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Lung cancer is a fatal disease caused by an abnormal proliferation of cells in the

lungs. Similarly, chronic kidney disorders affect people worldwide and can lead to

renal failure and impaired kidney function. Cyst development, kidney stones, and

tumors are frequent diseases impairing kidney function. Since these conditions

are generally asymptomatic, early, and accurate identification of lung cancer and

renal conditions is necessary to prevent serious complications. Artificial

Intelligence plays a vital role in the early detection of lethal diseases. In this

paper, we proposed a modified Xception deep neural network-based computer-

aided diagnosis model, consisting of transfer learning based image net weights of

Xception model and a fine-tuned network for automatic lung and kidney

computed tomography multi-class image classification. The proposed model

obtained 99.39% accuracy, 99.33% precision, 98% recall, and 98.67% F1-score

for lung cancer multi-class classification. Whereas, it attained 100% accuracy, F1

score, recall and precision for kidney disease multi-class classification. Also, the

proposed modified Xception model outperformed the original Xception model

and the existing methods. Hence, it can serve as a support tool to the radiologists

and nephrologists for early detection of lung cancer and chronic kidney

disease, respectively.

KEYWORDS

lung cancer, kidney diseases, computed tomography, modified Xception model, fine-
tuning, transfer learning, artificial intelligence
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1 Introduction

Lung cancer is one of the world’s most life-threatening diseases.

In 2023, smoking cigarettes will directly cause around 81% lung

cancer deaths, with second-hand smoke contributing to an

additional 3,560 of the 127,070 fatalities Siegel et al. (1). There are

two primary categories of lung nodules: benign and malignant.

Lung nodules that are benign remain firmly in their original

position and do not spread to other bodily areas Heuvelmans

et al. (2). Most benign lung nodules are not malignant. Diet,

stress, genetics, local damage, and radiation exposure are among

the potential contributory factors to benign tumors Takamori et al.

(3). Malignant lung nodules, on the other hand, spread

uncontrollably throughout the body through the lymphatic or

blood systems Gu et al. (4). A malignant lung tumor needs

immediate treatment, and if detected early, the patient may be

treated by surgery and chemotherapy. On the other hand, Chronic

Kidney Disease (CKD) is a degenerative ailment that affects more

than 10% of the world’s population, leading to 800 million

individuals (5). Persons with diabetes mellitus and hypertension,

older adults and women are more likely to develop CKD. Low- and

middle-income nations are particularly burdened by CKD, because

they are least prepared to handle its effects Hill et al. (6). It is graded

as the 16th leading cause of death worldwide and is anticipated to

move up to 5th place by 2040 Foreman et al. (7). The most common

kidney disorders that impair kidney function are renal cell

carcinoma (kidney tumor), cyst development, and nephrolithiasis

(kidney stones). A hard object made up of chemicals from the urine

constitutes the kidney stone disease Alelign and Petros (8). On the

other hand, a kidney cyst consists of fluid within a thin wall that

develops on the surface of the kidney Sanna et al. (9). Whereas

kidney tumor accounts for the 10 most prevailing cancers

worldwide Hsieh et al. (10).

Computed tomography (CT) scan is one of the best methods for

examining lung cancer and CKD patients, because it produces

images with excellent contrast and provides 3D information

Brisbane et al. (11). Due to a global shortage of nephrologists and

radiologists, manual inspection of medical images is expensive and

time consuming and may result in misdiagnosis. CT images play a

crucial part in diagnosing many lung and kidney diseases. Still, the

necessity for a second opinion owing to a shortage of healthcare

professionals significantly impacts the process. Consequently, early

detection of renal problems such as kidney stones, cysts, and tumors

and lung diseases appear to be critical in preventing kidney failure

Bi et al. (12) and lung cancer Monkam et al. (13).

Traditional healthcare management has its limits, but predictive

techniques such as deep learning (DL) algorithms can help to

overcome these constraints Chen et al. (14); Singh et al. (15);

Krishnamurthy et al. (16); Bhattacharjee et al. (17). The

application of DL-based detection may reduce invasive

procedures, enhancing the efficacy and sustainability of current

healthcare methods Akter et al. (18); Alsuhibany et al. (19); Ardila

et al. (20). Nowadays, it is feasible to manage enormous and useful

data to enhance lung cancer and CKD diagnosis in decision making

by using DL classification algorithms Khan et al. (21); Bhaskar and
Frontiers in Oncology 02
Manikandan (22); Coudray et al. (23). When healthcare

practitioners integrate this information with data from other

sources, new solutions using predictive analytics can be developed

for early CKD and lung cancer diagnosis, related health concerns,

and precision therapy. DL algorithms applied to CT images offer an

advantage over conventional techniques in medical image

classification scenarios. It eliminates the need for subject expertise

by automatically learning high-level features from annotated

images. DL techniques contributed to advances in oncology and

kidney-related domains by reducing manual interventions.

Numerous cancer types, namely, prostate cancer Almeida and

Tavares (24), pelvic cancer Kalantar et al. (25) and lung cancer

Xie et al. (26) have benefited from DL-based classification

algorithms. Therefore, the severe negative effects of CKD and

lung cancer on many afflicted people, the global shortage of

nephrologists and the onset of AI-based computer-aided

diagnosis systems motivated us to propose a DL-based

classification model that can assist in early CKD and lung

cancer detection.

This paper proposes a DL-based modified Xception model for

automatically classifying lung cancer patients and kidney diseases

such as cysts, stones, and tumors. The Xception model is modified

in such a way that both transfer learning-based pre-trained

“imagenet” weights and fine-tuned structure is incorporated into

the proposed model and hence, is the novelty of the proposed

model. Its main contributions are listed below:
1. An effective multi-class modified Xception model is

proposed to ensure the least false positives and negative

cases for lung cancer and renal diseases, respectively.

2. The proposed model improved the classification model’s

convergence by ensuring no overfitting cases.

3. The proposed model outperformed the existing state-of-

the-art techniques.
The remainder of the paper is structured as follows. Section 2

contains the related literature survey. This paper’s materials and

methods, including the dataset and the architecture, are described

in Section 3. Sections 4 and 5 discuss the obtained results and the

inferences drawn from them. Finally, Section 6 presents

the Conclusion.
2 Related work

This section introduces the various DL architectures used for

lung cancer and renal disease classification based on different image

modalities. This section is broadly divided into two classes: binary

and multi-class classifications of lung cancer and renal

diseases, respectively.

A combination of VGG16, AlexNet, and LeNet models was

employed for lung cancer diagnosis. The features were best

extracted by AlexNet, which was then coupled with the KNN

classifier to reach a classification accuracy of 98.74% ToğCheck

that all equations and special characters are displayed correctly.açar
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et al. (27). A cross-residual CNN was employed for binary

classification of lung CT images that achieved 92.19% accuracy

Lyu et al. (28). A lung tumor identification technique was

introduced that employed a deep CNN model for classification

and achieved 97.3% accuracy Rani and Jawhar (29). A DL-based

binary classification of Squamous Cell Carcinoma (SCC) and

Adenocarcinoma (ADC) was performed that achieved AUC of

94.14 and 95.94%, respectively Chen et al. (30). Computer-aided

diagnostic approach for determining the possibility of lung nodule

malignancy was employed using a SVM classifier and achieved

AUC score of 90.05% Gonçalves et al. (31). A novel CNN method

was employed for binary classification of lung CT images Asuntha

and Srinivasan (32). A maximum intensity projection based CNN

model for automatically detecting lung cancer system was

introduced that achieved a sensitivity of 92.7% Zheng et al. (33).

A radiomics and CNN approach was used for binary classification

of SCC and ADC that yielded AUC of 71% Chaunzwa et al. (34). A

ResNeXt feature extractor followed by DenseNet classifier was

employed for binary lung CT image classification that obtained

93.78% accuracy Zhang et al. (35). A multi-view CNN was

introduced for binary classification of lung benign and malignant

CT images that attained 90.49% sensitivity Liu and Kang (36).

In lung multiclass classification, Reddy et al. (37) identified

Malignant, Normal, and Benign (MNoB) CT images using an

advanced CNN model and pre-trained Resnet50 and Xception

models. The highest accuracy obtained was 97.40%. Kareem et al.

(38) presented a computer vision system for lung cancer

identification through five stages, namely, pre-processing, image

enhancement, segmentation, feature extraction, and SVM classifier

for multi-class classification of MNoB CT images and obtained an

accuracy of 89.88%. A. Bhattacharjee et al. (39) compared the

performances of DenseNet 121, NASNet Large, and modified

EfficientNet networks for MNoB multi-class classification.

In kidney binary classification, an automated DL-based kidney

stone detection model was proposed using CT images and obtained

an accuracy of 96.82% Yildirim et al. (40). An FCN-based kidney

segmentation followed by a fully automatic framework using

abdominal CT scans was proposed for kidney cysts detection and

achieved a true positive rate of 84.3% Blau et al. (41). A cascaded

Convolutional Neural Network (CNN) was proposed for stone

detection based on CT images and obtained the highest accuracy

of 95% Parakh et al. (42). A morphological cascaded CNN on CT

images was proposed for renal lesion detection and obtained an

AUC of 87.1% Zhang et al. (43). The presence of kidney tumors in

CT images were incorporated using 2D CNN, ResNet 50, and

VGG16 of 6, 50, and 16 layers, respectively. The 2D CNN,

VGG16, and ResNet 50 achieved accuracy of 97, 60, and 96%,

respectively Alzu’bi et al. (44). A residual dual attention-based U-

Net model followed by convolution and softmax layer was used for

kidney cysts segmentation and classification, respectively. Precision

and recall for the model were 96.34 and 96.88%, respectively. Out of

a total of 79 CT images, 27 were used as test images Fu et al. (45). An

MLP and backpropagation-based ANN was proposed to classify the

kidney stones ultrasound images and obtained an accuracy of 98.8%
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Viswanath and Gunasundari (46). A ResNet-based deep neural

network was proposed to distinguish between renal stone and

normal CT images and achieved 99.1% Caglayan et al. (47). A 3D

U-Net model was used for kidney segmentation followed by a DL-

based classification model for kidney stone detection Cui et al. (48).

A novel ensembling classifier was proposed for four different types

of models such as Bayesian, Decision Tree, ANN, and rule-based

classifier. The proposed approach used a genetic algorithm for

weight assignment and achieved 97.1% accuracy Kazemi and

Mirroshandel (49). Different algorithms such as Random Forest

(RF), Decision Tree, Multi-layer perceptron, Naive Bayes, K-

Nearest Neighbor, Support Vector Machine (SVM), and CNN

were applied to get the best x-ray image classification model for

kidney stone and healthy patients. The decision tree model achieved

the highest F1 score of 85.3% Aksakalli et al. (50). A conventional

and DL transfer learning methods were integrated to feed as input

to an SVM classifier, which obtained a maximum of 88% specificity

in distinguishing between normal and unhealthy renal ultrasound

images Zheng et al. (51).

In kidney multiclass classification, an ensembled deep neural

network, consisting of ResNet 101, MobileNet V2, and ShuffleNet

networks classified Normal, Cyst, Tumor, and Stone (NCTS)

ultrasound images and obtained a maximum multi-class

classification accuracy of 96.54% Sudharson and Kokil (52). A

VGG19 model was customized by replacing the fully connected

layers with a naive inception module and dense layers to classify

NCTS CT images Asif et al. (53). This method yielded a

classification accuracy of 99.25%. CNN model was employed to

classify NCTS CT images and obtained an accuracy of 99.36%

Narmada et al. (54). The NCTS CT images classification was

performed by first extracting the features through a DenseNet

model followed by RF classifier and obtained an accuracy of

99.44% Qadir and Abd (55). Six DL classifiers such as swin

transformer, Compact Convolutional Transformer, External

Attention Transformer, Inception V3, VGG16, and ResNet were

used for NCTS CT images. The maximum accuracy obtained was

99.30% Islam et al. (56).

In summary, various image modalities such as x-ray, ultrasound

and CT images were used for lung cancer and renal disease

classification. However, the majority of the work is based on binary

classification of abnormal and normal images instead of multi-class

classification. Considering the gap in the research findings of the above

articles and inspired by the work in Bhattacharjee et al. (17), we

proposed a fine-tuned and pre-trained transfer learning technique

based modified Xception model for automatic multi-class classification

of MNoB lung CT images. The present study is also extended for

kidney NCTS CT images.
3 Materials and methods

The dataset utilized in this study and the proposed improved

Xception architecture along with its mathematical equations are

covered in detail in this section.
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3.1 Materials

In this study, two datasets are used, namely, Iraq-Oncology

Teaching Hospital/National Center for Cancer Diseases (IQ-OTH/

NCCD) Kareem (57) and CT Kidney dataset Islam et al. (56).

The IQ-OTH/NCCD dataset consists of healthy and unhealthy

subjects suffering from lung cancer in various stages. This dataset

can also be accessed from the Kaggle website Kareem (57). In 2019,

the data were gathered for more than 3 months. All of the slides

were annotated by the radiologists and oncologists of these two

centers. The dataset contains 1,190 images featuring CT scan slices

from 110 different instances. The dataset is divided into three

categories: MNoB. There are 55 normal cases, 40 malignant cases,

and 15 benign cases. Digital Imaging and Communications in

Medicine (DICOM) format was used to originally gather the

images. However, the JPEG format was subsequently included by

the IQ-OTH/NCCD dataset itself. Siemens SOMATOM scanner is

employed. One millimeter thick slices are used. The dataset is

approved by the institutional review boards of the participating

hospitals. Each CT scan is composed of 80 to 200 distinct slices.

Every slice is a representation of a distinct angle and side of the

human chest. For the 40 malignant instances, there are a total of 561

CT images. The majority of the subjects are from Iraq’s middle area.

Figure 1 shows sample images of each MNoB class.

The NCTS dataset was gathered from Dhaka hospital, Bangladesh.

Proper consent was taken from all the subjects before collecting the

data, which was then approved by Dhaka Central International

Medical College and Hospital. The dataset consists of 12,446 total

abdomen and urogram CT images, where the axial and coronal cuts

were taken. Out of this, the number of NCTS images is 5077, 3709,

2283, and 1377, respectively. The dataset can be accessed from the

Kaggle website Islam and Mehedi (58). The dataset was originally in

DICOM format, which was later converted to JPEG images through

the Sante Dicom editor tool. The CT images were annotated by the

Philips IntelliSpace Portal application, which was re-verified by a

physician and medical technician to avoid any incorrect annotations.

Figure 2 shows sample images of each NCTS class.
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3.2 Methodology

The proposed modified Xception model, short for the “modified

Extreme Inception” model, mainly consists of transferring the

weights of the “imagenet” to the target network through transfer

learning followed by the fine-tuned network, as shown in figure

effig:3. The target network is the modified Xception architecture. In

the beginning, the input image is first resized from 512� 512 to

224� 224 during pre-processing for reduced complexity. Then,

there are mainly three stages, namely, STAGE-I, STAGE-II, and

STAGE-III. First, the source “imagenet” dataset is fed to the original

XceptionNet, which is passed over 36 convolutional (conv) layers.

Out of these, the number of regular conv and depth-wise Separable

Conv 2D layers (Sep Conv 2D) is 2 and 34, respectively. The first

block consists of two conv layers of 3� 3kernels, followed by a

Batch Normalization (BN) and Rectified Linear Unit (ReLU)

activation function. All blocks, except Blocks 1 and 14, contain a

linear stack of residually connected Sep Conv 2D layers. The input

(I/P) and output (O/P) dimensions determine whether the residual

connections are identity or convolution blocks. When the I/P and

O/P dimensions are identical, identity mapping is performed, as

shown in Block 5 of Figure 3. Otherwise, a linear projection is

executed using short connections to make the dimensions match

each other. Blocks 2, 3, 4, and 13 have a linear projection of conv

filter of 1� 1kernel. These blocks also undergo max-pooling

operations to extract sharp and smooth features and lower the

computing cost by decreasing the amount of parameters that must

be learned. BN is included after every conv 2D and Sep Conv 2D

layers circumvent the local minima issue by translating the

activations to the zero mean and unit variance, hence allowing

larger gradient steps for faster convergence Ioffe and Szegedy (59).

The use of Sep Conv 2D overcomes the limitation of CNN by

segregating the regular conv operations into depth-wise/spatial

conv and sequential point-wise conv. This results in fewer

parameters compared with regular conv and hence reduces the

chances of overfitting Chollet (60). Block 5 is repeated five times

having identity mappings. The last block 14 is fed to the softmax
A B C

FIGURE 1

IQ-OTHNCCD dataset (A) Benign (B) Malignant (C) Normal.
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layer which finally classifies a thousand classes of imagenet dataset

such as kite, bulbul, candle, corn, and so on.

Let the kernel “W” of size 3� 3be convolved with the I/P image

“j(x, y)” and the output “K(x, y)” is represented by Equation (1),

which is then fed to a ReLU activation function “ g (K)“, given by

Equation (2). Similarly, the next Conv 2D outputs “l(x, y),” given by

Equation (3) and then fed to ReLU activation function, given by

Equation (4).

k(x, y) = W*j(x, y) (1)
Frontiers in Oncology 05
g (k) =
0, ifk < 0

X, ifk ≥ 0

(
(2)

l(x, y) = W*k(x, y) (3)

g (l) =
0, if l < 0

X, if l ≥ 0

(
(4)

Suppose the I/P dimension of the imagenet dataset be of size

Dp � Dp � C, where Dp � Dpis the I/P image size and C is the
A B DC

FIGURE 2

CT Kidney dataset (A) Normal (B) Cyst (C) Tumor (D) Stone.
FIGURE 3

The proposed modified XceptionNet model.
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number of channels. Let the number of filters/kernels be D of size

Dq � Dq � C.

For a regular conv, the output size will be Dr � Dr � D. Let the

number of multiplications per conv operation be n. Then the size of

the filter will be Dq � Dq � C. As D filters are present and every

filter slides horizontally and vertically Drtimes, the overall number

of multiplications is given by Equation (5).

Mulreg = D� Dr � Dr � n

= D� D2
r � D2

r � C
(5)

As Sep Conv 2D is combination of both depth-wise

convolutions (d) and point-wise convolutions (p), let the number

of “d” multiplications be D and “p” multiplications be P. Thus, the

overall multiplications for Sep Conv 2D be given by Equation (6).

MulSep = D + P (6)

The dimension of filters for depth wise operations will be of size

Dq � Dq � 1. Considering C channels for the I/P data, the number

of such filters needed are “C.” Therefore, the output will be of

dimension Dr � Dr � C. Considering all “C” channels, the total

multiplications (D) is given by Equation (7).

P =  C � Dr � Dr � Dq � Dq

= C � D2
r � D2

q

(7)

In point-wise operation, “C” channels are subjected to 1� 1

convolution. Consequently, the filter dimension after this operation

will be 1� 1� C. For “D” such filters, the output dimension will be

Dr � Dr � D. For point-wise convolution, there will be 1� C

multiplications. Equation (8) provides the total number of point-

wise convolution multiplications.

P = C � Dr � Dr � D

C � D2
r � D

(8)

Thus, the overall multiplications for Sep Conv 2D is given by

Equation (9).

MulSep = C � D2
r � D2

q + C � D2
r � D

= C � D2
r (D

2
q + D)

(9)

The relation between the complexity of regular conv and Sep

Conv 2D is given by Equation (10).

R =
1
D
+

1
D2
q

(10)

Let Q(L) be the desired mapping and the original mapping be

indicated by Q(L)+L, executed through shortcut connection

followed by addition, as depicted in Figure 3.

Since in Block 2, I/P and output dimensions, namely, L and Q,

are not equal, their dimensions are matched through a linear

projection SAusing a shortcut connection. This is shown in

Equation (11).

yBlock2 = Q(L, Sef g) + SA � L (11)

where Q(L, fSeg)depicts the residual mapping and Seis the weight
Frontiers in Oncology 06
layer. Ignoring BN for simplicity, Q = g (S1g (S0))where g
indicates ReLU.

Similarly, the outputs of Block 3 and 4 are represented by

Equations (12) and (13), respectively.

yBlock3 = Q(yBlock2, Sf
� �

) + SB � yBlock2 (12)

yBlock4 = Q(yBlock3, Sg
� �

) + SC � yBlock3 (13)

Now, the I/P and O/P dimensions from Block 5 to Block 12 are

same. Hence, identity mapping is performed by shortcut connections,

as shown in Equation (14). In this case, Q = S2(g (S1g (S0L)).

yBlock5 = Q(yBlock4, Srf g) + yBlock4

yBlock6 = Q(yBlock5, Sif g) + yBlock5

yBlock12 = Q(yBlock11, Sof g) + yBlock11

(14)

The output of Block 13 is given by Equation (15).

yBlock13 = Q(yBlock12, Sp
� �

) + SD � yBlock12 (15)

Now, the weights of the imagenet dataset trained on the original

XceptionNet is transferred to the target network, which consists of

customized top layers and fine-tuned blocks, thus assembling a

transfer learning and fine-tuned based modified Xception model. As

a result of transfer learning, the input CT kidney dataset and lung

IQ-OTH/NCCD dataset fed through XceptionNet acts as feature

extractors and the Block 14 is fed to our own customized top layers,

which consists of Global Average Pooling (GAP) layers, Dropout

(DROP) layer having dropout ratio of 0.05, 4, and 3 dense layers for

NCTS and MNoB, respectively. Last, a softmax activation function

is applied. Then, fine-tuning is performed by unfreezing the top 20

layers leaving BN layers frozen. If BN layers are set as trainable, the

first epoch following unfreezing will result in a considerable

reduction in accuracy. Thus, an efficient modified Xception

approach is proposed that ensures higher performance in effective

multi-class classification of NCTS and MNoB CT images. Table 1

explains the proposed architecture in detail.
3.3 Pseudocode

The NCTS and MNoB CT images are fed as input to the proposed

model, which yields multi-class classified output. The input image

shape is set as 224� 224for both the cases. The batch size, learning rate

(lr) and dense layers are set as 12, 0.00001 and 4, respectively. First, all

the input image is appended from the NCTS and MNoB image

directory. Subsequently, the labels for each of the case are also

appended. Since there are four classes in NCTS and three in MNoB,

the labels for NCTS (lNCTS) range from 0 to 3 and lMNoBrange from 0 to

2, respectively. Second, the train test split is maintained in the ratio of

80 to 20%. Third, the Xception model is loaded with “imagenet”

weights, and the topmost layers are replaced with GAP, DROP, and

four dense layers. Then, fine-tuning is accomplished by defrosting the

upper 20 layers while freezing the BN layers. If BN layers are set to

trainable, the first epoch after unfreezing will result in a significant

accuracy decrease. Later, the modified Xception model is compiled
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using Adam optimizer, sparse categorical cross-entropy loss function

and accuracy metric. This process leads to a multiclassified NCTS and

MNoB output. The Algorithm 1 describes the pseudocode of the

proposed model.
Fron
Input: NCTS and MNoB CT images
tiers in Oncology 07
Output: Multi-class classified output

Initialize: input_shape = (224, 224, 3),

batch_size = 12, lr = 0.00001, Dense = 4, GAP:

Global Average Pooling, DROP: Dropout, BN:

Batch Normalization

Procedure: lNCTS = {0, 1, 2, 3}
TABLE 1 Architecture detail of the proposed model.

Stage Block/Op Layer Type F/P size S/D O/P shape

I/P – – – – (224 × 224 × 3)

Stage I Block 1 Conv 1 3×3, 32 2 (112 × 112 × 32)

Conv 2 3×3, 64 1 (109 × 109 × 64)

Block 2 Sep Conv 1 3×3, 128 (109 × 109 × 128)

Sep Conv 2 3×3, 128 1 (109 × 109 × 128)

Maxpooling – 2×2 – (55 × 55 × 128)

Conv 1×1, 128 2 (55 × 55 × 128)

add_0 – – – (55 × 55 × 128)

Block 3 Sep Conv 1 3×3, 256 1 (55 × 55 × 256)

Sep Conv 2 3×3, 256 1 (55 × 55 × 256)

Maxpooling – 2×2 – (28 × 28 × 256)

Conv 1×1, 256 2 (28 × 28 × 256)

add_1 – – – (28 × 28 × 256)

Block 4 Sep Conv 1 3×3, 728 1 (28 × 28 × 728

Sep Conv 2 33, 728 1 (28 × 28 × 728

Block 4 – 2×2 – (14 × 14 × 728)

Conv 1×1, 728 2 (14 × 14 × 728)

add_2 – – – (14 × 14 × 728)

Stage II (repeated 8 times)

Block 5 Sep Conv 1 3 × 3, 728 1 (14 × 14 × 728)

Sep Conv 2 3 × 3, 728 1 (14 × 14 × 728)

Sep Conv 3 3 × 3, 728 1 (14 × 14 × 728)

add_3 – – – (14 × 14 × 728)

Stage III Block 13 Sep Conv 1 3 × 3, 728 1 (14 × 14 × 728)

Sep Conv 2 3 ×3, 1024 1 (14 × 14 × 1024)

Maxpooling – 2×2 – (7 × 7 × 1024)

Conv 1 × 1, 1024 2 (7 × 7 × 1024)

add_11 – – – (7 × 7 × 1024)

Block 14 Sep Conv 1 3 × 3, 1536 1 (7 × 7 × 1536)

Sep Conv 2 3 × 3, 1536 1 (7 × 7 × 2048)

GAP – – – – 2048

Dropout – – – 0.5 2048

Dense – – – – 4
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Fron
lMNoB = {0, 1, 2}

for image in image_directory:

data.append(image)

labels.append(lMNoB or lNCTS)

X_train, X_test, y_train, y_test =

train_test_split (data, labels, test_size =

0.20)X = Xception (weights = “imagenet,”

i n c l u d e _ t o p = F a l s e ,

`input_shape=input_shape)

model.fc  GAP, DROP, Dense

model  Model(inputs = X.inputs, outputs =

model.fc)

opt = Adam(lr = 0.00001)

for layer in model.layers[-20:]:

if not instance(layer, layers.BN):

layer.trainable = True

model.compile(optimizer=opt, loss =

“sparse_categorical_crossentropy”,

metrics=[“accuracy”])

end
ALGORITHM 1
Pseudocode of the proposed model.
4 Results

This section comprises three subsections, namely, implementation

detail, experimental setup, and experimental results.
4.1 Implementation detail

Google colab pro plus was used for executing the proposed model,

whose specifications are listed below. The python, keras and tensorflow

version used are 3.8.10, 2.9.0 and 2.9.2, respectively. The GPU “NVIDIA

A100-SXM” of 11.6 CUDA version and 83.48 GB RAM are used.
4.2 Experimental setup

The I/P RGB images of shape 224� 224� 3were divided into

80% training and 20% testing data. An experiment consisting of
tiers in Oncology 08
four networks, namely, Inception ResNet V2, Inception V3,

NASNet and the proposed network, was conducted to get the

bestNCTS model. The proposed model was trained with a batch

size of 12 and an “Adam” optimizer with a learning rate equal to

0.00001 was used. The training was terminated via an early ending

callback if the validation loss does not improve after nine epochs.

The topmost layers of these networks were replaced with

customized layers. Except the proposed model, all other networks

were replaced with top layers having 2,048, 1024, and 512 dense

layers followed by the ReLU activation function and four dense

layers followed by the softmax activation function. Whereas, the

proposed modified Xception model was replaced with GAP,

DROP of 50% and four dense layers followed by a softmax

activation function.

Similarly, an experiment was conducted for MNoB multi-class

classification among the proposed model, Inception ResNet V2,

Inception V3 and MobileNet V3 Small. The batch size, optimizer,

learning rate, early stopping callback criteria and top layers all are

kept the same as the NCTS case except three dense layers are used

for MNoB classification instead of four.

The performance metrics such as Accuracy (Train, Test, and

Validation), Precision, Recall and F1 score were used for evaluating

the proposed modified Xception model and other pre-trained

networks. Accuracy (Acc) describes closeness between the

positively anticipated value and the actual samples, represented

by Equation (16). Precision (Pr) is the percentage of correctly

anticipated positives. It is given by Equation (17). Recall (Re)

determines the fraction of anticipated positives that are accurate,

givenby Equation (18). F1-score is the weighted harmonic mean of

Re and Pr, represented by Equation (19).

Acc =
TruPos + TruNeg

TruPos + TruNeg + FalPos + FalNeg
(16)

where TruPos, TruNeg, FalPos, and FalNeg represent True

Positives, True Negatives, False Positives, and False Negatives,

respectively, and Acc represents Accuracy.

Prec =
TruPos

TruPos + FalPos
(17)

Rec =
TruPos

TruPos + FalNeg
(18)

F1 − score =
2� Pr � Re
Pr + Re

(19)
4.3 Experimental result

Table 2 shows the Train Acc, Validation Acc, and Test Acc

for different models, such as Inception ResNet V2, Inception

V3, NASNet Large, and the proposed modified Xception model.

Inception ResNet V2 achieved least training, validation and testing

accuracy of 40.79, 40.81, and 40.81%, respectively. Whereas, the
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proposed Xception model attained the maximum Train, Validation

and Test Acc of 99.79, 99.92, and 100%, respectively.

Table 3 shows the performance metrics of different models for

NCTS classification. Inception ResNet V2 obtained 0% Pr, Re, and

F1-score for normal, tumor, and stone classes whereas, it obtained

41% precision, 100% recall and 58% F1-score for kidney cyst class.

Thus, it means that it is inefficient in distinguishing among normal,

tumor, and stone classes. On the otherhand, NASNet Large and

Inception V3 outperformed the Inception ResNet V2 model.

However, the proposed modified Xception model obtained the

best results by achieving 100% Pr, Re, and F1-score for each of

the NCTS classes.

Figure 4 depicts the accuracy and loss curves for all the four

different models mentioned above. Inception ResNet V2 showed the

poorest accuracy and loss curves, showing accuracy of

approximately 40%. The Inception V3 and NASNet Large showed

training and validation accuracy of less than 100% and training and

validation loss above 0%. However, the proposed model achieved

the Train and Validation Acc of 100% and loss of 0%. Also, the

epochs for the various NCTS models are not constant because an

early termination callback was triggered if the validation loss did

not decrease after 9 iterations of training.

Figure 5 depicts confusion matrix for each model. Since the

Inception ResNet V2 achieved the poorest results, thus, it is unable

to detect any other class except kidney cyst. Moreover, it

misclassified other classes and considered them to be part of cyst

class, whereas NASNet Large showed less misclassification classes

than Inception V3. However, the proposed model showed no

misclassification results and perfectly classified NCTS classes.
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Therefore, the proposed model is superior to the existing models

for multi-class classification of NCTS classes.

Table 4 depicts the Train, Validation, and Test Acc of different

models such as Inception ResNet V2, InceptionV3,MobileNet V3 Small,

and the proposed model for MNoB classes. Inception ResNet V2

obtained the least Train, Validation and Test Acc of 51.18, 50.91, and

50.91%, respectively. Although Inception V3 and MobileNet V3 Small

achieved almost same training and validation accuracy, their testing

accuracies are different. MobileNet achieved approximately 2% lower test

accuracy than Inception V3, whereas the proposed modified Xception

model obtained the highest Train, Validation, and Test Acc of 100, 99.39,

and 99.39%, respectively. Table 5 shows the evaluation metrics such as

Pr, Re and F1 score of the abovementionedmodels for eachMNoB class.

Inception ResNet V2 obtained 51% Pr, 100% Re and 67% F1-score for

normal class. It is unable to detect malignant and benign class, thus,

proving it to be inefficient. Inception V3 and MobileNet V3 Small

performed better than Inception ResNet V2, whereas the proposed

model obtained the highest Pr, Re, and F1-score of 100, 100, 98, 94,

100, 100, 97, 100, and 99%, respectively for each MNoB class.

Figure 6 shows the Train Acc, Validation Acc, Train loss and

Validation loss curves of the different models and the proposed model

for MNoB classes. Inception ResNet V2 showed the poorest accuracy

and loss curves, showing accuracy of approximately 50% and sparse

categorical cross entropy loss of 0.9543. Inception V3 and MobileNet

V3 fits the training data too closely but unable to generalize well on

testing data, thus showing the sign of overfitting. However, the

proposed Xception model obtained the highest Train Acc of 100%

and sparse categorical cross entropy loss of 0.0015. Thus, the training

loss curves obtained by NCTS model is better than the MNoB because
TABLE 2 Train, Validation, and Test Accuracy for different models of kidney NCTS dataset.

Model Train Acc (%) Validation Acc (%) Test Acc (%)

Inception ResNet V2 40.79 40.81 40.81

Inception V3 97.24 97.91 98.82

NASNet Large 98.04 98.77 99.30

The proposed Xception model 99.79 99.92 100
Bold values represent best values obtained from the comparison by the proposed model.
TABLE 3 Performance metrics of different models for NCTS classification.

Metrics Precision (%) Recall (%) F1-score (%)

Models N C T S N C T S N C T S

Inception ResNet V2 0 41 0 0 0 100 0 0 0 58 0 0

Inception V3 98 100 96 99 99 99 98 99 99 99 97 99

NASNet Large 99 99 100 100 99 100 99 98 99 100 99 99

Proposed model 100 100 100 100 100 100 100 100 100 100 100 100
frontiersi
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of the reduced gap between the training and validation curves and,

hence, it validates that there are no overfitting cases.

Figure 7 depicts the confusion matrix for each of the MNoBmodels.

Since the Inception ResNet V2 achieved the poorest results, thus, it is

unable to detect any other class except normal. Moreover, it misclassified

other classes and considered them to be part of normal class. Whereas

Inception V3 showed less misclassification classes than MobileNet V3

small. However, the proposed model showed only one misclassification

result by considering malignant class to be benign. Otherwise, it perfectly

classified MNoB classes. Therefore, the proposed model is superior to

existing models for multi-class classification of MNoB classes.
5 Discussion

A highly effectual renal and lung cancer disease multi-class classifier

aid in its early detection and reduces the chances of kidney failure and

mortality rate of the affected patients, respectively. However, detecting

renal ailments at the precise location in the CT images is challenging due

to scarcity of nephrologists availability worldwide, especially in low-
Frontiers in Oncology 10
income countries Osman et al. (61). Also, manually detecting lung

cancer from the CT images is laborious and error prone. Over the years,

researchers have conducted substantial study on automatic renal and

lung cancer disease classification, but mostly on binary classes. The

present study overcomes this research gap by focusing on multi-class

classification of several kidney ailments and lung cancer, respectively.

The robustness test of the proposed model is conducted by comparing

the proposed model with the original Xception model in terms of

evaluation metrics and the state-of-the-art techniques.

The following are the key findings of the proposed model:

1. The modified Xception model outperforms the original

Xception model in terms of computational time and evaluation

metrics such as Average (Avg) Pr, Avg Re, Avg F1 score and test

accuracy. The average is found out by taking the mean of all the four

NCTS classes.

2. The proposed architecture surpasses the other pre-trained

networks, namely, Inception ResNet V2, NASNet Large and

Inception V3 in case of NCTS classification. Similarly, it outperforms

the Inception ResNet V2, Inception V3 and MobileNet V3 Small in

case of MNoB classification.
B

C D

A

FIGURE 4

Train Acc, Validation Acc, Training loss, Validation loss curves of NCTS dataset (A) Inception ResNet V2 (B) Inception V3 (C)NASNet Large (D) Proposedmodel.
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3. Invoking fine-tuning into the transfer learning based

Xception architecture promotes faster training and reduced

computational complexity.

4. The proposed model not only performed well on larger NCTS

dataset containing approx. 12,000 CT images, but it performed
Frontiers in Oncology 11
good even in the case of smaller MNoB dataset containing

approximately 1,200 images. Thus, the proposed model is a

robust model.

5. The proposed model provides edge over performance to the

state-of-the-art techniques.
B

C D

A

FIGURE 5

Confusion matrix of NCTS (A) Inception resnetv2 (B) Inception v3 (C) NASNet Large (D) Proposed model.
TABLE 4 Train, Validation and Test Accuracy for different models of lung cancer dataset.

Models Training Acc (%) Validation Acc (%) Testing Acc (%)

Inception ResNet V2 51.18 50.91 50.91

Inception V3 98.18 93.33 96.36

MobileNet V3 Small 98.39 93.33 94.54

Proposed model 100 99.39 99.39
Bold values represent best values obtained from the comparison by the proposed model.
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5.1 Comparison of computational time
between the proposed model and the
original Xception model

Figure 8 compares the proposed improved Xception model’s

computing time to that of the original Xception model in minutes.

It is observed that the original Xception network took 14 min to

train itself. Whereas, the proposed model took 12 min to train itself.

Hence, fine tuning helped the proposed model in faster training and

hence, reduced its computational complexity.
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5.2 Comparison of the proposed model
with the original Xception model

Table 6 compares the proposed modified Xception model with

the original Xception model in terms of performance metrics for

both NCTS and MNoB cases. In NCTS case, the original model

obtained 94.75% Average (Avg) precision, 97.5% Avg recall, 95.75%

Avg F1 score and 97.07% test accuracy. On the other hand, the

proposed model attained 100% of each of the performance metrics

value. In MNoB case, the original Xception model obtained 58.33%
B

C D

A

FIGURE 6

Train Acc, Validation Acc, Train loss, Validation loss curves of lung cancer MNoB dataset (A) Inception ResNet V2 (B) Inception V3 (C) MobileNet V3
Small (D) Proposed model.
TABLE 5 Performance metrics of different models for MNoB classification.

Metrics Precision (%) Recall (%) F1-score (%)

Models M No B M No B M No B

Inception ResNet V2 0 51 0 0 100 0 0 67 0

Inception V3 100 95 97 78 99 98 88 97 98

MobileNet V3 Small 92 100 78 94 99 78 93 99 78

Proposed model 100 100 98 94 100 100 97 100 99
fr
Bold values represent best values obtained from the comparison by the proposed model.
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Avg Pr, 65.33% Avg Re, 61.33% Avg F1 score and 87.27% Test Acc,

whereas the proposed model obtained 99.33% Avg Pr, 98% Avg

Re, 98.67% Avg F1 score and 99.39% Test Acc. Thus, it can be

inferred that the original Xception model performed poorer

for MNoB case compared with NCTS case, whereas, the proposed

model performed equally good on both NCTS and MNoB

cases. Hence, the proposed Xception model is appropriate for

renal disease classification.
5.3 Comparison of the proposed NCTS
model with MNoB in terms of ROC curve

Figure 9 compares the ROC curve of both NCTS and MNoB

models. Each class of NCTS and MNoB models obtained 100%

AUC values. Thus, it is evident that both NCTS and MNoB models

performed equally good in terms of ROC curve.
B

C D

A

FIGURE 7

Confusion matrix of MNoB (A) Inception resnetv2 (B) Inception v3 (C) MobileNet V3 Small (D) Proposed model.
FIGURE 8

Computational time comparison of the original Xception model and
the proposed Xception model in minutes.
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5.4 Comparison of the proposed model
with the state-of-the-art techniques

The proposed NCTS model is compared with External

Attention Transformer (EANET) Islam et al. (56), Compact

Convolutional Transformer (CCT) Islam et al. (56), Swin

Transformer Islam et al. (56), VGG 16 Islam et al. (56), Inception

V3 Islam et al. (56), ResNet 50 Islam et al. (56), DenseNet 201 Qadir

and Abd (55), Ensemble DNN Sudharson and Kokil (52), VGG 19

Asif et al. (53) and CNN Narmada et al. (54), as shown in Table 7.

The proposed model surpassed all the state-of-the-art techniques by

achieving the highest Acc, Avg Pr, Avg Re and Avg F1-score of

100% each. Hence, the proposed model is felicitous for automatic

CKD diagnosis.

Table 8 shows the comparison among the proposed MNoB

model and the state-of-the-art models such as Advanced CNN

Reddy et al. (37), Advanced CNN + Synthetic Minority

Oversampling Technique SMOTE) Reddy et al. (37), Xception

Reddy et al. (37) and ResNet 50 Reddy et al. (37), SVM Kareem

et al. (38), DenseNet 121 Bhattacharjee et al. (39) and NASNet

Large Bhattacharjee et al. (39). ResNet 50 Reddy et al. (37)

performed the poorest followed by Xception Reddy et al. (37).

However, the proposed modified MNoB Xception model

outperformed all the state-of-the-art techniques by achieving the

highest Acc, Avg Pr, Avg Re, and Avg F1-score of 99.39, 99.33, 98,

and 98.67%, respectively.
Frontiers in Oncology 14
5.5 Limitation of the proposed model

Despite encouraging results, the proposed MNoB model could

not outperform the NCTS model due to the lack of training data.

This issue can be solved by implementing data augmentation

techniques to expand the training data. Moreover, since the

proposed MNoB and NCTS models are two-dimensional, it

cannot extract context from adjacent slices. This problem can be

solved by introducing a 3D classification model that can take

advantage of inter-slice context and, hence, enhance model’s

performance.
6 Conclusions

In this article, we have proposed a fine tuned and pre-trained

transfer learning based modified Xception model for automatic lung

cancer and CKD diagnosis. The proposed model can distinguish

among benign, normal and malignant lung CT images. Also, it can

classify normal, tumor, cyst, and stone multi-classes renal CT

images effectively. The proposed methodology composes of

mainly four parts, namely, pre-processing, feature extraction, fine

tuning, and customized top layers. Pre-processing is performed by

resizing the input image from 512� 512to 224� 224for reduced

complexity. Feature is extracted using pre-trained “imagenet”

weights through Xception based transfer learning technique. The
BA

FIGURE 9

ROC curves (A) NCTS (B) MNoB.
TABLE 6 Comparison of the proposed modified Xception model with the original Xception model.

Type Models Avg Pr (%) Avg Re (%) Avg F1 score (%) Test Acc (%)

NCTS Original Xception 94.75 97.5 95.75 97.07

Proposed modified Xception 100 100 100 100

MNoB Original Xception 58.33 65.33 61.33 87.27

Proposed modified Xception 99.33 98 98.67 99.39
Bold values represent best values obtained from the comparison by the proposed model.
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top 20 layers are unfreezed, keeping BN layers frozen to fine-tune

the transfer learning based network so that an improved model is

obtained. Last, the top most layers are customized using GAP,

DROP, DENSE, and softmax layers for improving the potential and

generalizibility of the model. The proposed modified Xception

MNoB and NCTS model outperformed the existing Xception

model and the state-of-the-art techniques. The NCTS model

achieved 100% Acc, Pr, Re and F1-score. Whereas, the MNoB

model obtained 99.39% Acc, 99.33% Avg Pr, 98% Avg Re, and

98.67% average F1 score. Hence, the proposed model is felicitous for

early lung cancer and CKD prediction. It can ensure efficient

management of lung cancer and CKD patients by aiding

radiologists and nephrologists in diagnosing lung cancer and

kidney abnormalities from CT images, respectively. The future

scope of this study is that more advanced algorithms such as

Squeeze and Excitation, Transformer Block and Dense Block

can be incorporated for improved performance. An ensemble of

squeeze and excitation, dense block and vision transformer can

be implemented for enhanced performance. Also, the training

data scarcity in case of MNoB can be addressed through data
Frontiers in Oncology 15
augmentation techniques or by using generative adversarial

network. Moreover, 3D model can be leveraged in future to take

into account the inter-slice context.
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TABLE 7 The proposed NCTS model comparison with the state-of-the-art techniques.

Ref Models Acc Avg Pr Avg Re Avg F1-score

Islam et al. (56) EANET 77.02 81.6 78 77.18

CCT 96.54 96.52 96.55 96.5

Swin Transformer 99.30 99.15 99.15 99.12

VGG16 98.20 98.22 98.12 98.17

Inception V3 61.60 63.92 62 59.15

ResNet 50 73.80 73.9 73.75 73.6

Qadir and Abd (55) DenseNet 201 99.44 99.45 99.47 99.42

Sudharson and Kokil (52) Ensemble DNN 96.54 96.25 96.5 96.5

Asif et al. (53) VGG 19 96.37 96.25 96.5 96.5

Narmada et al. (54) CNN 99.36 99.36 99.38 99.36

- Proposed 100 100 100 100
Bold values represent best values obtained from the comparison by the proposed model.
TABLE 8 The proposed MNoB model comparison with the state-of-the-art techniques.

Ref Models Acc Avg Pr Avg Re Avg F1-score

Reddy et al. (37) Advanced CNN 77.77 72 69 69

Advanced CNN + SMOTE 97.40 96 97 97

Xception 81.48 55 63 58

ResNet 50 76.85 53 59 54

Bhattacharjee et al. (39) DenseNet 121 95.76 98 92.67 93.67

NASNet Large 86.67 77.67 79.67 78.33

Kareem et al. (38) SVM 89.88 97.14 98 97.84

– Proposed MNoB 99.39 99.33 98 98.67
Bold values represent best values obtained from the comparison by the proposed model.
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