
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Edvaldo Da Silva,
São Paulo State University, Brazil

REVIEWED BY

Zhiming Guo,
Jiangsu University, China
Tiago Moraes,
University of São Paulo, Brazil

*CORRESPONDENCE

Hongli Liu

liuhongli@zhku.edu.cn

RECEIVED 05 March 2023

ACCEPTED 09 May 2023
PUBLISHED 02 June 2023

CITATION

Chu X, Zhang K, Wei H, Ma Z, Fu H, Miao P,
Jiang H and Liu H (2023) A Vis/NIR
spectra-based approach for
identifying bananas infected
with Colletotrichum musae.
Front. Plant Sci. 14:1180203.
doi: 10.3389/fpls.2023.1180203

COPYRIGHT

© 2023 Chu, Zhang, Wei, Ma, Fu, Miao, Jiang
and Liu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 02 June 2023

DOI 10.3389/fpls.2023.1180203
A Vis/NIR spectra-based
approach for identifying
bananas infected with
Colletotrichum musae

Xuan Chu1, Kun Zhang1, Hongyu Wei1, Zhiyu Ma1, Han Fu2,
Pu Miao1, Hongzhe Jiang3 and Hongli Liu1*

1College of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and
Engineering, Guangzhou, China, 2College of Engineering, South China Agricultural University,
Guangzhou, China, 3College of Mechanical and Electronic Engineering, Nanjing Forestry University,
Nanjing, China
Introduction: Anthracnose of banana caused byColletotrichum species is one of

the most serious post-harvest diseases, which can cause significant yield losses.

Clarifying the infection mechanism of the fungi using non-destructive methods

is crucial for timely discriminating infected bananas and taking preventive and

control measures.

Methods: This study presented an approach for tracking growth and identifying

different infection stages of the C. musae in bananas using Vis/NIR spectroscopy.

A total of 330 banana reflectance spectra were collected over ten consecutive

days after inoculation, with a sampling rate of 24 h. The four-class and five-class

discriminant patterns were designed to examine the capability of NIR spectra in

discriminating bananas infected at different levels (control, acceptable, moldy,

and highly moldy), and different time at early stage (control and days 1-4). Three

traditional feature extraction methods, i.e. PC loading coefficient (PCA),

competitive adaptive reweighted sampling (CARS) and successive projections

algorithm (SPA), combining with two machine learning methods, i.e. partial least

squares discriminant analysis (PLSDA) and support vector machine (SVM), were

employed to build discriminant models. One-dimensional convolutional neural

network (1D-CNN) without manually extracted feature parameters was also

introduced for comparison.

Results: The PCA-SVM and·SPA-SVM models had good performance with

identification accuracies of 93.98% and 91.57%, 94.47% and 89.47% in

validation sets for the four- and five-class patterns, respectively. While the

1D-CNN models performed the best, achieving an accuracy of 95.18% and

97.37% for identifying infected bananas at different levels and time, respectively.

Discussion: These results indicate the feasibility of identifying banana fruit infected

with C. musae using Vis/NIR spectra, and the resolution can be accurate to one day.

KEYWORDS

Vis/NIR spectra, banana fruit, Colletotrichum musae infection, fungi contamination
detection, traditional classification methods, deep learning algorithms
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1 Introduction

As a nutritious kind of fruit, bananas are vulnerable to pathogenic

micro-organism and saprophyte attacks during storage and transport

in the post-harvest period (Li et al., 2019; Cho and Koseki, 2021).

Banana anthracnose caused by Colletotrichummusae (C. musae) is one

of the most aggressive post-harvest fungal diseases. Fruit usually

become infected in the field, and the infection develops after harvest

(Khaliq et al., 2019). Anthracnose symptoms involve black or sunken

brown lesions on the peel, and even finger or crown rot (Thangavelu

et al., 2004). Even if only a few fruit are infected, the disease can spread

rapidly to other bananas, leading to serious quality losses (Lorente et al.,

2015). Previous publications have indicated that the disease can cause

30–40% losses of the marketable fruit, and even up to 80% in some

cases (Vilaplana et al., 2018; Maqbool et al., 2021). Therefore, timely,

rapid, and accurate recognition of this disease is crucial for

guaranteeing fruit quality.

However, identifying the disease in bananas at an early stage

is still challenging. Several laboratory methods, such as

microbiological and/or physicochemical techniques, are accurate

but they are usually slow, labor-intensive, costly and need

complicated sample pretreatment (Yao et al., 2008; Alander et al.,

2013; Sun et al., 2023). These compelled non-destructive and

economic methods for the early detection of fungal infection

(Brosnan and Sun, 2004). In recent years, a series of non-

destructive methods have been employed, including soft X-ray

imaging (Pearson and Wicklow, 2006), dielectric (Li et al., 2013),

electronic nose (Liu et al., 2018) and hyperspectral imaging

technology (Yeh et al., 2016). Although these methods showed

good performance, there are still some limitations in commercial

application, such as ionizing radiation, difficulty in data processing

and high costs (Haff and Toyofuku, 2008; Gu et al., 2017). Visible

and near-infrared (Vis/NIR) spectroscopy is an alternative method,

which are faster (approximately a full spectral reading per second),

easier-to-use, and lower-cost advantages (Magwaza et al., 2012; De

Azevedo et al., 2019). This technique has been widely used for

evaluating fruit quality, such as taste parameters (Li et al., 2019a),

internal quality attributes (Chandrasekaran et al., 2019), maturity

(Shah et al., 2020), and mechanical or insect damage (Moscetti et al.,

2014; Nturambirwe et al., 2023). It can record the multi-frequency

and co-frequency information of organic molecules (e.g., C–H,

N–H, C–O, and O–H) that are related to the internal

components. Sample tissue’s physical state (e.g., density, cell

structures, or cellular matrices) (Cen et al., 2013; Costabile et al.,

2013) also can be represented from the spectral scatter. During

fungi infecting, both internal compositions and external attributes

will be changed. The hypha pierces the cuticle and cell wall, then

secretes large amounts of cell wall-degrading enzymes to destroy the

cell structure, thus causing the fruit tissue to become soft (Sun et al.,

2020). Meanwhile, fungi exploit fruit as living substrates and

consume nutrients, such as chlorophyll, moisture, and saccharides

(Mendgen and Hahn, 2002). The consequent changes in

microstructure of tissue and chemical composition can affect the

infrared radiation. Therefore, NIR spectra has a great potential in

detection of the fungi infection.
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Many cases of fungal contamination in fruit using NIR spectra

have been reported (Huang et al., 2017; Najjar and Abu-Khalaf,

2021), such as the detection of Alternaria alternata and Penicillium

digitatum infection in orange fruit (Lorente et al., 2015;

Ghooshkhaneh et al., 2023), bitter pit disease in ‘Fuji’ apples

(Mogollón et al., 2021), Monilia contamination in plum (Vitalis

et al., 2021), moldy core in apple and pears (Zhang et al., 2022;

Zhang et al., 2022a). In addition, several researchers have

been aimed to identify fruit or plant anthracnose caused by

Colletotrichum spp. infection using NIR spectra. For example, Lu

et al. (2017) identified anthracnose crown rot in strawberry leaves.

The identification was based on models established by 33 spectral

vegetation indices that were selected from the VIS and NIR regions

(400–2000 nm). Jiang et al. (2021) also achieved the early

identification of anthracnose on strawberry leaves through the

spectral fingerprint features in the 400–1000 nm range in

reflectance mode, and obtained perfect accuracy (100%) and

robust performance. Ardila et al. (2020) built models based

on 29 significant spectral bands from spectral range of 350–1900

nm for the early detection of anthracnose in Mango, and

obtained accuracies of 91–100% when characterizing healthy,

asymptomatic, and diseased samples. Wu et al. (2012) explored

the spectral characteristics of oil camellia canopies suffering from

different severity of anthracnose using the NIR reflectance spectra

of 200-1000 nm, and built a prediction model for its chlorophyll

content. The above studies indicated excellent performance in

detecting fruit and plant anthracnose using NIR spectra. For

bananas, NIR spectra are commonly reported for detecting

chemical composition attributes, such as moisture content,

chlorophyll content, solid soluble content (SSC), and pH during

microwave vacuum drying, ripening, or storing processes (Ali et al.,

2018; Pu et al., 2018; Sripaurya et al., 2021; Ferreira et al., 2022). In

contrast, few studies have focused on non-invasively screening

fungi infecting banana fruit.

In the analysis of NIR spectral data, it should be noted that the

spectral data usually contain hundreds or thousands of wavelength

variables, implying a large amount of hidden information. Thus,

particular attention should be paid to data mining and feature

optimization (Cen et al., 2007; Li et al., 2013a). In recent years, deep

learning algorithms, such as deep convolutional neural networks

(DCNNs), have been widely used in fruit classification, as they can

automatically learn and extract high-level data features (Liu et al.,

2021). For instance, Rong et al. (2020) constructed a 1D-CNN model

using Vis-NIR spectra to identify five cultivars of peaches, obtaining an

accuracy of 94.4% on the test data set. Tian et al. (2022) analyzed

freezing damage in orange using transmission NIRs with a 1D-CNN

model. Similarly, Chen et al. (2019) proposed an end-to-end 1D-CNN

model based on near-infrared spectral data to detect aristolochic acids

and their analogues in Chinese herbs. In other reports, 1D-CNN

models based on spectra have also used for detecting maize kernels

contaminated with fungi (Mansuri et al., 2022), prediction of specialty

coffee flavors (Chang et al., 2021), and geographical origin

identification of Chinese chestnuts (Li et al., 2021). Therefore, in the

analysis of banana fruit infected with fungi, the use of such a deep

learning-based model would be a good attempt.
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The aim of this study was to utilize Vis/NIR spectra to track the

infection of the C. musae in bananas and determine the identifiable

time node. The specific objectives were to: (1) classify fungal

infection levels on bananas qualitatively; (2) explore the feasibility

of discriminant fungal infection time and determine the earliest

identifiable time node; (3) extract the informative spectral features

based on traditional machine learning methods and deep

learning methods.
2 Materials and methods

2.1 Sample preparation

Considering the uncontrollability and unpredictability of the

fungi contamination in natural environment, it is rather difficult to

directly apply the NIR spectra on detection of samples

contaminated naturally. This study started with the identification

of different stages of banana fruits that were artificially inoculated

with fungi under laboratory-controlled condition.

The banana fruit were purchased from a local orchard in

Guangzhou, China. After picking from the orchard, they were

immediately transported to the lab. Banana fingers were selected

with uniform maturity, shape, size, and visual absence of surface

bruises and disease. The fingers were wiped with 75% of alcohol to

sterilize the surface, then rinsed with sterile distilled water. All fruit

were divided into control and infected groups.

C. musae, provided by Agricultural Culture Collection of China

(Beijing, China), was used for the in vitro inoculation test. Infected

samples were obtained by pricking the middle of the finger to a

depth of approximately 1.5 cm using a steel needle with mycelium

and spores. Samples in the control group were also pricked to 1.5

cm with a sterile inoculation steel needle. All samples were stored in

an incubator at 28°C and 75% relative humidity (RH). Thirty

samples in the infected group were selected for NIR spectra

collection every 24 h. As the bananas had seriously rotted by the

11th day, the inoculated samples were only assessed on the first ten

days in this study.
2.2 Spectroradiometer and data collection

The reflectance spectra collecting system was composed of a

Vis/NIR spectrophotometer (USB2000, Ocean Optics, Dunedin,

Florida), a stabilized halogen light source (HL2000, Ocean Optics,

Dunedin, Florida), a Y-shaped fiber-optic reflectance probe, and a

custom lifting platform. The visible–NIR spectrometer scanning

range and sampling interval were 339–1019 nm and 0.29 nm,

respectively. During acquiring spectral data, samples were placed

on a custom lifting platform and manually adjusted to approach the

probe. The integral time was set to 2.8 ms. One spectrum was

obtained with 20 averaged scans, and the smoothing window point

was set as 9 to reduce noise in the spectra. As shown above, the

spectra were obtained for the control group and every 24 h for the

infected groups. Consequently, a total of 30 spectra for the control

group and 300 spectra for the infected group were achieved.
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2.3 Primary chemometrics methods

In this work, traditional feature extraction methods (e.g., PCA)

and distinct effective wavelength extraction algorithms were utilized

to mine spectral feature information. SVM- and PLSDA-based

models were established using the full-spectra, PCs, and effective

spectral variables. Deep learning models (1D-CNN) were also

constructed and compared.

2.3.1 Feature selection methods
The PCA, PC loading coefficient, SPA, and CARS methods

were adopted for spectral feature extraction. PCA can reduce the

dimensions of the data, and get a glimpse of the patterns hidden in

the full spectral data (Liu et al., 2010). Variable selection methods,

such as PC loading coefficient, SPA, and CARS, can extract

characteristic wavelengths in the original spectra, removing

irrelevant and redundant information.

The PCA method that original spectral variables were projected

into new orthogonal variables, known as principal components

(PCs), was allowed for maximization of the sample variance (Yang

et al., 2022). PCA can help to explore the spectral characteristics

used for class separation (Munera et al., 2018). The wavelengths

with larger absolute coefficients are considered necessary in the

corresponding PC (Xing et al., 2010). Thus, the PC loading

coefficients could help to determine the effective wavelengths.

SPA is a forward-loop variable selection algorithm. It starts with

one wavelength and individually incorporates a new one at each

iteration, until a specified number of wavelengths with the largest

projection vector is reached (Araújo et al., 2001; Galvao et al., 2008).

In other words, the number of wavelengths is determined by the

minimum root mean square error (RMSE) values from the full

internal cross-validation.

CARS combines Monte Carlo sampling with the partial least

squares regression (PLSR) model. It selects N subsets of variables

from NMonte Carlo (MC) sampling runs iteratively and competitively

(Wang and Wang, 2022). The subset with the lowest RMSE of cross-

validation (RMSECV) value is chosen as the optimal wavelength

combi-nation. In every sampling phase, the spectral variables are

selected by the adaptive reweighted sampling (ARS) method and the

exponentially decreasing function (EDF), based on the regression

coefficients of the PLS model (Zhang et al., 2019).
2.3.2 Establishment of models
Traditional classification algorithms—including SVM and

PLSDA methods—and deep learning algorithms—including the

1D-CNN—were employed in this study.

SVM is a supervised machine learning approach based on

statistical learning theory. It projects data into a higher

dimensional space and creates hyperplanes to separate each class

(Pardo and Sberveglieri, 2005; Zhang et al., 2021). The higher-

dimensional space is generally implemented using a kernel

function, such as a Linear Function, Polynomial Function (Poly),

Radial Basis Function (RBF), or Sigmoid Function (Sigmoid)

(Kurosaki et al., 2020). SVM exhibits excellent performance in

classifying high-dimensional data with limited training data.
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PLS-DA is a supervised classification algorithm based on the

principle of PLSR (Ivorra et al., 2013), which has also been widely

applied in discriminant analysis. It projects the data matrix into a

group of linear latent variables (LVs), then uses the PLS model

combined with a suitable threshold to give the class number for

each sample. During model training, the optimal number of LVs

was determined according to the results of cross-validation (He

et al., 2022).

A typical 1D-CNN consists of convolutional, pooling, and fully

connected layers (Shen and Viscarra Rossel, 2021). It can also be

understood as concatenating a feature extractor block with a

classification head (Fazari et al., 2021). The convolutions, pooling

operations, and non-linear activation functions belong to the

feature extractor block. The convolutional layer can be used to

realize feature mapping, which consists of a series of convolution

kernels. The kernels are used to perform a convolution operation on

a local data area, extracting the continuous features of different

areas by sliding translation with a specific stride (Chai et al., 2021).

In NIR spectral analysis, as the input vectors are one-dimensional

spectral data, the feature map was calculated using one-dimensional

convolution (Rong et al., 2020). The pooling layer can prevent

overfitting by reducing the parameters of the CNN, and can also

realize the spatial invariance of features while lowering the feature

map. In addition, the activation function is used in a CNN to

increase the non-linear capability of the network. The classification

head is a fully connected classical neural network that produces a

probability vector, which indicates the probability of the input data

belonging to each class.
2.4 Model evaluation

The performance of all the models was evaluated in terms of

sensitivity, precision, specificity, and accuracy. The sensitivity,

specificity, and precision are used to evaluate a model’s

classification performance for each group, while the accuracy is

used to assess the overall performance of the model. Sensitivity and

specificity are used to evaluate the capacity of a model to correctly

recognize samples belonging to a specific group or reject samples

from other groups (Jiang et al., 2022). Precision represents the

ability of a model to correctly quantify the number of positive

predictions (Tian et al., 2022). The accuracy denotes the ratio of the

number of correctly classified samples to the total number of
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samples in a group. These parameters were calculated based on

the confusion matrix, which comprises counts of true positive (TP),

true negative (TN), false negative (FN), and false positive (FP)

results. TP and TN represent that the samples are correctly

classified as belonging or not belonging to a specific class,

respectively. In contrast, FP and FN represent the samples

incorrectly classified as belonging or not belonging to a given

class, respectively (Kurosaki et al., 2020). The model evaluation

parameters were calculated as follows:

Acccuracy =
TP + TN

TP + FP + TN + FN
� 100%, (1)

Sensitivity =
TP

TP + FN
� 100%, (2)

Specificity =
TN

TN + FP
� 100%, (3)

Precision =
TP

TP + FP
� 100%, (4)
3 Results and discussion

3.1 Preliminary level division and overview
of the spectra

The RGB images of the control group and inoculated fruit of 1

to 10 days are shown in Figure 1. It can be seen that the symptoms

of the fungal infection expanded gradually as the inoculation time

increased. In the first four days, the banana was bright green, and

the pricked regions were small. The samples in the control and

acceptable group looked quite similar. Especially, there is no

obvious difference in sample exterior between days 1 and 2 in the

acceptable group and control group. From the fifth day, the

symptom size sharply increased, and the color of the fruit turned

yellow. The appearance of more yellow implies increased ripening.

The symptoms further expanded from days 8 to 10, until they were

severely rotted. To identify bananas infected with C. musae at

different levels, all samples were tentatively divided into four

classes—control, acceptable (days 1–4), moldy (days 5–7), and

highly moldy (days 8–10)—according to the change of the

symptom. A five-class dataset, including the control and day 1–4,
FIGURE 1

The appearance of infected banana fingers at different incubation time.
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was also prepared for identifying the fungi infection time at

early stage.

The original average reflectance spectra of the four-class

samples are shown in Figure 2A. The wavelength ranges of 339–

400 nm and 950–1019 nm were removed to reduce noise caused by

the lower sensitivity of the spectrometer. The shaded regions with

different colors denote the deviation bands of the spectra. The mean

spectrum of the control group (pricked with a sterile steel needle)

presented a higher reflectance intensity. The overall trend of the

acceptable group’s spectral profile was similar to that of the control

group, while the reflectance intensities were relatively small. This is

because the fungal infection caused a black disease spot and made

the tissue more porous, causing more light to diffuse scattering,

rather than reflecting (Liu et al., 2020). In addition, the peaks and

valleys on the spectra represent some chemical composition or

functional groups. The apparent peak at around 550 nm, as

mentioned by Min et al. (2006), is related to nitrogen absorption.

Furthermore, the regions in the 600–680 nm range represent

anthocyanin and other pigments that are responsible for fruit

coloration (ElMasry et al., 2007). Among them, the distinct valley

around 675 nm can be attributed to chlorophyll. There was a sharp

rise in the 680–740 nm band, which can be denoted as the ‘red

edge’. The spectral pattern and reflectance values for the moldy and

highly moldy groups obviously differed from those of the control

and acceptable groups. In these two groups, the wave peaks and
Frontiers in Plant Science 05
valleys became unclear as the reflection intensity further reduced.

For example, in the moldy and highly moldy groups, the valley at

675 nm disappeared. With the increase in culture days, the changes

in spectra agreed with those previously reported by Liu et al. (Liu

et al., 2019). The difference in spectral profiles may be due to the

changes of chemical composition and structural destruction of

banana tissue caused by the fungal infection.

The average reflectance spectra of the five-class samples (i.e.,

control and days 1–4) are shown in Figure 2B. The patterns of the

spectra are similar to those presented in Figure 2A. The highest

reflectance appeared in the control group. It was difficult to

distinguish the spectra between days 1 and 2. This may be

because the fungi in the bananas were in a lag phase on these

days, and the tissue structure had not been broken out (Sun et al.,

2017). With the invasion of the fungi, the reflectance was further

reduced, and the peak and valley were no longer obvious.

Principal component analysis (PCA) was carried out further to

analyze the differences in spectra among the four-class sample. The

scores of the first three PCs (Figure 3A) explained 92.13%, 5.25%,

and 1.63% of the variance, respectively. It was found that samples in

the four groups were distributed along the direction of PC1, and

samples in the control and acceptable groups could be generally

separated from those in the moldy and highly moldy groups.

Similar results have also been observed for moldy peanuts and

fungi-contaminated peaches, based on near-infrared spectroscopy
A B

FIGURE 2

The mean spectra of banana fingers at different: (A) Infection levels; and (B) days post-infection.
A B

FIGURE 3

PC score plots: (A) Banana fingers with different fungi infection levels; and (B) banana fingers with different fungi infection time.
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(Liu et al., 2020; Shen et al., 2018). However, visual boundaries

between the control and acceptable groups, as well as between the

moldy and highly moldy groups, were missing. This motivated the

use of chemometric techniques to improve the separation

performance. Similar to the analysis of fungi infection levels, PCA

was also performed for the five-class samples. The contribution rate

of the first three PCs was 89.39%, 7.32% and 2.19%, which were

accounted for >98% of the spectral variance. A three-dimensional

(3D) score plot of those PCs was constructed and shown in

Figure 3B. The samples in the control group and days 1–4 were

also distributed along the direction of PC1, while the boundary of

each class was not obvious.
3.2 Discriminant models based on
traditional methods

3.2.1 Spectral pre-treatment and division
In this study, the SVM and PLSDA methods were selected to

establish models to discriminate bananas with different infection

levels and time based on the four- and five-class datasets,

respectively. As a pre-treatment process, the standard normal

variate (SNV) was first applied to correct scatter caused by

variations in the appearance of the disease spots (Li et al., 2020).

For the SVMmodels, a polynomial kernel was selected as the kernel

function, and the parameters of SVM were optimized by grid search

method. A five-fold cross-validation were used during the

construction of SVM models. Both the full spectral data and the

PCs were taken as inputs of the SVM, and all the SVM inputs were

normalized using the min–max method to improve the model

performance. For the PLSDA models based on the full spectral

data, five-fold cross-validation was also used. During modeling, the

four- and five-class data sets were randomly divided into calibration

and validation sets with a ratio of 3:1. The model performance was

evaluated according to the accuracy in the calibration, cross-

validation, and validation sets.

3.2.2 Model construction based on full spectra
The performances of the Full-SVM, PCA-SVM, and Full-

PLSDA models on the four- and five-class data sets are detailed

in Table 1. During the construction of the PCA-SVM models, the

proper input numbers of PCs was determined based on their
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accumulative contribution rates and the criterion of correct

classification of the models (Ropodi et al., 2016). For the four-

class model, a high model accuracy was achieved when the first 14

PCs were used. After that, the accuracies fluctuated little with an

increasing number of PCs. Thus, the first 14 PCs were selected as

input. The first 12 PCs were selected for the five-class PCA-SVM

model, based on the same principles. For the PLSDA models,

optimum input components (LVs) were selected based on the

compromise between less input and lower error rate during

model training and cross-validation. A total of 14 and 10 LVs

were chosen for the four- and five-class PLSDA models,

respectively. Table 1 lists the accuracies of the PLS-DA and SVM

models with their optimal parameters for comparison.

It can be seen that all four- and five-class discriminant models

achieved favorable results, with calibration accuracies over 95.54%

and validation accuracies over 91.57%. The results indicated that

the use of NIR spectra with proper modeling methods feasibly

allows for identifying bananas with different fungi infection levels

and time. For the Full-SVMmodels, the accuracies were 91.57% and

92.10% for the four- and five-class, respectively. However, large

number of variables (full wavelengths of 1645 variables) resulted in

complex computations during model construction. In the PCA-

SVM and PLSDA models, the number of variables was remarkably

reduced to a dozen. The PCA and PLSDA methods decompose the

data into new, uncorrelated variables, reducing the number of

variables in the model. New variables imply new directions in the

pattern space, and they can explain as much variance as possible

with respect to the raw full spectral data (Ciosek et al., 2005). This

may be also the reason why the PCA-SVM and PLSDA models

performed better than the full-SVM models, with validation

accuracies of 93.98% and 93.98% for four-class models and

94.74% and 92.11% for five-class models, respectively. As the

PCA-SVM models obtained the highest accuracies, they were

selected for further analysis.

3.2.3 Simplified models based on
selected wavelengths

Through spectral data analysis, selecting effective wavelengths

can eliminate redundant information, retain critical information in

the original data, and reduce the calculation burden. We considered

three effective wavelength selection methods: SPA, CARS, and PC

loading coefficient. Taking four-class data as an example to
TABLE 1 Classification results of SVM and PLSDA models built with full spectra.

Model type Modeling Method Input variables
Classification accuracy (%)

Calibration set Cross-validation set Validation Set

Four-class model

Full-SVM 1645 96.76 96.76 91.57

PCA-SVM 14 PCs 99.19 96.36 93.98

PLSDA 14 LVs 97.98 96.76 93.98

Five-class model

Full-SVM 1645 97.32 91.07 92.10

PCA-SVM 12 PCs 100 95.53 94.74

PLSDA 10 LVs 95.54 92.86 92.11
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introduce the application of these methods. In the process of SPA,

the RMSE iteration decline curves are shown in Figure 4A. The

RMSE decreased dramatically with increasing number of

wavelength variables, then fluctuated slightly when the value

reached 11. Therefore, the number of effective wavelengths for the

four-class models was determined to be 11 (Figure 4B). In the

process of selecting variables by CARS (Figure 4C), the results are

shown in Figure 4D. The number of sampled variables decreased

rapidly at first with the increase of sampling time, then stabilized.

Regarding the RMSECV values in the second sub-plots of

Figure 4C, they also gently declined and remained stable when

the sampling time was 35. This indicated that the uninformative

variables were gradually eliminated, and the subsequent increase in

the RMSECV was due to the removal of effective variables.

Consequently, the optimal effective wavelength subset of variables

was determined in the 35th sampling run. The loading lines for the

PC1, PC2, and PC3 are shown in Figure 4E. The peaks and valleys

correspond to greater absolute coefficient values, and the
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corresponding wavelengths were considered crucial (Xing et al.,

2010). Thus, the seven wavelengths (442.6, 535.3, 564.1, 648.4,

682.4, 736.5, and 846.4 nm) from the PC loading were identified as

the informative wavelengths for classifying the infection level

(Figure 4F). Similarly, the effective wavelengths in the five-class

spectra were also extracted using these three methods.

All the selected wavelengths are summarized in Table 2. For the

two data sets, the effective wavelengths selected by the three

methods were spread over the entire Vis–NIR wavelength range.

The wavelengths chosen by CARS and SPA were similar and mainly

concentrated in the regions of 400–700 nm and 850–900 nm. CARS

select-ed a greater number of wavelengths, but some successive

wavelengths were chosen, and bands were clustered around certain

wavelengths (e.g., 402 nm, 555 nm, and 897 nm). Compared with

CARS and SPA, the PC Loading coefficient method produced

sparser distributions of effective variables in the full spectra. The

above-mentioned selected wavelengths were subsequently used,

instead of the original full spectra, to build new simplified SVM
D

A B

E F

C

FIGURE 4

Selection of characteristic wavelengths using SPA CARS and PC Loading coefficient: (A) RMSE iteration decline curves of SPA; (C) process of CARS
wavelength selection; (E) characteristic wavelengths selected by PC Loading coefficient; and location of characteristic wavelengths extracted by
(B) SPA; (D) CARS; and (F) PC Loading coefficient.
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and PLS-DA models. The sample division method, kernel function

and parameters optimized method for the simplified models were

the same as those used in the modeling based on the full-spectra.

The prediction results are shown in Table 3. In both the four-

and five-class data sets, the models based on SPA and CARS

achieved acceptable classification accuracy of over 81%. These

indicated that the wavelengths extracted by the SPA and CARS

algorithms were efficient. The results of PC loading-based models

were inferior to those of the SPA and CARS models. Of the

wavelengths selected by PC Loading, some were also selected by

CARS and SPA, indicating that this method could screen feature

spectra information; however, as this method selected few variables,

too much information may be lost, resulting in lower

classification accuracy.

On the other hand, combining with different wavelength

selection methods, all SVM models slightly outperformed the

PLSDA models, which were similar to those in the full-spectra

models. Compared with all the models, SPA-SVM achieved the best

performance, with accuracies of 91.57% and 89.47% in the
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validation sets of the four- and five-class datasets, respectively.

Although they did not perform as satisfactorily as the full-spectra

models, the number of wavelengths was significantly reduced (by

99.3% and 99.1%, respectively) in this step. In addition, the feature

wavelengths in the spectral band of 600–680 nm may be related to

certain colorants, which could be changed due to fungal infection.

Wavelengths near 740 nm are assigned to the O–H stretching third

overtone, while those near 842 and 899 nm are assigned to the C–H

third overtone. Moreover, the wavelength 851.9 was near 850 nm,

which is related to anthocyanin (Tian et al., 2019). The above

aspects may explain why these wavelengths played an important

role in the analysis.
3.3 Discriminant models established
using 1D-CNN

Based on the excellent performance in feature extraction and

classification problems, 1D-CNN models based on full spectra were
TABLE 3 Classification results of SVM and PLSDA models built with effective wavelengths.

Model type Modeling
Method

Wavelength selection
method

Input
variables

Classification accuracy (%)

Calibration
set

Cross-validation
set

Validation
Set

Four-class
model

SVM

SPA 11 97.16 93.12 91.57

CARS 18 96.76 94.74 84.33

PC Loading 7 82.19 82.19 77.11

PLSDA

SPA 10 LVs 86.23 83.00 84.34

CARS 9 LVs 92.31 91.90 81.93

PC Loading 6 LVs 76.11 76.11 73.49

Five-class
model

SVM

SPA 14 99.11 96.43 89.47

CARS 16 100 88.39 81.58

PC Loading 7 100 90.18 81.58

PLSDA

SPA 9 LVs 96.43 95.54 86.84

CARS 9 LVs 92.86 85.71 84.21

PC Loading 6 LVs 82.14 76.79 81.58
TABLE 2 Effective wavelengths selected by different methods.

Data
set

Wavelength selection
method

Number of
wavelengths Effective wavelength

Four-
class

SPA 11 401.1, 416.7, 500.7, 512.7, 564.1, 648.4, 682.4, 795.9, 851.9, 867.4, 872.6

CARS 18
402.2, 402.9, 416.7, 417.1, 417.8, 509.4, 554.2, 555.2, 555.9, 603.5, 603.8, 690.2, 881.5, 896.9, 897.3,
897.9, 898.5, 937.8

PC Loading 7 442.6, 535.3, 564.1, 648.4, 682.4, 736.5, 846.4

Five-
class

SPA 14 405.5, 412.2, 465.1, 507.6, 524.2, 617.7, 648.7, 745.7, 839.2, 859.1, 864, 869.9, 874.5, 945.7

CARS 16
464.7, 465.4, 465.8, 500.4, 500.7, 501.5, 625, 625.7, 648.8, 649.1, 892.1, 892.7, 893.6, 899.1, 899.4,
899.7

PC Loading 7 442.6, 535.3, 564.1, 652.6, 682.4, 736.5, 874.5
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also established for comparison. For both four- and five-class

discriminant pattern, calibration and validation sets were also

divided by 3:1. Taking the four-class 1D-CNN model as an

example, it consists of a convolutional layer, a max-pooling layer,

a transition layer, and two fully connected layers, as shown in

Figure 5. As the input spectral data were one-dimensional, the

convolutional layer and pooling layer were also set to be one-

dimensional. The convolutional layer used Rectified linear unit

(ReLU) as an activation function, in order to increase the non-linear

capability of the network. The kernel size, stride, and number of

kernels were set as 4×1, 1, and 16, respectively. A fully connected

layer was added after the convolutional layer to further extract

features of the data. The number of output units was set as 8. A

max-pooling layer was used for dimension reduction, configured

with a pooling size of 2×1 and a stride of 2. The following transition

layer (flatten layer) was used to tile the data in one dimension and

realize the transition from the convolutional layer to the fully

connected layer. The normalized exponential function (SoftMax)

and cross-entropy were used in the last fully connected layer. The

training set was divided into batches with a size of 32 to achieve

rapid convergence of the model. The structure of the five-class 1D-

CNN model was generally similar to that of the four-class model,

except that the number of output units in the first fully connected

layer was set as 16, and the batch size in the other fully connected

layer was set as 64.

As shown in Figure 6, during the training and validation of the

1D-CNN models, the accuracies on the training and validation sets

were increased, while the losses decreased with the increase in

number of epochs. At the initial training, both the accuracy and the

loss curve oscillate in a range respectively, which may be caused by

the noisy in the spectra data and the inappropriate setting of

learning rate. The use of backpropagation and gradient descent

algorithms could help to calculate and adjust the weights of

parameters and obtain the optimal solution of the model during

the learning process. With the increase of training times and the

optimization of parameters, the loss function gradually converges

and the model becomes more stable. The validation accuracies in

the last epoch increased to more than 95.18% and 97.73% for the

four- and five-class data sets, respectively, while the corresponding

losses declined to less than 0.12 and 0.16.
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3.4 Comparisons of traditional models
and 1D-CNN models

For comparison of the traditional and 1D-CNN models,

Tables 4, 5 summarize the sensitivity, specificity, precision, and

accuracy of the PCA-SVM, SPA-SVM, and 1D-CNN models for

four- and five-class data sets, respectively.

For the traditional models, the PCA-SVM models presented

better performance than the SPA-SVM models, with an accuracy

of 93.98% and 94.74% for the four- and five-class data sets,

respectively. The PCs are comprehensive indices produced by

linearly combining original spectral data (Su et al., 2021),

eliminating correlations in the original data while preserving the

variance in the raw data. While, SPA selects effective spectral

variables directly from the 1645 variables. Eliminating a large

number of variables may lead to the loss of some effective

information. These may cause the prediction results of the SPA-

SVM model to be slightly inferior.

From the results listed in Tables 4, 5, it can be seen that the 1D-

CNN models achieved the best results, with the highest accuracies

of 95.18% and 97.37% for four- and five-class identification,

respectively. The sensitivity, specificity, and precision were also

found to be optimal for the 1D-CNN models. These encouraging

results suggest that 1D-CNN models combined with NIR spectra

have great potential in identifying bananas infected with the fungi

at different levels and time. Compared with traditional methods,

the models obtained satisfactory classification results without

requiring the manual extraction of feature parameters, and could

automatically extract more hidden features in the spectra. As

mentioned by Tian et al. (2022), the convolutional layers in the

1D-CNN are equivalent to the operations of data pre-processing

and feature extraction used in traditional machine learning

approaches. As these layers were tuned by back-propagation, the

optimization algorithm of deep learning could extract the hidden

features in the spectra more accurately and effectively.

Confusion matrixes for each 1D-CNN model were established,

in order to further analyze the identification results (Figure 7). For

the four-class model, the control and acceptable groups achieved

better results, with 100% of individuals being well-classified. Thus,

the stage of infection development can be precisely recognized, and
FIGURE 5

The structure of the 1D-CNN four-class model.
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separation between infected and uninfected fruit with great

accuracy is possible. On the other hand, misidentification mainly

occurred between the moldy and highly moldy groups. This may be

caused by the slight differences in reflectance from the infected areas

between these two groups, as black disease spots on the samples in

these two groups were already obvious and the infected zone was

rotten. These results are in agreement with the findings of Sun et al.

(2018), who discriminated the degree of decay in peaches, based on

the spectral range of 400–1000 nm.
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The results for the five-class model confirmed that the days after

inoculation could be separated with high accuracy using the 1D-

CNN method. The 100% accuracy of the control group indicated

that infected fruit could be accurately recognized after 24h. Some

misclassification occurred when identifying days 1 and 2. To some

extent, this is due to the fungi being in the lag phase withing the first

few days, and the damage to banana tissue was not serious in this

period. Consequently, the similarity of physical and chemical

properties between samples in the first few days may lead to
TABLE 4 Classification results for the four-class data set obtained by traditional and 1D-CNN models.

Modeling Method Input variables Labels Sensitivity
(%)

Precision
(%)

Specificity
(%)

Accuracy
(%)

PCA-SVM 14 PCs

Acceptable group 96.15 96.15 98.25

93.98
Moldy group 85.71 90 96.77

Highly moldy group 96.97 94.11 96

Control group 100 100 100

SPA-SVM 11 wavelengths

Acceptable group 93.10 96.43 98.15

91.57
Moldy group 84.21 80 93.75

Highly moldy group 91.67 91.67 96.61

Control group 100 100 100

1D-CNN Full spectra (1645)

Acceptable group 100 100 100

95.18
Moldy group 88 95.65 98.30

Highly moldy group 95.45 87.50 93.55

Control group 100 100 100
fr
D

A B

C

FIGURE 6

Accuracy and loss curves for the 1D-CNN models: (A) Accuracy and (C) loss curves for four-class 1D-CNN model; and (B) accuracy and (D) loss
curves for five-class 1D-CNN model.
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misclassification. These results were consistent with the findings

of Siedliska et al. (2018), who identified the inoculation days of

strawberries with BC fungi, and showed that the misclassification

also more commonly occurred in the samples within the first few

days. Sun et al. (2017) have discriminated peaches at different

incubation time, and they also indicated that the very early

diseased peaches (at 1 and 2 days) were in the same category.

From the third day, the accuracy reached 100% as, over the first four

days, symptoms gradually appeared with the ongoing infection, and

the difference in the internal contents and exterior tissue surface

gradually became obvious. The obvious spectral characteristics

resulted in an accurate classification result.
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4 Conclusions

This study tracked the growth and identified different infection

stages of the C. musae in bananas using the Vis/NIR spectroscopy.

Two types of discriminant models including 4-class and

5-class models were established using traditional methods, i.e

combinations of three traditional feature extraction (SPA, CARS,

and PC Loading) and two machine learning methods (PLSDA and

SVM). A deep learning method of 1D-CNN was also used for

comparison. The two models were used to examine the capability of

NIR spectra in discriminating bananas infected at different levels

(control, acceptable, moldy, and highly moldy), and different time
A B

FIGURE 7

Visualized confusion matrix for: (A) Validation set of four-class 1D-CNN model; and (B) validation set of five-class 1D-CNN model.
TABLE 5 Classification results for the five-class data set obtained by traditional and 1D-CNN models.

Modeling Method Input variables Labels Sensitivity
(%)

Precision
(%)

Specificity
(%)

Accuracy
(%)

PCA-SVM 12 PCs

Day 1 83.33 83.33 96.88

94.74

Day 2 91.67 100 100

Day 3 100 100 100

Day 4 100 100 100

Control group 100 85.71 96.88

SPA-SVM 14 wavelengths

Day 1 75.00 85.71 96.67

89.47

Day 2 100 90.00 96.55

Day 3 100 100 100

Day 4 100 100 100

Control group 81.82 81.82 92.59

1D-CNN Full spectra (1645)

Day 1 90.90 100 100

97.37

Day 2 100 87.50 96.77

Day 3 100 100 100

Day 4 100 100 100

Control group 100 100 100
fr
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at early stage (control and days 1-4), respectively. The models built

by traditional methods had good performance with the detection

accuracies in validation sets of 93.98% and 94.47% for 4- and 5-class

models, respectively. The proposed 1D-CNN models can

automatically extract the feature parameters and improved the

detection accuracies, which were 95.18% and 97.37% for the 4-

and 5-class discriminant models, respectively. These results

demonstrated the feasibility of characterizing the process of C.

musae infection in bananas using the Vis/NIR spectra. The

resolution using Vis/NIR spectra in identifying bananas infected

with C. musae can be accurate to 24 h. In addition, 11 and 14

effective wavelengths for the 4-class and 5-class models were

selected using the traditional methods, which may serve as a

simplified alternative for future practical implementation.

Additionally, it should be noted that this study preliminary

analyzed the spectra change during the fungi infection process. To

further characterize the infection mechanism of the fungi using the

Vis/NIR, more physical and chemical changes, e.g. microstructure

of tissue and chemical composition that are related to the changes of

the spectral characteristics, will be analyzed combining with other

methods such as physical and chemical examination, electron

microscope scanning and fluorescence labeling in the near future.
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