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Effects of AMF inoculation
on the eco-physiological
characteristics of Imperata
cylindrica under differing
soil nitrogen conditions

Tong Jia1*, Yue Zhang1, Yushan Yao1, Yu Wang1, Xueli Liang1,
Mengyao Zheng1, Lijuan Zhao2 and Baofeng Chai1

1Shanxi Laboratory for Yellow River, Shanxi Key Laboratory of Ecological Restoration on Loess
Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China, 2School of Chemistry, Xi’an
Jiaotong University, Xi’an, China
Arbuscular mycorrhizal fungi (AMF) play a key role in terrestrial ecosystems, while

the ecological restoration application of AMF in mining areas has been

progressively gaining attention. This study simulated a low nitrogen (N)

environment in copper tailings mining soil to explore inoculative effects of four

AMF species on the eco-physiological characteristics of Imperata cylindrica, and

provided plant-microbial symbiote with excellent resistance to copper tailings.

Results show that N, soil type, AMF species, and associated interactions

significantly affected ammonium (NH   +
4 ), nitrate nitrogen (NO   −

3 ), and total

nitrogen (TN) content and photosynthetic characteristics of I. cylindrica.

Additionally, interactions between soil type and AMF species significantly

affected the biomass, plant height, and tiller number of I. cylindrica.

Rhizophagus irregularis and Glomus claroideun significantly increased TN and

NH   +
4 content in the belowground components I. cylindrica in non-mineralized

sand. Moreover, the inoculation of these two fungi species significantly increased

belowground NH   +
4 content in mineralized sand. The net photosynthetic rate

positively correlated to aboveground total carbon (TC) and TN content under the

high N and non-mineralized sand treatment. Moreover, Glomus claroideun and

Glomus etunicatum inoculation significantly increased both net photosynthetic

and water utilization rates, while F. mosseae inoculation significantly increased

the transpiration rate under the low N treatment. Additionally, aboveground total

sulfur (TS) content positively correlated to the intercellular carbon dioxide (CO2)

concentration, stomatal conductance, and the transpiration rate under the low N

sand treatment. Furthermore, G. claroideun, G. etunicatum, and F. mosseae

inoculation significantly increased aboveground NH   +
4 and belowground TC

content of I. cylindrica, while G. etunicatum significantly increased

belowground NH   +
4 content. Average membership function values of all

physiological and ecological I. cylindrica indexes infected with AMF species

were higher compared to the control group, while corresponding values of I.

cylindrica inoculated with G. claroideun were highest overall. Finally,

comprehensive evaluation coefficients were highest under both the low N and
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high N mineralized sand treatments. This study provides information on

microbial resources and plant-microbe symbionts in a copper tailings area,

while aiming to improve current nutrient-poor soil conditions and ecological

restoration efficiency in copper tailings areas.
KEYWORDS

arbuscular mycorrhizal fungi, inoculation, eco-physiological characteristics,
membership functions, copper tailings areas
1 Introduction

Arbuscular mycorrhizal fungi (AMF) are the most widely

distributed endophytic and mycorrhiza fungal group and the key

microbes which affect terrestrial ecosystems (Gao et al., 2022).

Studies have shown that different AMF communities can utilize

different soil spatial resources, leading to host plant resource niche

differentiation (Li, 2021). AMF can also improve plant stress

resistance, which effectively enhances plant resistance to disease,

drought, waterlogging, salt and alkali content, heavy metals, weeds,

and high and low temperatures (Rivero et al., 2018; Li et al., 2019;

Wang et al., 2020; Han et al., 2022; Zhu et al., 2022). Moreover,

AMF promotes the nutrient absorption and water-use efficiency of

host plants, improves their photosynthetic and osmoregulatory

capacity, and contributes to improvements of their antioxidant

capacity and drought resistance (Estrada et al., 2013; Han et al.,

2022). Furthermore, AMF can directly or indirectly improve the

stress resistance of host plants in many aspects. For example, AMF

can improve plant water absorption, which would otherwise be

difficult for root systems to absorb through their mycelial networks,

while improving the overall water and nutritional status of plants,

being instrumental in their nutritional status under stress. Through

means of regulating soil microecology in the rhizosphere via

improvements in soil organic matter (SOM) and microbial levels

(Kong, 2021), exogenous mycelia can promote water absorption

and regulate the transmission of plant root chemical signals (Green

et al., 1998). This subsequently promotes the rapid transmission of

water and nutrients to aboveground plant components, reduces

stomatal conductance and transpiration rates, improves the

photosynthetic capacity of plants, and regulates the osmotic

capacity of plants to better cope with drought (Zhu et al., 2015).

Moreover, damage to the cytoplasmic membrane can be alleviated

by regulating the ion balance of plant cells under stress (Cao

et al., 2015).

Symbiosis between plant roots and AMF can help improve

plant nitrogen (N) and phosphorus (P) absorption efficiency (Zhou

et al., 2021). AMF can symbiotically secrete various enzymes (Saia

et al., 2014) and organic acids (Tawaraya et al., 2006) with plants to

promote availability of P and N (as well as other nutrient) in soil.

Moreover, AMF can help symbionts to form mycelial networks and

bridges between plants (Whitfield, 2007). The vast surface area of

mycelia can also effectively improve plant and soil interactions and
02
promote root activity (Balogh-Brunstad et al., 2008). Mycelial

bridges can directly transfer N that will subsequently be directly

absorbed into the host root system. This can also affect N

redistribution (Govindarajulu et al., 2005). Additionally, AMF can

alter species composition and productivity under N application

practices while increasing the relative abundance and aboveground

biomass of plants (Zhang et al., 2016).

The role that AMF play is important for host plant photosynthetic

processes (Xu, 2021). Studies have shown that AMF inoculation can

effectively improve the photosynthetic capacity and carbon (C)

assimilation efficiency of plants under drought stress (Metwally et al.,

2019; Ye et al., 2022). Additionally, AMF can significantly increase the

net photosynthetic rate of host plants, increase dry matter

accumulation in plants, and enhanced plant drought resistance.

Currently, it remains unclear how AMF affect photosynthetic plant

processes (Xu, 2017). According to Huang et al. (2011), AMF mainly

improves the nutrient absorption of host plants, which in turn helps

promote the accumulation of sufficient amounts of N and P for

effective photosynthesis. Additionally, Ludwig-Miiller (2010)

reported that AMF inoculation may affect hormone (i.e., abscisic

acid [ABA]) levels of host plants that regulate stomatal conductance,

thus impacting photosynthetic efficiency (Ludwig-Miiller, 2010).

Additionally, AMF species differ regarding their effect on eco-

physiological host characteristics. One study found that Rhizoglomus

aggregatum, Glomus etunicatum, Glomus claroideun, and

Funneliformis constrictus can improve plant growth and

photosynthesis (Wang et al., 2022). Among these, R. aggregatum

plays a dominant role in promoting seedling height and G.

etunicatum and G. claroideun play a dominant role in promoting

root regeneration. Moreover, R. aggregatum, G. etunicatum, and G.

claroideun canmaximize the net photosynthetic rates of plants. On the

other hand, F. mosseae can effectively alleviate a decline in the

photosynthetic capacity of host plants under stress conditions

(Wang et al., 2022).

Technological-based AMF approaches used in the ecological

restoration of mining areas have gradually been gaining attention in

recent years due to their low cost and high efficiency (Bi and Xie,

2021). For example, AMF can be used to increase vegetation

survival rates while improving land reclamation efficiency (Druille

et al., 2013; Hao et al., 2014). AMF not only have a positive effect on

plant nutrient absorption and enzyme activities, but also can

enhance the stability of soil aggregates, improve soil permeability
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and water retention, and boost overall soil quality (Yang et al., 2016;

Choi et al., 2018). The Zhongtiao Mountains copper mining region,

Shanxi Province, is North China’s largest, producing 7 million tons

of copper annually. It is the largest non-coal underground mining

area in China. This mining region produces vast amounts of copper

tailings, resulting in severe pollution and damage to the local

ecological environment. Previous studies have reported that

nutrient levels are low in copper tailings ore. Imperata cylindrica

is the dominant grass species in this region, and may form a

symbiotic relationship with AMF during phytoremediation (Jia

et al., 2022). Based on this hypothesis, we simulated the low N

conditions of this copper tailings region to explore how four

different AMF inoculation species types will affect the eco-

physiological characteristics of I. cylindrica. For this study, we

screened out plant-microbial symbiont strains to improve

resistance in copper tailings areas, to enhance the status quo of

nutrient scarcity, and to increase the efficiency of ecological

restoration in copper tailings areas.
2 Materials and methods

2.1 Experimental material

The plant selected for this study (I. cylindrica) is a perennial

herbaceous cogon grass species with a glabrous, erect stem that

grows up to 80 cm tall. Prior to the study, I. cylindrica seeds were

soaked in 10% hydrogen peroxide (H2O2) for 10 min before being

rinsed several times with sterile water to kill miscellaneous bacteria

on the seed surface (Zhang et al., 2015). The seeds of I. cylindrica

were provide by Clover (Beijing) Ecological Technology Co., Ltd.

Four AMF species were used in this study: Glomus claroideun (GC),

Glomus etunicatum (GE), Rhizophagus irregularis (RI), and

Funneliformis mosseae (FM). These AMF species originally

provided by the Institute of Plant Nutrition and Resources,

Beijing Academy of Agriculture and Forestry Sciences. Sorghum

was used for strain propagation under greenhouse conditions. The

soil types used for this study were typical river sand (i.e., here

referred to as non-mineralized sand) and sand obtained from the

copper tailings area (i.e., here referred to as mineralized sand).

Impurities such as large stones and leaf detritus were removed using

a 2 mm sieve and then autoclaved to eliminate any mycorrhizal

fungi (or other microbe) influence in the soil samples.
2.2 Experiment design

A 2×5×2 completely randomized three-factor block design was

used for the experiment. The first factor was the soil matrix itself:

sand from the copper tailings area (i.e., mineralized sand) and sand

obtained from a typical river system (i.e., non-mineralized sand). The

second factor was the four AMF inocula (i.e., GC, GE, RI, FM),

including a control where no inoculant was used. The third factor was

the nutrient treatments, namely, the low nitrogen (LN) treatment

and the high nitrogen (HN) treatment. Each treatment was replicated

fivefold (i.e., 100 pots in total). Urea was used for N inoculation.
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Compared to the LN group, the amount of inoculum in the HN

group was greater by a factor of 10, which was in accordance with the

lowest N content measured in copper tailings dam (Xin et al., 2016).

The nutrient solution was in the form of a Hoagland solution.

The sterilized matrix was weighed in a plastic pot (21 cm ×

12 cm) filled to two-thirds of the way. The AMF inoculant (100 g)

was added to the AMF treatment and then spread onto a sterilized

matrix. The same amount of sterilized inoculant was added to the

treatment where no inoculant was added (i.e., the control) before

being covered with the sterilized matrix (2 cm). In total, 30 I.

cylindrica seeds were sowed in each pot. After one month growth,

the I. cylindrica seedlings were thinned to 15 in each pot. We

randomly altered the position of each pot every two weeks under a

three-month planting cycle in greenhouse, which was set to a

temperature of 20°C at night, 25°C during the day and 50%

moisture under natural light.
2.3 Characteristics of I. cylindrica plant
growth and infection

Plant height and tiller number were measured at harvest time.

Plant specimens were first oven-dried at 105°C for 30 min, and then

further oven-dried at 65°C to a constant weight for biomass

determination. Additionally, I. cylindrica roots were washed with

clean water, immersed in a 10% potassium hydroxide (KOH)

solution, and treated in a 90°C water bath for 1 h. Root samples

were treated in a hydrochloric acid (HCl) solution for 3–5 min after

allowing to cool and then washed with distilled water to remove

pigments. Roots were sectioned into approximately 1 cm segments,

stained with 0.05% Aniline Blue WS, treated in a 90°C water bath

for 30 min, washed with clean water, and finally placed under a

microscope for observation, where plant mycorrhizal infection rates

were calculated (Liu et al., 2015). Equation (1) was used to calculate

the mycorrhizal infection rate (MIR):

MIR = NS=TNS� 100 (1)

MIR denotes the root mycorrhizal infection rate (%); NS

denotes the number of mycorrhizal segments; TNS denotes the

total number of root segments.

Spore density was measured through the wet sieving and sucrose

gradient centrifugation procedures and was expressed as the number

of AMF spores isolated from 100 g of air-dried soil (Ren, 2017).
2.4 Aboveground and belowground
nutrient measurements

Oven-dried plant samples were ground using a ball mill. Following

this, total carbon (STC), total nitrogen (STN), and total sulfur (STS)

contentwithin abovegroundplant components and total carbon (RTC),

total nitrogen (RTN), and total sulfur (RTS) content in belowground

plant components were measured using an elemental analyzer (vario

MACRO cube, Germany). Ammonium (NH +
4 ) and nitrate nitrogen

(NO −
3 ) were measured using an automated discontinuous chemical

analyzer (DeChem-Tech, CleverChem380, Germany).
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2.5 Photosynthetic pigment measurements

To measure photosynthetic pigments, we weighed leaf material

(0.5 g) before soaking it in a 20 mL mixed solution, with a 1:1

acetone to ethanol ratio. Absorbance was measured at 663 nm, 645

nm, 440 nm, 644 nm, and 662 nm using a microplate reader after

seven days under darkened conditions. Following this, the

photosynthetic pigment content was calculated using equations

(2), (3), (4), and (5):

Chlorophyll a content(mg=g)

= (12:7A663nm − 2:69A645nm) ∗V=(1000w) (2)

Chlorophyll b content(mg=g)

= (22:9A645nm − 4:68A663nm)� V=(1000w) (3)

Total chlorophyll content(mg=g)

= (20:3A645nm − 8:03A663nm )� V=(1000w) (4)

Carotenoid content(mg=g)

= (4:7A440nm − 5:48A644nm − 1:38A662nm )� V=(1000w) (5)

where V represents the volume of the ethanol and acetone

mixed solution, and w represents the weight of the leaf material.
2.6 Photosynthetic characteristics
of I. cylindrica

Photosynthetic characteristics were measured using a

photosynthetic apparatus (i .e . , the CIRAS-3 Portable

Photosynthesis System) on a sunny day eight weeks after the plant

culture was first established. Light intensity was set at 1200 mmol/

(m2·s), and the temperature was set at 25°C. The first fully expanded

new leaves were selected for determination. Five replicates of each

treatment were made. The photosynthetic indexes used were the net

photosynthetic rate (Pn), the intercellular CO2 concentration (Ci),

stomatal conductance (Gs), water-use efficiency (WUE), water vapor

pressure deficit (VPD), and the transpiration rate (Tr).
2.7 Statistical analysis

SPSS.25 was used for statistical analysis. Duncan’s multiple

range test was used as a post hoc test to determine differences

between the different bacterial treatments. Origin 2021 was used to

visualize statistical results. Equation (6) was used to calculate the

membership functions (Jin et al., 2018):

Membership value = (x − xmin)=(xmax − xmin) (6)

where X is the measured value; Xmax is the maximum value;

Xmin is the minimum value. Membership function values were
Frontiers in Plant Science 04
collected and their average value was calculated for this

comprehensive evaluation.
3 Results

3.1 Plant growth and AMF infection

Results from Multi-Way ANOVA showed that belowground

biomass, aboveground biomass, plant height, and tiller number of I.

cylindrica were significantly affected by interactions between soil

type and AMF infection type. Moreover, N, soil type, and AMF

infection type all significantly affected I. cylindrica root infection

rates and tiller numbers (P< 0.05, Table 1). The mycorrhizal

infection rate of GE and RI inoculant in non-mineralized sand

was significantly higher compared to the LN and HN treatments.

The mycorrhizal infection rate of the GE inoculant under the HN

treatment was significantly higher compared to the LN treatment

(P< 0.05, Figure 1). Spore density of the four different AMF species

was significantly higher under the non-mineralized sand and the

HN treatment compared to the LN treatment (P< 0.05, Figure 1).

After GC inoculation, spore density was significantly higher under

the mineralized sand and the HN treatment compared to the LN

treatment (P< 0.05, Figure 1). AMF infection promoted the shoot

biomass in mineralized sand (P< 0.05, Figure 2).
3.2 Effects of AMF inoculation on I.
cylindrica characteristics

Results showed that N, soil type, AMF infection, and associated

interactions significantly affected NH +
4 , NO −

3 , and total nitrogen

(TN) content (P< 0.05, Tables 2, 3), which also significantly affected

below ground NO −
3 and TN content in I. cylindrica (P< 0.05,

Table 3). The FM inoculant under the LN treatment significantly

increased aboveground total carbon (TC) content in non-

mineralized sand (P< 0.05, Figure 3), while the RI inoculant

significantly increased belowground TN content (P< 0.05,

Figure 4). Moreover, the GE and FM inocula under the HN

treatment significantly increased the TN content of belowground

I. cylindrica components in mineralized sand (P< 0.05, Figure 4).

The GE inoculant under the HN treatment significantly increased

the TN content of aboveground I. cylindrica components in non-

mineralized sand (P< 0.05, Figure 3), while the FM inoculant under

the LN treatment significantly increased the corresponding TN

content in aboveground I. cylindrica components. The GC, GE, and

FM inocula under the LN treatment significantly increased the TC

content in belowground I. cylindrica components in mineralized

sand (P< 0.05, Figure 4). The GE inoculant under the HN treatment

significantly increased the NH +
4 content of aboveground I.

cylindrica components in mineralized sand (P< 0.05).

Furthermore, NH +
4 content in aboveground I. cylindrica

components under the LN treatment was significantly higher

compared to the control in mineralized sand (P< 0.05) (Figure 3).
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The GC inoculant in non-mineralized sand significantly

increased the NH +
4 content in belowground I. cylindrica

components (P< 0.05). The GC and RI inocula significantly

increased the NH +
4 content in belowground I. cylindrica

components in mineralized sand (P< 0.05). The GC inoculant
Frontiers in Plant Science 05
under the HN treatment significantly increased the NO−
3 content

in belowground I. cylindrica components (P< 0.05, Figure 4), while

the GE inoculant under the LN treatment significantly increased the

NH +
4 content in belowground I. cylindrica components in

mineralized sand (P< 0.05).
TABLE 1 Multi-way ANOVA of different nitrogen and AMF infection on plant growth and the infection characteristics of I. cylindrica.

Root
biomass

Shoot
biomass Plant height Tiller number Mycorrhizal infec-

tion
Spores
density

g g cm % spores/100g

F P F P F P F P F P F P

Nitrogen 1.123 0.292 2.704 0.104 8.067 0.006 4.760 0.032 16.105 <0.001 6.770 0.012

Soil Type 1.341 0.250 6.634 0.012 135.295 <0.001 82.645 <0.001 23.747 <0.001 0.376 0.542

AMF 0.563 0.690 1.615 0.179 2.114 0.087 5.103 0.001 3.752 0.015 0.968 0.414

Nitrogen × Soil Type 0.005 0.942 1.874 0.175 1.942 0.167 2.678 0.106 1.854 0.178 0.823 0.368

Nitrogen × AMF 0.432 0.785 1.177 0.327 0.621 0.649 1.269 0.289 2.630 0.058 1.191 0.320

Soil Type × AMF 2.867 0.028 3.569 0.010 11.598 <0.001 4.236 0.004 8.531 <0.001 0.788 0.505

Nitrogen × Soil Type × AMF 0.738 0.569 1.688 0.161 1.081 0.371 0.798 0.530 1.677 0.181 0.892 0.450
front
AMF represents the inoculation of a single arbuscular mycorrhizal fungus, and the bold number represents a significant impact (P<0.05). The symbol “×” represent the interaction.
A B

DC

FIGURE 1

Infection rate of I. cylindrica and spore density in non-mineralized sand (A, C) and mineralized sand (B, D). MIR is mycorrhizal infection rate. Different
lowercase letters representing AMF species and different nitrogen had significant effects on infection characteristics and spore density (P<0.05).
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3.3 Effects of AMF inoculation on
photosynthetic pigments and
photosynthetic characteristics
of I. cylindrica

AMF inoculation and associated interactions with

N significantly affected photosynthetic pigments of I. cylindrica

(P< 0.05, Table 4). AMF inoculation significantly increased the
Frontiers in Plant Science 06
chlorophyll a content of I. cylindrica under the LN treatment in

both mineralized and non-mineralized sand (P< 0.05) (Figure 5).

Furthermore, N, soil type, AMF infection, and associated

interactions significantly affected the photosynthetic rate, the

intercellular CO2 concentration, the transpiration rate, and the

water vapor pressure deficit of I. cylindrica (P< 0.05, Table 5).

AMF inoculation significantly increased the intercellular CO2

concentration of I. cylindrica in non-mineralized sand (P< 0.05,
A B

D

E F

G H

C

FIGURE 2

Effects of AMF inoculation on growth characteristics of I. cylindrica in non-mineralized sand (A–D) and mineralized sand (E–H). Different lowercase
letters represent significant differences (P< 0.05).
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Figure 6). The GE and RI inocula under the LN treatment

significantly increased the water vapor pressure deficit of I.

cylindrica in mineralized sand, while the FM inoculant under the

HN treatment significantly increased the water utilization rate of I.

cylindrica (P< 0.05, Figure 6). The GC and GE inocula under the

HN treatment significantly increased the net photosynthetic rate

and the water utilization rate of I. cylindrica in non-mineralized

sand, while the FM inoculant under the LN treatment significantly

increased the transpiration rate of I. cylindrica (P< 0.05, Figure 6).
3.4 Correlation analysis between
photosynthetic characteristics and
physicochemical properties of I. cylindrica

The net photosynthetic rate positively correlated with

aboveground TC and TN content (P< 0.05), while water-use
Frontiers in Plant Science 07
efficiency significantly and positively correlated with belowground

NH +
4 content (P< 0.05) under the HN treatment in non-

mineralized sand (Table 6). The transpiration rate significantly

and positively correlated with aboveground TC content,

aboveground TN content, and aboveground total sulfur (TS)

content under the LN treatment in non-mineralized sand (P<

0.05) (Table 6).

The net photosynthetic rate significantly and positively

correlated with aboveground NH  +
4 and TN content under the

HN treatment in mineralized sand (P< 0.05). The transpiration rate

positively correlated with aboveground NH +
4 content and

negatively correlated with aboveground TS content (P< 0.05)

(Table 6). The net photosynthetic rate significantly and negatively

correlated with NH +
4 and TN content in I. cylindrica under the LN

treatment in mineralized sand, while belowground TS content

significantly and positively correlated with Ci, Gs, and Tr (P<

0.05, Table 6).
TABLE 2 Multi-way ANOVA of different nitrogen treatments and AMF infection on aboveground nutrient characteristics of I cylindrica.

Shoot NH +
4 − N mg/kg Shoot NO −

3 − N mg/kg STS
%

STN
%

STC
%

F P F P F P F P F P

Nitrogen 65.427 <0.001 30.958 <0.001 40.277 <0.001 428.046 <0.001 56.421 <0.001

Soil Type 69.310 <0.001 19.566 <0.001 53.989 <0.001 33.864 <0.001 26.240 <0.001

AMF 16.280 <0.001 88.533 <0.001 57.376 <0.001 12.218 <0.001 6.120 <0.001

Nitrogen × Soil Type 15.646 <0.001 130.562 <0.001 3.301 0.073 17.584 <0.001 23.942 <0.001

Nitrogen × AMF 32.452 <0.001 62.753 <0.001 1.747 0.148 11.754 <0.001 6.506 <0.001

Soil Type × AMF 55.236 <0.001 30.309 <0.001 3.797 0.007 6.126 <0.001 11.772 <0.001

Nitrogen × Soil Type × AMF 4.447 0.003 89.467 <0.001 7.715 <0.001 22.965 <0.001 13.434 <0.001
frontie
STN is shoot total nitrogen; STC is shoot total carbon; STS is shoot total sulfur. The bold number represents a significant impact (P<0.05). The symbol “×” represent the interaction.
TABLE 3 Multi-way ANOVA of different nitrogen and AMF infection on underground nutrient characteristics of I cylindrica.

Root NH +
4 − N mg/kg Root NO −

3 − N mg/kg RTN
%

RTC
%

RTS
%

F P F P F P F P F P

Nitrogen 21.673 <0.001 44.884 <0.001 137.052 <0.001 0.786 0.378 4.796 0.031

Soil Type 213.215 <0.001 122.038 <0.001 190.628 <0.001 41.527 <0.001 5.888 0.017

AMF 24.852 <0.001 16.556 <0.001 119.735 <0.001 11.971 <0.001 147.249 <0.001

Nitrogen × Soil Type 1.597 0.210 27.301 <0.001 47.874 <0.001 1.117 0.294 1.769 0.187

Nitrogen × AMF 10.610 <0.001 18.839 <0.001 21.653 <0.001 5.690 <0.001 20.818 <0.001

Soil Type × AMF 11.310 <0.001 8.074 <0.001 71.608 <0.001 13.991 <0.001 82.224 <0.001

Nitrogen × Soil Type × AMF 11.880 <0.001 19.188 <0.001 6.224 <0.001 4.550 0.002 24.364 <0.001
RTN is root total nitrogen; RTC is root total carbon; RTS is root total sulfur. The bold number represents a significant impact (P<0.05). The symbol “×” represent the interaction.
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3.5 Membership function values and the
evaluation of physiological and
biochemical indexes of I. cylindrica

Membership function analysis is a method to comprehensively

evaluate material based on multiple indexes, which avoids any bias

based on a single index, evaluate each I. cylindrica index more

comprehensively, and allow test results to be more scientifically

based and reliable. This study comprehensively evaluated eco-

physiological characteristics of I. cylindrica based on a
Frontiers in Plant Science 08
photosynthetic index, a growth index, and aboveground and

belowground nutrient content. Larger coefficient values signify

better plant growth. Results showed that the average membership

function value of I. cylindrica under AMF inoculation was higher

than the control. The average membership function value of the GC

inoculant was highest, while the comprehensive evaluation

coefficient was highest under both the HN and LN treatments in

mineralized sand (Table 7). The average membership function value

of the RI inoculant was highest, while the average values of the

membership function growth index and the photosynthetic index of
A B

D
E

F G

I

H

J

C

FIGURE 3

Effects of AMF inoculation on aboveground nutrient characteristics of I. cylindric in non-mineralized sand (A–E) and mineralized sand (F–J). STN is
shoot total nitrogen, STC is shoot total carbon, STS is shoot total sulfur. Different lowercase letters represent significant differences (P< 0.05).
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FIGURE 4

Effects of AMF inoculation on underground nutrient characteristics of I. cylindric in non-mineralized sand (A–E) and mineralized sand (F–J). RTN is
root total nitrogen, RTC is root total carbon, RTS is root total sulfur. Different lowercase letters represent significant differences (P< 0.05).
TABLE 4 Multi-way ANOVA of different nitrogen treatments and AMF infection on the photosynthetic pigment content of I. cylindrica.

Chlorophyll a Chlorophyll b Carotenoid Total chlorophyll

mg/g mg/g mg/g mg/g

F P F P F P F P

Nitrogen 1.315 0.255 208.978 <0.001 137.668 <0.001 157.383 <0.001

Soil Type 0.950 0.333 1.737 0.191 4.111 0.046 2.708 0.104

AMF 11.118 <0.001 71.767 <0.001 44.263 <0.001 80.982 <0.001

Nitrogen × Soil Type 1.048 0.309 283.759 <0.001 259.311 <0.001 295.639 <0.001

(Continued)
F
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TABLE 4 Continued

Chlorophyll a Chlorophyll b Carotenoid Total chlorophyll

mg/g mg/g mg/g mg/g

F P F P F P F P

Nitrogen × AMF 6.914 <0.001 22.330 <0.001 22.960 <0.001 12.862 <0.001

Soil Type × AMF 0.954 0.437 51.663 <0.001 53.412 <0.001 32.170 <0.001

Nitrogen × Soil Type × AMF 0.378 0.824 28.710 <0.001 19.995 <0.001 58.185 <0.001
F
rontiers in Plant Science
 10
 fron
The bold number represents a significant impact (P< 0.05). The symbol “×” represent the interaction.
A B

D

E F

G H

C

FIGURE 5

Effect of AMF inoculation on photosynthetic pigment content of I. cylindric in non-mineralized sand (A–D) and mineralized sand (E–H). Different
lowercase letters represent significant differences (P< 0.05).
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the GE inoculant were highest under the LN treatment in non-

mineralized sand (Table 7).
4 Discussion and conclusions

AMF play a crucial role in plant nutrient absorption and stress

resistance (Zhang, 2013). Our study found that AMF species

significantly affected belowground and aboveground biomass,
Frontiers in Plant Science 11
tiller number, plant height, and mycorrhizal infection rates of I.

cylindrica, which was consistent with a previous study (Huang,

2020). This may be because the extraradical mycelium network of

AMF can penetrate areas inaccessible to plant roots, subsequently

expanding the area of nutrient absorption. Additionally, the

extraradical mycelium network can connect to the cortex of

plants to form arbuscular structures (Ge et al., 2020), which is

advantageous when water and mineral nutrients are transferred via

plant shoots for purposes of growth and metabolism, promoting
A B

D E F

G IH

J
K L

C

FIGURE 6

Effects of AMF inoculation on photosynthetic parameters of I. cylindric in non-mineralized sand (A–F) and mineralized sand (G–L). Ci is intercellular
CO2 concentration, Gs is stomatal conductance, VPD is vapor pressure deficit, Pn is net photosynthetic rate, Tr is evaporation rate, WUE is water use
efficiency. Different lowercase letters represent significant differences (P< 0.05).
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biomass accumulation (Ren et al., 2014; Zhang et al., 2018; Teng

et al., 2020). The mycorrhizal infection rate can reflect symbiotic

intensity between AMF and host plants (Qin, 2022), while infection

rates will directly affect the ability of AMF to obtain C from host

plants for its own growth requirements, thus affecting spore

germination and hyphal growth (Cai, 2017). This study found

that the spore density of the GC inoculant was significantly

higher under the HN treatment in mineralized sand compared to

the corresponding LN treatment, indicating that AMF inoculation

was conducive to the germination and growth of fungal spores.

Moreover, the N content of soil also affected AMF growth. This is

consistent with results from a previous study (Cai, 2017). AMF

infection rates will differ under different environmental factors,

such as the available mineral nutrients, organic matter content, and

soil pH in different regions. Studies have shown that AMF

inoculation can significantly increase mycorrhizal infection rates,

that excessively high N applications are not conducive to

mycorrhizal infection, and that more significant root mycorrhizal

infection rates will occur under LN levels. Additionally, mycorrhizal

infections will vary among different plant species and different N

application levels (Wang, 2012).

Being one of the three essential elements limiting plant growth

and development, N is a key chemical element of plant organic

matter (Cai, 2017), while its availability will be affected by soil type,

N form type, etc. (Liu et al., 2019). AMF species not only absorb

NH +
4 and NO −

3 from the surrounding environment and transfer

them to host plants (Hodge et al., 2001), they also accelerate organic

matter decomposition and improve plant N absorption by secreting

enzymes from extraradical hypha. This study found that N content,

soil type, AMF infection type, and associated interactions

significantly affected the NH +
4 , NO −

3 , and TN content of I.

cylindrica. Hawkins et al. (2000) reported that 15NH +
4 absorption

(per unit weight) by FM mycelia was significantly higher than that

of 15NO −
3 , with a value greater by a factor of 15. The NH +

4

Frontiers in Plant Science 12
absorption rate (per unit weight) by mycelia was higher

compared to that of NO −
3 . Similarly, in non-mineralized sand the

GC inoculant significantly increased the NH +
4 content in

belowground components of I. cylindrica in this study, while the

GC and RI inocula in mineralized sand also significantly increased

the NH +
4 content in belowground components of I. cylindrica.

Using mineralized sand as a substrate, NO −
3 content in

belowground components of I. cylindrica significantly increased

in the GC inoculant under the HN treatment, while the NO −
3

content in belowground components of I. cylindrica significantly

increased in the GE inoculant under the LN treatment. The reason

behind differences in AMF absorption between these two inorganic

N forms could be that NH +
4 requires less energy for absorption and

assimilation compared to NO −
3 . The absorption process of the latter

is as follows: it first reduces to NH3 and then enters into the GS/

GOGAT pathway, requiring both energy consumption and

reductase participation (Wu and Ca, 2022). However, NH +
4 can

directly enter the GS/GOGAT pathway under conditions of low

energy consumption. For NO −
3 , via the plant root diffusion process

(i.e., where it is absorbed [Sun et al., 2005]), absorption is more

difficult due to mycorrhizal associations. This is because of its high

mobility. On the other hand, NH +
4 mobility is less robust, forming

in the soil within the NH +
4 enrichment region (Smith, 2010),

making it easier for roots to absorb NH +
4 outside the hyphae.

Photosynthesis is the fundamental means by which plants

synthesize organic matter and obtain energy (Zhu et al., 2010). In

this study, we found that N, soil type, AMF infection, and associated

interactions significantly affected the net photosynthetic rate, the

intercellular CO2 concentration, the transpiration rate, and the

water vapor pressure deficit of I. cylindrica. Studies have found

that AMF inoculation can also significantly increase chlorophyll

content in plant leaves (Sannazzaro et al., 2006; Sheng et al., 2008;

Zhu et al., 2010; Liu et al., 2011). Results from this study showed

that AMF inoculation under the LN treatment significantly
TABLE 5 Multi-way ANOVA of different nitrogen treatments and AMF infection on the photosynthetic parameters of I. cylindrica.

Pn WUE Ci Tr VPD Gs

µmol CO2 m
-2·s-

1
mmolCO2·mol-

1H2O
µmol·mol-1 mmolH2O m-

2·s-1 kPa mmolH2O m-

2·s-1

F P F P F P F P F P F P

Nitrogen 19.311 <0.001 0.062 0.805 52.914 <0.001 9.316 0.003 7.176 0.009 1.311 0.256

Soil Type 2.681 0.037 5.142 0.001 59.827 <0.001 1.67 0.165 26.642 <0.001 3.896 0.006

AMF 374.97 <0.001 283.275 <0.001 19.003 <0.001 6.816 0.011 47.611 <0.001 6.464 0.013

Nitrogen × Soil Type 8.273 <0.001 1.414 0.237 50.287 <0.001 3.094 0.021 59.431 <0.001 7.596 <0.001

Nitrogen × AMF 19.921 <0.001 3.564 0.063 0.276 0.601 1.427 0.236 5.333 0.024 2.984 0.088

Soil Type × AMF 8.554 <0.001 5.188 0.001 6.305 <0.001 6.964 <0.001 7.417 <0.001 1.465 0.221

Nitrogen × Soil Type × AMF 5.424 0.001 2.284 0.067 8.259 <0.001 3.421 0.012 8.586 <0.001 1.428 0.232
fron
Ci is Intercellular CO2 concentration; Gs is Stomatal conductance; VPD is Vapor pressure deficit; Pn is Net photosynthetic rate; Tr is Evaporation rate; WUE is Water use efficiency. Different
lowercase letters representing AMF species and different nitrogen had significant effects on photosynthetic parameters of I. cylindrica in mineralized sand (P<0.05). The bold number represents a
significant impact (P<0.05). The symbol “×” represent the interaction.
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TABLE 6 Correlation analysis between photosynthetic characteristics and physicochemical properties of I. cylindrica under different treatments.

RTS Ci Gs VPD Pn Tr

-0.310

-0.180 0.641**

-0.260 -0.713** -0.676**

-0.509** 0.696** 0.612** -0.415*

-0.418* 0.424* 0.902** -0.310 0.607**

-0.100 0.340 -0.290 -0.160 0.460* -0.417*

-0.270

* 0.071 0.275

(Continued)
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Treatments Shoot
NO −

3 − N
Shoot

NH +
4 − N

Root
NH +

4 − N
Root

NO −
3 − N STN STC STS RTN RTC

NMS

HN

Shoot NH4
+-N 0.360

Root NH4
+-N 0.120 0.260

Root NO3
--N -0.070 -0.310 0.160

STN 0.360 -0.501* 0.090 0.230

STC 0.160 -0.401* -0.030 0.170 0.557**

STS 0.040 0.606** 0.448* -0.260 -0.310 -0.501*

RTN 0.260 -0.120 -0.280 -0.070 0.399* 0.370 -0.290

RTC -0.406* -0.110 0.220 -0.070 -0.220 -0.200 0.210 -0.080

RTS 0.390 0.814** 0.549** -0.180 -0.340 -0.350 0.730** -0.424* -0.080

Ci -0.180 -0.479* 0.455* 0.415* 0.563** 0.320 -0.070 0.240 0.150

Gs -0.060 -0.270 0.130 0.210 0.436* 0.270 -0.180 0.160 -0.190

VPD 0.040 -0.110 -0.644** -0.100 -0.180 -0.010 -0.415* 0.040 -0.060

Pn -0.160 -0.583** 0.180 0.260 0.548** 0.427* -0.502* 0.130 -0.170

Tr -0.030 -0.421* -0.190 0.210 0.492* 0.360 -0.492* 0.250 -0.320

WUE -0.130 -0.190 0.438* 0.050 0.090 0.110 -0.020 -0.160 0.170

LN

Shoot NH4
+-N 0.170

Root NH4
+-N 0.298 0.055

Root NO3
--N 0.059 0.401* 0.073

STN 0.337 -0.144 -0.287 -0.052

STC 0.608** 0.088 0.055 0.018 0.656**

STS 0.562** 0.228 0.021 0.168 0.346 0.669**

RTN 0.252 0.174 0.518** -0.229 -0.451* 0.003 -0.013

RTC 0.322 0.163 0.110 0.344 0.105 -0.067 -0.311 -0.083

RTS 0.285 -0.036 -0.347 0.276 0.913** 0.585** 0.393 -0.630** 0.184

Ci -0.089 0.298 0.392 0.538** -0.429* 0.032 0.293 0.277 -0.376

Gs -0.015 -0.053 -0.029 -0.321 0.195 0.326 0.385 0.129 -0.581
*
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TABLE 6 Continued

RTS Ci Gs VPD Pn Tr

* 0.472* -0.667** -0.759**

* -0.211 0.028 0.811** -0.679

* 0.391 0.008 0.919** -0.468 0.703**

-0.725** -0.055 -0.389 -0.042 0.110 -0.602**

0.285

0.355 0.664**

-0.658** -0.617** -0.857**

-0.102 0.346 0.645** -0.338

-0.276 0.316 0.631** -0.200 0.796**

0.341 -0.013 -0.167 -0.150 -0.011 -0.606**

(Continued)
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Treatments Shoot
NO −

3 − N
Shoot

NH +
4 − N

Root
NH +

4 − N
Root

NO −
3 − N STN STC STS RTN RTC

VPD 0.118 -0.081 -0.343 0.130 0.411* -0.005 -0.212 -0.468* 0.559

Pn -0.048 -0.064 -0.051 -0.531** -0.058 0.081 0.230 0.260 -0.453

Tr 0.034 -0.165 -0.177 -0.355 0.523** 0.457* 0.398* -0.122 -0.475

WUE -0.079 0.182 0.126 -0.134 -0.709** -0.468* -0.241 0.461* 0.156

MS

HN

Shoot NH4
+-N -0.100

Root NH4
+-N 0.602** -0.489*

Root NO3
--N 0.756** 0.011 0.544**

STN 0.002 0.375 0.188 0.068

STC -0.627** 0.578** -0.731** -0.403* 0.264

STS 0.183 -0.606** 0.658** 0.050 -0.029 -0.608**

RTN -0.272 0.553** -0.351 -0.316 0.636** 0.455* -0.052

RTC -0.027 0.339 0.088 0.029 0.510** 0.122 0.220 0.605**

RTS -0.124 -0.189 0.008 0.141 -0.329 0.091 0.122 -0.340 0.217

Ci -0.188 0.102 0.098 -0.058 0.353 0.251 0.402* 0.445* .586*

Gs -0.429* 0.384 -0.366 -0.159 0.078 0.582** -0.197 0.209 0.229

VPD 0.538** -0.234 0.365 0.239 0.028 -0.625** 0.127 -0.086 -0.30

Pn 0.041 0.578** -0.089 0.185 0.443* 0.263 -0.335 0.290 0.292

Tr 0.050 0.554** -0.259 0.125 0.229 0.312 -0.414* 0.291 0.052

WUE -0.056 -0.136 0.268 0.017 0.205 -0.124 0.251 -0.041 0.339

LN

Shoot NH4
+-N 0.202

Root NH4
+-N 0.448* 0.610**

Root NO3
--N 0.049 0.631** 0.416*

STN 0.021 0.556** 0.611** 0.275

STC 0.068 0.026 0.105 0.253 0.372

STS -0.052 -0.109 -0.252 0.124 -0.640** -0.096

RTN 0.461* 0.726** 0.843** 0.581** 0.444* 0.057 0.018
*

*

5
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TABLE 6 Continued

hoot
+
4 − N

Root
NH +

4 − N
Root

NO −
3 − N STN STC STS RTN RTC RTS Ci Gs VPD Pn Tr

.350 0.194 0.395 -0.141 -0.073 0.436* 0.593**

0.325 -0.496* -0.200 -0.210 0.246 0.259 -0.566** -0.438*

.434* -0.710** -0.044 -0.561** 0.093 0.574** -0.452* 0.161 0.314

.495* -0.338 -0.406* -0.462* -0.123 0.556** -0.377 -0.023 0.158 0.514**

713** 0.625** 0.579** 0.683** 0.210 -0.349 0.593** -0.013 -0.043 -0.567** -0.787**

.598** -0.691** -0.461* -0.530** -0.207 0.028 -0.627** 0.028 0.021 0.464* 0.383 -0.688**

.640** -0.529** -0.444* -0.520** -0.059 0.415* -0.591** -0.103 0.275 0.629** 0.904** -0.819** 0.630**

.089 -0.179 -0.011 -0.043 -0.224 -0.344 0.001 0.220 -0.367 -0.158 -0.487* 0.095 0.450* -0.383

non-mineralized sand; MS is mineralized sand; Ci is intercellular CO2 concentration; Gs is stomatal conductance; VPD is vapor pressure deficit; Pn is net photosynthetic rate; Tr is evaporation rate; WUE
al carbon; STS is shoot total sulfur; RTN is root total nitrogen; RTC is root total carbon; RTS is root total sulfur. Significance levels were denoted with * P< 0.05 and **P< 0.01.
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Treatments Shoot
NO −

3 − N
S

NH 

RTC 0.315

RTS -0.202 -

Ci -0.481* -

Gs -0.350 -

VPD 0.213 0

Pn -0.307 -0

Tr -0.389 -0

WUE -0.001

HN is high nitrogen treatment; LN is low nitrogen treatment; NMS is
is water use efficiency; STN is shoot total nitrogen; STC is shoot to
0

0

0

.

0

t
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TABLE 7 Membership function values of each index of I. cylindrica under different treatments.

N RTC RTS Pn WUE
Total chloro-

phyll
Average Rank

00 1.000 0.281 0.996 1.000 0.217 0.605
1

(HN)

00 0.000 0.227 1.000 0.528 0.400 0.587
2

(HN)

38 0.758 0.000 0.634 0.326 0.109 0.469
4

(HN)

78 0.440 1.000 0.000 0.296 1.000 0.461
3

(HN)

17 0.236 0.163 0.350 0.000 0.000 0.296
5

(HN)

13 1.000 0.442 0.000 0.594 0.694 0.511 2 (LN)

32 0.000 0.206 1.000 0.553 1.000 0.434 4 (LN)

00 0.601 0.000 0.854 1.000 0.528 0.630 1 (LN)

00 0.700 1.000 0.606 0.000 0.345 0.519 3 (LN)

57 0.841 0.134 0.657 0.885 0.000 0.306 5 (LN)

50 0.790 0.596 0.880 0.955 0.782 0.696
1

(HN)

00 1.000 0.000 1.000 0.285 0.607 0.540
3

(HN)

00 0.064 0.289 0.000 0.453 1.000 0.334
4

(HN)

95 0.834 1.000 0.614 1.000 0.846 0.654
2

(HN)

25 0.000 0.498 0.589 0.000 0.000 0.251
5

(HN)

32 1.000 0.000 0.974 1.000 0.607 0.547 1 (LN)

00 0.671 0.108 0.000 0.232 0.000 0.567 2 (LN)

11 0.284 1.000 0.524 0.241 0.649 0.491 3 (LN)

92 0.696 0.573 0.721 0.000 1.000 0.462 4 (LN)

00 0.000 0.430 1.000 0.536 0.138 0.181 5 (LN)

; STN is shoot total nitrogen; STC is shoot total carbon; STS is shoot total sulfur; RTN is root
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Treatments
Shoot

NO −
3 − N

Shoot
NH +

4 − N
Root

NH +
4 − N

Root
NO −

3 − N
Shoot

biomass
Root

biomass
Plant
height

STN STC STS R

NMS

HN

GC 0.000 0.000 1.000 1.000 0.447 1.000 0.464 0.497 0.451 0.944 0.

GE 1.000 0.235 0.743 0.735 0.517 0.594 0.150 1.000 1.000 0.073 1.

RI 0.053 0.166 0.237 0.111 1.000 0.406 0.493 0.411 0.500 1.000 0.

FM 0.807 1.000 0.931 0.000 0.000 0.000 0.000 0.000 0.000 2.157 0.

NM 0.417 0.222 0.000 0.271 0.432 0.505 1.000 0.167 0.367 0.000 0.

LN

GC 1.000 0.510 1.000 0.456 0.235 0.865 0.346 0.096 0.331 0.572 0.

GE 0.248 0.000 0.428 0.118 0.889 1.000 0.575 0.092 0.387 0.682 0.

RI 0.160 1.000 0.634 1.000 0.368 0.578 0.768 0.000 0.642 0.839 1.

FM 0.277 0.877 0.330 0.000 1.000 0.000 0.000 1.000 1.000 1.000 0.

NM 0.000 0.194 0.000 0.039 0.000 0.491 1.000 0.095 0.000 0.000 0.

MS

HN

GC 1.000 0.632 1.000 1.000 0.756 0.395 0.923 0.590 0.135 0.738 0.

GE 0.348 1.000 0.257 0.099 0.139 0.000 0.602 1.000 0.876 0.500 1.

RI 0.496 0.000 0.813 0.187 0.347 0.454 0.722 0.188 0.000 1.000 0.

FM 0.000 0.530 0.354 0.000 1.000 1.000 1.000 0.426 1.000 0.753 0.

NM 0.376 0.791 0.000 0.245 0.000 0.368 0.000 0.000 0.867 0.000 0.

LN

GC 0.849 0.051 0.456 0.101 1.000 0.310 1.000 0.400 0.000 0.536 0.

GE 1.000 1.000 1.000 1.000 0.229 0.000 0.552 1.000 0.438 0.275 1.

RI 0.788 0.000 0.433 0.000 0.374 1.000 0.341 0.587 1.000 0.580 0.

FM 0.356 0.859 0.023 0.043 0.777 0.851 0.612 0.000 0.134 1.000 0.

NM 0.000 0.054 0.000 0.053 0.000 0.010 0.000 0.623 0.015 0.000 0.

HN is high nitrogen treatment; LN is low nitrogen treatment; NMS is non-mineralized sand; MS is mineralized sand; Pn is Net photosynthetic rate; WUE is Water use efficienc
total nitrogen; RTC is root total carbon; RTS is root total sulfur.
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increased the chlorophyll a content of I. cylindrica. This may be

because AMF inoculation helps I. cylindrica to obtain the water and

nutrients necessary for metabolic photosynthetic processes to take

place in belowground components, subsequently promoting

chlorophyll synthesis and enhancing the photosynthetic capacity

of plant leaves. Additionally, the net photosynthetic rate directly

reflects the assimilation capacity of leaves (per unit area), which is

an important indicator in measuring the photosynthetic capacity of

plants (Hu et al., 2020). Plants provide the AMF photosynthate that

most benefits them, and AMF also tends to provide soil nutrients to

plants that deliver the most photosynthate for their usage (Kiers

et al., 2011). Studies have also shown that AMF symbiosis can

promote photosynthetic rates, transpiration rates, and a means for

host plants to uptake water (Gavito et al., 2019; Puschel et al., 2020),

which can improve the photosynthetic capacity of plants, although

still regulated by environmental conditions and available nutrient

elements. Similarly, the average membership function values of each

I. cylindrica index inoculated with AMF were higher compared to

the control. For non-mineralized sand, the net photosynthetic rate

of I. cylindrica inoculated with GC and GE under the HN treatment

significantly increased, while the net photosynthetic rate positively

correlated with aboveground TC and TN content. The transpiration

rate of I. cylindrica inoculated with FM under the LN treatment

increased significantly. This may be because N enhances the enzyme

activities associated with the photosynthetic electron transport

chain while promoting photosynthesis, and P is an important

enzyme component that is necessary for plant photosynthesis and

ATP synthesis. AMF inoculation promotes N and P absorption and

utilization in I. cylindrica, subsequently promoting plant

photosynthesis (Evans and Von Caemmerer, 1996; Wu and Zhao,

2010; Wang et al., 2016). Moreover, S plays a key role in the

synthesis and metabolism of photosynthetic pigments and proteases

(Shao, 2004). In this study, AMF inoculation significantly increased

the S content in aboveground I. cylindrica components, and this

significantly and positively correlated with Ci, Gs, and Tr in LN

mineralized sand, which was beneficial to the synthesis of various

plant proteins, chlorophyll and carotenoid content, and stress

resistance. In conclusion, different AMF inoculation had

significant effects on the eco-physiological characteristics of I.

cylindrica under differing soil nitrogen conditions. AMF strains

can improve plant physiological characteristics to varying degrees.
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