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Cancer survivors undergone treatment face an increased risk of developing
atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms
remain elusive. Recent studies have revealed that chemotherapy can drive
senescent cancer cells to acquire a proliferative phenotype known as
senescence-associated stemness (SAS). These SAS cells exhibit enhanced
growth and resistance to cancer treatment, thereby contributing to disease
progression. Endothelial cell (EC) senescence has been implicated in
atherosclerosis and cancer, including among cancer survivors. Treatment
modalities for cancer can induce EC senescence, leading to the development of
SAS phenotype and subsequent atherosclerosis in cancer survivors.
Consequently, targeting senescent ECs displaying the SAS phenotype hold
promise as a therapeutic approach for managing atherosclerotic CVD in this
population. This review aims to provide a mechanistic understanding of SAS
induction in ECs and its contribution to atherosclerosis among cancer survivors.
We delve into the mechanisms underlying EC senescence in response to
disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis
and cancer. Key pathways, including p90RSK/TERF2IP, TGFβR1/SMAD, and BH4
signaling are explored as potential targets for cancer treatment. By
Abbreviations

ATM, ataxia-telangiectasia-mutated; ATR, ataxia-telangiectasia and Rad3-related; BH4, Tetrahydrobiopterin
(THB, INN); CAFs, cancer-associated fibroblasts, CD31, Cluster of Differentiation 31; CDH5, vascular
endothelial cadherin; CHK, cell-cycle checkpoint kinase; CVD, cardiovascular disease; D-flow, disturbed
flow; DDR, DNA damage response; ECs, endothelial cells; EDA, extra domain A; endoMT, endothelial-to-
mesenchymal transition; eNOS, endothelial nitric oxide synthase; ERK, extracellular-signal regulated kinase;
FAP, fibroblast activating protein; FSP1, fibroblast specific protein 1; IL-1β, interleukin β; IR, ionizing
radiation; L-flow, laminar flow; NEMO, NF-kB essential modulator; NFκB, nuclear factor kappa B; NO,
nitric oxide; NRTS, new Rap1 targets at senescence; PECAM-1, platelet endothelial cell adhesion molecule-
1; POT1, Protection telomeres 1; ROS, reactive oxygen species; RPA, replication protein A; TERF2IP
(RAP1), TERF2 interacting protein; TGFβ-R1, transforming growth factor beta receptor 1; TIE1, tyrosine
kinase with immunoglobulin-like and EGF-like domains 1; TIE2, TEK receptor tyrosine kinase; TIN2,
TRF1-interacting protein 2; TRF1/2, Telomere Repeat Binding Factor 1/2; TPP1, Telomere Protection
Protein 1; TME, tumor microenvironment; TNF-α, tumor necrosis factor-alpha. SASP, senescence-
associated secretory phenotype; SaβG, senescence associated beta-galactosidase; SIPS, stress-induced
premature senescence; SM22α, smooth muscle 22 alpha; SUMO, small ubiquitin-like modifier; VE-Cad,
vascular endothelial cadherin; vWF, von Willebrand factor; WT1, Wilms’ tumor suppressor; α-SMA, alpha-
smooth muscle actin.
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TABLE 1 The heart disease statistics
States (national health and nutrition e

Age group
(years)

Coronary hea
diseases (CHD

(% of populati

Male Fem
20–39 0.6 0

40–59 6.9 6

60–79 22.0 13

80+ 33.9 21

TABLE 2 Framingham risk score for ris

Age group (years) Risk point
<34 −1
35–39 0

40–44 1

45–49 2

50–54 3

55–59 4

60–64 5

65–69 6

70–74 7
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comprehending the similarities and distinctions between different types of senescence and
the associated pathways, we can pave the way for targeted interventions aim at enhancing
the cardiovascular health of this vulnerable population. The insights gained from this review
may facilitate the development of novel therapeutic strategies for managing atherosclerotic
CVD in cancer survivors.
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1. Introduction

As individual age, the prevalence of various disorders and

diseases, including atherosclerotic CVD, increases in the

population (1). Atherosclerotic CVD remains the leading cause

of morbidity and mortality worldwide, particularly in those aged

65 and older (2, 3) (see Table 1). Various scoring systems, such

as the Pooled cohort equations (PCE), Framingham risk score,

and Reynolds Risk Score, have been utilized to assess the risk of

atherosclerotic CVD. These scoring systems consistently indicate

that age is a significant risk factor for atherosclerotic CVD, with

both females and males having a greater risk of CVD as they age

(see Table 2).

Cancer survivors who have undergone cancer treatment,

including radiation therapy, face an elevated risk of developing

atherosclerotic CVD, with a 1.3–3.6 fold increase in developing

coronary artery disease (CAD) and a 1.7–18.5-fold increase in

developing atherosclerotic risk factors, which may lead to

potentially fatal consequences (6, 7). A cross-sectional study

conducted by the National Health and Nutrition Examination

Survey (NHANES) assessed the 10-year risk of atherosclerotic

CVD using the Pooled Cohort Equations in both cancer
in different age groups in United
xamination survey) (4).
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survivors and non-cancer patients. The study found that the risk

of atherosclerotic CVD was higher in cancer survivors compared

to non-cancer patients (8) (see Table 3). This increased

prevalence and mortality has been linked to cancer therapies,

including IR and chemotherapeutic agents (2).

Cellular senescence, a hallmark of aging, occurs when cells

cease to divide in response to various stress stimuli, both internal

and external. These stimuli include d-flow, oncogene activation,

DNA damage, mitochondrial dysfunction, reactive oxygen species

(ROS), and cancer treatments including radiation therapy and

chemotherapy. Recent study by Milanovic and colleagues has

shown that chemotherapy may induce senescence in cancer cells,

which can have negative effects on tissue functions due to the

secretion of various factors that regulate vital biological processes,

such as cellular metabolism, cell growth, and inflammatory

signaling (9, 10). This secretion of factors known as senescence-

associated secretory phenotype (SASP). These senescent cancer

cells can also escape cell cycle arrest and apoptosis, leading to an

increase in their clonogenic growth potential. This phenomenon

is known as SAS (11–16).

Milanovic and colleagues’ seminal observation revealed clear

differences between replicative senescence (RS) and stress-

induced premature senescence (SIPS) (11–16). SIPS is not

necessarily associated with telomere shortening, unlike RS.

Additionally, SIPS may promote cancer treatment resistance,

tumorigenesis, and numerous age-related disorders, including

atherosclerotic CVD in cancer survivors (13–20).

Cancer treatment can also lead to changes in the structure and

function of the vasculature, including alterations in the

morphology and function of ECs that can induce EC senescence

(7). EC senescence can result in changes in the hemodynamics,

structure, and function of the vasculature (21–23) and these

alterations are driven by a complex interplay of molecular and

cellular mechanisms. These mechanisms include DNA damage
TABLE 3 The 10-year risk of atherosclerotic CVD in cancer survivors (8).

Cancer types Odds ratio (95% confidence intervals)
Testicular cancer followed by 11.47 (1.13–116.51)

Prostate cancer 9.45 (4.53–19.73))

Bladder/Kidney cancer 7.27 (2.58–20.40)

Melanoma 5.84 (2.68–12.73)

Lung 5.03 (1.71–14.80)

Colorectal 3.72 (1.03–13.46)

Breast 1.95 (0.99−3.86)
Cervical 0.81 (0.29–2.24)
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response (DDR), Shelterin disruption, aberrant post-translational

modifications, signaling pathways, elevated generation of ROS,

and sustained activation of pro-inflammatory and pro-fibrotic

transcription factors (21, 24, 25), all of which can cause a

positive feedback loop contributing to the sustained

inflammation, which can explain the elevated risk of

atherosclerotic CVD in cancer survivors.

In this review, we aim to provide a comprehensive

understanding of the possible molecular mechanisms regulating

the development of atherosclerotic CVD in cancer survivors to

establish rational therapeutic directions based on a mechanistic

understanding of their interactions and interplay between cancer

therapy and hemodynamics. We will summarize the similarities

and differences between RS and SIPS, the latter of which plays a

critical role in the induction of the SAS phenotype. We will

describe the importance of the regulatory mechanisms for

telomere DNA protection, as telomere DNA damage and

dysfunction are critical for the induction of SIPS. We will also

examine the key pathways involved in cellular senescence.

Finally, we will discuss potential therapeutic interventions that

may benefit patients with atherosclerotic CVD, with a focus on

the BH4 pathway.

Our goal is to provide current knowledge to help future studies

understand how cellular senescence is triggered in ECs in response

to cancer treatments and how a distinct type of SASP (SAS) in ECs

may contribute to the development of atherosclerotic CVD in

cancer survivors.

Additionally, we aim to highlight the potential of senolytic

drugs in preventing, delaying, and alleviating various age-related

disorders, including atherosclerotic CVD, in humans (26).
2. Cellular senescence has been
implicated in the development of
atherosclerosis and cancer

2.1. Atherosclerosis

Atherosclerosis is a chronic and progressive inflammatory

disease that involves various risk factors, including d-flow and

elevated level of oxidized low-density lipoprotein (oxLDL) (27).

It can present in different clinical forms, such as CAD,

ischemic heart disease, ischemic stroke, and peripheral arterial

disease (PAD) (28). This disease typically begins in early life

and has a long subclinical phase (2, 3). The aging process is a

significant risk factor for atherosclerosis due to the deterioration

of the balance between vasodilator and vasoconstriction factors

secreted by ECs, which leads to vascular senescence and

dysfunction. Cellular senescence have been shown to play a

significant role in the development and progression of

atherosclerosis (29). The accumulation of senescent cells during

the aging process upregulates the expression of numerous

molecules that fuel age-associated disorders, including

atherosclerotic CVD (30–32).

Recent studies have also suggested that cellular senescence may

play a role in plaque destabilization and rupture, leading to acute
Frontiers in Cardiovascular Medicine 03
cardiovascular events. For instance, senescent vascular smooth

muscle cells (VSMCs) within the plaque have been shown to

have increased matrix metalloproteinase (MMP) activity, which

can contribute to plaque rupture and thrombosis. Additionally,

senescent cells can secrete SASP, characterized by the release of

numerous molecules including proinflammatory cytokines and

chemokines, such as interleukine 1β (IL1β), tumor necrosis factor

α (TNFα), interferon γ (IFNγ), and transforming growth factor β

(TGFβ). The SASP can lead to chronic inflammation by inducing

the persistent pro-inflammatory senescence phenotype (PISP),

promoting the recruitment and activation of immune cells within

the plaque, impairing cholesterol efflux from macrophages, and

leading to the accumulation of lipid-laden foam cells in the

plaque (30–32).
2.2. Cancer

Cellular senescence can have a dual role in cancer, both

suppressing and promoting its development and progression

(33). On one hand, it can suppress cancer by halting the cell

cycle of cells with DNA damage or mutations that could lead to

cancer. On the other hand, senescent cells can also contribute to

cancer development and progression by releasing SASP. The

SASP can be beneficial by preventing cell division and promoting

immune clearance of damaged cells, thus reducing the risk of

tumor formation. However, the SASP can also promote

inflammation, tissue remodeling, and angiogenesis, creating a

microenvironment that is favorable for cancer cell growth and

spread (34, 35).

Over time, the accumulate of senescent cells in tissues can lead

to chronic inflammation, tissue dysfunction, and organ failure, all

of which can increase the risk of cancer development (36).

Several studies have shown that the presence of senescent cells in

tissues is associated with a higher risk of cancer and poorer

prognosis in cancer patients. Therefore, strategies aimed at

eliminating senescent cells or modulating their SASP may have

therapeutic potential for the prevention and treatment of cancer.
2.3. Cancer survivors

Milanovic and colleagues have demonstrated that

chemotherapy can drive a specific subset of senescent cancer cells

to reprogram and acquire a proliferative phenotype known as

SAS. This unique state allows these cells to bypass cell cycle

arrest and significantly enhances their growth and proliferation

(9–16), independent of senescence-induced cell cycle arrest

(17, 18) or cell death (13, 14). This adaptive mechanism may

underlie the resistance of cancer cells to chemotherapy and

radiation therapy, enabling their survival and proliferation even

in the presence of treatment (13, 14, 19).

These findings highlight the significant role of cellular

senescence in the development and progression of atherosclerotic

CVD and cancer, including among cancer survivors. However, it

is important to note that senescence is also associated with
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impaired angiogenesis (37). Studies have demonstrated that

inhibiting telomerase in ECs can reduce angiogenesis in tumor

(38) and animal model of hind limb ischemia (39). Therefore,

targeting senescent cells could be a promising therapeutic

strategy for managing these diseases. Additionally, while

cancer treatment can induce EC senescence (40), it remains

unclear whether the SAS phenotype in ECs expressing SASP

contributes to the delayed onset of atherosclerotic CVD

following cancer treatment. Further studies are needed to

investigate this aspect and shed light on the interplay between

EC senescence, SAS status, and the development of

atherosclerosis in cancer survivors.
3. Cellular senescence

3.1. Cellular senescence is related to
telomere shortening

Cellular senescence is a state of irreversible cell cycle arrest, first

described by Hayflick and Moorhead in 1961 when they observed

that human diploid fibroblasts underwent this process after serial

passaging. Successive cell division can shorten telomeres to a

critical length, known as the Hayflick limit (41–43), at which

point they are unable to form a t-loop, causing cells to become

senescent (44–47). This type of growth arrest was later named

RS (48–50).

Telomeres are repetitive hexanucleotide 5′-TTAGGG-3′
tandem sequences that cap the chromosome ends, responsible for

maintaining genomic stability (41–43). On eukaryotic

chromosomes, they span approximately 3–10 kb and end with a

3′-end single-stranded overhang (51). After each round of

replication, the ends of chromosomes resemble damaged DNA,

triggering DDR. This leads to the inability to fully replicate DNA

strands, causing telomeres to shorten by about 50–200 base pairs

after each cell division (44–47).

To prevent continuous shortening of telomeres, the telomerase

protein, which is a telomere-specific ribonucleoprotein, adds

single-stranded telomeric repeats to the chromosomal 3′ ends

(52). However, many human somatic cells lack telomerase,

including human dermal fibroblast cells. Therefore, during cell

division, the telomere length progressively shortens. After a

certain time, the telomeres reach a critical length, and a DDR

signal triggers senescence in the cells. This can cause cell cycle

arrest and cellular senescence by upregulating p53-mediated p21

transcription (53–55).

Cellular senescence is related to shortening of telomeres to

the Hayflick limit and detected through upregulated expression

of senescence associated β-galactosidase (SaβG) and cyclin-

dependent kinase inhibitors p21Cip1 (or p21Waf1) and p16INK4a

(56, 57). This process can lead to loss of tissue homeostasis

and increased susceptibility to age-related disorders and

diseases, including atherosclerotic CVD and cancer. Poorer

survival rates have been reported in individuals over 60 years

of age with shorter telomeres compared to their younger

counterparts (58).
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3.2. Cellular senescence can occur
independently of telomere shortening

Telomere shortening has been linked to cellular senescence

(59), but the relationship between these two is complex (60–62).

Telomere shortening that occurs after successive cell divisions

can lead to RS, which prevents further replication (44–47).

However, cellular senescence can also occur independently of

telomere shortening (52), indicating that telomere shortening

alone may not be the sole cause of cellular senescence. This

offers a significant opportunity for further studies. For instance,

ventricular stiffness and impaired cardiac function can occur

during aging due to cardiomyocyte hypertrophy and fibrosis,

although the relationship between cardiac hypertrophy, fibrosis,

and telomere length remains unclear (63). Cells with telomerase

expression, such as human keratinocytes, epithelial cells, and

rodent cells, can maintain long telomeres in culture but still

undergo senescence (52, 64). Telomere attrition, but not the

inherently short leukocyte telomere length at birth, has been

found to be the main cause of leukocyte telomere shortening and

correlates with telomere length in atherosclerotic CVD

patients (65).

Additionally, studies have shown that cellular senescence is also

a characteristic of chronic stress, which can provoke premature

senescence, or so-called SIPS through internal and external

stimuli (66–69). SIPS can occur independently of telomere

shortening, although telomere shortening may be related to SIPS.

For instance, SIPS can be induced in immortalized human

foreskin fibroblasts expressing telomerase (hTERT-BJ1) exposed

to hydrogen peroxide or Ultraviolet B (45). Another example is

the induction of SIPS in renal tubular cells exposed to the urine

of patients with calcium oxalate kidney stones, likely due to

oxidative stress induced by oxalate and calcium oxalate

monohydrate (70).

RS and SIPS are induced at different time frames and regulated

by different mechanisms as reviewed elsewhere (44–47, 71).

Figure 1 provides a summary of the mechanisms involved.
3.3. Telomeric DNA damage can induce
PISP

DNA damage, as detected by the formation of g-H2AX foci

(g-foci), has been linked to cellular senescence and aging at the

organismal level. Both telomeric and non-telomeric DNA

damage have been implicated in cellular senescence. Nakamura

and colleagues have shown that g-foci related to senescence can

be found at uncapped telomeres or non-telomeric DNA damage

sites on chromosomes in both humans and mice (13). Telomeric

DNA is vulnerable to oxidation due to the low redox potential of

guanine (72). However, repair of telomeric DNA damage is less

effective and much slower than repair of genomic DNA damage,

which occurs within 24 h (73–75). This leads to long-lasting

telomeric DNA damage signaling that can induce the delay and

persistent DDR at telomeres for months (76), resulting in the
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FIGURE 1

Replicative senescence vs stress-induced premature senescence. Different inducers and down-stream effects of two types of senescence (All the figures
were made in Biorender.com).
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formation of telomere-associated DDR foci (TAF) (63). This

process occurs in aging post-mitotic cells, such as

cardiomyocytes and neurons, even though these cells have

relatively longer telomeres (73). These observations suggest that

stress-induced telomeric DNA damage and the persistent DDR

and subsequent TAF formation, not telomere shortening, can

induce PISP (77–79).
3.4. The SASP has been implicated in both
atherosclerosis and cancer

Senescent cells, including both RS and SIPS, are known to

secrete a variety of molecules that contribute to pro-

inflammatory and pro-tumorigenic environment, collectively

referred to as SASP (10, 13, 15, 80–84). These molecules include
Frontiers in Cardiovascular Medicine 05
pro-inflammatory cytokines, chemokines, growth factors, pro-

angiogenic factors, small molecules, lipids, ROS, and proteases

(69, 80, 85). The SASP is reversible, as suggested by Coppé and

colleagues (17). Unlike apoptotic and quiescent cells, SASP cells

remain metabolically active and have been found to express

significantly higher levels of glycolytic pathway enzymes such as

hexokinase, phosphoglycerate kinase, and phosphoglycerate

mutase, as well as higher glycolytic activity compared to young

cells (77, 86, 87). Furthermore, mitochondrial ROS (mtROS)

production and succinate induction are upregulated in SASP

cells, even when both oxidative phosphorylation (OXPHOS) and

glycolysis are inhibited by low dose IR without necrosis or

apoptosis (88).

In addition to their effects of neighboring cells, SASP cells can

also communicate via extracellular vesicles (EVs) (89). Activated

senescent cells can generate more functional Evs than non-
frontiersin.org
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senescent cells by upregulating p53 expression, and these Evs can

upregulate ROS induction and promote senescence in

neighboring cells (90, 91).
3.5. SAS, a distinct type of SASP, has been
found to contribute to the lasting effects of
chemotherapy

Milanovic and colleagues reported that cancer therapy-induced

senescence (TIS) can trigger the SAS proliferative phenotype in

cancer cells, allowing them to evade senescence-induced cell

cycle arrest and exhibit enhanced clonogenic growth potential

(15, 16, 20). SAS is regulated independently of cell cycle arrest

(17, 18) and cell death (13, 14, 92) and is considered a critical

mechanism in the development of resistance to cancer therapy

(13, 14, 19, 92, 93).

In addition to TIS, oncogene-induced senescence (OIS) is

another phenomenon in which oncogenes are activated in

non-tumor cells, resulting in a stable cell cycle arrest (85).

Leon and colleagues have found that OIS and overexpression

of the oncogene HRASG12V in IMR90 cells increase active

histone H3K79 di- and tri-methylation (H3K79me2/3) at the

ILIA gene locus (94). The histone methyltransferase disruptor

of telomeric silencing 1-like (DOT1l) regulates the increase in

H3K79me2/3 occupancy at the IL1A gene locus, which is

critical for IL1A expression and gene expression regulation

during OIS. However, while DOT1l is an epigenetic regulator

of the SASP, its depletion does not affect OIS-induced cell

cycle arrest, suggesting that it is not involved in SAS.

Although epigenetic changes may lead to irreversible SASP in

OIS cells (95, 96), their role in SAS remains unknown, and

additional stressors that can result in both SASP and SAS

necessitate further study.

It is important to note that, although the findings observed by

Milanovic and colleagues were made on cancer cells, it is possible

that a similar phenomenon might also occur in vascular cells,

including ECs. Both senescence and macrophage proliferation

contribute to CVD (97), and therefore, the SAS phenotype in

ECs may also play a role in CVD. Therefore, further

investigation on the role of SAS in ECs is necessary to fully

understand its contribution to atherosclerotic CVD.
3.6. DDR is a link between atherosclerosis
and resistance to cancer therapy

As we discussed above, cellular senescence has been implicated

in the development of both atherosclerosis and cancer including in

cancer survivors. At the molecular level, cellular senescence is

associated with both telomeric and non-telomeric DNA damage

in cells of the vessel wall, including ECs, triggering the DDR

pathway (98–100). DDR maintains genetic stability and cell

integrity when exposed to DNA damaging agents, such as IR and

chemotherapeutic drugs used in cancer treatments. DDR induces

cell cycle arrest for DNA repair and promote apoptosis and
Frontiers in Cardiovascular Medicine 06
senescence to prevent propagation of damaged DNA. However,

dysregulation of DDR can lead to resistance of cells to cancer

treatments, highlighting its potential as a target to enhance

sensitivity to cancer therapies (101, 102).

The major DDR pathways are regulated by the ataxia-

telangiectasia mutated and ataxia-telangiectasia and Rad3

related (ATM/ATR) pathways, which phosphorylate proteins

at DNA damage sites, including histone H2A (H2AX), to form

phosphorylated gH2AX. Additionally, ATM/ATR activate

CHK2 and CHK1, respectively (103), which prevent cells with

damaged DNA from entering mitosis, especially when cells

have a defective G1 checkpoint. However, a defective

checkpoint is common in cancer cells due to p53 mutations.

CHK1 is a potential therapeutic target, and CHK1 inhibitors

are being developed and used as single agents or in

combination with IR or genotoxic chemotherapies in

preclinical and clinical studies (104). As such, these pathways

can be targeted for further study.
4. Mechanisms involved in the
regulation of telomere protection
pathways

Cellular senescence can occur independently of telomere

shortening, highlighting the importance of understanding the

mechanisms that protect telomeres from DNA damage and

dysfunction to mitigate senescence-associated disorders and

diseases. In this section, we will explore the mechanisms involved

in the regulation of telomere protection pathways.

Chromosome ends must be shielded from damage to prevent

the acceleration of cellular senescence, which would lead to

activation of DDR and DNA damage repair machinery. This

protection is accomplished by specific factors associated with

telomeres, including telomerase, non-coding telomeric repeat-

containing RNAs (TERRA), and Shelterin (55, 105, 106).
4.1. Telomerase

Telomerase, which is comprised of a ribonucleoprotein with an

RNA subunit TERC and a reverse transcriptase enzymatic subunit

TERT, catalyzes the addition of repetitive hexanucleotide

5′-TTAGGG-3′sequences to chromosome ends. This process

known as telomere elongation (107–113). In addition to this

primary function, telomerase can also inhibit immune cell

apoptosis, protect neurons from oxidative stress, and regulate

inflammatory responses (114–119).

Furthermore, TERRA, a class of long noncoding

RNAs transcribed at telomeres, is also suggested to participate

in the protection of chromosome ends and telomeres.

However, the mechanisms of telomere protection regulated by

TERRA are yet to be fully elucidated (120). Additionally, the

Shelterin can shape, safeguard, and protect telomeres during

proliferation.
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4.2. Shelterin

In addition to telomerase and TERRA, the Shelterin complex

can shape, safeguard, and protect telomeres during proliferation.

The Shelterin complex is comprised of six proteins: TERF1,

TERF2, POT1, TIN2, TPP1, and TERF2IP, as illustrated in

Figure 2. Its primary function is to safeguard telomeres by

preserving their structure and function, ensuring genomic

stability (121, 122). In the following sections, we will examine the

specific roles of each Shelterin protein, and explore recent studies

on the emerging functions of post-translational modifications of

TERF2IP in the context of telomere protection, cellular

senescence, and potential implications in atherosclerotic CVD.

Telomere repeat-binding factor 1 and 2 (TRF1 and TRF2) are

two key components of vertebrate telomeres that share the TRF

homology domain (TRFH) and bind double-stranded telomeric

DNA as homodimers. TRFH on TRF1 and TRF2 is critical for

TRF1-TRF2 dimerization, DNA binding, telomere localization,

and modulation of TRF1-TRF2 interaction with other Shelterin

proteins (123). To study how TRF1 and TRF2 locate TTAGGG

repeats on DNA tightropes and assemble the Shelterin complex,

Lin and colleagues used single-molecule fluorescence imaging to

observe the dynamics of quantum dot (QD)-labeled TRF1 and

TRF2 on λDNA and DNA substrates containing alternating

regions of telomeric and non-telomeric sequences. They observed

that TRF1 directly binds telomeric sequences with little 1D

searching on non-telomeric DNA, while TRF2 extensive 1D

searches on non-telomeric DNA through 1D sliding to find

protein partners for assembling the Shelterin complex and

stabilizing their interaction with specific telomeric DNA (124).

Besides their central role in telomere capping, elevated TRF2

expression is frequently found in tumors. El Mai and colleagues

have demonstrated that TRF2 is expressed in the vasculature of

most human cancers, where it colocalizes with the Wilms’ tumor

suppressor (WT1). TRF2 acts as a transcriptional target of WT1

and plays an essential role in EC proliferation, migration, and

tube formation. Mechanistically, TRF2 binds and transactivates

the promoter of angiogenic tyrosine kinase platelet-derived

growth factor receptor β (PDGFRβ) through a mechanism

distinct from that of telomere capping (125).
FIGURE 2

Assembling of Shelterin. The six known components of Shelterin: TRF1, TRF2,
DNA duplexes, while POT1 binds to single-stranded DNA in the 3′ overhang re
were made in Biorender.com).
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TRF1-interacting protein 2 (TIN2) is a key protein in the

Shelterin complex, acting as a central mediator for TRF1

function. Using TRF1 as bait for interaction cloning, Kim and

colleagues demonstrated that TIN2 interacts with TRF1 and co-

localizes with it in the nucleus during metaphase chromosomes.

TIN2 also binds telomere protection protein 1 (TPP1)/protection

telomeres 1 (POT1) to regulate telomere length, telomeric

capping, and telomerase activity (122, 126). POT1 (or POT1a

and POT1b in rodents) is a single-stranded-DNA binding

protein that plays a crucial role in telomeric capping and

protection (122). In addition to modulating TRF1-TRF2

dimerization, TIN2 also acts as an adaptor protein that links

TPP1/POT1 to TRF1-TRF2 on double-stranded telomeric DNA

(127).

TTP1/POT1 are single-stranded telomeric DNA binding

proteins that play essential roles in preventing the activation of

the ATM/ATR pathways at telomeres (128–131). Although

POT1a can block the binding of replication protein A (RPA) to

telomeres, the binding affinities and abundance of TPP1/POT1a

and RPA suggests that TPP1/POT1a is unlikely to exclude RPA,

the major protein that binds single-stranded DNA. Takai and

colleagues demonstrated that TIN2 deletion triggers the loss of

telomere TPP1/POT1a, accumulation of RPA, and ATR

activation, accompanied by all phenotypes provoked by POT1a/b

deletion. While TIN2 has a minor role in TRF2-induced

inhibition of ATM pathways (but not TRF2-induced inhibition

of telomere fusions), it has a key role in TTP1/POT1-dependent

inhibition of ATR pathways via stabilizing TPP1/POT1a on

single-stranded telomeric DNA. This stabilization allows for

effective exclusion of RPA and thus prevents ATR activation

(128, 130, 131). Together, these observations indicate that TIN2

inhibits ATM/ATR, the two major DNA damage repair

pathways, by stabilizing TRF2 on double-stranded telomeric

DNA and stabilizing TPP1/POT1 on single-stranded-DNA

overhang, respectively (130–133).

Of the six Shelterin proteins, TRF1-TRF2 bind double-stranded

telomeric DNA through the C-terminal Myb domain and recruit

TERF2IP, TIN2, TPP1, and POT1 for assembling the Shelterin

complex (41). Among the six Shelterin proteins, TERF2IP, also

known as repressor activator protein 1 (RAP1), is one of the
TERF2IP (RAP1), TIN2, TPP1, and POT1. TRF1 and TRF2 bind to telomeric
gion. TERF2IP binds TRF2 and does not directly bind DNA (All the figures
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most conserved proteins and directly binds TRF2 (55, 106, 122,

134).

The Shelterin complex is a promising target for

chemotherapeutics. Table 4 provides a summary of the

chemotherapeutics that have been used to target the Shelterin

complex (135) (see Table 4).
4.2.1. TRF1 and TRF2
To bind double-stranded telomeric DNA, TRF1 and TRF2

associate with TIN2, which stabilizes the telomeric localization of

TRF1 and TRF2. Although TRF1 and TRF2 share similarities in

structure and form TRF1-TRF2 dimers, their key functions are

distinct from each other (141, 142). TRF1 negatively regulates

telomerase-mediated telomere elongation to maintain telomeric

homeostasis (143, 144). TRF1 depletion revealed TRF1 is a

regulator of Shelterin localization on telomeres and maintenance

of telomere functional structures. Martínez and colleagues have

shown that conditional deletion of TRF1 in mouse embryonic

fibroblasts is sufficient to induce severe telomeric damage

without telomere shortening. These cells, in the absence of TRF1,

rapidly underwent cellular senescence and had increased

telomeric γH2AX foci and activation of the cell-cycle checkpoint

kinase 2 and 1 (CHK2 and CHK1), which are known

downstream targets for the ATM/ATR pathways, which is known

as the major DDR pathways (145). Chromosomes with longer

telomeric ends allow more TRF1 proteins to bind to telomeres,

thereby inhibiting telomerase activity and suppressing telomere

elongation. After multiple rounds of DNA replication, telomeric

ends become shorter, which decreases TRF1 binding to telomeric

ends and allows telomerase to activate telomere elongation. In

aged ECs, both TRF1 mRNA and protein expression are

decreased compared to that of young ECs (146–148).

TRF2, on the other hand, functions as a telomere capping

protein and is involved in protecting chromosome ends from

being recognized as DNA damage site, which can lead to

genomic instability. In addition to its role in telomere attachment

to nuclear membrane (149), TRF2 also plays a critical role in

preventing telomere fusion and recombination. TRF2 depletion

evokes telomere uncapping, leading to the activation of telomere

dysfunctional DDR and induction of cellular senescence and

oxidative stress, independent of telomerase activity (150).

Specifically, TRF2 depletion rapidly induces end-to-end fusion,

cellular senescence (147, 148), and cell death by activating the
TABLE 4 Chemotherapeutics targeting Shelterin complex (135).

Name of the
chemotherapy

Cancers Targeted Shelterin
complex on telomere

RHPS4 and derivatives Brain tumor (136) Delocalization of TRF2, POT1

BRACO19 Glioblastoma (137) TRF1, TRF2, POT1,
downregulation of POT1

Dihydroartemisinin
(DHA)

Esophageal cancer
(138)

TRF2 downregulation

Telomestatin Fibrosarcoma (in
vitro study) (139)

Inhibit POT1 binding to
telemere

AKT inhibitors Glioblastoma (140) Inhibition of TRF1
phosphorylation
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ATM/ATR pathways (145, 151, 152). In patients with heart

failure, low TRF2 expression levels are associated with telomere

shortening in cardiomycytes (153). These observations all

together have demonstrated critical roles for both TRF1 and

TRF2 in senescence and genomic instability (122, 154).

4.2.2. TIN2
TIN2 serves as an adaptor protein for TRF1 and helps in

stabilizing the telomeric localization of TRF1 and TRF2 (126).

Additionally, TIN2 interacts with TPP1 through its TPP1

interacting domain, which connects TIN2 to POT1, facilitating

the telomeric localization of the TPP1-POT1 complex (122).

TIN2 contains a mitochondrial localization domain at its

N-terminus (155, 156), allowing it to translocate to

mitochondria, where it undergoes post-translational

modifications and regulates mitochondrial OXPHOS (155, 156).

Depletion of TIN2 using short hairpin RNA (shRNA) prevents

glycolysis and enhances OXPHOS, leading to a decrease in ROS

synthesis (155). Conversely, TIN2 accumulation in mitochondria

leads to an increase in ROS synthesis, promoting cellular

senescence. Lee and colleagues have demonstrated that the RNA

binding protein Human antigen R (HuR) binds to the 3′-
untranslated region of TIN2 mRNA and inhibits TIN2 protein

synthesis (157). During RS, diminished expression of HuR leads

to increased stabilization of TIN2 mRNA, resulting in enhanced

TIN2 protein synthesis, mitochondrial translocation, and

acceleration of ROS synthesis and cellular senescence (157).

Given the critical roles of mitochondrial metabolism and

respiration in age- and stress-induced senescence (158, 159), the

involvement of TNI2 in this process is of great interest and

deserves further investigation.

4.2.3. TPP1
TTP1 binds TIN2, which tethers TIN2 to POT1 (122) and

enhances POT1’s binding affinity to single-stranded telomeric

DNA (160–162). POT1 then recruits telomerase to telomeric

ends by interacting with the telomerase N-terminal OB domain

and TERT, the telomerase catalytic subunit (162). Sirtuin 1, a

nicotinamide dinucleotide (NAD+)-dependent deacetylase, have

been shown by Chen and colleagues to protect mesenchymal

stem cells from senescence by mediating TPP1 expression,

suggesting TPP1’s involvement in cellular senescence (163).

Additionally, Min and colleagues suggested that suppression of

TPP1 expression leads to mitochondrial dysfunction and

deregulated mitochondrial-ribosome function, which leads to

telomere deprotection and RS in human diploid fibroblasts (164).

4.2.4. POT1
POT1 is considered a terminal transducer of TRF1-mediated

telomere length regulation because it directly binds the 3′ single

stranded G-overhang of telomeres, preventing telomerase access

to telomeres (see Figure 2) (165). In addition to its telomere-

protective functions, POT1 also binds to TPP1 and double-

stranded DNA damage sites to suppress non-homologous end

joining (NHEJ) and protect DNA from double-stranded breaks

(166). Human POT1 has been shown to protect telomeric ends
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and regulate telomerase activity by displacing/replacing the

G-quadruplex structure (167). POT1 mutations have been detected

in various cancers including chronic lymphocytic leukemia,

glioma, melanoma, angiosarcoma, and colorectal cancer (168). The

most common mutations are found in the OB-fold domains at the

N-terminus, which disrupts POT1 binding to telomeric ends

(168). A recent study by Kelich and colleagues showed that a

POT1 heterozygous mutation p(L259S) in a patient with

idiopathic pulmonary fibrosis can drive telomere loss, telomere

DNA damage, and pre-mature senescence (169). In mice, there

are two homologues of human POT1, POT1a and POT1b, and

knock-out studies suggested that POT1 is involved in protecting

telomere single-stranded DNA from end-to-end fusion.

4.2.5. TERF2IP
TERF2IP, also known as RAP1, plays a crucial role in several

biological processes, including telomere protection, homology-

directed repair (HDR) regulation, inflammation, and metabolism

(170, 171). TERF2IP binds telomeres through its association with

TRF2, which enhances TRF2 binding to telomeres (172, 173). The

TRF2-TERF2IP complex prevents the telomeric localization of

Poly [ADP-ribose] polymerase 1 (PARP1) and structure-specific

endonuclease subunit (SLX4) and thereby inhibits homologous

recombination (HR)-triggered telomere attrition. Deletion of

TERF2IP and TRF2 leads to the recruitment of PARP1 and SLX4

to telomeres, resulting in the recruitment of additional HR factors

such as DNA repair protein RAD51, Exonuclease I (EXOI), and

the MRN complex to telomeres (172). The role of TERF2IP in the

development of premature senescence has been investigated in

progeroid mice (77, 174). TERF2IP protects telomeres from NHEJ

in both yeast and humans (175, 176), independently of its

association with TRF2 (176). In senescent human cells, TERF2IP

prevents fusion of critically short telomeres, thereby protecting

telomeres (177) and regulates sub-telomeric transcription. In

senescent cells with critically short telomeres, TERF2IP re-localizes

to sub-telomeric regions and binds to the promoters of a group of

genes called new Rap1 targets at senescence (NRTS), promoting

loss of histones and activating a cascade of other genes in NRTS

(178, 179).
4.3. Nitric oxide (NO) activates telomerase
and delays EC senescence and the role of
tetrahydrobiopterin (BH4)

4.3.1. NO signaling
NO has a crucial role in various physiological and pathological

processes in the human body, including protecting telomeres from

shortening, damage, and dysfunction by regulating telomerase

activity, thus protecting cells from senescence. Additionally, NO

can prevent DNA damage and oxidative stress, which can also

contribute to telomere shortening and dysfunction. Exogenous

NO has been demonstrated to delay EC senescence in culture,

suggesting that telomere shortening can be modulated beyond

the number of cellular divisions. The mechanism by which NO

stimulates telomerase activity is not yet fully understood, but it
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may react with tissue-derived oxygen radicals, thereby reducing

oxidative stress, which has been shown to accelerate EC

senescence. Alternatively, NO may upregulate telomerase activity

via transcriptional and/or posttranscriptional mechanisms (180).

NO has important cardioprotective and anti-inflammatory

effects, as it inhibits vascular wall apoptosis and lipid oxidation,

prevents VSMC growth, and inhibits white blood cell adhesion

and platelet aggregation. Additionally, NO induces blood vessel

dilation, which is a vital mediator of vascular tone (181, 182).

The integrity of EC function, including their capability to

proliferate and migrate, is essential for angiogenesis. Therefore,

EC senescence and the subsequent reduction in their proliferative

ability may contribute to compromised angiogenesis associated

with age. Additionally, senescent ECs express adhesion molecules

that promote neutrophil adhesion and inflammation, enhancing

the chronic inflammatory process that contributes to the

progression of atherosclerosis.

Conversely, endothelial NO is essential for angiogenesis and

protects against atherosclerosis. However, the bioavailability of

endothelial-derived NO is impaired with aging, which may

accelerate EC senescence, impairing EC function and contributing to

impaired angiogenesis and atherosclerotic progression (180, 183–186).

4.3.2. The impact of BH4 levels in anti-cancer
treatment and their association with
atherosclerotic CVD and the potential clinical
applications

BH4 is an essential cofactor involved in several important

enzymatic processes. It plays a vital role in the synthesis of

neurotransmitters such as adrenaline, noradrenaline, serotonin,

and dopamine, and participate in the degradation of

phenylalanine (187). Additionally, BH4 serves as a cofactor for

NOS3, which is responsible for the production of NO through

the oxidation of L-Arginine to L-citrulline (188, 189).

Supplementation with BH4 has been shown to have beneficial

effects in improving conditions like hypertension and cardiac

dysfunctions. By supporting NOS3 function, BH4 promotes the

production of NO, thereby improving cardiovascular health (190).

However, under UV radiation or infrared exposure, BH4 can

be oxidized to dihydrobiopterin (BH2), which can stimulate the

production of higher levels of superoxide by eNOS. This

oxidative process can lead to increased oxidative stress and

potentially impact EC function (188). ECs have two pathways for

synthesizing BH4: de novo synthesis from guanosine triphosphate

(GTP) and a salvage pathway that involves recycling BH2 and

quinoid-dihydrobiopterin (181, 191). These pathways are crucial

for maintaining BH4 levels in ECs, which are essential for

physiological processes and NO production, regulating EC

function and vascular homeostasis.

Age-related studies have shown a decrease in vascular BH4

levels in animal models (192, 193), while in humans, aging has

been observed to increase platelet and plasma BH2 levels without

affecting BH4 levels or the BH4:BH2 ratio (182). This suggests

increased oxidation of BH4 into BH2 with aging due to oxidative

processes. Inhibiting the enzyme responsible for BH4 to BH2

conversion, such as with methotrexate treatment, leads to
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increased BH2 plasma levels, highlighting the importance of the

BH4 recovery pathway for maintaining BH4 homeostasis (187,

194–196). Alterations in BH4 levels have been found to correlate

with vascular dysfunction in ECs (188). In the context of tumor

progression, BH4 promotes angiogenesis by activating eNOS for

NO production (197). Conversely, inhibiting BH4 has been

shown to attenuate tumor angiogenesis in a mouse model of

hepatocellular carcinoma (198) (Figure 3). The changes in BH4

levels resulting from anti-cancer therapy and their potential

impact on atherosclerotic CVD are summarized in Figure 3.

These findings suggest that BH4 levels play a significant role in

various physiological and pathological processes, including cancer

progression and cardiovascular health. Further research is needed

to fully understand the complex interactions and potential

therapeutic implications of BH4 in cancer treatment and CVD.
5. The critical role of EC senescence in
the development of atherosclerosis in
cancer survivors

It is noteworthy that senescent ECs have been identified in

human atherosclerotic plaques and have impaired function, such
FIGURE 3

Chemotherapy or radiation therapy regulates BH4 levels and their association
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as reduced NO production and increased adhesion molecule

expression, which can contribute to EC dysfunction and plaque

formation (36, 174). The vascular system is crucial for

maintaining health and survival (199, 200), and ECs plays a vital

role in regulating vascular homeostasis. ECs line the luminal

surface of blood vessels and dynamically respond to

hemodynamic fluctuations to modulate blood flow. They also

mediate the interaction of circulating blood components with the

vessel wall and facilitate gas and nutrient exchange between the

blood and tissues (71, 201). However, various stress stimuli, such

as d-flow, increased production of ROS, DNA damage,

mitochondrial dysfunction, exposure to inflammatory cytokines,

cancer therapies, and activation of oncogenes, can induce EC

senescence, adversely affecting these homeostatic functions,

disrupting vascular integrity, and impairing their function (202).

The impairment of EC functions is an initial step in the

progression of atherosclerotic CVD, which is linked to the aging

process and a senescent phenotype in these cells. This can lead to

disrupted permeability and pathological signaling cues, as

evidenced by numerous studies (71, 203–205). Cancer therapy is a

stress state that can induce EC senescence and subsequent vascular

dysfunction, increasing the risk of atherosclerotic CVD (206). In

ECs, therapy-induced senescence (TIS) is associated with chronic
with atherosclerotic CVD (All the figures were made in Biorender.com).
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inflammation and the development of atherosclerotic lesions (11),

which tend to occur in regions of the vasculature with d-flow

(207). Notably, d-flow induces endothelial-to-mesenchymal

transition (endoMT) through the transforming growth factor β

(TGFß) signaling pathway (208), and this transition becomes pro-

atherosclerotic through the deposition of fibronectin, increased

expression of adhesion proteins, and recruitment of inflammatory

cells (208).

Moreover, it is crucial to note that radiation therapy, a

commonly cancer treatment, directly induces endoMT (209),

which is accelerated by oxLDL and ultimately leads to

atherosclerotic plaque formation (209). This endoMT not only

leads to cardiovascular complications in cancer patient but also

contributes to the development and progression of cancer-

associated fibroblasts (CAFs) (210). It has been well-established

that cancer and its therapies can induce or accelerate the aging

process, which may explain the association between atherosclerotic

CVD and cancer. Therefore, understanding the molecular

mechanisms underlying EC senescence in atherosclerosis in cancer

survivors is crucial to develop effective therapies for these conditions.
5.1. EndoMT

ECs can undergo a process called endoMT, which leads to their

trans-differentiation into mesenchymal cells (211, 212). During this
FIGURE 4

Extracellular stimuli induce endoMT. External stimuli such as radiotherapy, chem
ECs into mesenchymal cells, characterized by the enhanced expression of mese
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process, ECs lose their characteristic features and acquire a

mesenchymal phenotype. EC-specific genes such as Cluster of

Differentiation 31 [CD31 or Platelet Endothelial Cell Adhesion

Molecule 1 (PECAM1)], Vascular Endothelial Cadherin

(VE-Cadherin or CDH5), Von Willebrand Factor (vWF),

Tyrosine Kinase with Immunoglobulin-like and EGF-like

domains 1 (TIE1), and TEK Receptor Tyrosine Kinase (TIE2) are

downregulated (27, 211, 213), while mesenchymal cell-specific

genes such as α-smooth muscle actin [αSMA or Smooth Muscle

22α (SM22α)], Extra Domain A (EDA) of Fibronectin,

N-cadherin, Vimentin, Fibroblast Specific Protein 1 (FSP1),

Fibroblast Activating Protein (FAP), and Calponin are

upregulated (27, 213) (see Figure 4).

Inflammatory mediators such as IL1β, TNFα, and NFκB

cause EC dysfunction, leading to endoMT, which is the link

between inflammation and EC inflammation-associated

disorders (212). Recent studies have shown that ECs can also

undergo a transient stage called partial or intermediate endoMT

(see Figure 4) before being completely transformed into

mesenchymal cells (214, 215). Tombor and colleagues showed

that ECs are transiently transformed into mesenchymal-like

cells with mesenchymal gene expression three days after

myocardial infarction but return to their baseline phenotype

within 14 days (214). “Transitioning” cells detected in human

plaques co-expressed EC and mesenchymal genes involved in

endoMT (216).
otherapy, d-flow, and inflammatory signals can trigger the transformation of
nchymal cell-specific markers (All the figures were made in Biorender.com).
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5.1.1. EndoMT contributes to atherosclerosis
EndoMT is essential during embryonic cardiac development

and wound healing. However, dysregulated endoMT has been

shown to contribute to atherogenesis (208, 216–219), which can

cause flow-limiting lesions and ischemia in various organs, such

as the heart, brain, and limbs, leading to angina, transient

ischemic attacks and intermittent claudication. Plaque rupture,

which can lead to acute ischemic syndromes such as myocardial

infarction and cerebrovascular attack, is a common mechanism

underlying atherosclerosis and driven by thinning of the fibrous

cap induced by MMPs (220, 221). EndoMT-derived fibroblast-

like cells are commonly present in atherosclerotic plaques and

have been associated with plaque stability and rupture, as shown

by Evrard and colleagues using EC-specific lineage tracing (212,

221–224). In vitro studies have revealed that various processes

contributing to atherosclerosis, including TGFβ signaling,

oxidative stress, and hypoxia, can activate endoMT (216).
5.1.2. EndoMT contributes to the development of
CAFs

Myofibroblasts and perivascular mesenchymal cells, such as

pericytes, have been implicated in cancer development and

progression by promoting growth, metastasis, and chemotherapy

resistance (210). CAFs in the tumor microenvironment (TME)

secrete a variety of growth factors (EGF, HGF, IGF1, SDF1),

cytokines (IL1, IL6, IL8, IL11, LIF), chemokines, and proangiogenic

factors (VEGFA, SDF1, FGF2, IL8, PDGFC), which can cause a

rewiring of cellular metabolism, provoke a SASP status in senescent

cancer cells, and ultimately promote cancer progression by

transforming the TME into a dense and fibrotic structure (210).

Zeisberg and colleagues have shown that TGFβ1 can promote

endoMT in proliferating ECs, leading to upregulation of the

mesenchymal marker FSP1 and downregulation of CD31/

PECAM1. Furthermore, up to 40% of CAFs in murine models of

melanoma and pancreatic carcinoma are derived from ECs via

endoMT (225, 226). Anti-angiogenic therapy has also been

shown to have a direct effect on reducing myofibroblasts and

potentially hindering cancer progression (213, 225).

In atherosclerotic CVD, endoMT promotes the accumulation

of mesenchymal cells in the sub-EC spaces, which contribute to

the development of fibrous plaques. Similarly, in cancer, endoMT

can promote tumor invasion and metastasis by enhancing

cancer cell migration and invasion and increasing the number

of cancer stem cells. Furthermore, endoMT has been implicated

in cancer therapy resistance. Therefore, understanding the

molecular mechanisms that regulate endoMT in atherosclerotic

CVD and cancer survivors could lead to the development of

novel therapies to prevent both diseases (220, 221).
5.2. Mechanisms of endoMT-induced
atherosclerosis and cancer

There are various shared pathways in cancer and

atherosclerosis development. These include TGFß signaling (227,
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228), bone morphogenetic proteins (BMPs) (229), and NOTCH

(230). SUMOylation appears to regulate the TGFß (231) and

SMAD (232) pathways and contribute to endoMT as well as

both cancer and atherosclerotic CVD development and

progression.

EndoMT-induced atherosclerotic CVD and cancer share

several mechanisms that contribute to disease progression. Both

diseases involve the accumulation of fibroblast-like cells that

contribute to disease development and progression (233–239). In

atherosclerosis, endoMT-derived fibroblast-like cells contribute to

plaque instability and rupture (220, 221, 233–238), while in

cancer, CAFs promote tumor growth, angiogenesis, and

chemotherapy resistance (240, 241). Both diseases are associated

with chronic inflammation, which can promote endoMT in

atherosclerosis and CAF activation in cancer (242–245). Both

diseases involve alterations in cellular metabolism, with endoMT

and CAF contribute to the rewiring of cellular metabolism to

promote disease progression (246–248). Finally, both diseases

involve dysregulation of signaling pathways such as TGFβ, BMPs,

NOTCH, which promotes endoMT in atherosclerosis and is a

key regulator of CAF activation in cancer (211, 227, 228).
5.2.1. TGFβ
Numerous types of cancer, including melanoma, esophageal

carcinoma, and colon carcinoma secrete the soluble factor TGFβ

(211, 227, 228). Inflammatory cytokines and d-flow inhibit

FGFR1 expression in ECs, leading to activation of the TGFβ

pathway, as reported by Chen and colleagues (208). Activated

TGFβ signaling upregulates the expression of transcription

factors (SNAIL, SLUG, and ZEB1), which, in turn, upregulates

the expression of mesenchymal genes (αSMA orSM22α,

calponin, vimentin, type I collagen, fibronectin, FSP1,

N-cadherin, and MMP2/9) (212). TGFβ ligands secreted by

TGFβ-producing cells bind the transmembrane TGFβRs, which

are comprised of TGFβR1 (or ALK5) and TGFβR2 (213). This

ligand-receptor association leads to the formation of the

TGFβR1/2 heterodimer and the subsequent TGFβR2 auto-

phosphorylation, which trans-phosphorylates TGFβR1 at specific

sites, forming the active TGFβR1/2 complex. Activated TGFβR1/

2 phosphorylates cytoplasmic small mothers against

decapentaplegic SMAD2/3, promoting the nuclear translocation

of SMAD2/3, where it binds the SMAD binding element of

TGFβ target genes (such as SNAIL, SLUG, ZEB, TWIST) to

upregulate their transcription (see Figure 5) (213, 249). In a

SMAD-independent pathway, activated TGFβ signaling leads to

the activation of the mitogen-activated protein kinase (MAPK)

family of serine/threonine-specific protein kinases (ERK1/2,

p38MAPK, JNK, and ERK5) (213). Medici and colleagues

reported that TGFβ inhibition leads to the activation of SMAD,

MEK (MAPK/ERK kinase), phosphoinositide 3-kinase (PI3K)

and p38MAPK pathways, suppressing TGFβ-mediated endoMT

via downregulating SNAIL expression (250). These findings

suggest that activated TGFβ signaling plays a critical role in

atherosclerotic CVD, cancer, and other fibrotic diseases by

activating endoMT and fibroproliferative pathways (213).
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FIGURE 5

TGFβ signaling in endoMT. The TGFβ signaling pathway plays a crucial role in endoMT. Cancer cells secrete TGFβ ligands, which bind to TGFβR1 (ALK5)
and TGFβR2 receptors present on ECs. This ligand-receptor binding initiates the formation of TGFβR1-TGFβR2 heterodimers, leading to the
autophosphorylation of TGFβR2. Phosphorylated TGFβR2, in turn, phosphorylates TGFβR1, resulting in the activation of the TGFβR1/2 complex. The
activated TGFβR1/2 complex transmits signals through both SMAD-dependent and SMAD-independent pathways. In the SMAD-dependent pathway,
cytoplasmic SMAD2/3 proteins are phosphorylated by the activated TGFβR1/2 complex. Phosphorylated SMAD2/3 proteins then translocate to the
nucleus, where they bind to specific SMAD binding elements (SNAIL, SLUG, ZEB, TWIST, FSP1, COLS3). This binding regulates the expression of genes
involved in endoMT. In the SMAD-independent pathway, the activated TGFβR1/2 complex can also propagate signals through the activation of ERK,
p38MAPK, and JNK signaling pathways. These pathways contribute to TGFβ-mediated effects on endoMT, CVD, fibrosis, and cancer progression.
Overall, TGFβ signaling activation induces endoMT and is involved in various pathological processes, including CVD, fibrosis, and cancer progression
(All the figures were made in Biorender.com).

Banerjee et al. 10.3389/fcvm.2023.1186679
5.2.2. BMPs
More than a dozen members of the BMP family, which belong

to the TGFβ superfamily, have been identified. The balance

between BMP and TGFβ is critical for maintaining tissue

homeostasis. BMP expression is altered in various types of

cancer, including hepatocellular, renal, colorectal, lung, breast,

prostate, endometrial, and head and neck cancers (251). BMP

binds BMP cell surface receptor type 1/2 (BMPR1/2) and

activates serine/threonine kinases, playing multifunctional roles
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in different cell types (251, 252). Following ligand-receptor

binding, BMPR2 oligomerizes with BMPR1(ALK1) and

phosphorylates SMAD1/5/8. In ECs, BMP binds BMPR2 and

suppresses TGFβ-induced endoMT. In patients with pulmonary

arterial hypertension, loss of EC BMPR2 leads to the formation

of a mixed heterodimeric BMPR1/TGFβR1/TGFβR2 complex,

which activates downstream TGFβ-SMAD1/5 signaling. Activated

TGFβ induces SMAD2/3 signaling by a high-affinity binding to

the TGFβR2-TGFβR1(ALK5) heterodimer. Additionally, TGFβ
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activates a lateral SMAD1/5 signaling by complexing with

TGFβR2/TGFβR1/BMPR1 (ALK1) and inducing endoMT

(229, 253, 254).

5.2.3. NOTCH
NOTCH signaling plays important roles in both the

development and pathology of the cardiac system. Mammals

possess four receptors (NOTCH1/2/3/4) and five ligands (delta-

like ligand 1/3/4 (DLL1/3/4) and Jagged 1/2 (JAG1/2)) (255).

Upon ligand-receptor binding, enzymatic cleavages by ADAM10

and γ-secretase generate the NOTCH intracellular domain, which

translocates to the nucleus, binds to the transcription factor CSL,

and activates the transcription of NOTCH target genes (256).

Recent studies have suggested the involvement of NOTCH

signaling in endoMT (230). Noseda and colleagues have reported

that EC NOTCH activation downregulates the expression of

EC-specific genes (VE-cad, Tie1, Tie2, PECAM1, eNOS) and

upregulates the expression of mesenchymal-specific genes

(αSMA, fibronectin, PDGFRs), suggesting its role in endoMT

development. This finding is supported by another study by

Niessen and colleagues, demonstrating that EC NOTCH

activation induces SLUG expression and endoMT (257).

Additionally, NOTCH signaling has been implicated in

atherosclerosis (258). TGFβ and NOTCH signaling act in a

synergistic fashion during endoMT development, with TGFβ

upregulating expression of NOTCH target genes such as JAG1,

the receptor NOTCH1, N1ICD, and recombination signal

binding protein J kappa (RBPJK)) (27, 259).
5.3. SUMOylation regulates
endoMT-associated signaling

SUMOylation is involved in regulating many essential cellular

processes, including those in the nucleus such as transcriptional

activity, chromatin remodeling, and DDR (231, 260–263). It

also occurs in the cytoplasmic compartment, particularly at

intracellular membranes (264). One example of this is the

regulation of the dynamin related GTPase DRP1, which

mediates mitochondrial fission upon recruitment to the outer

mitochondrial membrane (265, 266). Dysregulation of DRP1

SUMOylation affects mitochondrial division and has been

associated with brain ischemia (267). Another important

substrate of SUMOylation is the cystic fibrosis transmembrane

conductance regulator (CFTR) is. Normally, CFTR resides in

the plasma membrane, but its most common mutant form

associated with cystic fibrosis contains a destabilizing

phenylalanine deletion at position 508 (ΔF508) that causes

protein degradation at the endoplasmic reticulum membrane

(268). The degradation of ΔF508 is mediated by the ubiquitin-

proteasome pathway but also involves SUMOylation (269).

SUMOylation modulates the activity of multiple ion channels,

including Kv7 potassium channels in hippocampal neurons

linked to epilepsy and sudden death (270). Additionally, studies

have shown SUMOylation regulates endoMT-associated
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signaling pathways, which are involved in the pathological

progression of several diseases, including atherosclerosis and

cancer.
5.3.1. TGFβ
TGFβ signaling is regulated at various levels, including TGFβR

activation and post-translation modifications (271). TGFβ

SUMOylation plays a critical role in epithelial to mesenchymal

transition, which is similar to endoMT (231). As studies have

shown that flow exerts profound effects on SUMOylation in

atherosclerotic CVD (262, 272), we discuss the potential

contributions of TGFβ SUMOylation to endoMT under flow

conditions.

The TGFβ signaling cascade begins with TGFβR1/2

dimerization followed by TGFβ activation. Activated TGFβR1/2

promotes TGFβR1 K389 SUMOylation, which enhances TGFβR-

SMAD association and SMAD2/3 phosphorylation (273). TGFβR

SUMOylation also increases the metastasis and invasiveness of

tumor cells. SENP2 inhibits TGFβR1 SUMOylation, thus

suppressing TGFβ-induced epithelial to mesenchymal transition

in bladder cancer (274). SENP2 overexpression in invasive

bladder cancer cells, T24, suppresses TGFβ-mediated SMAD2/3

phosphorylation, downregulates the expression of mesenchymal

markers N-cadherin and fibronectin, and inhibits epithelial to

mesenchymal transition (274). Although we have reported the

role of d-flow-induced SENP2 nuclear export on SUMOylation

of ERK5 and p53 (263), there are no reports on flow effects on

SENP2-regulated TGFβ/SMAD signaling. This area can be a

subject of future studies.
5.3.2. SMAD
The SMAD family of proteins is divided into three

subfamilies: receptor-activated SMADs (r-SMADs, including

SMAD1/2/3/5/8), common mediator SMADs (Co-SMADs), and

inhibitory SMADs (iSMADs including SMAD6/7) (275).

R-SMADs are activated by specific ligand-receptor binding,

such as TGFβR, and play a crucial role in transmitting signals

from the receptor to the nucleus. iSMADs act as negative

regulators of TGFβ signaling by inhibiting r-SMAD activation

(276). rSMAD SUMOylation can modulate their function and

activity by altering their subcellular localization, stability, and

interaction with other proteins. For example, SUMOylation of

SMAD4 at K113 and K159 increases its transcriptional activity

by promoting interaction with histone acetyltransferase p300.

SENP1/2 regulate TGFβ-induced epithelial to mesenchymal

transition by inhibiting SMAD4 SUMOylation (277, 278).

SMAD3 SUMOylation inhibits its transcriptional activity by

promoting degradation. iSMAD SUMOylation can also

modulate their function and stability; for instance, SMAD7

SUMOylation increases its inhibitory activity by promoting its

stability and preventing proteasome-mediated degradation,

while SMAD6 SUMOylation promotes its degradation and

reduce its inhibitory activity (see Figure 6).
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FIGURE 6

Regulation of TGFβ signaling by SUMOylation (All the figures were made in Biorender.com).
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6. The role of blood flow in cellular
senescence and the development of
atherosclerosis in cancer survivors

ECs play a crucial role as transducers between blood flow

mechanics and cellular signaling pathways in both physiological

and pathological conditions. Mechano-sensors on the surface of

ECs sense changes in blood flow and transduce these mechanical

forces into biochemical signals, subsequently activating cellular

responses that regulate downstream events (279). Hemodynamic

shear stress, which is the frictional force generated by

intraluminal blood flow on the surface of ECs, influences the

formation of atherosclerotic plaque. Hemodynamic stress is

expressed as a force per wall area (280, 281), but different

patterns of shear stress can occur depending on the morphology

of blood vessels. These patterns can be categorized as either

linear or laminar flow (l-flow, also referred to as s-flow or u-flow

in our previous publications) (282, 283) or d-flow, which is

characterized by the recirculation of blood in vessel bends,
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branches, and bifurcations. These distinct flow patterns can have

different effects on the secretory function and morphology of

ECs. L-flow and d-flow have opposite effects on ECs and have

been implicated in various cellular processes (71, 213, 284–286).
6.1. Blood flow in atherosclerosis

6.1.1. L-flow inhibits atherosclerosis
In regions of l-flow, ECs aligned longitudinally in the direction

of blood flow and secrete factors for vasodilation and

anticoagulation. L-flow promotes the generation of NO and

expression of downstream molecules that improve vascular injury

and suppress inflammation, making it an atheroprotective

mechanical force that maintain EC homeostasis and function

(191). This is accomplished in part through the activation of

extracellular-signal regulated kinase 5 (ERK5), which increases

endothelial nitric oxide synthase (eNOS) expression and inhibits

EC inflammation (272, 287).
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Studies on cultured human aortic ECs have shown that

l-flow downregulates proliferation- and inflammation-related

genes and upregulates survival-, angiogenesis- (e.g., tyrosine-

protein kinase receptor Tie2 and vascular endothelial growth

factor receptor Flk1) and vascular remodeling- (e.g., MMP1)

related genes (288). This suggests that l-flow maintains a non-

proliferative and non-inflammatory EC gene expression profile.

L-flow increases NO levels immediately through stimulation

of eNOS, and long-term exposure can lead to increased mRNA

and protein expression of eNOS. Acute eNOS activation could

result from a shear-stress-derived intracellular calcium

increase, which enhances calmodulin binding to eNOS.

Nonetheless, eNOS phosphorylation by various

phosphorylases, including PI3K/AKT, adenylate cyclase, and

protein kinase A (PKA) have also been involved in the rapid

response to l-flow (289). Long-term l-flow-dependent eNOS

activation has been linked to SIRT1, a histone deacetylase, and

its interaction with AMPK, as well as to various transcription

factors that ultimately upregulate eNOS expression, such as

KLF2 (290).

Furthermore, the resulting high shear stress has been found

to increase BH4 levels by stimulating the first and rate-limiting

step of its synthesis, GCH1. L-flow resulted in a ∼30-fold
increase in GCH1 activity produced through phosphorylation

of serine 81 by the α’ subunit of casein kinase 2 (CK2), but

did not produce increased protein expression, indicating BH4’s

short-term role in l-flow-associated NO synthesis. This, in

turn, increases levels of NO and promotes an overall

cardioprotective effect (291).
FIGURE 7

D-flow promotes endoMT (All the figures were made in Biorender.com).
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6.1.2. D-flow promotes atherosclerosis
In regions of d-flow, ECs undergo several changes including

becoming polygonal and poorly aligned and undergo senescence

and apoptosis. Moreover, they also secrete factors that lead to

vasoconstriction and coagulation, promoting the generation of

ROS, platelet aggregation, EC activation, senescence,

inflammation, dysfunction, permeability, and endoMT as

depicted in Figure 7 (207, 292, 293). This disruption of EC

homeostasis (294) and proatherogenic signaling can worsen

atherosclerotic CVD (207, 292). D-flow is a well-known stress

stimulus that can cause vascular senescence, and several

mechanisms such as endoMT (208), NO synthesis, telomere

shortening (295, 296), oxidative stress (188), and chronic

inflammation (297) have been proposed to explain how d-flow

mediate atherosclerotic plaque formation (293, 298–302).
6.1.3. D-flow induces endoMT
D-flow and l-flow have different effects on the accessibility of

transcription factor binding motifs and cis-regulatory elements,

leading to differential regulation of EC-specific gene expression at

both genomic and epigenomic levels. Downstream factors, such as

kruppel-like factors 2/4 (KLF2/4), are enriched in ECs exposed to l-

flow, while known transcription factor binding motifs (RELA, Fos/

Jun, and TEAD1) and novel transcription factor binding motifs

(TEF, ETV3, and STAT1) are enriched in ECs exposed to d-flow (286).

Research using single-cell RNA-seq and single-cell assay for

transposase accessible chromatin sequencing (ATACseq) in mice

after partial carotid ligation showed that d-flow can reprogram
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ECs from athero-protective cells to atherogenic proinflammatory

cells, endoMT cells, hematopoietic stem cells, endothelial

progenitor cells, and cells with immune cell-like phenotypes

(286). Mechanistically, d-flow can activate the TGFβR1 (ALK5)

mechano-sensor in ECs, leading to downstream activation of

molecules involved in d-flow-mediated endoMT, including

TGFβR1-associated Src homology and collagen (Shc) (279).

D-flow also promotes BMP4 production through Nox1-based

NADPH oxidase, subsequently increasing ROS synthesis, a

potential activator of endoMT (213, 303, 304) (see Figure 7). By

contrast, l-flow prevents endoMT by upregulating the expression

of extracellular matrix protein tenascin-X through KLF4 in

mouse and human ECs, which binds TGFβ and hinders TGFβ-

TGFβRs binding, thereby suppressing TGFβ-induced endoMT

and atherogenesis (305).

Through a series of in vivo and in vitro studies, Mahmoud and

colleagues have demonstrated that d-flow upregulates the

expression of twist family bHLH transcriptional factor 1

(TWIST1) via a mechanism regulated by the developmental

transcription factor GATA4. Microarray data revealed that both

GATA4 and TWIST1 expression were enriched in ECs exposed

to d-flow regions in the porcine aorta in vivo. In vitro studies

using controlled flow systems also showed that GATA4 and

TWIST1 expression were enhanced in cultured ECs exposed to

d-flow compared to non-d-flow conditions (306, 307). Activation

of the GATA4-TWIST1 pathway by d-flow upregulated SNAIL, a

downstream transcription factor of TWIST1, and a positive

regulator of endoMT markers such as SLUG, N-cadherin, and

αSMA. These events subsequently induce proliferation,

inflammation, permeability, and endoMT in ECs exposed to d-

flow, leading to atherogenesis (308).

Chen and colleagues have found that d-flow, along with soluble

inflammatory factors (IFNγ, TNFα, and IL1β), can decrease the

expression of fibroblast growth factor receptor 1 (FGFR1) in ECs,

leading to activation of downstream TGFβ signaling and

subsequent endoMT activation (208). Studies in patients with

coronary artery diseases have shown that disease severity

correlates with FGFR1 expression, TGFβ signaling activation, and

the extent of endoMT activation. EndoMT activation enhances

atherosclerotic plaque formation by modulating fibronectin

deposition and upregulating VCAM1 and ICAM1, which in turn

recruit circulatory monocytes and leukocytes while generating

new mesenchymal cells (208, 309). The extent of endoMT

activation is positively correlated with the unstable phenotype of

plaques, which can be driven by increased synthesis of collagen-

MMPs by endoMT-derived fibroblast-like cells in atherosclerotic

plaques (216).

Zhao and colleagues used a three-dimensional micro-

engineered human coronary artery-on-a-chip model to

demonstrate that d-flow drives ECs towards a proinflammatory

endoMT phenotype, accompanied by elevated expression of

VCAM1 and ICAM1, which can mediate recruitment of

monocytes, leukocytes, and macrophages to plaque sites (310,

311). Activated macrophages and T lymphocytes release

cytokines, which further increase MMP production (312), leading

to degradation of the extracellular matrix and ultimately causing
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plaque ruptures. Macrophages can also directly induce apoptosis

of vascular smooth muscle cells (313–315), which are responsible

for collagen I and III production, critical factors for plaque

stability and repair (312, 316). All these processes work together

to prime atherosclerotic plaques for rupture (312, 317).

6.1.4. D-flow alters NO signaling
Altered synthesis or activity of NO and oxidative stress play a

crucial role in d-flow-induced EC dysfunction (318). The levels of

BH4 is reduced by d-flow (291) and aging (181, 188), leading to the

production of superoxide (O2
–), a potent ROS, and pro-

atherosclerotic vascular dysfunction (191). In the absence of

BH4, NO synthesis can result in the production of superoxide

from the ferrous-dioxygen complex, leading to eNOS uncoupling,

which could explain why d-flow produces ROS but decreases

NOS (191).
6.2. Blood flow in cancer metastasis

A high-resolution model was developed to simulate the spread

of circulating tumor cells (CTCs) through the bloodstream. The

model includes stochastic adhesion events and uses a realistic

model of global blood circulation to simulate cancer cell

trajectories. The authors compared the model’s predictions with

data from thousands of human autopsies for seven different solid

tumors, including lung, prostate, pancreatic, and colorectal

cancers. They found that, on average, 40% of the variation in the

metastatic distribution could be attributed to blood circulation

(319–328).
6.3. D-flow promotes endoMT through
SUMOylation

Activation of the transcription factor NFκB is critical for

initiating an inflammatory genetic program critical that

contributes to atherogenesis, which is triggered by d-flow (263,

272, 283, 329, 330). Ganguli and colleagues investigated the

mechanisms underlying NFκB activation and found that d-flow

regulates NFκB by modulating Ras-GTPase (331). Furthermore,

Mabb and colleagues demonstrated that in response to genotoxic

stress stimuli, the signal transducer and activator of transcription

(STAT) activates NFkB through SUMOylating the NFkB essential

modulator (NEMO) (332).

D-flow induces various posttranslational modifications that

promote inflammatory signaling, including SUMOylation (262).

SUMOylation is a reversible and dynamic process that occurs in

approximately 20% of proteins and is associated with various

diseases such as atherosclerosis and cancer (262, 263, 333–336).

This process requires the activity of sentrin-specific proteases

(SENPs) that catalyze the covalent attachment and detachment of

SUMO to and from Lysine (K) residues on substrates (337). Six

SENP isoforms have been identified (SENP1/2/3/5/6/7), each

with substrate specificities and subcellular localizations. Among

these isoforms, SENP2 binds NEMO, inhibits NEMO
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SUMOylation (338), and suppresses DNA damage-induced NFkB

activation (339).

Knockout of SENP2 in mice leads to developmental defects in

trophoblast stem cell niches and lineages due to dysregulation of

the Mdm2-p53 signaling pathway in the placenta (340). In

human hepatocellular carcinoma, SENP2 acts as a tumor

suppressor by modulating β-catenin stability (341). Similarity, in

osteosarcoma cells, SENP2 negatively regulates proliferation,

migration, and invasion (342). It is important to note that

NEMO is not the only substrate of SENP2, given its broad

deSUMOylation activity (343). SENP2 contains multiple nuclear

localization and export signals, allowing it to shuttle between the

nucleus and cytoplasm (344), a process regulated by

posttranslational modifications (263, 334). Depletion of SENP2

increases SUMOylation of ERK5 and p53 (338), leading to EC

inflammation and apoptosis, respectively (263).
7. Possible molecular mechanisms for
the development of atherosclerosis in
cancer survivors

7.1. Both d-flow and cancer treatment can
accelerate premature senescence

Atherogenesis predominantly occurs in regions of vascular ECs

exposed to d-flow but not l-flow (287, 336, 337, 345–349). ECs

exposed to d-flow exhibit accelerated generation of ROS, telomere

shortening, and telomere dysfunction, leading to SIPS (71, 295–297,

350–352). During atherogenesis, senescent cells accumulate in d-

flow regions as shown by Warboys and colleagues. They

demonstrated that d-flow induces premature senescence via

activation of the p53-p21 signaling pathway, which is attenuated by

pharmacological activation of sirtuin 1 (SIRT1) (352).

Similarly, many cancer treatments, including radiation therapy

and chemotherapy, can induce cellular senescence, a phenomenon

known as TIS (206, 353, 354). While non-senescent inflammatory

cells secret cytokines that activate a temporary inflammatory stage

in ECs, subsets of cancer treatment-induced senescent cells secrete

proinflammatory cytokines, chemokines, growth factors pro-

angiogenic factors, and ROS, known as SASP, that promote

inflammation and aberrant cell growth (10–12, 68, 355–357).

SASP can be induced by both cancer treatment and d-flow and

can produce long lasting inflammation (PISP) that instigates

atherogenesis. Therefore, SASP may be an important target for

mitigation strategies (79, 354, 358).
7.2. Both d-flow and cancer treatment can
reduce BH4

Similar to d-flow (291), cancer therapy (188) reduce the levels

of BH4 (181). Radiation creates an oxidative environment, which

promotes the oxidation of BH4 into BH2 and other oxidized

byproducts, causing the uncoupling of eNOS and leading to an

increase in superoxide synthesis. BH4 deficiency, eNOS
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uncoupling, and vascular dysfunction can occur in irradiated

cells due to the downregulation of GCH1, the enzyme that

catalyzes the second step in BH4 de novo biosynthesis (359). The

decreased BH4:BH2 ratio resulting from d-flow produces pro-

atherosclerotic vascular dysfunction (181, 360, 361). EC

dysfunction resulting from changes in the BH4:BH2 ratio and

subsequent eNOS uncoupling is a characteristic feature of various

diseases, including atherosclerosis.
7.3. Both d-flow and cancer treatment can
activate p90RSK

Different flow patterns activate distinct kinase pathways that

affect EC morphology and function. L-flow transiently activates

both AMP-activated protein kinase (AMPK) and protein kinase

B (PKB, or AKT), while d-flow activates only PKB (362, 363).

In addition, our studies have shown that p90RSK, a redox

sensitive kinase, is specifically activated not only d-flow, but not

l-flow. Moreover, we have also demonstrated that p90RSK is

activated not only by d-flow but also by chemotherapy and IR,

suggesting its potential role on mediating cellular response to

these stimuli (88, 287, 335, 364).

Radiation therapy is a common treatment modality for solid

tumors (365), with over 30% of cancer patients in the United

States receiving radiation therapy as part of their treatment plan,

often combined with chemotherapy, immunotherapy, or surgery

as first-line therapy (366). However, thoracic radiotherapy can

result in delayed CVD development (367). Studies have shown

that radiation can cause endoMT, which contributes to the

development of atherosclerotic CVD and CAFs in cancer (209,

368–370), as discussed above.

To investigate the molecular mechanism underlying

atherosclerotic CVD development after thoracic radiotherapy,

Kim and colleagues exposed human aortic ECs to 5Gy of IR for

24 h and observed an increased expression of fibroblast markers

αSMA and FSP1 accompanied by a decreased expression of EC

markers CD31 and VE-cad. The authors also noted that oxLDL

increases IR-induced endoMT, which contributes to

atherosclerotic plaque formation (209). Similarly, irradiation of

human pulmonary artery ECs induces endoMT with an

increased expression of hypoxia inducible factor 1α (HIF1α) and

activation of TGFβR1/SMAD signaling (368).

Recent research by Choi and colleagues reported that in human

umbilical vein ECs exposed to radiation, TRP53 expression

increases while TGFβ2 decreases endoMT. siRNA-mediated

TRP53 silencing abrogated radiation-induced endoMT, resulting

in a decreased expression of endoMT-related transcription factors

such as SNAIL1/2 and zinc finger E-box-binding homeobox 2

(ZEB2) (370). These findings highlight the complex interplay

between radiation-induced signaling pathways and the

development of atherosclerotic CVD in cancer survivors.

Furthermore, as 30hosphory earlier, p90RSK activation plays a

potential role in mediating cellular response to radiation and

chemotherapy, further underscoring its potential involvement in

the development of atherosclerotic CVD in cancer survivors.
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7.4. p90RSK activation regulates
SUMOylation by driving SENP2
phosphorylation

We have found that d-flow activates p90RSK (287, 335), which

phosphorylates SENP2 T368 (335). This leads to the export of

SENP2 from the nucleus, causing a loss of its deSUMOylation

activity within the nucleus. As a result, there is an increase in the

SUMOylation of ERK5 and p53, ultimately leading to

atherosclerosis. These findings help explain why atherosclerotic

plaques mainly develop in vessel bends or bifurcations, where

d-flow is generated (191, 291, 371, 372). Despite the growing

understanding of the effects of flow on ECs (349), the

mechanisms by which l-flow inhibits EC turnover, maintains EC

homeostasis, and prevents atherogenesis remain incompletely

understood.

Furthermore, we have discovered that cytoplasmic SENP2 plays

a role in inhibiting the SUMOylation of the membrane-associated

protein MAGI1, which is a tight and adherent junction protein
FIGURE 8

Endomt activation by d-flow, chemotherapy, or radiation therapy through the
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with a newly identified role in EC function and atherosclerosis

(334). Recently, we also reported that SENP2 regulates the

SUMOylation of focal adhesion kinase (FAK) at K152 through a

mechanism that is independent of T368 phosphorylation (373,

374). These findings suggest that the regulation of SUMOylation

by SENP2 through post-translational modifications is more

complex than previously thought and requires further

investigation. For example, it is important to understand how the

SUMOylation machinery is targeted to cell membranes and how

it regulates post-modifications. Mass-spectrometry-based

phospho-proteomics has revealed that SENP2 can be

phosphorylated at S32, S333, and S344 residues (375, 376).

However, the mechanisms underlying the31hosphorylateon of

these residues by kinases activated during altered flow, as well as

the associated regulatory mechanisms and biological

consequences, remain to be investigated.

Figure 8 illustrates the plausible mechanism of endoMT

development by d-flow, chemotherapy, or radiation through the

activation of p90RSK.
activation of p90RSK (All the figures were made in Biorender.com).
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FIGURE 9

Posttranslational modifications of TERF2IP induced by d-flow and cancer treatment disrupt Shelterin and induce premature senescence. (A) External
stimuli, such as radiation, chemotherapeutic agents, and d-flow, activate p90RSK through phosphorylation. Activated p90RSK translocates to the
nucleus and phosphorylates TERF2IP (RAP1), leading to TERF2IP nuclear export and loss of telomeric protection. Unprotected telomere becomes
susceptible to stress-induced damage, resulting in telomere shortening. Cytoplasmic TERF2IP activates p65 NFκB, triggering EC inflammation.
(B) D-flow induces SUMOylation of TERF2IP at K240, causing loss of telomeric protection, telomeric dysfunction, and premature senescence (All the
figures were made in Biorender.com).
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TABLE 5 List of senotherapies used for age related diseases (386).

Name of
senotherapy

Targeted diseases Reference

Quercetin Coronary artery disease Clinical trial:
NCT04907253

Curcumin Cardiovascular diseases Clinical trial:
NCT04119752,
NCT01968564

UBX0101 Degenerative diseases of the
joints in the body

Clinical trial:
NCT03513016

UBX1325 Age related muscular
degeneration

Clinical trial:
NCT04537884,
NCT05275205

Fisetin Tested in progeroid mice model
to prevent premature aging

(387)

Cardiac Glycosides Lung fibrosis (388)
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7.5. p90RSK activation accelerates SIPS by
driving TERF2IP posttranslational
modifications

Post-translational modifications are crucial for regulating

the cellular localization and function of TERF2IP, which is

necessary for protecting telomeres (295, 377). Our recent

studies have revealed that activation of p90RSK leads to

phosphorylation of TERF2IP S205. This phosphorylation

event promotes TERF2IP nuclear export, which leads to the

loss of TERF2IP telomeric protection and TRF2 removal from

telomeric DNA, ultimately accelerating telomere shortening

and cellular senescence (see Figure 9) (295). Additionally,

TERF2IP can be modified by Small Ubiquitin-related Modifier

(SUMO), which disrupts the TERF2IP-TRF2 association and

leads to nuclear export (377). Both scenarios result in

cytoplasmic TERF2IP-mediated activation of nuclear

factor kappa B (NFkB) p65 subunit, ultimately leading

to cellular senescence, inflammation, and atherosclerosis

(295, 377–381).

Notably, TERF2IP expression is increased in d-flow regions of

atherosclerotic plaques and has been linked to various cancers,

such as breast cancers, gastric carcinoma, non-small cell lung

cancer, and mantle cell lymphoma (106, 382–384). In metastatic

colon cancer, TERF2IP activates NFkB, leading to the

phosphatase of regenerating liver 3 (PRL3) activation and

increased TERF2IP expression and nuclear export, ultimately

promoting cancer cell invasiveness and metastasis (378–381, 385).

In a study using mice that received 2 Gy whole-body γ-

radiation, it was found that VCAM1 expression is upregulated in

the d-flow, further implicating the role of p90RSK-mediated

TERF2IP S205 phosphorylation in the progression of

atherosclerotic CVD progression induced by d-flow and

chemoradiation therapies (295, 377).
8. Senotherapies for the treatment of
age-related diseases

The accumulation of senescent cells during RS or SIPS is one

of the challenges in the treatment of atherosclerotic CVD and

other age-related diseases. Therefore, eliminating senescent

cells using senolytic drugs or attenuating the SASP without

inducing apoptosis of senescent cells using senomorphic drugs

is considered a potential treatment strategy nowadays. Table 5

lists senotherapies commonly used in clinical or preclinical

settings.
9. Discussion

Our aim with this review is to offer a comprehensive overview

of the interactions between multiple key components that

contribute to SIPS and the development of atherosclerotic CVD

in cancer survivors. We intend to identify potential therapeutic
Frontiers in Cardiovascular Medicine 21
targets for the prevention and treatment of atherosclerotic CVD

and provide new insights into the molecular mechanisms

underlying atherosclerosis development in cancer survivors. We

believe that the information presented in this review will be

beneficial to a diverse audience of researchers and clinicians in

the fields of cardiology, oncology, and molecular biology, as well

as to patients and their families who may be concerned about

the long-term health effects of cancer treatment. Finally, we

emphasize the need for further research, particularly in ECs, to

gain a better understanding of the mechanisms involved in the

development of atherosclerosis in cancer survivors after receiving

cancer therapy.

A potential link between BH4 and eNOS uncoupling has

been proposed, but the precise mechanism underlying this

process remains unclear (188). Preventing this oxidative

process may limit the impact of aging on vascular function

(182). Studies investigating the acute BH4 supplementation on

vascular function have shown positive short-term effects, likely

by preventing eNOS uncoupling and ROS formation, leading

to overall cardioprotective NO synthesis. However, chronic

administration of BH4 appears to have little long-term effect,

possibly due to rapid oxidation into its inactivated form, BH2

(181). A recycling pathway that converts BH2 back to BH4

through DHFR exists, and reduced DHFR levels lead to altered

BH4:BH2 ratios and eNOS uncoupling-derived EC dysfunction

(181). Deficiencies in NO bioavailability, in which BH4 plays a

critical role, are the primary cause of age-related reduction in

endothelium-dependent dilation (389). This vascular

impairment is a hallmark of the physiological aging process

and is also involved in the pathophysiology of age-related

conditions, as well as the deleterious effects of cancer

treatment on the vasculature.

The impact of altered hemodynamic shear stress, either

alone and in combination with cancer treatment, on DDR

signaling pathways and SIPS in cancer survivors is not well

understood and requires further investigation. However, it is

possible that d-flow and cancer therapy accelerate premature

senescence through p90RSK-driven posttranslational

modifications of TERF2IP and disruption of the Shelterin

complex, which is formed by TRF1, TRF2, TIN2, TPP1, POT1,
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and TERF2IP/RAP1 (121, 122). Alterations in any of these

Shelterin proteins cause aberrant telomere protection and

often lead to a pro-senescent stress-induced phenotype

associated with disease states (122).
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