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Spatial and temporal 
characteristics of carbon emission 
and sequestration of terrestrial 
ecosystems and their driving 
factors in mainland China—a case 
study of 352 prefectural 
administrative districts
Jingyuan Lin , Yi Guo , Jiayan Li , Ming Shao * and Peng Yao *

School of Landscape and Architecture, Beijing Forest University, Beijing, China

Introduction: Global climate change, increase in human activities, and prominence 
of ecological issues have led to uneven quantitative and spatial distributions 
of carbon emission and sequestration of terrestrial ecosystems. Such uneven 
distributions can lead to more negative impacts on the natural environment and 
human living conditions.

Methods: Therefore, based on the carbon neutralization policy, we conducted 
geographically weighted regression (GWR) modeling in this study using panel data 
from 352 Chinese prefectural administrative districts in 2000, 2005, 2010, and 
2017 to analyze and determine the impact factors and their spatial distribution for 
carbon emission and sequestration of terrestrial ecosystems.

Results: Our results showed that total population (TP), per capita gross domestic 
product (GDP) (PCG), proportion of secondary industry output (PSIO), scale of urban 
built-up area (SUB), green space proportion in city areas (GSP), normalized difference 
vegetation index (NDVI), and temperature (TEM) are factors driving carbon sequestration 
and carbon emission. The spatial distribution of these driving factors in mainland China 
is: (1) TP showed a negative correlation to carbon emission in most areas, while it 
exhibited a positive correlation to carbon sequestration in the southern, southwestern, 
and western parts of northwest China; however, in all other areas, TP showed a negative 
correlation with carbon sequestration; (2) PCG was positively correlated to carbon 
emission in most areas of China and to carbon sequestration in southwest, south, 
central, and northeast China; however, PCG demonstrated a negative correlation to 
carbon sequestration in the remaining areas; (3) PSIO and SUB presented a positive 
correlation to carbon emission and a negative correlation to carbon sequestration in 
most areas; (3) In contrast, GSP showed a negative correlation to carbon emission and 
a positive correlation to carbon sequestration in most areas; (5)NDVI showed a negative 
correlation to carbon emission and carbon sequestration in most areas toward the east 
of the “Heihe-Tengchong Line”; NDVI was positively correlated to both carbon emission 
and sequestration toward the west of this line; (6)TEM was positively correlated to 
carbon emission and sequestration in most parts of China.

Discussion: Based on these results, we further divided the Chinese cities into 6 groups: 
(1) Groups 1, 2, 3, and 6 are areas where carbon emission and sequestration are 
governed by both socioeconomic and natural ecological factors. The major driving 
factors of carbon emission and carbon sequestration in group 1 are PSIO, GSP, and 
NDVI; the driving factors of group 2 are SUB and NDVI. Meanwhile, carbon emission 
and sequestration in group 3 are governed by PCG, GSP, and NDVI; for group 6, carbon 
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emission and sequestration are controlled by PCG, SUB, GSP, and NDVI; (2) Group 4 
represents areas where carbon emission and sequestration are majorly impacted by 
PCG and SUB, thereby rendering socioeconomic factors as the major driving forces. 
Group 5 represents areas where carbon emission and sequestration are sensitive to 
the natural environment, with GSP and NDVI being the driving factors. Considering 
the uneven distribution of carbon sequestration and emission and the diverse driving 
factors in different areas of China, we provided guidance for future environmental 
policies aimed at reducing the uneven distribution of carbon sequestration and 
emission in different areas to achieve carbon neutralization.

KEYWORDS

carbon emission, carbon sequestration, terrestrial ecosystems, driving factors, spatial 
and temporal characteristics

1. Introduction

Carbon emission and sequestration of terrestrial ecosystems are the 
most important components in the global carbon cycle (Matthews and 
Keith, 2007; Hao et al., 2015; Keller et al., 2018). Recently, with increasing 
human activity and energy consumption, carbon dioxide (CO2) 
production has significantly increased (Ohara et  al., 2007). CO2 
emissions can cause several environmental issues such as global 
warming, glacier retreat, and sea-level rise (Stroeve et al., 2007; Solomon 
et al., 2009). Although reducing energy consumption proves effective in 
decreasing carbon emissions, terrestrial ecosystems play a significant role 
in fixing carbon (Huang Y. et al., 2022). The carbon sequestration rate of 
global terrestrial ecosystems has shown an increasing trend since the 
1980s, and terrestrial ecosystems offset 41% of the global carbon 
emissions by the beginning of the 21st century (Friedlingstein et al., 
2020). Forests are essential for carbon sequestration (Fang et al., 2018; 
Tang et  al., 2018); however, with economic development and 
urbanization, several forests have been disturbed and thus show reduced 
capacity for carbon sequestration. Together with the increased CO2 
emissions, the distribution of carbon contaminants started to become 
uneven both quantitatively and spatially. To reduce such uneven 
distributions, carbon neutralization policies have been promoted in 
many countries including China (Ma et al., 2021; Salvia et al., 2021; 
Majava et al., 2022). According to the World Resources Institute (WRI), 
the total carbon emission of China in 2019 was 12.06 Gt, accounting for 
24.23% of the total global carbon emission that year. Therefore, at the 
75th session of the United Nations General Assembly, the Chinese 
government proposed that China will reach peak carbon emissions by 
2030 and achieve carbon neutralization by 2060 by balancing carbon 
emissions with carbon sequestration (Mallapaty, 2020). Therefore, 
studies that focus on the driving factors of carbon emission and 
sequestration and Chinese cities classification are urgently needed to 
solve environmental issues as well as promote sustainable development 
of China.

Facing the severe carbon balance problem, early treatments 
mainly start from reducing the amount of CO2 into the atmosphere 
(Figueroa et  al., 2008; Meinshausen et  al., 2009), and achieve the 
purpose of reducing carbon emissions and increasing carbon 
sequestration by controlling the development of industries with high 
carbon emissions and improving green space and green infrastructure 
(Gartner, 2004; Niemelä et al., 2010; Artz et al., 2018). However, those 

treatments cannot effectively solve the imbalance of carbon emissions 
and carbon sequestration by terrestrial vegetation among different 
regions (Zhang P. et  al., 2018), and we  are not sure the essential 
reasons for the formation of its spatial characteristics. Cities influence 
each other (Ben-Zadok, 2008), regional convergence will lead to the 
development of nearby cities into large metropolitan areas, because 
they share the same characteristics (Fang and Yu, 2017). And that 
requires us to analyze the driving factors of carbon emissions in each 
city and carbon sequestration by land vegetation, so as to distinguish 
and determine the driving characteristics and types of each city. It 
allows us to come up with management strategies for cities at the 
national level and to address the root causes.

As mentioned above, the increase in carbon emissions and the 
decrease in carbon sequestration by terrestrial vegetation are two 
important reasons of the increase in atmospheric CO2. In terms of the 
socioeconomic aspect, previous studies have shown that carbon 
emissions are primarily increased due to a rise in energy consumption, 
accelerated urbanization, and changes in industrial structures. For 
example, Zhang and Da (2015) used an LMDI (log mean Divisia 
index) approach to reveal that economy growth, energy intensity, and 
structure are the driving factors of carbon emissions. Wang Z. et al. 
(2012) applied the STIRPAT model to prove that CO2 emissions in 
Beijing were driven by urbanization and the tertiary sector. Moreover, 
Dong et al. (2018) showed that the carbon emission per unit of GDP 
(CEI) can be  reduced by improving technology and increasing 
urbanization. With regard to natural ecology, several studies have 
shown that the expansion of cities and climate change tend to weaken 
the carbon sequestration ability of terrestrial ecosystems, thereby 
resulting in increased carbon emissions in the atmosphere in the form 
of CO2 (Wardle et al., 2012). Yang Y. et al. (2022) demonstrated that 
climate changes, land coverage, and the remediation and restoration 
of ecosystems are the driving factors of carbon sequestration by 
terrestrial ecosystems in China. Xiao et  al. (2013) and Piao et  al. 
(2012) discovered that the CO2 concentration in the air is governed by 
temperature, precipitation, and the length of the growing season; this 
is because these factors can control terrestrial vegetation and its 
carbon sequestration ability. Although several studies have focused on 
carbon emission and sequestration, these two processes have always 
been investigated separately. Furthermore, the driving factors that 
impact emission, sequestration, and their uneven spatial distributions 
have long been overlooked (Chen et al., 2020a).
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In the past, studies on carbon emission and carbon sequestration 
at the prefecture-level and city level mostly focused on local areas of 
China (Wang Z. et al., 2012), while national studies mostly focused on 
the provincial level (Dong et  al., 2018). Therefore, in this study, 
we  improved the data granularity of this study at the prefectural 
administrative level to improve the accuracy of the results. 
Furthermore, we collected data from mainland China associated with 
carbon emission, carbon sequestration, and potential socioeconomic 
and ecological factors. By analyzing data of 22 potential driving factors 
of carbon emission and carbon sequestration collected from 352 
prefecture-level administrative regions in China, we determined the 
factors that impact both carbon emission and sequestration. Moreover, 
we  also analyzed the potential causes for the uneven spatial 
distributions of carbon emission and sequestration. Finally, we sorted 
352 regions into different categories according to their dominant 
driving factors of carbon emission and sequestration, while identifying 
the reasons behind their uneven spatial distributions. Our study is the 
first to investigate the driving factors of both carbon emission and 
sequestration. We believe that this study can provide guidance for 
future policy development to decrease carbon emissions and enhance 
carbon sequestration in terrestrial ecosystems, and clear city grouping 
can serve as a basis for each city to formulate carbon reduction policies.

2. Materials and methods

2.1. Study area

The study area covered 352 prefectural-level administrative 
regions and some counties under provincial administration in China. 
However, since data were not available for Hong Kong, Macao, 
Taiwan, Tibet, and three counties in Hainan (Qiongzhong Li and Miao 
Autonomous County, Baoting Li and Miao Autonomous County, and 
Sansha County), these regions were not considered in this study. 
Information regarding each division is shown in Figure  1 (Chuai 
et al., 2012).

2.2. Variable selection and data sources

2.2.1. Variable selection and data processing
Based on previous studies (Arneth et al., 2017; Krausmann et al., 

2017; Shuai et al., 2017; Zhang et al., 2017; Tang et al., 2018; Zhang 
X. et al., 2018; Tharammal et al., 2019; Reich et al., 2020; Tagesson 
et al., 2020; Yang Y. et al., 2022), 22 indicators reflecting economic 
growth, urban development, geographic characteristics, and 

FIGURE 1

Study area location and zoning of 352 administrative units. Hong Kong, Macao, Taiwan, Tibet, Qiongzhong Li and Miao Autonomous County, Baoting 
Li and Miao Autonomous County, and Sansha County are not included in the study.
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meteorological conditions were selected for 2000, 2005, 2010, 
and 2017.

In order to ensure the integrity and consistency of the research 
data, each type of index in this study was selected from the data 
set covering the whole period from 2000 to 2017. All data were 
standardized using the SPSS-22.0 software. But it is worth noting 
that in the 17 years since 2000, the adjustment of the 
administrative scope of prefecture-level cities resulted in the 
absence of some data. These unavailable data were replaced by the 
data from adjacent years or obtained via interpolation. For 11 
types of raster data such as PRCP (Precipitation), we used the 
ArcGIS10.4 tool to conduct unified coordinate adjustment and 
data statistics with reference to Administrative data of 2015, 
which was consistent with the statistical diameter of Carbon data 
(Chen et al., 2020b).

2.2.2. Data sources
The information used in this study includes data related to 

administration, carbon (including carbon emission and carbon 
sequestration), and driving factors. Among them, administrative data 
were obtained from the county-level administrative boundary data 
published by Data Center for Resources and Environmental Sciences, 
Chinese Academy of Sciences in 2015.1 Carbon data were obtained from 
the county-level CO2 emissions and sequestration dataset published by 
Carbon Emission Accounts and Datasets (CEAD).2 Information in this 
database is consistent with results of a previous study (Chen et al., 2020b). 
Administrative and carbon data at the prefectural level were obtained by 
integrating and processing these data from the county-level datasets. 
Remaining natural ecological data and socioeconomic data were 
obtained from the Science Data Center,3 Data Center for Resources and 
Environmental Sciences, Chinese Academy of Sciences,4 National Bureau 
of Statistics of China and Provincial Bureau of Statistics,5 Cities and 
Autonomous prefectures statistical yearbook6 and Global Change 
Research Data Publishing and Repository.7 Detailed information 
regarding the selected data is shown in Table 1.

2.3. Research method—geographically 
weighted regression (GWR)

In previous studies, the OLS model is often used as a reference 
for the spatial regression model (GWR; Brunsdon et  al., 1996; 
Wang et al., 2005; Windle et al., 2010; Xie and Ng, 2013; Huilei 
et al., 2017; Kontokosta and Tull, 2017; Dadashpoor et al., 2019; 
Chang Chien et al., 2020; Zhu et al., 2020; Xu et al., 2021; Xu and 
Zhang, 2021; Yu et al., 2022). In this study, in addition to using 
OLS model, we also added Partial Least Squares Regression (PLSR) 
into the comparison (Wold et al., 2001; Prasad et al., 2008; Jia, 

1 www.resdc.cn

2 www.ceads.net.cn

3 www.geodata.cn

4 www.resdc.cn

5 www.stats.gov.cn

6 https://navi.cnki.net/knavi/

7 www.geodoi.ac.cn

2009; Abdi, 2010; Trap et al., 2013; Yan et al., 2013; Zhang et al., 
2015; Liu et al., 2020; Yan et al., 2020).

We used GWR to construct spatial regression models on carbon 
emission and carbon sequestration to explore the spatial mechanisms 
of each driving factor on the response variables. The equations of the 
GWR model can be expressed as follows (Wang et al., 2014, 2021a):
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Where i represents the 352 administrative units, u vi i,( ) indicates 
the locations of the administrative units, CEi is the carbon emission 
per unit area, CSi  represents the carbon sequestration per unit area of 
terrestrial vegetation, T  and K  are the number of predictor variables, 
b0 u vi i,( ) and g0 u vi i,( ) are the constants, bt i iu v,( ) and g k i iu v,( ) are 
the regression coefficients, x u v tt i i, , ,( ) = ¼( )1 9  is the predictor 
variable of carbon emission, x u v kk i i, , ,( ) = ¼( )1 10  is the predictor 
variable of carbon sequestration by terrestrial vegetation, and ei is the 
random error. In this study, a Gaussian weight function was used to 
determine the regression coefficient of sample i u vi i,( ) whose equation 
can be expressed as follows (Wang et al., 2021a):
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Where XT  is the transpose matrix and Wi is the distance weight 
matrix at i u vi i,( ), which represents the spatial weights between point 
i and the observation points in the model. The calculations were 
performed using ArcGIS10.4.

3. Results

3.1. Spatial and temporal characteristics of 
the carbon emission per unit area and 
carbon sequestration per unit area of 
terrestrial vegetation

From 2000 to 2017, the Carbon Emission per Unit Area (CE) of 
prefecture-level cities in mainland China showed a significant upward 
trend on the whole, and CE of prefecture-level cities increased from 
352127.4 t/km2 in 2000 to 1016977.5 t/km2 in 2017. In terms of spatial 
distribution, CE presents the distribution characteristics of “high in 
the east and low in the west,” and its high value prefecture-level cities 
are concentrated in Northern Region of China, Eastern Region of 
China and Southern Region of China (Figure 1). In addition, CE 
presents a significant spatial aggregation feature in the whole range. 
In the North, CE gradually decreases from the Beijing-Tianjin-Hebei 
region as the center to the surrounding areas, while in the South, the 
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main high-value centers are mainly the Yangtze River Delta and the 
Pearl River Delta, and such areas are gradually increasing over time.

During the study period, Carbon Sequestration per Unit Area of 
Terrestrial Vegetation (CS) showed a steady increase trend. It 
increased from 611123.5 t/km2 in 2000 to 709379.8 t/km2 in 2017. The 
overall spatial distribution features are high in the east and low in the 
west and high in the South and low in the North. The high value 
prefecture-level cities are concentrated in Northeast Region of China, 
Eastern Region of China, Southern Region of China and Southwest 
Region of China (Figure 1).

On this basis, we use Global Moran’s I index to conduct spatial 
autocorrelation analysis of Carbon Emission and Carbon 
Sequestration. Table 2 reports the global Moran’s I index of PM2.5 
from 2005 to 2018. All year indexes are positive and significant at the 

1% level. The distribution of Carbon Emission and Carbon 
Sequestration showed positive spatial correlation (Wu et al., 2020).

3.2. OLS analysis of global drivers

In this study, we  used the OLS (Ordinary Least Squares) 
model to construct the regression models for carbon emission and 
sequestration in 2000, 2005, 2010, and 2017. Moreover, we verified 
the robustness probability (Robust Pr) and the collinearity (VIF) 
of each predictor variable with Robust Pr < 0.05 and VIF < 7.5 as 
the criteria. The mean R2 of the four carbon emission models was 
0.769318, and the mean adjusted R2 was 0.753893; the average 
AICc value was 341.988046 (Table 3). The mean R2 of the four 

TABLE 1 Summary of data sources.

Data category Name of data Data sources

Administrative data Administrative border Data Center for Resources and Environmental Sciences, 

Chinese Academy of Sciences (www.resdc.cn)

Carbon data CE-carbon emissions per unit area (t/km2) Carbon Emission Accounts and Datasets (www.ceads.net.

cn)

CS-carbon sequestration per unit area of terrestrial vegetation (t/km2)

Natural ecological data PRCP-precipitation (mm) National Earth System Science Data Center (www.geodata.

cn)

TEM-temperature (°C)

HUM-relative humidity (%)

PET-potential evapotranspiration (mm)

SSR-intensity of solar radiation (W/㎡)

SSD-sunshine duration (h)

NDVI-normalized difference vegetation index Data Center for Resources and Environmental Sciences, 

Chinese Academy of Sciences (www.resdc.cn)

DEM-elevation (m)

GSP-green space proportion in city area (%)

Socioeconomic data TP-total population (104 people) National Bureau of Statistics of China and Provincial Bureau 

of Statistics (www.stats.gov.cn/) Provincial statistical 

yearbook (https://navi.cnki.net/knavi/)

PD-Population Density (people/km2)

GDP-Gross Domestic Product (104 yuan)

PCG-Per capita GDP (104 yuan)

PPIO-Proportion of Primary Industry Output (%)

PSIO-Proportion of Secondary Industry Output (%)

PTIO-proportion of tertiary industry output (%)

PPG-per unit area primary industry output in GDP (104yuan/km2)

PSG-per unit area secondary industry output in GDP (104yuan/km2)

PTG-per unit area tertiary industry output in GDP (104yuan/km2)

PUP-proportion of urban population (%)

SUB-scale of urban built-up area (km2) Data Center for Resources and Environmental Sciences, 

Chinese Academy of Sciences (www.resdc.cn)

NLI-night light index (%) Global Change Research Data Publishing and Repository 

(www.geodoi.ac.cn)

Some of the unavailable data are obtained by substitution or interpolation in the next year.
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carbon sequestration models was 0.532214, and the mean adjusted 
R2 was 0.500932; the average AICc value was 778.761457 (Table 3). 
According to the results of the OLS testing, we concluded that 
although relevancies between carbon emission and carbon 
sequestration and a variety of driving factors, there was a lack of 
robustness in the variables and the collinearity between them was 
also extremely high (Table 4).

3.3. Model construction for determining 
the carbon emission and carbon 
sequestration per unit area of terrestrial 
vegetation

To address the problems of insufficient robustness and high 
collinearity of variables in the OLS model, we  used exploratory 
regression (ER) analysis to conduct preliminary screening of the 
driving factors (Wang Z. et al., 2012; Feng et al., 2015; Wang and Liu, 
2017; Li et al., 2019; Ning et al., 2021). The ER analysis combined with 
results of previous studies and experiences helped us delete 13 
variables in the carbon emission model and 12 variables in the carbon 
sequestration model, which had insufficient robustness and high 
collinearity. Consequently, a more stable regression model was 
developed, and the final variables (driving factors) considered in the 
model are shown in Table 5.

Subsequently, analyses were performed using the PLSR 
(Partial Least Squares Regression) model and the optimized OLS 
model. We found that the R2Y and Q2 of the PLSR model (0.4272 
and 0.3345, respectively) were much lower than those of the OLS 
model. However, although OLS proved superior for our research 
purpose, some panel data still failed the robustness probability 
test (Robust Pr < 0.05; Tables 6, 7). The results suggested that there 
were other factors that affect the accuracy of the analytical results 
such as the spatial heterogeneity of the variables (Song et  al., 
2014). Next, we used the GWR model to conduct a comparative 
analysis using the same variables used in OLS and PLSR. The 
results verified that spatial heterogeneity plays a vital role in the 
carbon emission and carbon sequestration processes (Table 8).

3.4. Driving factors of the carbon emission 
per unit area based on the GWR analysis

Figures 2, 3 show that carbon emissions exhibit a negative spatial 
correlation with GSP and NDVI in most regions of China, with GSP 
and NDVI being strong driving forces. In contrast, TEM in most 
areas showed a positive correlation with carbon emission, while being 
a relatively weak driving force. The correlation between NDVI and 
carbon emission changed from positive to negative from the 
northwest region to the coastal area of the southeast region 
(Figure  2H). Eventually, areas exhibiting negative correlations 
between NDVI and carbon emission increased gradually; by 2017, 
these areas accounted for 86.36% of the prefecture-level 
administrative regions (Figures  2HIV). GSP showed a negative 
correlation with carbon emission nationwide at the beginning, with 
low regression coefficients being observed in the surrounding areas 
of the North and northwest regions. However, regions that showed 
positive spatial correlations between GSP and carbon emission 
gradually emerged primarily in the Eastern part of northwest China 
and the Western part of North China (Figure 2E). Meanwhile, TEM 
and carbon emission showed a positive spatial correlation, and areas 
with high regression coefficients were mainly clustered in the North-
Central part of the east region. In some parts of the northwest region, 
TEM and carbon emission exhibited a negative spatial correlation 
(Figure 2I).

Among all the socioeconomic driving factors, PCG, PSIO, PTIO, 
PUP, and SUB showed positive spatial correlations with carbon 
emission in most areas of China. TP, in contrast, showed a negative 
correlation with carbon emission. Meanwhile, PCG, PSIO, and SUB 
were the strongest driving forces. Gradually, the negative correlation 
between TP and carbon emission showed a weakening trend 
nationwide. Low regression coefficients were mainly observed in the 
Eastern part of the northeast region, South region, and the Central 
and southwest regions; meanwhile, high regression coefficients were 
observed in the Eastern Central region and east region (Figure 2A). 
Although PCG was positively correlated to carbon emission, its 
driving power decreased over time. High regression coefficients were 
observed between PCG and carbon emission mainly in the northeast 

TABLE 3 OLS analysis results for all carbon factors.

Carbon 
factors

R2 Adjusted R2 AICc

2000 2005 2010 2017 2000 2005 2010 2017 2000 2005 2010 2017

CE 0.874109 0.44078 0.887373 0.875011 0.865691 0.40339 0.879842 0.86665 −169.608577 696.888272 391.10213 449.570361

CS 0.599353 0.48984 0.483607 0.556056 0.572562 0.45572 0.449076 0.52637 707.354203 822.671267 788.65088 796.369481

CE represents carbon emission and CS represents carbon sequestration.

TABLE 2 Global Moran’s I of carbon emission and carbon sequestration.

Year Carbon emission Carbon sequestration

Moran’s I index z p Moran’s I index z p

2000 0.599311 17.418381 0.000000*** 0.363740 12.515786 0.000000***

2005 0.645843 18.444558 0.000000*** 0.249454 13.739005 0.000000***

2010 0.652930 18.492987 0.000000*** 0.272781 14.418130 0.000000***

2017 0.601388 16.823220 0.000000*** 0.250617 13.683684 0.000000***

***, **, and * indicate significant at 1%, 5%, and 10% significance level, respectively.
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TABLE 4 OLS analysis results for all driving factors.

Driving 
factors

Carbon 
factors

Coefficient Robust Pr VIF

2000 2005 2010 2017 2000 2005 2010 2017 2000 2005 2010 2017

TP CE −0.121564 −0.059851 −0.142682 −0.148625 0.005106* 0.492033 0.046405* 0.046706* 4.903367 4.480884 6.497937 8.890891

CS 0.082175 0.039982 0.158760 0.344981 0.267899 0.508913 0.122618 0.020123*

PD CE 0.118313 0.303794 0.311705 0.193571 0.061160 0.078595 0.034524* 0.161787 16.754830 14.991386 20.572064 24.763712

CS −0.656680 −0.527738 −0.506363 −0.716514 0.104601 0.197885 0.224416 0.038276*

GDP CE 1.320098 1.267528 0.599204 0.133768 0.027898* 0.020426* 0.038241* 0.149954 9.344709 9.792467 11.305428 17.279208

CS −2.351194 −0.770898 −0.486153 −0.407105 0.122022 0.319217 0.147031 0.066733

PCG CE −0.341962 0.745489 −0.059301 −0.039733 0.020208* 0.198523 0.127307 0.364417 3.663410 2.466173 2.626681 5.453463

CS −0.139965 −0.324434 −0.104304 −0.132495 0.676857 0.007433* 0.151037 0.140224

PPIO CE −0.026903 −0.485010 −0.144551 −0.434735 0.012875* Nan 0.001781* 0.086213 20.195856 >1000.0 8.592018 802.411949

CS −0.098834 −0.681778 −0.332211 0.716107 0.042856* Nan 0.051508 0.030146*

PSIO CE 0.038903 −0.322229 0.010150 −0.235645 0.009353* Nan 0.772674 0.351934 19.125640 >1000.0 9.835225 >1000.0

CS 0.016705 −0.412632 −0.087429 1.009918 0.837461 Nan 0.018276* 0.018983*

PTIO CE 0.008215 −0.554123 0.042282 −0.186451 0.711497 Nan 0.022832* 0.291994 8.648620 >1000.0 5.186627 698.722770

CS −0.017745 −0.254539 −0.021986 0.760643 0.765982 Nan 0.481049 0.009176*

PPG CE 0.032055 0.096288 0.124989 0.120785 0.726358 0.598624 0.051116 0.001165* 4.810574 3.624371 3.849479 3.118418

CS 2.166061 1.414714 0.796035 0.591309 0.057408 0.097433 0.126422 0.063735

PSG CE 0.299471 0.628866 0.375657 0.046068 0.690435 0.420134 0.269687 0.758269 43.439849 34.018419 28.280395 26.773129

CS −2.835193 −0.985098 −0.335973 −0.312031 0.380775 0.377096 0.348251 0.157334

PTG CE −0.127801 −1.340782 −0.621763 −0.233487 0.910078 0.222829 0.064313 0.047776* 47.790613 36.849814 30.898731 29.010883

CS 7.762238 3.036101 1.183459 0.665025 0.185254 0.211687 0.164749 0.065792

GSP CE −0.048145 −0.020149 −0.042554 −0.034481 0.022070* 0.718942 0.362242 0.386962 3.646580 3.396729 3.979116 4.013045

CS 0.443690 0.418558 0.438821 0.477433 0.000183* 0.000366* 0.009874* 0.016684*

PUP CE 0.025015 0.033809 −0.024284 0.080331 0.208001 0.639341 0.630025 0.214378 2.723026 2.118340 1.829364 2.406722

CS −0.064577 −0.127416 −0.111899 0.084645 0.500939 0.269124 0.138056 0.203577

SUB CE −0.027018 −0.216414 −0.138650 0.015684 0.697552 0.104466 0.292975 0.815362 5.786680 7.415100 6.301888 8.445310

CS 0.112840 −0.056241 −0.079077 −0.079762 0.565470 0.614995 0.216091 0.298931

NLI CE 0.284386 0.388665 0.533440 0.765834 0.000000* 0.003365* 0.000000* 0.000000* 6.235118 7.885628 10.527336 13.188275

CS −0.041161 0.006418 0.116807 0.385380 0.802203 0.964837 0.516176 0.030666*

(Continued)
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Driving 
factors

Carbon 
factors

Coefficient Robust Pr VIF

2000 2005 2010 2017 2000 2005 2010 2017 2000 2005 2010 2017

DEM CE −0.040343 −0.061791 −0.042224 −0.039890 0.033289* 0.378789 0.254639 0.352066 4.684790 4.619147 4.627504 5.412727

CS −0.130118 −0.153453 −0.173419 −0.135306 0.083030 0.101620 0.023372* 0.178258

NDVI CE −0.007243 0.017146 −0.024150 0.047963 0.750996 0.842548 0.713485 0.477265 4.630095 5.503779 5.263353 5.219061

CS −0.151608 −0.231319 −0.289890 −0.147754 0.187462 0.203787 0.038414* 0.126801

PRCP CE −0.115412 −0.196463 −0.144706 −0.118652 0.001290* 0.055827 0.005177* 0.036733* 10.404356 8.065777 5.763237 9.457367

CS −0.006592 −0.167750 −0.245841 −0.266626 0.952571 0.195538 0.015740* 0.060351

TEM CE −0.046113 −0.072411 −0.121917 −0.129476 0.081121 0.383731 0.049118* 0.010243* 7.418725 7.737390 8.394639 7.855145

CS 0.384427 0.507986 0.419339 0.393617 0.077659 0.113396 0.185852 0.069697

HUM CE 0.058569 0.067224 0.109346 −0.017860 0.083019 0.629848 0.290019 0.810416 12.451982 14.602864 10.970628 12.476897

CS 0.209505 0.510765 0.535695 0.384571 0.029750* 0.015034* 0.000005* 0.004432*

PET CE 0.062023 0.102127 0.176650 0.168707 0.009531* 0.177753 0.007304* 0.001226* 5.768477 6.310139 6.890803 6.224805

CS −0.422780 −0.469001 −0.398676 −0.371301 0.079123 0.093686 0.196800 0.070835

SSD CE −0.097636 −0.062253 0.124955 0.058518 0.003249* 0.516388 0.127792 0.454328 17.624012 13.176647 11.756225 19.585376

CS −0.020061 0.189631 0.109800 0.096361 0.904551 0.516806 0.476861 0.656635

SSR CE 0.064499 0.061718 −0.094786 −0.014939 0.002669* 0.409540 0.096596 0.800616 9.334851 8.389508 9.208995 12.124432

CS 0.087634 0.031978 0.070157 0.100089 0.615946 0.884941 0.600084 0.581503

CE represents carbon emission and CS represents carbon sequestration. NAN is caused by poor models, with extreme multicollinearity occasionally generating invalid test statistics; *Mean Robust Pr < 0.05.

TABLE 4 (Continued)
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and southeast regions, whereas the Eastern northwest region and 
Western North region showed a negative correlation (Figure  2B). 
PSIO and PTIO showed very similar positive spatial correlation 

patterns with carbon emission, and the correlation exhibited a 
strengthening trend over time. The regression coefficient increased 
significantly from 2000 to 2010 in the North and the northeast regions, 

TABLE 5 Driving factors of carbon emission per unit area and carbon sequestration per unit area of terrestrial vegetation.

Carbon sequestration Carbon emissions

Variables Description Variables Description

TP Total population (104 people) TP Total population (104 people)

PCG Per capita GDP (104 yuan) PCG Per capita GDP (104 yuan)

PSIO Proportion of secondary industry output (%) PSIO Proportion of secondary industry output (%)

PPG Per unit area primary industry output in GDP (104yuan/km2) PTIO Proportion of tertiary industry output (%)

GSP Green space proportion in city area (%) GSP Green space proportion in city area (%)

SUB Scale of urban built-up area (km2) PUP Proportion of urban population (%)

NDVI Normalized difference vegetation index SUB Scale of urban built-up area (km2)

TEM Average annual temperature (°C) NDVI Normalized difference vegetation index

PET Average annual potential evapotranspiration (mm) TEM Average annual temperature (°C)

SSR Average annual intensity of solar radiation (W/m2)

TABLE 6 Analysis results of the OLS model for carbon sequestration after screening.

Driving 
factors

Robust Pr VIF

2000 2005 2010 2017 2000 2005 2010 2017

TP 0.402151 0.705955 0.885560 0.804642 3.139368 3.046565 3.013778 3.678123

PCG 0.667988 0.800948 0.966362 0.881485 2.036753 1.939506 1.593638 2.339229

PSIO 0.042663* 0.711565 0.295851 0.774677 1.611350 1.616443 1.348677 1.407072

PPG 0.027745* 0.055806 0.075459 0.066574 2.190310 2.022875 2.232456 2.009199

GSP 0.000112* 0.001662* 0.002569* 0.003380* 1.889398 1.909377 2.165866 2.355618

SUB 0.074757 0.162228 0.338677 0.729256 3.194573 3.125541 3.349294 5.174284

NDVI 0.988187 0.974162 0.936967 0.958572 1.859411 1.894998 1.864387 2.105245

TEM 0.003350* 0.017670* 0.034817* 0.005242* 6.145189 6.336612 6.668061 5.997624

PET 0.064119 0.080692 0.121379 0.067507 5.084173 5.614975 5.759081 5.092800

SSR 0.879717 0.291891 0.145912 0.089810 2.095783 2.179336 2.129221 2.001327

*Mean Robust Pr < 0.05.

TABLE 7 Analysis results of the OLS model for carbon emissions after screening.

Driving 
factors

Robust Pr VIF

2000 2005 2010 2017 2000 2005 2010 2017

TP 0.574804 0.442287 0.994087 0.190748 3.050838 3.002354 2.925455 3.415022

PCG 0.172575 0.181851 0.109254 0.124644 1.914633 1.848408 1.465965 2.580245

PSIO 0.002001* 0.000006* 0.000363* 0.000001* 1.826633 2.011071 1.778931 2.353823

PTIO 0.000022* 0.000347* 0.001049* 0.000003* 1.607990 1.925266 2.003623 2.485506

GSP 0.000004* 0.000000* 0.000000* 0.000001* 1.290686 1.389704 1.533165 1.534884

PUP 0.017242* 0.075951 0.026075* 0.033709* 1.947828 1.696323 1.477832 2.014149

SUB 0.003580* 0.002257* 0.002139* 0.008222* 3.634029 3.548598 4.002587 5.106501

NDVI 0.953279 0.797538 0.840415 0.676571 1.320793 1.272285 1.283154 1.450888

TEM 0.000153* 0.000003* 0.000004* 0.000002* 1.224667 1.172436 1.170662 1.210314

*Mean Robust Pr < 0.05.
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and the Eastern part of the northwest region gradually developed to 
be the region with the highest regression coefficient in China from 
2010 to 2017. Meanwhile, regions exhibiting negative correlations 
between PSIO/PTIO and carbon emission started to appear. PSIO and 
carbon emission were significantly negatively correlated in the South 
and southwest regions, while the negative correlation between PTIO 
and carbon emission was observed in the South and Western parts of 
the Southwest Region (Figures 2C,D). The positive correlation pattern 
between PUP and carbon emission changed over time, and the areas 
with a high regression coefficient gradually shifted from the South and 
southwest regions to the Eastern part of the northwest region and 
North region. PUP and carbon emission were locally negatively 
correlated in several areas, such as the northeast region and the 
Western part of the northwest region (Figure  2E). The positive 
correlation pattern between SUB and carbon emission changed 
significantly over time, and the area with the high regression 
coefficient shifted from the southeast Coast to northwest and 
northeast regions in 2000.

3.5. Results of carbon sequestration per 
unit area of terrestrial vegetation based on 
GWR spatial regression model

Based on the long-term results shown in Figures 4, 5, PPG, GSP, 
and TEM showed positive correlations with carbon sequestration 
(Figures 4D–H), whereas PET showed a negative correlation with 
carbon sequestration (Figure 4I). NDVI and carbon sequestration 
showed distinguishable differences between the positively and 
negatively correlated areas, and the driving force of NDVI and GSP 
toward carbon sequestration gradually increased over time 
(Figure 4G). However, the driving force of PCG and PPG toward 
carbon sequestration decreased dramatically over time (Figures 4B,D).

There are evident spatial differences with regard to the correlation 
between the driving factors and carbon sequestration. Overall, the 
spatial pattern showed a negative correlation in the northwest region 
and a positive correlation in the southeast region. TP, PPG, GSP, and 
TEM were positively correlated with carbon sequestration in most 
regions of the country (Figures 4A,D,E,H), with PPG, GSP, and TEM 
exhibiting high regression coefficients in the coastal areas of the east 
region and Southern Liaoning providence; meanwhile, low regression 
coefficients were concentrated in the northwest region 

(Figures  4D,E,H). The areas where PPG and GSP showed high 
regression coefficients tended to shrink and then expand 
(Figures  4DII,III,E). However, areas where TEM exhibited high 
regression coefficients moved within the east, Central, and southwest 
regions over time (Figures 4HII,III). Highest regression coefficients 
were exhibited by TP in the Western part of the northwest region and 
spread to the Southern part of the South region, whereas the low 
regression coefficients were concentrated in the coastal areas of the 
east region (Figure 4A).

Meanwhile, PSIO and PET showed negative correlations to carbon 
sequestration at the intersection of the northeast, southwest, and center 
regions (Figures 4E,I). Both PSIO and PET initially exhibited a low 
regression coefficient in the east region; however, eventually, PSIO and 
PET exhibited low regression coefficients in the southwest and east, 
respectively. Furthermore, high regression coefficients were exhibited 
by both PSIO and PET in the northwest region; these areas tended to 
expand toward the northeast region. Furthermore, PSIO also exhibited 
high regression coefficients in the South region whose intensity 
increased over time, whereas PET showed high regression coefficients 
in the southwest corner of the Southwest Region (Figure  4I). The 
spatial distributions of areas where PCG and NDVI were positively and 
negatively correlated to carbon sequestration were very even. Both 
PCG and NDVI exhibited positive correlations in the southwest, South, 
northwest, and northeast regions, which decreased toward the 
southeast direction. Meanwhile, PCG and NDVI were negatively 
correlated to carbon sequestration in the east region, and the lowest 
regression coefficient of NDVI gradually moved toward the Southern 
part of the South region (Figure 3G). The lowest regression coefficient 
of PCG was observed in the east, Central, and southwest regions 
(Figures  4BII,III). The percentage of areas that showed negative 
correlation between SUB and carbon sequestration decreased from 
73.68% (Figures 4FI) in 2000 to 40.63% in 2017 (Figures 4FIV). Areas 
with high regression coefficients between SUB and carbon 
sequestration underwent two phases of movement: in the first phase, 
these areas moved from the east Coast to the Central region 
(Figures 3FI–III); in the second stage, these areas moved back to the 
east in 2017 (Figures 4FIV). Similarly, areas exhibiting low regression 
coefficients between SUB and carbon sequestration also moved twice; 
initially, these areas moved from the southwest and Eastern northwest 
regions to the South and east regions (Figures 4FI–III), after which 
they gradually moved toward the northwest region (Figures 4FIV). The 
correlation between SSR and carbon sequestration showed obvious 

TABLE 8 Comparisons of PLSR, OLS, and GWR models.

Model PLSR OLS GWR

Dependent 
variable

Year R2Y Q2 R2 AICc R2 AICc

CO2 emissions

2000 0.5117 0.4683 0.5436 254.8166 0.7532 108.473

2005 0.5776 0.5259 0.6171 534.6479 0.874 288.0538

2010 0.5576 0.5133 0.591 816.1578 0.8699 535.1258

2017 0.5769 0.5509 0.6206 811.5131 0.8657 583.6894

CO2 sequestration

2000 0.4779 0.2166 0.5313 725.6257 0.7774 543.5623

2005 0.2197 0.1263 0.4337 832.6634 0.8765 460.8687

2010 0.2214 0.1495 0.4064 810.905 0.8299 529.9819

2017 0.2751 0.1257 0.4623 837.0072 0.7919 595.7453

https://doi.org/10.3389/fevo.2023.1169427
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Lin et al. 10.3389/fevo.2023.1169427

Frontiers in Ecology and Evolution 11 frontiersin.org

A

B

C

D

E

F

G

H

I

FIGURE 2

Spatial distributions of regression coefficients associated with carbon emission (A-I) driving factors for (I) 2000, (II) 2005, (III) 2010 and (IV) 2017 in the 
GWR model for 352 prefecture-level administrative regions in China.
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differences in the North and South. It was positive in the South and 
negative in the North, and the regression coefficient showed a 
decreasing trend from South to North (Figure 4J).

3.6. Comparison between the driving 
factors of carbon emission per unit area 
and carbon sequestration per unit area of 
terrestrial vegetation

According to our results, we  found that the common driving 
factors of both carbon emission and carbon sequestration are TP, 
PCG, PSIO, SUB, GSP, NDVI, and TEM.

With the development of society and economy, all 
socioeconomic factors except TP had a positive driving effect on 
carbon emission. In 2000, the driving force of PCG was significantly 
higher for carbon sequestration than that for carbon emission. 
However, the impact of PCG decreased gradually, especially on 

carbon sequestration. By 2017, the driving force of PCG was only 
slightly higher for carbon sequestration compared to that for carbon 
emission. Moreover, PCG and carbon sequestration were positively 
correlated in some regions, while being negatively correlated in 
other areas. In contrast, the driving force of SUB was higher for 
carbon emission than that for carbon sequestration; it had a strong 
positive correlation with carbon emission, while being negatively 
correlated to carbon sequestration. Although the driving force of 
SUB for carbon emission was consistently high, it decreased 
gradually with carbon sequestration. Meanwhile, the driving force 
of PSIO was higher for carbon emission than that for carbon 
sequestration; from 2000 to 2017, its positive impact on carbon 
emission gradually increased, while its impact on carbon 
sequestration remained constant with some spatial differences. The 
driving force of TP was similar for both carbon emission and 
carbon sequestration, while being accompanied by strong spatial 
differences. In most areas of China, TP was negatively correlated to 
carbon emission, except in the North and east regions. Carbon 

2000

A B

C D

2005

2010 2017

FIGURE 3

Summary plots of the regression coefficients associated with different carbon emission driving factors for (A) 2000, (B) 2005, (C) 2010, and (D) 2017.
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FIGURE 4

Spatial distributions of regression coefficients associated with carbon sequestration (A-J) driving factors for (I) 2000, (II) 2005, (III) 2010 and (IV) 2017 
in the GWR model for 352 prefecture-level administrative regions in China.
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sequestration was positively correlated to TP in the Western part of 
the northwest region, South region, and the Southern part of the 
Southwest Region.

GSP and NDVI were the major natural ecological factors that 
decreased carbon emissions, and their driving power increased over 
time. Since 2005, the negative correlation between NDVI and carbon 
emission has increased significantly in coastal areas of the southeast 
region. Although a negative correlation was also observed between 
NDVI and carbon sequestration, it had a less profound effect on 
carbon sequestration than on carbon emission. GSP has always been 
an important driving factor for increasing carbon sequestration and 
decreasing carbon emission; its positive impact on carbon 
sequestration was stronger than its negative impact on carbon 
emission. However, the positive driving force of GSP for carbon 
sequestration declined significantly, while having a negative impact in 
some cases. Although TEM had a positive effect on both carbon 
emission and carbon sequestration nationwide, it had a stronger effect 

on carbon sequestration and its driving force did not show significant 
change overtime.

4. Discussion

To achieve carbon neutralization, carbon emissions need to 
be balanced out via sequestration, utilization, and storage of 
carbon (Rogelj et  al., 2015; Yang Y. et  al., 2022). Overall, 
terrestrial ecosystems account for 57% of the carbon sink 
globally (Friedlingstein et al., 2020). Therefore, in this study, 
we investigated the potential driving factors of carbon emission 
and sequestration of terrestrial vegetation, while looking into 
driving factors that impact both processes. Based on the 
different types of driving factors of carbon emission and 
sequestration, we  sorted the Chinese regions into 
different categories.

2000

A B

C D

2005

2010 2017

FIGURE 5

Summary plots of the regression coefficients associated with different carbon sequestration driving factors for (A) 2000, (B) 2005, (C) 2010, and 
(D) 2017.
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4.1. Impact of socioeconomic factors on 
the carbon emission per unit area and 
carbon sequestration per unit area of 
vegetation

Although many previous studies have shown that TP had a 
positive correlation with carbon emission (Al-Mulali and Ozturk, 
2016; Huang C. et al., 2022; Yang S. et al., 2022; Zhao and Ren, 
2022), our findings were contrasting. In most areas of China, an 
increase in TP decreased carbon emissions. This maybe because the 
impact of TP on carbon emission has a threshold. Before TP reaches 
this threshold, an increase in TP can slow down the carbon emission 
because rising population can promote the optimization of the 
urban industrial structure and improve the energy utilization 
efficiency, which can offset the carbon emission increase caused by 
a bigger population; this was also concluded by He et al. (2017). 
However, after refining the granularity of our study to the level of 
prefectural administrative regions, we found that not all regions of 
China showed a negative correlation between TP and carbon 
emission. For example, in Eastern and Central Eastern China, 
higher levels of economic development and urbanization have put 
the urban and ecological environment under greater pressure; 
consequently, TP was no longer effective in mitigating the carbon 
emissions generated by itself, which suggests that once TP crosses 
the threshold, TP may show a positive driving relationship with 
carbon emission. Meanwhile, as TP increased, its positive and 
negative correlations with carbon emission showed an increasing 
trend at both extremes during the study period. This indicated that 
TP has already crossed the threshold in Eastern and Central China, 
while in other regions it remained under the threshold. In addition, 
TP and carbon sequestration showed a negative correlation in most 
parts of the country, which may be  due to the environmental 
pressure brought by the increasing population that was beyond the 
tolerance of the ecosystem (Yang et al., 2016). However, there were 
areas showing a positive correlation between TP and carbon 
sequestration. Based on the study of Yin S. et al. (2022) and Yin 
Y. et al. (2022) we confirmed that the positive correlation between 
TP and carbon sequestration was mainly observed in the southwest, 
Southern, and Western parts of the northwest region.

On this basis, we used the Panel Threshold Model (PTR), which 
was proposed by Hansen (1999), Li and Lin (2015), and Tatoğlu and 
Polat (2021), to detect and verify the threshold effect that we talked 
above. The results show that the model has a significant double 
threshold effect when TP is used as a threshold variable (Table 9). The 
threshold values are 476,100 and 8,763,500, respectively, (Table 10; 
Figure 6). Industrial development and urban expansion brought about 
by the increase of TP are the main reasons for the threshold effect. 
Table 11 reports the regression results of the threshold effect model. 
The estimated results of regression coefficient show that with the 

growth of population, The contribution of proportion of primary 
industry output (PPIO) and scale of urban build-up area (SUB) to 
carbon emission is gradually decreasing. However, the contribution of 
a proportion of secondary industry output (PSIO) to carbon emission 
is growing rapidly. When TP exceeds 476,100, the driving effect of 
PSIO on carbon emissions changes from negative correlation to 
positive correlation, but the optimization of industrial structure can 
still offset the increase of carbon emissions brought by PISO. When 
TP exceeds 8,763,500, PSIO will lead to a larger amount of carbon 
emissions, then the role of industrial structure optimization 
becomes negligible.

Furthermore, our study showed that PCG, PSIO, and SUB are the 
main factors promoting carbon emission, which is generally consistent 
with previous studies (Zhou et al., 2019; Liu et al., 2021; Zhang et al., 
2021). However, the effects of PCG, PSIO, and SUB on carbon 
sequestration were different from those observed in other studies.

First, PCG showed positive and negative correlations with 
carbon sequestration in different regions due to different climate 
conditions, industrial transformations, and forestry policies. Viña 
et al. (2016) revealed that GDP per capita has a positive effect on 
forest loss. Since mechanisms and causes of this positive effect were 
not discussed, we  found explanations for it using our results. 
Figure  3B shows that PCG showed a strong positive spatial 
correlation with carbon sequestration in the southwest, South, 
Central and northeast regions. These regions represent areas where 
China initially started implementing forestry policies and 
industrial transformation (Liu et al., 2008; Chu et al., 2019; Piao, 
2023). These results indicated that suitable climate conditions, 
good vegetation cover, and reasonable economic and industrial 
development policies can effectively alleviate the problem of 
increasing carbon emissions caused by economic development. 
However, PCG still impacts carbon sequestration negatively in 
several areas such as the east, Central, North, and the Western 
parts of the northwest region. Although the Chinese government 
has implemented a series of forestry policies (Wu et al., 2013; Liu 
et al., 2014; Li et al., 2018; Yao et al., 2019; Hu et al., 2020; Wang 
et  al., 2022), they have been insufficient to balance out carbon 
emissions. These results indicate that forest plantation and other 
relevant ecological and environmental policies are still urgently 
needed in these regions.

Second, PSIO presented a negative effect on carbon sequestration 
in most areas of the country. Although PSIO can reduce the pressure 
on terrestrial ecosystems to a certain extent by improving the scale of 
industry, technology, and energy structure, the destruction of 
terrestrial ecosystems due to industrial development has a greater 
impact on carbon sequestration (Wei and Yang, 2010). During the 
study period, PSIO exhibited an inverted U-shaped relationship with 
carbon sequestration, which was consistent with the findings of Xiao 
et al. (2018), Zhou et al. (2018), and Xu et al. (2021). However, we also 

TABLE 9 Threshold effect test.

Threshold F-value statistics Probability Crit10 Crit5 Crit1

Single 161.28 0.0000*** 49.9361 63.4428 89.9673

Double 52.05 0.0433** 43.4389 50.9061 67.9415

Triple 51.88 0.3633 74.0506 85.6163 114.2089

*, **, *** indicate significant at the level of 10%, 5%, and 1%, respectively. The F-value statistics and significance are simulated by the Bootstrap method (bootstrap = 300,300,300).
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TABLE 11 Results of double threshold panel regression.

Dependent variable CE-carbon emission 
per unit area (t/km2)

Coefficient Std. err. t P > |t|

Core explanatory variable 

(cat.)

PPIO-proportion of primary industry output (%)

Total population ≤ 47.61 −15.09663 7.101912 −2.13 0.034**

47.61 < total population < 

876.35

−9.004888 5.995404 −1.50 0.133

Total population ≥ 876.35 −61.51901 18.99654 −3.24 0.001***

PSIO-proportion of secondary industry output (%)

Total population ≤ 47.61 −31.37004 8.354193 −3.76 0.000***

47.61 < total population < 

876.35

18.54547 5.021184 3.69 0.000***

Total population ≥ 876.35 117.419 11.0805 10.60 0.000***

SUB-scale of urban built-up area (km2)

Total population ≤ 47.61 21.59678 9.439103 2.29 0.022**

47.61 < total population < 

876.35

7.556554 0.4919348 15.36 0.000***

Total population ≥ 876.35 1.155403 0.5861011 1.97 0.049**

*, **, *** indicate significant at the level of 10%, 5%, and 1%, respectively.

FIGURE 6

Double threshold confidence interval test for the Carbon Emissions and increase in total population.

TABLE 10 Estimator results of double threshold model.

Model Threshold (total population-104 people) Lower Upper

Th-1 876.3500 868.5792 887.1000

Th-21 876.3500 868.5792 887.1000

Th-22 47.6100 46.6625 48.9574

Level = 95.
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observed a weak positive correlation between PSIO and carbon 
sequestration in the southwest, Southern, Western parts of the 
northwest, and northeast (Figure 3C). This observation has never been 
reported in previous studies.

Finally, increasing SUB caused negative effects on carbon 
sequestration throughout the country. However, the growth of natural 
vegetation can mitigate this phenomenon locally to some extent (de 
Groot et al., 2012; Wang L. et al., 2012; Zhang et al., 2012; Tian and 
Qiao, 2014). During the study period, the negative spatial correlation 
between SUB and carbon sequestration showed a trend of increasing 
and then decreasing, thus exhibiting an inverted U-shaped 
characteristic. This indicates that vegetation growth can to some 
extent offset the reduction in vegetation cover caused by land change 
when urban expansion occurs (Wu et al., 2018). This conclusion can 
also explain the positive correlation between SUB and carbon 
sequestration in the east, northeast, Northern southwest, and Western 
northwest regions of China.

4.2. Impact of natural ecological factors on 
the carbon emission per unit area and 
carbon sequestration per unit area of 
vegetation

Among all the natural ecological factors, GSP and NDVI had the 
strongest impact on both carbon emission and carbon sequestration. 
GSP played an irreplicable role in decreasing carbon emissions, while 
having a positive spatial effect on carbon sequestration. This is mainly 
because the expansion of forest areas can effectively decrease carbon 
emissions and enhance carbon fixation (Fang et al., 2001; Lai et al., 
2016). However, the positive effects of GSP were significantly weaker 
in the Western part of the northwest region. This was due to the 
characteristics of grassland vegetation, as well as the severe 
degradation of grasslands in these regions (Wang et al., 2017; Chang 
et al., 2022).

In areas located toward the east of the “Heihe-Tengchong Line,” 
the main reasons behind the negative correlation between NDVI and 
carbon emission were the warm and humid climate, suitable 
vegetation growth conditions, long growth period of forest trees, good 
vegetation cover, and well-structured forest areas; these factors 
significantly increased carbon sequestration and effectively reduced 
carbon emissions, as shown by Wang et al. (2020). However, NDVI 
had a negative impact on carbon sequestration. This was because the 
area toward the east of the “Heihe-Tengchong Line” is the most 
developed area in China, and the carbon sequestration capacity of the 
ecosystem was significantly weakened or even completely lost after 
several lands were urbanized. Wang et al. (2019) also showed that 
NDVI in urban complexes had very limited effects on carbon emission 
reduction. This suggests that building a continuous terrestrial 
vegetation ecosystem far from the city is key to achieving carbon 
neutralization. In the area toward the west of the “Heihe-Tengchong 
Line,” NDVI showed positive spatial correlations with carbon emission 
and carbon sequestration; however, the driving force for carbon 
sequestration was weak mainly due to the poor climate conditions and 
low vegetation cover in this region. Northwestern China is an arid and 
semi-arid area where precipitation is limited, vegetation growth 
period is short, and vegetation cover is low (He et al., 2021). All these 
factors have led to a low vegetation carbon sequestration capacity in 

this region. Therefore, carbon sequestration by vegetation is not 
enough to eliminate carbon emissions. This constitutes as a reason for 
the slow growth of the positive correlation between NDVI and carbon 
sequestration in this region (Qiu et al., 2020). In addition, the gap 
between the driving forces of NDVI for carbon emission and carbon 
sequestration is increasing overtime, and weak ecosystems alone 
cannot meet the demand for carbon sequestration. Therefore, 
we believe that carbon balance cannot be achieved through natural 
processes, and suitable human interventions and policies are required.

TEM had a positive spatial correlation with both carbon emission 
and sequestration. However, its impact on carbon emission and 
sequestration differed slightly because extreme temperatures reduce 
human and vegetation activities. Furthermore, high summer 
temperatures in local areas of China can decrease carbon sequestration 
(Wang et al., 2021b). Although high temperatures have started to 
negatively affect carbon sequestration, they do not significantly affect 
overall carbon sequestration due to the infrequency of these 
temperatures. In addition, the current study showed a positive spatial 
correlation between TEM and carbon emission in most regions of the 
country. Previous studies have shown that increasing TEM influenced 
human economic activities significantly both positively and negatively 
(Schlenker and Roberts, 2009; Sequeira et al., 2018; Yuan et al., 2022). 
The results of the present study proved that the average annual 
temperature in most regions of the country was favorable for society 
to maintain its economic vitality. However, it had a suppressive effect 
on the socioeconomic vitality and productive activities in the Western 
part of the northwest region, which exhibited a tendency to gradually 
spread to other areas. This was a result of the geographical conditions 
of the region, which indicated the negative impact of global 
temperature rise on the habitat of human beings.

4.3. Classification of Chinese cities based 
on the driving forces for carbon emission 
and carbon sequestration by terrestrial 
vegetation

In this study, we  used the grouping analysis based on the 
minimum spanning tree principle to classify 352 prefecture-level 
administrative regions in China. In some cases, similar factors were 
observed in areas that are far apart; however, the reasons behind these 
results are quite different. To avoid such situations, we ensured that 
the prefecture-level administrative districts in each group were as 
close to each other as possible. Furthermore, we  chose k-nearest 
neighbors as the spatial constraint with a spatial element value of 
K = 8. To measure the distance between adjacent elements, we used the 
MANHATTAN distance method. The final classification results 
(Figure  7) and the driving factors of Chinese cities are shown in 
Table 12.

(1) Group 1—Xinjiang Province. This area was studied from 2000 
to 2017. The carbon emission and carbon sequestration in this region 
were dominated by both socioeconomic and natural ecological factors. 
Except PCG, all other driving factors increased carbon emission and 
carbon sequestration during the study period, and the driving power 
of PSIO, GSP, and NDVI was particularly strong.

The changes in the carbon emission and sequestration over 4 years 
showed that the fragile ecological environment made Xinjiang 
Province vulnerable to socioeconomic factors. Socioeconomic factors 
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frequently increased carbon emissions and decreased carbon 
sequestration by terrestrial vegetation. Furthermore, ecological issues 
caused by the increase in PSIO and SUB were the major causes for a 
rise in carbon emissions. Therefore, to reduce the high carbon 
emissions in this region, future socioeconomic policies should (1) 
increase the investments that augment the energy use efficiency, (2) 
reduce carbon emissions from industrial development and urban 
expansion by insisting on low-carbon development in urban areas. 
Furthermore, Comparing the natural ecological factors of the region 
such as NDVI and GSP, we can conclude that enhancing the ecological 
environment outside the urban construction areas is key to solving the 
carbon emission problem in Xinjiang Province.

(2) Group  2—this group is primarily composed of cities in 
Southern China. Carbon emission and sequestration in this area were 
dominated by both socioeconomic and natural ecological factors. 
During the study period, the driving force of TP, PSIO, GSP, and TEM 
remained stable; however, the driving force of PCG showed a declining 
trend, while that of SUB and NDVI increased. By 2017, SUB and 
NDVI became the dominant driving factors for carbon emission and 
sequestration in this region.

In summary, cities in group 2 are highly developed and exhibit 
extraordinary climate, open economic systems, and commercial 
communication networks. These characteristics promote the 
balance between carbon emission and sequestration. Although 
the developments in society and economy unavoidably led to 
higher carbon emissions, carbon sequestration by terrestrial 
vegetation was enhanced more dramatically. The increase in SUB, 
GSP, and NDVI had significantly different effects on carbon 
sequestration. These results indicated that the invasion of the 
natural environment by expanding cities was the major reason 
behind the decrease in carbon sequestration. Therefore, the key 
for sustainable development of regions in group 2 is to improve 
the regulations for environmental protectionand invest more in 
technological innovations.

(3) Group 3—this group includes most areas in Eastern China. 
Cities in this area are located near the southeast Coast and exhibit 
highly developed economies and superior climate. During the study, 
period, except PCG, the driving force of all socioeconomic factors 
showed a trend of increasing and then decreasing. GSP and NDVI 
showed a gradually increasing trend, while TEM remained stable. The 
first period of the study was dominated by socioeconomic factors, 
with PCG being the most influential factor. The second period was 
dominated by natural ecological factors, with NDVI and GSP being 
the main influencing factors.

Similar to group 2, the high urbanization levels and excellent 
natural conditions of cities in this group can help improve and regulate 
the balance of carbon emission and sequestration. By comparing the 
driving factors of the two groups, we found that industries play a more 
essential role in the economic growth of cities in group 3, and the early 
growth of cities had a more severe impact on the environment. The 
gradually weakening influence of socioeconomic factors and the 
strengthening influence of natural ecological factors in cities from 
group 3 indicated that energy conservation, emission reduction, and 
ecological environment policies have been effectively implemented in 
recent years. However, these factors are not enough to compensate for 
the previous losses. Therefore, continuous strengthening of the 
policies mentioned above is key to promoting the carbon balance in 
group 3.

(4) Group 4—this group includes areas in Central and Western 
China where carbon emission and sequestration are sensitive to 
economic development (Figure 7; Table 12). During the study period, 
carbon emission and carbon sequestration in group  4 were both 
dominated primarily by socioeconomic factors, with PCG and SUB 
being the most influential factors. Meanwhile, socioeconomic factors 
showed a tendency to reduce over time, while the natural ecological 
factors increased. Among them, PCG and SUB were the main factors 
promoting carbon emission, while NDVI, TP, and GSP were the 
predominant factors inhibiting carbon emission. Furthermore, the 
factors promoting carbon sequestration gradually changed from PCG, 
GSP, and TEM to PCG and NDVI.

The negative environmental impacts of economic development and 
urban expansion in these areas were well compensated at the beginning 
of the study period. This was because although these developments 
encroached and disturbed the ecological environment to some extent, 
industrial development and technological advancement also improved 
the energy use efficiency. With the completion of industrial 
transformation and the slowing down of urbanization, the impact of 
PCG and SUB decreased; however, these were still the main factors 
driving carbon emission. Moreover, population was one of the limiting 
factors in northwestern and Northern China; the advantages of 
southwestern and Central China were good vegetation cover and 
suitable climate for vegetation growth. Considering the differences 
within various regions in group 4, we suggest that the key to achieving 
carbon balance in this group is to promote economic development, 
environmental protection, and ecological restoration policies according 
to the characteristics of each region.

(5) Group 5—this group includes cities in Central and Eastern 
China where carbon emission and sequestration are sensitive to the 
natural environment (Figure 7; Table 12). In this region, except TEM, 
all other natural ecological factors showed a negative correlation with 
carbon emission and a positive correlation with carbon sequestration. 
Furthermore, the driving power of these factors has been increasing. 
Although socioeconomic factors were positively correlated with 
carbon emission, their influence was weaker compared to that of 
ecological factors.

At the beginning, areas where carbon emission and sequestration 
were majorly impacted by natural ecological factors mainly existed in 
the Central and South regions of China (Figure 7A). In these regions, 
development of the economy and expansion of cities increased carbon 
emissions; however, due to their suitable climate for vegetation growth 
and good vegetation cover, carbon emission and sequestration in these 
areas can still be balanced. However, areas in the Eastern part of the 
northwest region and the Western part of the Northern region suffered 
remarkably due to soil erosion and vegetation degradation. Therefore, 
these ecosystems became very vulnerable, and their carbon emissions 
cannot be  balanced out by carbon sequestration. Since 2005, the 
impact of natural ecological factors on these regions is increasing; 
consequently, the driving force of these factors is the highest in these 
regions. Eventually, the sensitivity of carbon emission and carbon 
sequestration to natural ecological factors stabilized in the border 
areas of Northern, Eastern, and Central China (Figures 7C,D). NDVI 
and GSP were the main influencing factors in this region, owing to the 
former destruction of terrestrial vegetation ecosystems caused by the 
industrial economy development (PSIO, PCG). Ecosystem restoration 
techniques, such as reforestation, is key to achieving a balance between 
carbon emission and carbon sequestration in these areas.
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(6) Group  6—this group includes the North, northeast 
regions, and their surrounding areas. Although the area under 
group 6 changed considerably over time, it mainly existed in the 
northeast, North, and Eastern parts of the northwest region. PCG 
and SUB were the dominant factors promoting carbon emission 
in this group, while GSP and TEM were the primary factors 
increasing carbon sequestration. The driving factors and their 
driving forces in this group were extremely stable during the 
study period.

Overall, group 6 includes typical resource-based cities and 
is home to two major heavy industrial bases in South-Central 
Liaoning and Beijing-Tianjin-Hebei areas. Owing to large-scale 
industrial development and early ecological damage, the 
increase in carbon emissions cannot be offset by the increase in 
resources and environmental efficiency caused by industrial 
transformation and technological progress. Furthermore, the 
correlation between GSP and carbon emission showed a slowly 
increasing trend due to reforestation schemes such as the 
Natural Forest Protection project. Meanwhile, carbon 
sequestration showed a weak response to each driving factor, 
owing to the climate conditions in the North of the country. In 
summary, the industrial-based economic development model 

implemented in this region was the biggest threat to its carbon 
balance. Therefore, efforts toward strengthening industrial 
restructuring, especially the input and development of tertiary 
industry, are key to promoting carbon balance in regions of 
group 6.

5. Conclusion

With the intensification of greenhouse gas emissions and 
global warming, several countries are aiming to achieve carbon 
neutralization. Realizing a balance between carbon emission and 
carbon sequestration has become a focus of attention for countries 
around the world. Understanding the driving mechanisms and 
common drivers for carbon emission and carbon sequestration 
can guide decision makers to formulate urban development 
strategies and environmental protection policies with carbon 
neutrality as the goal. This study explored the potential drivers for 
both carbon emission and carbon sequestration in 352 prefecture-
level administrative units in China using multiple data sources. 
Analyses and discussions of our results led to the 
following conclusions:

FIGURE 7

Drivers of carbon emissions and sequestration in different administrative regions of China in (A) 2000, (B) 2005, (C) 2010, and (D) 2017.
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 1. Overall, the most effective pathway for carbon neutralization 
is to improve the natural environment. Figure  7D and 
Table  12 reveal that the influence of socioeconomical 
factors on carbon emission and carbon sequestration has 
been declining constantly from 2000 to 2017; however, the 
influence of natural ecological factors is becoming 
increasingly strong. Natural ecological factors such as 
NDVI and GSP have already become the dominant driving 
forces for achieving the balance between carbon emission 
and carbon sequestration, especially in the southeast 
coastal areas. That is to say, we should pay more attention 
to carbon sequestration by terrestrial vegetation, which is 
more sensitive to natural ecological factors, rather than 
carbon emissions.

 2. With regard to carbon sequestration, it is necessary to focus on 
the quality and scale of the ecological environment in areas 
outside the cities. According to the results of NDVI and GSP 
analyses, The improvement of GSP is more effective than NDVI 

in promoting carbon sequestration of terrestrial vegetation 
(Figure 7; Table 12). Meanwhile, SUB was the main factor that 
reduced carbon sequestration, which emphasizes that urban 
green space has limited effect on carbon sequestration of urban 
ecosystems under the influence of the overall urban 
environment. This indicates that natural ecological spaces 
outside cities are of great importance for carbon neutralization 
as they can effectively enhance the carbon sequestration ability 
of terrestrial vegetation.

 3. In terms of carbon emission, promoting the innovation of 
industrial and environmental technologies as well as the 
development of low-carbon eco-friendly industries can 
effectively reduce the damage caused to the environment by 
industrial development and help achieve carbon neutrality. 
According to the results of this study, PCG, PSIO, and SUB are 
the main factors that increase carbon emissions (Table 12). In 
most areas of the country, especially in the southeast Coast, 
industrial economic development and urban expansion have 

TABLE 12 Driving factors of carbon emission and sequestration in each group.

Year Group Socioeconomic factors Natural ecological factors

TP (CE/
CS)

PCG (CE/
CS)

PSIO (CE/
CS)

SUB (CE/
CS)

GSP (CE/
CS)

NDVI (CE/
CS)

TEM (CE/
CS)

2000 1 −/+ +/− +/+ −/− −/++ +/+ +/−

2 −/− +/+++ +/− ++/− −/++ −−/+ +/++

3 −/− ++/−−- +/− ++/+ −/++ −/++ +/++

4 −/+ ++/+++ +/− ++/−− −/++ ※/+ +/++

5 −/− ++/※※※ +/− ++/※※ −/++ −−/※ +/++

6 −/− ++/※※ +/− ++/− −/++ ※/※ +/++

2005 1 −/+ +/− +/+ +/− −−/− ++/+ +/−

2 −/+ ++/+++ +/+ ++/−− −/++ -−−/−− +/+

3 +/−− ++/− +/−− ++/−− −−/+++ -−−/−−- +/+++

4 −/− ++/※※ +/※ ++/※ −/+ −−/++ +/+

5 ※※/+ +/+ ++/− ++/− −−/++ ※※/※※ +/+

6 −/※ ※※/※※ +/− ++/※ −/※ ※/+ +/−

2010 1 −−/+ +/− −/+ ++/− -−−/+ ++/+ −/−

2 −−/+ +/+ +/+ ++/−− −/++ -−−/−− +/+

3 ++/− ++/−− ++/−− −/− −−/++ -−−/−−- +/+++

4 −/※ +/※※ +/※ ++/※ −/+ −/++ +/※※

5 +/− ++/※ ++/− ※※/+ −−/+ −−/+ +/+

6 −−/− +/+ ++/− ++/+ −−/++ ++/+ +/+

2017 1 −−/+ −/− +++/+ ++/+ -−−/− +++/+ +/+

2 −/+ ++/+ +/− ++/−− −/++ -−−/−− +/++

3 +/− +/−− ++/+ +/+ +/+++ -−−/−− +/++

4 −/+ ++/+ +/− ++/− −/+ −−/++ +/+

5 ※/− +/− ++/− +/+ −−/++ -−−/− +/++

6 −/※ ※※/※ ++/− ++/※ −−/++ ※※/+ +/++

The icon in the table represents the driving intensity in the region, +++ represents the high positive correlation influence, C  ≥ 0.7; ++represents moderate positive impact, 0.2 < RC < 0.7; 
+represents low positive correlation effect, 0 < RC ≤ 0.2; −−−means high negative correlation, RC ≤ − 0.7; −− represents moderate negative correlation, −0.7< RC < −0.2; −represents low 
negative correlation, −0.2 < RC ≤ 0; ※※※, ※※, ※ means that there are positive and negative correlation influences and balance each other in the region, ※※※ means high-influence balance, 
|RCmax| ≥ 0.7; ※※ is the balance of medium influence, 0.2 < |RCmax| < 0.7; ※ stands for low impact balance, |RCmax| ≤ 0.2.
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slowed down; however, they still play a strong role in increasing 
emissions and reducing carbon sequestration. This shows that 
we are not doing enough to mitigate carbon emissions from 
economic and social activities.

 4. In this study, we categorized China into several regions 
according to the driving factors of carbon emission and 
sequestration in each region. The results show that in 
most regions of China, carbon emission and sequestration 
were dominated by both socioeconomical and natural 
ecological factors. These driving factors restrict each 
other and balance the carbon emission and sequestration. 
Therefore we  also proposed that to achieve carbon 
neutralization, geographical features, climate conditions, 
economic growth, and urbanization must be considered 
in each region.

This study also has certain limitations:

 1. Owing to the restricted availability of data, this study was not 
able to analyze the driving factors of carbon emission and 
sequestration in regions of Hong Kong, Macau, Taiwan, Tibet, 
and 3 counties in Central Hainan (Qiongzhong Li and Miao 
Autonomous County, Baoting Li and Miao Autonomous 
County, and Sansha County).

 2. This study only analyzed the driving factors of carbon emission 
and sequestration according to the data obtained within a 
limited time frame (from 2000 to 2017).
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