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Sugar beet is one of the most important sugar crops in the world. It contributes

greatly to the global sugar production, but salt stress negatively affects the crop

yield. WD40 proteins play important roles in plant growth and response to abiotic

stresses through their involvement in a variety of biological processes, such as

signal transduction, histone modification, ubiquitination, and RNA processing.

The WD40 protein family has been well-studied in Arabidopsis thaliana, rice and

other plants, but the systematic analysis of the sugar beet WD40 proteins has not

been reported. In this study, a total of 177 BvWD40 proteins were identified from

the sugar beet genome, and their evolutionary characteristics, protein structure,

gene structure, protein interaction network and gene ontology were

systematically analyzed to understand their evolution and function. Meanwhile,

the expression patterns of BvWD40s under salt stress were characterized, and a

BvWD40-82 gene was hypothesized as a salt-tolerant candidate gene. Its

function was further characterized using molecular and genetic methods. The

result showed that BvWD40-82 enhanced salt stress tolerance in transgenic

Arabidopsis seedlings by increasing the contents of osmolytes and antioxidant

enzyme activities, maintaining intracellular ion homeostasis and increasing the

expression of genes related to SOS and ABA pathways. The result has laid a

foundation for further mechanistic study of the BvWD40 genes in sugar beet

tolerance to salt stress, and it may inform biotechnological applications in

improving crop stress resilience.

KEYWORDS
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Introduction

WD40 proteins are evolutionarily conserved and widely

distributed in eukaryotic organisms. They tend to consist of 4 to

16 WD40 domains, which are also known as the WD40 repeats

(WDR) (Smith et al., 1999). The WDR is generally composed of

40 to 60 amino acid residues, with a GH (glycine-histidine)

dipeptide at the N-terminus and WD (tryptophan-aspartate)

dipeptide at the C-terminus (Neer et al., 1994). The WDR

typically folds into a highly stable seven-bladed b-propeller
(Stirnimann et al., 2010), connected by an N-terminal amino

acid residue in a closed loop, which determines specific protein

functions (Mishra et al., 2012).

Members of the WD40 protein family have been identified in

many plants. For example, the reference plant Arabidopsis has 230

WD40 proteins (Li et al., 2014). Among the cash crops reported,

there were 225 WD40 proteins in red sage (Salvia miltiorrhiza) (Liu

et al., 2020), 187 WD40 proteins in Rosaceae (Rosa chinensis ‘old

blush’) (Sun et al., 2020), 42 WD40 proteins in walnut (Juglans

regia), and 204 WD40s in fig (Ficus carica) (Chen et al., 2022a; Fan

et al., 2022). Furthermore, among the food crops, wheat (Triticum

aestivum) has 743 WD40 proteins (Hu et al., 2018), potato

(Solanum tuberosum) has 168 WD40 proteins (Tao et al., 2019),

and rice (Oryza sativa) has 200 WD40 proteins (Ouyang et al.,

2012). However, the WD40 protein family in sugar beet (Beta

vulgaris L) has not been reported. As one of the largest protein

families, WD40 proteins were once regarded as scaffolds for

recruiting other molecules to form functional complexes or

participate in protein-protein interactions (Li and Roberts, 2001).

In recent years, a large number of studies have shown that WD40

proteins have a variety of biological functions. In animals, they are

involved in many biological processes, including signal

transduction (Liang et al., 2022), histone modification (Lorton

et al., 2020), DNA damage response (Choi et al., 2022),

transcriptional regulation (Mo et al., 2023), ribosome biosynthesis

(Barandun et al., 2018), protein degradation, and apoptosis (An

et al., 2022; Cai et al., 2022). In plants, WD40 protein is generally

considered to be an important regulator of several biological

processes, e.g., anthocyanin biosynthesis (Ji et al., 2023), flowering

meristem development (Park et al., 2019), gametogenesis (Shi et al.,

2005), embryogenesis (Kim et al., 2021), and yield (Chen et al.,

2022b). In addition, genes encoding WD40 proteins also play

important roles in plant response to abiotic stresses. For instance,

overexpression of a TaPUB1 gene in tobacco enhanced tobacco salt

tolerance by reducing Na+ accumulation and reactive oxygen

species (ROS) in the transgenic plants and increasing the

expression of antioxidant-related genes (Zhang et al., 2017). In

addition, an AtXIW1 gene in Arabidopsis plays a positive role in

ABA response. Mutation of AtXIW1 inhibited the induction of

ABA-responsive genes and the accumulation of ABI5, and led to

rapid proteasome degradation of the ABI5 (Xu et al., 2019).

Furthermore, inhibition of a rice OsRACK1A expression

enhanced the rice salt tolerance through maintaining high K+/

Na+ and reducing the accumulation of malondialdehyde (MDA).

OsRACK1A was found to interact with many salt stress response

proteins to decrease the salt tolerance of rice (Zhang et al., 2018).
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Recently, overexpression of another TaWD40-4B.1 gene increase

the biomass of transgenic wheat under drought stress. The

TaWD40-4B.1 protein interacts with TaCAT3 protein to promote

their oligomerization and catalase activity under drought stress,

leading to improved drought tolerance of the transgenic wheat

(Tian et al., 2023).

Sugar beet is an Amaranthaceae biennial herbaceous plant, one

of the world’s important sugar crops, accounting for 20%-25% of

the world’s annual sugar production (Khan et al., 2019). Sugar beet

is also an important cash crop in northeast China, and its root has

high economic value (Thiruvengadam et al., 2022). Sugar beet is

also a halophyte tolerant to salt and alkali stresses. With the increase

of saline-alkali land in the world, crop production and food security

have become a grand challenge (Kopecká et al., 2023). Systematic

identification of plant salt tolerance genes toward improving crop

stress resilience and increasing yield is urgently needed (Ma et al.,

2017; Ji et al., 2019). Since the WD40 proteins are involved in many

biological processes including plant growth and stress response, we

hypothesize that some WD40 protein encoding genes in halophyte

sugar beet play important roles in plant salt stress tolerance. In this

study, we analyzed the sequences of the WD40 family proteins in

the sugar beet genome. The expression profiles of the BvWD40

genes under salt stress were characterized. One of the genes,

BvWD40-82, was found to confer plant salt stress tolerance. The

result not only highlights the utility of gene functional analysis

informed by genome-wide informatics, but also provides important

resources for the community to further explore the roles of WD40

genes in crop stress resilience and yield.
Materials and methods

Identification of BvWD40 proteins in
sugar beet

The seed file for the WD40 domain was downloaded from the

InterPro database (www.ebi.ac.uk/interpro/entry/pfam/PF00400/).

A Hidden Markov Model (HMM) of WD40 domain was

constructed using the HMMER program (Mistry et al., 2013), and

the NCBI protein database of sugar beet (www.ncbi.nlm.nih.gov/

genome) was searched and compared. E-value was used to screen

candidate proteins (E-Value<0.05) and SMART (http://smart.embl-

heidelberg.de/) was used to verify and confirm that all the BvWD40

members contain the WD40 domain. The conserved motifs of

BvWD40s were predicted by the MEME program (meme-suite.

org/tools/meme). The domain and conserved motifs of BvWD40s

were visualized by TBtools (Chen et al., 2020). The theoretical

molecular weight and isoelectric point of each BvWD40 were

analyzed by using the Expasy tool (web.expasy.org/compute_pi/).
Phylogenetic analysis

The sequences of 177 BvWD40 proteins were downloaded from

the NCBI, and then multi-sequence alignment of the BvWD40s was

performed by the Clustal W (Larkin et al., 2007). The trimAl was
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http://www.ebi.ac.uk/interpro/entry/pfam/PF00400/
http://www.ncbi.nlm.nih.gov/genome
http://www.ncbi.nlm.nih.gov/genome
http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
http://meme-suite.org/tools/meme
http://meme-suite.org/tools/meme
https://web.expasy.org/compute_pi/
https://doi.org/10.3389/fpls.2023.1185440
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2023.1185440
used to trim the sequences (Capella-Gutiérrez et al., 2009). The

parameter was set as the fraction of sequences with allowed gaps of

0.8, the minimum average similarity of 0.001, and the minimum

percentage of positions retained in the original route of 80 percent.

The pruned files were imported into IQ-TREE 2 (Minh et al., 2020),

and the phylogenetic tree was established by the maximum

likelihood method with 1000 replicates of bootstrapping.
Gene structure, chromosomal location,
and gene duplication analysis of the
BvWD40 genes

The genome annotation file, coding sequence (CDS), and the

sequences of BvWD40 genes were downloaded from NCBI. The

gene structure pattern map of BvWD40s was obtained from the

GSDS website (gsds.gao-lab.org/). We used TBtools to map

BvWD40s chromosomal location information. Based on the

previous data (Li et al., 2014), we supplemented the Arabidopsis

WD40 genes with newly identified WD40 genes: AT1G05631.1,

AT1G51690.1, AT1G655801.1, AT2G31830.1, AT2G439001,

AT3G56990.1, and a total of 236 AtWD40s were obtained. The

collinearity relationship between BvWD40s and AtWD40s was

analyzed by MCScanX (Wang et al., 2012), and the collinearity

map of sugar beet and Arabidopsis was generated by Circos

(Krzywinski et al., 2009).
Interaction networking, expression
profiling, and gene ontology analysis

The BvWD40 proteins interaction network was obtained from

the String website (cn.string-db.org/) (Szklarczyk et al., 2015) and

visualized using the Cytoscape software (Shannon et al., 2003). The

RNA-seq data of B. vulgaris were downloaded from the NCBI SRA

database (Accession: PRJNA666117). The transcriptome data of the

BvM14 line under salt stress were generated and stored in the Li

laboratory. The expression profile of BvWD40 genes was used by

TBtools software. The basic data of gene ontology analysis were

obtained from the GO network database (geneontology.org/), and

GO annotation and enrichment of the BvWD40 genes were

performed using TBtools and visualized by an online tool

(www.bioinformatics.com.cn).
Plant materials and salt stress treatment

The BvM14 line is a monomeric additional line obtained by

crossing and backcrossing between diploid cultivated sugar beet and

tetraploid wild sugar beet, which was created and propagated by the

Li lab (Beta vulgaris L., VV+1C, 2n=18 + 1) (Li et al., 2022b). The

seeds were disinfected and cultured in a hydroponic system as

previously reported (Ma et al., 2017; Ji et al., 2019). After growing to

the third pair of fully expanded leaves, leaves and roots were

sampled to extract total RNA using the TRIzol method (Meng

and Feldman, 2010). Three biological replicates were conducted.
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Primer 3 plus (www.primer3plus.com) was used to design specific

primers, and 18sRNA was used as the reference. qRT-PCR was

performed using SYBR, and the relative gene expression was

calculated using the 2-DDCt method (Schmittgen and Livak, 2008).

A. thaliana Columbia ecotype (Col-0) seeds were obtained from

the ABRC (abrc.org), and were germinated in 1/2 MS medium

under 300 µmol/m2 s light intensity, 14 h light and 10 h darkness.

After eight days, the seedlings were transferred to a new MS

medium (with or without 150 mM NaCl) for 7 days to further

screen transgenic plants, or observe their growth phenotypes under

salt stress. After soil and vermiculite were mixed at 2:1, and

sterilized at 180 °C in a dryer, the seeds were sowed in the mixed

soil. After 21 days of culture (relative humidity 65%-75%, 22 °C,

light 16 h/dark 8 h), the seedings were treated with 150 mM NaCl

salt stress, and three plants with consistent growth were selected

from each line for subsequent physiological/biochemical analyses

and RNA extraction.
Subcellular localization of the BvWD40-82
and generation of transgenetic lines

The BvWD40-82 gene was constructed in the pCAMVBIA2300-

35S-eYFP vector and its subcellular localization was observed by

laser scanning confocal microscopy (FV1200, Olympus). The

nucleotide sequence of AtUTP18, the homologous gene of the

BvWD40-82 gene in Arabidopsis, was obtained by NCBI online

BLASTN software. In order to construct utp18 mutation plants to

characterize the function of this gene, the online tool CRISPR-P2.0

(cbi.hzau.edu.cn/cgi-bin/CRISPR2/CRISPR) was used to select

appropriate targets and construct CRISPR/Cas9 vectors (pNGG2F

vector). After infecting the flowers of wild-type Arabidopsis, the

utp18 homozygous mutant line was obtained by Hygromycin B (30

mg/L) screening and TA clone sequencing. The BvWD40-82 gene

was constructed into the pCAMBIA1300-35S-3xFLAG vector, the

wild-type Arabidopsis and utp18 mutant lines were transformed by

floral infestation, and the seeds of each plant were collected and

placed in MS medium which contains Hygromycin B (30 mg/L),

and the seedlings with normal growth were placed in the soil for

culture after about ten days. The DNA and RNA from the leaves of

each transgenic plant were extracted after four weeks for DNA

verification and RT-PCR. The T3 generation homozygous

transgenic lines (Heterologous overexpression, OE#16, OE#17,

OE#18; Heterologous complementation, CO#1, CO#2, CO#5)

were used for further analysis.
Physiological and biochemical
index determination

Root length of each transgenic seedling and wild-type seedling

with or without 150 mM NaCl treatment in the MS medium was

determined. The dry weight and fresh weight (with or without 150

mM NaCl in the soil) were also analyzed. The MDA content, SOD

and POD enzyme activities were analyzed using previously

published methods (Ma et al., 2017; Ji et al., 2019); Betaine
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content was determined at 525 nm (Swarna et al., 2013); Na+, K+,

and Ca2+ contents were analyzed by a flame atomic absorption

method, as previously described (Gao et al., 2016).
Results

Identification of WD40 proteins in
sugar beet

A total of 177 BvWD40s were obtained by removing redundant

proteins and repetitive sequences. Based on the location of the

corresponding genes of these proteins on the nine chromosomes of

the sugar beet, they were named BvWD40-1 to BvWD40-177. In

silico analysis showed that the physicochemical properties and

sequence composition of the BvWD40 proteins varied largely,

e.g., the molecular weights (MW, 13.79-398.63 kDa) and

isoelectric points (pI, 4.25-9.67) spanned a wide range. The

sequence length of BvWD40s ranges from 126 to 3599 amino

acids , with an average length of 627.7 amino acids

(Supplementary Table 1). SMART indicated that the BvWD40s

contained 1 to 13 WD repeats.
Conservative domain and motif analysis
of BvWD40s

The results of protein structure analysis showed that all the

BvWD40 proteins contained the WD40 domain, and more than 35

additional functional domains in total (Supplementary Table 2).

Most (49) BvWD40s had six WD40 repeats, followed by seven

WD40 repeats in 43 BvWD40s. Thirty-six BvWD40s had their

WD40 domains at the C-terminus of their other domains. Except

for the WD40 domain, the frequency of the LisH domain was the

highest (12 BvWD40s). Studies have shown that the LisH domain

affects rice growth and reproduction (Gao et al., 2012), suggesting

that BvWD40 proteins with the LisH domain may also be involved

in similar processes. Various other domains were present but

infrequently, such as the ATG16 domain only in BvWD40-106

and the BCAS3 domain only in BvWD40-57 and BvWD40-64.

These two domains are involved in cell autophagy of yeast (Xiong

et al., 2018; Yamada and Schaap, 2021). The UTP15 domain (only

in BvWD40-20), was a component of the UtpA complex involved in

the assembly of small ribosomal subunits (Kornprobst et al., 2016).

However, the Arabidopsis AtMSI4 gene encoding a WD40 protein

contains six WD40 domains and a CAF1C domain, and may be

involved in nucleosome assembly, but some studies have shown that

AtMSI4 is involved in regulation of flowering in Arabidopsis

(Pazhouhandeh et al., 2011). As another example, the RNAi-

AtATG18a plants are more sensitive to salt and mannitol and

defective in autophagosome formation in Arabidopsis, it indicated

that AtATG18amay plays an important role in plant autophagy and

abiotic stress. It should be noted that the AtATG18a contains only

the WD40 domain (Liu et al., 2009).

We predicted 50 conserved motifs for 177 BvWD40s using the

MEME tool (Supplementary Figure 1), among which the most
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highly conserved motifs were Motif 1 (173 times), Motif 2 (171

times) and Motif 4 (171 times). The frequencies of tryptophan (W)

and aspartate (D) were the highest in Motif 1 and Motif 2, and the

frequencies of glutamate (G) and histidine (H) were the highest in

Motif 4, the results also showed that the amino acid composition of

the WD40 domain was quite different. Interestingly, some motifs

occur less frequently, such as Motif 6 (8 times) and Motif 18 (61

times), which have the WDxR motif (Supplementary Figure 2). The

WDxRmotifs are often found in DCAFs, which have been proposed

as substrate recruiting proteins for the E3 ubiquitin ligase complex

Cullin4-DDB1 (Mistry et al., 2020). In addition, previous studies

have shown that the WDxR motif of the DCAF WD40 domain in

plants is a critical motif for interacting with the DDB1 protein. It

may also be involved in a variety of plant developmental pathways

(Zhang et al., 2008).
Subfamily classification and
phylogenetic analysis

We divided the BvWD40 proteins into 13 subfamilies based

on their domain composition and the roles of different domains

in biological processes (Table 1). Subfamily A is the largest in

sugar beet with 108 members. It contains only the WD40 domain.

Subfamily I is the second largest family with 16 members that

contain LisH and IPPc domains associated with plant growth and

development. Other subfamilies also have functional domains

that play different key roles, such as ribosome synthesis,

ubiquitination, nucleosome assembly, and vesicle transport,

suggesting that BvWD40s may be master regulators in various

processes. The BvWD40 proteins were divided into 14 different

clusters (G1-G14) based on their sequence homology, among

which G1 has only 3 members and was the smallest cluster and

G14 was the largest cluster with 21 members (Figure 1). The

structure similarity of the members in each cluster is high, and

the composition and order of the conserved domain are

consistent (Supplementary Figure 1). It is worth noting that the

clusters are not the same as subfamilies, possibly due to the large

differences in amino acid composition of domains that maintain

similar functions.
Gene structure, chromosomal location,
and duplication of BvWD40 genes

The gene structure of the 177 BvWD40 genes was analyzed by

the GSDS software (Supplementary Figure 3). The number of exons

in the BvWD40s varied greatly. BvWD40-10 has 39 exons, while 10

BvWD40s have only one exon. On average, the BvWD40s have 10.8

exons and 9.8 introns.

Since 13 BvWD40s were not fully assembled, we mapped the

remaining 164 BvWD40s to the sugar beet chromosomes using

positional information. The BvWD40s were widely distributed on

the nine chromosomes (Figure 2). Chromosome 9 has 22, the

highest number of BvWD40s, while chromosome 3 and

chromosome 6 each has 15, the lowest number.
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FIGURE 1

Phylogenetic tree of the WD40 proteins from sugar beet. The phylogenetic tree was constructed using ClustalW, trimAl, and IQ-Tree software with
the maximum likelihood method and 1000 bootstrap replicates. Branch lines in different colors represented different groups (G1 to G14).
TABLE 1 Domain composition, function and size of the 13 subfamilies of 177 BvWD40s.

Subfamily Domain Role Number Reference

Subfamily A only WD40 domain Development, Abiotic 108 (Xu et al., 2019)

Subfamily B UTP15_C/UTP12/UTP13/UTP21/Sof1/NLE/BOP1NT domain Ribosome Biogenesis 10 (Barandun et al., 2018)

Subfamily C RING/UBOX/FBOX/Znf_C3H1/Znf_C2H2/ANAPC4/PFU and PUL domain Ubiquitination 12 (Stone et al., 2005)

Subfamily D Hira/CAF1C_H4-bd domain Nucleosome Assembly 6 (Tripathi et al., 2015)

Subfamily E DENN/Sec_16/Coatomer_WDAD/BEACH domain Vesicular Transport 10 (Steffens et al., 2017)

Subfamily F BCAS3/ATG16 domain Autophagy 3 (Yamada and Schaap, 2021)

Subfamily G PRP4/Pro_ismorase domain Protein Processing 2 (Ayadi et al., 1998)

Subfamily H Katanin_con80 domain Microtubule-Severing 2 (McNally et al., 2000)

Subfamily I BROMO/LisH/IPPc/Raptor_N domain Plant Development 16 (Gao et al., 2012)

Subfamily J Protein Kinase domain Protein Kinase 2 (Bheri et al., 2021)

Subfamily K zf_UDP and Cellulose_synt with Glyco_trans_2_3 domain Cellulose Synthesis 1 (Song et al., 2019)

Subfamily L Mcl1_mid domain Damage Survival 1 (Williams and McIntosh, 2005)

Subfamily M BING4CT(NUC141)/NUC153/DUF3337/PD40 domain Others 4
F
rontiers in Plan
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To study the occurrence of the WD40 genes in sugar beet and its

evolutionary relationship among different species, we plotted the

collinearity map of the WD40 genes in sugar beet and Arabidopsis

(Figure 3). The result showed that the BvWD40 genes had fewer

duplication events, only 4 pairs (BvWD40-34/BvWD40-141, BvWD40-

7/BvWD40-72, BvWD40-17/BvWD40-90, BvWD40-11/BvWD40-156)

were found. In contrast, Arabidopsis had 28 duplication events.

However, 58 pairs of duplication events existed between sugar beet

and Arabidopsis, more than the two species had on their own.
Gene ontology analysis of BvWD40 genes

GO functional enrichment results showed (Figure 4C) that a

large number of BvWD40s were enriched in organ composition,

plant development process, regulation of biological processes,

catalytic activity, protein binding, signal transduction, nucleotide

binding, and other basic biological functions. In addition, a large

number of BvWD40s were enriched in response to stress such as

stimulus-response, heat response, and salt response.
Analysis of BvWD40 protein
interaction network

Weobtained the interaction network relationship of the BvWD40

proteins using the String. There were abundant interactions among

the BvWD40s (Figure 4A). A total of 167 proteins had 3337

interaction relationships, and 50 BvWD40s had more than 50
Frontiers in Plant Science 06
interaction relationships. BvWD40-175 may interact with 60% of

other BvWD40s (100 BvWD40s). It is a homolog of root initiation

defect protein 3 (RID3), which was involved in the apical meristem

(SAM) regeneration as a negative regulator of the CUC-STM

pathway (Tamaki et al., 2009). In order to obtain the interaction

network betweenWD40s and other proteins, we expanded the String

network node and found a total of 207 proteins with 4418

interactions. We conducted MCODE analysis on this network and

found a key network, which was composed of 53 BvWD40 proteins

and 6 non-BvWD40 proteins, with 1160 interactions (Figure 4B). In

the network, BvWD40-175 and Cullin4 were the BvWD40 and non-

WD40 protein with the most interactions (117 and 110 nodes,

respectively). Cullin-4 is the scaffold subunit of E3 ligase, which

binds to DDB1 and DCAF to play the role of E3 ligase. Some studies

have shown that the Arabidopsis DCAF protein ABD1 negatively

regulates abscisic acid signaling in Arabidopsis (Mistry et al., 2020).

The tomato DCAF protein DDI1 acts as a substrate receptor for

CUL4-DDB1 ubiquitin ligase and actively regulates abiotic stress

tolerance in tomato (Miao et al., 2014). It is speculated that BvWD40s

may interact with each other to participate in plant development and

growth. Most of them may be the substrates of Cullin-4 and may be

involved in abiotic stress responses.
Expression pattern of BvWD40 genes
under salt stress

To further explore the response of BvWD40 genes under salt

stress, we plotted the expression profile of all the BvWD40s in
FIGURE 2

Locations of BvWD40 genes on the sugar beet chromosome. According to the location information of the BvWD040s, BvWD40s was marked on
each chromosome of sugar beet. There was a number marker on the left side of each chromosome, the length was synchronized with the scale,
and the gene density was distributed according to the color (low density: blue, high density: red).
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cultivated B. vulgaris under salt stress (Supplementary Figure 4).

We studied the expression patterns of BvWD40s in two tissues at

different times under 200 mM, 300 mM or 400 mMNaCl treatment.

Between 12 h and 72 h under 300 mMNaCl treatment, there were a

large number of BvWD40s changed expression in leaves and roots.

The number of genes responding to salt stress in the roots reached

the maximum at 72 h (35 genes), and those in the leaf reached the

maximum at 24 h (39 genes). We found that six BvWD40s in the

roots and five BvWD40s in the leaves consistently responded to salt

stress for 12 to 72 hours. In the leaves of the BvM14 line, there were

most 49 BvWD40s responded to 200 mM salt stress and 32

BvWD40s responded to both 200 mM and 400 mM salt stress. In

the roots, there were most 92 BvWD40s responded to 200 mM salt

stress and 58 BvWD40s changed in response to salt stress at

different concentrations. In both tissues, 15 BvWD40s (BvWD40-

6, 11, 38, 44, 62, 66, 72, 82, 83, 87, 109, 126, 141, 152, and 162)

simultaneously responded to different concentrations of salt stress.

These results indicate that many BvWD40s in different tissues are

responsive to salt stress conditions. In different sugar beet lines,

there are unique and shared salt-stress responses of the BvWD40s at
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the spatiotemporal level. Clearly, many BvWD40s may play

important roles in sugar beet salt tolerance, and those unique to

the BvM14 and changed in both leaves and roots may possess high

value for biotechnological applications.
Cloning, tissue specific expression, and
subcellular localization of BvWD40-82

According to the expression analysis of BvWD40 genes, we

found that the BvWD40-82 gene was up-regulated in both the leaves

and roots of the BvM14 line under the 200 mM and 400 mM NaCl.

To the best of our knowledge, no previous studies on the salt

tolerance function of the BvWD40-82 were reported. Here we

c loned the BvWD40-82 gene f rom the BvM14 l ine

(Supplementary Figure 5). The tissue-specific expression analysis

showed that the expression level of the BvWD40-82 gene in leaves

was 12.3-fold higher than in roots (Figure 5A). GFP imaging

showed that BvWD40-82 protein was localized to the

nucleus (Figure 5B).
FIGURE 3

Collinearity analysis of the WD40 genes in sugar beet and Arabidopsis. The sugar beet and Arabidopsis chromosomes were indicated by the orange
and purple block, respectively. Grey lines indicate all existing genes for a linear relationship, the blue line represents the sugar beet with collinearity
of WD40 genes, the red line represents the Arabidopsis have collinearity of WD40 genes, the green line represents sugar beet and Arabidopsis have
collinearity WD40 genes.
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Generation of BvWD40-82 CRISPR mutant
and overexpression transgenic Arabidopsis

For functional characterization, we identified the most

homologous gene of BvWD40-82 in A. thaliana, AtUTP18

(AT5G14050). Due to the lack of AtUTP18 mutants in public

repositories, we generated a mutant of AtUTP18 using a CRISPR/

Cas9 method (Pawluk et al., 2016). Sequencing results showed that

the utp18 mutant had a single peak indicative of an inserted

thymine at 872 bp of the CDS of the AtUTP18 gene (only one
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exon), causing a frameshift mutation and termination at 879 bp

(knockout, KO) (Supplementary Figure 5). In addition, we have also

created BvWD40-82 overexpression (OE) Arabidopsis and

complementation line of the utp18 mutant (CO). Genotyping and

RT-PCR results showed that the BvWD40-82 gene was detected at

the DNA group level and RNA level in OE and CO, but not in WT

and KO, and AtUTP18 was knocked out in KO (Supplementary

Figure 5). The results proved that transgenic plants and the

knockout mutant are reliable and can be used for subsequent

functional analysis.
A

B

C

FIGURE 4

Interaction network of BvWD40 proteins and GO analysis of BvWD40 genes. (A) Interaction network among the BvWD40s. (B) Network of
interactions between BvWD40s and other proteins. In both images, the sphere size and fill color represent the number of nodes (yellow – dark
purple: 1-100), and the line color represents the Combined Score (light green - light blue: 0.4-1) calculated from the String tool. (C) BvWD40 genes
ontology analysis, where the abscissa represents the GO item, the ordinate represents the number of genes enriched in GO, with BP, CC and MF
representing the biological process, cell composition, and molecular function, respectively.
A B

FIGURE 5

Tissue specificity analysis of BvWD40-82 gene and subcellular localization of BvWD40-82 protein. (A) qRT-PCR analysis of BvWD40-82 expression
levels in different tissues, using 18sRNA gene as the reference gene, the data are the mean ± SD (n = 3), ** represents the chi-square test at p<0.01
significant difference. (B) Subcellular localization of BvWD40-82 protein in tobacco with 35S::eYFP as blank control.
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Phenotypic analysis of transgenic plants,
WT and KO under salt stress

The roots of OE and CO lines were longer than those of WT and

KO under both the control and salt treatment conditions. These results

indicate that the BvWD40-82 gene could promote the root growth of

plants at the seedling stage, and at the same time, increase the tolerance

of plants to salt stress by promoting root growth (Figures 6A, B).

Surprisingly, the KO and WT exhibited similar root growth under the

control and salt stress conditions. This may be attributed to potentially

redundant functions of AtUTP18 homologs in the Arabidopsis roots.

In contrast to the early seedling stage of Arabidopsis, at the rosette

stage the growth parameters (fresh weight (FW) and dry weight

(DW)) of the mutant line showed significant differences from the

WT and transgenic lines. The leaves of the KO line withered the most,

and showed a stress-related black-purple color (Figure 6C), while the

FW and DW of WT, OE and CO lines were higher than the mutant

line under both the control and salt stress conditions (Figure 6D).

Compared to WT plants, the FW and DW of OE and CO lines were

significantly higher (Figure 6D). These results showed that BvWD40-

82 may increase the biomass of transgenic lines under salt stress.
Physiological, biochemical and salt-stress
gene expression analyses

In addition to growth phenotypes, here we profi le

physiological and biochemical changes, as well as salt-stress
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responsive pathways in the transgenic, WT and CO plants.

There were no significant differences in Ca2+ contents and K+/

Na+ content ratios between the transgenic lines (Figures 7A, B),

WT, and KO lines under control. Under salt stress, the Ca2+

contents and K+/Na+ ratios of the OE lines and CO lines were

significantly higher than those of WT and KO lines. Under

control, the MDA and betaine contents in the WT and KO did

not show significant differences (Figures 7C, D). Under salt stress,

the MDA contents of the OE and CO lines were significantly

lower than those of the WT and KO, and the differences of

betaine contents were opposite to those of the MDA in the

different plants. Under control, the SOD and POD activities of

the transgenic lines, WT and KO lines were not significantly

different. Under the salt stress, the SOD and POD activities of OE

lines and CO lines were significantly higher than those of WT and

KO plants (Figures 7E, F).

To test the potential salt-stress response pathways affected by

the BvWD40-82 gene in plant response to salt stress, we selected the

salt-overly-sensitive (SOS) pathway and ABA pathway and

measured the expression levels of key genes in the pathways.

Under control, the expression levels of relevant genes in each line

were similar, while under salt stress the expression levels of SOS

pathway-related genes SOS1, SOS2, and SOS3 (Figure 8A) in OE

lines and CO lines were significantly higher than those of the WT

and KO lines. With the exception of PYL6, the expression levels of

PYL4 and PYL5 in the ABA pathway-related genes were induced by

salt stress, and they were significantly higher in the OE and CO lines

than those in the WT and KO (Figure 8B).
A B

DC

FIGURE 6

Phenotype analysis of BvWD40-82 gene in Arabidopsis salt tolerance. (A, B), Root length analysis of transgenic Arabidopsis seedlings before and
after salt treatment. (C, D). Comparison of growth status, fresh weight, and dry weight of transgenic Arabidopsis before and after salt treatment. OE
represents overexpression lines, CO represents complementation lines, KO represents knockout mutant, and WT represents wild-type plants.
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A B

FIGURE 8

Gene expression analysis of potential BvWD40-82 mediated salt stress pathways. (A) SOS-related pathway expression analysis. (B) ABA-related
pathway expression analysis. Lowercase letters indicate significant difference between different groups.
A B

DC

FE

FIGURE 7

Physiological and biochemical analyses of different plants including OE, CO, KO and WT. (A-F). The Ca2+ content, K+/Na+ content ratio, MDA
content, betaine, SOD, and POD enzyme activity of each plant. Lowercase letters indicate significant difference between different groups.
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Discussion

Evolution of the WD40 protein family in
sugar beet

Sugar beet is an important sugar crop in the world and salt

stress can seriously compromise its yield. Therefore, the specific

roles of WD40 protein in sugar beet and whether WD40 protein

affects its salt tolerance and yield remain to be investigated. In this

study, bioinformatics tools and public databases were used to

conduct a whole genome analysis of the WD40 protein family in

sugar beet. A total of 177 BvWD40s were obtained, and the number

was smaller than most plant WD40 protein families, such as rice

(Ouyang et al., 2012), cucumber, and Arabidopsis (Li et al., 2014).

Although their genome sizes are smaller than sugar beet, they have

more WD40 proteins. Previous studies have shown that duplication

events are the main reason for the large family size (Cannon et al.,

2004). Thus, it may be logical to deduce that the sugar beet genome

had fewer duplication events than those three species

(Supplementary Figure 6). The topological structure of the

evolutionary tree divided the BvWD40 proteins into 14 groups.

The composition of the domains in the same group was similar,

indicating that the closely related BvWD40s may have redundant or

cooperative functions (Feng et al., 2019). The phylogenetic tree also

reflects the differences in physicochemical properties of BvWD40s,

which are similar to WD40 proteins in other species (Sun et al.,

2020; Chen et al., 2023).

To explore the evolutionary relationship between WD40 genes,

Arabidopsis WD40 genes and sugar beet WD40 genes were used to

construct a collinearity map. In both sugar beet and Arabidopsis,

only a small amount of WD40 genes is produced by duplication

events (4 pairs and 28 pairs, respectively), while mostWD genes did

not undergo gene duplication events, indicating that WD40 is a

relatively old gene family. It also indicated that the WD40 genes

were present before the differentiation between sugar beet and

Arabidopsis, and has a certain diversity due to a series of

duplication events after differentiation (Yang et al., 2020). This

result is consistent with the results of other studies (Ouyang et al.,

2012; Hu et al., 2018).
The BvWD40 genes are involved in many
biological processes

To further investigate the possible function of BvWD40

proteins in sugar beet, its gene ontology (GO) was annotated. GO

annotation and enrichment results indicate that the functions of

BvWD40s were diverse, including response to salt stress. The

enrichment results were similar to those of potato (Tao et al.,

2019), barley (Chen et al., 2023), cotton (Salih et al., 2018), and rose

(Sun et al., 2020), indicating species conservation. Functions in

plant development, ubiquitination, organ composition, microtubule

cleavage, signal transduction, protein binding, nucleotide binding,

stimulation response, and other biological functions were enriched,

indicating the functional diversity of the WD40 genes. Compared

withWD40 genes of other species, a large number of BvWD40s were
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enriched in heat response, salt response, as well as in raffinose

synthesis and inositol synthesis. Accumulation of raffinose was

reported to contribute to the salt tolerance of sugar beet (Naguib

et al., 2021), and Populus inositol transporter gene PtINT1b can

enhance the salt tolerance of the transgenic plants (Zhang et al.,

2023). Thus, BvWD40s may have a unique role in salt stress

tolerance. Other enriched functions of BvWD40s also showed

correlation with salt stress, such as peroxisome biogenesis, TOR

signal transduction, MAPK complex, Katanin complex, RNA

binding, autophagy, and ubiquitination. Previous studies have

shown that OsPEX11, a peroxisome biogenesis factor in rice,

contributes to salt stress tolerance in rice (Cui et al., 2016), TOR

signaling is necessary during plant stress (Haq et al., 2022), and

MAPK can mediate salt stress signal transduction in plants (Wu

et al., 2023). AtKATANIN1, which encodes a microtubule cutting

protein, regulates microtubule depolymerization in response to salt

stress in Arabidopsis (Yang et al., 2019). OsRGG1, a gene coding for

a g subunit of G protein, promotes salt tolerance in rice by

promoting ROS removal (Swain et al., 2017). An RNA binding

protein MUG13.4 can interact with AtAGO2, and the MUG13.4-

AtAGO2 complex plays an important role in the salt tolerance of

Arabidopsis (Wang et al., 2019). Previous reports have also shown

that autophagy plays an important role in plants coping with

adversity, and plants adapt to environmental stresses by selective

protein degradation through ubiquitination (Xu and Xue, 2019;

Raffeiner et al., 2023). The GO results of BvWD40 proteins are

exciting, and consistent with other studies (Sun et al., 2020; Chen

et al., 2023). They not only show the potential functional diversity of

the BvWD40 proteins, but also provide important insight into

understanding the roles of the BvWD40 proteins in sugar beet

salt tolerance.
Subfamily classification supporting the
role of BvWD40s in salt stress response
and tolerance

It has been widely recognized that the protein domains are

highly correlative to their functions (Lees et al., 2016). Therefore,

studying the domain compositions of the BvWD40 proteins has

potential in predicting their functions and generating testable

hypotheses. In this study, 177 BvWD40s were divided into 13

subfamilies according to the composition of their domains. It was

noted that subfamily C possesses typical ubiquitination domains

such as UBOX, FBOX and RING, indicating involvement in

ubiquitination. Previous studies have shown that a soybean

GmPUB21 containing UBOX domain negatively regulates

drought and salt stress tolerance in soybean (Yang et al., 2022).

The RING zinc finger protein with RING domain as an E3 ligase

plays an important role in plant growth and abiotic stress tolerance

(Han et al., 2022). In addition, AtSDR containing FBOX domain is

involved in abiotic stress in Arabidopsis (Li et al., 2022a). Ten

BvWD40s were found to contain ubiquitination domains in sugar

beet. We hypothesized that these BvWD40s may play a role in

abiotic stress tolerance through the activities of proteasomes. It was

also noted that subfamily K has only one member, annotated as
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cellulose synthesis based on its domain function. Plants under salt

stress may cope with the damage caused by salt stress by regulating

the synthesis and deposition of cell wall (Dabravolski and

Isayenkov, 2023). In addition, subfamily A has the largest number

of BvWD40s, and previous reports have confirmed that the WD40

protein containing only the WD40 domain positively responds to

salt stress in plants. For example, mango MiTTG1 coding WD40

protein plays an important role in promoting the development of

root length and root hair, and the transgenic line has a stronger

ability to adapt to salt and drought stresses (Tan et al., 2021). An

LbTTG1 of L. bicolor can promote the growth of Arabidopsis

trichome and actively exudate salt through salt glands to enhance

the plant tolerance to salt stress (Yuan et al., 2019). Overexpression

of TaWD40D could increase the expression of genes related to the

SOS pathway in transgenic plants under salt stress, thus enhancing

the tolerance of wheat to salt stress (Kong et al., 2015), and

GbLWD1-like gene in Ginkgo biloba can improve the growth of

transgenic poplar and increase the expression of salt-stress-related

transcription factors, thus improving the salt tolerance of transgenic

poplar (Xin et al., 2021). Overexpression of another OsABT gene

improved rice salt stress tolerance through preventing excessive

ROS accumulation, increasing intracellular K+/Na+, decreasing

ABA synthesis, and activating ABA responsive gene expression

and ABA signaling pathway (Wen et al., 2022).The WD40 protein

REBC in quinoa is involved in the formation of epidermal bladder

cells, and mutation of REBC led to salt stress sensitivity (Imamura

et al., 2020). Different subfamily members with different domains

may participate in multiple biological functions. Studies on some

domains indicate that they may also be associated with salt stress,

while studies on members of subfamily A indicate that this

subfamily has a higher correlation with salt stress than other

subfamilies. These results support that BvWD40 proteins may

play a key role in plant salt stress tolerance.
BvWD40-82 enhanced salt tolerance in
transgenic Arabidopsis

BvM14 line is an excellent germplasm resource independently

created in Profession Li’s laboratory. It grows normally under high

salt concentration, while the cultivated sugar beet cannot. At present,

some excellent salt tolerance genes have been isolated from the

BvM14 line, and they are considered to be important biomarkers for

salt tolerance of sugar beet (Ma et al., 2017; Ji et al., 2019). However,

no WD40-related genes have been characterized to be related to the

salt tolerance of sugar beet. First, expression analysis of the

BvWD40s under salt stress showed that a large number of

BvWD40s responded to different concentrations of salt stress in

different tissues of sugar beet, and BvWD40-82 had a significant

response. Second, the BvWD40-82 contains only the WD40 domain,

and belong to subfamily A, indicating that the BvWD40-82 may be

involved in plant salt tolerance. Therefore, BvWD40-82 was cloned

for functional studies using reverse genetics in Arabidopsis. Under

salt stress, MDA can be increased significantly under salt stress, thus

damaging the cell membranes (Liu et al., 2023a). The BvWD40-82

gene can promote root growth of the BvWD40-82 transgenic plants,
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reduce the accumulation of MDA under salt stress, thereby reducing

the plant damage under salt stress, and improve the accumulation of

betaine in transgenic plants to maintain the osmotic pressure of

plant cells (Annunziata et al., 2019). Third, heterologous

overexpression and complementation of the BvWD40-82 gene

promoted Na+ efflux and inhibited K+ efflux, maintained a high

K+/Na+ ratio, increase Ca2+ content, and improved plant salt

tolerance (Zhao et al., 2021; Liu et al., 2023b). Fourth, BvWD40-82

positively regulated SOD and POD activities under salt stress, thus

maintaining the ROS homeostasis in plants (Yang and Guo, 2018).

Additionally, under salt stress, the BvWD40-82 enhanced salt

tolerance through regulating the SOS signal pathways related-gene

expression, activated the Na+/H+ transport channels and K+ intake

(Xu et al., 2023), and increased the expression of ABA receptor genes

(PYL4, PYL5) in the ABA signaling pathway (Wen et al., 2022).

Functional characterization of BvWD40-82 clearly showed that the

BvWD40-82 played an important role in plant response to salt stress.

It can improve the salt tolerance of Arabidopsis. However, further

investigation is needed to elucidate the molecular mechanisms

underlying the BvWD40-82 function in plant salt tolerance.
Conclusion

This study identified 177 BvWD40 proteins from the sugar beet

genome and described their gene and protein structures,

chromosome distribution, and evolutionary characteristics. The

response of BvWD40s to salt stress was characterized and a

potential salt tolerance gene BvWD40-82 was isolated. The

functions of the BvWD40-82 gene in salt tolerance were studied

through a series of molecular, physiological and biochemical analyses.

The BvWD40-82 gene can improve the salt tolerance of transgenic

plants by increasing the contents of osmolytes and antioxidant

enzyme activities, maintaining intracellular ion homeostasis and

increasing the expression of genes related to SOS and ABA

pathways. This study revealed the important role of BvWD40s in

the response to salt stress in sugar beet and provided a theoretical

basis for improving sugar beet tolerance to salt stress, and the

BvWD40s may also serve as important resources for the genetic

breeding of other crops.
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