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Background: Previous studies have shown a significant response to acute 
transcutaneous vagus nerve stimulation (taVNS) in regions of the vagus nerve 
pathway, including the nucleus tractus solitarius (NTS), raphe nucleus (RN) and 
locus coeruleus (LC) in both healthy human participants and migraine patients. 
This study aims to investigate the modulation effect of repeated taVNS on these 
brainstem regions by applying seed-based resting-state functional connectivity 
(rsFC) analysis.

Methods: 70 patients with migraine were recruited and randomized to receive 
real or sham taVNS treatments for 4 weeks. fMRI data were collected from 
each participant before and after 4 weeks of treatment. The rsFC analyses were 
performed using NTS, RN and LC as the seeds.

Results: 59 patients (real group: n = 33; sham group: n = 29) completed two 
fMRI scan sessions. Compared to sham taVNS, real taVNS was associated with 
a significant reduction in the number of migraine attack days (p = 0.024) and 
headache pain intensity (p = 0.008). The rsFC analysis showed repeated taVNS 
modulated the functional connectivity between the brain stem regions of 
the vagus nerve pathway and brain regions associated with the limbic system 
(bilateral hippocampus), pain processing and modulation (bilateral postcentral 
gyrus, thalamus, and mPFC), and basal ganglia (putamen/caudate). In addition, 
the rsFC change between the RN and putamen was significantly associated with 
the reduction in the number of migraine days.

Conclusion: Our findings suggest that taVNS can significantly modulate the vagus 
nerve central pathway, which may contribute to the potential treatment effects 
of taVNS for migraine.

Clinical Trial Registration: http://www.chictr.org.cn/hvshowproject.aspx?id=11101, 
identifier ChiCTR-INR-17010559.
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Introduction

Vagus nerve stimulation has emerged as a potential treatment 
modality in the management of migraine (Straube et al., 2015; Grazzi 
et al., 2016; Tao et al., 2018; Zhang et al., 2021). Previous studies have 
demonstrated a significant response to acute transcutaneous vagus 
nerve stimulation (taVNS) in regions of the vagus nerve pathway, 
including the nucleus tractus solitarius (NTS), raphe nucleus (RN) and 
locus coeruleus (LC) in both healthy human participants and patients 
with migraine (Frangos et al., 2015; Yakunina et al., 2017, 2018; Sclocco 
et al., 2019, 2020; Zhang et al., 2019; Borgmann et al., 2021). However, 
the modulation effect of repeated taVNS on these key brain stem 
regions has yet to be examined.

Approximately 80% of vagus nerve (VN) fibers are sensory fibers 
that relay both somatic and general visceral signals (Yuan and 
Silberstein, 2016). The afferent vagal nerves primarily project to the 
nucleus tractus solitarius, which in turn transmits the signal to the 
other brain stem nodes such as the locus coeruleus, raphe nuclei, 
and other subcortical and cortical regions (Dorr and Debonnel, 
2006; Manta et al., 2009, 2012; Sacca et al., 2022).

Literature suggests that the locus coeruleus and raphe nuclei are 
also associated with two neurotransmitter systems potentially 
important in regulating migraine (Saper, 2011; Obata, 2017). The 
first neurotransmitter system is the noradrenergic system, which 
plays a major role in arousal, attention, and the stress response 
(Berridge and Spencer, 2017), as well as long-term synaptic plasticity 
and pain modulation (Benarroch, 2009a,b). The locus coeruleus has 
the greatest amount of noradrenaline in the central nervous system 
and provides extremely widespread noradrenergic innervations of 
the entire cortex, diencephalon, and many other brain structures 
(Benarroch, 2009a,b). Noradrenergic neurons in the LC and its 
terminals in the dorsal reticular nucleus (DRt), medial prefrontal 
cortex (mPFC), spinal dorsal horn, and trigeminal spinal nucleus 
caudalis (spVc) have been shown to participate in the development 
and maintenance of allodynia and hyperalgesia after nerve injury 
(Taylor and Westlund, 2017), in addition to their well-described role 
in inhibiting spinal nociceptive transmissions. Thus, the LC may be a 
critical modulator for both pain inhibition and facilitation.

The second neurotransmitter system involved in regulating the 
pain experience is the serotonergic neuromodulatory system. 
Literature suggests that serotonin plays a major role in modulating 
pain perception. For instance, combined serotonin-norepinephrine 
reuptake inhibitors (SNRI) are increasingly considered to be  the 
most effective treatment in the patients comorbid with depression 
and migraine (Goadsby et al., 2017; Burch, 2019). In the central 
nervous system, serotonergic innervation of the cerebral cortex, 
subcortical structures, and cerebellum mainly originate from the 
dorsal and median raphe nuclei (RN) (Ren et al., 2018).

The aim of this study is to explore the modulatory effect of repeated 
taVNS on the resting-state functional connectivity (rsFC) of the NTS, 
LC, and RN in migraine patients. We hypothesize that these brain stem 
targets of vagal afferents may be modulated by repeated taVNS.

Methods

Participants

70 patients with migraine were recruited and randomized in an 
equal ratio to receive real or sham taVNS treatments. Migraine was 
diagnosed by licensed neurobiologists based on the International 
Classification of Headache Disorders, 2nd Edition (ICHD-II). The 
study’s protocol was approved by the Institutional Review Board of the 
Second Affiliated Hospital of Guangzhou University of Chinese Medicine.

The dataset has been previously used to investigate how taVNS 
stimulation can modulate functional connectivity of subregions of 
the thalamus (Zhang et al., 2021). This study focuses on how taVNS 
can modulate the functional connectivity of key regions in the brain 
stem vagus nerve pathway (NTS, LC, and RN), which has not been 
published before. Please see supplementary materials or our previous 
publication (Zhang et al., 2021) for inclusion and exclusion material.

Experimental procedure

All patients underwent two MRI scans (before and after repeated 
taVNS). The entire study lasted for about 8 weeks, consisting of a 
baseline period of 4 weeks collecting migraine attack characteristics 
prior to treatment and the 4-week treatment period. At enrollment, 
patients were requested to maintain diary records of their headaches for 
the duration of the study. Each recorded headache entry included onset 
time, duration, pain intensity (using Visual Analog Scale (VAS) score), 
accompanying symptoms, and the use of rescue medication if any. Both 
real and sham taVNS treatments consisted of 12 sessions in a schedule 
of 3 sessions per week for 4 weeks, with each session lasting for 30 min. 
A 1 Hz continuous electrical stimulation was applied at the left cymba 
concha (Badran et al., 2018) for real taVNS treatment, while the sham 
stimulation site was located on the left tail of the helix (Badran et al., 
2018). See supplementary materials for details in experimental 
procedures and data acquisition.

Functional analysis

Functional data preprocessing and statistical analysis were 
performed in the SPM12-based toolbox CONN19.c (Whitfield-
Gabrieli and Nieto-Castanon, 2012),1 SUIT (Diedrichsen, 2006),2 and 
AFNI software version 17.2.05 (Cox et al., 2017).3 See supplementary 
materials for data preprocessing procedures.

The bilateral NTS were defined based on a publicly available 
template provided by the team of Nikos Priovoulos (Priovoulos et al., 

1 https://web.conn-toolbox.org/

2 https://www.diedrichsenlab.org/imaging/suit.htm

3 https://afni.nimh.nih.gov
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2019). The bilateral RN (combination of median and dorsal raphe) and 
LC seeds were defined based on the Automatic Anatomical Labeling 3 
atlas 3 (AAL) template (Pollak Dorocic et al., 2014). In the first-level 
analysis, we produced a correlation map for each patient by extracting 
the BOLD time series from each brainstem seed and computing 
Pearson’s correlation coefficients between the time series in every seed 
and all other voxels of the whole brain, respectively. Correlation 
coefficients were Fisher transformed into ‘Z’ scores to increase normality.

Seed-to-voxel second-level analyses were performed using a 
mixed-designed ANOVA with treatment (real taVNS vs. sham 
taVNS) entered as the between-subject factor, time (pre-treatment vs. 
post-treatment) as the within-subject factor, and age and gender as 
covariates. We  also performed a one-sample t-test to assess the 
baseline functional connectivity of each seed in all migraine patients. 
A threshold of voxel-wise p < 0.005 and cluster-level p < 0.05 FDR 
corrected was applied for second-level analyses.

Based on previous imaging studies, our a prior regions of interest 
included: (1) downstream targets of vagal afferents in the brain stem: LC 
and RN (Dorr and Debonnel, 2006; Manta et al., 2009, 2012) and (2) the 
pain perception and modulation network in migraine: hypothalamus, 
thalamus, hippocampus, amygdala, insula, anterior cingulate cortex 
(ACC), medial prefrontal cortex (mPFC) and postcentral gyrus (PoCG) 
(Frangos et al., 2015; Hachem et al., 2018; Kaniusas et al., 2019; Lee 
et  al., 2019; Silberstein et  al., 2020; Ashina et  al., 2021). An initial 
threshold of voxel-wise p < 0.005 was used in all data analysis. To correct 
for multiple comparisons, Monte Carlo simulations using the 
3dFWHMx and 3dClustSim implemented in AFNI were applied for 
these ROIs (i.e., brain regions listed above, where for each region, the 
minimum voxel size required for p < 0.05 cluster level p-value correction 
will be indicated as a k value in the results presented below). For the rest 
of the brain, a voxel-wise threshold of p < 0.005 with p < 0.05 cluster level 
FDR correction was applied. A similar analysis was performed in our 
previous study (Gollub et al., 2018).

To investigate the association between the rsFC change and the 
primary clinical outcome (number of migraine attack days), 
we created a sphere with a 2 mm radius using the peak coordinates of 
the brain regions that produced significant rsFC changes after taVNS 
and extracted the average z values. Then, we performed a correlation 
analysis between the rsFC z value changes and the corresponding 
clinical outcomes across all participants.

Results

Clinical outcome

59 patients (33 in the taVNS group, 26 in the sham taVNS group) 
completed two MRI scans before and after 4 weeks of treatment. No 
patients were excluded due to fMRI head motion correction based on 
the calculated mean frame displacement (FD) standard.

Compared to the sham taVNS group, patients in the real taVNS 
treatment group had a significant reduction in the number of 
migraine attack days ([F (1,57) =5.41, p = 0.024]), headache pain 
intensity ([F (1,57) = 7.52, p = 0.008]), and migraine attack times 
(numbers) ([F (1,57) = 6.29, p = 0.015]). There was no significant 
improvement in MSQ, SAS and SDS evaluation after real taVNS 
treatment. Detailed patients’ baseline characteristics and clinical 
outcome measurements were shown in Supplementary Table e1.

Functional connectivity results

NTS functional connectivity results
Among all migraine patients, baseline functional connectivity 

of the NTS showed positive connectivity with the bilateral angular 
gyrus (AG), superior/middle frontal gyrus, posterior cingulate 
gyrus, fusiform gyrus; left hippocampus/parahippocampus, 
thalamus, cerebellum, and right lingual gyrus; and negative 
connectivity with the bilateral dorsal lateral prefrontal cortex 
(dlPFC), putamen, middle/superior temporal gyrus, 
supramarginal gyrus, supplementary motor cortex, superior 
frontal gyrus (SFG), left inferior occipital gyrus (IOG), postcentral 
gyrus (PoCG), and right precentral gyrus (PreCG). Baseline 
functional connectivity of the NTS is shown in 
Supplementary Table e2.

Compared to the sham group, the real taVNS group showed 
decreased NTS functional connectivity with the bilateral medial 
prefrontal cortex (mPFC) and bilateral hippocampus (HPC); and 
increased functional connectivity with the bilateral raphe nuclei after 
treatment (Table 1 and Figure 1).

LC functional connectivity results
Baseline functional connectivity of the LC showed positive 

connectivity with the bilateral cerebellum, lingual gyrus, and 
hippocampus/parahippocampus, and negative connectivity with 
right occipital fusiform gyrus (Supplementary Table e2).

Compared to the sham group, the real taVNS group showed 
decreased LC functional connectivity with the bilateral postcentral 
gyrus (PoCG), superior parietal gyrus (SPG), and left precentral 
gyrus (PreCG); and increased functional connectivity with the 
bilateral thalamus after treatment (Table 1 and Figure 1).

RN functional connectivity results
Baseline functional connectivity of the RN showed positive 

connectivity with the left thalamus and negative connectivity with the 
left caudate and right occipital pole (Supplementary Table e2).

Compared to the sham group, the real taVNS group showed 
decreased RN functional connectivity with the bilateral thalamus and 
right PoCG; and increased functional connectivity with the bilateral 
mPFC/anterior cingulate cortex (ACC), left occipital frontal cortex 
(OFC), left angular gyrus (AG), right caudate, and putamen after 
treatment (Table 1 and Figure 1).

Association with primary clinical outcome
Pearson’s correlation showed that the RN – right putamen rsFC 

change was significantly correlated with the primary outcome 
(reduction of the number of migraine days, R = 0.55, p < 0.001, 
p = 0.015 after Bonferroni correction) in the real taVNS group after 
treatment (Figure 2).

There is no significant association between NTS/LC rsFC change 
and the corresponding primary clinical outcome changes.

Discussion

In the present study, we  investigated the modulatory effects of 
repeated taVNS on functional connectivity of the NTS, LC and RN in 
patients with migraine. Comparisons of clinical measurements 
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indicated repeated taVNS could significantly relieve patients’ symptoms. 
Functional analysis showed that repeated taVNS could modulate the 
connection between the NTS and key brain regions in the limbic system 
(bilateral hippocampus), and the functional connectivity of both the LC 
and RN with brain regions closely relating to pain processing and 
modulation (bilateral postcentral gyrus/bilateral thalamus/mPFC). Our 
findings also demonstrated that repeated taVNS could strengthen the 
functional connectivity between the RN and caudate/putamen, the 
main dopaminergic projecting targets. The RN-caudate/putamen rsFC 
change was significantly associated with the reduction in the number of 
migraine attack days. These findings suggests that repeated taVNS could 
significantly modulate the vagus nerve pathway in patients 
with migraine.

As the major target of vagal afferents, the NTS receives direct inputs 
from the vagus nerve and subsequently projects to other brainstem 
regions including the LC, RN and parabrachial nucleus, along with the 
forebrain limbic structures such as the periventricular nucleus of the 
hypothalamus, the thalamus, the central nucleus of the amygdala, the 
hippocampus, the bed nucleus of the stria terminalis, and the nucleus 
accumbens (Zoccal et al., 2014). In the current study, we observed a 
significantly decreased NTS rsFC with the bilateral mPFC and 
hippocampus and increased rsFC with the RN after the real taVNS 
treatments compared to the sham.

The hippocampus is a main structure of the limbic system. 
Accumulating evidence suggests that limbic system, and the 
hippocampus alone, is involved in pain processing, pain-related 
attention, anxiety, and the stress response (Liu and Chen, 2009; 
Mokhtari et al., 2019; Yu et al., 2020). Both structural and functional 
abnormalities of the hippocampus have been reported in migraine 

patients (Biggio et  al., 2009). Literature suggests that headache 
frequency, cumulative number of migraine attacks, anxiety scores, 
depression scores, and genetic variants are related to hippocampal 
morphology and functional changes in individuals with migraine (Liu 
et al., 2018). A previous neuroimaging study found that migraineurs 
had greater pain-induced activation of the hippocampus, and the 
activation strength had a significant correlation with headache 
frequency in migraine patients (Schwedt et  al., 2014). Our results 
suggest that taVNS could modulate the functional connection between 
the hippocampus and the NTS. This finding is also consistent with a 
previous study in which the authors found that plasticity within the 
hippocampus is an important contributor to the vagus nerve response 
(Biggio et al., 2009).

We found that taVNS could modulate the rsFC of both the LC and 
RN with brain regions closely relating to pain processing and 
modulation (PoCG/thalamus/mPFC). In particular, both the LC and 
RN is associated with a reduced functional connectivity with the PoCG 
after repeated taVNS treatment. Previous studies have identified 
involvement of the PoCG in chronic pain (Kong et al., 2013; Ossipov 
et al., 2014). Particularly, the majority of patients with migraine show 
somatosensory hypersensitivity (i.e., reduced cutaneous pain 
thresholds) and other symptoms of somatosensory hypersensitivity (i.e., 
cutaneous allodynia) during migraine attacks (Schwedt, 2013). The LC 
sends strong projections to the sensory cortex and has long been posited 
to play an important role in modulating sensory encoding (Bruinstroop 
et al., 2012; Vazey et al., 2018).

As the major source of serotonergic projections, the raphe 
nucleus plays a role in the regulation of multiple functional systems, 
including the somatosensory system (Hornung, 2003). Our results 

TABLE 1 Seed-based analysis results.

Condition 
(Post>pre)

Region MNI coordinates Peak z value Cluster size 
(voxel number)

Seed X Y Z

NTS Sham > real Bi_mPFC −2 58 10 4.08 155

R_HPC 30 −20 −20 4.65 190

L_HPC −28 −18 −20 3.29 46

Real > sham Bi_RN 2 −32 −22 3.27 16

LC Sham > real L_SPG −36 −42 60 4.77 694

L_PoCG/PreCG −24 −24 52 4.12

R_PoCG 48 −20 38 4.36 131

R_PoCG/SPG 24 −42 62 3.86 234

Real > sham Bi_Thalamus −4 −6 0 4.74 115

R_Thalamus 16 −16 6 3.71 56

L_Thalamus −8 −22 10 3.48 34

RN Sham > real R_PoCG 48 −24 46 3.59 82

R_Thalamus 22 −24 2 3.23 32

L_Thalamus −16 −24 −2 3.64 22

Real > sham L_OFC −14 22 −16 4.24 164

L_AG −52 −58 46 3.77 188

Bi_mPFC/ACC 0 58 4 3.74 122

R_caudate 18 12 12 3.36 219

R_putamen 20 14 −2 2.70

Bi, bilateral; R, right; L, left; NTS, nucleus tractus solitarius; LC, locus coeruleus; RN, Raphe Nuclei; PoCG, postcentral gyrus; PreCG, precentral gyrus; SPG, superior parietal gyrus; AI, 
anterior insula; OFC, orbital frontal cortex; AG, angular gyrus; mPFC, medial prefrontal cortex; ACC, anterior cingulate cortex; HPC, hippocampus; MCC, middle cingulate cortex.

https://doi.org/10.3389/fnmol.2023.1160006
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Huang et al. 10.3389/fnmol.2023.1160006

Frontiers in Molecular Neuroscience 05 frontiersin.org

FIGURE 1

Group comparison results. Bi, bilateral; R, right; L, left; PoCG, postcentral gyrus; PreCG, precentral gyrus; SPG, superior parietal gyrus; AI, anterior 
insula; OFC, orbital frontal cortex; AG, angular gyrus; mPFC, medial prefrontal cortex; HPC, hippocampus; MCC, middle cingulate cortex.

FIGURE 2

Correlation results of the RN-putamen rsFC change and clinical outcomes. The scatterplot indicates the significant correlation between the change in 
number of migraine attack days and the rsFC change of the bilateral RN and right putamen after real taVNS treatment (R = 0.55, p < 0.001, significant 
after Bonferroni correction).
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suggest that repeated taVNS may regulate the perception of 
nociceptive inputs in patients with migraine by interfering with the 
connection between LC/RN and PoCG. These connectivity changes 
may alter the projection of noradrenergic and serotonergic 
neurotransmitters in the brain stem to the somatosensory cortex.

The thalamus is a major center in the brain for processing 
nociceptive information and relays this information to cortical 
regions for further processing (Lenz et  al., 2004). Evidence of 
activation of the thalamus during migraines is clear and well 
established (Bahra et al., 2001; Afridi et al., 2005; Tu et al., 2019). It is 
worth noting that our results showed that repeated taVNS could 
modulate the rsFC of both the LC and RN with the thalamus in 
patients with migraine. A previous study found that both 
noradrenergic and serotonergic fibers innervate the thalamus, and 
the origins of these projections are primarily located at the LC and 
RN (Westlund et  al., 1991). We  also found that taVNS can 
significantly modulate the connectivity between the thalamus and 
sensory-motor cortex (Zhang et al., 2021). Interestingly, we found 
that after repeated taVNS, the rsFC of the thalamus was increased 
with the LC but decreased with the RN. As the noradrenergic and 
serotonergic fibers project to multiple nuclei of the thalamus, 
involving both excitatory and inhibitory effects (Varela, 2014), future 
studies are needed to investigate more details on how taVNS may 
affect the LC and RN projections to the thalamus.

We also found that taVNS could significantly modulate the rsFC 
between the RN and bilateral mPFC / ACC in patients with migraine. 
The mPFC is a crucial brain region that integrates information from 
multiple cortical and subcortical areas and converges updated outputs 
to downstream structures. In addition, the mPFC / ACC is also a key 
region of the descending pain modulation system (Kong et al., 2010). 
The functional and structural alterations of the mPFC in patients with 
migraine have been reported (Jin et al., 2013; Soheili-Nezhad et al., 
2019). It was considered to play an essential role in regulating pain-
related emotion (depression and anxiety) and cognition in patients with 
migraine (Ma et al., 2018; Tu et al., 2019; Zhang et al., 2019). A previous 
study showed that migraine is associated with increased PAG – mPFC 
connectivity, and the increased connectivity decreased after acupuncture 
treatments (Li et al., 2016). We also found taVNS can modulate the PAG 
– ACC/mPFC connectivity in patient with migraine (Cao et al., 2021). 
Interestingly, we explored the association between the RN-mPFC rsFC 
change and changes in depression scores in the repeated taVNS 
treatment group. The results showed that these two factors are highly 
correlated, with a p value of 0.0038 (R = −0.49). Our result suggests that 
taVNS may hold the potential to relieve both headache and depression 
in patients comorbid with migraine and depression. This is consistent 
with our previous studies showing that taVNS can also reduce 
symptoms in patients with depression (Kong et al., 2018; Li et al., 2022).

Our results showed that repeated taVNS significantly altered the 
functional connectivity between the RN and basal ganglia subregions, 
specifically the right putamen and caudate. This connectivity change 
is associated with a reduction in the number of migraine attack days, 
i.e., the higher the functional strength between RN and right 
putamen, the greater the reduction in the number of attack days in 
migraine patients.

Literature has suggested that the basal ganglia may be involved in 
the sensory, emotional / cognitive, and endogenous/modulatory 
domains of pain processing (Borsook et al., 2010). In particular, the 
putamen is one of the major sites of cortical input into basal ganglia 

loops and is frequently activated during pain (Starr et  al., 2011). 
Dysfunctions of the monoamine systems, especially the dopaminergic 
and serotonergic projections to the basal ganglia, were reported to 
correlate with individual ratings of the sensory and unpleasant qualities 
of the experience of pain(Scott et al., 2006) and might be the early result 
of chronic maladaptation to persistent pain (Sagheddu et al., 2015). 
Thus, we speculate that the repeated administration of taVNS might 
modulate pain perception attributed to the serotonin activation in the 
putamen projected from the RN in patients with migraine.

There are several limitations to this study. Firstly, the current study 
was conducted over a 4-week period and therefore the effects observed 
can only represent short-and mid-term effects; a study with a longer 
duration is needed to investigate long-term effects. Secondly, the sham 
stimulation was applied at the tail of the helix with the same electrical 
stimulation parameters, which might also activate the sensory related 
cortex. Caution needs to be  taken in the interpretation of the 
comparison results of the rsFC change between the two groups, 
especially when it comes to the upregulation of somatosensory cortex. 
Future studies are needed to validate / replicate our findings.

In conclusion, we found that repeated taVNS can modulate the 
connection between the key nodes of the brain stem vagus nerve 
pathway with the limbic system and pain perception and modulation 
networks. These findings suggest that repeated taVNS may yield pain 
relief through modulating of the NTS, LC, and RN connections with 
the above regions, which may further affect their synaptic plasticity 
and neurotransmitter release associated with migraine.
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