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Over the past few decades, in situ transmission electron microscopy (TEM) has
emerged as a powerful experimental technique for materials design and
characterization. It offers unparalleled dynamic details of materials deformation
under mechanical stimuli, providing fundamental insights into their deformation
and failure mechanisms for various materials. In this review, we summarize recent
advances on in situ TEM mechanical characterization techniques, including
classical tension holders, nanoindentation holders, MEMS devices, thermal
bimetallic-based techniques, and nanomanipulation techniques. The
advantages and limitations of in situ TEM tests are also discussed. To provide a
broader perspective, the article highlights promising opportunities for in situ TEM
mechanical testing studies in characterization-processing-manufacturing based
on nanomanipulation, ultrafast TEM, electron beam irradiation environmental
conditions, data-driven machine learning, and integrated experimental and
simulation characterization. This article aims to provide a comprehensive
understanding of in situ TEM-based mechanical characterization techniques to
promote the development of novel materials with improved mechanical
properties for various applications.

KEYWORDS

in situ TEM, mechanical testing, MEMS, nanomanipulation, nanoindentation, 3D
reconstruction

1 Introduction

Accurately characterizing and understanding materials’ microscale deformation
mechanisms is crucial for optimizing their macroscopic mechanical performance. Since
the investigation of crystal dislocations in 1956 (Hirsch et al., 1956), TEM has been widely
applied for the structure-property study of materials (Meyers et al., 2006; Zhu and Li, 2010;
Zhu et al., 2012; An et al., 2019; Pan et al., 2021; Li et al., 2022a; Zhu and Wu, 2022).
Experimentally, the most viable approach for microstructural analysis relies on ex situ
studies. However, they only provide a glimpse of the structure after deformation is complete,
missing critical intermediate structural insights concerning the deformation process. This is
particularly relevant to nanoscale phenomenon such as dislocation nucleation and
propagation (Zheng et al., 2010a; Bu et al., 2019), dislocation/nanoprecipitates
interactions (Yang et al., 2021a; Yang et al., 2021b), dislocation/boundary interactions
(Kacher et al., 2014; Li et al., 2022b), deformation twinning (Wang et al., 2017a; Sun et al.,
2022), phase transformation (Wang et al., 2020a; Fu et al., 2022), and GB-mediated plasticity
(Wang et al., 2017b; Zhu et al., 2021). To capture the dynamic evolution of microstructures
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during deformation, nanomechanical testing systems integrated into
TEM has become paramount, such as classical tension method,
nanoindentation techniques, micromechanical and
microelectromechanical system (MEMS) devices, and
nanomanipulation techniques. Up to now, TEM-based in situ
nanomechanical testing methods have opened new horizons for
directly characterizing and analyzing dynamic mechanical behaviors
at the atomic scale (Yu et al., 2015; Minor and Dehm, 2019; Zheng
and Mao, 2021). They have been used for in situ testing of tension
(Oh et al., 2009; Rupert et al., 2009), compression (Imrich et al.,
2015), indentation (Minor et al., 2006; Wang et al., 2010a), shearing
(Oviedo et al., 2015; Zhu et al., 2019), and bending (Bai et al., 2007;
Xu et al., 2020) of materials within TEM, with real-time visualization
of deformation mechanisms. When forces can also be measured,
these methods allow for a fundamental understanding of the
constitutive behavior of materials at the nanoscale.

To advance in situ TEM capabilities for direct observation of
materials’ structural evolution under real-time loading
conditions and promote further development of TEM-based in
situ mechanical testing, this review focuses on the advanced
techniques currently applied in the field of TEM-based in situ
nanomechanical characterization. Specifically, classical tension
holders, nanoindentation holders, MEMS devices, thermal
bimetallic-based techniques, and nanomanipulation techniques
are covered, and their advanced features and limitations in
typical applications are discussed. Finally, we provide
perspectives on the general challenges and potential research
capabilities of in situ TEM, with particular emphasis on
exploiting the latest developments in TEM mechanical testing

in characterization-processing-manufacturing based on
nanomanipulation, ultrafast TEM, electron beam irradiation
environmental conditions, data-driven machine learning, and
integrated experimental and simulation characterization.

2 In situ TEMmechanical tests based on
classical tension holders

One of the most basic mechanical tests involves the uniaxial
tension of a sample with concurrent measurements of load and
strain. Given the constraints imposed by the ultra-high vacuum and
limited space within the pole-pieces of TEM, the most intuitive
approach towards replicating this test within a TEM environment
would be the construction of a suitable tensile device. Based on this
premise, in the 1960s and 1970s, research on the dynamics of
dislocations in metals facilitated the development of devices and
led to the emergence of a series of in situ tensile TEMholders designs
(Wilsdorf, 1958; Berghezan and Fourdeux, 1959; Fisher, 1959;
Forsyth and Wilson, 1960; Pashley, 1960; Takahashi et al., 1960),
all based on the fundamental principle of fixing one end of the
sample and connecting the other end to the moving part of the
holder to achieve uniaxial tensile displacement loading of the
sample.

Up to now, Gatan Inc. has developed commercial straining
holders (Gatan 654), as illustrated in Figure 1A (Legros, 2014). In
practical experiments, the sample is either shaped using focused ion
beam (FIB) or affixed to a deformable grid that is compatible with
the holder fixation system (i.e., pin, screw, clamp). This sample is

FIGURE 1
(A) A classic tensile holder manufactured by Gatan Inc. (Legros, 2014). (B)Crack bridging via near-tip twinned nanobridges in the CrMnFeCoNi high-
entropy alloy (Zhang et al., 2015). (C) Local chemical fluctuations induced dislocation pinning in a HfNbTiZr high-entropy alloys under loading (Bu et al.,
2021).
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then stretched at a constant rate from a long rigid shaft attached to a
worm gear box actuated by an electric motor and located in a
housing outside TEM. Due to its simple structure, the Gatan
654 uniaxial straining holder can achieve significant sample
displacement and strain using an electric motor, and is often
employed for observing the evolution of the microstructure
within local regions of a sample (Nie and Wang, 2011;
Matsukawa and Liu, 2012; Kai et al., 2013). For example, Zhang
et al. (2015) utilized the Gatan 654 holder to investigate the unique
fracture behavior of CrMnFeCoNi high-entropy alloys. By
subjecting the CrMnFeCoNi sample to in situ tensile
deformation, the formation process of cracks was observed, as
shown in Figure 1B. Bu et al. (2021) also utilized the Gatan
654 holder to study the dynamic interaction between local
chemical fluctuations and dislocations in high-entropy alloys, as
shown in Figure 1C. These dynamic findings significantly improved
the understanding of plastic deformation mechanisms at the
nanoscale and hold important implications for establishing
structure-property relations in materials.

In addition, the in situ straining at room temperature can be
augmented by additional heating or cooling capabilities, enabling
researchers to investigate the nanomechanical behavior of materials
at high or low temperatures (Fang et al., 2021; Wang et al., 2021).
Cooling is achieved by connecting a cold finger to a liquid helium or
nitrogen reservoir at the end of the sample holder. On the other
hand, heating is facilitated by a miniaturized furnace, which can
attain temperatures of up to 1,000°C, depending on the furnace’s
material and the gap between the TEM pole pieces. However, the
large size and mass of the furnace leads to slow heating rates, and the
entire system requires a considerable amount of time to stabilize to
eliminate thermal drifts at high temperatures.

While the classical tensile holders have been used to study the
microstructural deformation mechanisms of various materials at
different temperatures, this method has limitations in terms of
displacement control accuracy, stability, and the lack of force
sensors to quantitatively measure loading force during deformation.
These limitations make it difficult to observe and characterize
deformation processes at higher resolutions, as well as quantitatively
analyze them. Moreover, the front-end stretching mechanism’s large
space requirements and interference during motion limit the
technique’s ability to achieve double-tilt, which hinders its ability to
characterize low-index crystallographic orientations of crystalline
materials with high resolution.

3 In situ TEMmechanical tests based on
nanoindentation holders

Nanoindentation technology is commonly used for measuring
the elastic modulus and hardness of materials. The step-like and
discontinuous curve of the load-depth obtained through
nanomechanical indentation corresponds to different deformation
mechanisms, revealing the discreteness of microplastic deformation
(Schuh, 2006; Golovin, 2021). By incorporating nanoindentation
into TEM, it is possible to observe in situ the morphological changes
of material microstructures during the indentation process. The in
situ TEM nanoindentation device was first introduced by Lawrence
Berkeley National Laboratory (Wall and Dahmen, 1998; Stach et al.,

2001) and subsequently utilized to dynamically observe the
microstructural evolution during nanomechanical indentation.
Minor et al. (2001) performed the first quantitative characterized
the indentation behavior of aluminum film samples deposited on a
silicon substrate. Building upon the developed in situ
nanoindentation technology, Hysitron Corporation optimized
and introduced the PI95 nanoindentation sample holder for
commercial use. As shown in Figure 2A, the front end of the
sample holder is a diamond probe indenter movable end capable
of X/Y/Z three-degree-of-freedom motion, and the sample is fixed
on the opposite end of the indenter (Wang et al., 2017c). Through
the piezoelectric module inside the holder, the movable end can be
accurately displaced to contact the sample and apply load for real-
time observation of sample deformation. At the same time, the
classic driving sensor and capacitance displacement sensor
connected to the movable end of the indenter can quantitatively
measure the force-displacement curve during loading, which helps
to deepen the understanding of the relationship between material
micro-deformation and mechanical properties.

For example, Shan et al. (2008) conducted in situ weak-beam
dark-field TEM loading experiments on submicron single-crystal
nickel pillars with diameter of 160 nm, revealing, for the first time
the phenomenon of dislocation escape during in situ compression, as
shown in Figure 2B. Liu et al. (2019a) utilized the nanoindentation
holder to conduct in situ uniaxial compression testing on magnesium
single crystal samples and quantitatively obtained the stress-strain
response data for the sample. In addition, through the design of
special sample and indenter shapes, Dang et al. (2021a) used the
Hysitron PI95 nanoindentation holder to achieve in situ uniaxial
tensile testing of single crystal diamonds. As shown in Figure 2C,
standard single crystal diamond tensile samples were prepared using
FIB technology, along with a “concave” shaped tensile clamping
device. The diamond sample was placed in the “T” shape end of
the clamping device and subjected to reverse loading to achieve in situ
uniaxial tension of the single crystal diamond. Amore general method
of converting compression force into tension is to use so-called “Push-
to-pull” (PTP) devices (Ding et al., 2016; Dang et al., 2021b), often
made from silicon using lithography techniques, as shown in
Figure 2D (Loginov et al., 2021). However, this technique is
extremely time-consuming and requires long milling times or
specific lithography techniques (Jennings and Greer, 2011).

Recently, several advanced options have been developed to
enhance the capabilities of the nanoindentation holder. One
example is the use of a piezoelectric actuator for lateral actuation,
enabling in situ studies of tribology, wear, and friction (Jacobs and
Carpick, 2013; Hintsala et al., 2017; Bhowmick et al., 2019). Another
option involves superimposing an oscillation onto quasi-static
loading, can be used for in situ fatigue testing (Bufford et al.,
2016). Additionally, an electrical PTP device has been developed,
allowing for simultaneous current-voltage characterization of a
material (Bhowmick et al., 2013; Wang et al., 2015a). Based on
the self-designed MEMS device, Bernal et al. (2014) investigated the
relationship between resistance and strain of Ag and Si nanowires.
These advancements in the nanoindentation holder have expanded
the range of possibilities for material characterization and analysis.

As mentioned above, researchers have successfully conducted in
situ TEM experiments on various nano-scale specimens using the
PI95 nanoindentation sample holder. These experiments encompass
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indentation, compression, and tension (employing either PTP
devices or specially designed tension clamps) tests. Additionally,
advanced options like lateral actuation, oscillation superimposition,
and electrical characterization have further augmented the
capabilities of nanoindentation holders, thereby broadening the
scope of material analysis and characterization. However, the
PI95 sample holder suffers from a limited range of piezoelectric
fine adjustment, often requiring mechanical coarse adjustment,
which has poor displacement control accuracy and can easily
lead to specimen damage during experimentation. Additionally,
the maximum output force of the PI95 sample holder is
insufficient for mechanical loading experiments on large and
brittle materials. Furthermore, the PI95 sample holder is still
unable to achieve double-tilt. These limitations of the
PI95 sample holder need to be addressed for further
advancement in the field of materials science.

4 In situ TEMmechanical tests based on
MEMS techniques

Currently, various MEMS-based stages have been developed for
in situ mechanical testing in TEM, each with different designs and
operating principles. Typically, MEMS-based TEM mechanical
testing devices can be classified into two categories: passive
MEMS technology, which requires external loading to drive the
device, such as the PTP devices combined with a nanoindentation
TEM holder (Guo et al., 2011; Jiang et al., 2016; Loginov et al., 2022)

and the co-fabrication of the sample with its testing frame, which
can avoid micromanipulation (harvesting, welding) of micro- and
nano-samples (wires, fiber, films). For instance, a U-spring-shaped
Si structure supporting a nanocrystalline Al film processed using
vapor deposition has been fabricated and successfully tested using a
simple straining holder (Mompiou et al., 2013). However, they all
require external loading to drive the device and cannot provide
accurate mechanical feedback information.

Another type is active MEMS technology, which combines
driving and sensing capabilities into one device. Many
researchers have made efforts and explorations on its application
of in situ mechanical characterization in TEM. For example, Zhu
et al. developed a MEMS tensile sample holder based on V-shaped
electrothermal beams (Zhu and Espinosa, 2005). As shown in
Figure 3A, the MEMS chip is mounted on the front end of the
sample holder and fixed on the chip holder through two clamps.
When an injected current passes through the V-shaped Si beams,
they expand and impose a uniaxial tensile displacement to the
shuttles on which samples are mounted. The Si combs are
attached to Si beams with known stiffness that serve as load
sensors. The typical loads are in the range of μN, while the
displacement remains very limited, rarely above a couple of
micrometers. The system capabilities are demonstrated by the in
situ TEM testing of polysilicon films (Espinosa et al., 2007), ZnO
nanowires (Agrawal et al., 2009), and carbon nanotubes (Peng et al.,
2008). However, it is worth noting that the front end of the sample
rod of this device is almost occupied by the wire bonding posts,
limiting its double-tilt function.

FIGURE 2
(A) The Hysitron PI 95 TEM PicoIndenter and the corresponding schematic of a compression test (Wang et al., 2017c). (B) Two consecutive in situ
TEM compression tests on a FIB microfabricated 160-nm-top-diameter nickel pillar with <111> orientation (Shan et al., 2008). (C) The microfabricated
diamond bridge samples and corresponding diamond tensile gripper (Dang et al., 2021a). (D) Push-to-Pull device and the working area of the Hysitron PI
95 TEM Picoindenter holder (Loginov et al., 2021).
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To address the issue of double-tilt, Espinosa’s team further
developed a double-tilt in situ TEM holder based on a MEMS
mechanical platform (Bernal et al., 2015), as illustrated in
Figure 3B. The tilting table has an inclined surface in contact
with a moving bar. A torsion spring pushes the tilting table
against the push bar to maintain contact. The push rod is further
connected to a manual knob that provides precise linear motion via
an internal connecting rod within the holder. By pushing the push
rod back and forth, the tilting table is tilted. However, the limited
radial size of the sample holder’s front end is occupied by the
inclined surface and torsion spring mechanisms, while the lead wire
method of the sample holder occupies a significant axial size space at
the front end. Therefore, the developed mechanical sample holder is
only applicable to JEOL TEM. In addition, due to the limitation of
high working temperature, electrothermal MEMS devices cannot be
widely used in assembling temperature-sensitive objects or in low-
temperature fields.

Regarding electrostatic MEMS actuators (Volland et al., 2002;
Beyeler et al., 2007), they have two different structures in terms of
transverse and lateral comb drives. Compared to electrothermal
MEMS actuators, they possess some capabilities such as high
frequency response, low power consumption, and no hysteresis,
making them the choice for TEMmechanical sample holders. For

instance, Yang et al. (2019) designed an electrostatic actuated
tensile device, as shown in Figure 3C. Through specific shape and
structure design, the device can be installed on the Gatan
646 double-tilt TEM holder. To demonstrate its performance,
in situ tensile testing for penta-twinned silver nanowires was
conducted in a high-resolution TEM. Meanwhile, an accurate
tensile stress-strain curve was obtained, as shown in Figure 3C.
The experimental results show that the device can achieve a tilt
angle of 10° around both X and Y axes when conducting in situ
tensile testing experiments.

In conclusion, the utilization of MEMS-based platforms has
gained significant popularity in nanomechanical testing due to their
ability to exert precise control over the deformation process and
provide quantitative measurements of displacements and forces.
Moreover, these platforms readily allow for the integration of
multiple fields, such as electric and thermal fields, facilitating a
more comprehensive understanding of mechanical properties.
Notably, Han and others recently devised a high-temperature in
situ observation method, enabling the examination of atomic-scale
deformation processes in nanomaterials (Zhang et al., 2021).
However, most of these MEMS platforms heavily rely on quite
complicated setups, making their implementation and operation
challenging and expensive (Lu et al., 2011).

FIGURE 3
(A) In TEM tensile testing device including actuator, load sensor, and specimen (Zhu and Espinosa, 2005). (B) Schematics and pictures of the double-
tilt holder (Bernal et al., 2015). (C) Pictures of the holder tip with the tensile device, SEM micrographs of the electrostatic actuated chip and the tensile
displacement-voltage curves of the chip (Yang et al., 2019).
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5 In situ TEMmechanical tests based on
thermal bimetallic based techniques

Based on the thermal bimetallic technique, Han’s group
developed an innovative in situ tensile testing device for TEM
(Zhang et al., 2007). As shown in Figure 4A, this technique
consists of two metal strips with different coefficients of thermal
expansion. When heated, the bimetallic strips bend towards the side
with the smaller coefficient of expansion, allowing for the
manipulation of the sample by changing the orientation of the
strips. This technique can slowly and gently deform the testing
samples while retaining the double-tilt capability for in situ atomic-
scale observations (Wang et al., 2010b; Han et al., 2010). By utilizing
this device, Wang et al. (2014) conduct in situ tensile experiments on
platinum thin films and discovered that the plasticity mechanism
transitions from cross-grain dislocation glide to coordinated
rotation of multiple grains as the grain size decreases, as shown
in Figure 4B. Additionally, Liu et al. (2019b) used this device to study
the atomic-scale tensile and fracture behavior of nanoporous gold
thin films, while Lu et al. (2016) conducted this in situ tensile tests on
body-centered cubic molybdenum nanowires and found a
significant dependence of its plasticity on aspect ratio and size.
Furthermore, the bi-metallic extensor can function as a double-tilt
deformation stage with precise displacement control. This
innovation has been successfully commercialized by BestronST. A
recent study conducted by Wang et al. (2022) demonstrated the
application of this approach in an in situ investigation at atomic
resolution. The study focused on elucidating the mechanisms
underlying sliding-dominant deformation at general tilt grain
boundaries (GBs) in platinum bicrystals. The researchers
observed two distinct processes: direct atomic-scale sliding along
the GB and sliding accompanied by atom transfer across the
boundary plane (Wang et al., 2022).

It should be noted that the bimetallic strips technique enables
atomic-scale mechanical testing, but the loading of stress relies on

the bending deformation of the strips, which cannot guarantee
uniaxial loading of the sample. Moreover, due to the bimetallic
strips were fixed on the copper-ring grid with superglue, making this
method cannot be used for high temperature in situ deformation.

6 In situ TEMmechanical tests based on
nanomanipulation techniques

Nanomanipulation is a technique used to manipulate and
position nanostructures for the assembly of nano devices (Du
et al., 2006). This method allows for flexible maneuvering and
precise positioning, making it ideal for device prototyping and
property tuning. It has been extensively utilized in scanning
electron microscopy to realize simultaneous imaging and direct
interactions with nanoscaled samples (Shi et al., 2016; Jiang et al.,
2017). In the following sections, we will introduce the application
of nanomanipulation in TEM, focusing on two perspectives:
conventional nanomanipulation techniques and nanomanipulation
coupled with 3D reconstruction techniques.

6.1 Conventional nanomanipulation
techniques

The first nanomanipulation experiment was performed by Eigler
and Schweizer using a scanning tunneling microscope (STM) to
form the IBM logo by positioning individual xenon atoms on a
nickel substrate (Eigler and Schweizer, 1990). STM has since been
integrated into TEM specimen holders for in situ scanning probe
microscopy probing of nm-scale features with simultaneous two-
dimensional TEM observations. For example, Andrén et al. (1974)
used six piezoelectric ceramic rings as driving elements to perform
in situ tensile experiments on electrochemically etched molybdenum
wires. In 1996, Naitoh et al. installed a piezoelectric ceramic

FIGURE 4
(A) Schematic illustration of the tensile tool prior to extensile experiment with the SiC nanowires scattered on the manipulator, and the conducting
tensile experiment on the SiC nanowires (Zhang et al., 2007). (B) In situ tensile pulling of the platinum thin film in a TEM using the thermal bimetallic
techniques (Wang et al., 2014).
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scanning tube on the sample holder to achieve X/Y/Z three-
dimensional nanomanipulation of the sample, and used
mechanical driving to achieve a large stroke of 2 mm in the X
direction, enabling in situ STM characterization under TEM (Naitoh
et al., 1996). In 2003, Svensson et al. used a sticky drive mechanism
to achieve large stroke precision manipulation in the x, y, and z
directions on a TEM sample holder using a piezoelectric ceramic
scanning tube, and obtained in situ STM images of highly oriented
pyrolitic graphite (Svensson et al., 2003), as shown in Figure 5A.
Based on these developments, Nanofactory Instrument AB and
Zeptools further optimized and developed TEM-STM sample
holders for commercial use.

For the TEM-STM specimen holder, a miniature STM is built
into the TEM specimen holder, incorporating a compact 3-axis
inertial sliding mechanism with piezoelectric actuator (Svensson
et al., 2003; Larsson et al., 2004). This manipulator has the
advantages of compact structure, fast response, and high
displacement control precision (~1 nm), which reduces the rigid
motion component of the sample during loading, resulting in high
mechanical stability and adaptability to the confined sample
chamber environment of the TEM. By utilizing the high-
frequency periodic bending and stretching of a piezoelectric
ceramic tube with four electrodes by a ceramic ball, the mobile
end can generate a large range of three-dimensional spatial
displacement. Combined with piezoelectric manipulation, high-
precision displacement motion can be achieved.

A methodology for sequential in situ fabrication and
nanomechanical testing has been developed based on the STM-
TEM holder, which provides an ideal platform for atomistic insights
into deformation behaviors. For example, Lu et al. (2010) used the
nanomanipulation function of the STM-TEM holder to bring two
gold single crystal nanowires, each with a diameter of approximately
5 nm and located at the fixed and active ends, into lateral contact.
Without heating, the two nanowires were mechanically welded to
form a complete single crystal nanowire. And then, in situ tensile

experiments of the single crystal gold nanowires were carried out by
driving the active end of the nanomanipulation sample holder (Lu
et al., 2010). To further enhance weldability, it is a common practice
to apply a constant voltage at the nanoscale tip of the probe when it
contacts with the sample on the side fixed to the substrate (Zhong
et al., 2017; Cao et al., 2018). This in situ thermal welding technique
allows for direct fabrication of high-quality metallic nanowires in
TEM (Zhong et al., 2014; Wang et al., 2018). These procedures
produce bridge-shaped single crystals with clean surfaces,
controllable orientations, and varying dimensions. Additionally,
after the nanowelding process, in situ nanomechanical testing,
including tension (Wang et al., 2020b), compression (He et al.,
2020), and shear (Zhu et al., 2020a; Zhu et al., 2020b), can be
instantly carried out via the precise displacement control of the
probe. As shown in Figure 5B, Wang et al. (2015b) successfully
prepared tungsten nanowires with diameters less than 20 nm using
the in situ welding method, and achieved real-time loading and
deformation observation of the tungsten nanowires with atomic
resolution, revealing for the first time the twinning-dominated
plastic deformation behavior and pseudo-elastic phenomenon in
body-centered cubic single crystal tungsten.

Furthermore, for TEM-STM sample holders with
nanomanipulation capabilities, a specialized atomic force
microscopy (AFM) chip can be attached to the tip of the sample
holder to sense ultra-small forces and simultaneously image the real-
time material deformation, as shown in Figure 6A (Lu et al., 2011).
Each AFM chip consists of a cantilever with a unique spring
constant, determined by the geometry of the tip. Conducting
tests within the TEM enables the precise determination of
cantilever deflection and sample deformation, including
elongation, compression, and bending, as shown in Figure 6B
(Liu et al., 2013). The deflection output of the cantilever is
collected by a computer and plotted against the probe’s
movement to produce a force-versus-distance diagram, as
illustrated in Figure 6C. Additionally, real-time imaging in

FIGURE 5
(A) Schematic illustration of the side-entry holder and its STM head with a three-dimensional coarse motion mechanism. The inset shows a TEM
image of a carbon nanotube (about 20 nm in diameter) which has been selectively approached, in situ, with a gold tip (Svensson et al., 2003). (B)
Dislocation dynamics inside a tungsten bicrystal nanowire under compression (Wang et al., 2015b).
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HRTEM allows for the observation of sample deformation
(Figure 6D).

6.2 Nanomanipulation coupled with 3D
reconstruction techniques

For the nanomanipulation sample holder developed by
Nanofactory Instrument AB and Zeptools, there is a serious
motion coupling problem in the X/Y/Z directions due to the
point contact friction between the end cap and the ceramic ball,
which increases the difficulty of nanomanipulation. To address the
aforementioned issues, Wang’s group has developed a double-tilt in
situ TEM sample holder, referred to as XNano, which is capable of
mechanical loading and has five manipulation parameters in the
X/Y/Z/α/β dimensions (Zhang et al., 2020a; Zhang et al., 2020b), as
shown in Figure 7A. The sample holder’s movements in the five
degrees of freedom are precisely driven by three groups of
piezoelectric actuators to minimize the artifacts caused by
vibration and drifting of the TEM stage. The manipulation of α-
rotation is accomplished by accumulating step-lengths using a stick-
slip drive mechanism, which enables 360° rotational displacement of
the ceramic spindle within the piezoelectric shear slice.
Consequently, the XNano sample holder can autonomously
rotate 360° without using the TEM goniometer, effectively
addressing the vibration drift issue caused by the goniometer’s
rotation and the missing wedge angle issue due to incomplete
angle rotation in 3D reconstruction (Midgley and Weyland,
2003). Similarly, based on the stick-slip drive mechanism, the

holder can achieve a 3 mm displacement stroke and 0.1 μm
displacement accuracy in the X-direction. Stage II completes the
fine adjustments in the X-direction and rough and fine adjustments
in the Y/Z-direction. The Stage II module consists of a piezoelectric
ceramic tube, ceramic balls, and front and back pressure plates.
Based on the inverse piezoelectric effect of the piezoelectric ceramic
tube connecting the ceramic ball, the module achieves precise X/Y/Z
manipulation by applying voltage to cause small deformation of the
piezoelectric ceramic tube. The precise adjustment stroke in the X
direction is 1 μm with displacement accuracy <0.1 nm, while the
precise adjustment stroke in the Y/Z direction is 7 μm with
displacement accuracy <0.1 nm. Furthermore, by applying
periodic voltage signals and utilizing the stick-slip drive
mechanism between the piezoelectric ceramic tube and the front
and back pressure plates, rough adjustments in the Y/Z-direction
can be achieved with a displacement stroke of up to 2 mm and a
displacement accuracy of 0.1 μm. For in situ loading experiments,
the X-direction motion stability directly affects the deformation
process. The compact two-stage driving module of the XNano TEM
sample holder avoids the displacement coupling problem between
the X-direction rough adjustment manipulation and the
Y/Z-directions, and the X-direction nanomanipulation has a
small mechanical hysteresis with excellent stability. Regarding the
Y/Z-direction rough adjustment manipulation, the frictional contact
between the Y-Z module’s linear contact surface in Stage II greatly
reduces the influence of gravity on manipulation stability.
Additionally, Stage III integrates a piezoelectric stack and a fan-
shaped driver on the ceramic ball’s front pressure plate based on the
stick-slip drive mechanism, allowing β-tilt manipulation (±10°) to

FIGURE 6
(A) The TEM-AFM holder manufactured by Nanofactory Instrument AB (Lu et al., 2011). (B) Schematics showing the application of AFM cantilever for
in situ TEM mechanical testing under: tensile, compressive, and bending loads, and (C) the corresponding force-deflection curve and (D) real-time
HRTEM snapshots for the deformation of a nanowire (Liu et al., 2013).
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achieve good atomic-scale resolution. In short, the XNnao sample
holder combines 3D reconstruction technology of TEM with in situ
experimental techniques based on nanomanipulation. This enables
in situ three-dimensional structural analysis at different loading
stages to investigate the evolution mechanism of the sample
material.

Using the XNano sample holder, Liang et al. (2021) developed
an in situ welding method for Al0.1CoCrFeNi high-entropy alloy
samples with nanoscale (10–20 nm) dimensions in TEM and
achieved controllable adjustment of the twin orientation in the
nanoscale sample, as shown in Figure 7B. And the in situ tensile
tests were performed on the nanoscale samples to reveal the
anisotropy of plastic deformation and fracture modes in high-
entropy alloy nanotwin samples. Additionally, as shown in Figure
7C using this device, Liu et al. (2018) conducted in situ electro-
thermal welding and mechanical tensile tests on graphene layers,
revealing that the high-quality electro-thermal welding interface
between macroscopic graphene elements originated from the high
interfacial binding force induced by covalent bonding between
graphene layers across the interface. This work provides a new
strategy for manufacturing high-melting-point graphene
components (Liu et al., 2018).

Furthermore, to quantitatively characterize the mechanical
behavior of samples in TEM, AFM chips of different
specifications can be integrated at the front end of the XNano
sample holder (Figure 8A). Combined with its own
nanomanipulation accuracy in the five degrees of freedom, it can

support the acquisition of high-resolution in situ images of
mechanical behavior of crystalline materials at low indices, while
providing a load of up to 200 mN. For example, Nie et al. (2019)
successfully achieved high-precision manipulation of diamond
nanoneedles at sub-nanometer levels in TEM by pressing the
nanoneedle tip against the diamond head to conduct bending
experiments, as illustrated in Figure 8B. They discovered that as
the size of the nanoneedle tip decreased, the maximum achievable
tensile strength and elastic strain increased. Additionally, utilizing
the XNano in situ system in TEM, Nie et al. performed precise
loading on diamond nanopillars and observed the dynamic behavior
of internal dislocations during compression, revealing the
widespread room-temperature dislocation plasticity in diamond,
as shown in Figure 8C (Nie et al., 2020). Based on the 3D TEM
imaging technology provided by XNano, Nie et al. characterized the
3D morphology of dislocations in diamond, and through detailed
calibration of the dislocation types and slip planes, they revealed that
dislocations in diamond tend to slip on the non-close-packed {100}
planes, overturning the long-standing textbook understanding that
dislocations in the diamond lattice should slip on the close-packed
{111} planes. In addition, Zhang et al. (2022) conducted in situ
compression experiments on covalently bonded silicon nitride
(Si3N4) ceramics nanopillars in TEM using the XNano holder, as
shown in Figure 8D. In the experiment, the nanopillars were
mounted on the nanomanipulator end of the XNano mechanical
platform and then precisely driven against a diamond flat punch.
The uniaxial compression was carried out in displacement-

FIGURE 7
(A) The XNano holder and detail schematic for the nano-piezo manipulator with three-stage (Zhang et al., 2020a; Zhang et al., 2020b). (B)
Preparation of nano-junctions with different load/twin boundary orientations (Liang et al., 2021). (C) In-situ TEM electrical joule thermal welding and
tensile experiments of graphene sheets (Liu et al., 2018).
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controlled mode with a nominal strain rate of 10-3/s at room
temperature. The stress-strain curve during the in situ
compression process of the nanopillars was obtained by the AFM
chip, revealing unprecedented room-temperature compressive
plastic deformation.

In summary, the use of nanomanipulation technology in STM-
TEM sample holder enables the preparation of high-quality
nanoscale samples, and facilitates various mechanical loading and
high-resolution characterization under TEM. Furthermore,
equipped with an AFM chip, STM-TEM sample holder provides
crucial quantitative data on stress-strain relationships during
mechanical loading, enabling a quantitative study of material
mechanical behavior at the nanoscale. Furthermore, the
combined application of nanomanipulation and 3D
reconstruction techniques can facilitate the exploration of real-
time 3D evolution of nanomaterials under external loads,
enabling quasi-4D TEM characterization that provides deeper
insights into microscale deformation mechanisms of materials.

7 Summary and outlook

This paper presents a comprehensive review of the technical
advancements in various in situ TEM mechanical experimental
techniques. Such experiments reveal unique properties of
nanomaterials and provide useful images or videos that assist
researchers in analyzing underlying mechanisms, thus enhancing

their potential applications. Nevertheless, despite significant
progress, in situ TEM characterization encounters several key
challenges:

(1) In situ TEM nanomanipulator-based techniques with integrated
force sensors have been utilized to study the interfacial
properties of layered 2D materials (Li et al., 2018), such as
molybdenum disulfide, via in situ TEM nanomechanical
cleavage of atomic layers (Tang et al., 2014). In addition,
Schweizer et al. (2020) have reported on an in situ
mechanical cleaning method that allows for the targeted
removal of contamination from both sides of two-
dimensional membranes down to atomic-scale cleanliness
based on the nanomanipulator-based techniques. Meanwhile,
the mechanisms of re-contamination can be revealed through
TEM characterization. In addition, as mentioned earlier,
nanomanipulation technology can also be used for the
manufacture of nanoscale samples. Therefore, significant
innovative efforts are required to develop integrated
characterization, processing, and manufacturing techniques
based on nanomanipulation technology in TEM.

(2) Recent developments in ultrafast TEM (UTEM) have enabled
investigate materials at extremely short spatial and temporal
resolutions by integrating the excellent spatial resolution of
TEM with the temporal resolution of ultrafast femtosecond
laser-based spectroscopy (Zewail, 2010; Browning et al., 2012;
Plemmons et al., 2015; Zhu et al., 2020c), which is very suitable

FIGURE 8
(A) The XNano holder integrated AFM Cantilever. (B) The maximum deformation immediately before the fracture during sequentially breaking the
diamond nanoneedle for its high aspect ratio geometry (Nie et al., 2019). (C) Evolution of a Diamond Nanopillar during Compression (Nie et al., 2020). (D)
Bright-field images of a nanopillar at different compression strains revealed by in situ TEM; the orange and green dashed lines show the outlines of the α
and ß grains, respectively, with coherent interfaces; outside of the dashed lines in the nanopillar are the Si3N4 grains bonded by the glass phase
(Zhang et al., 2022).
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for studying dynamic processes. Currently, ultrafast TEM has
been employed to investigate non-equilibrium structural phase
transitions (Park et al., 2009), transient structures (Barwick
et al., 2008), and complex mechanical phenomena at the
nanoscale (Flannigan et al., 2009), providing new insights for
materials science research. However, further efforts are needed
to explore the potential integration of these techniques with in
situ mechanical testing methods.

(3) Electron beam irradiation can induce various effects on
materials, including localized sample heating (Stangebye
et al., 2022), and creation of defects/artifacts (Sarkar et al.,
2015). These effects can potentially alter the mechanical
properties of the specimen in the observed deformation
behavior (Zheng et al., 2010b; Zang et al., 2011). To address
these challenges, the current approach primarily focuses on
minimizing the electron dose and exposure time during testing
(Filleter et al., 2011; Liu et al., 2012; Qu and Deng, 2017).
Additionally, the use of thermally conductive probes/sample
holders is desirable to enhance heat dissipation. Furthermore,
the rapid development of UTEM technology in recent years has
provided essential hardware support in this regard. It is
important to note that the exact methodology to eliminate or
minimize the electron beam irradiation effects may vary
depending on the specific experimental setup and materials
under investigation. Therefore, it is essential to carefully
consider the trade-off between minimizing the electron beam
effects and obtaining meaningful in situ TEM mechanical
testing results.

(4) Given the complex service environments of materials, external
conditions such as temperature and electricity must be
considered. This adds an additional challenge for the in situ
TEM device to accommodate both stress and temperature or
electricity, which has been demonstrated to be feasible,
particularly with MEMS-based devices (Zhang et al., 2021)
and laser-beam-induced heating (Grosso et al., 2020).
However, more innovative work is still needed in this area.
Besides, there is a lack of research on TEM-based
nanomechanical characterization techniques at ultra-low
temperatures. Therefore, more work is needed to explore the
underlying mechanisms and to develop the necessary
technology.

(5) The in situ TEM results, particularly the time-lapse videos
captured during in situ studies, generate a wealth of data.
Recently, artificial intelligence techniques, specifically
machine learning, have been successfully applied to the
in situ TEM characterization of energy materials (Zheng
et al., 2022; Wang et al., 2023). Such techniques offer great
assistance in analyzing TEM images of nanomaterials in
terms of their defects, morphology, structure, and spectra
(Cheng et al., 2022), which can reveal material mechanisms
and facilitate the design and development of new materials.
However, there is still much work to be done in exploring
how to integrate machine learning and big data
technologies with in situ mechanical characterization of
TEM to extract hidden information from vast amounts of
experimental data.

(6) Combining in situ TEM deformation experiments and atomistic
simulations bridges gaps between structure and energetics,
signal and information, and across time and length scales
(Kacher et al., 2019). Therefore, integrated in situ TEM
experiments and atomistic simulations with high precision
and high fidelity will enable a deep and fundamental
understanding of defect mechanics (Dingreville et al., 2016),
providing a mechanistic basis for designing high-performance
materials for advanced structural applications (Sangid, 2020).
But it still requires exploration in order to get greater and deeper
integration between atomistic simulations and in situ TEM
experiments.

In conclusion, in situ TEM mechanical tests provide valuable
insights into the relationships between material structure,
properties, and mechanisms under various external conditions.
By utilizing the high spatial and temporal resolution capabilities
of TEM and integrating various advanced techniques, in situ TEM
enables the unprecedented visualization of atomic-scale dynamic
processes in both conventional and advanced materials under
external loading. Continued advances in both hardware and
software developments are expected to yield even smaller, more
precise, and versatile in situ TEM testing techniques for material
characterization, allowing for enhanced control over material
properties and performance, and facilitating the development and
application of new materials.
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