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ST-YOLOA: a
Swin-transformer-based YOLO
model with an attention
mechanism for SAR ship detection
under complex background

Kai Zhao, Ruitao Lu*, Siyu Wang, Xiaogang Yang, Qingge Li and

Jiwei Fan

Department of Automation, Rocket Force University of Engineering, Xi’an, China

A synthetic aperture radar (SAR) image is crucial for ship detection in computer

vision. Due to the background clutter, pose variations, and scale changes, it is a

challenge to construct a SAR ship detection model with low false-alarm rates and

high accuracy. Therefore, this paper proposes a novel SAR ship detection model

called ST-YOLOA. First, the Swin Transformer network architecture and coordinate

attention (CA) model are embedded in the STCNet backbone network to enhance

the feature extraction performance and capture global information. Second, we

used the PANet path aggregation network with a residual structure to construct

the feature pyramid to increase global feature extraction capability. Next, to cope

with the local interference and semantic information loss problems, a novel

up/down-sampling method is proposed. Finally, the decoupled detection head

is used to achieve the predicted output of the target position and the boundary

box to improve convergence speed and detection accuracy. To demonstrate the

e�ciency of the proposedmethod, we have constructed three SAR ship detection

datasets: a norm test set (NTS), a complex test set (CTS), and a merged test set

(MTS). The experimental results show that our ST-YOLOA achieved an accuracy

of 97.37%, 75.69%, and 88.50% on the three datasets, respectively, superior to the

e�ects of other state-of-the-art methods. Our ST-YOLOA performs favorably in

complex scenarios, and the accuracy is 4.83% higher than YOLOX on the CTS.

Moreover, ST-YOLOA achieves real-time detection with a speed of 21.4 FPS.

KEYWORDS

synthetic aperture radar (SAR) image, ship detection, Swin Transformer, YOLO, attention

mechanism

1. Introduction

SAR imaging has a high resolution, a long detection range, and a strong anti-interference

ability. It has a wide range of applications and development possibilities and is employed

extensively in both civil and military fields, including surveying, mapping, catastrophe

monitoring, marine observation, and military reconnaissance (Cumming and Wong, 2005;

Moreira et al., 2013). Research on ship detection technology, such as precise terminal

guidance, operational effectiveness assessment, and identification of ship targets in strategic

port areas, is crucial for bothmilitary and civilian applications. Although significant progress

has beenmade in the past few decades, ship detection in SAR images remains a challenge due

to shape deformation, pose variation, and background clutter.

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2023.1170163
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2023.1170163&domain=pdf&date_stamp=2023-06-02
mailto:lrt19880220@163.com
https://doi.org/10.3389/fnbot.2023.1170163
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1170163/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhao et al. 10.3389/fnbot.2023.1170163

Traditional ship detection methods employ machine learning

models to distinguish the ship target from the background in SAR

images. These methods usually include two primary processes:

object detection and target identification (Lu et al., 2020a,b). The

most popular models employed in the classic detection approach

are the constant false-alarm rate (CFAR) (Robey et al., 1992) and

its variant algorithms. These methods detect ships by creating

a statistical distribution model of the background clutter. By

employing a decomposition strategy, Gao et al. (2018) suggested

a CFAR algorithm based on a generalized gamma distribution

to enhance the signal-to-noise ratio of SAR images. Wang et al.

(2017) pro-posed a constant false-alarm detector in the intensity

space domain, which uses data correlation to detect targets and

wake pixels. To best suit the information provided by the ship

distribution map (Schwegmann et al., 2015) proposed a method

for transforming a scalar threshold into a threshold manifold using

the simulated annealing (SA) process. However, the traditional SAR

ship detection model relies on artificial design feature selection,

which leads to poor detection robustness and generalization ability.

In addition, this kind of algorithm requires a high contrast between

the target image and the background image and is not suitable for

detecting ship targets in complex environments.

With the development of deep learning theory, convolutional

neural networks have made significant advancements in the

field of target recognition and display advanced performance

in target detection. The deep learning detection algorithms can

be roughly classified into two categories: one-stage methods

and two-stage methods (Girshick et al., 2014). Two-stage object

detection methods perform region generation to obtain pre-

selected boxes and then use sample classification and regression

with border positioning through the convolutional neural network.

Representative methods include R-CNN (Girshick et al., 2014), Fast

R-CNN (Girshick, 2015), and Faster R-CNN (Ren et al., 2015).

These methods have high detection accuracy but low detection

efficiency. One-stage object detection methods use the backbone

feature extraction network to directly locate and classify the target.

Typical detection methods are YOLO (Redmon et al., 2016), SSD

(Liu et al., 2016), and CenterNet (Duan et al., 2019). Although

these methods are fast, they are prone to false detection andmissing

detection compared with the two-stage detection methods.

Based on the current deep-learning-based target detection,

in recent years, numerous researchers have developed advanced

algorithms for SAR ship detection. To address the challenges

of ship detection in maritime environments, Gao et al. (2022)

proposed an enhanced YOLOv5 SAR ship detection method based

on target augmentation. By constructing the feature enhancement

Swin converter (FESwin) module and the adjacent feature fusion

(AFF) module (Li et al., 2022), proposed a detection model suitable

for the strong scattering, multi-scale, and complicated background

of ship objects in SAR images. To provide a visual converter system

based on context-federated representation learning appropriate for

SAR ship detection (Xia et al., 2022), creatively combined CNNs

with transformers. Although the aforementioned methods address

the issues of multi-scale targets, huge noise clutter, and complicated

backgrounds, the detection accuracy and the calculation speed still

restrict application in the real world. Small islands and nearby

sea structures are the reasons for false detection in com-plex

backgrounds. In addition, the dense distribution of ships in the

dock and the sea causes multiple targets to overlap, leading to the

low accuracy of models in detecting targets.

Based on the aforementioned analysis, in this paper, we have

proposed a novel ship detection model called ST-YOLOA, which

is more suitable for the actual complex environment in SAR

images. We chose Swin Transformer (Liu et al., 2021) and YOLOX

(Ge et al., 2021) as our basic models. The main contributions

of this paper are as follows: (1) Together data on ship target

features, we have proposed the STCNet backbone network. This

network effectively solves the problem of insufficient feature

extraction caused by strong scattering in SAR images. It enhances

the processing ability of feature information by obtaining more

significant feature information in different environments. It also

has excellent global information modeling capabilities of Swin

Transformer. (2) We have built a novel feature pyramid network

based on an enhanced PANet for profoundly fusing high-level

and low-level features. This network solves the issues of local

information interference and attention diversion by using semantic

and localization information. To improve the detection accuracy,

we have adopted binary trilinear interpolation up-sampling for

maintaining the original data of the feature map. (3) To effectively

reduce the impact of noise in the feature map on the detection

accuracy, classification and regression are handled separately. We

have used EIOU as the localization loss function to cope with the

sample imbalance and enhance the model generalization ability.

The rest of the paper is organized as follows. In Section 2,

we review the prior work related to the proposed ST-YOLOA.

In Section 3, we provide details of the main components and

methodology of the proposed ST-YOLOA. Section 4 introduces the

experimental settings, results, and analysis. The conclusions of the

paper are drawn in Section 6.

2. Related work

In this section, we briefly review the relevant literature

regarding YOLO, Transformer, and the attention mechanism.

2.1. YOLO

The YOLO series is a typical network for one-stage detection. It

handles object detection as a regression issue, where the bounding

box coordinates and class probability are derived from picture

pixels. YOLOX, as a typical representative of the YOLO series,

has significant advantages in terms of speed and accuracy. Its

essential modules include the Focus, the CSP bottleneck, SPP,

PANet (Liu et al., 2018), and the decoupled detection head (Tian

et al., 2019). The backbone of YOLOX is the CSP Darknet-

53 (Bochkovskiy et al., 2020), which consists of several residual

modules stacked one on top of the other. YOLOX uses PANet as

the neck of the model, and the input is the three feature output

layers output by the backbone network. It obtains features with

richer semantic and localization information by feature fusion

and sends them to the head for detection. At the head, YOLOX

replaces the coupled detection head with the decoupled detection
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head using different branches for the classification and regression

tasks, which significantly increases the convergence speed of

the network. YOLOX eliminates the constraints of the original

anchor (Zhang et al., 2020) of the YOLO series. The anchor-free

mechanism substantially reduces the number of design parameters,

maintaining effectiveness while significantly reducing time costs.

When the YOLO architecture is used for ship detection, it

mainly has the following two disadvantages: (1) It has poor

recognition where small target objects are concerned, and the

positioning is inaccurate. (2) It lacks the ability to obtain global

information on the image that can benefit the network in terms of

accuracy and efficiency.

2.2. Transformer

Transformer (Vaswani et al., 2017) was initially applied in

the field of natural language processing (NLP) and has proved

to have many advantages. Transformer is not only powerful in

modeling global contexts, but also excellent in establishing long-

distance dependencies. With its rapid development in the field

of NLP, Transformer has attracted widespread attention in the

field of the computer vision field. Swin Transformer (ST) is

considered the first successful attempt to bring it into computer

vision. It enables the Transformer model to process images at

different scales flexibly by applying a hierarchical structure similar

to that of CNN. ST performs local self-attention calculations in

the area of non-overlapping windows. It lowers the computational

complexity of the number from a squared relationship to a

linear relationship. Then it uses shifted window multi-head self-

attention (SW-MSA) to achieve information interaction between

non-overlapping windows.

As a general visual network, ST exhibits state-of-the-art

performance in semantic segmentation, object detection, and image

classification. However, ST has two clear drawbacks: (1) ST has a

limited ability to encode contextual information and needs further

improvement. (2) Because ST has more parameters than CNN, its

training usually relies on a large number of training data.

2.3. Attention mechanism

Usually, attention mechanisms in the vision domain (Guo

M. et al., 2022) include two types: spatial and channel. They

extract better target features by assigning different weights to the

feature points on the image. The spatial attention mechanism

adds weights to the feature points containing object features

in a single-channel feature map. On the other hand, the

channel attention mechanism assigns more importance to feature

channels containing component semantic information. Hu et al.

(2018) proposed SENet, which analyzes the correlation between

different feature channels and generates channel descriptions by

fusing features across spatial dimensions, thus achieving selective

emphasis on feature information and suppressing irrelevant feature

information; Woo et al. integrated the feature channels and feature

space between correlation proposed CBAM (Wang et al., 2018),

which can focus on more profound feature semantic information;

Wang et al. proposed CANet (Hou et al., 2021), which considers

inter-channel relationships as well as location information over

long distances, based on the spatial selectivity of the channel

attention mechanism. In this paper, the different characteristics of

SE, CBAM, and CA, are introduced into other model modules to

improve the performance model further.

3. Methods

In this section, we first give a general overview of the ST-

YOLOA target detection model and then discuss in detail the

design ideas and network architecture of the ST-YOLOA model in

three parts: feature extraction (Backbone), feature fusion (Neck),

and target detection (Head), respectively. Figure 1 shows the ST-

YOLOA network structure.

3.1. Overview

3.1.1. Backbone
In ST-YOLOA, we propose a backbone network called STCNet.

It integrates the advantages of the Swin Transformer and the

CA attention mechanism. Compared with the traditional CNN-

based backbone feature extraction network, which only utilizes the

information provided by regions in target localization, STCNet has

good performance with dynamic attention and global modeling

capability considering remote dependencies. The STCNet network

adopts a layered architecture consisting of the Patch Embedding

layer, the Swin Transformer Block, and the CA- PatchMerging layer

composed of three parts.

3.1.2. Neck
In the neck of ST-YOLOA, we still use PANet to construct

feature pyramids (Lin et al., 2017a) for feature depth fusion. In

addition, we also introduce SE and CBMA attentionmechanisms in

the neck to enhance the focus on the target information and further

improve the model performance.

3.1.3. Loss
The purpose of the loss function is mainly to make the

model localization more accurate and recognition accuracy higher.

Therefore, more advanced EIOU Loss is used in ST-YOLOA to

accelerate the convergence and improve the model performance.

3.2. Backbone

3.2.1. Patch embedding layer
The patch embedding module first chunks the image at the

front end of the feature extraction network, dividing the image

into 4 × 4 non-overlapping blocks so that the feature dimension

of each block is 4 × 4 × 3. Then, the original 2D image is

converted into a series of 1D embedding vectors by projecting

the feature dimensions to arbitrary dimensions through linear

transformation, and the transformed embedding vectors are input

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1170163
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhao et al. 10.3389/fnbot.2023.1170163

FIGURE 1

ST-YOLOA network structure. The red dashed boxes are the attention module addition locations. Conv, BN, and Silu denote the convolution, batch

normalization, and SILU activation functions, respectively. Concat indicates the fully connected operation. Cls, reg, and obj represent the

classification, localization, and confidence scores. H, W, and C denote the feature map’s width, height, and number of channels.

FIGURE 2

Patch Embedding structure. w and h are the length and width of the input feature map, d is the number of channel dimensions, and N is the batch

size.

to three-stage feature extraction layers to generate a hierarchical

feature representation. The structure is shown in Figure 2.

3.2.2. Swin transformer block
The Swin Transformer Block uses moving windows to calculate

the attention between pixels, which helps to connect the front

layer windows and reduce the complexity of the original attention

calculation while overcoming the drawback of a lack of global

effects, significantly enhancing the modeling effect.

In Figure 3, it can be seen that the multiheaded self-

attention (MSA) mechanism in the Swin Transformer Blocks

is constructed based on the shift window. There are two

consecutive Swin Transformer Blocks. Each Swin Transformer

Block consists of a LayerNorm (LN) layer, an MSA module, a

residual connection, and a multilayer perceptron (MLP) that

contains two fully connected layers using the GELU non-linear
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FIGURE 3

The Swin transformer blocks.

FIGURE 4

Schematic diagram of the Patch Merging layer.

activation function (Wang et al., 2021). The two consecutive

Swin Transformer Blocks adopt the window multi-head self-

attention (W-MSA) module and the shifted window multi-head

self-attention (SW-MSA) module, respectively, which enables

different windows to exchange information while reducing

computational effort. Based on this window division mechanism,

the continuous Swin Transformer Blocks are calculated

as follows:

ẑi = W −MSA
(

LN
(

zi−1
))

+ zi−1 (1)

zi = MLP
(

LN
(

ẑi
))

+ ẑi (2)

ẑi+1 = SW −MSA
(

LN
(

zi
))

+ zi (3)

zi+1 = MLP
(

LN
(

ẑi+1
))

+ ẑi+1 (4)

Where ẑi denotes the output of the (S)W-MSA module and zi

denotes the output of the MLP module of the ith Block.

3.2.3. CA-patch merging
The Patch Merging layer is used to perform a down-sample

operation before the feature output of the backbone network

to reduce the feature map resolution and adjust the number of

channels, thus forming a layered design and also saving some

computational effort. Figure 4 presents the working process.

Considering the limited context encoding capability of the Swin

Transformer, we add the CA attention mechanism after the Patch

Merging layer. CA attention decomposes the channel attention

work process into two one-dimensional feature encoding processes

and then performs feature aggregation along two directions in

space. Figure 5A illustrates the structure of the CA attention

mechanism. It first pools the feature maps globally averaged in

two dimensions, height, and width, using convolution kernels of

dimensions (H, 1) and (1, W), respectively:











zhc (h) = 1
W

∑

0≤i<W
xc(h, i)

zhc (w) = 1
H

∑

0≤j<H
xc(j,w)

(5)

The above transformations obtain the feature maps in the space

in the width and height directions, respectively. Then CA attention

performs the stitching operation on the feature maps and performs

the F1 transformation to obtain the feature map f . The formula is

shown below:

f = δ(F1([z
h, zw])) (6)

Where F1 is the 1×1 convolutional transform function,

[ , ] denotes the splicing operation, and δ is the nonlinear

activation function.

The feature map f is then convolved in the original height and

width direction and activated by the Sigmoid activation function to

obtain the feature map attention weights gh and gw, which are given

by the following equations:

{

gh = σ (Fh(f
h))

gw = σ (Fw(f
w))

(7)

Where σ is the sigmoid activation function.

Finally, the CA attention mechanism is calculated by

multiplicative weighting to obtain the output of the feature map

with attention weights:

yc(i, j) = xc(i, j)× ghc (i)× gwc (j) (8)

It encodes long-range dependencies by precise positional

information, enabling our model to utilize global contextual

details efficiently. At the same time, CA has both channel and

spatial domain attention mechanisms. Its introduction can better

capture direction-aware and location-sensitive information for

more accurate localization to identify objects of interest and

improve feature representation.

3.3. Neck

3.3.1. Improved CSPLayer—SECSP
CSPLayer (Wang et al., 2020) is mainly divided into two

parts (Figure 1), a backbone part, which consists of shallow
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FIGURE 5

The module structure of the attention mechanism. (A) CA module; (B) SE module; (C) CA module.

convolutional branches and sub-residual branches, and a residual

part, which is directly connected to the output part of the CSPLayer

through a simply processed 1×1 convolutional layer. The sub-

residual bottleneck structure is an essential component of the

CSPNet. It has a 1×1 convolutional stacked layer and a 3×3

convolutional stacked layer. Additionally, shortcut connections

are applied to directly add elements to the output of the

convolutional layer. The feature extraction process of the CSP

network is primarily carried out in the sub-residual bottleneck

structure, and its application significantly alleviates the gradient

disappearance problem.

The use of CSPLayer makes the model over-consider

the surrounding contextual information (Liu et al., 2022),

which causes local information interference. To solve this

problem, we introduce the SE attention mechanism in

the Bottleneck module to selectively emphasize the feature

information, weaken the interference information, and further

enhance the focus on the target features. Meanwhile, the 3

× 3 convolutional layer in Bottleneck needs to deal with a

large number of parameter operations while causing a large

number of parameter redundancies. SE performs feature

compression on the feature map down the spatial dimension,

squeezing the global spatial information into the channel

description. The output feature map zc of channel c after

compression is:

zc =
1

H ×W

H
∑

i=1

W
∑

j=1

xc(i, j) (9)

Where xc is the input, H andW represent the two directions of

height and width in space, respectively. This process dramatically

reduces the redundant parameters in the network. Figure 5B

illustrates the structure of SE.

3.3.2. Improved up-sampling and down-sampling
processes

The resolution of the feature maps at various sizes varies.

Before feature fusion, down-sampling or up-sampling operations

must shrink or enlarge the feature maps for feature fusion between

feature maps of different scales. The process of compression and

extension of feature maps brings about the problem of semantic

information loss and the introduction of local interference. CBAM

(as shown in Figure 5C) can focus on more profound feature

semantic information by performing a hybrid pooling of both

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1170163
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhao et al. 10.3389/fnbot.2023.1170163

global average and global maximum over space and channels. Its

introduction makes the model more robust. The specific working

process is as follows:



















MC(F) = σ (MLP(AvgPool(F))+MLP(MaxPool(F)))

= σ (W1(W0(F
c
avg))+W1(W0(F

c
max)))

MS(F) = σ (f 7×7([AvgPool(F);MaxPool(F)]))

= σ (f 7×7([Fsavg;F
s
max]))

(10)

Where MC(F) and MS(F) are one-dimensional and two-

dimensional channel attention, respectively; σ is a sigmoid

function; W0 ∈ RC/r×C, W1 ∈ RC×C/r ; and f 7×7 is a convolution

kernel of 7×7 size.

The deconvolution up-sampling approximation is considered

the inverse operation of convolution. It can restore the feature

map better by introducing training parameters for learning.

However, this up-sampling method is prone to a tessellation

effect, which causes pixel blocks to appear in the image. On

the other hand, the interpolation method does not require

any parameter learning. It performs predictive estimation of

unknown points based on known pixel points, which can expand

the size of the image and achieve the effect of up-sampling.

Therefore, we use the bicubic interpolation algorithm for

up-sampling instead of deconvolution, which reduces many

parameter operations while preserving the original image

information. Figure 6 illustrates the improved up-and-down

sampling process.

3.4. Head

Considering the fact that SAR images of ships in complex

environments require a lot of feature information to identify

targets, the commonly used coupled detection head will

influence the model’s performance and cannot detect the

ship targets in SAR images of a complex environment.

Therefore, the ST-YOLOX network model separates the

classification and regression tasks by using a decoupled

detection head for target detection to achieve the predicted

output of target location and bounding box, which significantly

increases the convergence speed and improves the accuracy of

the model.

As for the loss function, SAR image ship detection is a

single-class detection task. Hence, the loss function has only two

components: localization loss (Reg) and confidence loss (Obj)

(Jiang et al., 2022). The mathematical equations for these two

components are as follows:

Loss =
λLreg + Lobj

Npos
(11)

where λ is the balance coefficient; Npos represents the Anchor

Points quantity of positive samples; Lobj indicates the confidence

loss; in our paper, the binary cross-entropy loss (BCE loss) is

used as this loss function to promote numerical stability; Lreg
represents the localization loss, and the Efficient-IOU (EIOU)

(Zhang et al., 2022) loss function is used. Its mathematical

expression is:

L = LIOU + Ldis + Lasp = 1− IOU +
ρ2

(

b, bgt
)

c2
+

ρ2
(

w,wgt
)

c2ω

+
ρ2

(

h, hgt
)

c2
h

(12)

where LIOU is the overlap loss, Ldis is the center distance

loss, and Lasp is the wide height loss. EIOU loss integrates the

overlapping area, the distance to the center point, and the aspect

ratio of the bounding box regression. It splits the loss term of the

aspect ratio into the difference between the widths and the heights

of the predicted and the minimum outer bounding boxes, which

effectively solves the sample imbalance problem in the bounding

box regression task, accelerates the convergence, improves the

regression accuracy, and further optimizes the model.

With the aforementioned analysis, the ST-YOLOA detection

model proposed in this paper applies to the detection of ship objects

in SAR images under complex environments. It has the advantages

of strong feature extraction capability, high utilization of high-

level and low-level feature information, full information fusion, and

robust performance, which ismore suitable for ship target detection

under realistic conditions.

4. Experiment

4.1. Experimental data and environment

4.1.1. Dataset
In the paper, the experimental data are based on the publicly

accessible SAR-Ship-Dataset (Wang et al., 2018) from the Key

Laboratory of Digital Earth, Institute of Space and Astronomical

Information, Chinese Academy of Sciences. The primary data

sources of this dataset are Sentinel-1 SAR data and domestic

Gaofen-3 SAR data, which use three polarization techniques:

single-polarization, double-polarization, and full-polarization. It

used 108-view Sentinel-1 and 102-view Gaofen-3 high-resolution

SAR images to build a SAR ship target deep learning sample

library containing 43,819 images of 256 × 256 pixels with 59,535

ship targets in total. The dataset contains a wide variety of ship

types and backgrounds, including sea-surface scenes with noise

interference from the ocean and ships of different scales and

nearshore scenes influenced by complex backgrounds, such as

islands, land constructions, and port terminals.

We used 4,000 photographs from the SAR-Ship-Dataset as the

dataset for our experiment. The training set and the test set were

randomly divided according to the ratio of 8:2, and 20% of the

training set was randomly selected as the validation set. To increase

the data diversity and ensure the model had a better training effect,

we used two data enhancement methods, Mosaic (Tian et al., 2019)

and Mixup (Zhang et al., 2017), to perform data enhancement

operations on the dataset.

To test the ship detection capability of this model in complex

environments, we selected 450 SAR ship images in complex

environments, such as near-coastal ship targets affected by

surrounding non-ship targets, ship targets with blurred or obscured

imaging, ship targets with coherent speckle noise and complex

background information, and multi-scale ship targets. We named

the two SAR ship detection test sets constructed as norm test set
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FIGURE 6

(A, B) Up/down-sampling structure diagram.

TABLE 1 Experimental data set details.

Dataset Number
of images

Target
background

Number of
ships

Train 2,560 General

background

3,440

Val 640 General

background

843

Test NTS 800 General

background

1,020

CTS 450 Complex

background

943

MTS 1,250 General

Background+
Complex

background

1,963

(NTS) and complex test set (CTS), respectively, and combined the

two sets into one merged test set (MTS). We used the combined

performance of the model in these three test sets as the criterion to

verify its detection ability. The details of the ship data set used for

the experiments are shown in Table 1.

4.1.2. Evaluation indicators
This paper chooses the average precision (AP) (Everingham

et al., 2009) as the main evaluation index to assess the effect of SAR

image ship detection. It contains two parameter metrics, Precision

and Recall. The calculation formula is:











P = TP
TP+FP

R = TP
TP+FN

AP =
∫ 1
0 P (r)dr

(13)

where TP (true positive) is the number of ships marked as ship

targets, FN (false negative) is the number of ship targets marked as

non-ships, FP (false positive) is the number of non-ships marked as

ship targets, and P(r) is the area under the PR curve with precision

and recall, which is AP.

Also, to better measure, the comprehensive performance of the

model, Parameters, GFLOPs, and FPS are introduced as evaluation

metrics in this paper.

4.1.3. Experimental environment and parameter
setting

In this paper, the experimental environment was based on

Linux system architecture, using the Ubuntu 18.04 operating

system, equipped with an Intel(R) Core i9 10980 XE CPU and

NVIDIA RTX 2080TI graphics card with 11 GB videomemory. The

deep learning framework used PyTorch, with accelerated training

via CUDA 10.1 and cuDNN 7.6.

In this paper, the experimental hyperparameters are referred to

the literature (An et al., 2019; Yuan and Zhang, 2021; Wu et al.,

2022), and the main settings are as follows: setting the training

period to 300 epochs, the maximum learning rate of the model

to 0.01, and the minimum learning rate to 0.0001. The optimizer

was stochastic gradient descent (SGD), and the weights decayed
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TABLE 2 The ablation experiments results.

Serial number Swin-T Attention EIOU loss AP/% FPS GFLOPs Parameters

NTS CTS MTS

1 - - - 96.23 70.86 85.52 22.74 27.27 8.94

2
√

- - 96.30 73.81 86.72 22.24 89.60 32.72

3 -
√

- 96.94 71.64 86.37 20.24 27.28 9.00

4 - -
√

97.23 73.61 88.27 22.38 27.27 8.94

5
√ √

- 96.71 74.19 87.74 21.60 89.61 32.77

6
√

-
√

97.28 74.40 88.16 22.00 89.60 32.72

7 -
√ √

97.81 72.40 86.93 20.49 27.28 9.00

8
√ √ √

97.37 75.69 88.50 21.40 89.61 32.77

Bold indicates the best result of each column, italic is the second best result; “-” is no module added, “
√
” is the module added.

FIGURE 7

Loss function curves of the ablation experiments.

at a rate of 0.0005. To increase the speed of data reading, we

employed multi-threaded data reading and used cosine (COS)

as the learning rate descent method. The test was run with the

following parameters: a non-maximum suppression threshold of

0.65, a confidence level of 0.001, and a prediction probability

threshold of 0.5.

4.2. Ablation experiments

To validate the performance of each major module and

loss function in the ST-YOLOA model, we performed ablation

experiments. In these experiments, as the benchmark model,

we used the YOLOX network, which through eight groups of

networks with various structures were used to test the effects

of various strategies on the detection effectiveness of the model.

These strategies included changing the Swin Transformer backbone

network; adding CA, SE, and CBAM attention mechanisms;

modules; and using the EIOU loss function. We used the

same experimental equipment and training parameters in each

experiment to test and validate the detection effect in the NTS, CTS,

and MTS. Table 2 shows the results of the ablation experiments.

The benchmark model YOLOX network is the least efficient,

as seen in Table 2. Comparing the ordinal number 2 in the table,

we can see that the improvement in the average accuracy AP on

the NTS using the Swin Transformer backbone is insignificant.

However, the improvement in the detection of CTS is significant.

Swin Transformer contains a large number of parameters but does

not have much impact on the detection speed. Its introduction

gives the model an AP improvement of 2.95% with almost no loss

in detection speed FPS. This demonstrates that Swin Transformer

can focus on global information, particularly for the extraction of

sophisticated features with a significantly enhanced effect. Serial

number 3 adds CA, SE, and CBAM attention mechanism modules

to the feature extraction and feature fusion sections, improving

the AP of the NTS and the CTS by 0.71 and 0.78%, respectively,

while the FPS decreases by 2.5 frames per second, showing that

this method is capable of adaptively focusing on and using useful

local feature information to lower the rate of missed detection

but complicates the model computationally and structurally. Serial

number 4 introduces the EIOU loss function and achieves good

detection results on both test sets, with an AP improvement of 1.00

and 2.75%, respectively. Although the FPS decreases slightly, this

still demonstrates that the introduction of the EIOU loss enhances

convergence speed and prevents the degradation of model training

caused by the uneven distribution of positive and negative samples,

which is a successful addition strategy. The trials in serial numbers

5 to 8 are composite multi-strategy experiments. A comparison of

serial numbers 2 to 4 shows that the use of a variety of tactics

together achieves better results than the use of just one strategy.

From serial numbers 5 and 6, it can be seen that Swin Transformer

effectively addressess any speed reduction brought on by the

addition of other modules. Serial number 7 uses both the attention

module and EIOU loss to ensure that the model works optimally

on the NTS. Serial number 8 is the ST-YOLOA network model

proposed in this paper. Compared with YOLOX, its AP is improved

by 1.14 and 4.83% in the NTS and the CTS, respectively. Although

the effect is slightly reduced compared to serial number 7 on NTS,

it still achieved second place in the comparison experiment. Its

detection speed and detection effect in a complex environment are

also substantially ahead.
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TABLE 3 Ablation experiments of attentional mechanisms.

SE CA CBAM Precision/% Recall/% AP/% FPS GFLOPs Parameters

79.87 83.49 86.72 22.24 89.60 32.72

√
84.83 81.46 87.46 21.94 89.60 32.72

√ √
85.71 82.53 87.64 21.87 89.60 32.75

√ √ √
86.27 83.61 87.74 21.60 89.61 32.77

Bold represents the maximum value in each column.
√

represents the module that added one row of that column to the network.

TABLE 4 Performance comparison of the di�erent algorithms.

Algorithm NTS CTS MTS FPS GFLOPs Parames

P/% R% AP/% P/% R/% AP/% P/% R/% AP/%

CenterNet 94.97 85.20 96.22 82.64 57.05 70.95 89.85 71.68 85.54 25.13 109.34 32.67M

Faster R-CNN 61.84 98.33 95.98 38.88 76.35 65.03 50.04 87.72 83.18 25.47 401.91 136.69M

SSD 90.40 85.88 94.43 68.68 57.90 66.48 80.61 72.44 82.83 50.40 273.40 23.61M

RetinaNet 92.82 91.27 96.80 72.23 64.26 71.36 83.44 78.30 86.47 39.15 163.49 36.33M

EfficientDet 95.60 87.35 96.81 81.33 55.89 72.32 89.75 72.24 86.95 45.64 7.40 3.83M

YOLOv5 90.86 90.69 95.65 69.28 63.63 67.03 80.94 77.69 83.54 32.88 16.38 7.06M

YOLOX 88.79 94.71 96.23 72.77 67.44 70.86 82.66 82.32 85.52 22.74 27.27 8.94M

YOLOv7 92.06 95.49 97.36 75.70 68.40 73.56 84.76 82.48 87.50 34.60 105.11 37.20M

ST-YOLOA 91.82 95.78 97.37 74.24 72.75 75.69 84.04 83.44 88.50 21.40 89.61 32.77M

Bold font denotes the best outcome for each column, italics is the second best result.

The loss function curve in Figure 7 clearly illustrates our

algorithm’s superior performance. In conclusion, the model in

this paper meets the real-time detection criteria, while displaying

substantially improved target detection accuracy, especially

showing excellent detection performance in the complicated

environment of the dataset.

In this paper, we introduce three attention mechanisms to

enhance the network performance according to the characteristics

of different modules to enhance the focus on ship targets. We

conducted ablation experiments on three attentional mechanisms,

SE, CA, and CBAM, to validate the effectiveness of each attentional

mechanism. Table 3 shows the experimental results. The results

show that the combination of the three attention mechanisms

works optimally.

4.3. Comparative experiments

To objectively evaluate the detection effectiveness of the ST-

YOLOA model, we performed comparative experiments using our

model and other existing target detection methods. The range

of comparison algorithms covers a wide range, among which

CenterNet, Faster R-CNN, SSD, RetinaNet (Lin et al., 2017b) and

EfficientDet (Tan et al., 2020) are classical target detection models,

YOLOv5 (Jocher, 2020) and YOLOX are newly published high-

performance target detection models in recent years, and YOLOv7

(Wang et al., 2022) is one of the most advanced detection models at

present. Table 4 displays the results of the comparison experiments.

CenterNet predicts the bounding box by learning the centroid

and corner point pairs in the feature map without relying on

the predetermined anchor box. It has the highest precision rate

but a poor recall rate. As a representative algorithm of two-stage

detection, the Faster R-CNN detection recall rate has improved

significantly but the detection accuracy can be still improved.

SSD has been experimentally shown to be unable to efficiently

detect ships in complicated surroundings in a SAR picture, despite

having a higher detection speed and a more condensed network

model. RetinaNet surpasses the previous two-stage algorithm in

terms of accuracy and the last detection single-stage algorithm in

terms of speed, but there is still much room for improvement

efficientDet, as a lightweight networkmodel, has the lowest number

of parameters and computations, but its accuracy still needs further

improvement. YOLOv5 and YOLOX, as new single-stage detection

models, have fewer parameters and computation and more concise

network models, which perform better than traditional detection

algorithms. However, there is still a certain degree of false detection

and leakage, with serious false detection and leakage problems

in complex conditions. YOLOv7 shows excellent performance

in speed and accuracy, but the detection capability for complex

backgrounds still needs further improvement. Compared with

other models, ST-YOLOA has an average number of parameters

and computation and has higher detection accuracy. It can also

meet the basic requirements of real-time detection. Therefore, ST-

YOLOA has good overall performance in terms of comprehensive

detection, particularly when it comes to SAR image ship detection

in complicated environments.

In this research, to demonstrate the detection performance of

various models, we compared the PR (precision–recall) curves of

each model on two separate test sets. The PR comparison curves

are displayed in Figure 8.

To visually compare and analyze the detection effects of the

ST-YOLOA model and other algorithms in different scenarios, we
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FIGURE 8

Comparison of the PR curves of di�erent algorithm models. (A) NTS; (B) CTS; (C) MTS.

FIGURE 9

Comparison of the detection results.

selected SAR images containing near-coast and far-sea ship targets.

Figure 8 shows the detection effect, where the first column of

Figure 9 shows the actual labeling result, and other columns show

the detection results of each algorithm.

4.4. Generalization ability test

In this paper, to illustrate the generalization capacity of ST-

YOLOA, we used two distinct ways for partitioning data (Guo W.

et al., 2022): (1) Partitioning the data at random into five ratios:

{9:1, 8:2, 7:3, 6:4, 5:5}. (2) Partitioning the data multiple times at

random into the ratio 8:2. The test results of the two methods of

dataset division are provided in Tables 5, 6.

Table 5 shows that although the number of samples of ship

targets in the test samples that are randomly divided by different

ratios of the dataset varies significantly, the average accuracy of

ST-YOLOA does not change much. However, even though the

average accuracy of the samples divided in the ratio of 5:5 among

them differed more than the others, it exhibits a good detection

ability, which is analyzed because the detection effect degrades as a

result of an insufficient number of training samples. The variance of

AP for each sample in this experiment is 0.03085, and the variances

of the precision and recall are 0.08452 and 0.2078, respectively. This
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TABLE 5 Sample cutting in di�erent proportions.

Proportioning Precision % Recall % AP %

9:1 92.17 95.84 97.24

8:2 91.82 95.78 97.37

7:3 91.92 96.92 97.44

6:4 91.38 96.28 97.27

5:5 91.70 96.23 96.98

Mean 91.798 96.21 97.26

Variance 0.08452 0.2078 0.03085

TABLE 6 Multiple sample cuts in the same proportion.

Cutting times Precision % Recall % AP %

1st 91.63 96.60 97.39

2nd 91.82 95.78 97.37

3rd 91.69 96.39 97.27

4th 92.00 96.51 97.24

5th 91.47 97.05 97.36

Mean 91.722 96.266 97.326

Variance 0.03997 0.11733 0.00443

indicates that the ST-YOLOA model proposed in this paper has a

stable detection effect for test sets with different numbers of data

samples and shows a strong generalization ability.

Due to the same number of samples and smaller variations in

the number of ship targets, as shown in Table 6, the variance of

the experiment’s indicators is lower for samples divided multiple

times at the same scale. The mean and variance of the SA-YOLOA

model for the same proportion of samples divided multiple times

were 91.722% and 0.03997 for precision, 96.266% and 0.11733 for

recall, and 97.326% and 0.00443 for mean precision, respectively.

The information in Tables 5, 6 leads to the conclusion that ST-

YOLOA performs well and has excellent generalization capacity,

both in test samples with various ratios of randomly divided

datasets and in test samples with the same proportion of multiple

divided datasets.

4.5. Detection e�ect of the ST-YOLOA
model in di�erent scenarios

To visualize the detection effect of the ST-YOLOA model and

further measure the model performance, this section first shows the

schematic of the confusion matrix of the ST-YOLOA algorithm.

As shown in Figure 10, the confusion matrix demonstrates that

ST-YOLOA has good performance.

In this study, we demonstrate the effect of ship target detection

under different scenarios and scales, including near-shore and far

sea. Figure 11 presents the detection effect in each scenario. The

first and second rows are near-shore ship targets near islands

and near-shore buildings, respectively. Such targets have complex

backgrounds and are susceptible to the influence of other non-ship

targets around them. Multiple near-shore ship targets can easily

FIGURE 10

Confusion matrix.

be framed by a single detection box due to the dense docking of

ships, which suppresses candidate boxes with high overlap and

low prediction scores. The third row is a small, dense target in

the distance that is easy to miss because it has a small ship scale.

The ship target in the fourth row is prone to erroneous target

localization since it has indistinct target borders and complicated

background information. In all four aforementioned scenarios, the

ST-YOLOA model significantly improved the detection rate and

accuracy, as can be seen from the figure, and produced positive

detection results.

4.6. Limitations and discussion

The results of previous experimental studies show that our

model achieves sound visual effects in SAR ship detection in

complex scenes. It is demonstrated that the ST-YOLOA model can

learn global features and can be used to extract more powerful

semantic features for ship target detection in harsh environments

and complex scenes. However, our approach still suffers from

some limitations.

The relatively high computational complexity and large

number of parameters of the Swin Transformer module lead

to more extended training and inference time. As seen from

the experimental ablation results in Table 1, although we have

used the Swin-Transformer network with a smaller model as

much as possible, its use still introduces many parameters

compared to the base model. The Swin Transformer network has

a solid global modeling capability, capturing rich global feature

information and integrating global data. This process requires a

vast amount of support operations, resulting in more parameters

and computations than other models. At the same time, the

computational complexity of the Swin Transformer increases with

the length of the input sequence. When dealing with very long

input sequences, Swin Transformer may face problems such as

high computational complexity and large memory consumption,
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FIGURE 11

Detection e�ects in di�erent scenarios.

which need to be alleviated by using lightweight models or

other techniques.

5. Conclusions

To ensure the accuracy of SAR ship target recognition under

complicated situations, in this study, we have suggested a more

extended ST-YOLOA ship target identification model. To begin

with, the feature extraction section adds the Patch Embedding

module after the input layer to chunk and flatten the input image

and then produces feature maps of varying sizes using Swin

Transformer Blocks and the Patch Merging layer. A coordinated

attention mechanism is designed at the end to simultaneously

capture position information and channel relationships, which

significantly improves the performance of downstream tasks.

Second, to effectively use semantic and localization information,

the PANet is employed to thoroughly fuse high-level and low-

level feature information. Finally, a decoupled detection head

in the target detection section is used to significantly speed

up model convergence and improve the position loss function,

both of which improve model performance. This model is more

suited for ship target detection in challenging surroundings and

complex circumstances because it can extract more potent semantic

characteristics and can better learn global features than other

detection models.

Considering that our model focuses on improving SAR ship

detection accuracy in complex environments, the vital index of the

number of parameters of the model is ignored to a certain extent.

In the future, we will further conduct model optimization and carry

out research on model lightweight by adjusting hyperparameters

andmodel compression methods, such as quantization, distillation,

and pruning, and further analysis on lightweight Swin Transformer

to achieve lower model parameter computation, faster training

speed, and maintain previous accuracy.
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