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Compressed sensing (CS) is widely used to accelerate clinical diffusion MRI

acquisitions, but it is not widely used in preclinical settings yet. In this study,

we optimized and compared several CS reconstruction methods for diffusion

imaging. Different undersampling patterns and two reconstruction approaches

were evaluated: conventional CS, based on Berkeley Advanced Reconstruction

Toolbox (BART-CS) toolbox, and a new kernel low-rank (KLR)-CS, based on

kernel principal component analysis and low-resolution-phase (LRP) maps.

3D CS acquisitions were performed at 9.4T using a 4-element cryocoil on

mice (wild type and a MAP6 knockout). Comparison metrics were error and

structural similarity index measure (SSIM) on fractional anisotropy (FA) and mean

diffusivity (MD), as well as reconstructions of the anterior commissure and fornix.

Acceleration factors (AF) up to 6 were considered. In the case of retrospective

undersampling, the proposed KLR-CS outperformed BART-CS up to AF = 6 for

FA and MD maps and tractography. For instance, for AF = 4, the maximum

errors were, respectively, 8.0% for BART-CS and 4.9% for KLR-CS, considering

both FA and MD in the corpus callosum. Regarding undersampled acquisitions,

these maximum errors became, respectively, 10.5% for BART-CS and 7.0% for

KLR-CS. This difference between simulations and acquisitions arose mainly from

repetition noise, but also from differences in resonance frequency drift, signal-to-

noise ratio, and in reconstruction noise. Despite this increased error, fully sampled

and AF = 2 yielded comparable results for FA, MD and tractography, and AF = 4

showed minor faults. Altogether, KLR-CS based on LRP maps seems a robust

approach to accelerate preclinical diffusion MRI and thereby limit the effect of

the frequency drift.
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1. Introduction

Diffusion MRI, based on diffusion-weighted imaging (DWI),
is used in neuroscience research to characterize anatomical
connectivity (Le Bihan and Johansen-Berg, 2012). At the
preclinical level, anatomical connectivity mapping helps to
characterize transgenic animal models used in various areas, from
neurodevelopment (Oguz et al., 2012) to neurodegeneration (Gatto
et al., 2019; Nishioka et al., 2019). To obtain reliable connectivity
data, it is now accepted that at least 30 diffusion directions are
required; the precise number depends on the analysis approach
(Schilling et al., 2017). Advanced diffusion models require even
richer datasets (more diffusion directions and/or use of several
diffusion gradient values) and therefore take longer to acquire
(Calabrese et al., 2015; Allan Johnson et al., 2019). Currently,
these in vivo acquisitions can be used for humans owing to several
well-known acquisition strategies: parallel imaging (Pruessmann
et al., 1999; Griswold et al., 2002), compressed sensing (CS) (Lustig
et al., 2007), and multiband acquisition (Setsompop et al., 2013;
Lee et al., 2021).

In preclinical settings, however, these developments are
not widely used yet, despite several proof-of-principle studies.
Moreover, the small voxel sizes required to map tracts in mouse
or rat brains (100 µm or less) contribute to further increasing the
DWI acquisition times, which are much longer than in clinical
settings (Aggarwal et al., 2010; Calabrese et al., 2015). Therefore,
most preclinical studies are performed ex vivo with acquisition
durations that routinely exceed 8 h (Zhang et al., 2012; Gimenez
et al., 2017; Wang et al., 2018; Allan Johnson et al., 2019). Such long
acquisition times may decrease image quality because of hardware
(e.g., resonance frequency) and/or sample drift (Vos et al., 2017)
and can limit the number of samples used owing to cost and/or
scan time availability.

One of the most attractive means to reduce acquisition duration
is CS (Lustig et al., 2007; Michailovich et al., 2011; Bilgic et al.,
2012; Mani et al., 2015), which has recently been evaluated in
mouse brain connectomics (Allan Johnson et al., 2019; Zhang et al.,
2020). The Johnson group reported connectivity data obtained
with an acquisition pattern based on Monte-Carlo sampling, which
was constant across diffusion directions (Wang et al., 2018; Allan
Johnson et al., 2019). Acquired data were reconstructed using the
SparseMRI CS approach developed by Lustig et al. (2007), and
the impact of reducing the scan time on mean diffusivity (MD),
fractional anisotropy (FA), and on the ability to detect white-
matter tracts and fiber-crossings was evaluated (Wang et al., 2018).
Their approach was also evaluated in a model of autism spectrum
disorders (Allan Johnson et al., 2019). In their settings, an eightfold
reduction in scan time (from 92.6 to 11.8 h) was acceptable, but
the scan time remains long. More recently, Zhang et al. (2020)
proposed a kernel low-rank (KLR) method to jointly reconstruct

Abbreviations: AF, acceleration factor; b0, b∼0 s/mm2 images (baseline
images acquired without diffusion weighting); KPCA, kernel principal
component analysis, CS, compressed sensing; DWI, diffusion-weighted
imaging; ESPIRiT, efficient L1 iterative self-consistent parallel imaging
reconstruction; FA, fractional anisotropy; FS, fully sampled; KLR, kernel low-
rank; LRP, low-resolution-phase; MAP6, microtubule-associated protein 6;
MD, mean diffusivity; pSNR, peak signal-to-noise ratio; ROI, region of
interest; SNR, signal-to-noise ratio; SSIM, structural similarity index measure;
WT, wild type.

multiple diffusion-weighted images (Nakarmi et al., 2017), using
undersampling patterns that vary with the diffusion direction
(Mani et al., 2015). In their settings, the KLR-CS appears more
efficient than the conventional CS proposed by Lustig et al. (2007)
for a 5.56-fold reduction in scan time (from 8 to 1.4 h). However,
the proposed KLR approach has been evaluated on magnitude-
filtered data, i.e., data in which the Hermitian symmetry in
k-space has been enhanced, and using retrospective undersampling
(Zhang et al., 2020). Altogether, to our knowledge, there is no
implementation of a KLR-CS approach able to efficiently handle
complex undersampled DWI acquisitions.

In this study, we thus evaluated both the acquisition, using a
four-channel receive coil, and a KLR-CS reconstruction protocol
adapted to handle complex undersampled DWI data. Data were
acquired on a preclinical mouse model that exhibits altered
brain connectivity: the MAP6 knockout model (Deloulme et al.,
2015). The DWI undersampling parameters were optimized using
simulations. A KLR-CS approach, based on the use of low-
resolution-phase (LRP) maps, was introduced, and parametric
maps and fiber tracts from undersampled acquisitions were
analyzed, using the Berkeley Advanced Reconstruction Toolbox
(BART)-CS as reference. Finally, differences between simulations
and acquisitions were explored, considering the change in signal-
to-noise ratio, frequency drift, and repetition noise.

2. Materials and methods

2.1. Animals

The study protocol was approved by the local animal welfare
committee (Comité Local GIN, C2EA-04–APAFIS number 21234-
2019031308592774) and complied with EU guidelines (Directive
2010/63/EU). Every precaution was taken to minimize the number
of animals used and the stress on animals during experiments. The
MAP6-deficient mouse line used in this study is on the C57BL/6
genetic background (Andrieux et al., 2002). Adult mice that were
heterozygous for MAP6 (MAP6+/−) and their wild-type (WT)
littermates were obtained by crossing MAP6+/− mice.

As the complete MAP6 knockout (MAP6−/−) leads to major
changes in brain connectivity (Deloulme et al., 2015), we used
the partial (heterozygous MAP6+/−) knockout to achieve subtle
changes in tract morphology. Thus, we challenged the level of detail
quantifiable by CS reconstructions.

2.2. Brain preparation for ex vivo MRI
acquisitions

Brains were prepared according to a previously reported
protocol (Gimenez et al., 2017). After transcardiac perfusion with
a 4% paraformaldehyde solution containing Gd-chelate (6.25 mM
of Gd-DOTA; Guerbet Laboratories, Roissy, France), mice were
decapitated. After the removal of skin and muscles, the skull was
immersed in the same fixing solution for 4 days and transferred
into Fomblin oil (FenS chemicals, Goes, Netherlands), an oil that
generates no MRI signal but has a magnetic susceptibility close
to that of brain tissue. MRI was performed at least 7 days after
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brain fixation. This protocol ensures a homogeneous distribution of
the Gd-DOTA throughout the whole mouse brain (Gimenez et al.,
2016). The contrast agent decreased brain T1 from 1000 ± 102 to
110 ± 13 ms and brain T2 from 27.3 ± 3.1 to 18.3 ± 2.6 ms (data
not shown), allowing a reduction in acquisition times.

2.3. Optimization of the CS
undersampling pattern for DWI

To select an undersampling approach, 20 different k-space
undersampling patterns were explored, by retrospectively
undersampling the FS DWI datasets acquired from the 3 WT
brains and using the methods described below:

- Monte-Carlo vs. Poisson-disk sampling. Monte-Carlo
sampling patterns were generated through a variable
probability density function with a flat region in its center
(Wang et al., 2018; Zhang et al., 2020). Poisson-disk sampling
patterns were generated using the algorithm embedded in
BART. For this pattern, we evaluated regular and elliptical
sampling as well as uniform and variable sampling density. To
ensure fair comparisons, the area of the FS center of k-space
was kept constant across sampling patterns.

- Single- vs. multi-mask sampling (Senel et al., 2019). The
single-mask approach stands for the use of the same
undersampling pattern for all DWI volumes and the multi-
mask approach for the use of different undersampling patterns
for each DWI volume.

- Fully sampled (FS) vs. undersampled b0 images. To ensure a
comparable global acceleration factors (AF) across the whole
DWI datasets (b0 + diffusion direction images), the AF per
diffusion direction (AFdiff) was increased in the case of FS
b0 images. The behavior of AF and AFdiff, as a function of
the sampling strategies for b0 images, is further described in
Supplementary Figure 1.

Acceleration factors (AF) values of 2, 3, 4, and 6 were explored.
Images were reconstructed and MD and FA were computed across
the whole brain. The most robust undersampling strategy was
determined (see section “2.7. Comparison metrics”).

2.4. Image acquisitions

MRI acquisitions were carried out at 9.4 T (Biospec Avance
III HD, Bruker, Ettlingen, Germany; IRMaGe facility) using a 4-
channel head surface cryocoil for reception, a volume coil for
transmission, and Paravision 7. The following sequences were
performed:

- a 3D CS T1w gradient-echo MRI acquisition (cf
Supplementary Table 1 for parameter details). These
anatomical data were used to overlay an atlas for the
DWI analysis (see section “2.6. MD and FA maps and
tractography”).

- A 3D CS, spin-echo, diffusion-weighted images (DWI).
The gradient directions were generated using an optimal

distribution across the surface of the sphere (Caruyer et al.,
2013). This sequence allows to assign a 3D undersampling
pattern to each diffusion direction1. Several acquisitions
were performed with different AF, using δ = 4.0 ms and
1 = 9.6 ms, as summarized in Supplementary Table 1. To
estimate and limit the impact of the frequency drift, the main
resonance frequency was calibrated before and after each DWI
acquisition.

2.5. Image reconstruction

Data were reconstructed using the Matlab environment
(MATLAB2021b; The MathWorks, MA, USA). For the
undersampled dataset, two reconstruction approaches were
performed:

- Conventional CS reconstructions were performed using the
BART (Uecker et al., 2015, 2021) toolbox v0.7.002, which
calculates coil sensitivity maps using ESPIRiT (Efficient
L1 iterative self-consistent parallel imaging reconstruction)
calibration (Uecker et al., 2014). For the minimization process,
we used the parameters optimized in Wang et al. (2018):
λ1 = 0.005, λ2 = 0.002, max iteration = 200. This toolbox was
chosen to have the same reference technique as in the original
KLR-CS paper (Zhang et al., 2020).

- Kernel low-rank (KLR)-CS reconstructions of diffusion-
weighted images were performed using an in-house adaptation
of the original KLR toolbox as published (Nakarmi et al.,
2017; Zhang et al., 2020). However, the original reconstruction
method was evaluated on data after magnitude filtering,
a step that enhances the Hermitian symmetry of k-space
(Zhang et al., 2020). Therefore, this method−hereafter called
“magnitude-filtered KLR-CS”−is not designed for acquired
undersampled datasets as the data-consistency step is no
longer efficient. We therefore proposed and evaluated two
adaptations of the original KLR toolbox: a composite kernel
principal component analysis (KPCA) adapted from the
composite real PCA of complex signals (Hellings et al., 2015)
and LRP maps. For the KLR-CS based on composite KPCA,
we replaced the original input to the KPCA module —
i.e., magnitude data — with composite data, which is a
concatenation of the real and imaginary parts of the data. The
output of composite KPCA is then reorganized to produce
complex data before enforcing data consistency. For the KLR-
CS based on LRP maps, the phase information related to the FS
center of k-space (i.e., the low-resolution part of the dataset)
is stored before the self-training step and added back to the
output magnitude image, yielding a complex image for each
channel that can then be used to enforce data consistency using
the original undersampled k-space. This approach using the
phase information of the entire undersampled k-space was also
tested but led to lower quality results. For KLR training, the
low-resolution, 4-channels, 4D images obtained from the FS
region at the center of the k-space were used.

1 https://github.com/nifm-gin/compressedSensing

2 https://mrirecon.github.io/bart/
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In addition, all the FS DWI datasets (n = 6 brains; 3 WT
and 3 MAP6+/−) were retrospectively undersampled, using the
same undersampling pattern and AF values as the one used
for the acquisitions, and reconstructed with the two methods
described above. Thereby, metrics obtained from simulated (i.e.,
retrospective) undersampling could be compared to that obtained
from undersampled acquisitions.

2.6. MD and FA maps and tractography

Diffusion-weighted imaging (DWI) data was processed using
MRtrix (v3.0_RC3-137).3 After image denoising, unringing, and
brain masking, tensor-derived FA and MD maps were generated.
FA and MD were measured in the whole brain and two regions of
interest (ROI), corpus callosum and caudate putamen.

The fiber orientation distributions were computed with
constrained spherical deconvolution (CSD) (Tournier et al., 2004,
2007) and default parameter values [for instance, maximum
harmonic order lmax = 4 (Tournier et al., 2013)]. Whole brain
tractography was computed with a probabilistic streamline tracking
(Parker and Alexander, 2003; Behrens et al., 2007) (iFOD2
algorithm) and three seeds per voxel. Empirically optimized
tracking parameters on our mouse brain data were applied
after normalization of the fiber orientation distributions: step
size = 0.01 mm, radius of curvature = 0.07 mm (Moldrich et al.,
2010), min length = 0.1 mm, max length = 50 mm (Aydogan
et al., 2018), and cutoff = 0.2. In addition, several major tracts
were isolated as follows. For each tract, several ROIs were defined,
according to a mouse brain atlas (Paxinos and Franklin, 2019).
An ROI was a 2D surface in one orientation (coronal, horizontal,
sagittal). Each ROI-tract association then received either the label
“AND” or “NOT.” The fibers of one particular tract were selected
as all the fibers that cross the ROIs labeled “AND” minus the
fibers that cross the ROIs labeled “NOT.” Supplementary Table 2
shows the list of ROIs, with their labels and the orientation
in which they were considered, for each tract evaluated in this
study.

2.7. Comparison metrics

To compare parametric maps, two metrics were used: the
absolute error (%) (called “error” in the rest of the manuscript)
and the structural similarity index measure [SSIM, ranging from
0 (worst) up to 1 (best) (MathWorks, 2022)]. The details regarding
the computation of both metrics are provided as Supplementary
material.

Both metrics were calculated for each reconstruction,
considering the whole 3D brain. Error and SSIM maps were
obtained using the FS dataset as the reference, unless mentioned
otherwise. In addition, to allow tractogram comparisons, the
mean fiber length was computed. To remove the image shift
caused by the frequency drift that occurs during hours-long
acquisitions, raw DWI images were registered to the FS images

3 https://www.mrtrix.org/

using an in-house rigid registration tool prior to computing error
and SSIM metrics. Across each brain, the median error and the
median SSIM were retained, to limit the effect of locally high errors
such as the ones observed on the edges or in moving structures
(ventricles, vessels).

Statistical analyses were performed in GraphPad Prism version
9.4.1 for Windows (GraphPad Software, La Jolla, CA, USA).4 The
p-values mentioned along this article correspond to paired t-tests,
unless stated otherwise.

3. Results

3.1. Optimization of the CS for DWI using
simulations

Regarding the choice of undersampling patterns, examples
based on multi-mask and Monte-Carlo or Poisson-disk sampling
are shown in Figure 1A, for different AF values. Overall, while
the choices of Monte-Carlo multi-mask sampling clearly yielded
better results (Figures 1B–E), the full sampling of b0 images did not
provide a major advantage. To ease comparison with the previous
study (Zhang et al., 2020), we choose to keep that full sampling
of b0 images. Altogether, the undersampling pattern based on
Monte-Carlo with FS b0 images and multi-mask was used for all
subsequent evaluations (simulations and acquisitions).

Using this sampling pattern, we then compared the effects of
composite KPCA and LRP using complex data and AF between 2
and 6. For sake of comparison, we evaluated the original KLR-CS
method using k-spaces from complex images instead of k-spaces
from magnitude-only images. Figure 2 shows FA and MD maps
obtained from the two proposed KLR-CS, BART-CS, and the
magnitude-filtered KLR-CS reconstructions. The corresponding
error and SSIM maps are shown in Figures 3A, B, E, F, respectively.
As expected, BART-CS, LRP KLR-CS, and KPCA KLR-CS, which
all handle complex data, yielded better results than the magnitude-
filtered KLR-CS. For example, for AF = 2, the median error on FA
with LRP KLR-CS was 4.79± 0.12% while it was 9.69± 0.12% with
magnitude-filtered KLR-CS (Figures 3C, D, G, H). This confirms
that the original, magnitude-filtered, KLR CS approach is not
adapted to complex data. In the rest of the manuscript, we thus
focus on LRP and KPCA KLR-CS. Regarding FA (Figures 3C,
D), the LRP KLR-CS outperformed BART-CS for AF = 2 and
AF = 3 (p < 0.0001) and KPCA KLR-CS for all AFs (p < 0.0001).
For AF = 4 and 6, LRP KLR-CS had similar results to BART-
CS. Regarding MD (Figures 3G, H), LRP KLR-CS outperformed
BART-CS and KPCA KLR-CS for all AFs (p < 0.01). Therefore,
LRP KLR-CS, hereafter called “KLR-CS” for simplicity, was used
to reconstruct all the data reported in the subsequent studies.

Figures 4A, B shows examples of FA and MD maps obtained
from a WT mouse as a function of AF using BART-CS and KLR-
CS reconstructions, optimized as described. There were no obvious
faults observed in the brain slices. The focus on the hippocampus
shows decreased contrast as AF increases, in particular for BART-
CS reconstructions. For quantitative analysis, the corresponding

4 www.graphpad.com
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FIGURE 1

Optimization of the undersampling strategy. (A) Examples of undersampling patterns for AF = 2 to 6. Corresponding (B,D) error and (C,E) SSIM
values, using MD maps and AF = 6. (B,C) Correspond to BART-CS and (D,E) to KLR-CS reconstruction. Results are expressed as mean ± standard
deviation across animals (n = 3). Columns show different Poisson-disk and Monte-Carlo undersampling patterns and their resulting masks for the
first b0 image and the first diffusion direction. Rows correspond to AF (between 2 and 6) and sampling mode of b0 images (FS: fully sampled; US:
undersampled). Note that only phase encoding directions are undersampled. “N.A.” stands for “not available” (a mask cannot be generated in these
specific conditions). A total of 20 possible combinations of undersampling patterns per AF was evaluated (Poisson-disk: fully sampled or
undersampled b0/uniform or variable density/single or multi-mask mode/common or elliptical scanning; Monte-Carlo: fully sampled or
undersampled b0/single or multi-mask mode). The naming of the bar graph: MC: Monte-Carlo, PD: Poisson-disk, Ud: uniform density, Vd: variable
density, Rs: regular scanning, Es: elliptical scanning. With the KLR-CS reconstruction, the multi-mask undersampling outperformed the single-mask
undersampling (D,E). For instance, for a Monte-Carlo with FS b0s undersampling scheme (“MC_FS-b0” bars) and AF = 6, the error reduced from
5.92 ± 0.21 to 4.06 ± 0.16% (p = 0.0054), and the SSIM increased from 0.781 ± 0.063 to 0.917 ± 0.020 (p = 0.0479) when replacing the single-mask
undersampling with a multi-mask. With the BART-CS reconstruction, single and multi-mask undersampling has no effect on error or SSIM (B,C).
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FIGURE 2

FA and MD maps from fully sampled data and after simulated undersampling, reconstructed using BART-CS, KLR-CS based on composite KPCA,
KLR-CS with low-resolution-phase (LRP) maps, and magnitude-filtered KLR-CS. (A) FA and (B) MD maps from a zoom on the hippocampus,
obtained from simulated reconstructions by BART (blue) and three different implementations of KLR-CS (green), for different AFs. A reconstruction
from a fully sampled dataset (red) is shown as the reference.
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FIGURE 3

Error and SSIM on FA and MD, from simulated undersampling reconstructed using BART-CS, KLR-CS based on composite KPCA, KLR-CS with
low-resolution-phase (LRP) maps, and magnitude-filtered KLR-CS. Error and SSIM of (A,B) FA and (E,F) MD maps using BART-CS and three different
implementations of KLR-CS, for different AFs. Full 3D brain values of (C,G) median error and (D,H) median SSIM, using the fully sampled data as the
reference. Results expressed as mean ± standard deviation across the animals (n = 3). The three KLR-CS implementations are KLR-CS based on
composite KPCA (Comp), KLR-CS using low-resolution-phase (LRP) maps, and magnitude-filtered KLR-CS (Magn).

error and SSIM maps are shown in Figures 5A, D, and the median
error and median SSIM values across the six brains are shown in
Figures 5B, C for FA and Figures 5E, F for MD. Since the median
error and median SSIM of FA and MD maps were not significantly
different between the WT and MAP6+/− groups (unpaired t-test,
p > 0.05), data were pooled to improve statistical power in the
methodological study. As AF increased from 2 to 6, there was an
increase in median error together with a decrease in median SSIM.
Overall, KLR-CS reconstructions led to smaller median errors
and higher median SSIM than BART-CS, regardless of AF. For
instance, with AF = 2 and for FA maps, BART-CS and KLR-CS
reconstructions had a median error of 5.78± 0.11 and 4.79± 0.12%
(p< 0.0001) and a median SSIM of 0.976± 0.001 and 0.982± 0.001
(p < 0.0001), respectively. For MD maps under AF = 2, BART-CS
and KLR-CS had a median error of 1.41 ± 0.04 and 0.71 ± 0.02%
(p< 0.0001) and a median SSIM of 0.988± 0.001 and 0.997± 0.001
(p < 0.0001), respectively. Altogether, the KLR-CS reconstructions
were of very good quality up to AF = 4, with an error below 2% and
a SSIM above 0.970.

Tractographies of the anterior commissure of WT and
MAP6+/− mice — a model for which we expect tract differences —

are shown in Figure 6 for different AF values. First, as expected,
the WT and MAP6+/− mice exhibited different mean fiber
lengths, as observed on the FS data (unpaired t-test, p = 0.0281)
(Figure 6C). For AF = 2, 3, and 4 and with the parameters used
for the tractography, the two reconstruction methods had similar
performances (p > 0.05 for AF = 2, 3 and 4 vs. AF = 1) and
maintained the ability to observe the reduction in mean fiber length
between WT and MAP6+/− mice. For AF = 6, KLR-CS remained
robust while BART-CS sometimes missed the anterior part of the
anterior commissure in MAP6+/−mice (Figure 6B). Overall, KLR-
CS and BART-CS yielded comparable results for AF = 2, 3, and 4,
but KLR-CS remained reliable at AF = 6 while BART-CS did not.

3.2. Evaluation of CS DWI acquisitions

After evaluating BART-CS and KLR-CS methods using
simulated undersamplings, we reconstructed undersampled
acquisitions carried out with our in-house DWI spin-echo CS
sequence. AF = 2 and 4 were used as they corresponded to the most
promising simulation results. For the acquisitions, we evaluated
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FIGURE 4

FA and MD maps from fully sampled data and after simulated undersampling, using BART-CS and KLR-CS reconstructions. Examples of (A) FA and
(B) MD maps from a magnification on the hippocampus, obtained from fully sampled (red; AF = 1), BART-CS (blue), and KLR-CS (green)
reconstructions, using different AFs.

the FA and MD maps and the ability to reconstruct tracts. No
difference may be seen on the whole maps (not shown), however,
magnifying the complex region of the hippocampus revealed
reduced image contrasts and some spatial smoothing as AF
increased (Figure 7). Visually, this smoothing was less pronounced
for KLR-CS than for BART-CS, in line with the simulation
results. Corresponding error and SSIM maps (Figures 8A–D)
and values (Figures 8E–H) confirmed the better performance of
KLR-CS over BART-CS (e.g., for AF = 2, MD error: 2.59 ± 0.12
and 2.13 ± 0.12%, p < 0.0001; MD SSIM: 0.964 ± 0.002% and
0.977± 0.002, p < 0.0001).

We surprisingly observed that the error increased and SSIM
decreased in acquisitions compared with simulations, for all AF
values and for both FA and MD. For AF = 2 and KLR-CS,
the FA error increased from 4.79 ± 0.12% in simulations to
10.28 ± 0.44% in acquisitions (p < 0.0001), and the FA SSIM
decreased from 0.981 ± 0.001 to 0.922 ± 0.004% (p < 0.0001).
Similarly, the MD error increased from 0.71± 0.02% in simulations
to 2.13 ± 0.12% in acquisitions (p < 0.0001), and the MD SSIM
decreased from 0.997 ± 0.001 to 0.977 ± 0.002% (p < 0.0001). As
the errors in acquisitions are surprisingly much larger than that
observed in simulations, we explored the different contributions to

these errors to ensure that the proposed acquisition method was
working as intended.

First, the repetition noise was evaluated. The FS and the
AF = 2 DWI datasets were acquired three times on the same fixed
brain. The comparison of the three FS datasets between themselves
had a median error of 7.97 ± 0.57% and a median SSIM of
0.965 ± 0.004 for FA and 1.50 ± 0.19% and 0.987 ± 0.003 for MD
(Supplementary Figure 2). These repetition errors are shown in
Figure 8 as a red dashed line, and they contribute to about two
thirds of the observed median error.

Second, we evaluated the difference in the resonance frequency
drift during an FS acquisition (13 h 37 min) and during an AF = 2
acquisition (6 h 49 min). We observed drifts of 33.9 ± 13.6 and
10.9 ± 5.1 Hz, respectively. A part of this frequency drift induces
a spatial shift, which is corrected during post-processing by image
registration (0.6 pixels and 0.3 pixels for our two experimental
conditions). The rest of the frequency drift may not be corrected
for and alters the image. Because of the acquisition durations,
we expected the FS data to be more affected than the CS data.
To evaluate this contribution, we simulated a spatial drift and
computed the median error and the SSIM between the FA and MD
maps obtained with and without simulated drift. We observed an
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FIGURE 5

Error and SSIM, derived from FA and MD maps obtained after simulated undersampling and reconstruction by BART-CS and KLR-CS. Error and SSIM
maps for (A) FA and (D) MD, using BART-CS and KLR-CS reconstructions, for different AF values. Corresponding (B,E) median error and (C,F) median
SSIM obtained for the full 3D brain, using fully sampled data as the reference. Results are expressed as mean ± standard deviation across the animals
(n = 6).
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FIGURE 6

Tractography of the anterior commissure from fully sampled data and after simulated undersampling, using BART-CS and KLR-CS reconstructions.
Anterior commissure (ac) of a (A) WT and a (B) MAP6+/− mouse, derived from fully sampled (red) and, after simulated undersampling, using
BART-CS (blue), and KLR-CS (green) reconstructions, for different AFs. (C) The corresponding mean fiber length of the ac. Results are expressed as
mean ± standard deviation across 3 animals (3 WT or 3 MAP6+/−). acp, ac posterior part; aca, ac anterior part.

error that represents about 10% of the error between the FS and CS
acquisitions (Figure 8).

Third, we evaluated the change in peak signal-to-noise ratio
(pSNR) between the FS and the CS acquisitions. For AF = 2, the
average pSNRs across diffusion directions of FS, CS simulations,
and CS acquisitions were 318.0 ± 26.9, 179.3 ± 15.1, and
155.9 ± 14.1, respectively. The 13% reduction in pSNR between
CS simulations and CS acquisitions (p < 0.0001) contributes to
increasing the error on acquired FA and MD maps. In addition,
we observed strong correlations between pSNR and the median
error as a function of the diffusion direction:−0.7144 (p < 0.0001)
and −0.6785 (p < 0.0001) for BART-CS and KLR-CS acquisitions,
respectively. The noise level was also independent of the direction,
suggesting that it remains stable when the undersampling pattern
changes, as expected.

To evaluate the utility of the proposed CS approach, we
considered two additional metrics. First, as all the reported metrics
so far were obtained at the pixel level for the whole brain, we

considered instead the error and the SSIM within two ROIs: the
corpus callosum, a white matter ROI, and the caudate putamen,
a gray matter ROI. This approach corresponds to what is usually
performed to report diffusion-based estimates. Regarding the
change in absolute value, the ROI-level error was lower than the
pixel-level error reported in Figure 8 for MD of gray matter and
FA of white matter regions, and it was higher for MD of white
matter and in some cases for FA of gray matter regions. In addition,
we observed that KLR-CS almost always outperforms BART-CS
in simulations and acquisitions (see Supplementary Figure 3 for
details).

Second, we considered white-matter tracts. The main shape
of the anterior commissure is preserved in both simulations and
acquisitions (Figures 9A–D). Both BART-CS and KLR-CS methods
did not show significant differences in the mean fiber length
in simulations and acquisitions to their corresponding WT and
MAP6+/− references for AF = 2 (p > 0.05 for all) (Figures 9E, F).
However, for AF = 4, CS acquisitions showed a reduction in mean

Frontiers in Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1172830
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1172830 May 27, 2023 Time: 12:47 # 11

de Souza et al. 10.3389/fnins.2023.1172830

FIGURE 7

FA and MD maps from fully sampled data, after simulated undersampling, and for CS acquisitions, using BART-CS and KLR-CS reconstructions. (A,B)
FA and (C,D) MD maps from a magnification on the hippocampus. Maps in the left column (A,C) are obtained after retrospective undersampling
(Simulation) and maps in the right column (B,D) after CS acquisitions (Acquisition), using different AFs. Fully sampled (red), BART-CS (blue), and
KLR-CS (green). The fully sampled reconstruction (AF = 1), which does not differ between simulations and acquisitions, has been repeated to
facilitate figure reading.

fiber length for both WT (−11.9%, unpaired t-test, p = 0.0059)
and MAP6+/− (−5.9%, unpaired t-test p = 0.0424) mice when
compared with CS simulations. With our small dataset, the
difference in fiber length between WT and MAP6+/− mice,
visible for the FS and AF = 2 data, is no longer significant for
AF = 4. A similar analysis was made for the fornix, a tract
with increased complexity, given its wide distribution in the
3D space and higher levels of defasciculation than the anterior
commissure. As previously found, the main shape of the fornix
and the mean fiber length were conserved by both CS methods
(see Supplementary Figure 4 for details). Moreover, KLR-CS
showed a smaller variance on the mean fiber lengths than BART-
CS (p < 0.05, considering data from the anterior commissure
and fornix). These results suggest that AF = 2 seems to have
no impact on fiber tract analysis, and AF = 4 has a small but
acceptable impact. In addition, KLR-CS appears as the most robust
method.

4. Discussion

In this study, we implemented an original 3D spin-echo
CS acquisition method for preclinical DWI imaging, with the

possibility of using the same or different sampling masks
per diffusion direction. Two reconstruction algorithms were
evaluated: BART-CS and the more recently proposed KLR-CS
approach. After an optimization step based on retrospective
undersampling, FA and MD maps, as well as tractographies,
were produced based on CS data acquired at 9.4T using fixed
mouse brains. The two reconstruction protocols yielded robust
results for a reduction in scan time up to 4, with a clear
advantage for KLR-CS. When FA and MD were estimated in
a white-matter ROI, the difference between FS and KLR-CS
reconstructions remained below 3.9 and 7.0%, for AF = 2 and
4, respectively. Regarding tracts, a reduction in scan time up
to 4 produced only minor faults, even in a complex structure
such as the fornix.

Moreover, we used a definition of AF that differs from the one
used in previous studies (Zhang et al., 2020): AF was considered
here as the effective reduction in scan time. Therefore, as we chose
to fully sample the b0 images, the AF used per diffusion direction
(AFdiff) was higher. For instance, to reach an effective AF of 4,
we used an AFdiff of about 5.71. To facilitate the comparison
with previous CS DWI studies, Supplementary Table 1 provides
a summary of simulation and acquisition parameters in this and
previous studies, including both AF and AFdiff.
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FIGURE 8

Error and SSIM, derived from FA and MD maps obtained using BART-CS and KLR-CS, for simulated undersamplings and for CS acquisitions. Error and
SSIM for (A,B) FA and (C,D) MD maps and corresponding full 3D brain, (E,G) median error and (F,H) median SSIM obtained using BART-CS (blue) and
KLR-CS (green) reconstructions, for the full 3D brain, and using fully sampled data as the reference. The left column (A,C,E,G) corresponds to
retrospective undersampling (Simulation), and the right one (B,D,F,H) to CS acquisitions (Acquisition). The repeatability error and SSIM, calculated
from three repetitions of a fully sampled acquisition on the same sample, are represented as red dashed lines for comparison purposes. Results
expressed as mean ± standard deviation across animals (n = 6).

Frontiers in Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1172830
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1172830 May 27, 2023 Time: 12:47 # 13

de Souza et al. 10.3389/fnins.2023.1172830

FIGURE 9

Tractography of the anterior commissure (ac) from fully sampled data, after simulated undersampling, and for CS acquisitions, using BART-CS and
KLR-CS reconstructions. Anterior commissure (ac) of a (A,B) WT and a (C,D) MAP6+/− mouse from fully sampled (red), BART-CS (blue), and KLR-CS
(green) reconstructions, using different AFs. Mean fiber length of the ac of (E) WT and (F) MAP6+/− mice. The left column (A,C,E) shows results
obtained with simulations and the right column (B,D,F) with acquisitions. The anterior commissure from fully sampled data is repeated between
simulation and acquisition columns, to facilitate figure reading. Results are expressed as mean ± standard deviation across animals (n = 3 per group).
acp, ac posterior part; aca, ac anterior part.

As the published KLR-CS requires a fully sampled dataset for
regularization purposes (Nakarmi et al., 2017; Zhang et al., 2020),
we proposed two approaches to deal with acquired complex data

and chose, based on simulations, the KLR-CS based on LRP
maps, which, with AF ≤ 6, outperformed BART-CS. Further
improvements may be proposed. First, coil sensitivity maps
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calculated by robust algorithms such as ESPIRiT (Uecker et al.,
2014), important for the quality of BART-CS reconstructions,
are not used in the current implementation of KLR-CS. Indeed,
KLR-CS uses simple sensitivity maps calculated by dividing the
images of each channel by the sum of squares image. Second,
the size of the central part of the k-space was set based on
Zhang et al.’s (2020) study and therefore on their magnitude-
filtered approach. This size, important for the learning step of
the KLR-CS, could be optimized for the proposed LRP approach.
To further improve the quality of the reconstruction, the LRP
KLR-CS approach could also be challenged by different theoretical
frameworks, such as manifold-modeled signal recovery algorithms
(Poddar and Jacob, 2016) or model-based methods with spatial
and parametric constraints (Zhu et al., 2017). Further work
is required to evaluate the combination of CS with parallel
imaging (Griswold et al., 2002). Note that additional regularization
along the diffusion direction could be performed with the
BART toolbox (Uecker et al., 2021). This would require further
tuning of the CS parameters but could improve the BART
results.

With our data and choice of parameters, both BART-CS and
KLR-CS reconstructions yielded lower errors than that reported
by Zhang et al.’s (2020) study, which was obtained on simulated
CS data, using equivalent ROIs but with magnitude-filtered KLR-
CS (Supplementary Figure 3 in our study; Figure 3 in Zhang
et al., 2020). The difference could be related to the difference in
acquisition conditions (Supplementary Table 1), but lower errors
remain nevertheless encouraging. Regarding major white-matter
tracts, the main shape is always conserved in both simple (anterior
commissure) and more complex (fornix) tracts when using CS
acquisitions, for all AFs studied. The appearance of some false-
positive fibers, especially in the fornix, can partially be controlled
by the addition of exclusion ROIs. For AF = 4 and both CS
approaches, further adjustment of tractography parameters, use
of deep-learning-based versions of CS (Cao et al., 2020; Dar
et al., 2020; Baul et al., 2021; Xie and Li, 2022), and possibly
introducing priors (Güngör et al., 2022; Korkmaz et al., 2022)
could help improve the reconstruction, but they have not yet
been applied to preclinical data. To allow comparisons with other
reconstruction methods, the data acquired in this study have been
made available.

The switch from simulations to acquisitions increased the
observed error and, consequently, the observed SSIM was
decreased. Additional fluctuations with diffusion directions were
also observed. We, therefore, analyzed the different contributions
to this increase in error and fluctuations.

First, we characterized the repeatability (Supplementary
Figure 2). Indeed, when using simulations, the values in the
undersampled dataset are exactly the same as in the FS datasets.
In the case of acquisitions, the values in the undersampled
dataset differ from that in the FS dataset. We observed that
this repetition error (7.97 ± 0.57% for FA, 1.50 ± 0.19% for
MD) was about twice the error of the KLR-CS reconstruction
in simulations (AF = 2; 4.79 ± 0.12% for FA, 0.71 ± 0.02%
for MD, Figure 8). The repetition noise appears as the
main contribution to the difference between acquisitions and
simulations.

Second, there are differences in acquisition conditions between
simulated and acquired data. These differences include the effect of
the frequency drift (about 10% of the error) and the small reduction

in pSNR (about 13%), which also contributes to increasing the error
on the derived parameters (FA, MD, and tracts). To limit the impact
of the frequency drift, a navigator could be introduced in the MRI
sequence (Vos et al., 2017). Note that, concerning the frequency
drift, the FS dataset is more blurred than the undersampled ones.
The “error” is therefore not always in the CS datasets.

Third, the spatial correction, applied to limit the effect of
the frequency drift during acquisition, could be improved. Here,
we used an algorithm to modify the phase in k-space and
thereby shift the image, to linearly register DWI images to the
reference. However, the effect of the difference in acquisition times
between FS and CS acquisitions on image distortion remains to be
evaluated and, if necessary, corrected for. In addition, the MRtrix3
probabilistic reconstruction can add some noise to the fiber tract
reconstructions. Fifty repetitions of the MRtrix3 reconstruction on
the same dataset led to 1% repetition variability on mean fiber
length — a small but not negligible contribution to the error.

To summarize, estimates made on acquired data are in good
agreement with simulations, in which only CS reconstruction noise
is present. Altogether, our results suggest that a reduction in scan
time by a factor of 4 is acceptable in our experimental setting,
in line with previous preclinical (Wang et al., 2018; Zhang et al.,
2020) and clinical results (Wu et al., 2014; Zhu et al., 2017).
Further analysis includes increasing the number of directions and
the spatial resolution (Wang et al., 2018; Allan Johnson et al., 2019)
to achieve higher AFs without degrading image quality (Lazarus
et al., 2019) and limiting the increase in scan time as the blurring for
KLR-CS is in both the spatial and diffusion directions. Indeed, this
reconstruction approach should benefit from a larger learning set in
both spatial and diffusion dimensions. A concurrent optimization
of the spatial resolution and the number of diffusion directions
could thus be performed (Wang et al., 2018).

There were some limitations to the study. We used only three
animals per group, given that our objective was not biological
but methodological; this small number limits the power of the
statistical analysis. Further studies are required to fully characterize
this mouse model. Similarly, we focused on a few ROI and a few
tracts, in parallel to 3D FA and MD maps. More tracts could be
analyzed based on the data that have been shared (see section “Data
availability statement”). Moreover, acquisitions were performed
using only one MRI scanner. A multicentric study would be more
appropriate to estimate acquisition and reconstruction errors as the
choice of hardware may affect the outcomes (Deruelle et al., 2020).
Application to Human would also be of interest.

5. Conclusion

In conclusion, LRP KLR-CS reconstruction of undersampled
preclinical DWI data seems a robust approach to reducing scan
time, thereby limiting the effect of the frequency drift, while
maintaining accurate estimates of FA, MD, and tracts.
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