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Introduction: The time-varying and individual variability of surface

electromyographic signals (sEMG) can lead to poorer motor intention detection

results from di�erent subjects and longer temporal intervals between training

and testing datasets. The consistency of using muscle synergy between the

same tasks may be beneficial to improve the detection accuracy over long time

ranges. However, the conventional muscle synergy extraction methods, such as

non-negative matrix factorization (NMF) and principal component analysis (PCA)

have some limitations in the field of motor intention detection, especially in the

continuous estimation of upper limb joint angles.

Methods: In this study, we proposed a reliable multivariate curve-resolved-

alternating least squares (MCR-ALS) muscle synergy extraction method combined

with long-short term memory neural network (LSTM) to estimate continuous

elbow joint motion by using the sEMG datasets from di�erent subjects and

di�erent days. The pre-processed sEMG signals were then decomposed into

muscle synergies by MCR-ALS, NMF and PCA methods, and the decomposed

muscle activation matrices were used as sEMG features. The sEMG features and

elbow joint angular signals were input to LSTM to establish a neural network

model. Finally, the established neural network models were tested by using sEMG

dataset from di�erent subjects and di�erent days, and the detection accuracy was

measured by correlation coe�cient.

Results: The detection accuracy of elbow joint angle was more than 85% by

using the proposedmethod. This result was significantly higher than the detection

accuracies obtained by using NMF and PCA methods. The results showed that the

proposed method can improve the accuracy of motor intention detection results

from di�erent subjects and di�erent acquisition timepoints.

Discussion: This study successfully improves the robustness of sEMG signals

in neural network applications using an innovative muscle synergy extraction

method. It contributes to the application of human physiological signals in human-

machine interaction.

KEYWORDS

electromyographic signal, neural network, muscle synergy, joint angle detection,

robustness

1. Introduction

Stroke is the main reason for death and disability among the elderly in China (Sacco

et al., 2013). Most stroke patients suffer from motor dysfunctions, which seriously affects

their ability to take care of themselves and imposes a heavy economic burden on society and

families. Rehabilitation therapy can effectively help stroke patients rebuild limb movement
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function, but there is a serious shortage of rehabilitation therapists

in China, and there are widespread problems such as high

manual costs, low efficiency, and slow promotion. Compared

with manual rehabilitation therapy methods, the convenient and

efficient rehabilitation robot-assisted therapy is gradually showing

the advantages of high repetition rate and tirelessness.

In the process of rehabilitation with robot-assisted training,

human-robot interaction (HRI) is one of the key core technologies

that determine the effectiveness of rehabilitation. The traditional

program-based HRI approach has shackled the autonomous

adaptive capability of robots and is difficult to apply to robotic

systems that require direct integration with the human body. This

has led to a new class of bioelectric signal-based HRI technologies.

The core of the myoelectric signal-based HRI process lies in

decoding human movement intention through myoelectric signals

(Bi et al., 2019), and surface electromyographic signals (sEMG), as a

non-invasive biofeedback pathway, have attracted a lot of attention

from scientists in recent decades (Chowdhury et al., 2013; Tang

et al., 2014; Ding et al., 2016).

Many studies that have used sEMG signals as a source of control

signals for rehabilitation robots have focused on classification

models, such as the simple sEMG-based two-finger opening and

closing actions performed by Battye et al. (1955). And a five-finger

pressing action activation model proposed by Peleg et al. (2002).

However, this classification model is only capable of detecting pre-

defined types of movements and rarely takes into account the non-

ideal situations encountered when a person performs a task (Ma C.

F. et al., 2021). As a result, the estimation of continuous movements

is more practical.

Compared to building complex skeletal muscle models for

motion detection, regression models using neural networks to

establish the mapping relationship between sEMG signals and

continuous joint motion are more concise and effective. For

example, Sartroi et al. mapped elbow joint angles based on back

propagation neural networks (Sartori et al., 2012). In 2017, Zhang

et al. used artificial neural networks (ANN) for mapping and

estimated the four joint angles of shoulder and elbow joints

consecutively (Zhang et al., 2017). However, the neural network

regression model suffered from the problem of over-reliance on

the learned samples, and the detection values fluctuated when

there were differences between the test and learned samples (Gers

et al., 1999). The inherent instability and individual variability

of the sEMG signal lead to high variability when it is used as a

learning sample. The long-short term memory network (LSTM)

has better performance for the case where the input data itself is

temporal in nature and helps to eliminate the variation between

samples. Due to the specificity and shareability of muscle synergy

among the same actions (d’Avella and Bizzi, 2005; Ding et al.,

2014), decoding the sEMG signal into muscle synergy features is

beneficial to ensure the similarity between the testing signals and

training signals of the neural network learning, thus enhancing

the robust-ness of the detection results (Bizzi et al., 2008). The

decomposition of muscle synergy determines the accuracy of the

information contained in the decoded sEMG signal. However,

neural networks learning using the synergy features derived from

non-negative matrix factorization (NMF) as input can lead to low

accuracy when training and testing samples obtained from different

subjects and days (Gui et al., 2016), a newmuscle synergy extraction

method combined with LSTM to improve the robustness of motion

intention detection was developed in this study.

Based on the above analysis, this study aims to investigate

the accuracy and robustness of a reliable muscle synergy

decomposition method in motion intention detection based on

sEMG signals and LSTM neural networks. The multivariate curve

resolution alternating least squares (MCR-ALS) method was used

to extract muscle synergy as a feature mapping the angle of

continuous elbow motion to construct a model for detection, and

the muscle synergy features extracted by the traditional NMF

method and PCA method were used as a comparison to validate

the new method’s accuracy and robustness in the detection of

muscle synergy. The synergy features were used as a comparison

to verify the robustness of the MCR-ALS method in different

time periods and among different individuals. The robustness of

motion intention detection of two methods was also compared to

demonstrate the advantage of the proposed method.

2. Results

2.1. Results of acceleration calculation
angle

In order to prove the accuracy of the calculation results,

the calculation results are compared with the actual angle. The

acceleration sensor and angle sensor were fixed at the same position

on the upper arm of the subject, and the upper arm of the subject

was required to remain motionless while the forearm moved from

0◦ to 90◦. Figure 1 shows the comparison between the acceleration

calculation results and the actual angle, and themean absolute error

(MAE) is used to measure the accuracy of the calculation.

The mean absolute error between the angle calculated by

acceleration and the actual angle is 3.2415 ± 2.9440◦, which meets

the requirements of this study.

2.2. Results of motor function evaluation by
muscle synergy

Considering that the sEMG signal amplitude of males is

generally larger than that of females (Anders et al., 2004), the sEMG

data of subjects with angular data were divided into two groups

of male and female to train the models. The sEMG data from the

first day of each group of all subjects were decomposed into MCR

features, NMF features and PCA features to train Bi-LSTM neural

network models, respectively, where 70% of the data were used

as the training set and the remaining 30% were used as the test

set. For the task-related component (Jiang et al., 2021), the fusion

network that contained information from different people helped

to eliminate interindividual variability.

The mean values of the correlation coefficients of muscle

synergy obtained by the three algorithms were calculated separately

for each subject over 5 days. The muscle synergy matrix obtained

from each of the three algorithms for each participant per

day was separately calculated. The correlation coefficients of all
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FIGURE 1

Comparison of calculated angle and actual angle.

muscle synergy matrices obtained within a 5-day period for

each participant were then computed and averaged. The Pearson

Correlation Coefficient (CC) of muscle synergy obtained by the

MCR-ALS algorithm were 0.9396 + 0.08, 0.8592 + 0.06, 0.8048 +

0.09, 0.9537 + 0.02, 0.9578 + 0.02, 0.9100 + 0.03, 0.9074 + 0.10,

0.8595 + 0.06, 0.9383 + 0.02, 0.9219 + 0.05, 0.9155 + 0.06, and

0.9178 + 0.01. The CC of muscle synergy obtained by the NMF

algorithm were 0.4643 + 0.69, 0.0242 + 1.04, −0.8074 + 0.13, and

−0.1694+ 0.84, 0.3372+ 0.58, 0.4779+ 0.71, 0.0713+ 1.0, 0.1003

+ 0.81, 0.1461 + 0.92, 0.3771 + 0.46, 0.3540 + 0.87, and 0.2253 +

0.77. The CC of muscle synergy obtained by the PCA algorithm

were 0.9143 + 0.07,0.8918 + 0.08, 0.8702 + 0.1, 0.9074 + 0.05,

0.9631 + 0.03, 0.7093 + 0.02, 0.9674 + 0.02,0.9616 + 0.03,0.9722

+ 0.02,0.9577 + 0.02,0.8653 + 0.1,0.8729 + 0.09. The correlation

coefficients of the three methods have significant differences (F =

17.027, P < 0.001).

A comparison of the muscle synergy matrices decomposed

by the three decomposition methods for a particular subject over

a 5-day period is shown in Figure 2. The superposition of the

synergy matrix represents the synergistic fit pattern of muscle

activation during the action, and the higher similarity of the

synergy matrix represents the higher similarity of the extracted

activation coefficient matrix, which is more stable as the input

to the neural network. Figure 2 shows that the muscle synergies

derived from the MCR-ALS method are stable throughout the

duration of the experiment, while the muscle synergies decom-

posed by the NMF are not in a fixed order and have poor similarity.

For the PCA method, the extracted muscle synergies are relatively

stable. However, due to the lack of non-negative constraints, the

consistency of the synergies extracted by PCA and the other

two methods is poor. The difference in synergy patterns may

indicate that PCA may not fully reflect the corresponding synergy

patterns of the action, which also affects the prediction results of

neural networks.

To verify the robustness of the prediction results, compared

the angular detection values of the three features with the actual

values for a representative subject over 5 days. As shown in Figure 3,

due to the reliable matrix decomposition performed by the MCR-

ALS method, it can be found that the detection results of the

model trained with the MCR features are more accurate and have

robustness over a certain period of time, while the detection results

of the NMF features are unstable and less accurate. The detection

results of PCA features were also relatively stable, but the accuracy

was poor, lower than that of MCR-ALS features. Figure 3 shows

that the detection results of both methods maintain high agreement

with the actual angle on the first day. From the second day, the

detection results of NMF features start to become less consistent

with the actual ones, while the consistency of the results of MCR-

ALS features stays above 85% for the next 4 days. The accuracy of

PCA features was consistently and significantly lower than that of

MCR-ALS features over a period of 5 days. In the case of NMF

features, the detection results were inconsistent, with better and

worse performance observed on different days. However, on days

where the results were ideal, such as the first and fourth days, the

predictive accuracy of NMF features was higher than that of PCA

features, although both were inferior to MCR-ALS features.

To verify the accuracy of the results, the correlation coefficients

between the test results and the actual measurements were

calculated for both groups of male and female subjects as shown

in Tables 1, 2.

3. Discussion

The MCR-ALS decomposition method and the traditional

NMF synergy decomposition method were compared and

analyzed. Since the initial matrix in the NMF decomposition was

built randomly, the muscle synergy order and amplitude derived

after iteration were not fixed, which caused the differences in the

input variables of the neural network and affected the accuracy

and stability of the output results. In contrast, the muscle synergy

matrix derived from the MCR-ALS decomposition method is

relatively stable each time, which provides excellent sEMG signal

feature information for the Bi-LSTM neural network motor

intention detection. The experimental results showed that this

decomposition method has high accuracy for both male and

female detection. In comparison, PCA features are also obtained

by dimensionality reduction with a determinate matrix of base

vectors, resulting in a certain degree of stability in the detection

results. However, the PCA method can only provide linear

transformations of the data set, and is more sensitive to noise

and outliers. Therefore, when processing physiological data sets,
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FIGURE 2

Comparison of the muscle synergy derived from the three methods.

the PCA method often fails to accurately identify the true muscle

coordination patterns, which leads to lower detection results for

PCA features than for MCR-ALS and NMF features.

The Bi-LSTM neural network can extract useful information in

both temporal directions, and its unique memory mechanism can

retain the association between various time points in a longer time

sequence. Since muscle synergy of the same action is consistent,

this information retention was helpful for the neural network

that uses synergy as a feature to detect actions over a period of

time, enhancing the robustness of sEMG signals over time. From

the experimental results, it can be seen that the accuracy of the

detection results was around 80% on all 5 days.

During the experiment, before gender division, we extracted

muscle synergy features by combining the 3-channel EMG signals

of all 12 participants (the sample size was limited) to train a model.

However, the predicted results were lower than expected for both

male and female participants, despite being able to predict the

specific angle change waveform. The maximum and minimum

values of angle change predicted for each movement were also

less accurate compared to actual angle changes. After gender

division, the angle detection results for both male and female

groups improved by about 10%. This phenomenonmay be different

physiological structures ofmen andwomen,men havemoremuscle

cells and the signal amplitude of muscle activation was larger

when completing the same action. During the training process of

the network, this would lead to excessive differences between the

training set data and the training effect. Dividing the subjects into

two groups of men and women can exclude the gender difference

in the sEMG signals and reduce the error of experimental results.

Two separate models were trained for the male and female

groups, each using data from all subjects on the first day only. The

models incorporate information from different subjects, and the

resulting models are transferable to all subjects in the group and

robust to the effects of electrode displacement and sEMG signal

changes over time over 5 days. It helps to exclude confounding

factors of the sEMG signal under non-ideal conditions.

4. Conclusion

In this paper, the muscle co-activation coefficient matrix

obtained by the muscle co-extraction method based on MCR-ALS

is used as the sEMG signal features, and the movement estimation

is performed in a Bi-LSTM neural network with an upper

limb motion angle mapping training model. This study provides

conditions for the utilization of human electrophysiological signals

during the HRI of rehabilitation robots. It contributes to the

promotion of HRI technology in a series of application scenarios

such as assisted rehabilitation robots and rehabilitation assistive

devices, so as to lay the foundation for the subsequent application of

new HRI technology based on bioelectrical signals from laboratory

scenarios to real-life applications. However, there are still some

limitations to this study. The experimental movements were limited

to simple elbow flexion movements with fixed trajectories, which

limited the flexibility of the model. The future work will focus on

extending the motion intent detection to more complex multi-joint

movements for the applications in clinical or practical conditions.

5. Methods

5.1. Muscle synergy theory

Muscle synergy can explain how the central nervous system

(CNS) accomplishes complex movements (Cheung et al., 2012).
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FIGURE 3

Comparison of prediction results of two features. (A) NMF feature prediction results. (B) MCR-ALS feature prediction results. (C) PCA feature

prediction results.
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TABLE 1 Comparison of the accuracy of three methods for male subjects

(N = 7).

MCR-ALS NMF PCA

Mean ±
standard
deviation

Mean ±
standard
deviation

Mean ±
standard
deviation

Subject1 0.8794± 0.06 0.3382± 0.14 0.4399± 0.08

0.9148± 0.04 0.4763± 0.29 0.5186± 0.12

0.8666± 0.01 0.3596± 0.15 0.4374± 0.07

Subject2 0.8088± 0.08 0.5270± 0.04 0.4087± 0.09

0.8223± 0.01 0.5345± 0.20 0.5758± 0.11

0.8456± 0.03 0.4589± 0.14 0.4148± 0.06

Subject3 0.8393± 0.08 0.6385± 0.08 0.4980± 0.08

0.8517± 0.08 0.3977± 0.28 0.4772± 0.09

0.8240± 0.05 0.3734± 0.24 0.4618± 0.07

Subject4 0.8179± 0.03 0.5728± 0.09 0.5251± 0.15

0.8398± 0.02 0.4755± 0.28 0.4233± 0.08

0.8081± 0.04 0.3073± 0.26 0.4124± 0.14

Subject5 0.8758± 0.05 0.5249± 0.16 0.4349± 0.04

0.8484± 0.03 0.4309± 0.20 0.4105± 0.04

0.8981± 0.02 0.4071± 0.25 0.4665± 0.03

Subject6 0.8900± 0.04 0.2689± 0.11 0.6321± 0.01

0.8593± 0.05 0.4871± 0.23 0.4009± 0.10

0.8563± 0.02 0.3657± 0.24 0.2677± 0.05

Subject7 0.8608± 0.05 0.1830± 0.11 0.5577± 0.11

0.8599± 0.04 0.3655± 0.19 0.3839± 0.09

0.8506± 0.04 0.3310± 0.18 0.2865± 0.07

The CNS coordinated the activation of certain muscle synergies

to perform motor tasks. For example, a single muscle can be

part of multiple muscle synergies, and a single muscle synergy

can be composed of multiple muscles. Muscle synergy effectively

represents the collaborative activation of muscles during a task.

In muscle synergy theory, the sEMG signal is decomposed into

an activation coefficient matrix containing information about the

muscle activation time and a synergy matrix reflecting the relative

activation intensity of multiple muscles. Thus, the activity state of

a muscle can be represented as a linear combination of the synergy

matrix and themuscle activation coefficientmatrix (Shourijeh et al.,

2016).

D = CS+ E (1)

where D is them× nmatrix,m denotes the number of myoelectric

signal channels, and n denotes the length of the time series

corresponding to each myoelectric signal channel; C is the m × r

muscle synergy matrix, reflecting the relative activation strength of

multiple muscles; r denotes the number of muscle synergies; S is the

r × n activation coefficient matrix; and E is the error matrix of size

m× n.

TABLE 2 Comparison of the accuracy of three methods for female

subjects (N = 5).

MCR-ALS NMF PCA

Mean ±
standard
deviation

Mean ±
standard
deviation

Mean ±
standard
deviation

Subject1 0.8920± 0.04 0.2992± 0.13 0.4139± 0.07

0.8425± 0.05 0.3182± 0.16 0.4866± 0.10

0.8410± 0.03 0.3176± 0.15 0.3214± 0.06

Subject2 0.8888± 0.06 0.2713± 0.13 0.3429± 0.05

0.8449± 0.05 0.5583± 0.19 0.6425± 0.09

0.8572± 0.05 0.4614± 0.23 0.6309± 0.10

Subject3 0.8670± 0.10 0.1395± 0.09 0.3607± 0.14

0.8338± 0.08 0.3938± 0.16 0.4200± 0.04

0.8523± 0.01 0.3362± 0.14 0.3224± 0.04

Subject4 0.8858± 0.04 0.2575± 0.22 0.4426± 0.10

0.8716± 0.02 0.3362± 0.14 0.3962± 0.05

0.8491± 0.01 0.3975± 0.17 0.3738± 0.04

Subject5 0.8132± 0.10 0.2980± 0.19 0.4108± 0.08

0.9041± 0.02 0.3997± 0.16 0.4372± 0.09

0.8830± 0.02 0.3780± 0.16 0.1723± 0.07

5.2. LSTM neural network

Recurrent neural networks (RNNs) have been widely used in

the study of sequential data such as text, audio, and video (Werbos,

1988; Horii et al., 2020). However, traditional RNNs can only use

in-formation from a certain period of time ago. And when the

input gap is large, recurrent neural networks using only activation

functions like sigmoid or tanh are prone to gradient explosion or

gradient disappearance.

Hochreiter and Schmidhuber proposed long and short-

term memory networks in 1997 (Hochreiter and Schmidhuber,

1997). By introducing gate functions in the cell structure, long

and short-term memory networks can deal well with long-

term dependencies. Graves and Schmidhuber combined the

bidirectional RNN introduced by Schuster and Paliwal (1997)

with LSTM cells to propose a bidirectional LSTM (Bi-LSTM)

(Graves and Schmidhuber, 2005). This structure can be trained

in two temporal directions simultaneously with separate hidden

layers (i.e., forward and backward layers). Figure 4 shows the cell

structure of LSTM, each forward layer is connected by stacked

LSTM cells. The forward layer outputs are ordered from t = 1 to

t = T. And the backward layer outputs are ordered from t = T to

t = 1. The information in both directions effectively extended the

content referenced by the LSTM network.

5.3. Experimental data acquisition

Twelve healthy subjects (seven males and five females, mean

age was 24 years) completed elbow flexion and extension trials
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FIGURE 4

LSTM cell structure.

along a reference trajectory guided by a training game in the same

time period for five consecutive days. This work involved human

subjects in its research. Approval of all ethical and experimental

procedures and protocols was granted by the Ethic Committee

of Ningbo Institute of Materials Technology and Engineering,

Chinese Academy of Science and performed in line with the

Declaration of Helsinki. All subjects signed and gave the written

informed consent forms to participate the experiments. As shown

in Figure 5, this experiment was performed on a bilateral mirror

image rehabilitation platform developed in our laboratory, limiting

the arm trajectory to ensure similarity of repetitive movements. on

the first day, subjects completed two sets of 30 trials each, with a

2-min rest between sets. One set of data was used as the training

set to train the network, and the other set was used as the test set

to test the network performance. On the second 4 days, subjects

completed one set of 30 trials each day, and the data was used as a

validation set to verify the accuracy of the network detection results.

Figure 6b showed the interface of the training game based

on the Unity3D platform. The red ball A represent the original

reference position at the end of the robot arm; the red circle B and

green circle C represent the path points of the reference trajectory;

and the blue ball D represent the task target to be tracked. The blue

ball moves back and forth between the red and green circles at a

constant speed.

The sEMG acquisition device used in this experiment was

the Trigno Wireless EMG System from DELSYS, U.S.A. The

device consists of 16 sEMG signal sensors and a wireless

receiving base station, which can simultaneously acquire 16

channels of sEMG signals with a sampling rate of up to

2,000Hz. Three muscles of the subject were selected, which

were the anterior deltoid (DA), biceps brachii (BI), and flexor

carpi radialis (FCR). After disinfecting with alcohol pads and

exfoliating with facial scrub, the three sEMG sensors were

attached along the muscle texture in the order shown in

Figure 6c.

To ensure the synchronization of the sEMG

signal and the angle signal, the angle in-formation

FIGURE 5

Experimental action design. (a) Elbow extension. (b) Elbow flexion.

is calculated using the acceleration module in the

Trigno sEMG acquisition system after measuring

the acceleration.

5.4. Muscle synergy extraction

Principal component analysis (PCA) is a common data

dimensionality reduction technique used to extract the most

representative principal components from high-dimensional

data. As shown in Eq. 2, first, the PCA method computes the

covariance matrix V of the standardized raw matrix D of the

electromyographic signals, and performs an eigendecomposition

of the covariance matrix to obtain the eigenvector matrix

V and the eigenvector value vector λ. The eigenvectors

are then sorted in descending order of their corresponding

eigenvalues, and the top k eigenvectors are selected as the

new base vectors, which yield the activation patterns of each

muscle in each synergy, i.e., the muscle synergy matrix C.

The temporal information of each synergy can be obtained

by computing the reduced data matrix S, as shown in

Eq. 3.

V =
1

m− 1

(

D− D̄
)T (

D− D̄
)

(2)

S = DC (3)

Non-negative matrix decomposition is the most widely used

method for muscle coextraction extraction from sEMG signals

(Gunay et al., 2017; Hu et al., 2021; Ma Y. H. et al., 2021).

The muscle synergy matrix is generated by iteratively optimizing

a randomly created initial matrix by minimizing the Frobenius

parametrization of the residual matrix in Eq. 4. Q in Eq. 5 is

the underfitting transformation rate between two iterations and

determines the stopping criterion of the iteration. The iterations
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FIGURE 6

Experimental design and data collection. (a) Principle of angular velocity calculation. (b) Training game interface. (c) Sensor position distribution.

are stopped when Q equals 0.01% or when the number of iterations

reaches 1,000.

f (S,C) =
1

2
‖D− CS‖2F (4)

Q = 100 ·

(

fl+1 (S,C) − fl (S,C)

fl (S,C)

)

(5)

MCR-ALS is a commonly used matrix decomposition

algorithm for resolving the component information in hybrid

systems (Yu et al., 2019). In this study, the initial matrix of

MCR-ALS was obtained by Self Modeling Mixture Analysis

(SMMA). The SMMAmethod determined the pure variable matrix

by calculating the pure variable values of the signal samples and

finding the maximum pure variable value. The initial matrices C

and S for the decomposition of the sEMG signal D are calculated

using the pure variable matrices (Windig and Stephenson,

1992).

Self-modelingmixture analysis (SMMA), also known as simple-

to-use interactive self-modeling mixture analysis (SIMPLISMA),

is a linear unmixing method used to analyze mixture systems.

The method is based on the concept of pure variables, which

are variables that contribute to only one component of the

system. In muscle synergy analysis, pure variables refer to the

sEMG data points that are associated with the recruitment

of only one synergy, meaning they are sampled in isolation

from other synergies. Thus, SMMA is a useful technique

for decomposing complex mixture systems into their pure

variable components.

The pure variables are based on variables having the ratio

of the maximum standard deviation to the mean. As shown

in Eq. 6.

pij = ωij
σ̂i

µ̂i + α
(6)

where pij is the value of the ith pure variable, from

which the jth pure variable will be selected. and µ̂i σ̂i

are the mean and standard deviation of variable i. α is

a constant in the range of 1%−5% and is added to the

denominator to avoid the problem of variable level noise

averaging. The weight factor ωij, a determinant-based
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function, is used to correct for the previously selected

pure variables.

µi = (1/m)

m
∑

j=1

dij (7)

σi = ((1/m)

m
∑

j=1

(dij − µi)
2)

1/2

(8)

where dij is the element matrix of D with size of m × n, which

composes m sEMG signals, and each sEMG signal has n samples.

For the same data, the NMF initialization was random, so its

solution had non-uniqueness. Moreover, it was easy to fall into

local optimum in the decomposition process, which aggravated the

difference between the test and learning samples and significantly

affected the neural network’s detection for the results. Compared

with NMF, MCR-ALS has better repeatability and consistency

because the initial matrix is calculated based on the SMMAmethod

and the initial matrix is consistent for each decomposition of the

same data (Matsunaga et al., 2021).

According to Eq. 6, Once the pure variables have been

determined, their intensities are extracted to form synergy

matrix C, then the sEMG data set can be unmixed through

matrix transformation.

In addition, alternating least squares (ALS) was used to

optimize the initial resolution according to Eqs 9, 10. During

the iterative process, non-negative constraints are imposed. The

stopping criterion of MCR-ALS was the same as that of NMF.

C =
(

DST
)

(SST)
−1

(9)

S = (CTC)
−1

CTD (10)

5.5. Data processing and neural network
mapping

The EMG signal D was recorded from the subject. After

the preprocessing and feature extraction of the sEMG signal,

the activation coefficient matrix SNMF and the muscle synergy

matrix CNMF were decomposed by Eqs 4, 5, and the activation

coefficient matrix SMCR and the muscle synergy matrix CMCR were

decomposed by Eqs 9, 10. Where SNMF and SMCR are r × n

activation coefficient matrices, and the number of synergies r is

explained by variance account for (VAF). The VAF reflected the

degree of similarity between the decomposed reconstructed data

and the original data. The minimum number of synergies that can

reconstruct the EMG data was chosen under the condition that the

VAF value be >80% (Li et al., 2017). VAF was calculated according

to the following equation:

VAF = 1− (‖D−M‖2/‖D−mean (D)‖2) (11)

The reconstruction matrix of the synergy extraction algorithm

is represented by M = CS, where M has the same size as D. The

“mean” operator produces a matrix with columns that are the mean

of the corresponding columns inD. In this experiment, the number

of synergies was chosen as 2.

The length of time series n indicated the length of sEMG signals

from three channels during the duration of a set of experiments.

D= [D1 D2 D3] (12)

As shown in Figure 6a, the output of the sensor XYZ triaxis

is determined by both the external force and gravity (Wen-sheng

et al., 2009). It is assumed that the sensor outputs in the three axes

are Ax, Ay, and Az, respectively, and the acceleration of gravity is g

and the acceleration of the combined external force is a. Then the

sensor outputs in the three axes directions should be

a cosα+ g cosαg = Ax (13)

a cosβ+ g cosβg = Ay (14)

a cosγ + g cosγg = Az (15)

where α, β, γ denote the angle between the combined external

acceleration of the sensor and the three axes of the sensor, and αg,

βg, γg denote the angle between the acceleration of gravity and the

three axes of the sensor.

In the elbow flexion action shown in Figure 5, the acceleration

of the sensor in the x-axis and y-axis direction was 0, and the output

value was only affected by the acceleration of gravity. Therefore,

the joint motion angle θ can be regarded as the angle between the

sensor x-axis and the horizontal direction, which is the residual

angle of αg.

θ = 90◦ − arccos
Ax

g
(16)

To exclude errors, the acceleration sensor is calibrated by

gravity and the acquisition results are low-pass filtered.

In the process of model training, the input of neural network

was the 3-dimensional muscle cooperative activation coefficient

matrix feature of EMG signal, and the output was the 1-

dimensional angle information. The backpropagation strategy is

used to train the network, and there were five Bi-LSTM layers, each

with 48 hidden units. To prevent overfitting, a dropout layer is

inserted after each Bi-LSTM layer, and the drop ratio is set to 0.3.

After train the model with the experimental data on the first day,

the model is used to make predictions on the last 4 days as a way to

verify the robustness of the model in the time horizon.

5.6. Algorithm evaluation

The Pearson Correlation Coefficient (CC) was used to measure

the similarity between the detection results and the actual

measurement results to assess the accuracy of the model.

CC =

∑n
i=1

(

θi − θ̄
) (

θri − θr
)

√

∑n
i=1

(

θi − θ̄
)2

√

∑n
i=1

(

θri − θr
)2

(17)
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where θ is the detection angle, θr is the actual measurement angle,

and n is the length of the time series.

This study measured the stability of the decomposed

muscle synergy by comparing the CC of muscle synergy

over a certain time range. A paired t-test was used to

measure the muscle synergy consistency between the

two algorithms.
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