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Background: Pancreatic cancer is an aggressive tumor with a low 5-year survival
rate and primary resistance to most therapy. Amino acid (AA) metabolism is highly
correlated with tumor growth, crucial to the aggressive biological behavior of
pancreatic cancer; nevertheless, the comprehensive predictive significance of
genes that regulate AA metabolism in pancreatic cancer remains unknown.

Methods: The mRNA expression data downloaded from The Cancer Genome
Atlas (TCGA) were derived as the training cohort, and the GSE57495 cohort from
Gene Expression Omnibus (GEO) database was applied as the validation cohort.
Random survival forest (RSF) and the least absolute shrinkage and selection
operator (LASSO) regression analysis were employed to screen genes and
construct an AA metabolism-related risk signature (AMRS). Kaplan-Meier
analysis and receiver operating characteristic (ROC) curve were performed to
assess the prognostic value of AMRS. We performed genomic alteration analysis
and explored the difference in tumor microenvironment (TME) landscape
associated with KRAS and TP53 mutation in both high- and low-AMRS groups.
Subsequently, the relationships between AMRS and immunotherapy and
chemotherapy sensitivity were evaluated.

Results: A 17-gene AA metabolism-related risk model in the TCGA cohort was
constructed according to RSF and LASSO. After stratifying patients into high- and
low-AMRS groups based on the optimal cut-off value, we found that high-AMRS
patients had worse overall survival (OS) in the training cohort (a median OS:
13.1 months vs. 50.1 months, p < 0.0001) and validation cohort (a median OS:
16.2 vs. 30.5months, p = 1e-04). Geneticmutation analysis revealed that KRAS and
TP53 were significantly more mutated in high-AMRS group, and patients with
KRAS and TP53 alterations had significantly higher risk scores than those without.
Based on the analysis of TME, low-AMRS group displayed significantly higher
immune score andmore enrichment of T Cell CD8+ cells. In addition, high-AMRS-
group exhibited higher TMB and significantly lower tumor immune dysfunction
and exclusion (TIDE) score and T Cells dysfunction score, which suggested a
higher sensitive to immunotherapy. Moreover, high-AMRS group was also more
sensitive to paclitaxel, cisplatin, and docetaxel.
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Conclusion: Overall, we constructed an AA-metabolism prognostic model, which
provided a powerful prognostic predictor for the clinical treatment of pancreatic
cancer.
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1 Introduction

Pancreatic cancer is an aggressive malignancy that is the
seventh leading cause of cancer mortality worldwide, and is
anticipated to be the third-leading cause of cancer deaths by
2025, with approximately 496,000 cases and 466,000 deaths,
emphasizing the poor prognosis of patients with pancreatic
cancer (Advancing on pancreatic cancer, 2021; Sung et al.,
2021). Despite with significant advances in the treatment of
pancreatic cancer in the past decade, it remains one of the
fatal cancers in 2023 with a 5-year survival rate of only 11%
(Stoffel et al., 2023). There are several reasons for the dismal poor
prognosis of pancreatic cancer: one reason for this is that 90% of
pancreatic cancer cases are diagnosed at advanced stages (Wood
et al., 2022) which are typically characterized by nonspecific
symptoms. To note, due to the few prevalent genetic mutations
(KRAS, CDKN2A, TP53, and SMAD4) in pancreatic cancer,
there are few therapeutic drug options. In addition, pancreatic
cancer appears to be resistant to conventional treatments such as
chemotherapy and radiation (Kleeff et al., 2016). Consequently, it
is necessary to investigate a novel biomarker for the early
detection and individualized treatment of pancreatic cancer
patients.

Metabolism reprogramming has important implications for
tumor progression (Pavlova and Thompson, 2016; Wang and
Zou, 2020), the citric acid cycle and pentose phosphate pathway
are the main central carbon metabolism in cancer metabolism,
while recent studies found that non-carbon metabolism,
specifically amino acid (AA) metabolism, contributes to cancer
proliferation and growth (Lieu et al., 2020). AA, also known as
the basic component of proteins, plays a key role as a signaling
molecule in regulating energy and metabolic homeostasis and is
crucial for a neoplasm to sustain its proliferation (Vettore et al.,
2020; Hu and Guo, 2021). Modern research finds that AA
metabolism is highly correlated with cancer progression (Wei
et al., 2020), the metabolism of AA, especially glutamine, serine,
and glycine, have been identified as key metabolic regulators in
supporting tumorigenesis and malignancy (Li and Zhang, 2016).
Previously study demonstrated that targeting glutamine
metabolism could enhance antitumor immunity and decrease
tumor growth in breast cancer by promoting the differentiation
of myeloid-derived suppressor cells (Oh et al., 2020). Besides, it
was reported that glutamine metabolism is highly associated with
oncogenic regulation and tumor microenvironment (TME)
(Yang et al., 2017). Additionally, certain AA plays important
roles in cancer cell proliferation, including arginine, alanine, and
tryptophan, primarily by controlling metabolism within the TME
(Martínez-Reyes and Chandel, 2021). Furthermore, studies have
found that SLC38A9, an arginine-regulated transporter of several

essential AAs, was highly correlated with pancreatic cancer,
mainly affecting the biological activities of cell
macropinocytosis (Wyant et al., 2017). As the relationship
between AA metabolism and pancreatic cancer remains
unclear, it is urgent to explore effective and reliable
biomarkers for pancreatic cancer therapy based on AA
metabolism. High-throughput sequencing and machine
learning have transformed cancer research by enabling
researchers to identify and characterize bioprognostic markers
that can predict patient response to treatment and prognosis. The
use of high-throughput sequencing technologies such as next-
generation sequencing allows for rapid and cost-effective
sequencing of large amounts of genetic material. Machine
learning algorithms then analyze and interpret the data to
identify biomarkers and develop predictive models. The
integration of these technologies has led to significant
advances in personalized cancer treatment, allowing for more
accurate diagnoses, better treatment selection, and improved
patient outcomes. Overall, the application of high-throughput
sequencing and machine learning has the potential to
revolutionize cancer care and improve patient lives (Chi et al.,
2022; Zhao et al., 2022; Hao et al., 2023; Zhao et al., 2023).

In this work, to systematically identify the prognosis value of
AA-metabolism-related genes in pancreatic cancer, we attempted
to construct an AA metabolism-related risk score (AMRS)
signature according to random survival forest (RSF) and least
absolute shrinkage and selection operator (LASSO). Our study
indicated that AMRS could predict the survival ability of
pancreatic cancer patients in the TCGA cohort and was
validated in an external validation set. In addition, we
comprehensively evaluated the genomic alteration, TME
landscape, immunotherapy benefits and chemosensitivity
between high- and low-AMRS groups. Taken together, our
findings demonstrated that AMRS can serve as a novel and
reliable prognostic predictor for the treatment of pancreatic
cancer patients.

2 Materials and methods

2.1 Data collection and processing

The TCGA- Pancreatic ductal adenocarcinoma (PDAC) cohort
containing expression data and clinical information of 146 PDAC
patients (excluding those with M1 disease) was obtained from The
Cancer Genome Atlas (TCGA) dataset (https://portal.gdc.cancer.
gov) as a training set. The expression data and follow-up
information in GSE57495 downloaded from Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds)
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were used as a validation set. The GSE63557 cohort from GEO and
the IMvigor210 cohort from IMvigor210CoreBiologies (http://
research-pub.gene.com/IMvigor210CoreBiologies) were selected
as two immunotherapy cohorts.

2.2 Differential expression of AA
metabolism-related genes

Coherently expressed genes of AA metabolism processes
were downloaded from the Gene Ontology (GO) (http://
geneontology.org/). Then, a total of 428 AA metabolism-
related genes were extracted after eliminating the duplicated
genes, which were further used as candidate genes for
establishing the prognostic model (Supplementary Table S1).
The enrichment scores of 428 AA metabolism-related genes for
each pancreatic cancer patient were quantified by the Gene Set
Variation Analysis (GSVA) package according to single sample
Gene Set Enrichment Analysis (ssGSEA), and we obtained the
differentially expressed genes (DEGs) that were screened with
the threshold set at |log2 fold change| > 0.585 and an adjusted
p-value <0.05 using the “limma” package.

2.3 Construction and external verification of
AA metabolism-related risk model

Then, we performed 42 combinations of 6 machine learning
algorithms, including the least absolute shrinkage and selection
operator (LASSO) regression analysis, Ridge, stepwise Cox,
CoxBoost, random survival forest (RSF), elastic network
(Enet) based on 10-fold cross-validation to screen out the
most valuable AA metabolism-related risk signature (AMRS)
with the highest C-index for predicting prognosis.
Subsequently, we constructed an AMRS according to RSF and
Lasso, with RSF applied to screen out the most valuable AA
metabolism-related genes and LASSO employed to obtain the
most reliable risk model. Based on the regression coefficient
corresponding to the expression level of each gene, the AMRS
of each patient was calculated as the formula: risk score =
∑n

j�1Exprgenej*Coefgenej, the patients in the training cohort
were stratified into high- and low-AMRS groups according to
the best cut-off. To further verify the AMRS, the same formula
was applied for the risk score calculation in the validation cohorts
GSE57495. Moreover, we applied the validation of the AMRS in
the TCGA pan-cancer cohorts.

2.4 Nomogram construction

Based on the AMRS and clinical characteristics (age, gender, T
stage, N stage, pathological stage, and histological grade), we
performed univariate and multivariate Cox regression analysis. A
nomogram was constructed using the “rms” R package according to
the clinical characteristics and AMRS score. To further assess the
predictive performance of the nomogram, we applied the calibration
curves of 12-month, 24-month, and 36-month, and the receiver

operating characteristic (ROC) curve was used to evaluate the
predictive ability of the Nomogram.

2.5 Analysis of AMRS-related biological
functions

Based on the TCGA-PDAC cohort, the “limma” R package was
employed to obtain DEGs between high- and low-AMRS groups, the
criteria were set as FDR <0.05 and |log2FC| ≥ 0.585. We identified
the biological functions of DEGs by running a gene set enrichment
analysis (GSEA) based on the Molecular Signatures Database
(MSigDB, version 7.2) with a total of 50 hallmark pathways
obtained from MsigDB. Furthermore, The Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa et al., 2021) and Gene
Ontology (GO) (Harris et al., 2004) analyses were performed using
the “cluster Profile” R package.

2.6Mutation landscape underlying the AMRS

The somatic variants with mutation annotation format (MAF) of
the TCGA-PDAC dataset were obtained fromUCSCXena (http://xena.
ucsc.edu/). Moreover, we used Fisher’s test to compare the difference in
the prevalence of mutated genes between high- and low-AMRS groups
using the R package “maftools”, and genes with a p-value less than 0.
05 were classified as differentially mutated genes. In addition, mutually
exclusive and co-occurring genes between two groups were identified by
pair-wise Fisher’s Exact test with R package “maftools”.

2.7 Estimation of tumor microenvironment
of AMRS

Based on the gene-expression profiles, the CIBERSORT algorithm
that was sensitive to discrimination of 22 human immune cells
phenotypes was applied to evaluate the expression level of immune
cell infiltration (http://cibersort.stanford.edu/), and the ESTIMATE
algorithm was used to compare the immune score between high- and
low-AMRS groups. In addition, we compared the differential
expression of immune checkpoints between high- and low-AMRS
groups.

2.8 Evaluation of immunotherapy response
of AMRS

Tumor mutational burden (TMB) was used to predict the
potential immunotherapy response. Furthermore, we used the
GSE63557 dataset and metastatic urothelial tumors dataset
IMvigor210 to investigate the correlation between immunotherapy
response and AMRS. We processed the data using the R package
“IMvigor210CoreBiologies” in the IMvigor210 cohort. In addition,
tumor immune dysfunction and exclusion (TIDE) was applied to
identify the underlying immune checkpoint blockade response
between high- and low-AMRS groups in pancreatic cancer based
on the TIDEweb (http://tide.dfci.harvard.edu/).
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2.9 Prediction of the chemotherapeutic
response

Based on the public pharmacological Web portal, Genomics of
Drug Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/),
we estimated the half-maximal inhibitory concentration (IC50) of
common chemotherapeutic drugs for pancreatic cancer by
“pRRophetic” R package. In addition, we also investigated the
chemotherapy response-related pathways by GSEA analysis.

2.10 Statistical analysis

The different overall survival (OS) between the low- and
high-AMRS groups was evaluated by Kaplan-Meier survival
analysis using the Log-rank test, and the R package
“timeROC” was performed to draw the ROC curves and to
calculate the AUC. The hazard ratios for univariate analyses
were calculated using a univariate Cox proportional hazards
regression model. Differences between the two groups were

FIGURE 1
The expression landscape of AA-metabolism-related genes. (A) The volcano plot showed downregulated and upregulated AA metabolism-related
DEGs. (B) The heatmap displayed DEGs were divided into high- and low-expression groups. (C) KEGG analysis of DEGs. (D) Reactome analysis of DEGs.
AA: amino acids, DEGs: differentially expressed genes, KEGG: Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 2
Construction and verification of AMRS in pancreatic cancer. (A) 42 combinations of machine learning algorithms of AMRS and the Concordance-
index were calculated through TCGA and GSE57495 cohorts. (B) Identification of hazard factors and protective factors by multivariate Cox regression
analysis. (C) Risk score distribution and survival status in TCGA cohort. (D)Box plot showing the expression level of 17 genes between high- and low-AMRS
group. (E) Survival analysis and ROC curve for predicting OS of 12-, 24-, and 36-month in TCGA cohort. (F) Kaplan–Meier curve and ROC curve for
predicting OS at 12-, 24-, and 36-month in GSE57495 cohort. (G) The distribution of Moffitt subtypes and PurIST subtypes in high- and low-AMRS
group. (H) AUC value for the AMRS, Moffitt subtypes and PurIST subtypes in TCGA cohort. AMRS: amino acid metabolism-related risk score; TCGA: The
Cancer Genome Atlas; ROC: receiver operating characteristic; OS: overall survival; AUC: Area Under the ROC Curve.
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evaluated by Wilcoxon and Kruskal-Wallis tests. R software
(v.4.1.2) was employed to perform the statistical analyses, and
a two-sided p < 0.05 was considered statistically significant.

3 Results

3.1 Expression profile of AA-metabolism-
related genes

Initially, we identified the AA-metabolism-related DEGs using
rigorous selection criteria, which included |logFC|>0.585 and
FDR<0.05. Within the TCGA cohort, we discovered
2,771 upregulated DEGs and 823 downregulated DEGs
(Figure 1A). Additionally, the pancreatic cancer patients were
classified into high- and low-expression groups according to the
expression level of those identified DEGs (Figure 1B). The KEGG
pathway analysis indicated that those DEGs were significantly
correlated with neuroactive ligand receptor interaction,
glycerolipid metabolism, cell adhesion molecules cams, and
cytokine receptor interaction (Figure 1C). In terms of Reactome
analysis, DEGs were mainly associated with CD22 mediated bcr
regulation, binding and uptake of ligands by scavenger receptors,
and fceri mediated MAPK activation antigen activates B Cell
(Figure 1D).

3.2 Development and validation of AMRS

Based on the 428 AA metabolism-related genes, 6 machine
learning algorithms, containing LASSO, Ridge, stepwise Cox,
CoxBoost, RSF, and Enet were combined according to 10-fold
cross-validation to identify the most robust AMRS with the
highest C-index in both the TCGA-PDAC cohort and validating
cohort GSE57495 (Figure 2A). Accordingly, an AMRS with the best
performance was constructed based on the combined RSF and
LASSO algorithms, which collected 17 optimal AA metabolism-
related genes, including NAT8L, SLC1A4, SFXN5, LRRC8E, KYNU,
TRPV1, KCNJ10, UPB1, FTCD, SLC43A2, HPDL, SLC38A10,
LDHA, GLS2, ACCS, SLC38A5, and BCAT1 (Supplementary
Table S2). The risk score for each sample was calculated based
on the expression level and Cox regression coefficient of these
17 genes as follows:

AMRS score = 0.098× EXPNAT8L - 0.37× EXPSLC1A4 - 0.39×
EXPSFXN5 + 0.12× EXPKYNU -0.026× EXPTRPV1 - 0.14×
EXPKCNJ10–0.067× EXPUPB1 - 0.059× EXPFTCD - 0.14×
EXPSLC43A2 +0.21× EXPHPDL - 0.074× EXPSLC38A10 + 0.30×
EXPLDHA + 0.085× EXPGLS2 - 0.16× EXPACCS -0.053×
EXPSLC38A5 + 0.19× EXPBCAT1

As shown in Figure 2B, we found that LDHA, LRRC8E,
KYNU, BCAT1, HPDL, and SLC38A5 were the risk factors,
and the other 11 genes were protective factors according to
the multivariate Cox regression analysis. Based on the best
cut-off of the AMRS, pancreatic cancer patients in the training
cohort were stratified into high- and low-AMRS groups
(Figure 2C). Patients with higher tumor stage, lymph node

metastasis (N) stage and tumor grades had significantly higher
AMRS score (Supplementary Figure S1). We also analyzed the
expression profile of the 17 model genes between high- and low-
AMRS groups (Figure 2D), the result showed that all the
expression level of 17 model genes were significantly differed
between high- and low-AMRS groups. The Kaplan-Meier
survival curve showed that the OS of the low-AMRS group
was significantly longer than the high-AMRS group (a median
OS: 13.1 months vs. 50.1 months, p < 0.0001, Figure 2E).
According to the ROC curve, the AUC values used for the
prediction of the 12-month, 24-month, the 36-month OS was
0.75, 0.74, and 0.73, respectively. To further verify the prognostic
ability of AMRS, we used external data from GEO database
(GSE57495) as a validation cohort. The low-AMRS group
showed significantly higher OS than that of the high- AMRS
group in GSE57495 (a median OS: 16.2 vs. 30.5 months, p = 1e-
04, Figure 2F). The robustness of the AMRS in identifying OS of
pancreatic cancer patients was confirmed by AUC values: AUC =
0.75 for 12 months, AUC = 0.72 for 24 months, and AUC =
0.84 for 36-months in GSE57495 (Figure 2F), implying that the
AMRS had a good performance to evaluate the prognostic value
of pancreatic cancer patients. Moreover, TCGA pan-cancer
analysis indicated that AMRS had a prognostic effect on
PAAD, KIRP, LGG, CESC, LUAD, SARC, LIHC, HNSC,
BLCA, BRCA, and UVM (Supplementary Figure S2). In the
meantime, significantly more basal-like samples were enriched
in the high- AMRS group by both the Moffitt and PrulST
subtypes classification system (Figure 2G). AMRS
outperformed these two known subtypes classification system
in prediction prognosis of pancreatic cancer patients (Figure 2H).

Based on the protein expression profiles of pancreatic cancer
samples collected in the Human Protein Atlas (HPA) database,
LDHA, GLS2, and SLC38A10 exhibited higher expression levels in
pancreatic cancer (Supplementary Figure S3). Additionally, the
mRNA expression levels of LDHA and SLC38A10 were
comprehensively high in pancreatic cell lines from the CCLE
database (Supplementary Figure S4). Furthermore, we compared
the mRNA expression differences of model genes between tumor
and normal pancreatic tissues from the GSE62452 dataset.
Consistent with the result of the risk and protective genes
analysis in Figure 2B, we found that risk genes, such as LDHA
and KYNU, had significantly higher expression levels in the tumor
tissues (Supplementary Figure S5). In contrast, those protective
genes were downregulated in the tumor tissues.

3.3 The establishment of a nomogram

The prognostic value of AMRS and clinical characteristics,
including age, gender, T stage, N stage, pathological stage, and
histological grade in predicting OS was investigated using
univariate and multivariate Cox regression analyses in the
TCGA cohort. The results indicated that AMRS was an
independent prognostic factor with the highest hazard ratio
(HR) (Figures 3A,B). To improve prognostic accuracy, we
developed a nomogram by combining AMRS, T, N, neoplasm
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stage, grade, age, and gender (Figures 3C,D). The 12-, 24- and 36-
months AUC values of the Nomogram were 0.78, 0.80, and
0.82 in the TCGA cohort (Figure 3D). The calibration plots of

the nomogram for predicting 12-, 24- and 36-months OS were
close to the 45° line, which indicated an accurate prediction of the
Nomogram compared to actual observations (Figure 3E).

FIGURE 3
Construction of a Nomogram in pancreatic cancer. (A) Univariate Cox regression analysis. (B) Multivariate Cox regression analysis. (C) Nomogram
for predicting 12-, 24-, and 36-month of OS in pancreatic cancer patients in TCGA cohort. (D) ROC curve of the nomogram. Calibration curves for
predicting the fitness of the nomogram in 12 months, 24 months, and 36 months.E
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3.4 Association between AMRS and
biological functions

To investigate the underlying biological function of AMRS in
pancreatic cancer patients, we conducted GO and KEGG analyses in
the TCGA-PDAC cohort. In the GO analysis, we found that DEGs
between high- and low-AMRS groups were mainly enriched in
processes related to epidermis development, cornification,
epidermal cell differentiation, and keratinization (Figure 4A).
Moreover, in terms of KEGG analysis, we observed that cell
cycle, ribosome, ECM receptor interaction, and the P53 signaling
pathway were the most significantly enriched pathways (Figure 4B).
Furthermore, the GSEA analysis using hallmarks revealed that
DEGs were enriched in various processes, including G2M
checkpoint, E2F targets, epithelial mesenchymal transition, MYC
targets V1, mTORC1 signaling, and glycolysis (Figure 4C).

3.5 Genomic alterations landscape related to
the AMRS

The difference in the genetic alternations between high- and
low-AMRS groups were investigated, and KRAS and TP53 were
shown to be the genes with the highest prevalence in both two
groups (Figures 5A,B). In addition, the top 20 genes with different
mutation frequencies were present in the high- and low-AMRS
groups (Figure 5C; Supplementary Table S3). Subsequently, we
explored the exclusive and co-occurring genes of the top 25 most
frequently mutated genes. In the high-and low-AMRS group, KRAS-
TP53 presented the condition of being mutually exclusive, which
demonstrated that KRAS-TP53 may have redundant effects in the
same pathway (Figures 5D,E). Compared with the group with wild-
type (WT) status of KRAS and TP53, the mutation (MT) group had
higher risk scores (Figure 6 A&D). Moreover, we noted that in both
KRAS and TP53 status, there was a higher proportion of samples
withMT in the high-AMRS group and a higher proportion ofWT in
the low-AMRS group (Figures 6B,E). The mutant status of these two
genes statistically significantly stratified patients into high and low-
AMRS groups for OS. Specifically, the subgroup of high-AMRS with

mt KRAS showed the shortest survival time, while the subgroup of
low-AMRS with wt KRAS had significantly prolonged OS (p <
0.0001, Figure 6C). On the other hand, we observed that the worst
outcomes were seen in patients with high-AMRS and TP53 WT,
while the best outcomes were identified in patients of low-AMRS
with TP53 WT (p < 0.0001, Figure 6F).

3.6 Tumor microenvironment analysis of
AMRS

We first employed the CIBERSORT algorithm and ESTIMATE
algorithm to explore the relative abundance of 22 immune
infiltrating cells in the high- and low-AMRS groups (Figure 7A).
Considering the different frequencies of KRAS and TP53 and their
association with the immune system, we investigated the immune
scores of patients with or without KRAS/TP53 mutation. We found
that a relatively elevated immune score in the low-AMRS of patients
regardless of KRAS status (Figure 7B). However, patients with
TP53 alteration had significantly higher in the low-AMRS group
(Figure 7C). CIBERSORT analysis demonstrated that the higher
level of T Cell CD8+ in the low-AMRS group, while the immune
infiltration level of macrophage M0 was higher in the high-AMRS
group (Figure 7D). In addition, the expression levels of immune
checkpoint genes, including ADORA2A, CD160, CD200, CD200R1,
CD244, CD40LG, CD48, CTLA4, LAG3, PDCD1, TIGIT, TMIGD2,
TNFRSF14, TNFRSF4, TNFRSF8, and TNFSF14 were significantly
higher in the low-AMRS group; on the contrary, CD276, CD44, and,
TNFSF9 were higher in the high-AMRS group (all p < 0.05,
Figure 7E).

Additionally, the correlation matrix revealed that the
infiltrating immune cells were significantly correlated with
stratification of both KRAS alteration and AMRS score. Low
AMRS score without KRAS alteration had a positive correlation
with B Cell memory (p < 0.01), and significantly negative
correlation with NK cell activated (p < 0.01) (Figure 8A). On
the other hand, in patients with low AMRS and TP53 alteration,a
negative correlation was observed with NK cell activated, B Cell
naïve, T Cell follicular helper, T Cell gamma delta, and must cell

FIGURE 4
Functional and pathway enrichment analysis of AMRS. (A) GO analysis. (B) KEGG analysis. (C) GSEA analysis. GO: Gene Ontology, GSEA: gene set
enrichment analysis.
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resting (all p < 0.05, Figure 8B). Moreover, high-AMRS with
KRAS MT subgroup was characterized by macrophage M0 and
mast cell activated, and the low-AMRS with KRAS WT subgroup
was distinguished by B Cell naïve, T Cell CD8+, and mast cell
resting (all p < 0.05, Figure 8C). Subsequently, high-AMRS with
TP53 MT subgroup had a higher abundance of macrophage
M0 and macrophage M2, and the levels of B Cell naïve, T Cell
CD8+, and T Cell CD4+ memory resting were higher in low-
AMRS with TP53 WT subgroup (all p < 0.05, Figure 8D).

3.7 Immunological therapeutic benefits in
AMRS

Compared to the low-AMRS groups, the high-AMRS group had
a higher TMB, indicating that patients in the high-AMRS group
might have a better response to immunotherapy (Figure 9A). Next,
we evaluated the predictive ability of AMRS for immunotherapy in

patients with metastatic urothelial cancer in the IMvigor210 cohort.
Kaplan-Meier curve showed that the low-AMRS group had a better
survival trend (p = 0.00088, Figure 9B). In addition, we explored the
relationship between AMRS and complete response (CR), partial
response (PR), stable disease (SD), and progressive disease (PD).
Compared with the high-AMRS group, we found that there was no
significant difference in patients with different response to
immunotherapy (Figures 9C,E,F). The ratio of CR, PR, and SD
in the low-AMRS with TMB-high subgroup was significantly higher
(Figure 9D). Meanwhile, patients with durable clinical benefit
(DCB) had a lower risk score than those with PD (p = 0.034,
Figure 9G). Moreover, we performed the GSE63557 dataset to
investigate the relationship between the AMRS and anti-CTLA-
4 therapy, and Figure 9H demonstrated that the responders to anti-
CTLA-4 treatment exhibited higher risk score than non-responders
and untreated patients (p = 0.00049). Besides, we applied TIDE to
explore the correlation between AMRS and immune checkpoint
blockade response. The results indicated that both the TIDE score

FIGURE 5
Overview of mutated genes in pancreatic cancer. Waterfall plot of somatic mutation in high AMRS group (A) and low AMRS group (B). (C) The forest
plot shows the 27 genes with the highest differences between the high- and low-AMRS groups. Heat map of mutually exclusive and co-occurring genes
in the high-AMRS group (D), and low AMRS groups (E).
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and T Cells dysfunction score were lower in the high-AMRS group
(both p < 0.0001, Figures 9I,J), which demonstrated that the high-
AMRS group had a better response to immunotherapy, while the
T Cells exclusion score was higher in the high-AMRS group (p <
0.0001, Figure 9K). Accordingly, the risk score was negatively related
to the TIDE score (Pearson’s correlation, R = −0.14, p = 0.057) and
T Cells dysfunction score (Pearson’s correlation, R = −0.14, p =
0.057), while positively associated with T Cells exclusion score (R =
0.34, p = 3.7e-06) (Figures 9L–N).

3.8 Prediction for chemotherapy

The sensitivity of chemotherapeutic drugs in the TCGA-
PDAC cohort was evaluated by the GDSC database, the box
plot indicated that the IC50 values of paclitaxel, cisplatin, and
docetaxel were significantly higher in the low-AMRS group than
that in the high-AMRS group (all p < 0.01, Figure 10A).
Furthermore, pathways associated with a chemotherapeutic
response based on the DEGs between the two groups were
also assessed by GSEA, which suggested that the AMRS was
positively correlated with the pathways of gemcitabine resistance
DN, cisplatin resistance UP, and cisplatin response and XPC UP
(Figures 10B–D).

4 Discussion

In our findings, we comprehensively analyzed the prognostic
value of AA-metabolism-related genes in pancreatic cancer and
developed an AMRS signature, which provided novel treatment
methods for pancreatic cancer. The AMRS was constructed based on
17- AA-metabolism related genes using RSF and LASSO regression
analysis in the TCGA. Additionally, we identified the mutation
landscape, TME, characteristics of immunotherapy and
chemotherapy between high- and low-AMRS groups. This study
implied that AMRS can be a reliable biomarker for indicating
prognosis potential in pancreatic cancer.

Metabolic reprogramming is a hallmark observed during the
development of pancreatic cancer and drug resistance, wherein
AA metabolism plays a pivotal role (Liu et al., 2022). AA
metabolism is emerging as an important component of
cellular metabolic homeostasis, with the potential to accelerate
metastasis by tumor cell-extrinsic action and contribute to tumor
proliferation and growth (Porporato et al., 2016; Sivanand and
Vander Heiden, 2020). Abundant evidence indicates that AA
metabolism plays a significant role in the progression, prognosis,
and treatment of pancreatic cancer (Mailliard et al., 1995; Qin
et al., 2020; Li et al., 2021). Meanwhile, emerging evidence
indicates that metabolic plasticity may play a role in reshaping

FIGURE 6
KRAS and TP53 mutation in pancreatic cancer. The risk score of MT andWT inmutation status: KRAS (A) and TP53 (B). The proportion of MT andWT
between high- and low-AMRS groups in KRAS (C) and TP53 (D). (E) Survival analysis of MT and WT of KRAS between high- and low-AMRS groups. (F)
Survival analysis of MT and WT of TP53 between high- and low-AMRS groups. MT: mutation, WT: wild-type.

Frontiers in Genetics frontiersin.org10

Hao et al. 10.3389/fgene.2023.1084275

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1084275


the immune microenvironment and contributing to the
therapeutic benefits of immune combination therapy against
tumors (Qiu et al., 2023; Xiang et al., 2023). In the current

study, a total of 17 genes with prognostic values have been
identified, of which 8 genes (SFXN5, LRRC8E, KCNJ10, UPB1,
SLC43A2, SLC38A10, ACCS, and SLC38A5) were identified for

FIGURE 7
TME analysis of AMRS. (A)Heatmap of the distribution of immune cell infiltrations in high- and low-AMRS groups. (B) Immune score of MT andWT in
KRAS status between high- and low-AMRS groups. (C) Immune score of MT and WT in P53 status between high- and low-AMRS groups. (D) The
expression level of 22 tumor infiltrating cells between the two groups. (E) Immune checkpoint gene expression level between the two groups. TME:
tumor microenvironment.
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the first time in pancreatic cancer. Senbabaoglu et al. discovered
that NAT8L has an underlying ability to be the biomarker for the
diagnosis of neutrally programmed tumors in pancreatic cancer
(Senbabaoglu et al., 2020). Moreover, recent research discovered
that SLC1A4 could exchange and maintain the concentration of
alanine, thereby promoting the proliferation of pancreatic cancer
cells (Parker et al., 2020). It was reported that the up-regulation
of TRPV1 expression is highly associated with pancreatic cancer,
mainly via affecting the biological activity of axonal growth in
tumors (Sinha et al., 2014). In addition, HPDL plays a crucial role
in the poor prognosis and development of pancreatic cancer, by
regulating glutamine metabolism and influencing redox balance
(Ye et al., 2020). Besides, high expression of LDHA is correlated
with tumor differentiation of pancreatic cancer, which can
enhance aerobic glycolysis, resulting in cancer cell
proliferation and growth (Shi et al., 2014). In the current
study, we constructed a 17-genes prognostic signature based
on the AA metabolism-related genes in the TCGA-PDDA,
which could provide clinical strategies and individualized
treatments for pancreatic cancer patients. In the TCGA
cohort, patients in the high-AMRS group had lower OS than
those in the low-AMRS group, the prognostic ability of AMRS
was also verified in a GEO validation cohort.

Herein, we comprehensively uncovered the biological
enrichment pathway of high- and low-AMRS -related genes
according to GO, KEGG, and GESA analysis. Numerous studies
have found that the ECM receptor interaction pathway is highly
related to the prognosis of pancreatic cancer (Xu et al., 2020; Zhuang
et al., 2021). Additionally, the G2M checkpoint, as the significant
role step in the cell cycle and hallmark of malignant tumors, is
associated with the worse OS of pancreatic cancer patients (Oshi
et al., 2020). Recent bioinformatics study has demonstrated that E2F
targets and MYC targets V1, which are the number of cell
proliferation-related pathways, can serve as the predictive
biomarker for pancreatic cancer (Oshi et al., 2021). Moreover,
p53 signaling can participate in the molecular therapy of
pancreatic cancer due to the functions of inducing cell cycle
arrest and DNA repair (Ou et al., 2022). Besides, the epithelial
mesenchymal transition is involved in the metastasis of cancer by
promoting tumor migration, invasiveness, and resistance to
apoptosis (Mittal, 2018), which is correlated with the progression
of pancreatic cancer (Huang et al., 2017). In addition, the excessive
activation of mTORC1 signaling can lead to accelerated
development of pancreatic cancer (Revia et al., 2022).
Furthermore, glycolysis accelerates pancreatic cancer metastasis,
primarily via upregulating the expression of glycolytic enzymes

FIGURE 8
Immune cell infiltration landscape of mutant genes KRAS and TP53. Correlation analysis between 22 tumor infiltrating cells and WT, MT of KRAS (A)
and TP53 (B) in high- and low-AMRS groups. Box plots showing the 22 tumor infiltrating cells expression in MT and WT subgroups of KRAS (C) and
TP53 (D).
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and increasing lactate production (Yang et al., 2020). Collectively,
our establishment provided a direction for the investigation of
potential biological pathways and the development of clinical
treatments for pancreatic cancer.

Pancreatic cancer exhibits high tumor-to-tumor heterogeneity
due to genetic mutation and expression diversity (Bear et al., 2020).
Oncogenic mutation of KRAS and TP53, which are the main driver
genes in pancreatic cancer, is responsible for the activation of

FIGURE 9
Prediction of the immunological therapeutic benefits in high- and low-AMRS groups. (A)Comparison of TMB between high- and low-AMRS groups.
(B) Kaplan–Meier survival curve in the IMvigor210 cohort. (C) The proportion of different immunotherapy responses in high- and low-AMRS groups. (D)
Analysis of the proportions of four different immunotherapy responses by both TMB groups and the AMRS model. (E) Risk score distribution for four
different immunotherapy outcomes. (F) The difference in AMRS between CR/PR and SD/PD. (G) Comparison of risk scores in DCB and PD. (H)
Difference in risk score among patients with three types of treatment response in the GSE63557 cohort. The distribution of TIDE score (I), T Cells
dysfunction score (J), and T Cells exclusion score (K). The relationship between AMRS between TIDE score (L), T Cells dysfunction score (M), and T Cells
exclusion score (N). CR/PR: complete response/partial response, SD/PD: stable disease/progressive disease, DCB: durable clinical benefit, TIDE: tumor
immune dysfunction and exclusion.
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multiple cellular processes, such as proliferation, transformation,
invasion, and survival (Bournet et al., 2016; Buscail et al., 2020).
Moreover, numerous studies have revealed that the KRAS mutation
adversely influenced the outcomes of patients with pancreatic cancer
(Ogura et al., 2013; Qian et al., 2018). Notability, mutant KRAS
enhanced the specific AA intake process namedmacropinocytosis in
pancreatic cancer, resulting in maintaining the AA supply and thus
promoting tumor progression (Liu et al., 2019; Qin et al., 2020). In
general, KRAS mutation is highly associated with the
reprogramming of AA metabolism, which provides nutrition
benefits to the tumors (Yang et al., 2017), as well as plays a
crucial role in remodeling the immune environment (Kelly and
Pearce, 2020). On the other hand, TP53 is associated with a poor
prognosis in pancreatic cancer and increased resistance to cancer
therapy (Chen et al., 2021), meanwhile, defective TP53 function
accelerates cancer cell development and impairs tumor response to
DNA-damaging drugs. In particular, TP53 mutation causes AA
substitutions in cancer and leads to high expression of TP53 protein
mutations in tumors (Wang et al., 2022). In our study, considering
the different immune scores and immune cell infiltration between
the high- and low-AMRS groups in the MT and WT subgroups of
KRAS and TP53, we speculated that AA signature can effectively
classify the different TME profiles of mutation status. In addition,
CIBERSORT analysis showed that the low-AMRS-group had a
higher immune infiltration level of T Cell CD8+, which exhibits
effective anti-cancer function in the immune system (Sideras et al.,
2014). Studies have found that tumor-associated macrophages
contribute to the resistance of pancreatic cancer to chemotherapy
drugs, mainly via inducing epithelial to mesenchymal transition
(Kuwada et al., 2018), which might explain the higher expression
level of macrophage M0 in the high-AMRS group. It is reported that
checkpoint inhibitors, offer huge benefits for the future treatment of
pancreatic cancer (Neoptolemos et al., 2018), which do hold promise
for cancer patient s (Nagaraju et al., 2021). Compared with the low-
AMRS group, CD276, CD44 and, TNFSF9 exhibited higher in the
high-AMRS group. Importantly, CD276 plays a key role in
inhibiting T Cell function and displays upregulated expression in

solid cancers, which is related to poor prognosis (Picarda et al.,
2016). And recent research demonstrated that high expression of
CD44 is highly correlated with increased aggressiveness of
pancreatic cancer and increased gemcitabine resistance to chemo
chemicals (Zhao et al., 2016). Meanwhile, TNFSF9 promotes the
metastasis of pancreatic cancer by Wnt/Snail signaling and
macrophages M2 (Wu et al., 2021). Overall, we confirmed the
AMRS can identify the TME landscape and provide treatment
direction for pancreatic cancer patients.

Immunotherapy has exploded in the cancer field over the past
decade (The expanding palette of immunotherapy, 2022), which
develops into the fourth cancer treatment (Chang et al., 2021), and
the immunotherapy based on immune cells and TME also plays an
important role in pancreatic cancer (Xu et al., 2018). Our study
showed that TMB exhibited higher in the high-AMRS group, due to
the TMB is a predictor of survival in the immunotherapy field
(Parikh et al., 2019), we believed that the high-AMRS group had a
better immunotherapy benefit. In addition, as a member of immune
checkpoint molecule, CTLA-4 inhibits the effector T-cell with the
highly expressed on Tregs. Studies have found that anti-CTLA-
4 therapy brings clinical benefit to cancer patients by depleting Tregs
and activating T Cells (Hong and Maleki Vareki, 2022). According
to the results from GSE63557 dataset, we discovered that the
pancreatic cancer patients with high-risk score response better to
anti-CTLA-4 treatment. TIDE, which is performed as a reliable
biological indicator to predict the response to immune checkpoint
blockade, can identify the factors underlying tumor immune escape
mechanisms (Jiang et al., 2018). In our research, TIDE score and
T Cells dysfunction score were both lower in the high-AMRS group,
and this also proved that the high-AMRS group may benefit more
from immunotherapy.

Chemotherapy is one of the most effective clinical treatments for
pancreatic cancer (Bednar and Pasca di Magliano, 2020), and
common chemotherapy drugs for pancreatic cancer are
gemcitabine and cisplatin (Conroy et al., 2018; Hu et al., 2021).
Moreover, the chemotherapy drug paclitaxel can improve survival in
patients with metastatic pancreatic cancer (Ma and Hidalgo, 2013),

FIGURE 10
Relationships between AMRS and chemotherapeutic drug sensitivity. (A) IC50 comparison of four chemotherapy drugs in high- and low-AMRS
groups. Pathways analysis between AMRS and gemcitabine resistance DN (B), cisplatin resistance UP (C), and cisplatin response and XPC UP (D).
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as well as docetaxel, has a better therapeutic effect on patients with
advanced pancreatic cancer (Lopes and Rocha Lima, 2005). Our
research demonstrated that the IC50 values of gemcitabine,
paclitaxel, cisplatin and docetaxel were higher in the low-AMRS
group, which indicated the chemotherapy was more beneficial in the
low-AMRS group. Consequently, we confirmed that AMRS can be
applied to predict the response to the chemotherapeutic drug
sensitivity of pancreatic cancer patients. The current study has
several limitations that should be considered. Firstly, it is a
retrospective study that relies on database mining. To confirm
the findings, especially the established signature, future
prospective studies should be designed and conducted using a
large number of pancreatic cancer samples from independent
cohorts. Secondly, due to the limited accessibility to databases
containing both transcriptome and treatment response data, the
usefulness of the established AMRS in tailoring individual
therapeutic strategies was solely based on bioinformatic analysis.
Further prospective studies should be conducted to validate its
practical application. Thirdly, the TCGA database provided a
limited number of pancreatic cancer patients with long distant
metastasis, making it necessary to investigate the value of the
established AMRS in predicting patients with M1 disease in
further studies. Finally, while the model genes’ biological function
was analyzed using bioinformatic analysis, the precise biological
function of these genes in the development of pancreatic cancer
remains unknown. Therefore, it is necessary to conduct further
in vitro and/or in vivo experiments to explore this.

In conclusion, our study constructed an AA metabolism-related
signature and offered crucial information regarding the genetic
mutations, immunological TME landscape, immunotherapy
response, and chemosensitivity between high- and low-AMRS
groups. Considering that this is the first time AA metabolism-
related genes have been studied in pancreatic cancer, we believed
that the AMRS model can provide appropriate biological indicators
for pancreatic cancer.
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Glossary

AA Amino acid

TME Tumor microenvironment

AMRS AA metabolism-related risk score

RSF Random survival forest

LASSO Least absolute shrinkage and selection operator

TCGA The Cancer Genome Atlas

GEO Gene Expression Omnibus

GO Gene Ontology

GSVA Gene Set Variation Analysis

SsGSEA Single sample Gene Set Enrichment Analysis

DEGs Differentially expressed genes

ROC Receiver operating characteristic

GSEA Gene set enrichment analysis

KEGG Kyoto Encyclopedia of Genes and Genomes

TMB Tumor mutational burden

TIDE Tumor immune dysfunction and exclusion

GDSC Genomics of Drug Sensitivity in Cancer

IC50 Half-maximal inhibitory concentration

OS Overall survival
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