
TYPE Review
PUBLISHED 02 June 2023| DOI 10.3389/fcvm.2023.1113827
EDITED BY

Rongli Zhang,

Case Western Reserve University, United States

REVIEWED BY

Dong-Eog Kim,

Dongguk University, Republic of Korea

Rosa Suades,

Sant Pau Institute for Biomedical Research,

Spain

*CORRESPONDENCE

Lan Yuan

yuanlan@cdutcm.edu.cn

Haoran Chen

chenhrrr@163.com

†These authors contributed equally to this work

RECEIVED 01 December 2022

ACCEPTED 18 May 2023

PUBLISHED 02 June 2023

CITATION

Han Z, Liu Q, Li H, Zhang M, You L, Lin Y,

Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L

and Chen H (2023) The role of monocytes in

thrombotic diseases: a review.

Front. Cardiovasc. Med. 10:1113827.

doi: 10.3389/fcvm.2023.1113827

COPYRIGHT

© 2023 Han, Liu, Li, Zhang, You, Lin, Wang,
Gou, Wang, Zhou, Cai, Yuan and Chen. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Cardiovascular Medicine
The role of monocytes in
thrombotic diseases: a review
Zhongyu Han1†, Qiong Liu1†, Hongpeng Li1†, Meiqi Zhang1,
Luling You1, Yumeng Lin2, Ke Wang2, Qiaoyin Gou2,
Zhanzhan Wang3, Shuwei Zhou4, YiJin Cai1, Lan Yuan1*

and Haoran Chen5*
1School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu,
China, 2Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China,
3Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China, 4Department of
Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China, 5Science and
Education Department, Chengdu Xinhua Hospital, Chengdu, China

Cardiovascular and cerebrovascular diseases are the number one killer threatening
people’s life and health, among which cardiovascular thrombotic events are the
most common. As the cause of particularly serious cardiovascular events,
thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial
infarction and unstable angina), cerebral infarction and so on. Circulating
monocytes are an important part of innate immunity. Their main physiological
functions are phagocytosis, removal of injured and senescent cells and their
debris, and development into macrophages and dendritic cells. At the same time,
they also participate in the pathophysiological processes of pro-coagulation and
anticoagulation. According to recent studies, monocytes have been found to play
a significant role in thrombosis and thrombotic diseases of the immune system. In
this manuscript, we review the relationship between monocyte subsets and
cardiovascular thrombotic events and analyze the role of monocytes in arterial
thrombosis and their involvement in intravenous thrombolysis. Finally, we
summarize the mechanism and therapeutic regimen of monocyte and thrombosis
in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart
disease, lower extremity deep venous thrombosis, and diabetic nephropathy.
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ANTI-β2GPI, anti-beta2glycoprotein I; AT1R, angiotensin type 1 receptor; ACS, acute coronary syndrome;
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atherosclerotic cardiovascular disease; β2GPI-DV, β2GPI dimerization domainV; BFGF, basic fibroblast
growth factor; CAD, coronary artery disease; CCS, chronic coronary syndrome; CKD, chornic kidney
disease; CMs, classical monocytes; CRIP1, cysteine-rich intestinal protein 1; CRP, c-reactive protein; CVD,
cardiovascular disease; DC, dendritic cells; DN, diabetic nephropathy; DOCA, deoxycorticosterone acetate;
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molecule-1; IGF1, insulin-like growth factor-1;IL-8, interleukin-8; IMs, intermediate monocytes; LDL, low-
density lipoproteins; LF, lactoferrin; LVH, left ventricular hypertrophy; MACE, major adverse cardiovascular
events; M-CSF, macrophage colony stimulating factor; MCP-1, monocyte chemotactic protein-1; MDCS,
monocyte-derived dendritic cells; MMP, matrix metalloproteinases; MPA, monocyte-platelet aggregates;
MPO, myeloperoxidase; MHR, monocyte to hdl ratio; MI, myocardial infarction; MLR, monocyte-
lymphocyte ratio; MPs, monocytes; microparticles; MVs, microvesicles; MΦ, macrophage; MΦI, macrophage
infiltration; NCMs, non-classical monocytes; NDH, newly diagnosed hypertension; NF-κB, nuclear factor
κB; OCT, optical coherence tomography; OXLDL, oxidized ldl; PCM, pre-classical monocytes; PE,
pulmonary embolism; PHA, primary hyperaldosteronism; PMPs, platelet microparticles; PTGS, prostag-
landin-endoperoxide synthase; RAS, renin-angiotensin system; RDN, renal denervation; RHD, rheumatic
heart disease; RF, rheumatic fever; RHG-CSF, recombinant human granulocyte colony-stimulating factor;
ROS, reactive oxygen species; SASP, secretory phenotype; SYK, spleen tyrosine kinase; TECs, tubular
epithelial cells; TOD, target organ damage; UPA, uridylyl phosphate adenosine; VCAM-I, vascular cell
adhesion molecule-1; VEGF, vascular endothelial growth factor; VTE, venous thromboembolism.
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Introduction

Thrombotic diseases, which are mostly caused by thrombosis
and thromboembolic obstruction, are the main challenges in
clinical practice (1, 2). At present, thrombotic diseases have
become a kind of circulatory system disease that seriously
endangers human health. Based on research data from the World
Health Organization, CVDs are responsible for the highest
number of deaths globally, with 17.9 million people dying from
these diseases each year. A significant proportion of these deaths
result from cardio-cerebrovascular embolism (3). According to
the location of the disease, thrombotic diseases can be classified
into arterial thrombosis, venous thrombosis and microcirculatory
disorders.

For decades, it has been recognized that there is a complex
interaction between coagulation and inflammation, and the
coagulation cascade and platelet activation can trigger the
immune system, leading to leukocyte recruitment, adhesion,
extravasation and activation, and the immune system can in
turn influence haemostatic system, a process referred to as
immunothrombosis (4). Monocytes, which are myeloid cells
throughout an individual’s lifetime, contribute to regulating
immune responses and serve multiple functions in the body,
such as tissue development and maintaining vascular
homeostasis, host defense, and playing a role in initiating and
resolving inflammation and tissue remodeling (5). Monocytes in
an immature state are released from the bone marrow into the
bloodstream, after which some relocate to various tissues to
differentiate into resident macrophages (MΦ) or dendritic cells
(DC) (6, 7). Under the action of different factors and
environments, macrophages can be polarized into different
subtypes, and the common ones are classically activated MΦ1
(M1) or alternately activated MΦ2 (M2). M1 macrophages
polarized into a pro-inflammatory state, and exhibited high
expression of proinflammatory miRNA, promoting Th1
response (8). On the other hand, M2 macrophages have been
found to promote tissue repair and cell proliferation, display
anti-inflammatory characteristics, and encourage a Th2
response (8). The influence of the two macrophage subsets on
angiogenesis is divergent, with M1 macrophages generally
suppressing cell proliferation and reducing the ability of
endothelial cells (ECs) to undergo angiogenesis, while M2
macrophages often oppose this effect (8, 9). Studies have
demonstrated that M2 macrophages can facilitate angiogenesis
by upregulating basic fibroblast growth factor (bFGF), insulin-
TABLE 1 Phenotype and function of circulating monocyte subsets in human.

Subset Surface
markers

Chemokine
receptors

% of
total

Classical CD14++CD16− CXCR2+CX3CR1− 80–95 Phagocytic, tis

Intermediate CD14++CD16+ CCR2−CX3CR1+ 2–11 Highly proinfl
ROS and infla

Nonclassical CD14+CD16++ CCR2−CX3CR1+ 2–8 Patrolling, clea
anti-viral resp
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like growth factor-1 (IGF1), and placental growth factor
signaling pathways (10).

Different monocytes subset play diverse roles in cardiovascular

physiology and pathophysiology. Though now, there are many

subgroups (Table 1) to be researched through various

classification methods and the mechanisms are still not enough

to understand, several experiments have shown changes in the

absolute and relative concentrations of these subsets can serve as

exquisite markers of different inflammatory states in CVDs (15–

18). In cases of thrombosis, the formation of circulating

monocyte-platelet aggregates (MPA) can indicate platelet

activation and the presence of an inflammatory response. MPA

act as a mediator between inflammation and thrombosis,

highlighting their significant role (19). Multiple receptor ligands

bind between monocytes and platelets, leading to activation of

MPA. P-selectin/PSGL-1 mediated aggregation of platelet and

monocytes leads to NF-κB activation/translocation, superoxide

anion production and promotion of monocyte chemotactic

protein-1 (MCP-1), interleukin-8 (IL-8), IL-1β and tissue factor

(TF) release, which trigger coagulation and accelerate thrombosis

(20, 21). Moreover, multiple studies have found that heightened

levels of MPA in individuals with coronary heart disease,

unstable angina pectoris, and acute myocardial infarction

contribute significantly to the acceleration of thromboembolic

events (22–24). This highlights the importance of MPA in the

progression of CVD.

Neutrophil extracellular traps (NET) are the network

ultrastructure released into the extracellular after

polymorphonuclear neutrophils (PMN) activation, which serves

as the first line of defense against microbial infection in the early

stage. Studies have shown that NET is associated with thrombus-

inflammation-related diseases including Sepsis, systemic lupus

erythematosus, and coronary heart disease, which is a hot topic

in current research (25, 26). At present, Monocyte extracellular

trap (ET) shows similar morphology to NET, exhibited

procoagulant activity, and was associated with myeloperoxidase

(MPO), lactoferrin (LF), citrullinated histones, and elastase

(27, 28). In an inflammatory setting, extracellular trap cell death

(ETosis) occurs when peripheral blood mononuclear cells

encounter elastase and citrullinated portions of NET, and

monocytes preferentially take up apoptotic bodies from PMN,

thereby removing apoptotic bodies and NET-DNA (28, 29). We

increasingly recognize the importance of monocytes in

participating in thrombotic diseases such as CVDs, and

increasing research condenses into monocyte-specific molecular
Functions Cytokine
production

Reference

sue repair IL-1, IL-10, IL-12,
TNF-α

(11)

ammatory cells that produce high levels of
mmatory mediators

TNF-α, IL-1β, IL-6 (12, 13)

rance of debris, cearance of apoptotic cells,
onses

TNF-α, IL-1β, IL-6 (14)
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mechanisms, signaling pathways, and gene expression, providing

direct evidence to elucidate some diseases (21, 30–33).

Indeed, the role of monocytes in the link between

inflammation and the pro-thrombotic state is a topic of interest

and relevance in the field of cardiovascular disease. Monocytes

are important immune cells that can differentiate into different

subsets of macrophages that play distinct roles in the body’s

immune response. During inflammation, monocytes can become

activated and release pro-inflammatory cytokines, which can

contribute to the development of a pro-thrombotic state.

Additionally, monocytes can interact with platelets and

endothelial cells, further contributing to the development of

thrombosis. There has been some research on the specific

mechanisms by which monocytes contribute to the link between

inflammation and the pro-thrombotic state, and further studies

in this area could potentially lead to the development of new

therapeutic approaches for the prevention and treatment of

cardiovascular disease.

It should be mentioned that roles of moncytes in arterial

thrombosis “itself” has been rarely investigated. Pathophysiology

of thrombotic diseases are complex, because arterial

atherosclerosis (or venous blood stasis), plaque (and rupture),

tissue injury (such as cerebral infarction and myocardial

infarction), and systemic stress (related to cardiovascular events

in humans and animals or modeling-related surgical stress in

animals) are interwined, affecting each other. Therefore, under

the subtitle of monocytes and arterial thrombosis, we do not

have much data; monocyte-related features in the literature for

“thrombotic diseases” are not necessarily about “thrombosis” itself.
Monocyte subsets and cardiovascular
thrombotic events

Monocytes are the largest blood cells in the blood, accounting

for 8%–10% of the total number of leukocytes in the body (34).

Monocytes are the main component of the autoimmune response

and are closely related to the endogenous inflammatory process,

its surface sensing changes of the receptor (35). Monocytes can

respond quickly when body tissues are damaged or infected,

transforming into macrophages or DC to regulate the

inflammatory response and safeguard the body from infection

and injury (36). Several studies have shown that monocytes are

heterogeneous and plastic, and a variety of molecular markers

are present on the cell membrane, such as adhesion molecules,

complement receptors, and cytokines (31, 37). These molecules

jointly participate in the physiopathological processes such as cell

migration, thrombosis, and phagocytosis (31, 38, 39). According

to the International Federation of Immunology’s 2010

classification, human monocytes were divided into three subsets

based on the expression of CD14 (an LPS-related receptor) and

CD16 (an FcγⅢ receptor). These subsets include Classical

Monocytes (CMs, CD14++CD16−), Intermediate Monocytes (IMs,

CD14++CD16+), and Non-classical Monocytes (NCMs,

CD14+CD16++) (40) (Table 1). Classical monocytes

overexpressed genes related to phagocytosis, such as CD93,
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CD64, CD11B, CD36, CD32, CD14, ficolin-1 (FCN1), and signal

regulatory protein alpha (SIRPA) (41, 42). CMs are involved in

various immune responses such as inflammation and tissue

repair (43). IMs exhibit the highest expression of TLR2, TLR4,

CD40 and MHC-class II molecules (HLA-DR), and also possess

the greatest antigen presentation ability (42). NCMs perform

endothelial cell patrolling, which aids in maintaining cellular

integrity, removing dead ECs, repairing the vasculature in

atherosclerotic diseases, and removing lipids from the blood (44).

In vitro studies have revealed that NCMs demonstrate the most

robust response to LPS, and are capable of secreting pro-

inflammatory cytokines like tumor necrosis factor-alpha (TNF-α)

and IL-1β. The heightened expression of miR-146a observed in

NCMs is indicative of the senescence-associated secretory

phenotype (SASP) that results from increased basal levels of

phosphorylated NF-κB (p65) and IL-1α (45).

The developmental relationship of monocytes goes through

three stages, which are typical phenotype, intermediate

phenotype and non-classical phenotype. The results of several

current studies have shown that researchers have a large

controversy about proinflammatory cytokines secreted by

monocytes of different phenotypes (42, 46). In a comparison

regarding how much reactive oxygen species (ROS) are

produced, Cros et al. suggested that IMs do not produce ROS

and CMs produce large amounts of ROS, while Zawada et al.

suggested that CMs produce the lowest ROS and IMs produce

the most ROS (41, 46). In terms of how much TNF-α is

secreted, Cros et al. suggested that IMs produce the most TNF-α,

whereas Wong et al. claimed that NCMs produce the highest

levels of TNF-α (42, 46). In addition, at the level of gene

expression subset function, Cormican and Griffin screened genes

targeting monocyte subsets while giving a critical evaluation (33).

Anika Witten et al. conducted flow cytometric analysis and

genome-wide transcriptional profiling to investigate the

correlations between miRNA and mRNA species in three distinct

monocyte subsets. These subsets were obtained from patients

with first acute myocardial infarction (MI), stable coronary artery

disease (CAD), and individuals without any previous history of

CVD. They found that most MI-specific miRNAs were involved

in NCMs, which was consistent with the involvement of NCMs

in tissue repair after myocardial infarction. In the inflammatory

state of active CAD, the CMs are more inflammation and

patrolling. The findings suggest that miRNAs from monocyte

subsets might play a significant role in CVD both during and

after the disease progression. Due to their stability and

abundance in the circulating blood, the miRNAs linked to

monocytes could be potentially useful as biomarkers for

diagnosis, prevention, and treatment of CVD (47).

In the past few decades, there has been growing evidence

pointing to the existence of distinct subpopulations of monocytes

that play different roles in the development of CVDs. Changes in

the function, number, and proportion of these monocyte subsets

have been closely linked to the progress and prognosis of CVD

(15, 48–50). A single published literature by Helen Williams very

well has reviewed the relationship between the nature and

number of monocyte subpopulations developing in CVDs (51).
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The ratio of IMs and/or NCMs are frequently reported to be

elevated in CVD (51). In general, CD16+ monocytes may have

more promoting inflammatory and pro-coagulant functions in

vascular inflammation. In a clinical trial, IL-6 and IL-8 mRNA

levels were elevated in both IMs and NCMs and not detected in

CMs after LPS bolus injection in 12 healthy volunteers (52). In

addition, CD16 on CMs can be induced to rise by low serum

HDL-C in patients with coronary atherosclerosis, resulting in a

concomitant increase in IMs (53, 54). Interestingly, R. Cappellari

et al. made an intriguing discovery-they found that

cardiovascular outcomes could be predicted by the shift of

monocyte subsets along their continuum, as opposed to the

proportions of these subsets (55). The shift of monocyte subsets

along their continuum in patients with major adverse

cardiovascular events (MACE) was presented and described,

mainly manifested as the increase of classical CD16 fluorescence

intensity, the increase of intermediate type proportion, and the

increase of non-typical CD14 fluorescence intensity. Such drift

changes are particularly helpful in determining cardiovascular

events. The findings indicate that the predictive power of

monocyte subsets for adverse cardiovascular outcomes lies in the

shift along the CD14/CD16 continuum, rather than their

frequency. Ramona Vinci et al. investigated whether variations in

plaque erosion and rupture, as identified by optical coherence

tomography (OCT) studies, were significantly different in non-

ST-segment elevation acute coronary syndromes (ACS) patients

based on the analysis of monocyte subsets present in circulating

blood (56). The study introduced a pre-classical monocyte

(PCM) population near the coronary microvasculature with

CD14+CD16− surface staining. The distribution of monocyte

subsets was analyzed in the study population, and the frequency

of the newly identified PCM subsets was found to be higher in

patients with non-ST-segment elevation ACS (NSTE-ACS)

compared to those with chronic coronary syndrome (CCS).

When the plaque phenotype was analyzed by OCT, the PCM

subsets were higher in NSTE-ACS patients, especially those with

ruptured fibrous cap (RFC) plaques and concomitant local

macrophage infiltration (MΦI). Overall, higher rates of

circulating PCM may represent a unique marker of specific

plaque rupture with local MΦI.

Furthermore, the Monocyte-to-HDL Ratio (MHR), which is a

newly emerged biomarker indicating inflammation and oxidative

stress, can be conveniently obtained in clinical settings.

Currently, it has been considered a marker of drug-resistant

hypertension in chronic kidney disease (CKD), coronary heart

disease, diabetic retinopathy, pulmonary embolism (PE) and

other diseases (57–61).
Monocytes and arterial thrombosis

Arterial thrombosis is mainly due to the blood vessels in

unstable atherosclerotic plaque rupture, plaques inside the lipids

are released into the bloodstream, causing blood platelet

aggregation and adhesion, and attracting white blood cells

(WBC) and red blood cell (RBC) aggregation, leading to
Frontiers in Cardiovascular Medicine 04
thrombosis, vascular occlusion and possible acute myocardial

infarction, ischemic stroke, lower limb arteriosclerosis occlusion

(62). Arterial thrombosis is characterized by high blood flow

velocity and high wall shear rate. When ECs are destroyed or

atherosclerotic plaque is ruptured, a series of events lead to the

formation of platelet-rich thrombosis (63).

At sites of vascular injury, inflammation, or thrombosis,

platelet activation plays a crucial role in orchestrating the

recruitment of WBC. This intricate process is largely mediated

via the release of soluble mediators or through direct cellular

interactions. Notably, platelets exhibit the highest binding affinity

with monocytes/macrophages, and their potency descends

progressively with respect to neutrophils and lymphocytes. This

mechanism of cellular recruitment represents a profound

component of the immune response and serves to fortify the

host’s defenses against pathogenic insults (64).

P-selectin (CD62P), a transmembrane glycoprotein of platelets,

constitutes a fundamental component of thromboinflammatory

cascades. Its exposure on the surface of platelets initiates a series

of intricate interactions with leukocytes by binding to O-

glycosylated carbohydrate ligands on PSGL1 on the outer surface

of myeloid cell membranes. Such binding, synergistic with the

CD40-CD40l pathway, elicits intracellular signal transduction,

culminating in the upregulation of TF expression in leukocytes

(20, 30, 65–67). In turn, PSGL-1 induce up-regulation and

activation of integrin β2 [macrophage-1 antigen (Mac-1) and

lymphocyte function-associated antigen-1 (LFA-1)] in monocytes,

further supporting their interaction with platelets (68).

Glycoprotein (GP) VI, a prominent receptor located on the

surface of platelets, drives the interaction between platelets and

the extracellular matrix metalloproteinase inducer (EMMPRIN,

CD147/basigin) expressed on the surface of monocytes,

promoting their recruitment to the site of inflammation in

arterial walls (69, 70). In addition to the direct interaction,

platelet-derived substance influence monocyte recruitment and

endothelial cell adhesion and behavior. Intriguingly, platelets

activated under conditions of vascular insult then extrude into

their surroundings, an array of extracellular vesicles (EVs)

derived from the membrane-bound structures of the activated

platelets. These EVs exhibit a preference towards binding to

blood monocytes in comparison to other leukocyte subsets, a

mechanism chiefly contributing to the selective recruitment of

monocytes towards sites of inflammation or tissue injury. This

intricate process represents an indispensable component of the

host’s immune response, highlighting the functional importance

of these EVs as modulators of both inflammation and

thrombosis (Figure 1). Platelet-derived EVs transfer the platelet

adhesion receptor GPIbα to the surface of monocytes, which can

be recruited in various blood vessels (71). As a perfectly tuned

transcellular conveyance mechanism for RANTES, circulating

platelet microparticles (PMPs) augment the adhesion of CXCL4

(PF4) to the exterior of monocytes, inducing a robust anti-

inflammatory effect. The exquisite intercellular orchestration

orchestrated by PMPs not only furthers the targeted transport of

RANTES, but also orchestrates an intricate cellular dialogue that

culminates in the suppression of the inflammatory signals
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FIGURE 1

The involvement of monocytes in atherosclerosis-thrombosis. The release of pro-inflammatory factors from cells in the plaque and the damage of ECs
caused circulating monocytes to roll, roll slowly, adhere firmly, and travel through the tissue to differentiate. Macrophages phagocytose excessive Ox-LDL
and other immune substances, causing apoptosis and necrosis of cells, lipid deposition, the generation of a large number of inflammatory factors and
tissue factors, and promoting the transport of more circulating monocytes. Activated Th1 cells produce interferon γ, which inhibits smooth muscle
cell synthesis of interstitial collagen. The interaction between Th1 cells and M1 macrophages leads to the overproduction of MMP-1, MMP-8 and
MMP-13, and the interstitial collagenase can promote the breakdown of interstitial collagen. At the same time, it can induce M1 macrophages to
overexpress tissue factors. These processes make the fibrous cap more vulnerable to rupture, and inflammatory activation leads to the increased
potential for thrombosis. Platelet-rich thrombosis forms around atherosclerotic plaque rupture and endothelial damage when endosubcutaneous
collagen is exposed to circulation under high shear flow. Platelets, through their glycoproteins, interact with collagen and collagen-deposited vWF to
change their shape and adhere to the injured site. Attachment results in the secretion of ADP, serotonin, and thromboxane (TxA2), which recruit and
activate more platelets. The platelet-monocyte complex (PMC) is activated by the interaction of various receptor ligands between platelets and
monocytes. Platelets and monocytes also shed extracellular vesicles, release cytokines and chemokines, and tissue factors are increased to promote
thrombosis. 5-HT, 5-hydroxytryptamine; E-sel, E-selection; FXIII, Factor XIII; FIB, fibrinogen; GM-CSF, granulocyte-macrophage colony stimulating
factor; IL-8, interleukin-8; LDL, low-density lipoproteins; L-sel, L-selection; MCP-1, monocyte chemotactic protein-1; oxidized LDL; M-CSF,
macrophage colony-stimulating factor; MMP, matrix metalloproteinases; Ox-LDL, oxidized LDL; PEV, platelet-derived extracellular vesicles; PMC,
platelet-monocyte complex; P-sel, P-selection; ROS, reactive oxygen species; SRs, scavenger receptors; TF, tissue factor; TNF-α, tumor necrosis
factor-α; TxA2, thromboxane; VCAM-1, vascular cell adhesion molecule-1; vWF, von Willebrand factor.
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generated by activated monocytes (72, 73). CXCL4 induces

monocyte respiratory burst through rapid activation of

phosphoinositide 3-kinase (PI3K), spleen tyrosine kinase (SYK),

and p38 mitogen-activated protein kinase (MAPK), mediates

ROS formation, cytokine/chemokine expression, and apoptosis

rescue depends on continuous activation of SPHK and

extracellular regulated protein kinases (ERK) to inhibit caspase

activation (74, 75). CXCL4 also promotes monocyte

differentiation into macrophages and inhibits CD163 in

macrophages to promote atherogenesis (76, 77). Through a

precision-driven process, activated platelets demonstrate their

nuanced ability to manipulate the MCP-1 and intercellular

adhesion molecule-1 (ICAM-1) properties of ECs using a

mechanism that is dependent upon the regulation of NF-κB (78).

With intricate precision, downstream upregulation of adhesion

molecule target genes, namely vascular cell adhesion molecule-1

(VCAM-1), ICAM-1, E-selectin, P-selectin and MCP-1, confers

an indirect yet potent effect on monocyte recruitment (79).

Overall, the formation of MPA is sophisticated, but it is crucial

for thrombosis. With remarkable dexterity, previous studies have
Frontiers in Cardiovascular Medicine 05
postulated that P-selectin may be a key determinant in the

initiation of the intricate cellular conjugation between platelets

and monocytes, subsequently fueling a deleterious cycle of

platelet activation that manifests as a cascade of platelet activator

synthesis. By offering an incisive glimpse into this complex

interplay, these seminal findings expand our understanding of

the intricate molecular pathways that underlie the profound

intercellular cooperation observed in platelet-monocyte

conjugation. Such knowledge opens up a rich avenue of

exploration for the development of novel therapies designed to

target the various components involved in this process for better

clinical outcomes.

With intricate precision, it has been postulated that leukocytes

navigate across the luminal surface of inflammatory ECs via a

refined rolling mechanism, only to then stabilize their interaction

with the endothelium and progress into the vascular wall. This

decisive cellular behavior is regulated by a fine-tuned process of

cellular crawling, through which the leukocytes reach the

appropriate extravasation site with remarkable specificity. Crucial

to this intricate interplay is the dynamic regulation of adhesion
frontiersin.org
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molecules, which confer nuanced yet prodigious control over the

molecular pathways underlying leukocyte motility and

extravasation (31).

With unparalleled finesse, it has been theorized that the

exquisite interplay between inflammation and ECs lays the

foundations for a highly orchestrated cascade of molecular

events. Of primordial import is the rapid induction of the

expression of key endothelial adhesion molecules, which are fine-

tuned with remarkable precision by the pivotal inflammatory

factors, TNF-α and IL-1β. In a study, the authors have

expounded on an intricate regulatory scheme governing the

rolling rate of inflammatory monocytes. Specifically, their results

demonstrate that the resynthesis of E-selectin by ECs plays an

indispensable role in activating said regulatory mechanism.

Additionally, they have delineated a multifaceted process by

which P-selectin, L-selectin, PSGL1, and CD44, intricately

intertwine and combine forces to regulate the flux of rolling

neutrophils and inflammatory monocytes (80, 81). Very late

antigen-4 (LA-4 α4β1 integrin) expressed by monocytes can bind

to VCAM-1 on the endothelium, mediating its slow roll to firm

adhesion on ECs activated by cytokines such as CXCL1 (82, 83).

Monocytes are able to roll over the endothelium and

appropriately adapt to the high shear stress that is imposed by

blood flow, due to their interactions with C-C and C-X-C

chemokines such as C-C chemokine ligand 2 (CCL2) (MCP-1)

and CXCL8 (IL-8). These chemokines facilitate the tight

adhesion of monocytes to ECs (84, 85). ICAM-1 also promotes

leukocyte adhesion and migration through its ligands (LFA-1,

MAC-1) and participates in the interaction between ECs and

monocytes (86, 87). The risk factor C-reactive protein (CRP)

leads to a reduction in endothelial nitric oxide production and

drives plaque instability through several mechanisms. These

mechanisms include increasing the expression of endothelial cell

adhesion molecules, inducing monocyte TF through CRP,

promoting the recruitment of monocytes to atherosclerotic

plaques, and enzymatically binding modified low-density

lipoprotein (88).

TF-positive monocyte-derived microvesicles (MVs) are small,

membrane-bound fragments that are released from monocytes

into the bloodstream. Monocytes are a type of white blood cell

that can differentiate into macrophages, which play a key role in

the immune response to infection and inflammation. When

monocytes encounter oxidized LDL cholesterol particles in the

bloodstream, they can become activated and release TF-positive

MVs. These MVs can circulate widely in the bloodstream and

contribute to coagulation-related concerns. TF-positive MVs are

one of the sources of TF in the bloodstream, along with

monocytes and other cells. The upregulation of tissue factor

expression in circulating monocytes and macrophages through

the TLR4/TLR6/CD36 receptor complex that occurs in the

presence of OxLDL is thought to play a key role in the

development of atherosclerosis and other vascular inflammatory

diseases. As a result, TF-positive MVs are an important

biomarker of vascular inflammation and thrombotic risk (89).

We summarize the latest factors that stimulate monocytes to

produce TF coagulation (90) (Table 2). Plaque rupture exposes
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the blood to high levels of TF-induced thrombin, initiating a

coagulation cascade that subsequently forms a fibrin monolayer

covering the exposed damaged surface of the vessel (130)

(Figure 1).

In the early stages of atherosclerosis, monocytes are recruited to

the site of arterial injury, where they differentiate into

macrophages, which engulf LDL, the “bad” cholesterol that

contributes to the development of plaques. As the plaques grow

larger, they eventually rupture or become unstable, leading to the

formation of arterial thrombosis.

Recent research has suggested that monocyte-derived platelets,

which are produced by the transformation of monocytes into

megakaryocytes, may also play a key role in the development and

progression of arterial thrombosis (131). These platelets are

smaller than normal platelets and are more reactive, making

them more likely to form blood clots.

The relationship between monocytes and arterial thrombosis

has been studied extensively, with several mechanisms that

underlie the association between these two phenomena being

proposed. One of the mechanisms involves the production of

various interleukins, such as interleukin 1β (IL-1β), by

monocytes, which can induce endothelial cell damage and

contribute to the development of arterial thrombosis. Another

mechanism is the involvement of monocytes in the activation of

the coagulation cascade, leading to the formation of blood clots.

Monocyte-targeted therapies have been proposed as potential

treatments for arterial thrombosis, including the use of inhibitors

that target interleukins or suppress the activation of the

coagulation cascade. In addition, lifestyle modifications such as

regular exercise, a healthy diet, and smoking cessation are

recommended to reduce the risk of developing arterial thrombosis.

In conclusion, the relationship between monocytes and arterial

thrombosis is a complex phenomenon that involves multiple

aspects, and more research is needed to fully understand the

mechanisms and potential therapies for this condition.

Nonetheless, the increasing evidence of the significant

contribution of monocytes to arterial thrombosis highlights the

importance of further investigating their role in this disease.

Understanding the relationship between monocytes and arterial

thrombosis may ultimately lead to the development of more

effective treatments and preventative strategies for this condition,

which is a significant cause of morbidity and mortality worldwide.
Monocytes and venous thrombosis

The development of venous thrombosis is primarily linked to

reduced shear flow, typically occurring around intact endothelial

walls. Venous thrombi often contain high levels of fibrin, and are

surrounded by numerous red blood cells and activated platelets.

When blood flow decreases, it can result in hypoxia and lead to

an increase in the expression of endothelial adhesion molecules.

This increased expression can cause leukocytes to attach to the

endothelium (62). The coagulation cascade is initiated by the

release of TF from leukocyte microparticles and endothelial-

binding monocytes. At the same time, thrombin is activated and
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TABLE 2 Effect of different factors and milieu on monocyte tissue factor expression and procoagulant activity.

Factors/milieu Model In vitro/
vivo

Mechanism/result Effect
(E&A)

Reference

IL-6/IL-8 Human In vitro Induce monocyte PCA by increasing mRNA, protein content, and surface expression
of TF

Increased E (91)

IL-1/TNF-α Human In vitro Induces TF activity in human monocytes Increased
A&E

(92)

IL-4/IL-13 Human In vitro Effectively diminished IL-1 alpha/beta induced PCA, shown at the protein and at the
mRNA-level

Reduced
A&E

(92)

IL-33 Human In vitro IL-33 induced a time-and concentration-dependent increase of monocyte TF mRNA
and protein levels via binding to the ST2-receptor and activation of the NF-κB-
pathway

Increased E (93)

MCP-1 Human In vitro MCP-1 induces the accumulation of TF mRNA and protein in THP-1 monocytic
leukemia cells

Increased
A&E

(94)

PDGF-BB Human In vitro – Increased E (95)

PDGF-CC Human In vitro PDGF-CC induces TF expression via activation of α/β receptor heterodimers and an
ERK-dependent signal transduction pathway

Increased
A&E

(96)

IL-10 Human In vitro Endogenous IL-10 regulates TF expression and release of active TF-bound
microparticles by a negative feed back loop through IL-10 receptor alpha

Reduced
A&E

(97)

P-selectin Human In vitro P-selectin on activated platelets rapidly triggers TF exposure on monocytes
independent of de novo protein synthesis

Increased E (98)

aPL Human In vitro Dependent on inducing tumor necrosis factor-α (TNF-α) secretion Increased E (99)

Human In vitro TLR4 signal transduction pathways participate in anti-β2GPI/β 2GPI-stimulated TF
and TNF-α expression in monocytes, and both MyD88 and TRIF adaptors are
involved in the process.

Increased E (100)

Human In vitro aPL induces TF expression in monocytes from APS patients by activating,
simultaneously and independently, the phosphorylation of MEK-1/ERK proteins,
and the p38 MAP kinase-dependent nuclear translocation and activation of NF-
kappaB/Rel proteins

Increased E (101)

Anti-DNA antibodies cross-
reactive with β2-glycoproteinI

Human In vitro TLR9 activation by DNA which was internalized together with cross-reactive
antibodies produced in secondary APS accompanying SLE

Increased E (102)

LPS Human In vitro Dependence on LPS-Binding protein and CD14, and Inhibition by a recombinant
fragment of bactericidal/permeability-increasing rotein

Increased
A&E

(103)

ATG Human In vitro ATG induces monocyte TF procoagulant activity dependent on complement
activation but independent of de novo protein synthesis

Increased (104)

MPA
PCSK9 Human In vitro PCSK9 induces TF expression through activation of TLR4/NFkB signaling Increased

A&E
(105)

Homocysteine Human In vitro Homocysteine induce TF expression by human peripheral blood monocytes in a
specific manner at physiologically relevant concentrations

Increased E (106)

Neutrophil elastase Human In vitro Neutrophil elastase mainly enhances tissue factor production by monocytes via the
phospholipase C/conventional PKC/p38 MAPK pathway

Increased E (107)

Amiodarone Human In vitro Amiodarone inhibits tissue factor expression in monocytic cells, by inhibiting mRNA
transcription

Reduced E (108)

SP Human In vitro SP binding to neurokinin-1 receptor induces monocytes to release cytokine/
chemokine mediated TF expression

Increased
A&E

(109)

15(S)-HETE Human In vitro 15(S)-HETE–induced TF expression and its activity require reactive oxygen species–
dependent calcium/calmodulin-dependent protein kinase IV (CaMKIV)–mediated
nuclear factor of activated T cells 3 (NFATc3) and FosB interactions and their
occupancy of AP-1 site in the TF promoter

Increased
A&E

(110)

aODN Human In vitro TF mRNA antisense ODN specifically suppressed the synthesis of biologically active
monocyte TF

Reduced E (111)

Simvastatin Human In vitro Inhibit the monocyte expression of TF by interfering with intracellular synthesis of
cholesterol

Reduced E (112)

hsa-miR-223-3p Human In vitro hsa-miR-223-3p can bind to a complementary site within the 3′-UTR of the TF
mRNA transcript to control its expression

Reduced (113)

HNE Human In vitro NE increases TF coagulant activity in monocytic cells through a novel mechanism
involving p38 MAPK activation that leads to enhanced PS exposure at the cell surface
without increasing TF protein levels

Increased A (114)

bFGF Rabbit In vivo – Increased
A&E

(115)

VIP/PACAP Human In vitro/in
vivo

VIP and PACAP inhibit LPS-induced TF expression in monocytes in vitro and in
vivo, block both the migration of c-Rel/p65 and the phosphorylation of p38 and JNK

Increased
A&E

(116)

Histone Human In vitro Histones, particularly subunits H3/H4, increases surface TF activity via increased
surface TF antigen and PS exposure.

Increased
A&E

(117)

(Continued)
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TABLE 2 Continued

Factors/milieu Model In vitro/
vivo

Mechanism/result Effect
(E&A)

Reference

AGEs Human In vitro AGE-induced TF expression in monocytes is mediated by oxidant stress Increased (118)

GGT Human In vitro Human recombinant GGT induced TF expression in monocytes through a cytokine-
like mechanism that involved the activation of TLR4/NF-κB signaling

Increased
A&E

(119)

Insulin Human In vitro Insulin inhibits TF expression in monocytes and monocyte-derived microparticles
through interference with Giα2-mediated cAMP suppression, which attenuates Ca2
+-mediated TF synthesis

Reduced (120)

Bradykinin Mice In vivo PI3K/Akt signaling pathway activation induced by bradykinin administration
reduced the activity of GSK-3β and MAPK, and reduced NF-kB level in the nucleus,
thereby inhibiting TF expression; Bradykinin inhibited tissue factor expression of
monocytes by BK B2 receptor–mediated NO release

Reduced
A&E

(121)

CS Human In vitro BDNF released by platelets upon activation by CS modulates TF activity in human
peripheral blood monocytes (PBMs)

Increased
A&E

(122)

BMP-7 Human In vitro BMP-7-mediated increase in TF mRNA/protein levels and functional activity in
circulating human monocytes is due to the activation of NF-kB, but not AP-1

Increased
A&E

(123)

ATRA Human In vitro ATRA downregulated monocyte TF expression and reduced thrombus formation on
adherent monocytes at arterial shear

Reduced
A&E

(124)

PF4/heparin-antibody complex Human In vitro Induction of TF is mediated via engagement of the FcγRI receptor and activation of
the MEK1-ERK1/2 signaling pathwa

Increased E (125)

Local anesthetics (lidocaine,
ropivacaine, and bupivacaine)

Human In vitro Reduced the expression of TF antigen and activity in activated monocytes by
inhibiting TF mRNA synthesis

Reduced
A&E

(126)

Adipokine apelin-13 Human In vitro Apelin-induced TF expression was mediated by the G-protein-transcription factor
NF-κB axis

Increased
A&E

(127)

THC Human In vitro THC mediated elevation of TF expression at a post-transcriptional level by inducing
stabilization or preventing degradation of TF mRNA

Increased
A&E

(128)

sGC (BAY 41-2272 and BAY
58-2667)

Human In vitro The downregulation of TF expression and functional activity by BAY 41-2272 and
BAY 58-2667 are mediated through the sGC-dependent mechanisms involving the
suppression of transcriptional activityof NF-κB.

Reduced
A&E

(129)

3′-UTR, 3′-untranslated region; β2GPI, phospholipid-bound β2-glycoprotein I; 15(S)-HETE, 15(S)-hydroxyeicosatetraenoic acid; AGEs, advanced glycosylation end

products; aODN, antisense oligodeoxynucleotide; AP-1, activation protein-1; ATG, antithymocyte globulin; aPL, antiphospholipid antibody; BDNF, brain-derived

neurotrophic factor; bFGF, basic fibroblast growth factor; BMP-7, bone morphogenetic protein-7; CS, cigarette smoke; CaMKIV, calcium/calmodulin-dependent

protein kinase IV; ERK, extracellular signal-regulated kinase; HNE, 4-hydroxy-2-nonenal; MAPK, mitogen-activated protein kinase; PACAP, pituitary adenylate cyclase-

activating polypeptide; PBMs, human peripheral blood monocytes; PCA, procoagulant activity; PDGF-BB, platelet-derived growth factor BB; PDGF-CC, platelet-derived

growth factor CC; PF4, platelet factor 4; PKC, protein kinase C; PS, phosphatidylserine; sGC, soluble guanylate cyclase; SLE, systemic lupus erythematosus; SP,

neuropeptidesubstance P; TLR4, toll-like receptor 4; VIP, vasoactive intestinal peptide.
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fibrinogen is converted to fibrin (132) (Figure 2). Hypoxia can lead

to the death of ECs and neutrophils, and the dead cell debris needs

to be removed by macrophages (133). Pro-inflammatory Mo/MΦ

sampled from blood showed significantly elevated M1-

polarization in pathological deep vein thrombosis (DVT) in

human patients (134). In both animal and human experimental

observations concerning thrombus lysis, the presence of

macrophages at the site was detected. Notably, the subsequent

inflammatory signals triggered by these macrophages led to a

heightened formation of thrombus, thereby instigating the

ultimate stage of thrombus resolution (134–138). Faster

thrombus resolution is the key to improving the prognosis of the

disease. The phenomenon of venous thrombolysis and

recanalization parallels the intricate biological process of wound

healing, whereby the inflammatory response of the venous wall is

provoked, establishing the infiltration of diverse inflammatory

cells, fibril growth factors, collagen deposition, and the

discernible expression and activation of matrix metalloproteinases

(MMP) (139–142). Despite the comparatively diminished platelet

count in the manifestly proliferating venous thrombosis than in

its arterial counterpart, its activated platelets also duly evoke the

expression of P-selection, thereby promoting peripheral leukocyte

invasion into the thrombus (143).
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The phenomena of thrombus dissolution release myriad

proinflammatory factors into the indigenous milieu,

encompassing IL-1β, TNF-α, JE/MCP-1, IL-6, MIP-1α, and

ENA-78 (144). Then, leukocytes begin to invade the thrombus,

and PMN is the first to reach the thrombus site, promoting

fibrinolysis and collagen dissolution, which are critical for early

thrombus dissolution (145). In addition, in the context of PMN

inflammation in venous thrombosis, NETs can mediate thrombus

fibrosis through TGF-β, and then transform into insoluble

chronic thrombosis (146). PMN also promotes the entry of

monocytes into the thrombu. Wakefield et al. noted that

polymorphonuclear leukocytes in the thrombus began to switch

from neutrophils to monocytes on day 4 of thrombosis and

reached a peak on day 8 (147). As more macrophages

accumulate within the thrombus, they become the primary

inflammatory cells and start generating a variety of substances

such as chemokines, inflammatory cytokines, and matrix-

degrading proteases. Examples of these proteases include uridylyl

phosphate adenosine (uPA) and MMPs, which promote both

fibrinolysis and tissue remodeling. Additionally, the macrophages

release multiple vascular-forming factors such as IL-1, TNF,

vascular endothelial growth factor (VEGF), FGF-2, and PDGF.

These factors can directly or indirectly stimulate endothelial cell
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FIGURE 2

The involvement of relevant immune cells during venous thrombosis. During venous thrombus regression, numerous pro-inflammatory factors are
released into the local environment, with an early influx of Neutrophils and macrophages, followed by monocytes, which regulate the production and
activity of plasminase and MMPs. In the early stage of thrombolysis, fibrinolysis occurs at a high rate under the action of neutrophils, resulting in the
production of fibrin degradation products, the emergence of collagen fibrils within the thrombolus, and the induction of inflammatory cytokines and
various proteases by thrombolt-associated immune cells. With the structuring of the thrombus, the dissolution rate of fibrin slows down, collagen
proliferation in the thrombus increases, monocytes infiltrate phagocytosis and mobilize EPC, and matrix remodeling of mmp secreted by
macrophages occurs, which may eventually recover through the blood flow of the thrombus. bFGF, basic fibroblast growth factor; EPC, endothelial
progenitor cells; FDPs, fibrin/fibrinogen degradation products;IL-8, interleukin-8; MCP-1, monocyte chemotactic protein-1; MMP, matrix
metalloproteinases; NET, Neutrophil extracellular traps; TNF-α, tumor necrosis factor-α; TGF-β, transforming growth factor-β; TLR-9, toll-like
receptor 9;uPA, uridylyl phosphate adenosine; VEGF, vascular endothelial growth factor; VSMC, Vascular smooth muscle cell.
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proliferation, migration, and promote the formation of tubule-like

structures, eventually resulting in the restoration of blood flow

within the thrombosis vein (148–151). MMP-9 causes loss of

venous wall compliance by increasing collagen elastin fibers and

extracellular matrix (ECM), and subsides thrombosis by reducing

macrophage and collagen content (152).

During the later stages of venous thromboembolism (VTE),

certain cytokines, including IL-10, TNF-α, IL-6, and IL-8, seem

to facilitate the resolution of the thrombus (153–156). In an

animal experiment, investigators have found that IL-6 may be a

therapeutic target to prevent fibrotic complications that arise in

post-thrombotic syndrome (PTS) (157). Besides, Mizuho

Nosaka’s experiment demonstrated that administering an anti-IL-

6 antibody slowed down the resolution of the thrombus (156).

This evidence suggests that sophisticated cytokine regulation of

thrombus also plays a role in post-thrombotic resolution and

ensuing complications.

Attracted by high levels of MCP-1 and other factors (such as

local inflammatory reactions), monocytes greatly infiltrate the

thrombus and promote thrombus recanalization, and venous flow

recanalization is mainly dependent on intrathrombotic

neovascularization to establish functional flow channels. It is

thought that the resolution of inflammation and acceleration of

this process restores venous wall patency and reduces the

pathology associated with PTS. According to previous research,

while exogenous MCP-1 may speed up the resolution of DVT, it

has been found to promote fibrosis in organs in vivo (147). In
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contrast, inhibiting P-selectin and E-selectin has been shown to

decrease thrombosis and vein wall fibrosis (158). As such,

targeting P-selectin and E-selectin may be promising areas for

future research.
Monocyte and thrombotic diseases

Vascular hypertension

Generally speaking, when the normal blood pressure is <120/

80 mmHg, the blood passes normally. When the blood pressure

increases, it will impact the blood vessels and cause pressure on

the blood vessels (159). The long-term effect causes damage to

the intima of blood vessels and the formation of red thrombosis.

Damaged areas form scarring hyperplasia, which thickens the

blood vessel wall and continuously forms proliferation and

accumulation, narrowing the lumen and increasing the risk of

thrombosis (160).

Increased immune cell infiltration may affect some

mechanisms directly associated with the development of

hypertension, such as promoting the release of aldosterone,

increasing the reabsorption of sodium and water, and increasing

circulating blood volume. T cells and macrophages produce a

variety of pro-inflammatory factors when stimulated, which can

lead to cardiomyocyte fibrosis, vascular dysfunction and end-

organ damage. Monocytes and macrophages are particularly
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involved in antigen presentation to T cells and cytokine production

in hypertension. Proteins modified by oxidation of highly reactive

γ-ketoaldehydes accumulate in DC in multiple hypertensive mouse

models. Monocyte-derived dendritic cells (MDCS) make a

difference in promoting hypertension and end-organ damage by

producing abundant cytokines, promoting the proliferation of

CD8+ T cells releasing IFN-γ and IL-17A (161).

Macrophages are derived from monocytes, and in the context

of vascular inflammation, monocytes are recruited to inflamed

tissue and differentiate into macrophages. These macrophages

then secrete pro-inflammatory mediators (IL-1), promoting

vascular inflammation (162). In a review published by Philip

Wenzel et al., monocytes as immune targets in the occurrence,

development, and manifestation of hypertension may represent a

potentially novel therapeutic avenue for treating hypertension,

thereby alleviating hypertension-related end-organ damage or

preventing the development or deterioration of hypertension

(163). Induction of the diphtheria toxin receptor in Lysm-

positive macrophages followed by low doses of diphtheria toxin-

depleted bone marrow mononuclear cells reduced circulating

mononuclear cells and limited ATII-induced macrophage

invasion of the vascular wall. Wild-type CD11b+Gr-1+

mononuclear cells transfected into depleted LysMiDTR mice

restored Angiotensin II (Ang II)-induced vascular dysfunction

and arterial hypertension (164). IL-1 is a typical mononuclear/

macrophage cytokine, and activation of IL-1 receptors has been

implicated in the promotion of sodium retention and elevation

of blood pressure through the release of the NKKC2 sodium

cotransporter (165).

Mononuclear cell infiltration, invasion, and differentiation in

the heart and blood vessels are associated with the progression

and severity of hypertensive diseases. In cell co-culture models,

activated platelets from patients with essential hypertension are

capable of releasing MCP-1, which is responsible for recruiting

monocytes to sites of inflammation in blood vessels, thereby

mediating the progression of atherosclerosis (166). Monocyte

infiltration into the heart and blood vessels during hypertension

is dependent on the CCL2-CCR2 axis, and it has been

demonstrated in various studies that manipulating drugs or genes

can have positive impacts on the chemokine and chemokine

receptor pathway (162, 167, 168). In various rat models of

hypertension induced by high-salt diet, deoxycorticosterone

acetate, and human renin models, monocyte infiltration and

adhesion can lead to increased blood pressure and renal injury

(169–171).

In human cohort studies, the expression level of cysteine-rich

intestinal protein 1 (CRIP1) in monocytes was associated with an

increase in blood pressure, and this association decreased with

the expression level of CRIP1 when monocytes differentiated into

macrophages (172). This suggests that CRIP1 may affect the

interaction between monocytes and the pathogenesis of

hypertension through proinflammatory regulation and

upregulation. In hypertensive patients, increased vascular

stretching promotes endothelial cell activation, which enhances

the conversion of monocytes into IMs and CD209-labeled

monocytes, it activates STAT3 in monocytes and significantly
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stimulates the expression of IL-1β, IL-23, CCL4 and TNF-α in

monocytes to produce these pro-hypertensive cytokines (173). In

patients with poorly controlled hypertension and target organ

damage (TOD) characteristics, the surface expression of NCMs

costimulatory marker CD86 is higher, and the proportion of

VEGF-R2 positive non-classical cells is higher, indicating that

phenotypic changes in monocyte subsets are related to the

progression and severity of hypertension (168).

Summarizing, in the current clinical trials and animal models

related to hypertension that we mentioned, we found that organ

damage resulting from hypertensive events is closely related to

various immune cells of the immune system. Cells of the innate

and adaptive immune systems enter target organs in the body

through various routes (such as kidneys, blood vessels,

myocardium, etc.) and damage target organs by releasing

cytokines, matrix metalloproteinases, and ROS, ultimately leading

to increased blood pressure. Several factors can activate immune

cells to enter target organs, such as a high sodium diet causing

an increase in sodium ions in the immune microenvironment. In

addition, ECs can release both ROS and IL-6. These molecules

can stimulate monocytes to become APCs, which in turn

produce cytokines like IL-1β and IL-23. These cytokines can

have a significant impact on T cell function. Therefore, reducing

the secretion and production of cytokines by such cells in

various ways contributes to improving hypertension and end-

organ damage.
Antiphospholipid syndrome (APS)

APS is a rare and complex systemic disease characterized by the

presence of antiphospholipid (aPL) antibodies [including lupus

anticoagulant, anticardiolipin antibodies, and anti-β2

glycoprotein i (anti-β2GPI) antibodies], with the main clinical

features of thrombosis or pathological pregnancy (174). After

antibodies bind to β2GPI protein on monocytes and ECs, the

Toll-like receptor 4 (TLR-4) triggers the myeloid differentiation

primary response protein 88 (MyD88) signaling pathway which

leads to the activation of several protein molecules including p38

MAPK, MEK-1/ERK, and NF-κB (174–178). ECs produce

microparticles (MP) and MCP-1, while monocyte adhesion to

ECs increases due to the activation of the Toll-like receptor

(TLR) expression. Furthermore, the presence of proinflammatory

cytokines (IL-1β, IL-6, IL-8, and anti-TNF) and chemokines

leads to the release of adhesion molecules including E-selectin,

VCAM-1, ICAM-1, and TFs. These factors contribute to the

inflammation of the blood vessels and promote the growth of

ECs, which can ultimately lead to intimal hyperplasia (176, 179,

180). A study of how WB-6 (a mouse monoclonal anti-β2Gpi

antibody) contacts and activates resting-state monocytes showed

that monocytes internalizing WB-6 express TF and TNF-α, TNF-

α stimulates ECs to express ICAM-1 and VCAM-1 (181). Later,

another study identified the signaling pathways within cells

involved in this process and suggested that the induction of TF

expression was the result of the internalization of DNA-activated

TLR9 together with cross-reactive antibodies produced by SLE
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secondary APS (182). It has proved that the β2GPI dimerization

domain V(β2GPI-dV) dimerization of β2GPI-dV is sufficient to

induce the up-regulation of procoagulant activity of monocytes

(183). Antiphospholipid antibodies can activate monocytes and

macrophages through systemic allergic reaction toxins (C3a, C4a)

produced during complement activation (184).

Chary Lopez-Pedrera et al. first used proteomic analysis to

identify changes in the proteomic pattern of monocytes directly

associated with thrombotic events in APS and served as a basis

for the mechanism of thrombosis in APS (185). Vera M. Ripoll

performed a comprehensive proteomic analysis of human

monocytes from APS patients with different manifestations using

two-dimensional differential gel electrophoresis (2D DiGE). The

regulation of four of these proteins showed significant differences

in monocytes treated with thrombotic or obstetric APS IgG

compared to those treated with healthy control IgG. The

proteome of monocytes treated with thrombotic APS IgG was

further described using label-free proteomics. Among the 12

most reliable proteins associated with the cytoskeleton, immune

response, and coagulation function, POTEE and b-actin-like

protein 3 overlapped with 2D DiGE, Abnormalities in the

regulation of these proinflammatory and procoagulant proteins

could serve as targets for subsequent treatment and contribute to

a deeper understanding of the diversity of APS pathogenesis

(186). Urine proteomics has recently been reported as a

noninvasive method to distinguish primary thrombotic APS from

primary obstetric APS. Urinary CXCL12 and PDGF may be

potential noninvasive markers to distinguish between them, but

the number of patients is small and may be biased (187).

APL can combine with β2GPI and oxLDL to produce oxLDL/

β2GPI/anti-β2GPI complex, which can inhibit autophagy and

increase the release of inflammatory factors in ECs through a

variety of signaling pathways (such as PI3K/AKT/mTOR and

eNOS signaling pathways). When a large number of

inflammatory factors accumulate around ECs, monocyte-

macrophages activate to release TFs, chemokines, growth factors,

and metalloproteinases, and differentiate into foam cells,

exacerbating atherothrombosis (177, 188, 189).

At present, it is difficult to diagnose and treat APS patients in

clinical practice. Molecular analysis of monocytes in APS patients is

helpful to identify unique clinical phenotypes and thus develop

treatment plans. Microarray analysis of monocytes with APS

revealed 547 differentially expressed genes and identified novel

miRNA-mRNA-intracellular signal regulatory networks in

monocytes associated with CVD. In patients with APS, the

monocytes showed reduced expression of miR-19b-3p and miR-

20a-5p, and those with the least miRNA expression had the

highest levels of aPL (190, 191). The results of the in vitro

experiments revealed that APS patients had significantly higher

serum levels of HMGB1 and sRAGE, as compared to healthy

individuals. anti-β2-GPI antibody induced RAGE activation and

HMGB1 cell relocalization in monocytes and platelets. As an

increase in proinflammatory triggers, HMGB1/sRAGE may be

involved in monitoring the risk of recurrent miscarriage (192).

Monocytes and ECs have a pivotal role in the development of

APS, and the interaction between monocytes and ECs has been
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described in the previous section. Ulštok’s study was the first to

show a marked increase in VLA4 on monocyte surfaces in

patients with APS, and in vitro stimulation of Catastrophic APS

(CAPS) showed a more significant increase in VLA4, suggesting

that VLA4-enhanced monocyte adhesion is involved in

thrombotic pathophysiology in APS (193) (Figure 3).

Co-culture of APS monocytes with LPS increased the

expression of IL-1β, IL-6, IL-23, TLR2, CCL2, and CXCL10 genes

to improve the sensitivity to LPS and contribute to the formation

of thrombosis, but the response was weak in healthy donor cells

(194). Reduced levels of ATP result in decreased inflammation

among APS monocytes by blocking unidentified signals

stimulated by LPS and inhibiting ATP-mediated production of

IL-1 through the inflammasome and IL-10 (194, 195).

Immunomodulation of plasma exchange reversed the expression

of IL-1 β, IL-6, IL-23, CCL2, P2X7, and TNF-α in APS

monocytes, with mRNA expression levels returning to the

normal range (196). For secondary thromboembolism in APS, it

is generally accepted that direct oral anticoagulants can prevent

this from occurring. There are currently many anticoagulant

drugs of choice in clinical practice, such as DOAC rivaroxaban

and warfarin drugs. Compared with warfarin, DOAC rivaroxaban

not only provides anticoagulation but also reduces the frequency

of bleeding events and does not require patient diet control (197).
Atherosclerosis

Atherosclerosis is a slowly progressing condition of the large

and medium-sized arteries, characterized by the gradual build-up

of plaques over time. Thrombotic complications of

atherosclerotic diseases, such as ACS, occur suddenly and often

without warning signs. The long-term process of atherosclerotic

plaque initiation and formation is thought to be accelerated by

different risk factors, including traditional factors such as

smoking, hypertension as mentioned above, hyperglycemia, and

severe hyperlipidemia (198). It is increasingly believed that

environmental factors, such as air pollution, noise, sleep

disorders and stress, contribute to atherosclerotic events in part

through the activation of inflammatory pathways (199). The

inflammatory mechanisms run through the whole process of

atherosclerosis formation, and mononuclear macrophages play a

key role. In early atherosclerosis, LDL remains in the intima of

blood vessels, mediated by oxidase, lipolysis, proteolytic enzymes,

and ROS (200). A variety of danger-associated molecular patterns

(DAMP) are modified to obtain immunogenicity. Immunogenic

LDL activates vascular ECs and mobilizes immune cells (mainly

monocytes and T cells) to inflammatory tissues, mediated by

locally produced chemokines, as previously described in the

context of arterial thrombosis. Chemokines (CCR2, CCR5, and

CX3CR1) bind to receptors on monocytes to promote migration

to tissues. When three chemokine receptors, CCR2, CCR5 and

CX3CR1 were blocked, atherosclerosis in hypercholesterolemic

mice was virtually eliminated by inhibiting the aggregation of

monocytes into inflammatory tissue (201). This suggests that all

monocyte subsets are involved in the formation of atherosclerosis.
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FIGURE 3

Schematic diagram of the role of monocytes in five thrombotic diseases. In response to the hypertensive stimulant, monocytes transform and activate,
release hypertensive cytokines and differentiate into dendritic cells to promote T cell proliferation through the effects of the vascular system, kidney and
sympathetic nervous system, elevateing blood pressure, thus increasing the risk of blood vessel rupture. Monocytes are involved in atherosclerosis by
training immune processes. This is mediated by epigenetic and metabolic reprogramming. By enhancing cell-related endometabolic pathways,
monocytes can develop a long-lasting proinflammatory phenotype. In APS, the anti-β2gpi antibody binds to phospholipid-binding protein β2GPI and
acts on monocytes to trigger the Toll-like receptor 4-myeloid differentiation primary response 88 (TLR-4-MyD88) signaling pathway. In addition, aPL
triggers coagulation and inflammatory signals by dissociating suppressed TF cell surface complexes. TFPI expressed in myeloid cells specifically
supports aPL-induced thrombosis. The hypoxic environment of DVT stimulates the expression of TF and some pro-inflammatory cytokines in
monocytes, initiates the exogenous coagulation pathway, activates ECs and promotes the recruitment of monocytes. In the diabetic environment, the
accumulation of advanced glycation end products (AGEs) increases the expression of fractalkine in human renal mesangial cells, and the interaction
between monocytes and human renal mesangial cells promotes DN inflammation through MMP2 and fractalkine. Ang-II is over-produced and
stimulated in the diabetic kidney, the adhesion of monocytes to ECs is enhanced, and M1 macrophages infiltrate the kidney under the regulation of
the RAS system. AGEs, Advanced glycation end products; Ang II, Angiotensin II; aPL, antiphospholipid antibody; APS, Antiphospholipid syndrome;
AT1R, angiotensin type 1 receptor; β2GPI, beta2glycoprotein I; DC, dendritic cells; DN, Diabetic nephropathy; DVT, Deep vein thrombosis; ENAC,
epithelial sodium channel; ER, Endoplasmic reticulum; gas6, growth arrest specific 6; KEC, Kidney endothelial cell; LP(a), Lipoprotein a; IGF1R, insulin
like growth factor 1 receptor;MCP-1, monocyte chemotactic protein-1; MMP, matrix metalloproteinases; MP, microparticles; NCX, Sodium-calcium
exchangers; NF-κB, nuclear factor κB; NOX-2, NADPH oxidase-2; OXPHOS, oxidative phosphorylation; PARs, protease activated receptors; PRR,
pattern recognition receptor; RAS, renin-angiotensin system; ROS, reactive oxygen species; TCA, tricarboxylic acid; TF, tissue factor; TFPI, TF pathway
inhibitor; TLR, toll-like receptors; VEGF, vascular endothelial growth facto;VLA-4,very late antigen 4.
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The atherosclerotic process may be a training immune process

(Figure 3). Studies have shown that monocytes, as innate immune

cells, can form features of immune memory after brief exposure to

microorganisms (202). Unlike the specific memory of adaptive

immune cells, trained immunity is characterized by its

nonspecificity and ability to induce a long-lasting
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proinflammatory phenotype in monocytes/macrophages through

epigenetic reprogramming, particularly at the level of histone

methylation (202). In addition, non-microbial endogenous

stimuli can also induce trained immunity, and current studies

include lipoproteins and adrenal hormones, hyperglycemia, and

other factors that contribute to the development of
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atherosclerotic cardiovascular disease (ASCVD) (203, 204).

Monocytes immunized by Ox-LDL training are induced through

the Akt-mTOR-HIF-1α pathway, and intracellular metabolic

glycolysis and oxidative phosphorylation are up-regulated, which

is an important pathway to promote proinflammatory cytokines

(205–207). Pharmacological inhibition of the mTOR pathway

and related signaling molecules, as well as inhibition of

2-deoxyglucose glycolysis, prevents glycolysis, ROS formation,

and proinflammatory initiation in monocytes/macrophages (206,

207). A recent study in 243 healthy volunteers showed that

oxLDL-induced training immunity led to changes in the balance

of steroid hormones within monocytes. Progesterone inhibits

oxLDL-induced training immunity through ribocorticosteroid

receptors and minerocorticoid receptors, an effect that may help

reduce CVD risk in premenopausal women (208).

In addition to the promotion of cytokine proliferation,

macrophages induced by Ox-LDL showed high expression of Ox-

LDL recognition receptors CD36 and SR-A and low expression

of anticholesterol receptors ABCAI and ABCG1, thus enabling

macrophages to have a stronger lipid absorption capacity (209).

These processes accelerate the formation of atherosclerosis.

Differentiated macrophages, as key cells in atherosclerosis, are

transformed into foam cells, and subsequent increase in

cholesterol load over time causes the triggering of unfolded

protein responses in the ER, from intracellular crystallization to

precipitation and activation of inflammasomes, ultimately leading

to programmed cell death (210). Foam cells accumulate to form

an atherosclerotic core. The properties of lipid material,

cholesterol crystallization, accumulation of foam cell fragments to

form an atherosclerotic core, and ensuing thinning of the fibrous

cap result in a high degree of thrombosis (211, 212).

Interestingly, the investigators discovered that neovascularization

was prevalent in atherosclerotic plaques, and highly

neovascularized plaques were more susceptible to rupturing than

their stable counterparts. Matrix metalloproteinases secreted by

monocytes/macrophages were responsible for this phenomenon

by deteriorating and redesigning the ECM and activating or

disintegrating growth factors. As a result, stable atherosclerotic

lesions may become unsteady high-risk plaques due to

intraplaque hemorrhage.

Macrophages were thought to be major players in the formation

of atherosclerosis as well as thrombotic complications. Although the

connection between atherosclerosis and immunity in humans is

constantly evolving, some of our understanding of this

relationship comes from research conducted on animal models of

CVD. However, due to inherent biological, genomic, and

environmental differences, the results obtained therein cannot be

fully transferable to the human environment. Potential therapeutic

approaches against atherosclerosis include targeting monocytes/

macrophages recruitment, polarization, cytokine profiling, ECM

remodeling, cholesterol metabolism, oxidative stress, inflammatory

activity, and non-coding RNA. Besides, folic acid can restore

hyperlipidemia (HL) and hyperhomocysteinemia (HHcy)-

mediated aberrant DNA methylation and decreased ARID5B

expression, thereby inhibiting atherosclerotic plaque formation by

reducing the proportion of intermediate monocytes (213).
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In recent years, there has been significant interest in

understanding the role of monocytes and monocyte-derived

extracellular vesicles (MDEVs) in the major risk factors for

atherosclerosis (214, 215). Several studies have reported a

significant association between monocytes and obesity, a major

risk factor for atherosclerosis (216, 217). These studies have

shown that obesity leads to increased levels of chemokines and

cytokines, promoting monocyte recruitment and activation. It

also results in increased oxidative stress and inflammation,

leading to MDEV release (218). MDEVs have been shown to

exert pathogenic effects by promoting endothelial dysfunction

and a pro-inflammatory state, exacerbating atherosclerosis (219).

In addition, in a clinical trial of obese women without other

cardiovascular risk factors, the researchers found that circulating

procoagulant microparticles were increased in obese patients

compared with healthy controls, and obese patients had an

increased risk of thrombosis, suggesting that obesity as a major

risk factor for atherosclerosis is associated with the release of

MDEVs (220).

Diabetes is another major risk factor for atherosclerosis, with

chronic hyperglycemia leading to increased oxidative stress and

inflammation (221). High glucose levels induce monocyte

activation, leading to MDEV release, and increased endothelial

adhesion molecules, resulting in a pro-inflammatory and pro-

thrombotic environment (222). The concentration of MDEVs in

plasma of patients with type 2 diabetes was much higher than

that of healthy individuals, and the amount of MDEVs was

positively correlated with platelet activation markers (223, 224).

Furthermore, MDEVs have been shown to induce endothelial

dysfunction and increase monocyte and macrophage recruitment,

aggravating atherosclerosis in diabetes (219).

Hypertension is another major risk factor for atherosclerosis,

and monocytes are involved in its pathogenesis. A study showed

that shear stress induces monocyte recruitment, activation and

migration, promoting inflammation and neointimal formation

(225). MDEVs have also been implicated in hypertension. In a

clinical trial of 359 hypertensive patients, investigators observed

increases in MDEVs and sVCAM-1 regardless of their presence

or absence of diabetes (226). In another study, the expression of

MDEVs and platelet activation markers (CD62P, CD63, PAC-1,

and annexin V) was much higher in hypertensive patients than

in healthy individuals, suggesting that hypertensive patients are

more prone to atherosclerosis (227).

Hypercholesterolemia is also a cause of atherosclerosis. In

response to high levels of cholesterol, monocytes can infiltrate

the arterial wall and differentiate into macrophages, which can

take up and accumulate lipids, leading to the formation of foam

cells and ultimately the development of atherosclerotic plaques

(228). Although the exact mechanism is not yet fully understood,

recent studies suggest that MDEVs may also be involved in the

development of atherosclerosis, and secretion of MDEVs by

monocytes can activate endothelial cells and other immune cells

and promote inflammation and further atherosclerotic plaque

formation (229). Clinical trials have found that elevated oxidized

LDL cholesterol in hypercholesterolemia induces increased

release of MDEVs (230). MDEVs appear to be markers for the
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diagnosis of atherosclerotic plaques in patients with

hypercholesterolemia, and the number of circulating

microparticles before thrombosis can indicate atherosclerotic

plaques in the subclinical stage of patients with

hypercholesterolemia (231–233).

Other risk factors for atherosclerosis, such as smoking, aging,

and dyslipidemia, have been associated with monocyte activation

and MDEV release. Smoking induces oxidative stress and

inflammation, leading to increased monocyte activation, and

MDEV release (234). In cell experiments simulating smoking

environments, tobacco smoke-exposed monocytes/macrophages

have been found to induce biologically active procoagulant

MDEVs in cells, which may be associated with activation of JNK,

p38, ERK, and MAPK (235). Aging is a primary risk factor for

atherosclerosis, characterized by declines in tissue and cell

functions resulting in increased inflammation and oxidative

stress, leading to MDEV release (236). Dyslipidemia,

characterized by increased levels of LDL cholesterol, induces

monocyte activation and lipid accumulation in macrophages,

leading to foam cell formation and atherosclerosis (237). In

addition, IL-33 acts as a pro-inflammatory factor, induces TF

expression in monocytes, releases procoagulant MDEVs, and

ultimately forms a prothrombotic state of atherosclerosis (238).

In summary, monocytes and monocyte-derived extracellular

vesicles play a crucial role in the pathogenesis of atherosclerosis,

and different major risk factors for the disease have been

associated with their activation and release (239). Obesity,

diabetes, hypertension, smoking, aging, and dyslipidemia all

promote monocyte activation and MDEV release, leading to

increased inflammation, oxidative stress, and endothelial

dysfunction, culminating in atherosclerosis. A better

understanding of the role of monocytes and MDEVs in

atherosclerosis could lead to novel therapeutic interventions

targeting their recruitment and activation, potentially preventing

or slowing the progression of this debilitating disease.
Rheumatic heart disease (RHD)

RHD is a condition caused by damage to the heart valves from

rheumatic fever (RF), which is an autoimmune response to

untreated streptococcal throat infections (240). Left atrial (LA)

thrombosis is a common complication with RHD and mitral

stenosis (MS) (241). As early as 1991, the luminol-enhanced

chemiluminescence technique was used to study the production

of oxygen free radicals (OFR) by monocytes and neutrophils in

the peripheral blood of patients with RF and RHD (242). It has

been observed that in RHD patients, phagocytes are capable of

penetrating the myocardium and possibly contributing to the

development of cardiac injury by generating OFR (242). In a

clinical study of mitral valve resection in patients with rheumatic

MS, histological studies have revealed a positive correlation

between the degree of infiltration of inflammatory cells in valve

tissue and the levels of MMP-1 and IFN-γ. In addition, in an

in vitro cell assay, IFN-γ was found to increase MMP-1

expression in monocytes (243). The risk of embolus dislodging
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and causing thromboembolism may increase due to the easy

tearing of valve tissue resulting from the thickening of collagen

and structural abnormalities in the valve tissue caused by

inflammatory cell infiltration.

The expression of inflammatory cells and inflammatory genes

in the aortic valve of female RHD patients was significantly

higher than that of male patients. More monocytes and

macrophages infiltrate into the aortic valve to produce IFNγ and

IL8, which as major Th1 cytokines, participate in the positive

feedback between macrophages and Th1 cells to accelerate the

secretion of pro-inflammatory cytokines. The NFKB pathway

plays a crucial role in enhancing the autoimmune response of

the aortic valve in female RHD patients by increasing

mononuclear/macrophage infiltration and pro-inflammatory

cytokine (especially Th1 cytokine) levels. Upon activation,

phosphorylated p65 enters the nucleus and triggers the

transcription of inflammatory genes, which further exacerbates

the inflammation of the damaged aortic valve (244).

RF is a complex inflammatory autoimmune disease that

involves the interaction of multiple pro-inflammatory agents

produced by activated neutrophils and macrophages, resulting in

a synergistic pathological effect (245). In individuals with

rheumatic mitral stenosis and atrial fibrillation, pro-inflammatory

M1 macrophages are primarily observed in the atria of those

with mitral stenosis, atrial fibrillation, and thrombosis. The

inflammatory effect of M1 cells may be related to the up-

regulation of eNOS expression. In addition, the polarization of

M1 macrophages towards M2 is inhibited due to the down-

regulation of M-CSF (246).
Deep venous thrombosis (DVT)

DVT is a kind of thrombotic disease. It refers to venous reflux

disorders caused by abnormal coagulation of blood in deep veins

(247). It often occurs in the lower limbs. It is a common and

serious complication of hospitalized patients, especially those

after major surgery and long-term bedridden patients, with high

incidence and serious consequences. Detachment of the

thrombus can cause PE, and both are collectively referred to as

VTE.

The mononuclear/macrophage system is essential in both the

formation and resolution of DVT. In mice with venous

thrombosis, inflammatory bodies are activated, triggering venous

thrombosis through pyrodeath and TFs released by inflammatory

monocytes and macrophages (248). Lack of caspase-1 but not

caspase-11 protects mice from venous thrombosis. The monocyte

signaling pathway, key enzymes and thrombolytic regulators

regulate the occurrence of DVT, which can be used as a

molecular target network to study the treatment of DVT. Protein

tyrosine kinases participate in the activation of monocytes and

ECs. For example, tyrosine kinase PYK2 regulates platelet activity

and TF expression by stimulating monocytes and ECs, and is

involved in the regulation of natural immunity and inflammation

(249). In a mouse experiment, the number of inflammatory

Ly6Chi monocytes controls DVT formation, growth, and
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regression, and Nur77 agonist may be an ideal candidate for

therapeutic intervention with inflammatory monocyte activity in

patients with DVT to prevent thrombosis growth and accelerate

regression (250). Inhibit the formation of Tbet+ interleukin-12

from bone marrow monocytes and accelerate thrombus

regression (251). Modulating inflammatory immune responses

may be a way to improve DVT treatment. The effects of MMP-9

on the loss of compliance during thrombolysis and the

biomechanics of vein walls contribute to the development of

specific molecular therapies for DVT. With the age of

thrombosis, IFN-γ is mainly infiltrated by macrophages, and

IFN-γ/STAT1 signaling pathway is activated to negatively

regulate the expression of Mmp-9 and Vegf genes in PMA-

induced macrophages (252). The use of anti-IFN-γ monoclonal

antibody can accelerate the resolution of DVT. Recombinant

human granulocyte colony-stimulating factor (rhG-CSF) not only

mobilized monocyte lineage cells into peripheral blood but also

induced higher expression of CCR2 protein, thus enhancing the

regression and recalculation of venous thrombosis (253).

Circulating monocytes and monocyte-derived macrophages in

patients with idiopathic DVT exhibit significantly increased M1

polarization, which can significantly up-regulate the expression of

endothelial cell adhesion molecules (134). The thrombus

targeting adenovirus uPA (ad-uPA) gene transduction of human

blood monocyte-derived macrophages (HBMMs) increases their

fibrinolytic activity. In an experimental model of venous

thrombosis, systematic administration of uPA up-regulated

HBMMs reduced the size of the thrombus (254). Alternatives to

delivering fibrinolytic agents are worth exploring. Loss of

prostag-landin-endoperoxide synthase (PTGS) alters the natural

distribution of ANXA2 in mononuclear/macrophages, increases

TF expression and activity, and leads to venous thrombosis.

Targeting PTGI2/ANX2/TF pathways, such as treatment with

cabpaprost, inhibits nuclear ANXA2 transport, controls

monocyte TF activity, and prevents the occurrence of DVT (255).
Diabetic nephropathy (DN)

DN has emerged as a pervasive renal disease, causing end-stage

renal failure on a global scale (256). As one of the most serious and

harmful chronic complications caused by diabetes, DN is one of

the manifestations of diabetic systemic microangiopathy (257).

DN has a prethrombotic state and obvious endothelial

dysfunction (258). With the increase of urinary protein and the

progression of the disease, it is easy to appear hypercoagulation,

and then thrombosis.

Inflammatory cell infiltration is a consistent feature of the early

stages of DN, particularly the influx of mononuclear cells into the

affected tissues and the infiltration of macrophages into the kidney

(259, 260). This influx is thought to be due to the activation of

innate immunity accompanied by the development of a chronic

low-grade inflammatory response, but may also be related to

differences in monocyte phenotype and function. Experiments

showed that diabetes increased the number of monocytes and

had no effect on the total number of white blood cells. At the
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same time, the number of CD14+CD16++ NCMs was

significantly reduced by diabetic status, but only in patients with

diabetic complications (261). The circulating monocytes

phenotype can be changed by diabetic complication status.

Changes in monocyte activation and function have also been

reported in inflammatory pathways in diabetes, such as increased

monocyte adhesion to ECs and enhanced TLR signaling pathway

conduction in monocytes (262). Mouse data showed that

monocyte CD163 and sCD163 changes predate DN. CD163+

monocytes with a high circulating proportion have anti-

inflammatory effects and may protect against diabetes

complications (263).

Macrophage infiltration and activation are evident in the renal

biopsies of diabetic animal models and patients with DN (264–

266). Therefore, monocytes need to be activated and migrate

from the circulation to differentiate and infiltrate the renal

mesangium. Under the influence of high glucose, monocyte

adhesion, migration, differentiation and MMP expression can be

enhanced by increasing the secretion of pro-inflammatory

cytokines in mesangial cells, and thus MMPs can mediate the

degradation of ECM (260, 267). Mesangial cell-monocyte

interactions are important to activate monocyte migration from

circulation to the kidney in early DN. The pro-inflammatory

cytokines TNF-α and IL-6 can induce the expression and

adhesion of MMP-9 in monocytes (260). Moreover, the

interaction between monocytes and human renal mesangial cells

(HRMCs) is also through MMP-2 and fractalkine. In the

Monocyte-HRMC co-culture system, AGEs not only directly

down-regulated MMP-2, but also indirectly down-regulated the

expression and activity of MMP-2 through up-regulated

fractalkine, thus increasing the expression of fractalkine, which is

mainly used as chemotactic agent (268) (Figure 3). The presence

of such crosstalk between monocytes and HRMCs has been

interpreted to be related to abnormal deposition of ECM and

migration of monocytes into tissues.

Diabetes can induce renal MCP-1 production, and serum and

urinary MCP1 levels are elevated in early DN, which can be used as

markers and possible mediators of early DN, as well as to evaluate

renal inflammation in diabetic patients (269, 270). Increased

expression of MCP-1/CCL2 in the kidney is considered a crucial

contributor to the initiation of monocyte recruitment in the

tubulointerstitium (271, 272). Exposure to MCP-1 and high-

glucose environments induces infiltration and activation of

macrophages, resulting in the release of ROS, profibrotic growth

factor (TGF-β, PDGF) and pro-inflammatory cytokines (IL-1,

TNF-α, MCP-1) (272–274). The amplified inflammatory

response mediates parenchymal cell injury and death leading to

decreased renal function, and myofibroblast proliferation

promotes renal fibrosis. These tandem processes together

promote the progression of DN, lead to the development of

kidney failure and cause vascular dysfunction. Inhibition of

MCP-1 in DN shows strong therapeutic potential by reducing

persistent proteinuria. Spiegelmer® emapticap pegol (NOX-E36)

continued to restore glomerular endothelial glycocalyx and

barrier function, decreased CCR2-expressing Ly6Chi monocytes in

peripheral blood, and polarization of tissue macrophages toward
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anti-inflammatory phenotypes (275). Activation of the renin-

angiotensin system (RAS) is a characteristic manifestation of DN

(276).

Activation of RAS is pro-inflammatory, and pro-fibrotic and

enhances oxidative stress. By increasing the production of MCP-

1 and osteopontin in renal tubule cells, it facilitates the adhesion

of monocytes to renal ECs and thus their entry into the kidney.

Under the activation of various proinflammatory cytokines and

RAS, macrophages differentiate into M1 proinflammatory

phenotypes, leading to the development of DN. Under the

antagonistic drugs of RAS, the phenotypic transformation of

macrophages and the number of infiltrates can be improved, thus

reducing proteinuria and correcting renal disorders (277, 278).

Furthermore, recent studies have shown that signal

communication between macrophages and renal tubular

epithelial cells (TECs) can be used as targets in the treatment of

DN. For example, the exosome/miR19b-3p/SOCS1 axis mediates

the communication between injured TECs and macrophages,

leading to the activation of M1 macrophages (279). During DN

progression, IRG1 enrichment, lipotoxic tec derived EVe activates

macrophages through TGFβR1-dependent pathways and

subsequently up-regulates the expression of many inflammatory

genes, thereby inducing inflammation and damage in DN.

Meanwhile, the LRG1/TGFβR1 signaling pathway can also

increase the expression of TRAIL in macrophages, and the

macrophage-derived EVs enriched with TRAIL can promote the

apoptosis of TECs, acting as a feedback loop in DN (280).

Proteinuria induces glycolysis in renal macrophages by stabilizing

HIF-1α through tubular epithelial-derived EVs (281). These

targets may be some important links to subsequent regulation,

which needs further in-depth study.

Indicators related to monocytes can be an important predictor

of DN, and increased Monocyte-lymphocyte ratio (MLR) is

significantly associated with the risk of DN (282). Higher

monocyte to high-density lipoprotein cholesterol ratio (MHR)

levels for patients with DN compared to others (283).
Conclusion

Monocytes undoubtedly have a significant role in the

pathophysiology of various thrombotic diseases. Compared with

tissue macrophages, circulating monocytes are easier to detect

and characterize. As the medical field advances into the 21st

century, with an augmented emphasis on forecasting and

averting future acute phenomena, the enumeration and

functionality of monocytes and their respective subsets have the

potential to serve as an alluring biomarker. Nevertheless, crucial

parameters of monocytes that have the capability to act as

prognostic indicators and targeted therapies necessitate

identification and authentication.

While monocytes have been implicated in the link between

inflammation and the pro-thrombotic state, their potential use as

disease biomarkers or therapeutic agents in thrombosis is still an
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area of ongoing research. While there have been some promising

findings, there are also challenges associated with the use of

monocytes in these contexts. For example, monocyte populations

are heterogeneous, and their pro-thrombotic or anti-thrombotic

properties may vary depending on their differentiation state and

activation status. Additionally, the interaction between monocytes

and other immune cells, such as platelets and neutrophils, can

further complicate the picture. Therefore, while the role of

monocytes in thrombotic disease is an important area of

investigation, it may be premature to consider them as

biomarkers or therapeutic agents without further research and

clinical validation. Further studies on the specific molecular

mechanisms underlying the association between monocyte

activation and thrombosis could inform the potential

development of new targeted interventions for thrombotic disease.

In these thrombotic diseases, we found that each disease can

also be closely related to each other, and monocytes act as an

indispensable part as a close link in this network. Clarifying the

role of monocytes in thrombotic diseases is helpful to prevent

and diagnose thrombotic diseases, to reduce the incidence and

mortality of thrombotic diseases.
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