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Sulfur mustard (SM) is one kind of highly toxic chemical warfare agent and easy to
spread, while existing detection methods cannot fulfill the requirement of rapid
response, good portability, and cost competitiveness at the same time. In this
work, themicrowave atmospheric pressure plasma optical emission spectroscopy
(MW-APP-OES) method, taking the advantage of non-thermal equilibrium, high
reactivity, and high purity of MW plasma, is developed to detect three kinds of SM
simulants, i.e., 2-chloroethyl ethyl sulfide, dipropyl disulfide, and ethanethiol.
Characteristic OES from both atom lines (C I and Cl I) and radical bands (CS,
CH, andC2) is identified, confirmingMW-APP-OES can preservemore information
about target agents without full atomization. Gas flow rate and MW power are
optimized to achieve the best analytical results. Good linearity is obtained from the
calibration curve for the CS band (linear coefficients R2 > 0.995) over a wide range
of concentrations, and a limit of detection down to sub-ppm is achieved with
response time on the order of second. With SM simulants as examples, the
analytical results in this work indicate that MW-APP-OES is a promising
method for real-time and in-site detection of chemical warfare agents.
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1 Introduction

Even though the Convention on the Banning of Chemical Weapons (CWC) came into
effect in 1997 (The Chemical Weapons Convention CWC, 1997), there still exists the risk of
chemical warfare agents (CWAs) due to terrorist attack or leakage. Sulfur mustard (SM) is
one kind of highly toxic blister CWA, and the maximum safe concentration–time (Ct) of SM
vapor is 5 mg/min/m3 with a latency of 0–6 h (McNutt et al., 2020). SM has been widely
spread over the world in war and induced millions of casualties in history (Szinicz, 2005;
Tang and Loke, 2012). With a simple structure, SM is also relatively easy to synthesize,
threatening social security (Devi, 2016).

As the most probable dispersion route of SM is via aerosol or vapor (Young et al., 2020),
it is desirable to explore a sensitive and on-line gas-phase detection method with rapid
response, good portability, and cost competitiveness. Nevertheless, existing traditional
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methods, including flame photometric detector (FID), ion mobility
spectrometry (IMS), and gas chromatography–mass spectrometry
(GC–MS), cannot fulfil these requirements at the same time (Cordell
et al., 2007; Harris et al., 2011; McKelvie and Thurbide, 2019).
Recently, numerous innovative strategies have been investigated and
developed, such as surface-enhanced Raman spectroscopy (Xu et al.,
2021), fluorescent probe (Feng et al., 2021), quantum dot sensor
(Alev et al., 2022), quartz crystal microbalance (Lee et al., 2019), and
atmospheric pressure plasma optical emission spectroscopy (APP-
OES) (Broekaert and Siemens, 2004; Karanassios, 2004; Niu et al.,
2021).

Among these emerging methods, APP-OES is based on the
dissociation of target agents and excitation of fragments under the
reactive APP environment, and OES is collected during radiative
transition (de-excitation) processes (Niu et al., 2021). Distinguished
from the traditional inductively coupled plasma (ICP) OES method,
where plasma is at a nearly thermal equilibrium condition and the
target agents are fully atomized, APP can be generated with non-
equilibrium, called non-thermal APP (Shao et al., 2018). This
indicates that the mean energy or temperature of mobile
electrons with a small inertia is much higher than that of the
background gas (Zhu et al., 2008). Benefitting from these
characteristics, the target agents could be partially dissociated by
non-thermal APP under a relatively low gas temperature, reserving
more structure information about agents. Therefore, OES from both
characteristic elements and radicals can be efficiently excited by
high-energy electrons (Huang et al., 2023). It is also found that the
OES intensity ratio of different radicals can be used to distinguish
agents with similar element components, which further extends the
discriminating ability of APP-OES (Yuan et al., 2012).

Up to now, many types of APP sources have been developed and
used for the trace analysis, including (but not limited to) dielectric
barrier discharge (DBD) (Meyer et al., 2012; Jiang et al., 2016; Han
et al., 2018), glow discharge (Meng andDuan, 2015; Zhu et al., 2018),
electrolyte cathode discharge (Yuan et al., 2021), mini-point
discharge (Li et al., 2018; Yang et al., 2021), and microwave
(MW) discharge (Pohl et al., 2008; Yuan et al., 2016; Borowska
et al., 2019; Jung et al., 2019; Williams et al., 2019; Müller et al., 2020;
Akhdhar et al., 2021). Compared with other APP sources, MW
discharge has a relatively high power density (i.e., a strong
dissociation ability) and a large reaction region (i.e., a long
residence time for agents), and a highly purified reaction
environment, eliminating any contamination due to the metal
electrode, could be obtained, showing a promising future for
trace detection of WCAs. It should be noted that, even though
most MW sources engage rare gases or nitrogen as the carrier gas, an
MW plasma source-based ¼-wavelength resonator with only
ambient air as the carrier gas has been developed (Yu et al., 2023).

In our previous work, the OES characteristic of different APP
excitation sources has been compared (Yang et al., 2022), and the
analytical performance of the microwave atmospheric pressure
plasma optical emission spectroscopy (MW-APP-OES) method
for WCA simulants containing phosphorus and chlorine has
been investigated (Li et al., 2022). In this work, the MW-APP-
OES method is extended to detect three kinds of SM simulants, 2-
chloroethyl ethyl sulfide (2-CEES), dipropyl disulfide, and
ethanethiol. Characteristic OES from the C atom, CS radical, and
Cl atom is identified. Good linearity is obtained from the calibration

curve (R2 > 0.995 for CS band), and a limit of detection (LOD) down
to sub-ppm is achieved.

2 Materials and methods

2.1 Chemicals and reagents

SM simulants engaged in this work are 2-CEES (C4H9ClS, 97%,
Macklin), dipropyl disulfide (C6H14S2, 99%, Innochem), and
ethanethiol (C2H6S, 98%, Macklin). Original SM simulants are
used in the experiment without any pre-treatment. High-purity
argon (99.999%, Jinghui Gas, China) is used as the carrier gas for
MW-APP.

2.2 MW-APP-OES system

Figure 1 shows an illustrative diagram of the MW-APP-OES
system used in this work. AnMWpower source (WSPS-2450-200M,
Wattsine, China) with a frequency of 2.45 GHz and a maximum
power up to 200 W is used to generate MW-APP. A customized
MW surfatron device is adapted to couple MW from the power
source to plasma (Moisan and Nowakowska, 2018). Gas breakdown
is induced at the slit of the surfatron, where MW electric field is
locally intensified, and extended plasma is generated in a quartz tube
with an inner diameter (ID) of 1.5 mm and an outer diameter (OD)
of 3 mm. There are two tuning knobs in the MW surfatron, by
rotating which the MW reflection from the plasma to power source
can be reduced to below 5%.

A flow controller (G300C-5000sccm-P-24, Gas Tool
Instrument, China) is used to control the rate of the carrier gas
(argon). The gas line is heated, and its temperature is regulated using
a temperature controller (AI-208FGL0, Udian, China). The SM
simulants are injected into the gas line using a micro syringe
(10 μL, Agilent), which is driven by a high-accuracy syringe
pump (Pump 11 Elite, Harvard).

OES from MW-APP at around the middle position of the
plasma column is collected by a fiber and is transferred to a
three-channel spectrometer (PG2000-PRO-3, Ideaoptics, China),
which covers a wavelength range of 196.79–1,039.58 nm (channel
1: 196.79–420.58 nm, channel 2: 406.59–623.60 nm, and channel 3:
604.89–1,039.58 nm) and provides a spectral resolution of about
0.1–0.2 nm.

2.3 Analysis procedure

When performing the MW-APP-OES analysis, the gas line is
heated to a stable temperature of 180°C, which guarantees the full
vaporization of SM simulants (in liquid phase at room temperature).
The injection rate of SM simulants (Fs) is controlled from
50–500 nL/min, via which their concentrations in the plasma
environment are modulated. The flow rate of the carrier gas
(FAr) can be varied from 0.5–3.5 L/min, and the MW power can
be varied from 50–120 W. The accumulation time of the
spectrometer is fixed at 500 ms for channel 1, 200 ms for channel
2, and 100 ms for channel 3 in all measurements of this work.

Frontiers in Chemistry frontiersin.org02

Xu et al. 10.3389/fchem.2023.1173870

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1173870


As the gas line is heated to a relatively high temperature (180°C)
and the injection rate of the target agent is very low, the vapor
pressure of the target agent in the gas flow is much lower than its
saturated value under the given temperature, and it is safe to assume
the target agent is fully vaporized before arriving at the MW-APP
region. Therefore, the concentration of target agent Cs (mg/m3) can
be obtained from the ratio of the injection rate to the flow rate of the
carrier gas (Li et al., 2022),

Cs � Fs · ρs/FAr, (1)
and its volume concentration Cs

V (ppm) is given by the following
formula:

CV
s � Fs · ρs/Ms( )/ FAr/Vm( ). (2)

Here, ρs andMs are the density (g/cm
3) and molar mass (g/mol)

of the agent, respectively. Vm is the gas molar volume at STP
(22.4 L).

3 Results and discussion

3.1 Characteristic OES of SM simulants

Figure 2 shows MW-APP-OES for the blank and 2-CEES with
an injection rate of 150 nL/min.

By comparing these two groups of OES and looking into
database (Gaydon and Pearse, 1963; NIST, 2022), it can be
identified that the emerging OES after 2-CEES injection includes
the C I line at 247.8 nm, CS band around 257.6 nm, CH C→X
around 314 nm, C2 c→b band around 385 and 360 nm, and C2 A→X
band around 516, 474, and 564 nm. These lines/bands can be clearly
distinguished from the background. Furthermore, the Cl I line at
894.8 nm can also be identified, which is on the wind of argon lines,
while most of other Cl I lines are overlapped with argon lines.

Based on the aforementioned observations, it can be analyzed
that 2-CEES is partially dissociated in MW-APP, generating both
atoms (C and Cl) and radials (CS, CH, and C2). As OES from C, CH,
and C2 can be frequently observed in regular hydrocarbons (Meng
and Duan, 2015), OES from CS and Cl should be particularly
concerned when detecting 2-CEES. It should be noted that the

CS band can also be frequently observed when detecting volatile
organic sulfur compounds using OES excited by gas discharge (Li
et al., 2018). Therefore, the Cl I line can be further involved to
identify the agent. The characteristic OES from dipropyl disulfide
and ethanethiol is similar to that of 2-CEES, except for the absence of
Cl I, which will not be repeated here.

It is worth noting that the real samples containing target analytes
can be mixed with interfering compounds at different
concentrations producing similar or the same OES in the MW-
APP. In this case, the target analyte cannot be identified and
quantitatively analyzed solo by characteristic OES. To solve this
challenge, coupling with a small gas chromatograph or ion mobility
spectrometer as a front-end separation technique is one efficient way
for this method to be applied in practical detection scenarios, which
can solve the OES interference currently faced and the carrier gas
issues.

3.2 Optimization of MW-APP-OES analysis

In order to obtain the best analytical results in MW-APP-OES
quantitative analysis, plasma parameters, including gas flow rate and
MW power, should be optimized.

Figures 3A–C show the effect of the gas flow rate on the signal-
to-noise ratio (SNR) of the characteristic OES from 2-CEES,
dipropyl disulfide, and ethanethiol, respectively. It should be
noted that the injection rate of SM simulants is adjusted
proportionally to the gas flow rate to maintain a constant
concentration in the MW-APP environment. It can be observed
that there is a peak for the relationship between SNR of the
characteristic OES of all three SM simulants and the gas flow
rate at around 3 SLM, which is chosen in the quantitative
analysis below. This phenomenon is explained as follows: when
the gas flow rate is small, the MW heating is not well taken away by
the gas flow (i.e., overheating), which introduces instability for the
MW plasma. On the contrary, when the gas flow rate is large, the gas
flow in the quartz tube turns from laminar to turbulent, the latter of
which also results in instability (Arnoult et al., 2008).

The effect of MW power on SNR is also explored for these three
SM simulants (see Figures 3D–F). It can be seen that there is a peak

FIGURE 1
An illustrative diagram of the experimental setup.
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for dipropyl disulfide and ethanethiol at around 80–90 W, which is
not observed for 2-CEES. It should be noted that based on our
previous investigation (Li et al., 2022), the OES intensity will
increase almost linearly with MW power, while the signal-to-
background ratio is nearly constant with MW power. In practice,
one should balance the power consumption and OES intensity. In
the quantitative analysis below, the MW power is set at 80 W.

3.3 Quantitative analysis and calibration
curves

Figure 4 shows the temporal trace of MW-APP-OES of three SM
simulations, and the corresponding calibration curves with the
analytical results are shown in Table 1.

It can be seen that there is a clear square-wave feature on the
temporal evolution of the OES intensity from characteristic line/

band when the pulse injection of SM simulations is performed. The
rising edge of OES intensity is as short as 1 s, indicating the rapid
time response of the MW-APP-OES method in this work.

The intensity of CS 257.6 nm has a good linear relationship with the
concentration of all three simulations from ~20 to 140 mg/m3 (linear
coefficients R2 > 0.995). However, the intensity of C I 247.8 nm and Cl I
894.8 nm deviates from linearity when the concentration of 2-CEES is
larger than ~80 mg/m3. A similar phenomenon is also observed for
dipropyl disulfide but does not exist for ethanethiol. The non-linearity at
high concentrations is related to the partial dissociation and excitation
processes of SM simulations in the MW-APP environment, and OES
from radial bands shows better linearity compared with atom lines.

In order to quantify the analytical performance of the MW-
APP-OES method, the LODs for three SM simulations are estimated
by Shi et al. (2014)

LOD � 3σB/k. (3)

FIGURE 2
MW-APP-OES within different wavelength ranges for the blank and 2-CEES with an injection rate of 150 nL/min.
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Here, σB is the standard deviation of characteristic OES intensity
from 200 replicated blank cases, and k is the slope of the calibration
curve. When the CS 257.6 nm band is used as the characteristic OES,
the LODs of three SM simulations can reach a level as low as ~
1–2 mg/m3 (sub-ppm level).

In principle, the system developed in this work is tested
using vapor of SM simulants. SM simulants are injected into the
plasma environment with the carrier gas (argon) via the heated gas
line for vaporization, and the characteristic OES is identified and
analyzed. At the current stage, this system does not include a
sampling scheme for gases (such as air) as the analyte.

Under actual testing conditions, the analytes are typically aerosols
or vapors in the air. It would be necessary to develop an injection
method to achieve carrier gas replacement, which can be achieved by
collecting air samples with a given gas flow rate, adsorbing with active
carbon, and desorbing the analytes using certain solvents and carrier
gas, as has been performed by Jiang et al. (2016).

When carrier gas replacement is involved, the true LOD will be
strongly influenced by the efficiency of adsorption and desorption
processes and their time duration, i.e., how much analyte is gathered

and released. As the current system only needs an analyte amount of
several nL, based on the rise time of OES trace (i.e., response time)
and injection rate, it may be safe to argue that when actual analytes
in air are considered, an LOD similar to that using argon carrier gas
(~ppm) can still be obtained, and the LOD can further be extended
with a longer adsorption time, sacrificing the response time.

The relative standard deviation (RSD) of the characteristic OES
from three SM simulations is generally below ~5%, obtained from
the temporal trace of OES intensity during sample injection.
Repeated experiments are also performed, and the reproducibility
of the characteristic OES intensity from three SM simulations is
generally better (~10%) for concentrations larger than 50 mg/m3.

The recovery of theMW-APP-OESmethod is evaluated to confirm
its accuracy. As there is no standard sample with known concentration
for SM simulations, a recovery experiment is also performed using the
original sample of SM simulants, and the concentration is controlled
with the injection rate. A concentration of ~50 mg/m3 is selected as the
baseline, and more samples are added into the MW-APP environment.
The CS 257.6 nm band is used as the characteristic OES, and the results
are shown in Table 2. It can be seen that recoveries of this method for

FIGURE 3
Optimization of the MW-APP-OES condition. The effect of the gas flow rate on the signal-to-noise ratio of the characteristic OES from (A) 2-CEES,
(B) dipropyl disulfide, and (C) ethanethiol. (D–F) Effect of power on SNR for corresponding SM simulants.
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three SM simulations at different concentration levels are within the
range of 80%–110%, indicating the utility of the currentMW-APP-OES
method.

Table 3 shows a comparison of the LOD and response time of
different detection methods for 2-CEES. It can be seen that
compared with the surface-enhanced Raman spectroscopy and

FIGURE 4
Temporal trace of MW-APP-OES of three SM simulations. (A) 2-CEES (Cs ~ 17.3, 27.7, 41.6, 62.3, 86.6, 110.8, and 138.5 mg/m3), (B) dipropyl disulfide
(Cs ~ 25.8, 38.7, 58.0, 80.6, 103.1, and 128.9 mg/m3), and (C) ethanethiol (Cs ~ 42.0, 50.3, 69.9, 89.5, 111.9, and 139.8 mg/m3). (D–F) Corresponding
calibration curves.

TABLE 1 Analytical results of SM simulants by the MW-APP-OES method in this work.

SM simulant Characteristic line/band Fitting curve R2 LOD (mg/m3, ppm) RSD (%) Reproducibility (%)

2-CEES C I 247.8 nm y = 3.1 × 103x-2.6 × 104 0.995 0.3, 0.05 1.9 4

CS 257.6 nm y = 1.2 × 103x-2.4 × 104 0.999 1.5, 0.3 3.5 7

Cl I 894.8 nm y = 2.4 × 102x-2.1 × 103 0.97 4.2, 0.8 2.9 7

Dipropyl disulfide C I 247.8 nm y = 3.7 × 103x-2.3 × 104 0.986 0.3, 0.04 1.4 3

CS 257.6 nm y = 1.4 × 103x-3.0 × 104 0.999 2.1, 0.3 2.6 6

Ethanethiol C I 247.8 nm y = 3.6 × 103x-1.0 × 104 0.987 0.3, 0.1 3.4 2

CS 257.6 nm y = 2.0 × 103x-8.8 × 104 0.996 1, 0.4 4.7 4
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fluorescent probe methods, which have a lower LOD, the MW-APP-
OES method in this work has a much faster response time.
Furthermore, expensive light sources in the former two methods
are avoided in MW-APP-OES. Compared with the quartz crystal
microbalance and quantum dot sensor methods, MW-APP-OES
shows advantages in both LOD and response time.

Table 3 also gives a comparison of the analytical performances of
other APPs with the presenting method. As the target analyte, phase
of the analyte (gas or liquid), and carrier gas in each APP are
different, it is safe not to judge their performances simply.
Compatibility with different carrier gases should be a key point
in further investigations.

4 Conclusion

SM is one kind of highly toxic CWA and is easy to spread,
threatening social security. However, existing traditional detection
methods (FID, IMS, and GC-MC) cannot fulfil the requirement of
rapid response, good portability, and cost competitiveness at the
same time. In this work, the MW-APP-OES method is developed to

detect three kinds of SM simulants, 2-CEES, dipropyl disulfide, and
ethanethiol, taking the advantage of non-thermal equilibrium, high
reactivity, and high purity of MW plasma. Characteristic OES from
both atom lines (C I and Cl I) and radical bands (CS, CH, and C2) is
identified, confirming MW-APP-OES can preserve more
information about target agents without full atomization. The gas
flow rate and MW power are optimized to achieve the best detection
results. Good linearity is obtained from the calibration curve for the
CS band (R2 > 0.995) over a wide range of concentrations of SM
simulations. A LOD down to sub-ppm is achieved with a response
time on the order of second, showing competitiveness compared
with other innovative detection methods to some extent. With SM
simulants as examples, the analytical results in this work indicate
that MW-APP-OES is a promising method for real-time and in-site
detection of CWAs.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

TABLE 2 Recoveries of three SM simulants.

SM simulant Added (mg/m3) Found (mg/m3) Recovery (%)

2-CEES 10.4 8.9 86

17.3 13.9 80

52.0 54.3 104

Dipropyl disulfide 9.7 8.6 89

16.1 15.0 93

48.4 50.0 103

Ethanethiol 14.0 14.3 102

33.6 34.8 104

83.9 90.6 108

TABLE 3 Comparison of the LOD and response time of different methods.

Method Analyte LOD Response time Reference

Surface-enhanced Raman spectroscopy 2-CEES 0.01 ppm 10 min Xu et al. (2021)

Fluorescent probes 2-CEES 0.2 ppm <4 min Feng et al. (2021)

Quartz crystal microbalance 2-CEES 0.76 ppm ~10 min Alev et al. (2022)

Quantum dot sensor 2-CEES 0.5 ppm 3 s Lee et al. (2019)

Liquid chromatography + DBD-OES + MW hydrolysis Dithiocarbamate 0.1 μg/mL >400 s Han et al. (2018)

Photochemical vapor generation + miniaturized point discharge OES Methylmercury 0.1 μg/L ~10 s Yang et al. (2021)

Dielectric barrier microhollow cathode discharge OES Hydrochlorofluorocarbon 27 ppb <1 s Meyer et al. (2012)

DBD-OES Dichloromethane 2 ng/mL <1 s (15 min collection) Jiang et al. (2016)

MW-APP-OES 2-CEES 1.5 mg/m3 or 0.3 ppm 1 s This work
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