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With the rapid development of networks, the traffic in the networks has increased
sharply, resulting in frequent congestion, especially in spatial networks, such as the
railway network, aviation network, and sensor network, and congestion not only
affects the user’s experience but also causes serious economic losses. Therefore,
in this paper, we effectively identify the high-load nodes in spatial networks by
considering harmony centrality and degree. On this basis, we design the HD
routing strategy by avoiding these key nodes, which can enhance the traffic
throughput of spatial networks efficiently. The results provide new ideas and
directions for the design of routing strategies for spatial networks.
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1 Introduction

At the end of the 20th century, the discoveries of the small-world phenomenon [1] and
scale-free property [2] attracted much attention. Since then, complex networks have become
a research hotspot in many fields, including communication, transportation, power grids,
and social relations [3–13]. Many complex systems can be modeled into complex networks,
for example, in some complex systems with transmission as their main function, such as
communication networks, internet, and transport network. The constituent elements of
these systems can be abstracted as nodes, and links can be used to describe the
interrelationships between different elements, which can help us analyze traffic dynamics
on these systems effectively. Among them, congestion is the most critical problems of such
complex networks, which is related to network topology [14] and routing strategy [15].
However, it is too expensive to modify the network structure. Therefore, optimizing the
routing strategy seems to be more practical to improve network transmission performance.

The shortest path (SP) routing strategy is the most common routing strategy, which is
extensively adopted in various complex systems. However, it is easy to cause congestion at
some hub nodes. To solve this problem, many efficient routing strategies have been proposed
to avoid these hub nodes [16–26]. Yan et al. [24] realized the influence of network topology
on traffic dynamics. They focused on the node degree and proposed an efficient routing
strategy, which can enhance the network throughput more than 10 times. Jiang et al. [25]
found that nodes with the largest betweenness are most likely to be congested, so they
designed an IE strategy. The load can avoid these high-betweeness nodes during
transmission, which can achieve high network throughput. Zhang et al. [26] considered
both static and dynamic information and proposed an adaptive routing strategy. The load
can select the appropriate path for transmission based on the waiting time and degree, which
can reduce congestion effectively.
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However, most current works ignore the influence of a space
factor. In fact, aviation networks [27], transportation networks
[28], wireless sensor networks [29], and swarming networks [30]
are all limited by spatial locations. In these networks, each node
has a fixed spatial location, and link length is limited. We
generally call these networks as spatial networks, which is a
significant class of complex networks [31]. Due to the
limitation of link length, the topological structure in spatial
networks is quite different with topological networks. At the
same time, the traffic dynamics on spatial networks will also vary
due to distinct structures [32]. For example, in the topological
networks, the node degrees often exhibit an obvious power-law
relationship with the loads when adopting the SP routing
strategy. However, Lin et al. [33] found that this power-law
relationship is not obvious in spatial networks. Most of the
existing routing strategies cannot achieve great results in
spatial networks. Thus, there is an urgent need for an efficient
routing strategy to alleviate congestion of spatial networks.

In this paper, we focus on traffic dynamics for spatial networks.
Based on the harmony centrality and degree, we redefine the key
nodes in the transmission. We find that the node with the high
harmony centrality index and degree usually deals with more loads.
Therefore, we design a harmony-degree (HD) routing strategy to
bypass these key nodes. All simulations are made on the local-area
and energy-efficient (LAEE) evolution model and improved the
random geometric graph (IRGG) model, which are two spatial
networks with different structures. According to the results of
simulation, our HD routing strategy can help spatial networks
obtain greater traffic throughput.

The outline of this paper is as follows. In Section 2, we describe
the generation of spatial networks. In Section 3, we explain the traffic
dynamic model. In Section 4, we introduce our HD routing strategy.
Simulation results and discussions are given in Section 5. In Section
6, we summarize the conclusion of this paper.

2 Network models

It has been shown that the network structure is an important
factor affecting load transmission. For an efficient routing strategy, it

should ensure high performance on different spatial networks.
Therefore, we will test the performance of the proposed routing
strategy on two spatial networks with homogeneous and
heterogeneous properties, respectively. The generation of these
two models is as follows.

2.1 IRGG model

The IRGG model is a simple homogeneous spatial network,
which has a uniform degree distribution.

The generation process of the IRGG model is as follows:
Step 1: N nodes are distributed randomly in the 1 × 1 square

area S.
Step 2: We set a connection radius r for each node. As shown in

Figure 1, any node i only can establish links with nodes located in its
circular connected area. The set of these nodes can be represented
by Ωi.

Step 3: We set a connection probability p. Node i establishes
links with the nodes in the set Ωi with probability p.

Step 4: We repeat Step 3 until all nodes follow this rule to build
links with nodes within their respective connected areas.

2.2 LAEE model

The study found that many practical networks follow the scale-
free property. To explore the applicability of our proposed routing
strategy on heterogeneous spatial networks, we adopt the LAEE
evolution model proposed by Jiang et al. [34], which builds a spatial
network with a power-law degree distribution.

The generation process of the LAEE evolution model is as
follows [34]:

Step 1: N nodes are distributed randomly in the 1 × 1 square
region S.

Step 2: We define the node closest to the origin as the sink node.
At this point, all nodes are isolated. We set every node with the same
connection radius r. If the scatter node A lies within the connection
radius of node B, we call the scatter node A as the potential neighbor
node of the node B.

FIGURE 1
Node i build links with nodes in the set Ωi with probability p.
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Step 3: Sink node builds link withm0 potential neighbor nodes to
form the initial network.

Step 4: At time step i, we calculate the number of potential
neighbor nodes owned by different nodes in the network separately.
Next, we select the one with the most network and name it as node v.
Then, we select one of its potential neighbor nodes randomly and
call it as node n.

Step 5: As shown in Figure 2, the node n establishes links withm
nodes in the network with the priority probability Πi:

Π i � Π i′ i ∈ local − area( ) φ Ei( )ki
∑local−areaφ Ej( )kj − qkmax

, (1)

where the local-area is the set of node n’s potential neighbor nodes.
kmax represents the upper limit that the node’s degree is allowed to
reach, q indicates the number of nodes whose degrees arrive at kmax,
and φ(E) is a function. In this paper, we set φ(Ei) = 1 and φ(Ej) = 1.

Step 6: We repeat Step 4 and Step 5 until all nodes are connected
to the network.

Based on the aforementioned generation methods, we can
generate these two networks and observe the degree distribution.
As shown in Figure 3, the degree distribution of the IRGG model is
relatively even, but the LAEE model presents power-law
distribution. Then, the IRGG model is a homogeneous spatial
network and LAEE belongs to a heterogeneous spatial network.

3 Traffic dynamics

At every time step, every node can handle at most C units of
load, and R units of load are generated in the whole system. We can
randomly select pairs of nodes as the sources and destinations. At
each time step, we select a neighbor node as the next hop for the load
according to the routing strategy. Once the load arrives at its
destination, it will disappear automatically. To better understand
congestion, we shall introduce the order parameter [35] as follows:

η R( ) � lim
t→∞

C

R

<W t +△t( ) −W t( )>
△t

, (2)

where W(t) is denoted as the units of load in the network at time t
and </> indicates the average over time windows of the width△t.

When R is small, the inflow and outflow of a node are balanced and
no congestion occurs in the network, so η(R) = 0. We generally call this
state as the free-flow state. However, with the increase of R, some load
cannot be processed in time. At that time, η(R) > 0, and the congestion
occurs. We always use the critical value Rc to describe this phase
transition.WhenR<Rc, the network is in a free-flow state; whenR>Rc,
congestion occurs. We call Rc as the maximum network throughput. In
this paper, our main work is to design an efficient routing strategy to
help the spatial network obtain a higher value of throughput.

FIGURE 2
At every time step, node n builds links with nodes in the network.

FIGURE 3
Degree distribution of the (A) IRGG network and (B) LAEE network. Parameters of the network are set as N = 1000, average degree < k> = 6, and
connection radius r = 0.12.
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Betweeness is a significant indicator to describe the load of
nodes. The betweeness of node n is calculated as follows:

b v( ) � ∑
s≠t

σst n( )
σst

, (3)

where σst is the number of paths from node s to node t according to
the adopted routing strategy and σst(n) represents the number of
paths from node s to node t through node n. Traffic congestion first
occurs at the node with maximum betweeness. In addition, the
throughput of the network can be calculated by

Rc � N N − 1( )C
bmax

, (4)

where bmax is the maximum betweeness in the network. Therefore,
in order to enhance the throughput of the network, we should
minimize the value of bmax.

4 Routing strategy

For any pair of nodes {s, t}, the path between them is defined as
follows:

P s → t( ): s ≡ x 0( ), x 1( ), . . . , x n( ) ≡ t. (5)
An efficient routing strategy attempts to find the optimal path to

achieve a high network throughput Rc.

FIGURE 4
Load versusw of nodes under the shortest path (SP) routing strategy for the (A) LAEE network and (B) IRGG network with α= 1 and β= 1, respectively.
Parameters of the network are set as N = 1000, average degree < k> = 4, and connection radius r = 0.12.

FIGURE 5
Network throughput Rc, determined by adjustable exponents α and β in the (A) LAEE network; (B) IRGG network. Parameters of the network are set as
N = 1000, average degree < k> = 4, and connection radius r = 0.12. Experimental results are the averages over 10 independent simulations.
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4.1 SP routing strategy

The shortest path means the path with the minimum number of
links between two nodes. In the SP routing strategy, load can be
transmitted from its source to its destination with fewer hops.
However, it easily causes congestion at hub nodes and the
network has a low throughput.

4.2 Degree-location routing strategy

In the topological network, Yan et al. [24] found that the node
with the larger degree always has to deal with more loads. However,
in the spatial network, this relationship is not that obvious. Lin et al.

[33] investigated the influence of network topology on load
transmission. They found that the nodes with larger links and
closer to the regional center usually process more loads. Based
on this idea, they proposed the degree-location (DL) routing
strategy, which is presented as follows.

Nodes are distributed in a two-dimensional region. Each node
has its own coordinates. We set the center of the region as C, whose
coordinate is (xc, yc). For any node v, we can calculate its Euclidean
distance from the center C as

Lv �
�������������������
xv − xc( )2 + yv − yc( )2√

, (6)

where (xv, yv) represents the 2D coordinate of node v. Next, we
normalize Lv to Lv′:

FIGURE 6
Rc of the three routing strategies on the (A) LAEE network and (B) IRGG network with different node sizes N. Parameters of the network are set as
average degree < k> = 4 and connection radius r = 0.12. α and β are set to be optimal to maximize Rc. Experimental results are the averages over
10 independent simulations.

FIGURE 7
Rc of the three routing strategies on the (A) LAEE network and (B) IRGG network with different average degree < k> . Parameters of the network are
set as N = 1000 and connection radius r = 0.12. α and β are set to be optimal to maximize Rc. Experimental results are the averages over 10 independent
simulations.
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Lv′ � 1 − Lv −min L( )
max L( ) −min L( ). (7)

Similarly, the normalized degree is defined as

kv′ � kv −min k( )
max k( ) −min k( ). (8)

The weight of node v is denoted as follows:

Qv � k′αv + L′β
v , (9)

where α and β are two adjustable exponents, corresponding to
degree and location, respectively.

Considering the node with a highQ value should have large load,
the DL routing strategy tends to bypass these busy nodes to improve

the network throughput. To perform that, the DL routing strategy
attempts to use the path with the smallest sum of the Q value, i.e.,

GQ P s → t( )( ) � min ∑n
m�0

Qx m( ) . (10)

4.3 Harmony-degree routing strategy

In 2000, Marchiori and Latora proposed the harmonic centrality
[36] denoted as

Hi � ∑
j≠i

1
d j, i( ), (11)

FIGURE 8
Average number of hops vs. N under three routing strategies on the (A) LAEE network and (B) IRGG network. Parameters of the network are set as
average degree < k> = 4 and connection radius r = 0.12. α and β are set to be optimal to maximize Rc. Experimental results are the averages over
10 independent simulations.

FIGURE 9
Average number of hops vs. < k> under three routing strategies on the (A) LAEE network and (B) IRGG network. Parameters of the network are set as
N = 1000 and connection radius r = 0.12. α and β are set to be optimal to maximize Rc. Experimental results are the averages over 10 independent
simulations.

Frontiers in Physics frontiersin.org06

Lin et al. 10.3389/fphy.2023.1203665

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1203665


where d(i, j) represents the number of hops from node i to node j. If
there is no path between node i and node j, then d(i, j) = ∞. We
normalize Hi as follows:

Hi′ � Hi −min H( )
max H( ) −min H( ). (12)

According to Eq. 11, if node i has a high harmonic centrality
index, it means that this node establishes contact with other nodes
through fewer hops. Therefore, this node is busy in load
transmission. At the same time, degree is also a significant factor
to identify high-load nodes. With the consideration of the
aforementioned two factors, the node with a high harmonic
centrality index and high degree should deal with high load.
Next, we attempt to combine these two factors to form a new
measurement as follows:

wi � k′αi +H′β
i , (13)

where α and β are two exponents, corresponding to degree and
harmonic centrality, respectively.

Next, we investigate the load distribution in spatial
networks. Figure 4 shows that this new measurement can
help us easily identify the high-load nodes in the spatial
networks. If the node has a high value of w, this node needs
to process more loads.

In order to enhance the transmission efficiency of spatial
networks, we redistribute the load from the nodes with high w to
these with low. Since w depends on the harmonic centrality and
degree of the node, this strategy is named as theHD routing strategy,
which is defined as follows:

Gw P s → t( )( ) � min ∑n
m�0

wx m( ) . (14)

That is, theHD routing strategy attempts to seek a path with the
minimal sum of the w value along the path.

5 Simulation results

To verify the effectiveness of HD routing strategies, we adopt Rc
to measure the traffic capacity of spatial networks. If the network
carries a large Rc, the congestion hardly occurs. All simulations are
carried out on heterogeneous and homogeneous spatial networks,
corresponding to the LAEE model and IRGG model, respectively,
mentioned previously. Without the loss of generality, we set C = 1 in
the following simulations.

TheHD routing strategy is based on the harmonic centrality and
degree, and we can use α and β to adjust their weights, respectively.
Figure 5 shows the variation of Rc under different α and β. In the
LAEE network, the peak value of Rc is observed at α = 1 and β = 0.6;
in the IRGG network, the maximum value is observed at α = 1.4
and β = 0.5.

In order to further verify the efficiency of our routing strategy,
we observe the change of Rc when adjusting the network size and
average degree. In addition, we also compare with SP andDL routing
strategies. Figure 6 shows the results of Rc in different scale networks.
WhenN increases, Rc also increases. TheHD strategy is always better
than the SP and DL strategies in the LAEE and IRGG models.

Figure 7 shows the Rc increases almost linearly with the average
degree < k> . With the growth of the < k> , the network
connections become denser and the load has more path options
during transmission. Therefore, the load distribution becomes more
even, which also directly leads to the increase of Rc. Rc of the HD
routing strategy is higher than that in the SP and DL routing
strategies. For the aforementioned results, we observe that spatial
networks can carry the highest network throughput under our HD
routing strategy in all cases.

The number of hops is also an important factor to evaluate the
performance of the routing strategy. As we all know, the aim of a
good routing strategy is not only to enable the network to carry more
load but also to allow loads to be transmitted from its source to its
destination quickly. Therefore, we expect a smaller number of hops
under an efficient routing strategy. Figure 8 shows the relationship
between node size N and average number of hops under different
routing strategies. As the name suggests, the SP routing strategy
always has the minimum number of hops. In the DL strategy, the
load tends to be transferred around the edge of the region. Therefore,
it needs the highest number of hops.

Similarly, Figure 9 shows the effect of < k> on the average
number of hops under different routing strategies. No matter how
the average degree < k> changes, the SP routing strategy always has
the smallest average number of hops, and the average number of
hops under the DL routing strategy is always higher under than the
HD strategy.

In order to better understand the performance of these routing
strategies, we observe the average load per node under these routing
strategies in different regions. As shown in Figure 10, all nodes are
placed in the 1 × 1 square region S, and the region center (xc, yc) =
(0.5, 0.5). S′ is a square sub-area of region S, which has the same
center as the region S and side length 2d.

FIGURE 10
Demonstration of regions S′ and S. They have the same center
(xc, yc) = (0.5, 0.5). Region S is a 1 × 1 region, and S′ is its sub-regionwith
the side length 2d. d ≤ 0.5.
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Figure 11 shows the variation of the average load per node in
the region S′. When d is small, nodes in region S′ are close to the
center. In this case, these nodes have high average load under the
SP routing strategy. This is because the SP routing strategy finds
the shortest path, which often goes through the central region.
The high load leads to congestion at these nodes in the central
region easily. That is why Rc is low under the SP routing strategy.
On the contrary, when d is small, the average load is the lowest
under the DL routing strategy. However, when d is large, the
nodes need to deal with more loads under the DL routing
strategy. Evidently, the load is more inclined to be transmitted
along the edge of the region S. This load distribution makes the
DL routing strategy always has the largest number of hops, as
shown in Figures 8, 9. A high-detour cost becomes the main
factor restricting the network throughput in the DL routing
strategy. Compared with these two routing strategies, the load
distribution is more even under the HD routing strategy. That is
the main reason why the HD routing strategy performs better in
spatial networks than other two routing strategies.

6 Conclusion

In this paper, we design an efficient routing strategy for
spatial networks. To alleviate congestion, we attempt to find
high-load nodes in spatial networks. Our routing strategy
redefines the high-load nodes by considering both the
harmony centrality and degree to improve the throughput
significantly. Moreover, it not only ensures that the network
can carry more load but also ensures that the load can be quickly
transmitted to the destination. Therefore, our strategy can be

adopted in spatial networks to help alleviate the congestion and
provide a new thought for the design of routing strategies.
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