
A novel glycolysis-related gene
signature for predicting the
prognosis of multiple myeloma

Bingxin Zhang1, Quanqiang Wang1, Zhili Lin1, Ziwei Zheng1,
Shujuan Zhou1, Tianyu Zhang1, Dong Zheng1, Zixing Chen2,
Sisi Zheng1, Yu Zhang1, Xuanru Lin1, Rujiao Dong1, Jingjing Chen1,
Honglan Qian1, Xudong Hu1, Yan Zhuang1, Qianying Zhang1,
Zhouxiang Jin2*, Songfu Jiang1* and Yongyong Ma1,3,4*
1Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou,
Zhejiang, China, 2Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying
Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China, 3Key Laboratory of
Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang,
China, 4Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization,
Wenzhou, Zhejiang, China

Background: Metabolic reprogramming is an important hallmark of cancer.
Glycolysis provides the conditions on which multiple myeloma (MM) thrives.
Due to MM’s great heterogeneity and incurability, risk assessment and
treatment choices are still difficult.

Method:We constructed a glycolysis-related prognostic model by Least absolute
shrinkage and selection operator (LASSO) Cox regression analysis. It was validated
in two independent external cohorts, cell lines, and our clinical specimens. The
model was also explored for its biological properties, immune microenvironment,
and therapeutic response including immunotherapy. Finally, multiplemetrics were
combined to construct a nomogram to assist in personalized prediction of survival
outcomes.

Results: A wide range of variants and heterogeneous expression profiles of
glycolysis-related genes were observed in MM. The prognostic model behaved
well in differentiating between populations with various prognoses and proved to
be an independent prognostic factor. This prognostic signature closely
coordinated with multiple malignant features such as high-risk clinical features,
immune dysfunction, stem cell-like features, cancer-related pathways, which was
associated with the survival outcomes of MM. In terms of treatment, the high-risk
group showed resistance to conventional drugs such as bortezomib, doxorubicin
and immunotherapy. The joint scores generated by the nomogram showed higher
clinical benefit than other clinical indicators. The in vitro experimentswith cell lines
and clinical subjects further provided convincing evidence for our study.

Conclusion: We developed and validated the utility of the MM glycolysis-related
prognostic model, which provides a new direction for prognosis assessment,
treatment options for MM patients.
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1 Introduction

Multiple myeloma (MM) is the second most common
hematological malignancy and is attributed to bone marrow
infiltration of monoclonal plasma cells (Laubach et al., 2011;
Siegel et al., 2021). It is characterized by hypercalcemia, renal
damage, anemia, and bone lesions (Röllig et al., 2015; Kumar
et al., 2017). MM is a highly heterogenous disease, that exits on a
continuous disease spectrum ranging from precancerous states
monoclonal gammopathy of undetermined significance (MGUS)
and smoldering multiple myeloma (SMM) driven by the
accumulating genetic changes and immune escape (Kyle et al.,
2002; Kyle et al., 2007; Landgren et al., 2009).

In the past decade, novel treatments have increased MM’s
survival rates, such as proteasome inhibitor bortezomib (BTZ)
and immunomodulatory drug (IMiD) thalidomide (Kumar et al.,
2008; Bianchi et al., 2015; Moreau et al., 2015). Despite the
improvements in overall survival, relapse frequently occurs
(Krishnan et al., 2016; Wallington-Beddoe et al., 2018).
Meanwhile, MM is still an incurable disease, and the prevalence
continues to rise owing to the aging population (Cowan et al., 2018).
The Revised International Staging System (R-ISS) combines
cytogenetic abnormalities (CAs), serum lactate dehydrogenase
(LDH), and ISS traits and is the most widely recognized risk-
stratification tool for newly diagnosed multiple myeloma
(NDMM) patients (Palumbo et al., 2015). However, a large
number of people with heterogeneous risk factors were
concentrated in R-ISS stage II (Cho et al., 2017; Jung et al.,
2018). New approaches are needed to better risk stratify MM
patients to inform prognosis and treatment options for better
individualized management.

The most crucial hallmark of cancer is metabolic
reprogramming (Hanahan, 2022). Cancer cells preferentially
employ glycolysis, even when there is abundant oxygen. This
trait of cancer is known as “Warburg effect” (Warburg, 1956).
Consistently, a typical feature of MM is the presence of an
increased glycolytic gene profile and sensitivity to glycolysis
inhibitors (D’Souza and Bhattacharya, 2019). Several key
enzymes in glycolysis were highly upregulated in MM,
including hexokinase 2 (HK2) and lactate dehydrogenase A
(LDHA) (He et al., 2015; Ikeda et al., 2020). Furthermore,
compared with NDMM patients, these enzymes were
upregulated more significantly in relapsed and bortezomib-
refractory MM patients (Mulligan et al., 2007; Maiso et al.,
2015). Drugs targeting glycolysis have increasingly become a
promising direction for cancer treatment. HK2 inhibitor, 3-
bromopyruvate (3-BP), in addition to disrupting ATP
production, significantly impaired autophagy and induced
apoptosis, which was demonstrated in MM cells (Ikeda et al.,
2020). Likewise, the GLUT4 inhibitor ritonavir has been shown
to reduce the proliferation and viability of myeloma and improve
chemotherapy sensitivity (McBrayer et al., 2012). Dichloroacetic
acid is thought to achieve the apoptosis and proliferation
inhibition of MM cells by activating the pyruvate
dehydrogenase complex, and can increase the sensitivity of
MM cell lines to bortezomib (Sanchez et al., 2013). Given the
significance of glucose metabolism reprogramming, it is crucial

to investigate the prognostic signatures and novel treatments of
MM from the perspective of glycolysis.

In this study, we constructed a risk scoring model based on
glycolysis-related genes (GRGs) to predict the prognosis and guide
clinical treatment of MM. We further performed therapeutic
response prediction and comparative analyses of biological
function and tumor microenvironment (TME) to explore the
underlying mechanisms. Then, a nomogram combing the gene
signature and clinical manifestations was developed to improve
the predictive power and clinical applicability. Finally, the
expression of the selected genes was further verified by
quantitative real-time PCR (qRT-PCR).

2 Materials and methods

2.1 Data collection

From the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/), expression profiles were downloaded
for 4 MM datasets, including GSE136337, GSE24080, GSE4204, and
GSE6477. The datasets were log2 transformed after normalising
with a microarray muite 5.0 (MAS5.0) method. Detailed
clinicopathological data and survival data were also extracted
from GEO (Table 1). The GSE136337 was used as the training,
while the GSE24080 and GSE4204 datasets were used for validation.
And we used the GSE6477 to reveal the evolution of GRGs in normal
individuals, MGUS, SMM, and active MM groups. Glycolysis-
related genomes “c2.cp.biocarta.v7.2.symbols”, “c2.cp.hallmark.v5.
0.symbols”, “c2.cp.reactome.v7.5.symbols”, “c2.cp.kegg.v7.2.
symbols”, “c2.cp.wikipathways.v7.2.symbols” in Gene Set
Enrichment Analysis (GSEA) (http://www.gsea-msigdb.org/gsea/
msigdb) were the source of the GRGs. After taking intersections
with the three GEO datasets (GEO136337, GSE24080 and
GSE4204), 293 genes were finally used for further study
(Supplementary Table S1).

2.2 Construction and validation of a
glycolytic prognostic model

The prognostic glycolytic genes identified by univariable Cox
regression analysis (p < 0.001) were then subjected to the Least
absolute shrinkage and selection operator (LASSO) Cox regression
analysis. Using the R package “glmnet”, the penalty parameter λ was
set as 0.09 to determine the best weighting coefficient of glycolytic
genes.

2.3 Interaction network and genetic
variation map of glycolysis-related genes

The co-expression correlation matrix of the 12 genes was
constructed by “ggcorrplot” R package. The protein-protein
interaction (PPI) network of the 12 genes was acquired from the
STRING database (version 11.5) (https://www.string-db.org/)
(Szklarczyk et al., 2011). The genetic mutation landscape of the
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GRGs inMMwas explored with The Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov/) with the “maftools” package and
cBioPortal for Cancer Genomics (http://www.cbioportal.org/). We

also used the Cancer Cell Line Encyclopedia database (CCLE,
https://portals.broadinstitute.org/ccle) to further validate these
prognostic genes’ expression.

TABLE 1 Clinical traits of the training and validation cohorts.

Characteristics Training cohort Validation cohort Validation cohort

GSE136337 GSE24080 GSE4204

(n = 415) (n = 556) (n = 534)

Sex

Female 158 (38%) 222 (40%) —

Male 257 (62%) 334 (60%) —

Age

≤65 years 297 (72%) 421 (76%) —

>65 years 118 (28%) 135 (24%) —

Albumin

≥3.5 g/dL 331 (80%) 481 (87%) —

<3.5 g/dL 84 (20%) 75 (13%) —

β2M

<3.5 mg/L 187 (45%) 320 (58%) —

3.5–5.5 mg/L 109 (26%) 118 (21%) —

≥5.5 mg/L 119 (29%) 118 (21%) —

LDH

≤250 U/L 392 (94%) 507 (91%) —

>250 U/L 23 (6%) 49 (9%) —

Del (17p)

False 400 (96%) — —

True 15 (4%) — —

t (4,14)

False 401 (97%) — —

True 14 (3%) — —

t (14,16)

False 414 (99%) — —

True 1 (1%) — —

ISS

I 163 (39%) 296 (53%) —

II 133 (32%) 142 (26%) —

III 119 (29%) 118 (21%) —

R-ISS

I 149 (36%) — —

II 243 (59%) — —

III 65 (16%) — —

Risk score

High 206 (50%) 278 (50%) 267 (50%)

Low 207 (50%) 278 (50%) 267 (50%)

Survival

Alive 239 (58%) 386 (69%) 442 (83%)
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2.4 Comparative analysis of clinical
characteristics and treatment
responsiveness between subgroups

To further investigate the heterogeneity between subgroups, we
compared clinical characteristics and drug sensitivity among the
subtypes. As for cytogenetics, based on the existing data in the
training dataset and the previous findings, we defined high-risk
cytogenetic abnormalities (HRCAs) as follows: del17p, amp1q, t (4;
14), t (14; 20), t (14; 16) or MYC aberrations determined by
fluorescent in situ hybridization (FISH) or conventional
cytogenetics (Chng et al., 2014; Sonneveld et al., 2016; Abdallah
et al., 2020; Schmidt et al., 2021; Wallington-Beddoe and Mynott,
2021). Patients with at least one HRCA were defined as the high-risk
cohort. The low-risk subgroup included those with other
abnormalities [del13q, del16q, del1p, del1q, t (11; 14), t (12; 14)].
The rest belonged to the non-mutation cohort.

The “pRRophetic” package was used to assess the drug
susceptibility between the low- and high-scoring group (Geeleher
et al., 2014a; Geeleher et al., 2014b). This method builds the
statistical model based on the data from the Cancer Genome
Project (CGP) (Garnett et al., 2012), consisting of baseline gene
expression microarray data and sensitivity to 138 drugs in a panel of
almost 700 cell lines.

2.5 Exploration of biological functions based
on prognostic glycolytic signature

To reveal the underlying mechanism, we employed the weighted
gene co-expression network analysis (WGCNA) (Langfelder and
Horvath, 2008, 2012). Also, we conducted an association study
between modules and clinical aspects and identified critical genes
linked to the model. Further use of the Metascape platform (https://
metascape.org/gp/index.html) was made to implement the Gene
Ontology (GO) analysis of the important genes. GSEA (GSEA v4.2.
2 software, http://software.broadinstitute.org/gsea/login.jsp) was
also conducted to uncover the differences in biological functions
with the Kyoto Encyclopedia of Genes and Genomes (KEGG).
Statistical significance was defined as p < 0.05 and q < 0.25.

2.6 Characterization of the TME and immune
treatment responsiveness of the glycolytic
model

We employed five techniques to measure the immune
microenvironment of subgroups, including EPIC, MCPCounter
(Becht et al., 2016), quanTIseq (Plattner et al., 2020), the single-
sample gene set enrichment analysis (ssGSEA) and xCell (Aran,
2020), to remove variances across different algorithms. The
correlation analysis of the GRGs with immune-related genes and
functional status from Thorsson et al. was performed. (Thorsson
et al., 2018). mRNAsi is a tool for evaluating how closely cancer
cells resemble stem cells (Malta et al., 2018). The sensitivity to
immune checkpoint inhibitor (ICI) was evaluated using the
immunophenotype score (IPS) (Charoentong et al., 2017) and the
tumor immune dysfunction and exclusion (TIDE) (Jiang et al., 2018).

2.7 Constructing a predictive nomogram to
assess clinical applicability

A nomogram combing age, ISS stage and glycolytic risk score
was constructed. For the nomogram’s self-verification, the
calibration curve was conducted. Based on the merged scores and
other clinical parameters, time-dependent receiver operating
characteristic (time-ROC) curves were computed for 1-, 3-, and
5-year survival. With the “ggDCA” package, survival net benefits of
each clinical feature and the risk score were estimated with decision
curve analysis (DCA). DCA curves focus on evaluating the clinical
benefit of the model, predicting which threshold probability range
treatment for patients in the model will achieve a higher clinical
benefit, meeting the practical needs of clinical decision-making. For
the prediction model, the net benefit (NB) is a composite indicator
that incorporates both true positives and false positives. In the DCA
curve, there are two reference lines, one with no intervention for
anyone, called treat_none, and the other with intervention for
everyone, called treat_all. The model has real value only if its NB
is higher than both treat_all and treat_none at some threshold
probability (Vickers and Elkin, 2006).

2.8 Cell lines and cell culture

MM cell lines including LP-1, RPMI8226, NCI-H929, MM1.R,
I9.2, and U266 cells were collected from Fenghui Biotechnology Co.,
Ltd. (Hunan, China). Cells were grown in an incubator set at 37 °C
with a humid environment that contained 5% CO2. In addition to
10% fetal bovine serum, the cells were cultured in RPMI-1640
medium (Gibco, Shanghai, China) with 100 IU/mL penicillin and
100 mg/mL streptomycin.

2.9 Patients

35MM patients were subjected to our experiment, of whom four
were relapsed MM (RMM). As controls, normal bone marrow
samples were taken from 21 healthy volunteers for PCR on cell
lines and patient samples. Table 2 displayed the clinical traits of the
patients. The study was authorized by the First Affiliated Hospital of
Wenzhou Medical University’s ethics committee, and all operations
were conducted according to the informed consent and Helsinki
Declaration.

2.10 Quantitative real-time PCR

Using the Righton DNA&RNA Blood and Tissue Kit (Righton
Bio, Shanghai, China), total RNA was isolated from total bone
marrow-derived mononuclear cells as directed by the
manufacturer. The cDNA synthesis kit (Vazyme, Nanjing, China)
was used to execute reverse transcription in order to produce
cDNAs. With the help of the Taq Pro universal SYBR qPCR
Master Mix (Vazyme, Nanjing, China), qRT-PCR was used to
find the levels of glycolysis-related gene expression, with β-
ACTIN acting as an internal reference. The primers used was
provided in Table 3.
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TABLE 2 The clinical information of the subjects in the experimental validation.

Variables Levels MM (n = 35) Normal (n = 21) P

NRMM (n = 31) RMM (n = 4)

Sex Female 12 (39%) 1 (25%) 8 (38%) 0.610

Male 19 (61%) 3 (75%) 13 (62%) —

Age (years) <65 9 (29%) 2 (50%) 9 (43%) 0.672

≥65 22 (71%) 2 (50%) 12 (57%) —

Isotype IgG 14 (45%) 2 (50%) — —

IgA 10 (32%) 0 (0%) — —

IgD 1 (3%) 0 (0%) — —

Light chain 6 (20%) 2 (50%) — —

Albumin (g/dL) ≥3.5 16 (52%) 3 (75%) — —

<3.5 15 48%) 1 (25%) — —

β2M (mg/L) <3.5 13 (42%) 2 (50%) — —

3.5–5.5 6 (19%) 2 (50%) — —

≥5.5 12 (39%) 0 (0%) — —

LDH (U/L) ≤250 25 (81%) 3 (75%) — —

>250 6 (19%) 1 (25%) — —

Del (17p) False 31 (100%) 4 (100%) — —

True 0 (0%) 0 (0%) — —

IgH rearrangement False 30 (97%) 4 (100%) — —

True 1 (3%) 0 (0%) — —

Del (13q) False 22 (74%) 4 (100%) — —

True 9 (26%) 0 (0%) — —

Amp1q False 22 (71%) 3 (75%) — —

True 9 (29%) 1 (25%) — —

ISS I 5 (16%) 1 (25%) — —

II 14 (45%) 3 (75%) — —

III 12 (39%) 0 (0%) — —

R-ISS I 5 (16%) 1 (25%) — —

II 24 (77%) 3 (75%) — —

III 2 (7%) 0 (0%) — —

Myeloma cells (%) <10 9 (29%) 2 (50%) — —

≥10 22 (71%) 2 (50%) — —

Calcium (mmol/L) ≤2.65 31 (100%) 3 (75%) — —

>2.65 0 (0%) 1 (25%) — —

Serum creatinine <177 24 (77%) 4 (100%) — —

(μmol/L) ≥177 7 (23%) 0 (0%) — —

Hb (g/L) ≥85 20 (65%) 1 (25%) — —

<85 11 (35%) 3 (75%) — —

(Continued on following page)
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2.11 Statistical analyses

The statistical analysis was performed by SPSS version 24.0
(SPSS Inc., Chicago, IL, United States), R software version 4.1.1 (R
Foundation for Statistical Computing, Vienna, Austria), and

GraphPad Prism version 9.0.0 (GraphPad-Software Inc., San
Diego, CA, United States). The Student’s t test was used to
compare two groups for quantitative variables with a normal
distribution. The Chi-square test was for the categorical variables.
The Mann-Whitney U test was employed for the abnormal
distributional variables. Multiple groups were compared using
one-way analysis of variance (ANOVA) and the Kruskal-Wallis
test. LSD test is used for multiple comparisons after ANOVA.
Pearson’s correlation test was for the correlation evaluation
between variables with normal distributions, and the Spearman’s
correlation test was for variables with aberrant distributions.
Statistics were judged significant at p < 0.05.

3 Results

3.1 Sample selection and clinicopathological
features

The glycolytic model was developed using the GSE136337. The
GSE24080 and GSE4204 were used for model validation. Survival
data were available for 1,514 subjects in the three datasets
(GSE136337, n = 424; GSE24080, n = 556; GSE4204, n = 534).
Clinicopathological features in sufficient samples allowed for
subsequent Cox regression analysis (GSE136337, n = 415;
GSE24080, n = 556) (Table 1). Moreover, the GSE6477 (n = 162)
was used to reveal the evolution of GRGs in normal individuals,
MGUS, SMM, and active MM groups.

3.2 Construction and validation of a
glycolytic model

In the GSE136337 (n = 424), 22 genes related to glycolysis were
associated with prognosis (p < 0.001) (Figure 1A). Then, the
glycolytic model was constructed using 12 genes (λ = 0.09)
(Figure 1B). The formula was as follows: glycolytic risk score =
(0.0803 × LDHB) + (0.0365 × SOD1) + (0.2087 ×MDH2) - (0.1617 ×
PAM) + (0.1063 ×MPC2) + (0.0182 × PRPS1) - (0.0262 × GMPPB)
+ (0.0217 × CYB5A) + (0.0593 × POLR3K) + (0.0721 × PAXIP1) +
(0.1125 × AURKA) + (0.0507 × NSDHL). The median risk score was
used to divide the subjects into high-risk and low-risk subgroups.

Kaplan–Meier curves revealed survival differences among the
subtype in the training (Figure 1C) and the two validation datasets
(Supplementary Figures S1A, B). The high-scoring population had
worse survival (HR = 3.47, 95% CI = 2.51–4.80, p < 0.0001; HR =

TABLE 2 (Continued) The clinical information of the subjects in the experimental validation.

Variables Levels MM (n = 35) Normal (n = 21) P

NRMM (n = 31) RMM (n = 4)

Bone lesions 0 13 (32%) 1 (25%) — —

1–3 2 (6%) 0 (0%) — —

>3 16 (52%) 3 (75%) — —

NRMM, non-relapsed multiple myeloma; RMM, relapsed multiple myeloma.

TABLE 3 Primers used in the study.

Gene symbol Polarity Sequence 5′-3′

LDHB forward CCTCAGATCGTCAAGTACAGTCC

reverse ATCACGCGGTGTTTGGGTAAT

MDH2 forward GCCATGATCTGCGTCATTGC

reverse CCGAAGATTTTGTTGGGGTTGT

MPC2 forward GCTCCGTTGTGAGGAGAGAC

reverse GCTCTGCACTCCACACTGAA

PRPS1 forward ATCTTCTCCGGTCCTGCTATT

reverse TGGTGACTACTACTGCCTCAAA

PAXIP1 forward ACAATGCACTAGCCTCACACA

reverse ACACTGAACGGACAGAATCAC

POLR3K forward CACCCGCAAGGTAACAAATCG

reverse CTGCATGAAGTAAGCACGAGG

SOD1 forward GGTGGGCCAAAGGATGAAGAG

reverse CCACAAGCCAAACGACTTCC

NSDHL forward CAAGTCGCACGGACTCATTTG

reverse ACTGTGCATCTCTTGGCCTG

AURKA forward GGAATATGCACCACTTGGAACA

reverse TAAGACAGGGCATTTGCCAAT

CYB5A forward CACCACAAGGTGTACGATTTGA

reverse CATCTGTAGAGTGCCCGACAT

PAM forward CTGGGGTTACACCTAAACAGTC

reverse GCTTGAAGTCAATCACGAAGGC

GMPPB forward GGGAATCCGAATCTCCATGTC

reverse GTCTCAGAGAGTAGGTCACGG

β-ACTIN forward TCAAGATCATTGCTCCTCCTGAG

reverse ACATCTGCTGGAAGGTGGACA
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FIGURE 1
Construction and validation of a glycolytic prognostic model (GSE136337, n = 424). (A) Forest plot of hazard ratios manifesting the prognostic values
of glycolysis-related genes. (B) LASSO Cox regression analysis for variable selection. (C) Kaplan-Meier curves of patients in the high- and low-risk group
(p < 0.0001). (D) The AUC of the model assessed by time-dependent ROC curves. (E) The distribution of the survival outcomes and the expression of the
prognostic genes among the subgroups.
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2.46, 95% CI = 1.78–3.41, p < 0.0001; HR = 2.09, 95% CI = 1.35–3.22,
p < 0.001). The heterogeneity of survival outcomes was further
validated in Figure 1D; Supplementary Figures S1C, D. Heat maps
were also plotted to compare the expression of the 12 glycolytic
genes. In general, the high-risk groups had lower levels of GMPPB

and PAM expression, whereas other genes exhibit the opposite
pattern (Figure 1D; Supplementary Figures S1C, D). AUCs of the
1-, 3-, and 5-year survival were 0.671, 0.715, and 0.731 in the
GSE136337 (n = 424) to assess the sensitivity and specificity
(Figure 1E). The results of the validation datasets were exhibited

FIGURE 2
Interaction network and genetic variation map of glycolysis-related genes. (A) The genetic mutation landscape of the candidate genes from TCGA-
MM. (B) The SNVs and CNVs of the 12 genes with cBioPortal for Cancer Genomics. (C) Co-expression analyses of 12 glycolytic gene signatures
(GSE136337, n = 424). (D) Protein-protein interaction network of the 12 genes and other closely related proteins. (E) The external validation of the
expression levels of the 12 genes using CCLE.

Frontiers in Cell and Developmental Biology frontiersin.org08

Zhang et al. 10.3389/fcell.2023.1198949

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1198949


in Supplementary Figure S1E (GSE24080, n = 556) and 1F
(GSE4204, n = 534).

3.3 Interaction network and genetic
variation map of glycolysis-related genes

Depending on the TCGA data, we explored the mutation
landscape of 293 genes in the candidate glycolytic gene set in
MM. Figure 2A showed the top 20 genes with the highest
mutation rate. Among them, missense mutations accounted for
the major part and the single nucleotide polymorphisms (SNPs)
occurred more frequently than insertions or deletions. Furthermore,
we used cBioPortal to reveal the single nucleotide variants (SNVs)
and copy number variations (CNVs) of the 12 genes (Figure 2B).
The alterations of LDHB, SOD1, MDH2, MPC2, PRPS1, AURKA,
PAXIP1 and NSDHL in cancer cell lines were 6%, 2.1%, 5%, 3%,
1.4%, 10%, 10%, and 4% separately. Amplification was the most
common change. In contrast, both PAM andGMPPBwere altered at
a frequency of 5%, and their most common change was deletion
(Figure 2B). These results were in general agreement with our data.

Moreover, the co-expression matrix and the PPI network
showed a close relationship between the 12 genes (Figures 2C,
D). In the CCLE database, LDHB, SOD1, MDH2, MPC2, PRPS1,
CYB5A, POLR3K, and AURKA were over-expressed at the cellular
level in MM, while PAM and GMPPB were under-expressed
(Figure 2E), corresponding to the model equation above.

3.4 Comparative analysis of clinical
characteristics and treatment
responsiveness between subgroups

The glycolytic risk score was shown to be independently
associated with survival (GSE136337, n = 415, HR = 3.191
(2.295, 4.436), p < 0.001; GSE24080, n = 556, HR = 1.662 (1.214,
2.275), p = 0.020) (Table 4). Subsequently, we analyzed the
relationship between the 12-gene signature and
clinicopathological traits in the GSE136337 (n = 415). The risk
scores of the higher LDH and the high-risk cytogenetics groups were
higher than those counterparts (p < 0.001) (Figure 3A).We observed
the gradually increasing tendency of the risk score with the
increasing ISS or R-ISS stage (p < 0.05) (Figure 3A). The
distribution of the patient’s characteristics and survival outcomes
were illustrated in Figure 3B.

According to the estimated IC50 values of the chemotherapeutic
agents, the high-risk cohort showed the resistance to bortezomib,
doxorubicin, and cytarabine (p < 0.001), but more sensitive to
methotrexate and vorinostat (p < 0.0001), compared to the low-
risk group (Figure 3C). Additionally, glycolysis-related gene
expression changes were also present in the evolving disease
spectrum of myeloma (GSE6477, n = 162) (Figure 3D). The
expression levels of LDHB and SOD1 exhibited an increasing
trend as the disease progressed. In addition, MDH2, MPC2,
PAXIP1, and NSDHL were upregulated in myeloma patients.
GMPPB, however, revealed a pattern of decline.

TABLE 4 Univariate and multivariate Cox regression analyses of survival in the training and validation cohorts.

Characteristics Training cohort GSE136337 (n = 415) Validation cohort GSE24080 (n = 556)

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

Regression
coefficient (SE)

P Hazard ratio
(95% CI)

P Regression
coefficient (SE)

P Hazard ratio
(95% CI)

P

Age (<65 vs. ≥65 years) 0.579 (0.155) <0.001 1.596 (1.715–2.168) 0.003 0.174 (0.177) 0.327 — —

Sex (female vs. male) −0.248 (0.154) 0.107 — — −0.052 (0.156) 0.739 — —

Albumin (≥3.5 vs. <3.5 g/dL) 0.410 (0.177) 0.021 — — 0.595 (0.194) 0.002 — —

β2m (<3.5 vs.
3.5–5.5 vs. ≥5.5 mg/L)

0.469 (0.091) <0.001 — — 0.512 (0.088) <0.001 — —

LDH (≤250 vs. >250 U/L) 0.732 (0.270) 0.007 — — 1.316 (0.197) <0.001 — —

del (17p) 0.098 (0.417) 0.814 — — — — — —

t (4,14) 0.035 (0.455) 0.939 — — — — — —

t (14,16) 0.719 (1.003) 0.474 — — — — — —

CA (non-mutation vs. low-risk
vs. high-risk)

0.346 (0.102) <0.001 — — — — — —

ISS (Ⅰ vs. Ⅱ vs. Ⅲ) 0.503 (0.095) <0.001 1.549 (1.282–1.872) <0.001 0.526 (0.090) <0.001 1.562 (1.304–1.870) <0.001

R−ISS (Ⅰ vs. Ⅱ vs. Ⅲ) 0.595 (0.133) <0.001 — — — — — —

Risk (low vs. high) 0.618 (0.155) <0.001 3.191 (2.295–4.436) <0.001 0.627 (0.159) <0.001 2.160 (1.555–2.999) <0.001

Albumin, β2M, and LDH were not included in the multivariate analysis, because of co-linearity with the ISS or R-ISS.

CA, cytogenetics alteration.
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FIGURE 3
Comparative analysis of clinical characteristics and treatment responsiveness between subgroups. (A) Relationship between risk score and distinct
clinical traits (GSE136337, n = 415). (B) A sankey diagram exhibiting the changes of LDH level, R-ISS stage, cytogenetic variation risk, glycolytic risk score,
and prognosis (GSE136337, n = 415). (C) Evaluations of the drug susceptibility among the subtypes (GSE136337, n = 424). (D) Variations in these 12 genes’
expression levels as MM progressed (GSE6477, n = 162). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 4
Exploration of biological functions based on the glycolytic signature. (A) Selection of optimal soft thresholds in WGCNA (GSE136337, n = 424). (B)
Hierarchical clustering dendrogram of genes using WGCNA (GSE136337, n = 424). (C) Associations of gene module with risk model and clinical features
(GSE136337, n = 415). (D) Enrichment clustering network using Metascape database (GSE136337, n = 424). (E) The top 10 enriched pathways in the
training dataset and validation datasets (GSE136337, n = 424; GSE24080, n = 556; GSE4204, n = 534).
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FIGURE 5
Characterization of the tumormicroenvironment and immune treatment sensitivity of the glycolyticmodel (GSE136337, n= 424). (A)Visualization of
differences in immune cell abundance based on the various algorithms. (B) Comparison of 28 immune cell infiltration levels between high- and low-
scoring cohorts (C). Immune-related scores calculated by xCell. (D) Correlation of prognostic genes with immune-related pathways and functions. The
vertical axes with black arrows indicate different prognostic genes. (E) Correlation between risk score and stemness index. (F) Relationships of
prognostic genes with distinct immune phenotypes. (G) Assessment of T-cell function and infiltration levels. IPS, immunophenotype score; MHC, antigen
presentation; EC, effector cells; SC, suppressor cells; CP, checkpoint marker; z-score, AZ; TIDE, tumor immune dysfunction and exclusion. *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001.

Frontiers in Cell and Developmental Biology frontiersin.org12

Zhang et al. 10.3389/fcell.2023.1198949

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1198949


3.5 Exploration of biological functions based
on prognostic glycolytic signature

We conducted an investigation of biological functions among
subgroups to uncover the mechanism underlying the glycolytic
signature. WGCNA was implemented to build a weighted gene
co-expression network. To ensure proper connectivity and sustain
the network nearly scale-free, the soft threshold was set at four
(Figure 4A). 19 gene modules were produced after grouping related
modules (Figure 4B). The red module and the risk score had the
strongest association (r = 0.58, p < 0.001) (Figure 4C). The red
module’s 221 genes were analyzed for GO enrichment using the
online database Metascape. Important processes in tumors,
including the mitotic cell cycle, cell cycle checkpoints, DNA
metabolism, and the retinoblastoma gene in cancer, were the
main sites of gene module concentration (Figure 4D).

In GSEA, the high-scoring population was home to the
considerably enriched pathways, which were mostly linked to
glycolysis and included pyrimidine metabolism, one carbon pool
via folate, and oxidative phosphorylation. Consistent with previous
results, the pathways of cell cycle, DNA repair, and nucleotide
excision repair can also be found (Figure 4E).

3.6 Characterization of the TME and immune
treatment responsiveness of the glycolytic
model

The immune microenvironment is incredibly important to the
growth of MM. Based on several different algorithms, the heat map
demonstrated the heterogeneity in the immune landscape among
the subgroups (Figure 5A). Immune cell infiltration levels were
higher in the low-scoring cohort (p < 0.05), such as active B cells,
effector memory CD8+ T cells, immature B cells, NK cells,
plasmacytoid dendritic cells, and Th2, while stromal cell
abundance was higher in the high-scoring population (p < 0.01)
(Figures 5B, C). Moreover, we performed a correlation analysis of
the GRGs with immune-related genes and functional status. The
expression of most prognostic genes was negatively correlated with
the immune-related genes (Figure 5D). For example, LDHB, SOD1,
MDH2, POLR3K, and PAXIP1 were negatively correlated with
immune-related genes in terms of antigen presentation and cell
adhesion, while GMPPB was positively correlated (Figure 5D).

Meanwhile, higher risk scores were observed to be strongly
associated with the stemness index (Figure 5E). IPS characterizes the
immune phenotype of the cells from four perspectives (“antigen-
presenting, AP; effector cells, EC; suppressor cells, SC; checkpoints,
CP”) (Charoentong et al., 2017). And a total score (z-score, AZ) is
finally generated after normalization. A higher z-score corresponds
to higher ICI responsiveness. Consistent to our previous results,
GMPPB was positively correlated with antigen presentations (p <
0.01). Compared to GMPPB, MDH2, and POLR3K were linked to
higher concentrations of immunosuppressive cells (p < 0.01).
Furthermore, high expression of GMPPB was often accompanied
by greater sensitivity to ICI (p < 0.01), while LDHB and PAXIP1
showed the opposite pattern (p < 0.05) (Figure 5F). The quantity and
functional status of T cells is important mediators in immune-
targeted therapy. The T-cell exclusion was more prone to occur in

the TME of the high-scoring cohort (p < 0.0001), foreshadowing
their possible resistance to ICI (Figure 5G). In conclusion,
glycolysis-related markers may be a useful tool for determining
the immune status of MM and for gauging the effectiveness of
immunotherapy.

3.7 Constructing a predictive nomogram to
assess the clinical applicability

For improving the survival prediction efficiency of the model, a
combined nomogram model was constructed with age, ISS stage,
and glycolytic risk score (GSE136337, n = 415) (Figure 6A).
Considering the clinical information of the validation cohort, we
did not include cytogenetics. The nomogram showed a strong
predictive value, as shown by a C-index of 0.728. An ideal
concordance between the forecast and observation was visible on
the survival probability calibrations plot (Figure 6B). The 1-, 3- and
5-year AUCs were 0.75, 0.75, and 0.78, respectively, higher than the
AUCs of the ISS and R-ISS (Figure 6C). The same was in the
validation set GSE24080 (n = 556) (Figure 6D).

Moreover, graphical representations provided by DCA showed
that the glycolytic risk score outperformed other metrics, such as the
R-ISS, in terms of the net benefit to survival (GSE136337, n = 415)
(1-year, threshold:0.125–0.250; 3-year, threshold:0.125–0.563; 5-
year, threshold:0.125–0.750) (Figure 6E).

3.8 External validation using qRT-PCR

MM cell lines and patient samples were subjected to PCR to
further validate our predictive model. In these six cell lines (LP-1,
RPMI8226, NCI-H929, MM1.R, I9.2, and U266), AURKA, CYB5A,
LDHB, MDH2, MPC2, NSDHL, PAXIP1, POLR3K, PRPS1, and
SOD1 exhibited primarily upregulation (p < 0.01). GMPPB and
PAM, on the other hand, underwent downregulation (p < 0.05)
(Figure 7). Correspondingly, the experimental results from the
patients were consistent with the cell lines (p < 0.0001)
(Figure 8A). We then further investigated the changes in gene
expression profiles related to glycolysis among the RMM patients.
Figure 8B showed that the expression of GMPPB and PAM was
significantly lower than that of controls (p < 0.001), while the
opposite was true for other genes (p < 0.01).

4 Discussion

Metabolic reprogramming, as a defining feature of cancer, has
been extensively studied in recent years (Hanahan, 2022). Warburg
effect is a manifestation of glucose metabolism reprogramming and
is considered an adaptive mechanism to support the biosynthetic
demands of uncontrolled proliferation of cancer cells (Warburg,
1956). MM is thought to be a glycolytic tumor because of an elevated
glycolytic gene profile associated with disease progression (Evans
et al., 2022; Misund et al., 2022) and its sensitivity to glycolysis
inhibitors, such as GLUTs and key enzymes (D’Souza and
Bhattacharya, 2019; Okabe et al., 2022; Yao et al., 2023). Some
key enzymes in the glycolysis process are over-expressed inMM, and
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more highly expressed in relapsed and refractory patients, such as
HK2 and LDHA (Mulligan et al., 2007; Maiso et al., 2015). At the
same time, glycolysis as a new therapeutic target has attracted

extensive attention. Hypoxia-inducible HK2 has been shown to
induce an anti-apoptotic phenotype in myeloma cells through
autophagy activation (Ikeda et al., 2020). The combination of

FIGURE 6
Constructing a predictive nomogram to assess clinical applicability. (A) The nomogram based on age, ISS phase, and glycolytic risk score in the
training cohort. (B) Calibration plots were made to validate the accuracy in predicting 1-, 3- and 5-year survivals. (C,D) Time-dependent ROC analyses at
1-, 3- and 5-year with the merged score and other clinical covariates. (E) Survival net benefits of each clinical feature and the risk score were estimated
with decision curve analysis (DCA). C shows GSE136337 (n = 415); D displays GSE24080 (n = 556).
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phloretin (GLUT1 inhibitor) and daunorubicin (a
chemotherapeutic drug) enhances the effect of the latter under
hypoxia (Cao et al., 2007; Zub et al., 2015). The production of
large amounts of lactate in glycolysis leads to acidification of the
tumor microenvironment, which in turn impairs T cells’
proliferation and damages NK cells’ function. Buffering the
pH can improve the efficacy of immunotherapy and can be
useful in MM (Beckermann et al., 2017; Kouidhi et al., 2018; Wu
et al., 2020).

Recently, advances in genomic technology have led to a better
understanding of the underlying genetic abnormalities in myeloma.

Gene expression profiles (GEP) are the most important tumor-
related prognostic biomarkers (Chng et al., 2014). In recent years,
GEP has been extensively studied as a potential tool to assess the risk
of MM, and several GEP classifiers have been developed
(Shaughnessy et al., 2007; Kuiper et al., 2012; Kuiper et al.,
2015). However, research on biomarkers of glycolysis-related
genes in MM is still limited.

In our study, we constructed a prognostic model featuring
12 GRGs using LASSO regression analysis and validated it in two
independent external cohorts. The high-risk group was identified as
having poor prognoses. The prognostic accuracy of the model was

FIGURE 7
External validation in MM cell lines using qRT-PCR (Mean ± SEM). ns, no statistical significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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further assessed by the time-ROC analysis. Furthermore, the
multivariate Cox analysis demonstrated that the glycolytic model
was an independent prognostic factor and truly served as a powerful
prognostic signature of MM.

Clinical traits and drug sensitivity varied between the subtypes.
The higher-scoring group with a worse prognosis had more high-
risk factors, such as higher LDH levels, ISS, RISS staging, and higher-

risk cytogenetic markers. Most of the risk genes in the model were
upregulated in myeloma patients, and this upregulation tendency
progressed as MM developed. Furthermore, the high-risk cohort
exhibited resistance to bortezomib, doxorubicin, and cytarabine.
These results were consistent with previous analyses of prognosis.
We found that the high-risk subgroup exhibited more
responsiveness to vorinostat. As a histone deacetylases (HDAC)

FIGURE 8
External validation inMMpatients using qRT-PCR. (A) The expression levels of the prognostic genes inMMpatients (n = 35). (B) The expression levels
of the prognostic genes in RMM patients (n = 4) (Mean ± SEM). Control, n = 21; ns, no statistical significance; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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inhibitor, vorinostat causes cell cycle arrest and cell death, lowers
angiogenesis, and modifies immunological responses in cancer cells
(McClure et al., 2018). Several clinical trials have demonstrated the
enormous promise of vorinostat in the combination treatment of
MM (Richardson et al., 2008; Badros et al., 2009; Weber et al., 2012;
Vesole et al., 2015). Chemosensitization allows it to increase the
efficiency with which IMiDs or conventional chemotherapeutic
drugs kill MM cells (Mitsiades et al., 2004). Panobinostat, also an
HDAC inhibitor, has been approved by the U.S. Food and Drug
Administration for the treatment of relapsed and refractory multiple
myeloma.

Furthermore, we used the WGCNA and GSEA to explore the
underlying mechanism of glycolytic prognostic gene markers.
Functional analysis revealed many pathways enriched in the
high-risk subgroup, including those closely related to metabolism
and tumor progression. These findings suggested the strong link
between poor prognosis in high-risk cohort and activation of tumor
metabolic reprogramming, providing a potential molecular
mechanism to elucidate the relationship between the signature
and MM progression.

More and more data point to the important role of the evolution
of tumor cells and their surroundings in the emergence of MM.
Immune evasion and the progression of MM are made possible by
the TME. Signature components such as BMSC in TME reduce
immune surveillance and promote migration, proliferation, and
drug resistance of malignant plasma cells (Garcia-Ortiz et al.,
2021; Holthof et al., 2021). The further factors in MM cells
avoiding cytotoxic T lymphocyte killing are defective antigen
presentation and immunoreactive T cells during bone marrow
tumorigenesis (Cohen et al., 2020; Dhatchinamoorthy et al., 2021;
Samur et al., 2021). Moreover, immune escape and immunotherapy
resistance have increasingly been linked to mutations in genes
relevant to antigen presentation (Lee et al., 2020; Jhunjhunwala
et al., 2021). And it is believed that one of the crucial mechanisms for
the invasion and metastasis of cancer cells is detective intercellular
adhesion (Cavallaro and Christofori, 2004; Sousa et al., 2019). In our
study, the high-risk group displayed dysregulation of immune
function. It had a lesser number of immune cells and more
stromal cell infiltration. Additionally, a higher rejection of T cells
was noted. The expression of genes related to antigen presentation
and cell adhesion was negatively correlated with most risk genes,
whereas the opposite was true for the protective gene GMPPB.
Biological processes similar to those present in stem cells were also
more prevalent in the high-scoring subtype. Furthermore, the high-
risk group had a higher degree of tumor dedifferentiation and a
subsequent higher likelihood of metastatic and recurrence (Sampieri
and Fodde, 2012; Hsu et al., 2018). All of these findings point to the
promise of glycolysis-related models in characterizing the immune
microenvironment, predicting responsiveness to immune-targeted
therapies, and assessing prognosis.

The host factors, tumor-related factors, tumor stage are
considered as crucial predictors of survival outcomes by the
International Myeloma Working Group (IMWG). The most
significant host factor is age, the most significant tumor-related
factors are genetic aberration and GEP (Chng et al., 2014). Our
glycolysis-related gene signature risk model belongs to tumor-
related prognostic factors. MM is highly heterogeneous, and the
prognosis of patients varies greatly among individuals. A single

prognostic biomarker does not meet the requirements for accurate
prognosis prediction. Therefore, combining the information from
the training and validation datasets, we integrated multiple
prognostic factors to construct a nomogram, including age, risk
score, and ISS stage. The nomogram’s ability to predict survival at
various time points was the most reliable and potent of any other
single variable.

In our prognostic model, AURKA, SOD1, MPC2, LDHB,
PAXIP1, MDH2, PRPS1, CYB5A, POLR3K, and NSDHL were
identified as risk genes, while PAM and GMPPB were identified as
protective genes. The majority of them are reportedly closely
related to the occurrence and progression of cancer. AURKA is a
serine/threonine kinase that regulates chromosome arrangement,
centrosome amplification, and mitotic spindle formation (Hirota
et al., 2003; Fu et al., 2007). Overexpression of AURKA has been
linked to oncogenic transformation, including chromosomal
instability and disruption of multiple oncoprotein regulatory
pathways and tumor suppressors (Zhou et al., 1998; Lens
et al., 2010; Nikonova et al., 2013). Through AURKA-mediated
phosphorylation of LDHB, glycolysis and biosynthesis were
effectively promoted, thereby promoting tumor progression
(Cheng et al., 2019). AURKA participates in the control of
NF-κB and Wnt/β-catenin pathways, associated with the
resistance and progression of MM (Dutta-Simmons et al.,
2009; Mazzera et al., 2013; Zhou et al., 2013; Huynh et al.,
2018). Both in vitro and in vivo, inhibition of AURKA can
induce apoptosis and cell death of MM (Shi et al., 2007;
Gorgun et al., 2010). AURKA inhibitor can synergize with
BTZ to kill t (4,14)-positive MM cells (Jiang et al., 2022).
Several AURKA inhibitors are currently being studied in
clinical trials in MM or other cancers (Dees et al., 2012;
Caputo et al., 2014; Kelly et al., 2014; Long et al., 2015). In
the phase I clinical trial studies of RMM, AURKA had shown
potential efficacy (Gorgun et al., 2010). Superoxide dismutase
(SOD) catalyzes the disproportionation of superoxide free
radicals into hydrogen peroxide and molecular oxygen. SOD1
(CuZnSOD) is the main SOD in mammals (Crapo et al., 1992;
Tsang et al., 2014). SOD1 overexpression is associated with MM
progression and poor prognosis, as well as bortezomib resistance
(Salem et al., 2015; Wang et al., 2020; Du et al., 2021).
Dysregulation of the intrinsic oxidative environment is an
important feature of cancer cells, including MM cells (Aykin-
Burns et al., 2009). As an antioxidant, SOD1 had been shown to
counteract the cytotoxic effects induced by proteasome
inhibitors, which relied mainly on the production of ROS
(McConkey and Zhu, 2008; Salem et al., 2015). MPC2 and
LDHB were found to be associated with the carfilzomib-
related cardiotoxicity in MM (Tantawy et al., 2021). And they
were linked to the reorganization of BTZ metabolism in MM
cells, which results in resistance to BTZ and poor prognosis
(Findlay et al., 2023). MPC2 is one of the rate-limiting proteins
involved in glycolytic metabolism. Inhibition of MPC complexes
impaired myeloma cell core bioenergetics to increase proteasome
inhibitor-induced anti-MM effects (Findlay et al., 2023).
Silencing LDHB selectively inhibited basal autophagy and cell
proliferation in cancer cells and induced cell death (Brisson et al.,
2016). For humoral immunity (Su et al., 2017) and the
reorganization of B lymphocyte class switches (Daniel et al.,
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2010), PAXIP1 is necessary. It is reported that PAXIP1 was
necessary to encourage osteoclast differentiation to maintain
bone marrow niche structure (Das et al., 2018). Upregulation
of PAXIP1 promoted cell proliferation and inhibited apoptosis
(Ma and Zheng, 2021). MDH2 is one of the major players in the
malate-aspartate shuttle (Minarik et al., 2002). Through
increased cell viability and reduced apoptosis, MDH2
contributed to the doxorubicin resistance (Lo et al., 2015).
The above may explain the resistance to bortezomib and
doxorubicin in the high glycolysis scoring group. PRPS1 is a
crucial enzyme in nucleotide synthesis. Mutations in PRPS
increase the metabolic vulnerability of the patients with acute
lymphoblastic leukemia (ALL), thereby reducing relapse and
progression (Srivastava et al., 2021; Song et al., 2023), which is
also seen in colorectal and hepatocellular carcinomas (Li et al.,
2016; Jing et al., 2019). As a membrane-bound cytochrome,
CYB5A carries electron for several membrane-bound
oxygenases (Hegesh et al., 1986; Kurian et al., 2006). Studies
have shown that CYB5A is upregulated in recurrent ALL (Bartsch
et al., 2022). POLR3K is responsible for synthesizing transfer and
small ribosomal RNAs in eukaryotes. POLR3K may contribute to
the proliferation and angiogenesis of cancer cells by inducing NF-
B signaling. (Ablasser et al., 2009; Chiu et al., 2009; Taniguchi and
Karin, 2018). The cholesterol-metabolizing enzyme NSDHL is a
potential metastatic driver in breast cancer (Yoon et al., 2020;
Chen et al., 2021). PAM plays an auxiliary role in amidation and
regulates the activity of peptides in the adrenal medulla and
pheochromocytoma cells. Oligonucleotide hybridization and
immunohistochemical staining showed that PAM was
downregulated in neuroendocrine tumors, which was
associated with the malignant behavior of the tumors
(Thouennon et al., 2007; Horton et al., 2020). GMPPB was
negatively associated with poor outcomes in endometrial
cancer (Wang et al., 2019; Liu et al., 2020). The relationship
between some genes and MM still needs further study.

However, our study has several limitations that need to be
addressed. First, the construction and validation of our model
relied on the retrospective data from the public database and our
clinical samples, so the prognostic robustness and clinical utility of
the glycolysis-associated gene signature need to be further verified in
larger prospective studies. Secondly, the validation datasets we used
lacked complete clinical information, such as detailed cytogenetic
information. Finally, the specific role of each gene in MM is unclear,
and additional studies in vivo and in vitro are further needed.

5 Conclusion

In summary, our research offers a fresh perspective for
comprehending glycolysis’ function in MM. Different glycolysis-
related patterns exhibited heterogeneity in terms of clinical traits
and the sensitivity of chemotherapeutic drugs and immunotherapy.
This prognostic signature was highly coordinated with multiple
malignant features such as immune dysfunction, stem cell-like
features, and cancer-related pathways, and was associated with
survival outcomes in MM patients. Its clinical effectiveness had
been further validated, showing promise in prognostic assessment
and treatment options for MM patients.
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SUPPLEMENTARY FIGURE S1
Validation of the prognostic model. (A,B) Kaplan-Meier curves for the validation
datasets between the high- and low-scoring subtypes. (C,D) The disparities in

the 12 genes’ expressions and survival outcomes. (E,F) Time-dependent ROC
analysis was used to evaluate themodel’s sensitivity and specificity. (A,C,E) display
GSE24080 (n = 556); (B,D,F) display GSE4204 (n = 534).
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Glossary

MM Multiple myeloma

MGUS monoclonal gammopathy of undetermined significance

SMM smoldering myeloma

BTZ bortezomib

IMiD immunomodulatory drug

R-ISS The Revised International Staging System

CAs cytogenetic abnormalities

FISH fluorescent in situ hybridization

LDH lactate dehydrogenase

GRGs glycolysis-related genes

NDMM newly diagnosed multiple myeloma

GLUTs glucose transporter inhibitors

HK2 hexokinase 2

3-BP 3-bromopyruvate

qRT-PCR quantitative real-time PCR

GEO Gene Expression Omnibus

GSEA Gene Set Enrichment Analysis

LASSO Least absolute shrinkage and selection operator

PPI protein-protein interaction

TCGA The Cancer Genome Atlas

CCLE Cancer Cell Line Encyclopedia database

WGCNA weighted gene co-expression network analysis

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

TME tumor microenvironment

ssGSEA the single-sample gene set enrichment analysis

ICI immune checkpoint inhibitor

TIDE tumor immune dysfunction and exclusion

IPS immunophenotype score

MHC antigen presentation

EC effector cells

SC suppressor cells

CP checkpoint markers

time-ROC time-dependent receiver operating characteristic

DCA decision curve analysis

NB net benefit

NRMM non-relapsed MM

RMM relapsed MM

ANOVA one-way analysis of variance

HRCAs high-risk cytogenetic abnormalities

SNPs single nucleotide polymorphisms

SNVs single nucleotide variants

CNVs copy number variations

BMSC bone marrow stromal cells

GEP gene expression profiles

HDAC histone deacetylases

IMWG International Myeloma Working Group

ALL acute lymphoblastic leukemia
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