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The relationship between plant functional traits and ecosystem function is a hot

topic in current ecological research, and community-level traits based on

individual plant functional traits play important roles in ecosystem function. In

temperate desert ecosystems, which functional trait to use to predict ecosystem

function is an important scientific question. In this study, the minimum data sets

of functional traits of woody (wMDS) and herbaceous (hMDS) plants were

constructed and used to predict the spatial distribution of C, N, and P cycling

in ecosystems. The results showed that the wMDS included plant height, specific

leaf area, leaf dry weight, leaf water content, diameter at breast height (DBH), leaf

width, and leaf thickness, and the hMDS included plant height, specific leaf area,

leaf fresh weight, leaf length, and leaf width. The linear regression results based

on the cross-validations (FTEIW - L, FTEIA - L, FTEIW - NL, and FTEIA - NL) for the MDS

and TDS (total data set) showed that the R2 (coefficients of determination) for

wMDS were 0.29, 0.34, 0.75, and 0.57, respectively, and those for hMDS were

0.82, 0.75, 0.76, and 0.68, respectively, proving that the MDSs can replace the

TDS in predicting ecosystem function. Then, the MDSs were used to predict the

C, N, and P cycling in the ecosystem. The results showed that non-linear models

RF and BPNN were able to predict the spatial distributions of C, N and P cycling,

and the distributions showed inconsistent patterns between different life forms

under moisture restrictions. The C, N, and P cycling showed strong spatial

autocorrelation and were mainly influenced by structural factors. Based on the

non-linear models, the MDSs can be used to accurately predict the C, N, and P

cycling, and the predicted values of woody plant functional traits visualized by

regression kriging were closer to the kriging results based on raw values. This

study provides a new perspective for exploring the relationship between

biodiversity and ecosystem function.
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1 Introduction

Plant functional traits are morphological, physiological, and life

history traits that indirectly affect plant fitness (Violle et al., 2007).

In natural ecosystems, plants adapt to external changes by the

changes of traits such as height, leaf area, leaf mass, leaf longevity,

seed size, and seed dispersal mode, which may also lead to changes

in ecosystem functions (Li et al., 2008; Messier et al., 2010; Albert

et al., 2012; Kraft et al., 2015). However, plant species are diverse in

nature, and plant functional traits are influenced by factors such as

climate change and human disturbance (He et al., 2018). Therefore,

using plant functional traits to reflect and predict changes in plant

community and ecosystem function is of great importance.

Many studies have explored the relationship between plant

functional traits and ecosystem processes or functions. Most

researchers believe that the relative biomass of dominant species in

plant communities and their specific traits dominate the dynamics of

ecosystem processes in time and space (Vile et al., 2006; Catorci et al.,

2014; Cavanaugh et al., 2014; Lohbeck et al., 2015). For example,

Grime (1998) proposed the “mass ratio hypothesis”, arguing that

plant functional traits can be used to predict ecosystem functions or

processes (Diaz et al., 2007; Niu et al., 2010; Diaz et al., 2016).

Furthermore, some scholars held that the change of one plant

functional trait may lead to changes in multiple ecosystem

functions, and one ecosystem function may be simultaneously

affected by multiple plant functional traits (Temmerman et al.,

2005; Kearney and Fagherazzi, 2016; Sun et al., 2020).

At present, there are twomain ways to study the functional traits of

plant communities. One is to use community functional parameters

based on plant functional traits, for example, the community weighted

mean (CWM) of plant functional traits, which is calculated using the

weighted average of functional traits and relative abundances of species

(Kattge et al., 2011; Zhang et al., 2011b; Zhang et al., 2020a). The other

is to use plant functional trait diversity, for example, the size, range, and

distribution of plant functional trait values in a community, which is

considered important for biodiversity (Finegan et al., 2015; Huang et al.,

2019b; Lin et al., 2022). Studies have shown that community functional

parameters based on plant functional traits and plant functional trait

diversity can influence plant community structure and ecosystem

functions or processes (Flynn et al., 2011; Mei et al., 2017). However,

the parameters are numerous, redundant, and cumbersome. Therefore,

the selection of representative parameters that play an important role in

ecosystem functioning has become the key to current research.

With the in-depth study of ecosystem functions, researchers

gradually realize that ecosystems provide multiple ecosystem

functions simultaneously, i.e. ecosystem multifunctionality (Pasari

et al., 2013; Garland et al., 2020). Most previous studies have focused
Abbreviations: LC, Leaf carbon; LN, Leaf nitrogen; LP, Leaf phosphorus; SLA,

Specific leaf area; SLW, Specific leaf weight; LA, leaf area; LDMC, Leaf dry matter

content; LWC, Leaf water content; LFW, Leaf fresh weight; LDW, Leaf dry

weight; DBH, diameter at breast height; SBD, Stem base diameter; H, Height; LT,

Leaf thickness; LL, Leaf length; LW, Leaf width; WLR, Width to length ratio;

SOC, Soil organic carbon content; SAN, Soil ammonium nitrogen; SNN, Soil

nitrate nitrogen; STN, Total nitrogen content; STP, Soil total phosphorus; SAP,

Soil available phosphorus.
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on the effects of a single trait on the functions of a single ecosystem

(Fortunel et al., 2009; Zuo et al., 2016; Pakeman and Fielding, 2020)

and the quantification of plant functional trait diversity and

ecosystem functions (Petchey and Gaston, 2002; Laliberte and

Legendre, 2010; Isbell et al., 2011). In recent years, quantitative

analysis of the relationship between multiple plant functional traits

and multiple functions of single ecosystems has been sought after

(Wei et al., 2016a; Wei et al., 2016b; Liu et al., 2017; Liang et al., 2019;

Li et al., 2020b). Spatial heterogeneity of single functions of single

ecosystems has been proposed by ecologists and botanists at

landscape and regional levels (Lin et al., 2010; Giese et al., 2013;

Liu et al., 2018). Some scholars reported that morphological variation

and spatial distribution of plant functional traits are the results of

environmental filtering and biological interactions, reflecting plant

adaptations to their habitats (Duran et al., 2019; Ma et al., 2019;

Zhang et al., 2020b). Therefore, by analyzing the spatial distribution

of functional traits and their relationship to environment, it is

possible to how plants respond to environmental changes and how

the responses affect the functions of single ecosystems.

Arid regions account for about 41% of the world’s total land, and

about 38% of the population lives in arid regions (Reynolds et al.,

2007). Due to the influences of climate change and anthropogenic

disturbances, the aridification of terrestrial ecosystems is exacerbating

(Gao and Giorgi, 2008; Feng and Fu, 2013). In Xinjiang, China, the

desert area (65.46 × 104 km2) accounts for 39% of the total area of

Xinjiang, and has increased significantly (Ni and OuYang, 2006).

Previous studies have shown that the proportions of C, N, and P in

the total elemental content are relatively stable in desert ecosystems

(Elser et al., 2000; Elser et al., 2010). However, plants with different

life forms affect C, N, and P cycling to a certain extent, which could

impact the spatial distribution of the functions of C, N, and P cycling

in ecosystems (Wang and Yu, 2008; Wang et al., 2019).

Therefore, based on the spatial heterogeneity of ecosystem

functions, the spatial distributions of the functions of C, N, and P

cycling were predicted using the MDS of the dominant plant

functional traits in a temperate desert region by regression

kriging (RK), a method that combines regression modeling with

kriging (Sarmadian et al., 2014; Pham et al., 2019). The objectives

were to: (1) Select the functional traits of woody and herbaceous

plants that play a dominant role in temperate desert ecosystems to

construct the wMDS and hMDS, (2) determine the spatial

distribution characteristics of C, N, and P cycling in temperate

desert ecosystems using geostatistical methods, and (3) predict the

spatial distribution characteristics of C, N and P cycling using linear

and non-linear models based on the wMDS and hMDS. This study

will advance our understanding of the relationship between plant

functional traits and ecosystem function.
2 Materials and methods

2.1 Study site, sampling and
experiment design

The study area is located in the Xinjiang Ebinur Lake Wetland

National Nature Reserve on the southwestern edge of the Junggar
frontiersin.org
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Basin (44°30’ - 45°09’N, 82°36’ - 83°50’E). Surrounded by

mountains on three sides, it is the lowest depression and water

and salt enrichment centre (Wang et al., 2021a). In the Reserve,

swamps, rivers, salt lakes, riparian forests, and deserts are the main

landscapes. Aeolian sandy soil, grey brown desert soil, and grey

desert soil are the zonal soils, and saline soil is the intrazonal soil.

Central Asian and Mongolian flora is the main part of vegetation

(He et al., 2014; Yang et al., 2014).

Three plots (100 m × 100 m) perpendicular to the Aqikesu River

were set up from southwest to northeast (A-C) in the riparian

forest-desert transition zone in the north of the Aqikesu River, and

the distance between the plots was about 1.5 km (Figure 1). From

July to August 2018, Herbaceous and woody plants were surveyed

separately and the soil under the canopy of their collections was

collected. Each plot was divided into 100 subplots (10 m × 10 m)

(300 subplots totally), and the multiplicity, plant height (H), crown

width (CW), leaf thickness (LT), leaf length (LL), leaf width (LW),

DBH/basal diameter, leaf area (LA), and leaf fresh weight (LFW) of

plants were recorded.
2.2 Plant and soil physicochemical
experiments

Three plants of each species in each subplot were selected for

the following determinations. The CW of trees was measured using

a laser rangefinder (Dimetix-DAE-10-050, Dimetix, Switzerland),

and that of shrubs and herbs was measured using a steel tape
Frontiers in Plant Science 03
measure. For all trees in the subplots, the DBH was measured using

a tape measure at a height of 1.3 m. For shrubs and herbs, the basal

diameter was measured at 2.54 cm from the ground. Three to five

leaves at each plant position (upper, middle, and bottom) were

collected to determine the LT, LL, and LW using digital vernier

caliper. To measure the LA, a 1 cm scale was marked on the lower

right corner of a paper, then 10-20 leaves were laid flatly on the

paper, followed by the photographing using a camera parallel to the

paper. The pictures were processed using Photoshop software

(2020CC, Adobe, USA) to obtain LA. After LA measurement, the

leaves were transferred in sealed bags, weighed immediately (fresh

weight), and dried for the measurements of dry weight and C, N,

and P concentrations according to the methods of Bao (2000)

(Table S1).

Within each subplot, five sampling points were selected along

the diagonal, and the 0-30 cm soil layer was sampled at each

sampling point for the determinations of soil C, N, and P

concentrations (Bao, 2000) (Table S1).
2.3 Statistical analyses

2.3.1 CWM
The CWM was calculated as a sample of the functional trait

values within each subplot, based on the species diversity in each

subplot and the measured functional trait values.

CWM = on
i
Ai�Traiti

on
i
Ai

  (1)
FIGURE 1

Overview map of the study area. (A) Ebinur Lake Basin, (B) the monitoring area within the basin, (C) and the sample sites. Plot A, Plot B, and Plot C
represent river bank, transitional zone, and desert margin, respectively.
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where Ai is the species abundance in a subplot, and Traiti is the

functional trait value of a species in a subplot (Ren, 2021).

2.3.2 Construction of minimal data sets of plant
functional traits

Sixteen plant functional traits were selected, including leaf

carbon (LC), leaf nitrogen (LN), leaf phosphorus (LP), specific

leaf area (SLA), specific leaf weight (SLW), LA, leaf dry matter

content (LDMC), leaf water content (LWC), LFW, leaf dry weight

(LDW), diameter at breast height (DBH) (stem base diameter

(SBD)), H, LT, LL, LW, and width to length ratio (WLR) to

perform Kaiser Mayer-Olkin (KMO) test and Bartlett’s test based

on partial correlation. If tests were passed, factor analysis was

performed on the selected traits. All above analyses were

performed by using the psych and vegan package in R software (R

Development Core Team, 2021).

The Norm value is an important reference for trait selection and

MDS construction. The Norm value indicates the combined loading

of a trait on multiple principal components with PC ≥ 1. So the larger

the Norm value of a trait, the higher its combined loading value, and

the more information on the principal components with PC ≥ 1 it has

(Wu et al., 2019). Norm values were calculated as follows:

Nik =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(U2

iklk)

s
(2)

where Nik is the combined loadings of the ith variable on k

principal components with eigenvalue ≥ 1(Norm value), Uik is the

loading of the ith variable on the kth principal component, and lk is
the eigenvalue of the kth principal component (Wu et al., 2019).

Based on the results of the factor analysis, principal component

variables with eigenvalues greater than 1 (PC > 1) were screened

out. Among the variables, the traits with factor loadings |PC| ≥ 0. 5

were screened out and grouped by different principal component

variables. If a trait had a factor loading value |PC| ≥ 0.5 in two main

variables, it was classified into the group with the lower correlation.

Norm values of each group of traits were compared. Traits with

Norm values in the top 10% in each group were retained, and the

rest was discarded. If there were multiple traits in the top 10%, the

correlations between the trait with the highest Norm value in each

group and the traits in the top 10% were checked. If the correlation

coefficient |r| ≥ 0.5, then the trait with higher Norm value and

coefficient of variation was put into the MDS. If |r|< 0.5, then both

were put into the MDS (Pulido et al., 2017).

2.3.3 Minimum data set test model
Linear and non-linear scores of each trait was used to assign

scores to the functional traits in the MDS:

SL =
X

XMax

�
(3)

SL =
XMin

X= (4)

where SL is the score derived from the linear score, ranging from

0 to 1, X is the value of a functional trait in the MDS, and Xmax and
Frontiers in Plant Science 04
Xmin are the maximum and minimum value of each functional

trait, respectively.

Equation (3) was applied to positive functional traits (the higher

the value, the better the plant growth), while equation (4) was

applied to negative functional traits (the lower the value, the better

the plant growth) (Askari and Holden, 2014; Li et al., 2020a). The

formula for the non-linear function:

SNL =
a

1+(X Xm= )b (5)

where SNL is the score derived from the non-linear score,

ranging from 0 to 1, a is the maximum value that can be

obtained for a functional trait, which is defined as 1 in this study,

X is the value of a functional trait in the MDS, Xm is the average

value of a functional trait, and b is the slope, which is set to -2.5 for

positive functional traits and +2.5 for negative functional traits

(Zhang et al., 2011a; Raiesi, 2017).

After all functional traits in the MDS were assigned a score, the

scores of all functional traits were summed using the following

formula. The evaluation index FTEIA is the average of the scores of

the traits in the MDS, while FTEIW is the sum of the scores of the

functional traits multiplied by the corresponding weights (Askari

and Holden, 2015).

FTEIA =o
n

i=1
Si � n−1 (6)

FTEIW =o
n

i=1
Wi � Si (7)

where FTEIA and FTEIW are the functional trait evaluation

indices calculated without and with weights, respectively, Si is the

score of the functional trait i, n is the number of functional traits in

the MDS, and Wi is the weight of the functional trait i. The weight

was determined by the ratio of the characteristic roots of the

principal component of functional trait i in the PCA analysis to

the sum of all characteristic roots in the MDS (Guo et al., 2017; Jin

et al., 2018).
2.3.4 Ecosystem functions
The three ecosystem functions were the C, N, and P cycling in

this study. The C cycling indicators included plant organic carbon

and soil organic carbon, the N cycling indicators included soil

nitrate nitrogen, ammonium nitrogen, and total nitrogen, and plant

leaf total nitrogen, the P cycling indicators included soil available

phosphorus and total phosphorus and plant leaf total phosphorus.

All above were calculated by the average method (Maestre et al.,

2012; Bowker et al., 2013).

EF = 1
no

n

i=1
g(ri(fi)) (8)

where EF is a single ecosystem function, fi is the measured value

of function i, ri is the mathematical function that converts fi to a

positive value, g is the normalization of all measured values, and n

represents the number of functions measured.
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2.3.5 Linear and non-linear predictive models
In this study, linear and non-linear models were used to predict

the functions of single ecosystems based on the MDSs of plant

functional traits. Models selected 70% sample size of C, N and P

cycle indices of each first-level plot (100 m × 100 m) for training,

and the remaining 30% sample size for model verification. The

linear model was constructed by using partial least squares

regression (PLS), which was based on covariance regression. PLS

models can effectively catch the unique contributions of each

independent variable to overcome multicollinearity. PLS models

were constructed by the pls package in R software (Ge et al., 2018;

Tan et al., 2020).

The non-linear model was constructed by using the Random

Forest (RF) and BP neural network (BPNN). RF algorithm was

based on the statistical learning theory of decision trees, which can

effectively process high-dimensional data and overcome the

overfitting. In this study, the RF model set the number of trees to

100, the GBM used the default setting, the maximum number of

iterations was set to 500, the linear output unit was used, and the

grid was set with the option to optimize the hyperparameters. The

model constructions using the RF were completed by using the

random Forest package (Breiman, 2001; Poggio et al., 2019; Vilchez-

Mendoza et al., 2022). BPNN model is a multi-layer feed-forward

neural network that continuously approximates the desired output

based on the backward transmission of errors to obtain a prediction.

In this study, the BPNN model built four hidden layers with five

nodes in each layer and used backprop algorithm for calculation.

The model constructions using the BPNN were completed by using

the neural net package (Huang et al., 2019a; Morais et al., 2021).

Root mean square error (RMSE) and mean absolute error

(MAE) were used to test the accuracy of the predictive models

(Qiu et al., 2010; Guo et al., 2013; Knadel et al., 2021).

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
(observedi − predictedi)

2

s
(9)

MAE = 1
No

N

i=1
(observedi − predictedi)j j (10)

where predictedt is the predicted value of a subplot, observedt is

the measured value of a subplot, and N is the number of subplots.

The sma l l e r t h e RMSE and MAE , th e h i gh e r th e

prediction accuracy.

2.3.6 Geostatistical analysis
2.3.6.1 Regression kriging

Regression kriging (RK) is a spatial interpolation technique that

performs kriging interpolation on the prediction residuals by

combining the regression of the dependent variable on the

predictor variables (such as environmental variables) (Hengl

et al., 2004). That is to say, RK is a hybrid method that combines

a simple or multiple linear regression model with ordinary kriging

for predicting residuals. RK allows the auxiliary variables to

interpolate the dependent variables at unsampled locations

(Hengl et al., 2007). In this study, Partial least squares kriging

(PLSK) (Guo et al., 2021), Random forest kriging (RFK) (Breiman,
Frontiers in Plant Science 05
2001; Behnamian et al., 2017), and Back propagation neural

network (BPNNK) models were constructed (Li et al., 2017; Chen

et al., 2020). Regression Kriging (RK)was constructed using the

predicted values from the PLS, RF and BPNN models in

combination with the Ordinary Kriging (OK) method. Aim of

this method was to establish linear and non-linear mapping

relationships between the MDSs and a single ecosystem function

by PLS, RF, and BPNN. Relative coordinates were established in

each subplot, and then the residual terms were spatially interpolated

using the OKmethod to obtain the final prediction results. This was

completed by using the automap and gstat packages (Meng and Liu,

2013; Mukherjee et al., 2015).

ẑ (so) = m̂ (so) + ê (so)

= o
p

k=0

b̂ k · qk(so) +o
n

i=0
l̂ i · e(si)

(11)

where ẑ (so) is the interpolation result at the predicted subplot so
, o

p

k=0

b̂ k · qk(so) is the deterministic part of the fitting by regression,

o
n

i=0
l̂ i · e(si) is the interpolation result on the regression residuals by OK

method, k is the position number in the fitting by regression, p is the

sample size of the regression model based on the predicted values,

b̂ k is the coefficient of the regression model, b̂ 0 is the intercept

when k=0, i is the position number at the regression residual

interpolation, n is the sample size for kriging interpolation of the

residual value based on the predicted values, qk(so) is the value of

the auxiliary variable at the predicted position so, l̂ i is the OK

interpolation weight determined by the spatial correlation structure

of the regression residual, and e(si) is the residual at position si.

2.3.6.2 Semi-variable functions

The traits were tested for normal distribution before

geostatistical analysis. If the traits did not follow normal

distribution, they would be transformed with Box-Cox (Wang

et al., 2021a). The spatial variability of ecosystem functional

diversity was analyzed using geostatistical software (GS+, version

9.0, Gamma Design Software. LLC, USA), and a semi-covariance

function model was fitted. By analyzing the nugget (C0), structural

variance (C), sill (C0 + C), variation range (Range), and nugget-sill

ratio (C0/(C0 + C)), the proportion of nugget variance in total spatial

heterogeneity variance was determined, i.e. the proportion of

structural variance in the total variance. It is often used to

describe the degree of variation in the spatial heterogeneity of

study objects. If C0/(C0 + C)< 25%, the variable has strong spatial

autocorrelation; if C0/(C0 + C) is between 25% and 75%, the variable

has moderate spatial autocorrelation among the variables; if C0/(C0

+ C) > 75%, the variable has weak spatial autocorrelation

(Robertson et al., 1993; Zartman, 2005).

g (h) = 1
2N(h) o

N(h)

i=1
½Ai(xi) − Ai(xi + h)�2 (12)

where g(h) is the semi-variance of the interval class h,N(h) is the

number of samples separated by the lag distance, and Ai(xi) and Ai

(xi+h) are the measurement variables for spatial locations i and i+h,

respectively. There are four types of models: linear, spherical,

exponential, and Gaussian. The coefficient of determination (R2)
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and the residual sum of squares (RSS) were used to select the best-

fitting model. The larger the R2, the smaller the RSS, the better the

model fitted (Cambardella et al., 1994; Wang et al., 2021b).
3 Results

3.1 Indicators of minimum data set of
functional traits

In the three plots (A-C), where were the species and frequencies

of plant in Table S2, the wMDS and hMDS were constructed based

on the functional traits of woody and herbaceous plants in the

subplots (Table 1). The results showed that the SBD, H, LT, LL, LW,

and WLR of herbaceous plants in plot C were different (P< 0.05)

from those of herbaceous plants in plots A and B. The SBD and H in

plot B was different (P< 0.05) from those in plot A. Therefore, the

functional traits of woody and herbaceous plants in the three plots

were combined to construct wMDS and hMDS.

The KMO test based on partial correlation on the CWMs of the

16 plant functional traits showed that the KMO value of woody

plants was 0.77 (P< 0.001), with Bartlett’s test P< 1.7e-16, and that

of herbaceous plants was 0.74 (P< 0.001), with Bartlett’s test P<

2.2e-16. This indicates that there is a correlation between the woody

and herbaceous functional traits, and it is suitable for

factor analysis.

Based on the results of the factor analysis (Table 2), the CWMs

of the 16 woody plant functional traits were initially divided into

seven groups. For group 1, because the ratios of the Norm values of
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LC, LN, LP, and LL to that of H were less than 90%, H was included

in the wMDS. For group 2, the ratio of the Norm value of SLW to

that of SLA was higher than 90%, and the Pearson correlation

analysis (Figure 2A) showed that the correlation coefficient was

greater than 0.5, thus SLA was included in the wMDS. With the

same screening method as group 2, the LDW, LWC, and LW were

included into the wMDS for groups 3, 4, and 7, respectively. Group

5 and 6 only had DBH and LT, respectively, which were included

into the wMDS. Therefore, seven traits (H, SLA, LDW, LWC, LW,

DBH, and LT) were ultimately included in the wMDS.

The CWMs of herbaceous plant functional traits were divided

into six groups (Table 3). For group 1, the ratio of the Norm values

of LC, LN, LP, SBD, and LT to that of H was lower than 90%, then H

was included in the hMDS. For group 2, the ratio of the Norm value

of SLW to that of SLA was higher than 90% and the Pearson

correlation analysis (Figure 2B) showed that the correlation

coefficient was greater than 0.5, then SLA was included in the

hMDS. With the same screening method as group 2, LFW, LWC,

and LW were included in the hMDS for groups 3, 4, and 6,

respectively. Group 5 had LL only. Therefore, six traits (H, SLA,

LFW, LWC, LW, and LL) were ultimately included in the hMDS
3.2 Minimum data set test

Four cross-validation methods including FTEIW - L (linear weight

evaluation method), FTEIA - L (linear average evaluation method),

FTEIW - NL (non-linear weight evaluation method), and FTEIA - NL

(non-linear average evaluation method) were used to test the
TABLE 1 Analysis of variance for functional traits of woody and herbaceous plants in plots A, B and C.

Woody plant Herbaceous plant

Trait variables Plot A Plot B Plot C Trait variables Plot A Plot B Plot C

LC 0.992 a 0.990 a 0.989 a LC 0.992 a 0.978 a 0.983 a

LN 0.991 a 0.991 a 0.987 a LN 0.990 a 0.987 a 0.981 a

LP 0.991 a 0.988 a 0.981 a LP 0.990 a 0.982 a 0.969 a

SLA 0.985 a 0.974 a 0.966 a SLA 0.975 a 0.972 a 0.980 a

SLW 0.984 a 0.971 a 0.963 a SLW 0.966 a 0.962 a 0.978 a

LA 0.893 a 0.944 a 0.924 a LA 0.938 a 0.836 a 0.924 a

LDMC 0.988 a 0.983 a 0.985 a LDMC 0.993 a 0.948 a 0.962 a

LWC 0.993 a 0.992 a 0.991 a LWC 0.994 a 0.983 a 0.991 a

LFW 0.896 a 0.950 a 0.926 a LFW 0.955 a 0.890 a 0.926 a

LDW 0.898 a 0.948 a 0.927 a LDW 0.950 a 0.840 a 0.917 a

DBH 0.658 a 0.763 a 0.797 a SBD 0.593 a 0.879 b 0.629 b

H 0.928 a 0.855 a 0.885 a H 0.982 a 0.847 ab 0.921 b

LT 0.827 a 0.905 a 0.956 a LT 0.983 a 0.846 a 0.965 b

LL 0.844 a 0.833 a 0.747 a LL 0.966 a 0.803 a 0.964 b

LW 0.274 a 0.845 a 0.878 a LW 0.485 a 0.856 a 0.933 b

WLR 0.247 a 0.913 a 0.858 a WLR 0.538 a 0.887 a 0.937 b
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TABLE 2 Factor loading matrices, groupings and Norm values for functional traits in woody plant communities.

Trait variables
Principal component (PC)

Groups Norm value MDS
PC1 PC2 PC3 PC4 PC5 PC6

LC 0.062 -0.055 -0.032 0.094 -0.063 -0.051 1 0.218 ―

LN 0.003 0.027 0.074 0.009 -0.010 0.009 1 0.119 ―

LP 0.065 0.005 0.081 0.063 -0.062 0.007 1 0.201 ―

SLA -0.070 -0.957 0.133 0.053 -0.031 -0.110 2 1.620 Enter

SLW 0.051 0.945 -0.091 -0.107 0.037 0.163 2 1.602 ―

LA 0.937 -0.280 -0.064 0.044 -0.045 -0.022 3 1.738 ―

LDMC -0.004 0.083 -0.966 -0.035 0.036 -0.100 4 1.439 ―

LWC -0.005 -0.127 0.966 0.023 -0.055 0.086 4 1.446 Enter

LFW 0.951 0.181 0.175 -0.011 -0.013 0.081 3 1.744 ―

LDW 0.960 0.207 -0.108 -0.005 -0.004 0.023 3 1.753 Enter

DBH -0.054 0.053 -0.072 -0.033 0.949 0.020 5 1.186 Enter

H 0.073 0.072 -0.243 -0.074 0.343 -0.023 1 0.590 Enter

LT 0.064 0.246 0.177 -0.059 0.019 0.946 6 1.220 Enter

LL 0.102 0.101 -0.023 -0.019 0.128 0.031 1 0.299 ―

LW 0.013 -0.056 0.043 0.982 -0.004 -0.012 7 1.294 Enter

WLR 0.009 -0.090 0.013 0.973 -0.038 -0.052 7 1.288 ―

Characteristic value 3.174 2.780 2.177 1.722 1.525 1.377 ― ― ―

Variance contribution
rate of the PC (%)

17.144 12.992 12.806 12.205 6.586 6.044 ― ― ―

Cumulative contribution
rate of the PC(%)

17.144 30.136 42.941 55.146 61.732 67.776 ― ― ―
F
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FIGURE 2

Pearson correlation analysis of functional traits in woody and herbaceous communities. (A) Woody functional trait indicators; (B) Herbaceous
functional trait indicators.
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correlation between MDS and TDS in this study. The R2 of the linear

regression of FTEIW - L, FTEIA - L, FTEIW - NL, and FTEIA - NL ofMDS

and TDS of woody plants were 0.29, 0.34, 0.75, and 0.57, respectively,

and those of herbaceous plants were 0.82, 0.75, 0.76, and 0.68,

respectively. Overall, the test results by FTEIW - L, FTEIA - L,

FTEIW - NL , and FTEIA - NL a l l showed s ignificant

correlation (Figure 3).

In this study, the SL method outperformed the SNL method

when the same evaluation system was used (Figure 3). By

comparing different traits, it was found that the correlation

coefficients calculated by FTEIA were higher than those calculated

by FTEIW under the same assignment function method.

Furthermore, MDS and TDS showed a positive correlation (P<

0.001) in all the resultant models tested by cross-validation.

Therefore, the constructed wMDS and hMDS can replace TDS.
3.3 Spatial distribution characteristics of
ecosystem functions

The optimal semi-variance function model for predicting C

cycling based on the raw values, wMDS, and hMDS was the

exponential model. The analysis results of C0/(C0 + C) showed
Frontiers in Plant Science 08
that the structure of spatial variability had strong spatial

autocorrelation (Table 4). This suggests that the spatial

distribution of C cycling is mainly influenced by structural

factors. The optimal semi-variance models based on raw and

predicted values of N cycling were exponential and Gaussian

models (Table 5). Except for the moderate spatial autocorrelation

of the PLS model-predicted values based on the wMDS in plot B, the

C0/(C0 + C) of the remaining raw and predicted values also showed

strong spatial autocorrelation. This indicates that there is an error in

PLS prediction accuracy and the spatial heterogeneity is dominated

by structural factors. The optimal semi-variance models based on

raw and predicted values of P cycling were exponential and

Gaussian models (Table 6). The C0/(C0 + C) of raw values and

predicted values based on wMDS for plot B showed moderate

spatial autocorrelation, while that of the remaining values showed

strong spatial autocorrelation, with structural factors dominating

spatial heterogeneity. In summary, the C, N, and P cycling showed

strong spatial autocorrelation, and the prediction accuracy of the RF

and BPNN models were better than that of PLS model. By

comparing the C, N, and P cycling predicted results of the three

models based on the wMDS, it was found that the prediction

accuracy of the RF model was higher than that of the BPNN and

PLS models (Figures 4A–C). Furthermore, the same results were
TABLE 3 Factor loading matrix, groupings and Norm values for functional traits in herbaceous communities.

Trait variables
Principal component (PC)

Groups Norm value MDS
PC1 PC2 PC3 PC4 PC5

LC 0.086 0.390 0.165 -0.010 0.097 1 0.638 ―

LN 0.077 0.055 0.020 0.005 0.059 1 0.213 ―

LP -0.074 -0.015 -0.048 -0.054 -0.010 1 0.201 ―

SLA -0.103 -0.131 -0.943 -0.027 -0.037 2 1.341 Enter

SLW 0.022 0.110 0.953 0.047 0.026 2 1.330 ―

LA 0.899 0.265 -0.194 0.005 0.125 3 2.189 ―

LDMC 0.170 0.882 0.149 -0.034 0.173 4 1.335 ―

LWC -0.210 -0.884 -0.155 -0.006 -0.153 4 1.367 Enter

LFW 0.965 -0.061 0.157 0.025 0.087 3 2.307 Enter

LDW 0.911 0.276 0.162 -0.007 0.116 3 2.214 ―

SBD 0.132 0.142 0.044 -0.003 0.062 1 0.384 ―

H 0.289 0.400 0.096 -0.004 0.269 1 0.951 Enter

LT -0.136 -0.461 0.014 -0.016 -0.141 1 0.743 ―

LL 0.278 0.297 0.059 0.047 0.867 5 1.284 Enter

LW -0.094 -0.13 0.015 0.944 -0.185 6 1.249 Enter

WLR 0.130 0.124 0.065 0.905 0.274 6 1.246 ―

Characteristic value 5.638 1.971 1.913 1.604 1.370 ― ― ―

Variance contribution
rate of the PC (%)

18.098 15.056 12.387 10.757 6.634 ― ― ―

Cumulative contribution
rate of the PC (%)

18.098 33.154 45.541 56.298 62.932 ― ― ―
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obtained by comparing the predicted results of the three models

based on the hMDS (Figures 4D–F).

The OK results showed that the ecosystem function C, N and P

cycles from river bank to desert margin (Plot A-C). The C cycle of

woody plants firstly decreased and then increased with gradients

(Figure 5), while the carbon cycle of herbaceous plants was the

opposite. The N cycles in both woody and herbaceous plants were

weakened along the gradients (Figure 6). The P cycle of herbaceous

plants was continuously decreased while the woody plants were

continuously increased (Figure 7).
3.4 Regression kriging prediction

The RK visualization results based on wMDS are shown in

(Figures 5, 6, 7A). The visualization results based on raw and

predicted values all showed that the prediction accuracy of the

BPNNK model was the highest, followed by RFK and PLSK models.

The OK and RK visualization results of P cycling in plot B all

showed “bull’s eye phenomenon”. The visualization results by

hMDS (Figures 5, 6, 7B) based on raw and predicted values all

showed that the prediction accuracy of the BPNNK model was

similar to that of the RFK model, and the prediction accuracy of the

PLSK model was the lowest. Furthermore, local extremum or over

smoothing (lack of details) were shown in the P cycling in plot A,

the C cycling in plot B, and the N cycling in plot C. Therefore, RF

and BPNN are better than PLS in RK prediction. The accuracy test
Frontiers in Plant Science 09
results also showed that RF and BPNN were better than PLS

(Figure 4). Moreover, the RK visualization results based on

wMDS were better than those based on hMDS (Figures 5–7).
4 Discussion

4.1 Minimum data set of functional traits

In this study, plant functional traits were used as predictor

variables, and hMDS and wMDS were constructed by selecting

important plant functional traits to predict ecosystem functions.

According to the study results, morphological traits including SLA,

DBH, PH, LW, and LT, and physiological traits including LWC and

LDW were included in the wMDS. Previous studies have shown that

plant leaf morphological traits could determine plant photosynthetic

capacity (Cornelissen et al., 2003; Yu et al., 2014; Liu and Liang, 2016).

Some scholars also reported that H and SBD (DBH) could reflect the

adaptability of plants to environmental changes and their ability to

acquire resources, and the length and thickness of the stems of woody

plants were more sensitive to environmental filtering (Fernández et al.,

2002; Liu et al., 2015). In this study, in desert ecosystems, water is the

most important environmental factor affecting plant distribution and

growth. LWC can reflect the water status of plant tissues (Li et al., 2013)

and the resistance and adaptation of plants to drought stress (Joly et al.,

2017). With the increase of drought degree, soil water content and

LWC of plants decreased greatly (Maréchaux et al., 2015; Zhou et al.,
B C D

E F G H

A

FIGURE 3

Regression analysis of four cross-tests for MDS and TDS. (A, B, E, F) are MDS tests for woody functional traits; (C, D, G, H) are MDS tests for
herbaceous functional traits.
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2021). Furthermore, LFW can reflect the dehydration resistance of

plants. The higher the LWC, the higher the LFW, and the stronger the

drought resistance (Zou et al., 2019). Therefore, through the

construction of hMDS and wTDS, the representative functional traits

can be screened out. The results of this study showed that desert plants

adapt to the arid environment mainly by the changes of morphological

and physiological traits. Furthermore, by comparing the components

in hMDS with those in the wMDS, it was found that woody plants

invest more on stem.
4.2 Prediction of spatial distribution
characteristics of ecosystem functions by
functional trait MDS

Spatial heterogeneity is jointly affected by random and

structural factors. In geostatistics, a high nugget-sill ratio (C0/(C0
Frontiers in Plant Science 10
+ C) > 50%) indicates a high degree of spatial heterogeneity caused

by the random factors. If the ratio is close to 100%, it means that the

object variables have constant variation, i.e., the spatial

heterogeneity comes from random factors (Boerner et al., 2015;

Shi et al., 2020). According to the results of this study, the nugget-

sill ratios of the raw and predicted values of C, N, and P cycling for

the three plots were less than 25%, the functions in each plot had

strong spatial autocorrelation, and the spatial variation was mainly

influenced by structural factors. This indicates that natural factors

(structural factors) such as topography, parent material, and

vegetation play important roles in the spatial variation. The study

area is in a national nature reserve, where human interference is

minimal. Within each plot, soil type, relief, light radiation,

temperature, and other conditions are nearly uniform, so

structural factors may come from vegetation type and functional

traits of plants. Furthermore, a small proportion of random factors

may be caused by experimental errors such as sampling.
TABLE 4 Statistical parameters of the ecosystem C cycle function.

(Woody)
Plots/Kriging Models C0 C0+C

C0/(C0+C)
(%)

Range
(m) R2 RSS

A

Real Exp 0.0044 0.0783 5.6 5.6 0.614 3.70E-05

PLS Exp 0.0056 0.0932 6.0 3.4 0.011 2.88E-04

RF Exp 0.0009 0.0284 3.3 4.5 0.313 5.75E-06

BP Exp 0.0016 0.0336 4.8 5.8 0.667 6.31E-06

B

Real Exp 0.0014 0.0620 2.3 10.7 0.913 2.25E-05

PLS Exp 0.1700 0.4950 34.3 62.7 0.978 2.39E-04

RF Exp 0.0120 0.0395 30.4 40.4 0.988 1.30E-06

BP Exp 0.0016 0.0492 3.3 11.2 0.863 2.40E-05

C

Real Exp 0.0003 0.0760 0.4 3.3 0.009 1.97E-04

PLS Exp 0.0070 0.1300 5.4 6.8 0.749 9.45E-05

RF Exp 0.0014 0.0282 5.0 3.6 0.013 3.04E-05

BP Exp 0.0006 0.0213 2.7 4.4 0.066 1.26E-05

(Herbaceous) Plots/Kriging Models C0 C0+C
C0/(C0+C)

(%)
Range
(m)

R2 RSS

A

Real Exp 0.0067 0.0500 13.4 10.2 0.904 1.21E-05

PLS Exp 0.0040 0.0415 9.6 5.5 0.601 8.37E-06

RF Exp 0.0023 0.0169 13.7 9.1 0.895 1.19E-06

BP Exp 0.0035 0.0251 14.1 7.1 0.836 2.25E-06

B

Real Exp 0.0079 0.1008 7.8 6.5 0.989 1.90E-06

PLS Exp 0.0860 0.5910 14.6 16.6 0.997 1.10E-04

RF Exp 0.0093 0.0723 12.9 9.4 0.985 3.46E-06

BP Exp 0.0053 0.0397 13.4 10.7 0.977 1.99E-06

C

Real Exp 0.0004 0.0681 0.6 4.7 0.269 7.42E-05

PLS Exp 0.0240 0.4460 5.4 4.4 0.427 1.02E-03

RF Exp 0.0014 0.0379 3.7 5.0 0.386 1.88E-05

BP Exp 0.0000 0.0147 0.1 4.3 0.167 4.56E-06
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TABLE 5 Statistical parameters of the ecosystem N cycle function.

(Woody)
Plots/Kriging Models C0 C0+C

C0/(C0+C)
(%)

Range
(m) R2 RSS

A

Real Exp 0.0017 0.0162 10.4 5.7 0.759 7.11E-07

PLS Exp 0.0026 0.1112 2.3 8.7 0.505 3.59E-04

RF Exp 0.0006 0.0059 9.3 5.6 0.659 1.37E-07

BP Exp 0.0040 0.0353 11.5 5.8 0.798 2.96E-06

B

Real Gau 0.0007 0.0044 16.3 10.1 0.936 4.41E-08

PLS Gau 0.0851 0.2252 37.8 41.7 0.998 1.71E-05

RF Gau 0.0003 0.0019 16.1 12.7 0.963 1.16E-08

BP Gau 0.0040 0.0294 13.6 10.1 0.968 1.01E-06

C

Real Exp 0.0010 0.0087 11.6 6.4 0.807 2.24E-07

PLS Exp 0.0028 0.1236 2.3 0.3 0.001 1.23E-04

RF Exp 0.0005 0.0033 14.0 9.0 0.889 4.45E-08

BP Exp 0.0058 0.0196 11.7 6.5 0.800 7.89E-06

(Herbaceous) Plots/Kriging Models C0 C0+C
C0/(C0+C)

(%)
Range
(m)

R2 RSS

A

Real Exp 0.0016 0.0157 10.2 5.9 0.908 2.63E-07

PLS Exp 0.0097 0.1224 7.9 2.5 0.092 8.77E-06

RF Exp 0.0004 0.0059 7.0 6.0 0.801 1.03E-07

BP Exp 0.0038 0.0386 9.8 6.3 0.902 2.04E-06

B

Real Gau 0.0005 0.0047 11.4 6.5 0.118 1.30E-07

PLS Gau 0.0074 0.0737 10.0 9.0 0.752 3.28E-05

RF Gau 0.0002 0.0015 10.5 7.4 0.298 1.78E-08

BP Gau 0.0033 0.0354 9.3 5.7 0.030 4.72E-06

C

Real Gau 0.0008 0.0070 11.6 6.3 0.099 2.03E-07

PLS Gau 0.0045 0.0425 10.6 7.2 0.470 5.70E-06

RF Gau 0.0003 0.0022 11.0 7.2 0.573 9.15E-09

BP Gau 0.0031 0.0363 8.5 1.8 0.001 5.45E-06
F
rontiers in Plant Science
 11
 fron
TABLE 6 Statistical parameters of the ecosystem P cycle function.

(Woody)
Plots/Kriging Models C0 C0+C

C0/(C0+C)
(%)

Range
(m) R2 RSS

A

Real Gau 0.0006 0.0080 6.8 1.8 0.001 2.38E-07

PLS Gau 0.0159 0.1598 9.9 1.9 0.001 1.49E-04

RF Gau 0.0001 0.0028 4.8 1.9 0.001 2.42E-08

BP Gau 0.0023 0.0310 7.5 1.8 0.001 5.63E-06

B

Real Gau 0.0107 0.0263 40.5 30.3 0.998 1.98E-07

PLS Gau 0.1285 0.3470 37.0 45.8 0.988 1.76E-04

RF Gau 0.0041 0.0130 31.2 29.5 0.999 1.01E-08

BP Gau 0.0259 0.0606 42.7 29.2 0.998 8.83E-07

(Continued)
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Plant functional traits are biological regulators of C, N, and P

cycling (Wright et al., 2004; Xu et al., 2017; Butler et al., 2018).

They can regulate hydrothermal and material redistribution

(Campos et al., 2016; Wasternack, 2017) to influence the extent

and intensity of C, N, and P cycling in the ecosystem (McCormack

et al., 2015). The OK model results showed that the relative

contributions of woody and herbaceous plants to the ecosystem
Frontiers in Plant Science 12
functioning C cycle were mainly determined by the plant biomass.

In Plot B, the biomass of herbaceous plants dominated for more C

stock, while in Plot A, woody plants were the dominant life forms,

and in Plot C, woody plants were more deeply rooted and drought

tolerant than herbaceous plants, so woody plants participated in

carbon cycles with higher carbon stocks in Plots A and C. The

contribution of both woody and herbaceous plants to the
B C

D E F

A

FIGURE 4

Prediction model accuracy tests. (A–C) are ecosystem functions predicted by MDS for woody functional traits; (D–F) are ecosystem functions
predicted by MDS for herbaceous functional traits.
TABLE 6 Continued

(Woody)
Plots/Kriging Models C0 C0+C

C0/(C0+C)
(%)

Range
(m) R2 RSS

C

Real Gau 0.0009 0.0221 3.9 1.9 0.001 3.89E-06

PLS Gau 0.0071 0.1062 6.7 7.8 0.272 1.77E-04

RF Gau 0.0004 0.0081 4.3 8.3 0.362 1.31E-06

BP Gau 0.0015 0.0292 5.2 1.9 0.001 5.31E-06

(Herbaceous) Plots/Kriging Models C0 C0+C
C0/(C0+C)

(%)
Range
(m)

R2 RSS

A

Real Gau 0.0006 0.0064 8.9 5.5 0.002 1.09E-06

PLS Gau 0.0107 0.0713 15 9.8 0.837 2.80E-05

RF Gau 0.0002 0.0022 10.4 6.1 0.013 1.20E-07

BP Gau 0.0015 0.0255 5.8 1.9 0.001 1.77E-05

B

Real Exp 0.0053 0.0267 19.7 16.4 0.956 2.66E-06

PLS Exp 0.0194 0.1248 15.5 16.0 0.992 1.53E-05

RF Exp 0.0007 0.0085 8.7 12.9 0.936 4.41E-07

BP Exp 0.0062 0.0427 14.5 11.0 0.894 1.25E-05

C

Real Gau 0.0028 0.0251 11.2 10.3 0.823 5.93E-06

PLS Gau 0.0102 0.1294 7.9 7.9 0.486 1.17E-04

RF Gau 0.0011 0.0083 12.8 10.2 0.802 6.61E-07

BP Gau 0.0075 0.0555 13.5 10.7 0.923 1.26E-05
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ecosystem functional N cycle decreased with gradients, potentially

due to moisture limitation (Chen X. et al., 2021). Edmondson et al.

(2013) concluded that nitrogen accumulation and transport were

influenced by soil moisture, and in natural communities with no

anthropogenic nitrogen addition, nitrification and denitrification

of plant residues would be more intense in wet areas than in arid

areas, with wetter areas receiving more nitrogen accumulation

(Liu et al., 2020; Zhao et al., 2021). The contribution of woody

plants to the ecosystem functional C cycle and the contribution of

herbaceous plants to the ecosystem functional C cycle showed

overall contrary results in areas ranging from riparian forests to
Frontiers in Plant Science 13
desert margins. Some studies suggested that in grassland

ecosystems, phosphorus was slowing down grassland

degradation. When herbaceous plants are moisture-limited,

phosphorus stocks are also reduced (Liu et al., 2018). Woody,

being perennial, retains more nutrients and reduces the

phosphorus metabolic loss in extreme conditions (Zhang et al.,

2012). At the small scale of desert ecosystems, ecosystem cycles

were largely influenced by vegetation type and may be disturbed

by animals and microorganisms in the soil (Zhao et al., 2018).

Whereas at large scales (a few square kilometers or hundreds of

square kilometers), it has been suggested that ecosystem
B

A

FIGURE 5

Spatial distribution characteristics of the carbon cycle, OK, Ordinary Kriging. (A, B) are the spatial distribution characteristics of carbon cycle
prediction of woody MDS and herbaceous MDS respectively, PLSK, Partial least squares Kriging; RFK, Random forest Krieger; BPNNK, BP neural
network Kriging.
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functioning was affected by climate, topography or anthropogenic

emissions (Marklein and Houlton, 2012).

The RK model results show that the wMDS and hMDS can

improve the prediction accuracy of the spatial distribution of C, N

and P cycling. It has been argued that plant community

characteristics influence soil C, N, and P cycling and control the

decomposition process in ecosystems. Furthermore, the

abundance and composition of species or functional groups

within a community influence the input and output of soil C

(Oelmann et al., 2011; Zhang, 2020; Shen et al., 2021). According

to the mass ratio hypothesis, ecosystem function is primarily
Frontiers in Plant Science 14
determined by the traits of the biomass-dominant species in the

community (Smith et al., 2001; Wright et al., 2003; Prentice et al.,

2014). Therefore, the relative abundance and biomass of plants

and their traits may be the main determinants of C, N, and P

cycling in the ecosystem. It has also been shown that plant

functional traits can influence C cycling in wetland ecosystems

(Wang et al., 2010), plant trait combinations influence the

diversity of soil decomposers through the diversity of habitat

conditions they create. In turn, the diversity of decomposers

may significantly affects soil C cycling (Duan et al., 2021). Li

and Wang (2021) argued that C and N cycling were related to
B

A

FIGURE 6

Spatial distribution characteristics of the nitrogen cycle, OK, Ordinary Kriging. (A, B) are the spatial distribution characteristics of carbon cycle
prediction of woody MDS and herbaceous MDS respectively, PLSK, Partial least squares Kriging; RFK, Random forest Krieger; BPNNK, BP neural
network Kriging.
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plant morphological traits, and ecosystem function was strongly

influenced not only by dominant species or functional group

traits, but also by dominant functional traits. Meng et al. (2017)

showed that C cycling was mainly influenced by vegetation type,

which could explain 66.10% of the total variation. Duan et al.

(2018) showed that the spatial distribution of C cycling was

progressively enhanced by vegetation structure as farmlands

were returned to forestland. Gong et al. (2017) also reported a

significant positive correlation between plant leaves and soil

organic matter content in their study on the C cycling.
Frontiers in Plant Science 15
Therefore, it is reasonable that plant functional traits can

predict the function of C cycling in ecosystems. Plant functional

traits are the structural factors that have the strongest impact on

ecosystem functions.

The results of the RK analysis also indicated that the N and P cycles

were also predicted more accurately. Phenotypic traits can reflect

changes in ecosystem functions, as well as changes in the spatial

distribution of ecosystem processes and functions (McIntyre et al.,

2009), such as SLW and SLA (Cornelissen et al., 2003). C, N, and P

cycling in ecosystems are often affected by traits of multiple plant
B

A

FIGURE 7

Spatial distribution characteristics of the phosphorus cycle, OK, Ordinary Kriging. (A, B) are the spatial distribution characteristics of carbon cycle
prediction of woody MDS and herbaceous MDS respectively, PLSK, Partial least squares Kriging; RFK, Random forest Krieger; BPNNK, BP neural
network Kriging.
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organs. For example, the C, N, and P concentrations of plant leaves

have a stable positive relationship (Rawat et al., 2020). Furthermore, the

maximum diameter of stems (Jucker et al., 2016) and the maximum

plant height also have a stable positive relationship with the C, N, and P

concentrations of plant leaves (Falster et al., 2011). The accumulation

and transformation of N and P between plants and soil is a complex

process, which is affected by many environmental factors. Under the

same climate and habitat conditions, the dynamic changes of

vegetation factors and soil factors regulate the input and output of

soil N and P, and then affect the accumulation of N and P in the soil

(Dijkstra et al., 2012). Therefore, the functional traits of plants can

directly reflect the N and P cycling in the ecosystem.
4.3 Comparison of regression
kriging models

By comparing the prediction results of the PLS, RF, and BPNN

models based on the Kriging method, it was found that the RF

model can significantly improve the prediction accuracy on

ecosystem functions based on the MDS, and it can accurately

predict the spatial distribution of C, N, and P cycling in the

desert ecosystem. This may be a non-linear relationship between

RF analysis of multiple source auxiliary variables (MDS) and C, N,

and P cycling through a classification algorithm to obtain a globally

optimal solution, which can overcome the defect of the local

minimum solution of the BPNN method (Tyralis et al., 2019).

Song et al. (2017) compared the accuracy of Support Vector

Machine (SVR), BPNN, and RF models in predicting SOM, and

showed that the RF model had higher coefficient of determination

and prediction accuracy. This is consistent with the results of this

study. Furthermore, it was found that the RF model based on the

wMDS had a better performance in predicting C, N, and P cycling

than the RF model based on the hMDS, enabling global and point

specific predictions. Zeng et al. (2014) also showed that the RF

model could better reflect the “pure information” changes in the

samples and obviously improve the prediction accuracy of

the model.

The BPNN model with non-transparency of data operation has

strong fault tolerance, but traditional BPNN models are also prone

to over-fitting and local optimality (Chen S. Y. et al., 2021). The

results of this study confirmed that the BPNN model was very

unstable. PLS, on the other hand, had a low prediction accuracy. It

may be that the algorithm has difficulty explaining the loading of

independent latent variables. It is based on a cross product with the

response variables, rather than on correlations between

independent variables in conventional factor analysis (Lednev

et al., 2018; Wang et al., 2022). Consequently, visualisation results

from the non-linear RF and BPNN models combined with kriging

demonstrate that the MDS of plant functional traits could be used to

predict C, N, and P cycling in ecosystems.
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5 Conclusion

In this study, the MDSs (hMDS and wMDS) of plant functional

traits was constructed. The spatial distribution of C, N, and P

cycling in the desert ecosystem in the Xinjiang Ebinur Lake Basin

were accurately predicted based on the hMDS and wMDS using

linear and non-linear models combined with regression kriging and

geostatistical analysis. The wMDS included H, SLA, LDW, LWC,

DBH, LW, and LT, and the hMDS included H, SLA, LFW, LWC,

LL, and LW. The cross-validation performed in this study showed

that the MDS can replace TDS in predicting ecosystem functions,

and the constructed MDSs could accurately predict the spatial

distribution of C, N, and P cycling in the ecosystem.

Furthermore, C, N, and P cycles are strongly spatially

autocorrelated due to structural factors, and C, N and P cycles in

desert ecosystems do not behave uniformly between different life

forms of plants, subject to water limitation. The RK predicted result

was highly consistent with the distribution of the raw values.
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