconstructions. Motion-corrected images were reconstructed in-line on the scanner.
After intensity normalization, the bright signal from the heart was isolated and segmented from the other bright signals from the anterior chest wall, spine,
and lateral structures in the reference SI projection and cross-correlated with the following SI acquisitions for 1D respiratory motion compensation using
phase shifting (19). The reconstruction of motion-corrected images was fully integrated into the Siemens data acquisition and image reconstruction
framework. After reconstruction, a 3D CLAHE filter was added. The raw data were exported off-line for the motion-resolved reconstruction using a
customized MATLAB program. The algorithm for motion-resolved reconstruction first identified the respiratory motion signal using principal
component analysis as a time-varying signal that lies within typical respiratory frequency ranges from a matrix of concatenated SI k-space projections
of all coils. After motion extraction, k-space data were binned into four respiratory phases and CS was used to reconstruct each of the four highly
under-sampled respiratory phase image sets. In this study, the regularization parameter λ was 0.1; this value was selected to balance the data
consistency and smoothness in the final reconstructed image. The reconstructions were performed using a server equipped with two 24-core CPUs,
384 GB RAM, and an 11 GB NVIDIA GPU. After reconstruction, a 3D CLAHE filter was added. SI, superior-to-inferior; CLAHE, contrast limited adaptive
histogram equalization; CS, compressed sensing.
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referred to as the prior network, and samples the mean of the

distribution, which is combined with features from the I2I

network to create the final segmentation. The network was first

trained on a large collection of 1,059 cardiac gated calcium

scoring CT datasets (25) and annotated segmentation masks for

the cardiac chambers to learn strong shape priors of the

chambers. The pretrained weights were then fine-tuned using

multi-vendor MR data consisting of 122 patient volumes,

covering a variety of 3D MRI sequences (26). The training 3D

MR datasets did not contain Mcorr or Mres images. In the

current study, the LV was segmented manually on the Mcorr

image and four Mres images for each patient by a trained expert

using Mimics (Materialize, Inc.) (Figure 1B).
LV volume comparison and Dice similarity
coefficients

The AVD between the manually and DL-segmented LV was

computed for all five image sets per patient (one for the in-line
Frontiers in Radiology 04
Mcorr reconstruction and four different respiratory bins for the

off-line Mres reconstruction). The minimum AVD from the four

respiratory phases in the off-line Mres reconstruction was

compared with the AVD for the in-line Mcorr method

(Figure 1C) using a paired t-test with alpha = 0.05. The 3D dice

similarity coefficient (DSC) (27) was computed using the seg-

metrics (28) package in Python between the manual and DL-

segmented LV borders for all five image sets. The maximum 3D

DSC of the four respiratory phases for the off-line Mres

segmentations was compared with the DSC of the in-line Mcorr

segmentations using a paired t-test with alpha = 0.05.
LV-blood pool sharpness measurements

To interpret the potential difference in the LV segmentation

performance of the 3D DL-based network, an image quality-

based metric, the LV endocardial border sharpness, was included.

The sharpness measurement was used to assess the potential

connection between the superior performance with image quality
frontiersin.org
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FIGURE 3

Transfer learning I2I-CVAE neural network architecture. The Prior-Net is an encoder that learns the latent space of the images and was trained using CT
images for strong shape priors of the cardiac chambers. The I2I-Net is an encoder–decoder network for 3D whole-heart segmentation.
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of the Mcorr and Mres images. LV sharpness measurement was

performed using a custom-written program in MATLAB based

on a previously presented method (29). The details of the

quantification process are illustrated in Supplementary Figure S1.
Results

For each set of Mres images (3D + 4 respiratory states), the

respiratory state with the lowest AVD or the greatest 3D DSC

was chosen as the best static Mres image for comparison with

the Mcorr images. The respiratory state with the greatest mid-SA

slice sharpness was used as the representative static Mres image

for comparison with the Mcorr image.

The LV segmentations of the best-Mres images (n = 15) had a

lower AVD than that of the Mcorr images (n = 15), 7.7 ± 6.5 ml vs.

20.0 ± 22.4 ml, respectively (p = 0.03) (Figure 4). The AVDs of the

LV segmentations on the Mcorr images vs. on each phase of the

Mres images are also shown in Figure 4. The LV segmentation

of respiratory phase 2 of the Mres images have a lower AVD

than that of the motion-corrected images (p = 0.04)

(Supplementary Table S1). This result indicates that Mres

images enabled the DL network to more accurately find the

correct LV volume than the Mcorr images. The lowest AVD

respiratory state was found primarily on the second respiratory

phase (during expiration) in 8/15 patients, on the first respiratory

phase (during end expiration) in 5/15 patients, on the third

respiratory phase (during inspiration) in 1/15 patients, and on

the fourth respiratory phase (during inspiration) in 1/15 patients.

Note that one patient (subject 1 in Supplementary Figure S2)
Frontiers in Radiology 05
had a larger difference in volume of the automatic vs. manual

Mcorr segmentations. We tested if removing this subject would

affect the results; even after removing the subject from the

analysis, the results were still significant for the AVD between

the Mcorr and Mres images over the remaining group.

The LV segmentation of the representative static Mres images

(n = 15) had a greater 3D DSC than that of the Mcorr images (n

= 15), 0.90 ± 0.02 vs. 0.87 ± 0.03, respectively (p-value = 0.02)

(Figure 5). The 3D DSCs of LV segmentation of the Mcorr

images vs. each phase of Mres images are also shown in

Figure 5. The LV segmentations of respiratory phase 2 of the

Mres images have greater 3D DSCs than those of the Mcorr

images (p = 0.049) (Supplementary Table S1). This result shows

that the DL-segmented masks spatially overlap better with the

manually annotated masks for Mres images than for Mcorr

images. The greatest 3D DSC respiratory state was found

primarily on the second respiratory phase in 8/15 patients, on

the first respiratory phase in 5/15 patients, on the third

respiratory phase in 1/15 patients, and on the fourth respiratory

phase in 1/15 patients.

The mid-SA slice sharpness was greater for the representative

static Mres images (n = 15) than for the Mcorr images (n = 15),

0.15 ± 0.05 vs. 0.12 ± 0.04, respectively (p-value = 0.014)

(Figure 6). The LV endocardial border sharpness results of the

Mcorr images vs. each respiratory phase of the Mres images are

also shown Figure 6. There was no statistical significance found

between the sharpness of the Mres images and Mcorr images for

each respiratory state (Supplementary Table S1). The greatest

mid-SA slice sharpness respiratory state was found primarily on

the first respiratory state in 7/15 patients, on the second
frontiersin.org
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FIGURE 4

AVD of LV DL-based segmentation on the Mcorr image and each
respiratory state Mres image. The AVD of Mcorr (Mcorr), Best-Mres,
and four respiratory state Mres (Mres-resp1–Mres-resp4) images are
shown in each boxplot. A two-tail paired Student’s t-test was used to
test the significance of the difference between the two methods.
Significance was found between Mcorr and Best-Mres images (p=
0.03) as well as Mcorr and second respiratory state (during inspiration)
Mres images (p= 0.04). AVD, absolute volume difference; Mcorr,
motion-corrected; Mres, motion-resolved; Best-Mres, best respiratory
state Mres.

FIGURE 5

3D DSC of LV DL-based segmentation on the Mcorr image and each
respiratory state Mres image. The 3D DSC of Mcorr (Mcorr), Best-
Mres, and four respiratory state Mres (Mres-resp1–Mres-resp4) images
are shown in each boxplot. A two-tail paired Student’s t-test was used
to test the significance of the difference between the two methods.
Significance was found between Mcorr and Best-Mres images (p=
0.02) as well as Mcorr and second respiratory state (during inspiration)
Mres images (p= 0.049). DSC, dice similarity coefficient; Mcorr,
motion-corrected; Mres, motion-resolved; Best-Mres, best respiratory
state Mres.

FIGURE 6

LV endocardial border sharpness of LV DL-based segmentation on the
Mcorr image and each respiratory state Mres image. The LV
endocardial border sharpness of Mcorr (Mcorr), Best-Mres, and four
respiratory state Mres (Mres-resp1–Mres-resp4) images are shown in
each boxplot. A two-tail paired Student’s t-test was used to test the
significance of the difference between the two methods. Significance
was found between the Mcorr and Best-Mres images (p= 0.014), but
no significant difference was found between Mcorr images and any
Mres images for a single respiratory state. DL, deep learning; Mcorr,
motion-corrected; Mres, motion-resolved; Best-Mres, best respiratory
state Mres.

Yang et al. 10.3389/fradi.2023.1144004
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respiratory phase in 4/15 patients, on the fourth respiratory state in

2/15 patients, and on the third respiratory state in 2/15 patients.

The AVD and the 3D DSCs of the Mcorr images with respect

to the LV segmentations of each of the four Mres images and

middle-short-axis (Mid-SA) slice sharpness of these images are

summarized in Supplementary Table S1. Respiratory phase 2 of

the Mres images has a lower AVD (p = 0.04) and greater 3D

DSC than the Mcorr images (p = 0.049).
Discussion

This study evaluated the generalizability of a 3D DL-based

neural network trained primarily on cardiac CT images to

segment the LV from (1) in-line Mcorr MR images, and (2) off-

line compressed sensing reconstructed Mres MR images. The

main finding of this study was that the 3D DL-based LV

segmentation network identifies an LV volume that is closer to

the reference standard volume when using Mres MR images than

when using Mcorr MR images. Importantly, this was a network

trained primarily on cardiac CT images and did not include

either Mcorr or Mres images in training database.

Contrary to many previous studies, this study did not seek to

develop a new DL network, but rather sought to use an

established DL segmentation network to evaluate how motion-

compensation methods in the MR images affect the accuracy of

the segmentation. The result that Mres images came closer to the
frontiersin.org
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reference standard than Mcorr images implies that the DL network

found more similar features in the Mres images than motion-

corrected images compared to the cardiac CT training dataset.

Since cardiac CT images have very high contrast and excellent

resolution, the similar features in the Mres images and cardiac

CT images could be interpreted as indicating that Mres images

have a higher image quality than Mcorr images. This

interpretation illustrates an example of multi-modality transfer

learning. The results could also be interpreted as indicating that

the performance of a generic DL segmentation network on

unseen 3D whole-heart images could be used as a method to

judge underlying image quality, although the image quality

results would only be valid for this specific network. In either

interpretation, improvements in the DL network through

increased training and improvements in the underlying image

acquisition go hand-in-hand for improving CMR. As DL-based

automated segmentations methods gain in popularity, it will be

increasingly important to find image acquisition and

reconstruction methods that specifically increase DL accuracy or

provide close enough initial segmentations for finding clinically

relevant metrics such as LV volume.

The AVD and 3D DSC metrics evaluated the volumetric and

spatial overlap between the DL-segmented and the manually

annotated LV. We found that the AVD between the DL-based

and manually segmented LV was lower in the representative

Mres data than in the Mcorr images. In addition, the 3D DSC of

DL-based automatic segmentation and manual segmentation was

higher for the representative Mres images than for the Mcorr

images, implying that not only was the volume in the motion-

resolved images closer to manual expert segmentation, but the

spatial overlap between the volumes was also closer.

We found that the respiratory phase with the smallest AVD and

the greatest 3D DSC was primarily respiratory phase 2, which is

during the end expiration phase. We also found that respiratory

phase 2 of the Mres images has a lower AVD and higher 3D DSC

than that of the Mcorr images (Supplementary Table S1). It has

been reported that the second respiratory phase has the least

amount of relative respiratory displacement among the four

respiratory phase-resolved reconstructions (20). These findings

suggest that the DL-based LV segmentation method is more likely

to be closer to manually annotated segmentation when the image

exhibits less residual motion. Our result on LV endocardial border

sharpness also agrees with this finding that Mres images have

greater sharpness than Mcorr images, though no significant

difference was found in the sharpness of Mcorr images and Mres

images for respiratory phase 2 . We think that other image quality

factors might also affect the performance of the DL network in LV

segmentation, such as image homogeneity, and that LV endocardial

border sharpness might not be the sole reason the specific DL-

based segmentation network delineates an LV endocardial border

that is closer to the expert manual segmentation.

Other factors could also affect the performance of DL-based

segmentation on images generated by the two reconstruction

methods. The Mcorr image cases with the worst performance on

this specific DL network could be attributed to various reasons

related to the reconstruction algorithm of Mcorr, including (19) (1)
Frontiers in Radiology 07
the presence of bright structures on the top of the segmented heart

might negatively affect the accuracy of cross-correlation in Mcorr;

(2) bright signals from the anterior chest wall might be

insufficiently suppressed in some patients; (3) the 1D rigid-body

motion model might be insufficient in modeling motion, therefore

leading to residual motion artifacts in the images. Contrary to the

cross-correlation method of Mcorr, Mres reconstruction extracts

the respiratory motion signal that has the greatest contribution to

the variation of the SI projection and therefore could be less

affected by static bright structures. In one subject, the DL-based

segmentation failed on the Mcorr image. In this subject, the LV

was highly dilated and exhibited non-typical anatomy. Using the

Mres images, the segmentation performed better (Subject 1 in

Supplementary Figure S2). We suspect that this is due to the

smoothing effect of the total variation compressed-sensing

reconstruction of Mres images, which makes the dark artifact in

the center blood pool smooth and therefore easier to categorize as

the LV in the motion-resolved image.

The results of this study agree with findings from Stroud et al.

(21), where they compared magnetic resonance angiography

(MRA) exams in the aorta using Mcorr and Mres

reconstructions. In that study, more traditional image quality

grading by a radiologist was the primary metric for evaluation.

Mres images were found to be superior to respiratory-

compensated images. A study by Piccini et al. (30) used a deep

convolutional neural network (DCNN) to directly assess image

quality in free-breathing-Mres whole-heart images. The study

showed that the respiratory image with the best image quality (as

identified by an expert reader) could be directly determined with

the network. This type of network could be used in combination

with the method used in our study to automatically determine

the best respiratory motion phase and then segment the LV

volume on that phase. The methodology presented here could be

extended to dimensions higher than 4D. Recently, a 5D free-

running implementation of motion-resolved 3D whole-heart

imaging has been presented (31). The 5D method reconstructs

the 3D whole-heart images in both the cardiac and respiratory

dimensions so that LV function can be characterized by

measuring ejection fraction. Extension of the DL-based LV

segmentation methodology presented in this work could be used

on the 5D free-running imaging to automatically determine LV

ejection fraction with high level of accuracy.

Since LV volume is a commonly used clinical indicator for the

assessment of progression of cardiac diseases (32, 33), the ability to

segment LV volumes accurately and rapidly is critical to patient

assessment (34). Therefore, a volume-based DL segmentation could

become a new metric for comparing the image quality of CMR

images from various reconstruction and/or acquisition methods.

Conventional CMR image quality assessments include measures

such as the root mean-squared error (RMSE), structural similarity

index (SSIM), peak signal-to-noise ratio (PSIR), and image

sharpness, or by using expert grading (30, 35). These metrics look

at underlying image quality metrics but do not specially look at a

clinical metrics such as accurate LV volume determination.

The DL-based segmentation network presented in the study

could also be used to automatically segment the right ventricle,
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right atrium, and left atrium. In this work, we chose to study the

agreement between the DL-based and manual LV segmentation

because the LV has the most defined regions where segmentation

should start and end within the structure (i.e., aortic and mitral

valve annuli). Other chambers have more complex morphology

and boundaries that are more difficult to determine (36). We

also chose to focus on LV segmentation because the patient

cohorts involved in this study mostly have cardiac myopathies

that already exhibit or could potentially develop LV remodeling,

including hypertrophic myopathy and congenital heart diseases

(coarctation and tetralogy of Fallot). Therefore, clinically, we are

mostly interested in looking at the change in the size of the LV

in these patients.

This study has limitations. This study used a limited number of

clinical patients with various cardiac pathologies including

tetralogy of Fallot and a bicuspid aortic valve. The prototype

ECG-gated 3D golden-angle radial phyllotaxis interleaved bSSFP

sequence acquires the data in 6–8 min, which was difficult to add

to clinically indicated CMR scans for cardiac patients. Although

the experiment size is small, it was not intended to train the

network, only to evaluate the underlying motion artifacts and

image quality in the two methods. Because of the small cohort

size (n = 15) and the varied etiologies, we could not conclude

whether Mres images are superior to Mcorr images for DL-based

segmentation of the LV for specific pathologies. The Mcorr and

Mres images were not included in the training since the goal of

this study was to test the generalizability of a LV segmentation

network on new datasets. Importantly, the findings in this study

are based on a single DL automatic segmentation network and it

may not be generalized until it has been tested on other 3D DL-

based segmentations.
Conclusion

Using a 3D whole-heart DL-based algorithm trained primarily

on CT images, LV volumes segmented automatically on Mres MR

images are closer to expert manual segmentations than those on

Mcorr MR images. This study illustrates that multi-modality

transfer learning in ML can be used in CMR and may be used as

a tool to evaluate image quality in the acquired images.
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