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Introduction: Stroke-associated pneumonia (SAP) is a common complication of

stroke that can increase the mortality rate of patients and the burden on their

families. In contrast to prior clinical scoring models that rely on baseline data, we

propose constructing models based on brain CT scans due to their accessibility

and clinical universality.

Methods: Our study aims to explore the mechanism behind the distribution

and lesion areas of intracerebral hemorrhage (ICH) in relation to pneumonia,

we utilized an MRI atlas that could present brain structures and a registration

method in our program to extract features that may represent this relationship. We

developed three machine learning models to predict the occurrence of SAP using

these features. Ten-fold cross-validation was applied to evaluate the performance

of models. Additionally, we constructed a probability map through statistical

analysis that could display which brain regions are more frequently impacted by

hematoma in patients with SAP based on four types of pneumonia.

Results: Our study included a cohort of 244 patients, and we extracted 35

features that captured the invasion of ICH to di�erent brain regions for model

development. We evaluated the performance of three machine learning models,

namely, logistic regression, support vector machine, and random forest, in

predicting SAP, and the AUCs for these models ranged from 0.77 to 0.82.

The probability map revealed that the distribution of ICH varied between the

left and right brain hemispheres in patients with moderate and severe SAP,

and we identified several brain structures, including the left-choroid-plexus,

right-choroid-plexus, right-hippocampus, and left-hippocampus, that were more

closely related to SAP based on feature selection. Additionally, we observed that

some statistical indicators of ICH volume, such as mean and maximum values,

were proportional to the severity of SAP.

Discussion: Our findings suggest that our method is e�ective in classifying the

development of pneumonia based on brain CT scans. Furthermore, we identified

distinct characteristics, such as volume and distribution, of ICH in four di�erent

types of SAP.

KEYWORDS

image registration, intracerebral hemorrhage, stroke-associated pneumonia, machine

learning, statistical analysis
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1. Introduction

Stroke-associated Pneumonia (SAP) is a serious complication

for patients with intracerebral hemorrhage (ICH), leading to

increased hospitalization time, medical expenses, and mortality

rates (1–4). The causes of SAP can be categorized as central

or non-central factors, with the former including disturbance of

consciousness and bulbar palsy, and the latter including bed rest,

pulmonary edema, and pre-existing chronic respiratory conditions

such as COPD, bronchiectasis, and pulmonary fibrosis (5, 6). While

tracheal intubation can protect the airway, it also increases the

risk of ventilator-associated pneumonia (VAP) (7, 8). To effectively

identify high-risk groups of pneumonia in patients with acute

and severe ICH, clinicians commonly use pneumonia CT scans

to review lung infections (9). Accurately identifying pneumonia-

prone patients is essential to guide clinical decisions regarding

tracheal intubation and to provide timely interventions to reduce

the risk of pneumonia in this vulnerable population, especially for

inexperienced healthcare providers.

Risk factors associated with pneumonia include

immunosuppression, dysphagia, age, sex, smoking, stroke

severity, stroke type, hypertension, diabetes, history of chronic

respiratory disease, and history of atrial fibrillation (10, 11), which

are usually referred as baseline (clinical) data. Previous studies

suggest that predicting the risk of a lung infection after stroke can

help doctors select interventions to reduce morbidity in high-risk

patients (4). Ji et al. (12) developed an SAP risk model “ICH-APS”

based on the patients’ baseline data, which could effectively predict

pneumonia after ICH, especially for patients whose hospitalization

time was more than 48 h. Yan et al. (13) used the permutation

method to select the characteristics and finally constructed a

logical regression model called “ICH-LR2S2” using nine patient

characteristics, including dysphagia, age, sex, and fasting blood

glucose. But baseline data is hard to collect and could not build a

relationship with ICH distribution. If the ICH region corresponds

to the relevant brain area, it will have a meaningful and positive

effect on the study of the generation mechanism and progression of

SAP (14). CT is the most common experimental method for ICH

patients, and it is feasible to locate bleeding areas and distinguish

between left and right hemispheres using CT images due to

the different Hounsfield unit (Hu) values; however, CT images

cannot accurately label the brain structure; therefore, high-quality

brain MRI images are required. Brain MRI is being increasingly

used in research and clinical medicine to obtain high-quality

images of the brain’s anatomical structure, providing detailed

information for clinical diagnosis and biomedical research (15, 16).

Medical image registration has important clinical application

value: the registration of medical images obtained by various or

the same imaging methods is used for medical diagnosis as well

as in formulating surgical plans, formulating radiation therapy

plans, tracking pathological changes, and evaluating treatment

effects (17–20). However, thus far, no research on the relationship

between ICH and pneumonia through medical image registration

technology has been reported.

In this study, we propose a registration method to match brain

CT images with MRI images representing the brain’s anatomical

structure. This allows us to obtain the anatomical distribution

characteristics of the hemorrhage area, which we refer to as

the “bleeding distribution feature”. Since the hemorrhagic mass

can squeeze the patient’s brain tissue, we also determine the

“bleeding squeezing feature” based on the relationship between

the total bleeding magnitude and the patient’s brain tissue. Using

these features, we establish three machine learning models to

predict the severity of SAP using brain CT instead of lung CT

in clinical situations. We can further discuss important features

by implementing feature selection. Additionally, we superimpose

transformed binary bleeding area images from four pneumonia

categories to build a statistical model and probability atlas.

This visualization and analysis of the distribution of cerebral

hemorrhages in different pneumonia categories can be beneficial

for diagnosis and treatment. The flow chart of this study is shown

in Figure 1.

2. Materials and methods

2.1. Datasets

Our dataset comprises 244 brain CT images, each with a

corresponding segmented image of ICH. Experienced neurologists

annotated the ICH area using ITK-Snap software, while the

patient’s name, gender, underlying disease, admission time,

corresponding treatment, and other basic information were

recorded in detail. Following a previous study (21), we assessed the

extent of pneumonia in patients with early ICH (1–4 days of onset)

by evaluating the lung involvement area on chest CT (classified

as mild, moderate, or severe based on involvement percentages

of 1–25, 26–50, and 51–100%, respectively). All chest CT images

were independently reviewed by two radiologists with more than

10 years of experience, who were blinded to clinical and laboratory

findings. The images were subsequently categorized into 19 cases

of severe pneumonia, 47 cases of moderate pneumonia, 77 cases of

mild pneumonia, and 101 cases of no pneumonia.

After obtaining informed consent from the local ethics

committee (Q/ZXYY–ZY–YWB–LL202243), the CT images were

used for further research.

2.2. MRI atlas

In this study, a normal human brain MRI image was chosen

as the reference image for registration, and its corresponding

anatomical structure image was used as a template for analysis.

The MRI image used in this study was obtained from the OASIS

project, which contains 35 anatomical structure divisions. Any area

in the image with a grayscale value of 0 was considered a blank

area (22). To process the MRI image, Hoopes et al. (23) utilized

FreeSurfer software to remove the skull and align the images. The

image was then divided into 35 brain anatomical regions, each

assigned a grayscale value ranging from 1 to 35. Table 1 provides

a list of the specific structure names and their corresponding gray

values. Additionally, Figures 2A, B illustrates the brain MRI image

and the corresponding brain anatomical structure MRI. Figure 2E
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FIGURE 1

Research workflow of this study.

TABLE 1 Brain anatomical structure reference.

Gray
value

Brain anatomy Gray
value

Brain anatomy Gray
value

Brain anatomy Gray
value

Brain anatomy

1 Left-Cerebral-White-Matter 10 Left-Pallidum 19 Left-Choroid-Plexus 28 Right-Putamen

2 Left-Cerebral-Cortex 11 3rd-Ventricle 20 Right-Cerebral-White-Matter 29 Right-Pallidum

3 Left-Lateral-Ventricle 12 4th-Ventricle 21 Right-Cerebral-Cortex 30 Right-Hippocampus

4 Left-Inf-Lat-Ventricle 13 Brain-Stem 22 Right-Lateral-Ventricle 31 Right-Amygdala

5 Left-Cerebellum-White-

Matter

14 Left-Hippocampus 23 Right-Inf-Lat-Ventricle 32 Right-Accumbens

6 Left-Cerebellum-Cortex 15 Left-Amygdala 24 Right-Cerebellum-White-

Matter

33 Right-Ventral-DC

7 Left-Thalamus 16 Left-Accumbens 25 Right-Cerebellum-Cortex 34 Right-Vessel

8 Left-Caudate 17 Left-Ventral-DC 26 Right-Thalamus 35 Right-Choroid-Plexus

9 Left-Putamen 18 Left-Vessel 27 Right-Caudate

presents the 3D diagram of the anatomical structures resulting from

the MRI images.

2.3. Acquisition of features

In this study, we used the bleeding distribution and extrusion

features to construct our models. In order to obtain the bleeding

distribution feature, we matched preprocessed brain CT to the

brain MRI image to get the deformation field of the process and

applied the deformation field to the corresponding ICH segmented

image (binary bleeding image) of the patient to generate the

transformed image. The transformed bleeding image was used to

extract the bleeding distribution feature.

2.3.1. Image preprocessing
To improve the image registration results, several pre-

processing steps, such as skull-stripping, image normalization,

and resampling, were performed on the original brain CT image
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FIGURE 2

Images utilized in this paper. (A) Brain MRI used in the registration as a reference image. (B) Brain anatomical structure MRI having 35 regions. (C) One

brain CT sample with ICH area labeled. (D) Transformed bleeding image shown with brain anatomical image. (E) Three-dimensional schematic

diagram of the anatomical structure of the brain.

(24). Since the reference MRI image used as a fixed image only

shows brain tissue, it was necessary to remove the skull from

the patient’s original CT image. To achieve this, we utilized

the SegmentEditorExtraEffects and SurfaceWrapSolidify extension

modules in the 3D Slicer software (25). Specifically, we created

a new segment in the segmentation editor from the skull

segmentation, determined the threshold to initially segment the

skull, used the islands method to remove small spots caused by

image noise, and applied the Wrap Solidify effect to segment the

inner area of the skull as a mask. Finally, we used the mask as our

output after removing the skull from the CT image. To process

a large number of samples efficiently, we developed a Python

script for the 3D Slicer to automate the skull-stripping operations

for all samples, thereby reducing time and labor. Moreover, we

used min-max normalization to preprocess the CT image after

skull-stripping. The normalization equation used is as follows:

v = (v−min)/(max−min) (1)

where v is the voxel value of the image and min and max are the

minimum and maximum voxel values of the image, respectively.

Since the obtained brain CT image and reference MRI image

had different dimensions, we resampled the image to match the

dimensions of the reference MRI image. The resulting images are

depicted in Figure 3.

2.3.2. Image registration
According to the characteristics of our data, we performed

image transformation by applying both rigid and non-rigid
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FIGURE 3

Resulted images of preprocess and registration.

registration methods (26). Rigid transform is a type of

transformation that preserves the shape of an image by including

translation, rotation, and scaling. It can be used to align images

rigidly. Non-rigid transform refers to a type of transformation

that can be used to deform, warp, or morph images. It can deform

different regions of the image but cannot preserve the overall

shape of the image. During the registration process, the CT image

was considered as the moving image, denoted as Im(v), while the

MRI image was regarded as the fixed image, denoted as If (v),

where v represents the voxel of the image. The moving image

was iteratively transformed to find the most suitable transform

T(v) that matches the fixed image. The objective was to minimize

the mutual information between the two images, which can be

expressed as follows:

minx=3MI
(

Im(v), If (v)
)

(2)

Here, the parameter x = 3 indicates that our image is three-

dimensional. Since the moving and fixed images had different

origins and orientations, we applied a rigid transformation to

translate and rotate the original image without changing its size

or internal structure. Next, we used non-rigid transformation to

precisely match the CT image to the reference brain MRI image,

using the “bspline” method and inputting the result into the

previous image filter. In this process, we adopted a multi-resolution

strategy to construct a resolution pyramid, and each resolution

layer performed a maximum number of iterations to obtain the

optimal result.

T = Trigid + Tnonrigid (3)

In our study, we utilized mutual information (MI) as the

evaluation metric for each iteration of our registration process (27).

MI is a versatile metric that calculates the mutual information

between two images, based on the correlation of the probability

density distribution (PDF) of the intensity from the fixed and

moving images. MI measures the amount of information that

a random variable (such as image intensity in one image) tells
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another random variable (such as image brightness in another

image), without requiring knowledge of the actual form of the

correlation. Therefore, it is particularly suitable for multimodal

image pairs and single-mode images. The output image was

determined as the moving image with the highest MI score (28, 29).

The images before and after the registration of one patient are

presented in Figures 2C, D.

MI(X,Y) = Ibinned(X,Y) =
∑

ij

p(i, j)log(
p(i, j)

px(i)Py(j)
) (4)

Where px(i) =
∫

i dxµx(X), py(i) =
∫

i dxµx(X), and p(i, j) =
∫

i

∫

j dxdyµ(x, y) and
∫

i means the integral over bin I and µ means

the marginal densities.

2.3.3. Bleeding area transformation
After completing the registration of the patients’ CT images,

we obtained the deformation field. The image of the bleeding area

denoted by the doctor was binarized, where 1 and 0 represented

the bleeding and non-bleeding areas, respectively. We performed

the same preprocessing operations as for the CT images except

for skull-stripping on the original bleeding area image, to make

the transformed bleeding image consistent with the reference brain

anatomyMRI. The transformed bleeding image was then overlayed

on the MRI image, as shown in Figure 2D.

2.3.4. Obtaining bleeding distribution features
After transforming the bleeding area image, we obtained a

binary image in which the value 1 represents bleeding and 0

represents non-bleeding. We then identified the position of each

voxel with a value of 1 in the transformed image and determined the

corresponding voxel value (ranging from 1 to 35) in the reference

MRI image. Next, we identified the brain structures covered by

the voxel points representing the hemorrhage area. By processing

all voxel points, we obtained the number of voxels representing

bleeding on a specific anatomical structure BNumi. We then

calculated the proportion of bleeding in all 35 anatomical structures

partitioned for the patient, represented by BNumi, relative to

the total number of voxels in that structure, AllNumi, using the

following equation:

Bdi = BNumi/AllNumi (5)

This allowed us to quantitatively analyze the distribution of

bleeding in different brain structures. The results of this analysis

are presented in our study.

2.3.5. Obtaining bleeding extrusion features
We quantified the cerebrospinal fluid and brain parenchyma

areas in the original CT image based on the Hu value during

CT imaging of different tissues and represented them using

the number of voxels. We also calculated the total volume

of the bleeding area. Additionally, we constructed five specific

proportional characteristics: cerebrospinal fluid to the brain

parenchyma, cerebrospinal fluid to the brain parenchyma and

cerebrospinal fluid, hemorrhage to cerebrospinal fluid, hemorrhage

to the brain parenchyma, and hemorrhage to cerebrospinal fluid

and the brain parenchyma. In total, we obtained eight bleeding

volume and extrusion features that characterize the extent to which

the hemorrhagic mass affects the surrounding brain tissue. These

features are referred to as bleeding extrusion features.

We stored all the obtained features, the ICH distribution,

and hemorrhage extrusion features in the file. The summary and

meaning of all features can be roughly distributed into three

classes, namely, L’, which indicates the hemorrhagic volume, L/All’

presented as “/”, indicating the proportion of the bleeding volume

to brain tissue, and numbers 1–35 indicating the proportion of

the bleeding volume in the brain anatomical structure. Specific

meanings are given in Supplementary Table 1.

2.4. Construction of classification and
statistical models

The obtained features were used to construct machine learning

models for classification prediction and feature selection. A

probability map was then generated to analyze the distribution

characteristics of bleeding areas for four types of pneumonia.

2.4.1. Classification model
To analyze the data, we combined the bleeding distribution

feature and bleeding extrusion feature and trained three classical

machine learning models, namely logistic regression, support

vector machine (SVM), and random forest, to classify and predict

whether patients have pneumonia symptoms. The labels referring

to the degree of pneumonia progression were severe, moderate,

mild, and no symptoms of pneumonia. We used several indicators

to evaluate the model, including area under the curve (AUC),

accuracy, sensitivity, and specificity. Sensitivity is defined as the

ratio of true positives to all positive samples, and specificity is

defined as the ratio of true negatives to all negative samples.

For each model, we evaluated the average metric of 10-fold

cross-validation.

The classification problem of with or without pneumonia (SAP)

can be viewed as a typical binary classification problem based

on the cerebral hemorrhage situation. The feature combinations

could reflect the contribution of different characteristics to

the classification problem. Before entering the model, data

standardization was required to improve the classification effect of

the model.

Furthermore, since moderate-to-severe pneumonia can lead to

prolonged hospitalization and increase the risk of poor patient

outcomes (30), we divided the patients into two categories: SAP

above moderate level and the others and performed a two-category

prediction problem. We used three different machine learning

models, and the features were treated the same as the above

classification task. Data standardization was performed, and the

mean value of the metrics of the 10-fold cross-validation was used

to instruct the classification problem.
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2.4.2. Statistical model
In addition to the classification task, we developed a statistical

model based on the pneumonia classification to present and analyze

the data in the form of a probability map. The specific method

for constructing the probability map for one category involved

superimposing the transformed hemorrhagic area images of all

patients with the same SAP type. During the registration process

when matching the brain CT and brain MRI, a transformation was

generated for each patient. Multiple binarized images were then

superimposed to create the probability map, with a gray value of

0 in some places and the largest voxel not exceeding the number

of people with the particular pneumonia type. We compared the

gray value of all voxels in the final image to the number of people

in the category to obtain the probability map. To visualize the

distribution characteristics of the hemorrhagic areas of various

types of pneumoniamore intuitively, we used the 3D Slicer software

to superimpose the obtained probability maps with the brain MRI

image. The original hemorrhage area images were not directly

added to obtain the probability map because they could not be

correlated with the brain anatomy MRI.

Furthermore, we analyzed the bleeding volume of each type

of patient and constructed a box plot to examine the relationship

between the development of pneumonia and the bleeding volume.

3. Results

We extracted a total of 35 bleeding distribution features, which

included bleeding extrusion features, as well as the volumes of

TABLE 2 Metrics of machine learning models for predicting SAP.

Model AUC Accuracy Sensitivity Specificity

Logistic

regression

0.79 0.75 0.75 0.74

SVM 0.79 0.76 0.77 0.72

Random

forest

0.82 0.73 0.76 0.70

the cerebrospinal fluid, brain parenchyma, and hemorrhage mass

(represented by the number of voxels). The remaining five features

were represented on a scale of 0 to 1. To ensure that each feature

contributed equally to the analysis, we performed standardization

operations on the features based on their eigenvalues. Figure 3

displays the samples that were selected from each category of

pneumonia. For each sample, both the preprocessed image and the

final image after registration are shown.

3.1. Classification model

The evaluation metrics are AUC value, accuracy, sensitivity,

and specificity. For predicting SAP, the logistic regression model

achieved an AUC of 0.79, with all four indexes above 0.73, and

the specificity index being the highest among the three classifiers.

The SVM model achieved the highest accuracy and sensitivity of

0.76 and 0.77, respectively. The random forest model performed the

best in terms of AUC, which was above 0.8, and all other indexes

were greater than 0.7. It should be noted that the ICH-APS-A

model (12) achieved an AUC of 0.76, while the ICH-LR2S2 model

(13) obtained an AUC of 0.78 in their respective test cohorts. This

suggests that our method has performed well. Table 2 presents the

performance evaluation results of the three classificationmodels for

predicting the occurrence of SAP.

For predicting SAP above a moderate level, the logistic

regression model achieved an AUC of 0.77, with accuracy

and specificity above 0.7. The SVM model achieved the best

performance on accuracy and sensitivity of 0.75 and 0.74,

respectively. The random forest model had an AUC and specificity

of 0.78, the highest among the three models. Figure 4 displays

the ROC curve of the random forest model, which demonstrated

the highest performance. The ROC curves of the other two

models are available in Supplementary material. Table 3 shows the

experimental results of the two-classification problems for differing

SAP above the moderate level.

The obtained AUCs were all above 0.75 for both classification

problems, demonstrating that the severity of pneumonia can be

predicted by the features extracted from our method.

FIGURE 4

ROC curves of the random forest model. (A) For predicting SAP. (B) For predicting SAP above the moderate level.
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TABLE 3 Metrics of machine learning models for predicting SAP above

the moderate level.

Model AUC Accuracy Sensitivity Specificity

Logistic

regression

0.77 0.72 0.67 0.74

SVM 0.77 0.75 0.74 0.74

Random

forest

0.78 0.75 0.66 0.78

FIGURE 5

The box plot of the ratio of bleeding volume to total volume based

on four SAP types.

3.2. Statistical model

The bleeding volume in patients with pneumonia symptoms is

generally distributed below 20% of the brain tissue volume, with

a higher density of patients having a bleeding volume ratio of

less than 10%. However, patients without pneumonia symptoms

also show bleeding volume ratios below 10% of the brain tissue

volume. Thus, additional features are required to effectively classify

pneumonia symptoms. The box plot in Figure 5 indicates that the

bleeding volume alone is not a reliable indicator for classifying

pneumonia symptoms.

For patients with severe pneumonia, there is an unbalanced

distribution of hemorrhagic areas in the left and right cerebral

hemispheres. The probability of hemorrhage in some areas of the

left brain is high, with a probability above 0.6, while the probability

of hemorrhage in some areas of the right brain is low, with a

probability of approximately 0.3. In contrast, for patients with mild

pneumonia or no pneumonia symptoms, there is no significant

imbalance in the distribution of hemorrhagic areas between the

left and right brain. The probability map can be a useful tool

for analyzing the distribution characteristics of hemorrhagic areas

in different types of pneumonia and can aid in diagnosing and

treating patients with pneumonia. Figure 6 shows the probability

map for the four pneumonia categories, which provides valuable

insights into the distribution of hemorrhagic areas in different

brain regions.

4. Discussion

We constructed classification and statistical models based on

the obtained features and combined themwith the clinical expertise

of physicians to correlate the development of SAP in patients and

the distribution of cerebral hemorrhages.

4.1. Novelty of our method

For predicting pneumonia infection after ICH, previous studies

mostly focused on the patients’ baseline data and aimed to build

a risk model. Their risk model used AUC as an evaluation index

and achieved good performance, ICH-LR2S2 (13) was constructed

based on nine patient features and used an external validation

cohort to evaluate the model. The overall performance of ICH-

LR2S2 was AUC = 0.784. The ICH-APS (12) model achieved

an AUC of 0.76 on its validation cohort and was also built by

baseline data. Our logistic regression model was established on the

features extracted by the registration method from the MRI atlas

and achieved a good performance of AUC = 0.79 on the validation

set for predicting SAP. There is a fact that the patients’ baseline

data is hard and time-consuming to collect and preprocess, such as

data filling and cleaning, for our proposed method, the only input

was the segmented ROI of brain CT which could rapidly offer risk

score and the classified results after CT examination if an accuracy

segmentation algorithm is matched with our model. It is worth

mentioning that, ICH-LR2S2 and ICH-APS had a lot of data in the

training phase, our database still needs to be expanded andmethods

should be improved and practiced in clinical situations.

4.2. Feature selection

Previous studies have shown that using L1 regularization to

penalize the logistic regression model can significantly impact

model performance by achieving critical factors (31, 32). In our

study, we inputted two types of features and their combinations

into the model and implemented 10-fold cross-validation. By

considering the feature weights from the regression coefficients

shown in Figure 7, we were able to determine the factors and brain

regions that occupied important weights in our logistic model.

Among the bleeding distribution features, the left-

hippocampus, left-choroid-plexus, right-choroid-plexus,

third-ventricle, and right-hippocampus had larger weights

than others, indicating that ICH in these regions is associated

with a greater risk of pneumonia infection. The involvement of

these areas can cause swallowing dysfunction or disturbance of

consciousness in the patient (33). Among the bleeding extrusion

feature, we found that hemorrhage and cerebrospinal fluid volume

can contribute to the development of pneumonia. The weight of

the cerebrospinal fluid is relatively large due to its liquid nature,

and there is circulation and absorption of the cerebrospinal fluid

(34). Figure 7A shows the feature weights for predicting SAP.

For predicting SAP above moderate level, the brain regions

that contributed more to the model were the left-choroid-plexus,

right-choroid-plexus, right-hippocampus, left-hippocampus, and
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FIGURE 6

Bleeding probability map of four types of pneumonia. (A) Severe pneumonia. (B) Moderate pneumonia. (C) Mild pneumonia. (D) No pneumonia.

left-accumbens, usually located in the basal ganglia region. When

involved, swallowing or conscious function will be affected (35),

and the right cerebellar white matter involvement affects ataxia

function (36). For the bleeding extrusion feature, the hemorrhage

volume and cerebrospinal fluid and its proportion with the brain

tissues play a significant role in the classification problem. Themass

effect occurs during ICH due to the cerebrospinal fluid’s nature

and its circulation and absorption functions. The cerebrospinal

fluid plays a major buffer function (37), and the image shows

the shrinkage of the ventricular system, whereas the amount of

bleeding and the mutual ratio of the cerebrospinal fluid and brain

tissue change significantly. Figure 7B shows the feature weights for

predicting SAP above the moderate level.

Through feature selection, we surprisingly found that some

anatomical regions implemented by ICH cause higher risk scores

of SAP, including the choroid-plexus, hippocampus, and third-

ventricle. If the hemorrhage mass affected the basal ganglia

region, it increased the risk of pneumonia developing to more

than moderate. Additionally, whether the cerebrospinal fluid was

affected by hemorrhage mass was a critical factor in the fact of

feature selection.

4.3. The distribution of cerebral
hemorrhage

The distribution of ICH in severe pneumonia shows a

left-right imbalance, as shown in Figure 6A. More than

70% of patients with severe pneumonia had hemorrhage

in regions such as left-cerebral-white-matter, left-pallidum,

left-putamen, left-thalamus, left-ventral-dc, and left-cerebral-

cortex, which are all located in the left half of the brain.

Since the left hemisphere is mostly the dominant hemisphere,
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FIGURE 7

Feature weights of the logistic regression model. (A) For predicting SAP. (B) For predicting SAP above the moderate level.

involvement of this hemisphere results in more severe

disease, combined with disturbance of consciousness,

swallowing dysfunction, and inability to expectorate sputum,

leading to poor airway protection and severe pulmonary

infection (38).

For patients with moderate pneumonia, more than 50%

had hemorrhagic clots in the right-cerebral-white-matter, right-

lateral-ventricle, right-thalamus, right-pallidum, third-ventricle,

left-lateral-ventricle, right-caudate, and left-choroid-plexus,

which are mostly located in the right half of the brain. The

volume of hemorrhage in the cerebrospinal fluid was also

found to be greater in patients with this type of pneumonia

compared to those with the other three types. The right

hemisphere is the non-dominant hemisphere, which has little

impact on the patient’s consciousness and allows limited airway

protection ability.

For patients with mild pneumonia, only a small portion of the

probability map exceeds 0.5, indicating that there is no obvious

clustering in the distribution of ICH in this category. More

than 40% of the patients had bleeding clumps in regions, such

as right-cerebral-white-matter, right-cerebral-cortex, left-cerebral-

white-matter, left-cerebral-cortex, right-putamen, left-putamen,

left-pallidum, right-pallidum, right-thalamus, and left-thalamus,

and there was no apparent imbalance in the distribution of the left

and right brains.

For patients without symptoms of pneumonia, hemorrhages

were found in regions such as the right-cerebral-cortex, right-

putamen, right-cerebral-white-matter, and right-pallidum in more

than 40% of patients. Hemorrhages occurred in the right white

matter and right cerebral cortex in more patients than in the

left-brain matter.

4.4. Hemorrhage volume and pneumonia
classification

According to the data box plot of the ratio of the bleeding

volume to brain tissue in each category of patients, we found that

the upper limit, upper quarter, mean and maximum value of the

data exhibited an increasing trend according to the deepening of the

development of SAP. Additionally, the data in the category without

pneumonia symptoms are all lower than the three categories with

pneumonia symptoms except for the lower limit point. There is

a significant difference, indicating that if the patient does not

show pneumonia symptoms, the probability of bleeding will not

be higher than 10% of the brain tissue. If the ICH mainly occurs

in a functional area, especially when the patient’s consciousness,

swallowing function, or expectoration reflex is affected, pulmonary

infection is more likely to occur.

Moderate-to-severe pneumonia with cerebral hemorrhage

significantly increases hospitalization and medical expenses and

can aggravate brain damage and cause other complications (30).

We divided the data into two types: SAP above moderate level

and others. There are obvious differences in the box plot data of

ICH between the two types. The maximum value, upper limit,

upper quartile, mean, median, lower quartile, and lower limit in

the data of patients with moderate and severe pneumonia are

higher than those of no, mild pneumonia. This indicates that with

the development of pneumonia, the volume of bleeding gradually

increased. For the binary classification problem, according to

the weights of the features and the deduction that patients in

each category can have bleeding areas with volumes less than

10% of brain tissue, we cannot make an effective prediction

using a single factor of the hemorrhage volume; we need to
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consider multiple features to predict pneumonia. Protection of the

airway is dependent on the level of consciousness and swallowing

function. The functional areas affecting the patient’s consciousness

and swallowing function are mainly distributed in the ascending

reticular activation system, bilateral basal ganglia, posterior cranial

nerves, and other related areas (35). Therefore, the influence of the

structure can better predict the risk of early pulmonary infection in

patients by effectively combining the amount of bleeding with the

bleeding site, evaluating the effect of mass on each area, and taking

relevant measures in a timely manner for a better recovery effect

and quality of life.

4.5. Technical limitations

The precision of the registration process is critical to the

accuracy of our conclusion analysis, as the hemorrhage distribution

feature we obtained is based on the image transformation of

registration technology. We utilized non-rigid transformation

based on continuous optimization iteration, and technical precision

can be improved. In recent years, deep learning technology

has significantly advanced the development of medical image

registration, such as BIRNet. Fan et al. (39) proposed a fully

convolutional network subject to dual guidance, including ground

truth and image dissimilarity guidance, which demonstrated high

registration accuracy and efficiency. For unsupervised learning,

Balakrishnan et al. (40), Krebs et al. (41), Vos et al. (42), and

Gierlichs et al. (28) proposed end-to-end networks that estimate

deformable transformations by maximizing the similarity between

image pairs without real deformations. Using deep networks to

improve image registration in our study facilitated more accurate

results and improved model accuracy.

While our data comes from only one hospital and is limited in

size, our method needs to be validated on an external cohort and

evaluated for clinical application. Thus, limitations are associated

with a single center and species. Collecting data from multiple

centers could yield more interesting results, especially considering

that most Asians are right-handed.

5. Conclusion

To the best of our knowledge, no study has been reported

on the prediction and analysis of SAP based on the distribution

characteristics of the ICH area. In this study, we utilized an MRI

atlas that could clearly represent 35 anatomical brain regions and

creatively combined our data with MRI through medical image

registration. We constructed machine learning models to detect the

occurrence and development of SAP using patient brain CT scans,

which to a certain extent, reduced dependence on lung CT and

clinical doctors.

Our findings suggest that hemorrhage in specific brain

regions, such as the left-choroid-plexus, right-choroid-plexus,

right-hippocampus, and left-hippocampus, were more likely to

affect the development of pneumonia. We determined the

distribution characteristics of the ICH in patients with various

types of pneumonia by using a probability map and box plot.

Specifically, patients with severe pneumonia had more ICH in

the left cerebral hemisphere (dominant side), whereas those

with moderate pneumonia had more ICH in the right cerebral

hemisphere and cerebrospinal fluid. The volume of the patients’

ICH played an important role in the occurrence and development

of pneumonia, as shown by significant differences in the amount of

bleeding in different categories of patients in the box plot, which

mainly displayed maximum, average, and median indicators.

In summary, our study presents a novel method for predicting

and analyzing SAP based on the distribution characteristics of the

ICH area in brain CT scans. We identified specific brain regions

that were more closely related to the occurrence and development

of SAP, and our probability map and box plot provided valuable

insights into the distribution characteristics of ICH in patients with

various types of pneumonia.
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